diff --git a/-9E2T4oBgHgl3EQfQgbg/content/tmp_files/2301.03772v1.pdf.txt b/-9E2T4oBgHgl3EQfQgbg/content/tmp_files/2301.03772v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..18299168f734ac7a26b046d69c9a4557879fd191
--- /dev/null
+++ b/-9E2T4oBgHgl3EQfQgbg/content/tmp_files/2301.03772v1.pdf.txt
@@ -0,0 +1,1322 @@
+Influence of illumination on the quantum lifetime in selectively doped single GaAs
+quantum wells with short-period AlAs/GaAs superlattice barriers
+A. A. Bykov, D. V. Nomokonov, A. V. Goran, I. S. Strygin, I. V. Marchishin, A. K. Bakarov
+Rzhanov Institute of Semiconductor Physics, Russian Academy of Sciences, Siberian Branch,
+Novosibirsk, 630090, Russia
+The influence of illumination on a high mobility two-dimensional electron gas with high
+concentration of charge carriers is studied in selectively doped single GaAs quantum wells with
+short-period AlAs/GaAs superlattice barriers at a temperature T = 4.2 K in magnetic fields
+B < 2 T. It is shown that illumination at low temperatures in the studied heterostructures leads to
+an increase in the concentration, mobility, and quantum lifetime of electrons. An increase in the
+quantum lifetime due to illumination of single GaAs quantum wells with modulated superlattice
+doping is explained by a decrease in the effective concentration of remote ionized donors.
+Introduction
+Persistent photoconductivity (PPC), which occurs in selectively doped GaAs/AlGaAs
+heterostructures at low temperatures (T) as the result of visible light illumination, is widely used
+as a method for changing the concentration (ne), mobility () and quantum lifetime (q) of
+electrons in such two-dimensional (2D) systems [1-5]. PPC is also used in one-dimensional
+lateral superlattices based on high mobility selectively doped GaAs/AlGaAs heterostructures
+[6, 7]. One of the causes of PPC is the change in the charge state of DX centers in doped AlGaAs
+layers under illumination [8, 9]. PPC is undesirable in high mobility heterostructures intended for
+the manufacturing of field-effect transistors, as it introduces instability into their performance.
+One of the ways to suppress PPC is to use short-period AlAs/GaAs superlattices as barriers to
+single GaAs quantum wells [10]. In this case, the sources of free charge carriers are thin -doped
+GaAs layers located in short-period superlattice barriers in which DX centers do not appear.
+Another motivation for remote superlattice doping of single GaAs quantum wells is the
+fabrication of 2D electronic systems with simultaneously high ne and . In selectively doped
+GaAs/AlGaAs heterostructures, to suppress the scattering of 2D electron gas on a random
+potential of ionized donors, the charge transfer region is separated from the doping region by an
+undoped AlGaAs layer (spacer) [4]. High in such a system is achieved due to a “thick” spacer
+(dS > 50 nm) with a relatively low concentration ne ~ 31015 m-2. To implement high mobility 2D
+electron systems with a “thin” spacer (dS < 50 nm) and high ne, it was proposed in [11] to use
+short-period AlAs/GaAs superlattices as barriers to single GaAs quantum wells (Fig. 1). In this
+case, the suppression of scattering by ionized Si donors is achieved not only by separation of the
+regions of doping and transport, but also by the screening effect of X-electrons localized in AlAs
+layers [11-13].
+1
+
+0.6
+口1
+2
+0.4
+(sd)
+0.2
+(a)
+0.0
+(b)
+1.2
+0.8
+d
+口
+1
+0.4
+0
+2
+0.0
+1.0
+1.2
+1.4
+1.6
+ne (1016 m*2)(a)
+AlAs/GaAs
+Si-S-doping
+SPSL
+dsi
+GaAs SQW
+SQW
+AlAs/GaAs
+↓ Si-8-doping
+SPSL
+(b)
+AlAs
+GaAs
+Si-
++
++
++
+AIAs18
+Pyy
+12
+1
+3
+2
+6
+4
+(a)
+0
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+B (T)
+6
+(b)
+3
+5
+4
+4
+3
+1
+口
+1
+A
+2
+2
+2
+△
+3
+4
+0.0
+0.4
+0.8
+1.2
+1.6
+2.0
+1/B (1/T)60
+1
+40
+2
+3
+20
+4
+(a)
+0
+0.0
+0.6
+1.2
+1.8
+B (T)
+12
+(b)
+2
+0
+0
+8
+口
+(sd)
+1
+口
+4.
+口
+1
+2
+0
+1.1
+1.2
+1.3
+1.4
+1.5
+ne (1016 m*2)Fig. 1. (a) Schematic view of a single GaAs quantum well with side barriers of short-period
+AlAs/GaAs superlattices. (b) An enlarged view of a portion of the -doped layer in a narrow
+GaAs quantum well with adjacent AlAs layers. Ellipses show compact dipoles formed by
+positively charged Si donors in the -doped layer and X-electrons in AlAs layers [13].
+Superlattice doping of single GaAs quantum wells is used not only to implement high
+mobility 2D electronic systems with a thin spacer [11, 12], but also to achieve ultrahigh in 2D
+electronic systems with a thick spacer [14-16]. In GaAs/AlAs heterostructures with modulated
+superlattice doping, PPC due to a change in the charge states of DX centers should not arise [10].
+However, it has been found that in selectively doped single GaAs quantum wells with short-
+period AlAs/GaAs superlattice barriers and a thin spacer, illumination increases ne and [17-19],
+and with a thick spacer, it increases q [20]. The increase in q was explained by the redistribution
+of X-electrons in AlAs layers adjacent to thin -doped GaAs layers. However, the effect of
+illumination on q in single GaAs quantum wells with a thin spacer and superlattice doping
+remains unexplored.
+2
+
+0.6
+口1
+2
+0.4
+(sd)
+0.2
+(a)
+0.0
+(b)
+1.2
+0.8
+d
+口
+1
+0.4
+0
+2
+0.0
+1.0
+1.2
+1.4
+1.6
+ne (1016 m*2)(a)
+AlAs/GaAs
+Si-S-doping
+SPSL
+dsi
+GaAs SQW
+SQW
+AlAs/GaAs
+↓ Si-8-doping
+SPSL
+(b)
+AlAs
+GaAs
+Si-
++
++
++
+AIAs18
+Pyy
+12
+1
+3
+2
+6
+4
+(a)
+0
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+B (T)
+6
+(b)
+3
+5
+4
+4
+3
+1
+口
+1
+A
+2
+2
+2
+△
+3
+4
+0.0
+0.4
+0.8
+1.2
+1.6
+2.0
+1/B (1/T)60
+1
+40
+2
+3
+20
+4
+(a)
+0
+0.0
+0.6
+1.2
+1.8
+B (T)
+12
+(b)
+2
+0
+0
+8
+口
+(sd)
+1
+口
+4.
+口
+1
+2
+0
+1.1
+1.2
+1.3
+1.4
+1.5
+ne (1016 m*2)One of the features of GaAs/AlAs heterostructures with a thin spacer and superlattice doping
+grown by molecular beam epitaxy on (001) GaAs substrates is the anisotropy of [21]. In such
+structures, y in the [-110] crystallographic direction can exceed x in the [110] direction by
+several times [22]. The anisotropy of is due to scattering on the heterointerface roughness
+oriented along the [-110] direction and arising during the growth of heterostructures [23, 24].
+This work is devoted to studying the effect of illumination on a 2D electron gas with an
+anisotropic in single GaAs quantum wells with a thin spacer and superlattice doping. It has
+been established that illumination increases ne, , and q in the heterostructures under study. It is
+shown that the increase in q after illumination is due to a decrease in the effective concentration
+of remote ionized donors.
+Quantum lifetime
+The traditional method of measuring q in a 2D electron gas is based on studying the
+dependence of the amplitude of the Shubnikov – de Haas (SdH) oscillations on the magnetic
+field (B) [25-30]. In 2D electron systems with isotropic low field SdH oscillations are
+described by the following relation [28]:
+SdH = 4 0 X(T) exp(-/cq) cos(2F/ħc - ), (1)
+where SdH is the oscillating component of the dependence xx(B), 0 = xx(B = 0) is the Drude
+resistance, X(T) = (22kBT/ħc)/sinh(22kBT/ħc), c = eB/m*, F is the Fermi energy. Using the
+results of [26], it is easy to generalize (1) for a 2D system with anisotropic mobility d. In this
+case, the normalized amplitude of SdH oscillations will be determined by the following
+expression [31]:
+Ad
+SdH = d
+SdH/0d X(T) = A0d
+SdH exp(-/cqd), (2)
+where the index d corresponds to the main mutually perpendicular directions x and y, and A0d
+SdH
+= 4.
+The value of q in single GaAs quantum wells with short-period AlAs/GaAs superlattice
+barriers is determined mainly by small-angle scattering [11, 12]. In this case, q can be expressed
+by the relation [32-34]:
+q qR = (2m*/) (kFdR)/nR
+eff, (3)
+where qR is the quantum lifetime upon scattering on a random potential of a remote impurity, kF
+= (2ne)0.5, dR = (dS + dSQW/2), dSQW is the thickness of a single GaAs quantum well, and neff
+R is
+the effective concentration of remote ionized donors. The value of neff
+R takes into account the
+change in the scattering potential of remote donors when they are bound to X-electrons (Fig. 1b)
+[13]. The dependence of neff
+R on ne in the heterostructures under study is described by the
+following phenomenological relation [35]:
+neff
+R = neff
+R0/{exp[(ne - a)/b] + 1} neff
+R0 fab(ne), (4)
+where neff
+R0, a and b are fitting parameters. fab is the fraction of ionized remote donors not
+associated with X-electrons into compact dipoles.
+3
+
+0.6
+口1
+2
+0.4
+(sd)
+0.2
+(a)
+0.0
+(b)
+1.2
+0.8
+d
+口
+1
+0.4
+0
+2
+0.0
+1.0
+1.2
+1.4
+1.6
+ne (1016 m*2)(a)
+AlAs/GaAs
+Si-S-doping
+SPSL
+dsi
+GaAs SQW
+SQW
+AlAs/GaAs
+↓ Si-8-doping
+SPSL
+(b)
+AlAs
+GaAs
+Si-
++
++
++
+AIAs18
+Pyy
+12
+1
+3
+2
+6
+4
+(a)
+0
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+B (T)
+6
+(b)
+3
+5
+4
+4
+3
+1
+口
+1
+A
+2
+2
+2
+△
+3
+4
+0.0
+0.4
+0.8
+1.2
+1.6
+2.0
+1/B (1/T)60
+1
+40
+2
+3
+20
+4
+(a)
+0
+0.0
+0.6
+1.2
+1.8
+B (T)
+12
+(b)
+2
+0
+0
+8
+口
+(sd)
+1
+口
+4.
+口
+1
+2
+0
+1.1
+1.2
+1.3
+1.4
+1.5
+ne (1016 m*2)Samples under study and details of the experiment
+The GaAs/AlAs heterostructures under study were grown using molecular beam epitaxy on
+semi-insulating GaAs (100) substrates. They were single GaAs quantum wells with short-period
+AlAs/GaAs superlattice barriers [11, 12]. Two Si -doping layers located at distances dS1 and dS2
+from the upper and lower heterointerfaces of the GaAs quantum well served as the sources of
+electrons. L-shaped bridges oriented along the [110] and [-110] directions were fabricated based
+on the heterostructures grown by optical lithography and liquid etching. The bridges were
+100 µm long and 50 µm wide. The bridge resistance was measured at an alternating current Iac
+< 1 μA with a frequency fac ~ 0.5 kHz at a temperature T = 4.2 K in magnetic fields B < 2 T. A
+red LED was used for illumination.
+Table 1. Heterostructure parameters: dSQW is the quantum well thickness; dS = (dS1 + dS2)/2 is
+the spacer average thickness; nSi is the total concentration of remote Si donors in -doped thin
+GaAs layers; ne is the electron concentration; x is the mobility in the [110] direction; y is the
+mobility in the direction [-110]; y/x is the mobility ratio. The asterisk marks the values
+obtained after illumination.
+Structure
+number
+dSQW
+(nm)
+dS
+(nm)
+nSi
+(1016 m-2)
+ne
+(1015 m-2)
+y
+(m2/V s)
+x
+(m2/V s)
+y/x
+1
+13
+29.4
+3.2
+7.48
+8.42*
+124
+206*
+80.5
+103*
+1.54
+2*
+2
+10
+10.8
+5
+11.5
+14.5*
+14.7
+27.2*
+9.33
+18.6*
+1.58
+1.46*
+Experimental results and discussion
+Fig. 2a shows the experimental dependences of d(B) at T = 4.2 K for heterostructure no. 1
+before illumination (curves 1 and 2) and after illumination (curves 3 and 4). In the region of
+B > 0.5 T, SdH oscillations are observed, the period of which in the reverse magnetic field
+decreased after illumination, which indicates an increase in ne. After illumination, the values of
+0d also decreased, which is due not only to an increase in ne, but also to an increase in d. The
+illumination also led to an increase in the positive magnetoresistance (MR) of the 2D electron
+gas, which indicates an increase in the quantum lifetime [36, 37]. The dependences of Ad
+SdH on
+1/B for structure no. 1 are shown in Fig. 2b. In accordance with formula (2), the slope of the
+dependences Ad
+SdH(1/B) on a semilogarithmic scale is determined by the value qd. A decrease in
+slope after illumination indicates an increase in qd. At the same time, the values of qd measured
+in the directions [110] and [-110] are equal with an accuracy of 5%.
+4
+
+0.6
+口1
+2
+0.4
+(sd)
+0.2
+(a)
+0.0
+(b)
+1.2
+0.8
+d
+口
+1
+0.4
+0
+2
+0.0
+1.0
+1.2
+1.4
+1.6
+ne (1016 m*2)(a)
+AlAs/GaAs
+Si-S-doping
+SPSL
+dsi
+GaAs SQW
+SQW
+AlAs/GaAs
+↓ Si-8-doping
+SPSL
+(b)
+AlAs
+GaAs
+Si-
++
++
++
+AIAs18
+Pyy
+12
+1
+3
+2
+6
+4
+(a)
+0
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+B (T)
+6
+(b)
+3
+5
+4
+4
+3
+1
+口
+1
+A
+2
+2
+2
+△
+3
+4
+0.0
+0.4
+0.8
+1.2
+1.6
+2.0
+1/B (1/T)60
+1
+40
+2
+3
+20
+4
+(a)
+0
+0.0
+0.6
+1.2
+1.8
+B (T)
+12
+(b)
+2
+0
+0
+8
+口
+(sd)
+1
+口
+4.
+口
+1
+2
+0
+1.1
+1.2
+1.3
+1.4
+1.5
+ne (1016 m*2)Fig. 2. (a) Experimental dependences of d on B measured on an L-shaped bridge at T = 4.2 K
+before illumination (1, 2) and after illumination (3, 4) (no. 1). 1, 3 – xx(B). 2, 4 – yy(B). The
+inset shows the geometry of the L-shaped bridge. (b) Dependences of Ad
+SdH on 1/B before
+illumination (1, 2) and after illumination (3, 4). Symbols are experimental data. Solid lines –
+calculation by formula (2): 1 – A0x
+SdH = 5.02; qx = 1.44 ps; 2 – A0y
+SdH = 4.57; qy = 1.38 ps; 3 –
+A0x
+SdH = 6.29; qx = 2.72 ps; 4 – A0y
+SdH = 4.66; qy = 3.01 ps.
+Fig. 3a shows the experimental dependences of d(B) at T = 4.2 K for heterostructure no. 2
+before illumination (curves 1 and 2) and after illumination (curves 3 and 4). For this structure, as
+well as for structure no. 1, short-term illumination at low temperature leads to an increase in ne
+and d. However, for structure no. 2, in contrast to no. 1, the dependences xx(B) do not show
+quantum positive MR, while a classical negative MR is observed [38], which decreases
+significantly after illumination. Dependences td(ne) are presented in Fig. 3b. These dependences
+are not described by the theory [32], which takes into account only the change in kF with
+increasing ne, which is due to the change in neff
+R after illumination. A similar behavior of td on ne
+is also observed when the concentration of the 2D electron gas is changed using a Schottky gate
+[12, 35].
+5
+
+0.6
+口1
+2
+0.4
+(sd)
+0.2
+(a)
+0.0
+(b)
+1.2
+0.8
+d
+口
+1
+0.4
+0
+2
+0.0
+1.0
+1.2
+1.4
+1.6
+ne (1016 m*2)(a)
+AlAs/GaAs
+Si-S-doping
+SPSL
+dsi
+GaAs SQW
+SQW
+AlAs/GaAs
+↓ Si-8-doping
+SPSL
+(b)
+AlAs
+GaAs
+Si-
++
++
++
+AIAs18
+Pyy
+12
+1
+3
+2
+6
+4
+(a)
+0
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+B (T)
+6
+(b)
+3
+5
+4
+4
+3
+1
+口
+1
+A
+2
+2
+2
+△
+3
+4
+0.0
+0.4
+0.8
+1.2
+1.6
+2.0
+1/B (1/T)60
+1
+40
+2
+3
+20
+4
+(a)
+0
+0.0
+0.6
+1.2
+1.8
+B (T)
+12
+(b)
+2
+0
+0
+8
+口
+(sd)
+1
+口
+4.
+口
+1
+2
+0
+1.1
+1.2
+1.3
+1.4
+1.5
+ne (1016 m*2)Fig. 3. (a) Dependences of xx(B) and yy(B) measured on the L-shaped bridge at T = 4.2 K
+(no. 2): 1, 2 – before illumination; 3, 4 - after short-term illumination by a red LED. (b)
+Dependencies of tx(ne) and ty(ne). Squares and circles - experimental data: 1 - tx; 2 - ty. Solid
+lines – calculation according to the formula: td ne
+1.5: 1 – tx; 2 – ty.
+The experimental dependences qd(ne) for structure no. 2 (Fig. 4a) show that qd for different
+crystallographic directions are equal with an accuracy of 5%, which agrees with [31]. The
+experimental data are well described by formula (3) for the effective concentration of positively
+charged Si donors calculated by formula (4). The agreement between the experimental
+dependences qd(ne) and the calculated one indicates that the increase in the quantum lifetime of
+electrons in a single GaAs quantum well after low-temperature illumination is due to a decrease
+in neff
+R.
+6
+
+0.6
+口1
+2
+0.4
+(sd)
+0.2
+(a)
+0.0
+(b)
+1.2
+0.8
+d
+口
+1
+0.4
+0
+2
+0.0
+1.0
+1.2
+1.4
+1.6
+ne (1016 m*2)(a)
+AlAs/GaAs
+Si-S-doping
+SPSL
+dsi
+GaAs SQW
+SQW
+AlAs/GaAs
+↓ Si-8-doping
+SPSL
+(b)
+AlAs
+GaAs
+Si-
++
++
++
+AIAs18
+Pyy
+12
+1
+3
+2
+6
+4
+(a)
+0
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+B (T)
+6
+(b)
+3
+5
+4
+4
+3
+1
+口
+1
+A
+2
+2
+2
+△
+3
+4
+0.0
+0.4
+0.8
+1.2
+1.6
+2.0
+1/B (1/T)60
+1
+40
+2
+3
+20
+4
+(a)
+0
+0.0
+0.6
+1.2
+1.8
+B (T)
+12
+(b)
+2
+0
+0
+8
+口
+(sd)
+1
+口
+4.
+口
+1
+2
+0
+1.1
+1.2
+1.3
+1.4
+1.5
+ne (1016 m*2)Fig. 4. (a) Dependences of qd(ne): squares are the experimental values of qy; circles –
+experimental values of qx; the solid line is the calculation for neff
+R = neff
+R0fab. (b) Dependences of
+neff
+R and neff
+R0fab on ne: squares and circles are the values of neff
+R calculated from the experimental
+values of qx and qy; solid line – neff
+R0fab for neff
+R0 = 1.261016 m-2, a = 1.371016 m-2 and b =
+0.0821016 m-2.
+Conclusion
+The influence of illumination on the low-temperature transport in a 2D electron gas with
+anisotropic mobility in selectively doped single GaAs quantum wells with short-period
+AlAs/GaAs superlattice barriers in classically strong magnetic fields was studied. It has been
+shown that, in the heterostructures under study, illumination by a red LED at low temperatures
+leads to an increase in the concentration, mobility, and quantum lifetime of electrons. An
+increase in the quantum lifetime of electrons in single GaAs quantum wells with modulated
+superlattice doping after illumination is explained by a decrease in the effective concentration of
+remote ionized donors.
+7
+
+0.6
+口1
+2
+0.4
+(sd)
+0.2
+(a)
+0.0
+(b)
+1.2
+0.8
+d
+口
+1
+0.4
+0
+2
+0.0
+1.0
+1.2
+1.4
+1.6
+ne (1016 m*2)(a)
+AlAs/GaAs
+Si-S-doping
+SPSL
+dsi
+GaAs SQW
+SQW
+AlAs/GaAs
+↓ Si-8-doping
+SPSL
+(b)
+AlAs
+GaAs
+Si-
++
++
++
+AIAs18
+Pyy
+12
+1
+3
+2
+6
+4
+(a)
+0
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+B (T)
+6
+(b)
+3
+5
+4
+4
+3
+1
+口
+1
+A
+2
+2
+2
+△
+3
+4
+0.0
+0.4
+0.8
+1.2
+1.6
+2.0
+1/B (1/T)60
+1
+40
+2
+3
+20
+4
+(a)
+0
+0.0
+0.6
+1.2
+1.8
+B (T)
+12
+(b)
+2
+0
+0
+8
+口
+(sd)
+1
+口
+4.
+口
+1
+2
+0
+1.1
+1.2
+1.3
+1.4
+1.5
+ne (1016 m*2)Funding
+This work was supported by the Russian Foundation for Basic Research (project no. 20-02-
+00309).
+References
+[1] H. Stormer, R. Dingle, A. Gossard, W. Wiegmann, and M. Sturge, Solid State Commun. 29,
+705 (1979).
+[2] E. F. Schubert, J. Knecht, and K. Ploog, J. Phys. C: Solid State Phys. 18, L215 (1985).
+[3] R. G. Mani and J. R. Anderson, Phys. Rev. B 37, 4299(R) (1988).
+[4] Loren Pfeiffer, K. W. West, H. L. Stormer, and K. W. Baldwin, Appl. Phys. Lett. 55, 1888
+(1989).
+[5] M. Hayne, A. Usher, J. J. Harris, V. V. Moshchalkov, and C. T. Foxon, Phys. Rev. B 57,
+14813 (1998).
+[6] D. Weiss, K. v. Klitzing, K. Ploog, and G. Weimann, Europhys. Lett. 8, 179 (1989).
+[7] C. Hnatovsky, M. A. Zudov, G. D. Austing, A. Bogan, S. J. Mihailov, M. Hilke, K. W. West,
+L. N. Pfeiffer, and S. A. Studenikin, J. Appl. Phys. 132, 044301 (2022).
+[8] R. J. Nelson, Appl. Phys. Lett. 31, 351 (1977).
+[9] D. V. Lang, R. A. Logan, and M. Jaros, Phys. Rev. B 19, 1015 (1979).
+[10] Toshio Baba, Takashi Mizutani, and Masaki Ogawa, Jpn. J. Appl. Phys. 22, L627 (1983).
+[11] K. J. Friedland, R. Hey, H. Kostial, R. Klann, and K. Ploog, Phys. Rev. Lett. 77, 4616
+(1996).
+[12] D. V. Dmitriev, I. S. Strygin, A. A. Bykov, S. Dietrich, and S. A. Vitkalov, JETP Lett. 95,
+420 (2012).
+[13] M. Sammon, M. A. Zudov, and B. I. Shklovskii, Phys. Rev. Materials 2, 064604 (2018).
+[14] V. Umansky, M. Heiblum, Y. Levinson, J. Smet, J. Nübler, M. Dolev, J. Cryst. Growth 311,
+1658 (2009).
+[15] G. C. Gardner, S. Fallahi, J. D. Watson, M. J. Manfra, J. Cryst. Growth 441, 71 (2016).
+[16] Y. J. Chung, K. A. Villegas Rosales, K.W. Baldwin, K.W. West, M. Shayegan, and L. N.
+Pfeiffer, Phys. Rev. Materials 4, 044003 (2020).
+[17] A. A. Bykov, I. V. Marchishin, A. K. Bakarov, Jing-Qiao Zhang and S. A. Vitkalov, JETP
+Lett. 85, 63 (2007).
+[18] A. A. Bykov, I. S. Strygin, I. V. Marchishin, and A. V. Goran, JETP Lett. 99, 303 (2014).
+[19] A. A. Bykov, I. S. Strygin, E. E. Rodyakina, W. Mayer, and S. A. Vitkalov, JETP Lett. 101,
+703 (2015).
+[20] X. Fu, A. Riedl, M. Borisov, M. A. Zudov, J. D. Watson, G. Gardner, M. J. Manfra, K. W.
+Baldwin, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 98, 195403 (2018).
+[21] A. A. Bykov, A. K. Bakarov, A. V. Goran, A. V. Latyshev, A. I. Toropov, JETP Lett. 74,
+164 (2001).
+8
+
+0.6
+口1
+2
+0.4
+(sd)
+0.2
+(a)
+0.0
+(b)
+1.2
+0.8
+d
+口
+1
+0.4
+0
+2
+0.0
+1.0
+1.2
+1.4
+1.6
+ne (1016 m*2)(a)
+AlAs/GaAs
+Si-S-doping
+SPSL
+dsi
+GaAs SQW
+SQW
+AlAs/GaAs
+↓ Si-8-doping
+SPSL
+(b)
+AlAs
+GaAs
+Si-
++
++
++
+AIAs18
+Pyy
+12
+1
+3
+2
+6
+4
+(a)
+0
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+B (T)
+6
+(b)
+3
+5
+4
+4
+3
+1
+口
+1
+A
+2
+2
+2
+△
+3
+4
+0.0
+0.4
+0.8
+1.2
+1.6
+2.0
+1/B (1/T)60
+1
+40
+2
+3
+20
+4
+(a)
+0
+0.0
+0.6
+1.2
+1.8
+B (T)
+12
+(b)
+2
+0
+0
+8
+口
+(sd)
+1
+口
+4.
+口
+1
+2
+0
+1.1
+1.2
+1.3
+1.4
+1.5
+ne (1016 m*2)[22] K.-J. Friedland, R. Hey, O. Bierwagen, H. Kostial, Y. Hirayama, and K. H. Ploog, Physica
+E 13, 642 (2002).
+[23] Y. Tokura, T. Saku, S. Tarucha, and Y. Horikoshi, Phys. Rev. B 46 15558 (1992).
+[24] M. D. Johnson, C. Orme, A. W. Hunt, D. Graff, J. Sudijono, L. M. Sander, and B. G. Orr,
+Phys. Rev. Lett. 72, 116 (1994).
+[25] I. M. Lifshits and A. M. Kosevich, Zh. Eksp. Teor. Fiz. 29, 730 (1955) [Sov. Phys. JETP 2,
+636 (1956)].
+[26] A. Isihara and L. Smrcka, J. Phys. C: Solid State Phys. 19, 6777 (1986).
+[27] P. T. Coleridge, R. Stoner, and R. Fletcher, Phys. Rev. B 39, 1120 (1989).
+[28] P. T. Coleridge, Phys. Rev. B 44, 3793 (1991).
+[29] S. D. Bystrov, A. M. Kreshchuk, S. V. Novikov, T. A. Polyanskaya, I. G. Savel'ev, Fiz.
+Tekh. Poluprov. 27, 645 (1993) [Semiconductors 27, 358 (1993)].
+[30] S. D. Bystrov, A. M. Kreshchuk, L. Taun, S. V. Novikov, T. A. Polyanskaya, I. G. Savel’ev,
+and A. Ya. Shik, Fiz. Tekh. Poluprov. 28, 91 (1994) [Semiconductors 28, 55 (1994)].
+[31] D. V. Nomokonov, A. K. Bakarov, A. A. Bykov, in the press.
+[32] A. Gold, Phys. Rev. B 38, 10798 (1988).
+[33] J. H. Davies, The Physics of Low Dimensional Semiconductors (Cambridge Univ. Press,
+New York, 1998).
+[34] I. A. Dmitriev, A. D. Mirlin, D. G. Polyakov, and M. A. Zudov, Rev. Mod. Phys. 84, 1709
+(2012).
+[35] A. A. Bykov, I. S. Strygin, A. V. Goran, D. V. Nomokonov, and A. K. Bakarov, JETP Lett.
+112, 437 (2020).
+[36] M. G. Vavilov and I. L. Aleiner, Phys. Rev. B 69, 035303 (2004).
+[37] Scott Dietrich, Sergey Vitkalov, D. V. Dmitriev, and A. A. Bykov, Phys. Rev. B 85, 115312
+(2012).
+[38] A. A. Bykov, A. K. Bakarov, A. V. Goran, N. D. Aksenova, A. V. Popova, A. I. Toropov,
+JETP Lett. 78, 134 (2003).
+9
+
+0.6
+口1
+2
+0.4
+(sd)
+0.2
+(a)
+0.0
+(b)
+1.2
+0.8
+d
+口
+1
+0.4
+0
+2
+0.0
+1.0
+1.2
+1.4
+1.6
+ne (1016 m*2)(a)
+AlAs/GaAs
+Si-S-doping
+SPSL
+dsi
+GaAs SQW
+SQW
+AlAs/GaAs
+↓ Si-8-doping
+SPSL
+(b)
+AlAs
+GaAs
+Si-
++
++
++
+AIAs18
+Pyy
+12
+1
+3
+2
+6
+4
+(a)
+0
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+B (T)
+6
+(b)
+3
+5
+4
+4
+3
+1
+口
+1
+A
+2
+2
+2
+△
+3
+4
+0.0
+0.4
+0.8
+1.2
+1.6
+2.0
+1/B (1/T)60
+1
+40
+2
+3
+20
+4
+(a)
+0
+0.0
+0.6
+1.2
+1.8
+B (T)
+12
+(b)
+2
+0
+0
+8
+口
+(sd)
+1
+口
+4.
+口
+1
+2
+0
+1.1
+1.2
+1.3
+1.4
+1.5
+ne (1016 m*2)
\ No newline at end of file
diff --git a/-9E2T4oBgHgl3EQfQgbg/content/tmp_files/load_file.txt b/-9E2T4oBgHgl3EQfQgbg/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..34c44934e8d6dd78967308f158eb7d82428fcc21
--- /dev/null
+++ b/-9E2T4oBgHgl3EQfQgbg/content/tmp_files/load_file.txt
@@ -0,0 +1,852 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf,len=851
+page_content='Influence of illumination on the quantum lifetime in selectively doped single GaAs quantum wells with short-period AlAs/GaAs superlattice barriers A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Bykov, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Nomokonov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Goran, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Strygin, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Marchishin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Bakarov Rzhanov Institute of Semiconductor Physics, Russian Academy of Sciences, Siberian Branch, Novosibirsk, 630090, Russia The influence of illumination on a high mobility two-dimensional electron gas with high concentration of charge carriers is studied in selectively doped single GaAs quantum wells with short-period AlAs/GaAs superlattice barriers at a temperature T = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 K in magnetic fields B < 2 T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' It is shown that illumination at low temperatures in the studied heterostructures leads to an increase in the concentration, mobility, and quantum lifetime of electrons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' An increase in the quantum lifetime due to illumination of single GaAs quantum wells with modulated superlattice doping is explained by a decrease in the effective concentration of remote ionized donors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Introduction Persistent photoconductivity (PPC), which occurs in selectively doped GaAs/AlGaAs heterostructures at low temperatures (T) as the result of visible light illumination, is widely used as a method for changing the concentration (ne), mobility (\uf06d) and quantum lifetime (\uf074q) of electrons in such two-dimensional (2D) systems [1-5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' PPC is also used in one-dimensional lateral superlattices based on high mobility selectively doped GaAs/AlGaAs heterostructures [6, 7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' One of the causes of PPC is the change in the charge state of DX centers in doped AlGaAs layers under illumination [8, 9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' PPC is undesirable in high mobility heterostructures intended for the manufacturing of field-effect transistors, as it introduces instability into their performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' One of the ways to suppress PPC is to use short-period AlAs/GaAs superlattices as barriers to single GaAs quantum wells [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' In this case, the sources of free charge carriers are thin \uf064-doped GaAs layers located in short-period superlattice barriers in which DX centers do not appear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Another motivation for remote superlattice doping of single GaAs quantum wells is the fabrication of 2D electronic systems with simultaneously high ne and \uf06d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' In selectively doped GaAs/AlGaAs heterostructures, to suppress the scattering of 2D electron gas on a random potential of ionized donors, the charge transfer region is separated from the doping region by an undoped AlGaAs layer (spacer) [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' High \uf06d in such a system is achieved due to a “thick” spacer (dS > 50 nm) with a relatively low concentration ne ~ 3\uf0b41015 m-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' To implement high mobility 2D electron systems with a “thin” spacer (dS < 50 nm) and high ne, it was proposed in [11] to use short-period AlAs/GaAs superlattices as barriers to single GaAs quantum wells (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' In this case, the suppression of scattering by ionized Si donors is achieved not only by separation of the regions of doping and transport, but also by the screening effect of X-electrons localized in AlAs layers [11-13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 口1 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 (sd) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 (a) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 (b) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='8 d 口 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 0 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 ne (1016 m*2)(a) AlAs/GaAs Si-S-doping SPSL dsi GaAs SQW SQW AlAs/GaAs ↓ Si-8-doping SPSL (b) AlAs GaAs Si- + + + AIAs18 Pyy 12 1 3 2 6 4 (a) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 B (T) 6 (b) 3 5 4 4 3 1 口 1 A 2 2 2 △ 3 4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 1/B (1/T)60 1 40 2 3 20 4 (a) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='8 B (T) 12 (b) 2 0 0 8 口 (sd) 1 口 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 口 1 2 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='5 ne (1016 m*2)Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' (a) Schematic view of a single GaAs quantum well with side barriers of short-period AlAs/GaAs superlattices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' (b) An enlarged view of a portion of the \uf064-doped layer in a narrow GaAs quantum well with adjacent AlAs layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Ellipses show compact dipoles formed by positively charged Si donors in the \uf064-doped layer and X-electrons in AlAs layers [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Superlattice doping of single GaAs quantum wells is used not only to implement high mobility 2D electronic systems with a thin spacer [11, 12], but also to achieve ultrahigh \uf06d in 2D electronic systems with a thick spacer [14-16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' In GaAs/AlAs heterostructures with modulated superlattice doping, PPC due to a change in the charge states of DX centers should not arise [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' However, it has been found that in selectively doped single GaAs quantum wells with short- period AlAs/GaAs superlattice barriers and a thin spacer, illumination increases ne and \uf06d [17-19], and with a thick spacer, it increases \uf074q [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' The increase in \uf074q was explained by the redistribution of X-electrons in AlAs layers adjacent to thin \uf064-doped GaAs layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' However, the effect of illumination on \uf074q in single GaAs quantum wells with a thin spacer and superlattice doping remains unexplored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 口1 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 (sd) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 (a) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 (b) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='8 d 口 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 0 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 ne (1016 m*2)(a) AlAs/GaAs Si-S-doping SPSL dsi GaAs SQW SQW AlAs/GaAs ↓ Si-8-doping SPSL (b) AlAs GaAs Si- + + + AIAs18 Pyy 12 1 3 2 6 4 (a) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 B (T) 6 (b) 3 5 4 4 3 1 口 1 A 2 2 2 △ 3 4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 1/B (1/T)60 1 40 2 3 20 4 (a) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='8 B (T) 12 (b) 2 0 0 8 口 (sd) 1 口 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 口 1 2 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='5 ne (1016 m*2)One of the features of GaAs/AlAs heterostructures with a thin spacer and superlattice doping grown by molecular beam epitaxy on (001) GaAs substrates is the anisotropy of \uf06d [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' In such structures, \uf06dy in the [-110] crystallographic direction can exceed \uf06dx in the [110] direction by several times [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' The anisotropy of \uf06d is due to scattering on the heterointerface roughness oriented along the [-110] direction and arising during the growth of heterostructures [23, 24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' This work is devoted to studying the effect of illumination on a 2D electron gas with an anisotropic \uf06d in single GaAs quantum wells with a thin spacer and superlattice doping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' It has been established that illumination increases ne, \uf06d, and \uf074q in the heterostructures under study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' It is shown that the increase in \uf074q after illumination is due to a decrease in the effective concentration of remote ionized donors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Quantum lifetime The traditional method of measuring \uf074q in a 2D electron gas is based on studying the dependence of the amplitude of the Shubnikov – de Haas (SdH) oscillations on the magnetic field (B) [25-30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' In 2D electron systems with isotropic \uf06d low field SdH oscillations are described by the following relation [28]: \uf072SdH = 4 \uf0720 X(T) exp(-\uf070/\uf077c\uf074q) cos(2\uf070\uf065F/ħ\uf077c - \uf070), (1) where \uf072SdH is the oscillating component of the dependence \uf072xx(B), \uf0720 = \uf072xx(B = 0) is the Drude resistance, X(T) = (2\uf0702kBT/ħ\uf077c)/sinh(2\uf0702kBT/ħ\uf077c), \uf077c = eB/m*, \uf065F is the Fermi energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Using the results of [26], it is easy to generalize (1) for a 2D system with anisotropic mobility \uf06dd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' In this case, the normalized amplitude of SdH oscillations will be determined by the following expression [31]: Ad SdH = \uf072d SdH/\uf0720d X(T) = A0d SdH exp(-\uf070/\uf077c\uf074qd), (2) where the index d corresponds to the main mutually perpendicular directions x and y, and A0d SdH = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' The value of \uf074q in single GaAs quantum wells with short-period AlAs/GaAs superlattice barriers is determined mainly by small-angle scattering [11, 12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' In this case, \uf074q can be expressed by the relation [32-34]: \uf074q \uf040 \uf074qR = (2m*/\uf070\uf068) (kFdR)/nR eff, (3) where \uf074qR is the quantum lifetime upon scattering on a random potential of a remote impurity, kF = (2\uf070ne)0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='5, dR = (dS + dSQW/2), dSQW is the thickness of a single GaAs quantum well, and neff R is the effective concentration of remote ionized donors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' The value of neff R takes into account the change in the scattering potential of remote donors when they are bound to X-electrons (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 1b) [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' The dependence of neff R on ne in the heterostructures under study is described by the following phenomenological relation [35]: neff R = neff R0/{exp[(ne - a)/b] + 1} \uf0ba neff R0 fab(ne), (4) where neff R0, a and b are fitting parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' fab is the fraction of ionized remote donors not associated with X-electrons into compact dipoles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 口1 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 (sd) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 (a) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 (b) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='8 d 口 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 0 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 ne (1016 m*2)(a) AlAs/GaAs Si-S-doping SPSL dsi GaAs SQW SQW AlAs/GaAs ↓ Si-8-doping SPSL (b) AlAs GaAs Si- + + + AIAs18 Pyy 12 1 3 2 6 4 (a) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 B (T) 6 (b) 3 5 4 4 3 1 口 1 A 2 2 2 △ 3 4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 1/B (1/T)60 1 40 2 3 20 4 (a) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='8 B (T) 12 (b) 2 0 0 8 口 (sd) 1 口 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 口 1 2 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='5 ne (1016 m*2)Samples under study and details of the experiment The GaAs/AlAs heterostructures under study were grown using molecular beam epitaxy on semi-insulating GaAs (100) substrates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' They were single GaAs quantum wells with short-period AlAs/GaAs superlattice barriers [11, 12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Two Si \uf064-doping layers located at distances dS1 and dS2 from the upper and lower heterointerfaces of the GaAs quantum well served as the sources of electrons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' L-shaped bridges oriented along the [110] and [-110] directions were fabricated based on the heterostructures grown by optical lithography and liquid etching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' The bridges were 100 µm long and 50 µm wide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' The bridge resistance was measured at an alternating current Iac < 1 μA with a frequency fac ~ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='5 kHz at a temperature T = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 K in magnetic fields B < 2 T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' A red LED was used for illumination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Heterostructure parameters: dSQW is the quantum well thickness;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' dS = (dS1 + dS2)/2 is the spacer average thickness;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' nSi is the total concentration of remote Si donors in \uf064-doped thin GaAs layers;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' ne is the electron concentration;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' \uf06dx is the mobility in the [110] direction;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' \uf06dy is the mobility in the direction [-110];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' \uf06dy/\uf06dx is the mobility ratio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' The asterisk marks the values obtained after illumination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Structure number dSQW (nm) dS (nm) nSi (1016 m-2) ne (1015 m-2) \uf06dy (m2/V s) \uf06dx (m2/V s) \uf06dy/\uf06dx 1 13 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='48 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='42* 124 206* 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='5 103* 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='54 2* 2 10 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='8 5 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='5 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='5* 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='7 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2* 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='33 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6* 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='58 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='46* Experimental results and discussion Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 2a shows the experimental dependences of \uf072d(B) at T = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 K for heterostructure no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 1 before illumination (curves 1 and 2) and after illumination (curves 3 and 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' In the region of B > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='5 T, SdH oscillations are observed, the period of which in the reverse magnetic field decreased after illumination, which indicates an increase in ne.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' After illumination, the values of \uf0720d also decreased, which is due not only to an increase in ne, but also to an increase in \uf06dd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' The illumination also led to an increase in the positive magnetoresistance (MR) of the 2D electron gas, which indicates an increase in the quantum lifetime [36, 37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' The dependences of Ad SdH on 1/B for structure no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 1 are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 2b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' In accordance with formula (2), the slope of the dependences Ad SdH(1/B) on a semilogarithmic scale is determined by the value \uf074qd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' A decrease in slope after illumination indicates an increase in \uf074qd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' At the same time, the values of \uf074qd measured in the directions [110] and [-110] are equal with an accuracy of 5%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 口1 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 (sd) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 (a) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 (b) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='8 d 口 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 0 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 ne (1016 m*2)(a) AlAs/GaAs Si-S-doping SPSL dsi GaAs SQW SQW AlAs/GaAs ↓ Si-8-doping SPSL (b) AlAs GaAs Si- + + + AIAs18 Pyy 12 1 3 2 6 4 (a) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 B (T) 6 (b) 3 5 4 4 3 1 口 1 A 2 2 2 △ 3 4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 1/B (1/T)60 1 40 2 3 20 4 (a) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='8 B (T) 12 (b) 2 0 0 8 口 (sd) 1 口 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 口 1 2 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='5 ne (1016 m*2)Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' (a) Experimental dependences of \uf072d on B measured on an L-shaped bridge at T = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 K before illumination (1, 2) and after illumination (3, 4) (no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 1, 3 – \uf072xx(B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 2, 4 – \uf072yy(B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' The inset shows the geometry of the L-shaped bridge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' (b) Dependences of Ad SdH on 1/B before illumination (1, 2) and after illumination (3, 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Symbols are experimental data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Solid lines – calculation by formula (2): 1 – A0x SdH = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='02;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' \uf074qx = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='44 ps;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 2 – A0y SdH = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='57;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' \uf074qy = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='38 ps;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 3 – A0x SdH = 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='29;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' \uf074qx = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='72 ps;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 4 – A0y SdH = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='66;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' \uf074qy = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='01 ps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 3a shows the experimental dependences of \uf072d(B) at T = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 K for heterostructure no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 2 before illumination (curves 1 and 2) and after illumination (curves 3 and 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' For this structure, as well as for structure no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 1, short-term illumination at low temperature leads to an increase in ne and \uf06dd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' However, for structure no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 2, in contrast to no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 1, the dependences \uf072xx(B) do not show quantum positive MR, while a classical negative MR is observed [38], which decreases significantly after illumination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Dependences \uf074td(ne) are presented in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 3b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' These dependences are not described by the theory [32], which takes into account only the change in kF with increasing ne, which is due to the change in neff R after illumination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' A similar behavior of \uf074td on ne is also observed when the concentration of the 2D electron gas is changed using a Schottky gate [12, 35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 口1 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 (sd) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 (a) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 (b) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='8 d 口 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 0 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 ne (1016 m*2)(a) AlAs/GaAs Si-S-doping SPSL dsi GaAs SQW SQW AlAs/GaAs ↓ Si-8-doping SPSL (b) AlAs GaAs Si- + + + AIAs18 Pyy 12 1 3 2 6 4 (a) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 B (T) 6 (b) 3 5 4 4 3 1 口 1 A 2 2 2 △ 3 4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 1/B (1/T)60 1 40 2 3 20 4 (a) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='8 B (T) 12 (b) 2 0 0 8 口 (sd) 1 口 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 口 1 2 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='5 ne (1016 m*2)Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' (a) Dependences of \uf072xx(B) and \uf072yy(B) measured on the L-shaped bridge at T = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 K (no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 2): 1, 2 – before illumination;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 3, 4 - after short-term illumination by a red LED.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' (b) Dependencies of \uf074tx(ne) and \uf074ty(ne).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Squares and circles - experimental data: 1 - \uf074tx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 2 - \uf074ty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Solid lines – calculation according to the formula: \uf074td \uf0b5 ne 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='5: 1 – \uf074tx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 2 – \uf074ty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' The experimental dependences \uf074qd(ne) for structure no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 2 (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 4a) show that \uf074qd for different crystallographic directions are equal with an accuracy of 5%, which agrees with [31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' The experimental data are well described by formula (3) for the effective concentration of positively charged Si donors calculated by formula (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' The agreement between the experimental dependences \uf074qd(ne) and the calculated one indicates that the increase in the quantum lifetime of electrons in a single GaAs quantum well after low-temperature illumination is due to a decrease in neff R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 口1 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 (sd) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 (a) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 (b) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='8 d 口 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 0 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 ne (1016 m*2)(a) AlAs/GaAs Si-S-doping SPSL dsi GaAs SQW SQW AlAs/GaAs ↓ Si-8-doping SPSL (b) AlAs GaAs Si- + + + AIAs18 Pyy 12 1 3 2 6 4 (a) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 B (T) 6 (b) 3 5 4 4 3 1 口 1 A 2 2 2 △ 3 4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 1/B (1/T)60 1 40 2 3 20 4 (a) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='8 B (T) 12 (b) 2 0 0 8 口 (sd) 1 口 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 口 1 2 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='5 ne (1016 m*2)Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' (a) Dependences of \uf074qd(ne): squares are the experimental values of \uf074qy;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' circles – experimental values of \uf074qx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' the solid line is the calculation for neff R = neff R0fab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' (b) Dependences of neff R and neff R0fab on ne: squares and circles are the values of neff R calculated from the experimental values of \uf074qx and \uf074qy;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' solid line – neff R0fab for neff R0 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='26\uf0b41016 m-2, a = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='37\uf0b41016 m-2 and b = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='082\uf0b41016 m-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Conclusion The influence of illumination on the low-temperature transport in a 2D electron gas with anisotropic mobility in selectively doped single GaAs quantum wells with short-period AlAs/GaAs superlattice barriers in classically strong magnetic fields was studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' It has been shown that, in the heterostructures under study, illumination by a red LED at low temperatures leads to an increase in the concentration, mobility, and quantum lifetime of electrons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' An increase in the quantum lifetime of electrons in single GaAs quantum wells with modulated superlattice doping after illumination is explained by a decrease in the effective concentration of remote ionized donors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 口1 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 (sd) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 (a) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 (b) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='8 d 口 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 0 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 ne (1016 m*2)(a) AlAs/GaAs Si-S-doping SPSL dsi GaAs SQW SQW AlAs/GaAs ↓ Si-8-doping SPSL (b) AlAs GaAs Si- + + + AIAs18 Pyy 12 1 3 2 6 4 (a) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 B (T) 6 (b) 3 5 4 4 3 1 口 1 A 2 2 2 △ 3 4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 1/B (1/T)60 1 40 2 3 20 4 (a) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='8 B (T) 12 (b) 2 0 0 8 口 (sd) 1 口 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 口 1 2 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='5 ne (1016 m*2)Funding This work was supported by the Russian Foundation for Basic Research (project no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 20-02- 00309).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' References [1] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Stormer, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Dingle, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Gossard, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Wiegmann, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Sturge, Solid State Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 29, 705 (1979).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' [2] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Schubert, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Knecht, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Ploog, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' C: Solid State Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 18, L215 (1985).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' [3] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Mani and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Anderson, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' B 37, 4299(R) (1988).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' [4] Loren Pfeiffer, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' West, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Stormer, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Baldwin, Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 55, 1888 (1989).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' [5] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Hayne, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Usher, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Harris, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Moshchalkov, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Foxon, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' B 57, 14813 (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' [6] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Weiss, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Klitzing, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Ploog, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Weimann, Europhys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 8, 179 (1989).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' [7] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Hnatovsky, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Zudov, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Austing, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Bogan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Mihailov, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Hilke, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' West, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Pfeiffer, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Studenikin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 132, 044301 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' [8] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Nelson, Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 31, 351 (1977).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' [9] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Lang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Logan, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Jaros, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' B 19, 1015 (1979).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' [10] Toshio Baba, Takashi Mizutani, and Masaki Ogawa, Jpn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 22, L627 (1983).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' [11] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Friedland, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Hey, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Kostial, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Klann, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Ploog, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 77, 4616 (1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' [12] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Dmitriev, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Strygin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Bykov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Dietrich, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Vitkalov, JETP Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 95, 420 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' [13] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Sammon, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Zudov, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Shklovskii, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Materials 2, 064604 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' [14] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Umansky, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Heiblum, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Levinson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Smet, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Nübler, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Dolev, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Cryst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Growth 311, 1658 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' [15] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Gardner, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Fallahi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Watson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Manfra, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Cryst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Growth 441, 71 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' [16] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Chung, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Villegas Rosales, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Baldwin, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' West, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Shayegan, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Pfeiffer, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Materials 4, 044003 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' [17] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Bykov, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Marchishin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Bakarov, Jing-Qiao Zhang and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Vitkalov, JETP Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 85, 63 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' [18] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Bykov, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Strygin, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Marchishin, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Goran, JETP Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 99, 303 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' [19] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Bykov, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Strygin, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Rodyakina, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Mayer, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Vitkalov, JETP Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 101, 703 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' [20] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Fu, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Riedl, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Borisov, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Zudov, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Watson, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Gardner, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Manfra, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Baldwin, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Pfeiffer, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' West, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' B 98, 195403 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' [21] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Bykov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Bakarov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Goran, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Latyshev, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Toropov, JETP Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 74, 164 (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 口1 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 (sd) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 (a) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 (b) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='8 d 口 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 0 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 ne (1016 m*2)(a) AlAs/GaAs Si-S-doping SPSL dsi GaAs SQW SQW AlAs/GaAs ↓ Si-8-doping SPSL (b) AlAs GaAs Si- + + + AIAs18 Pyy 12 1 3 2 6 4 (a) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 B (T) 6 (b) 3 5 4 4 3 1 口 1 A 2 2 2 △ 3 4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 1/B (1/T)60 1 40 2 3 20 4 (a) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='8 B (T) 12 (b) 2 0 0 8 口 (sd) 1 口 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 口 1 2 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='5 ne (1016 m*2)[22] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Friedland, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Hey, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Bierwagen, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Kostial, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Hirayama, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Ploog, Physica E 13, 642 (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' [23] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Tokura, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Saku, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Tarucha, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Horikoshi, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' B 46 15558 (1992).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' [24] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Johnson, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Orme, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Hunt, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Graff, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Sudijono, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Sander, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Orr, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 72, 116 (1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' [25] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Lifshits and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Kosevich, Zh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Eksp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Teor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Fiz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 29, 730 (1955) [Sov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' JETP 2, 636 (1956)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' [26] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Isihara and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Smrcka, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' C: Solid State Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 19, 6777 (1986).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' [27] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Coleridge, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Stoner, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Fletcher, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' B 39, 1120 (1989).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' [28] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Coleridge, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' B 44, 3793 (1991).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' [29] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Bystrov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Kreshchuk, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Novikov, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Polyanskaya, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=" Savel'ev, Fiz." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Tekh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Poluprov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 27, 645 (1993) [Semiconductors 27, 358 (1993)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' [30] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Bystrov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Kreshchuk, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Taun, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Novikov, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Polyanskaya, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Savel’ev, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Ya.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Shik, Fiz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Tekh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Poluprov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 28, 91 (1994) [Semiconductors 28, 55 (1994)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' [31] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Nomokonov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Bakarov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Bykov, in the press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' [32] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Gold, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' B 38, 10798 (1988).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' [33] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Davies, The Physics of Low Dimensional Semiconductors (Cambridge Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Press, New York, 1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' [34] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Dmitriev, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Mirlin, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Polyakov, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Zudov, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 84, 1709 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' [35] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Bykov, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Strygin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Goran, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Nomokonov, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Bakarov, JETP Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 112, 437 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' [36] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Vavilov and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Aleiner, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' B 69, 035303 (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' [37] Scott Dietrich, Sergey Vitkalov, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Dmitriev, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Bykov, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' B 85, 115312 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' [38] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Bykov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Bakarov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Goran, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Aksenova, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Popova, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' Toropov, JETP Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 78, 134 (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 口1 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 (sd) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 (a) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 (b) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='8 d 口 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 0 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 ne (1016 m*2)(a) AlAs/GaAs Si-S-doping SPSL dsi GaAs SQW SQW AlAs/GaAs ↓ Si-8-doping SPSL (b) AlAs GaAs Si- + + + AIAs18 Pyy 12 1 3 2 6 4 (a) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 B (T) 6 (b) 3 5 4 4 3 1 口 1 A 2 2 2 △ 3 4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 1/B (1/T)60 1 40 2 3 20 4 (a) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='8 B (T) 12 (b) 2 0 0 8 口 (sd) 1 口 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content=' 口 1 2 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
+page_content='5 ne (1016 m*2)' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9E2T4oBgHgl3EQfQgbg/content/2301.03772v1.pdf'}
diff --git a/-tAzT4oBgHgl3EQfhPwa/content/tmp_files/2301.01480v1.pdf.txt b/-tAzT4oBgHgl3EQfhPwa/content/tmp_files/2301.01480v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..acbc4a66aff7ce94b37b1883c13f184edb88c8a3
--- /dev/null
+++ b/-tAzT4oBgHgl3EQfhPwa/content/tmp_files/2301.01480v1.pdf.txt
@@ -0,0 +1,1864 @@
+A new over-dispersed count model
+Anupama Nandi, Subrata Chakraborty, Aniket Biswas
+Dibrugarh University
+January 5, 2023
+Abstract
+A new two-parameter discrete distribution, namely the PoiG distribution is derived
+by the convolution of a Poisson variate and an independently distributed geometric
+random variable. This distribution generalizes both the Poisson and geometric distri-
+butions and can be used for modelling over-dispersed as well as equi-dispersed count
+data. A number of important statistical properties of the proposed count model,
+such as the probability generating function, the moment generating function, the
+moments, the survival function and the hazard rate function. Monotonic properties
+are studied such as the log concavity and the stochastic ordering are also investi-
+gated in detail. Method of moment and the maximum likelihood estimators of the
+parameters of the proposed model are presented. It is envisaged that the proposed
+distribution may prove to be useful for the practitioners for modelling over-dispersed
+count data compared to its closest competitors.
+Keywords Geometric distribution, Poisson distribution, Conway-Maxwell Poisson dis-
+tribution; BerG distribution; BerPoi distribution; Incomplete gamma function.
+MSC 2010 60E05, 62E15.
+1
+arXiv:2301.01480v1 [stat.ME] 4 Jan 2023
+
+1
+Introduction
+The phenomenon of the variance of a count data being more than its mean is commonly
+termed as over-dispersion in the literature. Over-dispersion is relevant in many modelling
+applications and it is encountered more often compared to the phenomena of under-
+dispersion and equi-dispersion. A number of count models are available in the literature
+for over-dispersed data. However, addition of a simple yet adequate model is of importance
+given the ongoing research interest in this direction ([37], [25], [32], [35], [30], [29], [9],
+[19], [26], [34], [5], [2] and [36]). The simplest and the most common count data model
+is the Poisson distribution. Its equi-dispersion characteristic is well-known. This is a
+limitation for the Poisson model and to overcome this issue, several alternatives have
+been developed and used for their obvious advantage over the classical Poisson model.
+Notable among these distributions are the hyper-Poisson (HP) of Bardwell and Crow
+[6], generalized Poisson distribution of Jain and Consul [20], double-Poisson of Efron
+[16], weighted Poisson of Castillo and Pérez-Casany [15], weighted generalized Poisson
+distribution of Chakraborty [10], Mittag-Leffler function distribution of Chakraborty and
+Ong [13] and the popular COM-Poisson distribution Shmueli et al. [31]. COM-Poisson
+generalizes the binomial and the negative binomial distribution. The classical geometric
+and negative binomial models are also used for over-dispersed count datasets. The gamma
+mixture of the Poisson distribution generates the negative binomial distribution [17].
+Thus unlike the Poisson distribution, these two count models posses the over-dispersion
+characteristic. Consequently, several extensions of the geometric distribution have been
+introduced in the literature for over-dispersed count data modelling ([11], [12], [18], [20],
+[22], [27], [28], and [33] among others). Two most widely used distributions for over-
+dispersed data are of course the negative binomial and COM-Poisson. As pointed out
+earlier, there is still plenty of opportunity for developing new discrete distributions with
+simple structure and explicit interpretation, appropriate for over-dispersed data.
+Recently, Bourguignon et al. have introduced the BerG distribution [8] by using the
+convolution of a Bernoulli random variable and a geometric random variable. In a very
+recent publication, Bourguignon et al. have introduced the BerPoi distribution from a
+similar motivation [7]. This is a convolution of a Bernoulli random variable and a Poisson
+random variable. The first one is capable of modelling over-dispersed, under-dispersed
+and equi-dispersed data whereas the second one is efficient for modelling under-dispersed
+data. This approach is simple and has enormous potential. Here we use this idea to
+develop a novel over-dispersed count model.
+In this article, we propose a new discrete distribution derived from the convolution of
+two independent count random variables. The random variables are Poisson and geomet-
+ric. Hence we identify the proposed model as PoiG. This two-parameter distribution
+has many advantages. Structural simplicity is one of them. It is easy to comprehend
+unlike the COM-Poisson distribution, which involves a difficult normalising constant in
+its probability mass function. A model with closed-form expressions of the mean and the
+variance is well-suited for regression modelling. Unlike the COM-Poisson distribution,
+mean and variance of the proposed distribution can be written in closed form expressions.
+The proposed distribution extends both the Poisson and geometric distributions.
+Rest of the article is organized as follows. In section 2, we present the PoiG distribution.
+In Section 3, we describe its important statistical properties such as recurrence relation,
+generating functions, moments, dispersion index, mode, reliability properties, monotonic
+2
+
+properties and stochastic ordering. In Section 4, we present the moment and the max-
+imum likelihood methods of parameter estimation. We conclude the article with a few
+limitations and future scopes of the current study.
+2
+The PoiG distribution
+In this section, we introduce a novel discrete distribution by considering two independent
+discrete random variables Y1 and Y2.
+Let us denote the set of non-negative integers,
+{0, 1, 2, ...} by N0. Also let, Y1 and Y2 follow the Poisson distribution with mean λ > 0
+and the geometric distribution with mean 0 < 1/θ < 1, respectively. Both Y1 and Y2 have
+the same support N0. For convenience, we write Y1 ∼ P(λ) and Y2 ∼ G(θ). Consider,
+Y = Y1 + Y2. Then,
+Pr(Y = y) =
+y
+�
+i=0
+Pr(Y1 = i) Pr(Y2 = y − i)
+=
+y
+�
+i=0
+e−λλi
+i!
+θ(1 − θ)y−i
+= θ(1 − θ)ye−λ
+y
+�
+i=0
+1
+i!
+�
+λ
+1 − θ
+�i
+,
+y = 0, 1, 2, ... .
+(1)
+The distribution in (1) being the convolution Poisson and geometric, is named the PoiG
+distribution and we write Y ∼ PoiG(λ, θ). Thus, the probability mass function (pmf) of
+PoiG(λ, θ) can be written as
+pY (y) = θ(1 − θ)y
+Γ(y + 1) exp
+� λθ
+1 − θ
+�
+Γ
+�
+y + 1,
+λ
+1 − θ
+�
+,
+y = 0, 1, 2, ... .
+(2)
+Figure 1 exhibits nature of the pmf for different choices of (λ, θ). The cumulative distri-
+bution function (cdf) of PoiG distribution is
+FY (y) = Pr(Y1 + Y2 ≤ y)
+=
+y
+�
+y1=0
+y−y1
+�
+y2=0
+pY (y1)pY (y2)
+=
+y
+�
+y1=0
+FG(y − y1)pY (y1)
+=
+y
+�
+y1=0
+(1 − (1 − θ)y−y1+1)pY (y1)
+=
+y
+�
+y1=0
+e−λλy1
+y1!
+− (1 − θ)y+1e−λ
+y
+�
+y1=0
+1
+y1!
+�
+λ
+1 − θ
+�y1
+.
+(3)
+An explicit expression of (3) is given by
+FY (y) = Γ(y + 1, λ)
+Γ(y + 1)
+− (1 − θ)y+1
+Γ(y + 1) exp
+� λθ
+1 − θ
+�
+Γ
+�
+y + 1,
+λ
+1 − θ
+�
+,
+y = 0, 1, 2, ... .
+(4)
+3
+
+Figure 2 exhibits nature of the cdf for different choices of (λ, θ). The mean and variance
+of the PoiG(λ, θ) distribution are given as follows.
+E(Y ) = µ = λ + 1 − θ
+θ
+and
+V (Y ) = σ2 = λ + 1 − θ
+θ2
+(5)
+Special cases
+• For λ −→ 0, PoiG(λ, θ) behaves like G(θ).
+• For θ −→ 1, PoiG(λ, θ) behaves like P(λ).
+Remark 1
+• The incomplete gamma function [1] is defined as Γ(n, x) =
+� ∞
+x t(n−1)e−tdt and it
+can also be rewrite as Γ(n, x) = (n − 1)! �n−1
+k=0
+e−xxk
+k!
+, which is valid for positive
+values of n and any value of x. Thus the incomplete gamma function in (2) can be
+rewritten as
+Γ
+�
+y + 1,
+λ
+1 − θ
+�
+= Γ(y + 1)
+y
+�
+i=0
+1
+Γ(i + 1) exp
+�
+−
+λ
+1 − θ
+��
+λ
+1 − θ
+�i
+,
+where Γ(y + 1) = y! and Γ(i + 1) = i!.
+• FY (0) = pY (0) = θe−λ. Thus, the proportion of zeros in case of the PoiG distribu-
+tion tends to θ as λ → 0 and to zero as λ → ∞.
+3
+Properties of the PoiG distribution
+In this section, we explore several important statistical properties of the proposed PoiG(λ, θ)
+distribution. Some of the distributional properties studied here are the recurrence relation,
+probability generating function (pgf), moment generating function (mgf), characteristic
+function (cf), cumulant generating function (cgf), moments, coefficient of skewness and
+kurtosis. We also study the reliability properties such as the survival function and the
+hazard rate function. Log-concavity and stochastic ordering of the proposed model are
+also investigated.
+3.1
+Recurrence relation
+Probability recurrence relation helps in finding the subsequent term using the preceding
+term. It usually proves to be advantageous in computing the masses at different values.
+Note that,
+pY (y) = θ(1 − θ)y
+Γ(y + 1) exp
+� λθ
+1 − θ
+�
+Γ
+�
+y + 1,
+λ
+1 − θ
+�
+= θ(1 − θ)ye−λ
+y
+�
+i=0
+1
+Γ(i + 1)
+�
+λ
+1 − θ
+�i
+= θ(1 − θ)ye−λsy.
+4
+
+Figure 1:
+Probability mass function of PoiG(λ, θ) for λ ∈ {0, 0.5, 5, 10} and θ ∈
+{0.2, 0.4, 0.6, 0.8}.
+The (i, j)th plot corresponds to the ith value of λ and jth value of
+θ for i, j = 1, 2, 3, 4.
+5
+
+0.20
+0.4 f
+0.6 t
+0.8+
+0.5
+0.15
+0.3
+0.4
+0.6
+0.10
+0.2
+0.4
+0.05
+0.1
+0.2
+0.1
+0.2
+0
+10
+15
+20
+0
+2
+4
+to
+10
+0
+2
+0
+2
+3
+4
+5
+0.15 F °
+0.25
+0.5 §
+0.35
+0.20
+0.30
+0.4
+0.10
+0.15
+0.25
+0.20
+0.3 E
+0.05
+0.10
+0.15
+0.2
+0.05
+0.10
+0.05
+0.1
+0
+5
+10
+15
+20
+2
+4
+6
+8
+10
+12
+0
+2
+4
+6
+8
+0
+2
+3
+d
+5
+6
+0.10 E
+0.14 E
+0.12
+0.15
+0.08
+0.10
+0.06
+0.08
+0.10
+0.10
+0.04
+0.06
+0.04
+0.05
+0.05
+0.02
+0.02
+:
+0
+5
+10
+15
+20
+25
+30
+0
+5
+10
+15
+0
+5
+10
+5
+0
+2
+4
+6
+8
+10
+0.08
+0.12
+0.12 E
+0.12 E
+0.10
+0.10
+0.10
+0.06
+0.08
+0.08
+0.08
+0.04
+0.06
+0.06
+0.06
+0.04
+0.02日
+0.04
+0.04
+0.02
+0.02
+0.02
+5
+0
+5
+10
+15
+20
+25
+0
+10
+15
+20
+0
+5
+10
+15
+20Figure 2: Cumulative distribution function of PoiG(λ, θ) for λ ∈ {0, 0.5, 5, 10} and θ ∈
+{0.2, 0.4, 0.6, 0.8} .The (i, j)th plot corresponds to the ith value of λ and jth value of θ for
+i, j = 1, 2, 3, 4.
+6
+
+1.0 E
+1.0
+1.0
+.0
+0.8 E
+0.8
+0.8
+0.8.
+0.6
+0.6
+0.6.
+0.6
+0.4
+0.4
+0.4
+0.4
+0.2.
+0.2
+0.2
+0.2
+0
+5
+10
+15
+20
+25
+30
+0
+5
+10
+15
+20
+25
+30
+0
+5
+10
+15
+20
+25
+30
+0
+5
+10
+15
+20
+25
+30
+1.0 E
+1.0 F
+1.0 E
+1.0 E
+0.8 E
+0.8
+0.8
+0.8 E:
+0.6 E
+0.6
+0.6
+0.6 E
+0.4
+0.4
+0.4
+0.2
+0.2
+0.2
+0.2
+0
+5
+10
+15
+20
+25
+30
+0
+5
+10
+15
+20
+25
+30
+0
+5
+10
+15
+20
+25
+30
+0
+5
+10
+15
+20
+25
+30
+1.0 E
+1.0 F
+1.0 E
+1.0 E
+0.8 E
+0.8 E
+0.8 E
+0.8 E
+0.6 E
+0.6
+0.6
+0.6 E
+0.4 E
+0.4
+0.4
+0.4
+0.2
+0.2
+0.2
+0.2
+0
+5
+10
+15
+20
+25
+30
+5
+10
+15
+20
+25
+30
+10
+15
+20
+25
+30
+0
+5
+10
+15
+20
+25
+1.0 F
+1.0 F
+1.0
+1.0
+0.8 E
+0.8 E
+0.8 E
+180
+0.6 E
+0.6
+0.6
+0.6 F
+0.4 E
+0.4 E
+0.4
+0.4 E
+0.2
+0.2
+0.2
+0.2
+0
+5
+10
+15
+20
+25
+30
+5
+10
+15
+20
+25
+30
+0
+5
+10
+15
+20
+25
+30
+0
+5
+10
+15
+20
+25
+30Where,
+sy =
+y
+�
+i=0
+1
+Γ(i + 1)
+�
+λ
+1 − θ
+�i
+and
+sy+1 = sy +
+1
+Γ(y + 2)
+�
+λ
+1 − θ
+�y+1
+.
+Now,
+pY (y + 1) = θ(1 − θ)y+1e−λsy+1
+= θ(1 − θ)y+1e−λ
+�
+sy +
+1
+Γ(y + 2)
+�
+λ
+1 − θ
+�y+1�
+= (1 − θ)pY (y) + θe−λ
+λy+1
+Γ(y + 2).
+(6)
+This is the recurrence formula of the PoiG distribution. It is easy to check that
+sy+1
+sy
+= 1 +
+1
+syΓ(y + 2)
+�
+λ
+1 − θ
+�y+1
+= 1
+as y −→ ∞,
+and
+pY (y + 1)
+pY (y)
+= (1 − θ) + θe−λ
+pY (y)
+λy+1
+Γ(y + 2) = 1 − θ
+as y −→ ∞.
+(7)
+From (7), it is clear that the behaviour of the tail of the distribution depends on θ. When
+θ −→ 0, the tail of the distribution decays relatively slowly, which implies long tail. when
+θ −→ 1, the tail of the distribution decays fast, which implies short tail. This can easily
+be verified from Figure 1.
+3.2
+Generating functions
+We use the notation H to denote a pgf and use the notation of the corresponding random
+variable in the subscript. For Y1 ∼ P(λ) and Y2 ∼ G(θ),
+HY1(s) = eλ(s−1)
+and
+HY2(s) =
+θ
+1 − (1 − θ)s.
+Now by using the convolution property of probability generating function we obtain the
+pgf of PoiG(λ, θ) as
+HY (s) =
+θeλ(s−1)
+1 − s + θs.
+(8)
+Similar methods are used to obtain the other generating functions, including the mgf
+MY (t), cf φY (t) and cgf KY (t). These are given below.
+MY (t) =
+θeλ(t−1)
+1 − (1 − θ)t
+(9)
+7
+
+φY (t) =
+θeλ(eit−1)
+1 − (1 − θ)eit
+(10)
+KY (t) = λ(et − 1) + log
+�
+θ
+1 − (1 − θ)et
+�
+(11)
+Let us discuss some useful definitions and notations for Result 1 given below. The no-
+tation G(θ) has already been introduced in Section 2. Let R be the number of failures
+preceding the first success in a sequence of independent Bernoulli trials. If the probability
+of success is θ ∈ (0, 1), then R is said to follow G(θ). Suppose, we wait for the rth success.
+Then the number of failures is a negative binomial random variable with index r and the
+parameter θ. Let NB(r, θ) denote this distribution. Suppose Ri ∼ G(θ), for i = 1, 2, ..., r
+independently and S ∼ NB(r, θ). Then S = R1 + R2 + ... + Rr. Thus, it is clear that
+the G(θ) is a particular case of NB(r, θ) with r = 1. Similar to the genesis of PoiG
+model, if we add one Poisson random variable and an independently distributed negative
+binomial random variable, it is possible to obtain a generalization of the PoiG model.
+An appropriate notation for this distribution would have been PoiNB. The objective of
+the current work is not to study this three-parameter distribution in detail. However, the
+following result establishes that the generalization from the geometric distribution to the
+negative binomial distribution translates similarly to the PoiG − PoiNB case. This may
+prove to be a motivation for generalizing the proposed model to PoiNB in future.
+Result 1 The distribution of the sum of n independent PoiG random variables is a
+PoiNB random variable for fixed θ. Mathematically, if Yi ∼ PoiG(λi, θ) for each i =
+1, 2, ..., n then,
+n
+�
+i=1
+Yi ∼ PoiNB(
+n
+�
+i=1
+λi, n, θ).
+Proof of Result 1 From (8), the pgf of Yi ∼ PoiG(λi, θ) is
+HYi(s) =
+θeλi(s−1)
+1 − s + θs
+for i = 1, 2, ..., n. We can derive the pgf of sum of n independent PoiG(λi, θ) variates
+based on the convolution property of the pgf. Let, Z = Y1 + Y2 + .... + Yn. Then,
+HZ(s) =
+n
+�
+i=1
+HYi(s)
+=
+θn
+(1 − s + θs)ne
+�n
+i=1 λi(s−1).
+(12)
+The term θn/(1−s+θs)n in (12) is the pgf of NB(n, θ) which is a generalisation of geomet-
+ric distribution and e
+�n
+i=1 λi(s−1) is pgf of P (�n
+i=1 λi). Thus �n
+i=1 Yi ∼ PoiNB (�n
+i=1 λi, n, θ).
+8
+
+3.3
+Moments and related concepts
+The rth order raw moment of Y ∼ PoiG(λ, θ) can be obtained using the general expres-
+sions of the raw moments of Y1 ∼ P(λ) and Y2 ∼ G(θ) as follows.
+E(Y r) = E
+�
+r
+�
+j=0
+�Y
+j
+�
+Y1
+jY2
+y−j
+�
+=
+r
+�
+j=0
+�Y
+j
+�
+E(Y1
+j)E(Y2
+y−j)
+Note that,
+E(Y1
+j) =
+∞
+�
+Y1=0
+Y1
+j e−λλY1
+Y1!
+=
+∞
+�
+Y1=0
+λY1S(j, Y1)
+= φj(λ).
+Here, S(j, Y1) is the Stirling number of the second kind [1] and φj(λ) is the Bell polynomial
+[24]. Again,
+E(Y2
+y−j) =
+∞
+�
+Y2=0
+Y2
+y−jθ(1 − θ)Y2
+= θ Li−(y−j)(1 − θ),
+where Li−(y−j)(1 − θ) is the polylogarithm of negative integers [14]. Hence
+E(Y r) =
+r
+�
+j=0
+�Y
+j
+�
+φj(λ)θ Li−(y−j)(1 − θ).
+(13)
+The rth order raw moment can also be calculated by differentiating the mgf in (9) r times
+with respect to t and putting t = 0. That is,
+E(Y r) = M (r)
+Y (0) = dr
+dtr [MY (t)]t=0.
+Explicit expressions of the first four moments are listed below.
+E(Y ) = λ + 1 − θ
+θ
+(14)
+E(Y 2) = 1
+θ2[θ2(λ2 − λ + 1) + θ(2λ − 3) + 2]
+(15)
+E(Y 3) = 1
+θ3[θ3(λ3 + λ − 1) + θ2(3λ2 − 6λ + 7) + θ(6λ − 12) + 6]
+(16)
+E(Y 4) = 1
+θ4[θ4(λ4 + 2λ3 + λ2 − λ + 1) + θ3(4λ3 − 6λ2 + 14λ − 15)
++ 2θ2(6λ2 − 18λ + 25) + 12θ(2λ − 5) + 24]
+(17)
+9
+
+Using the above, explicit expressions of the first four central moments are given as follows.
+µ1 = 0
+(18)
+µ2 = λ + 1 − θ
+θ2
+(19)
+µ3 = θ3λ + θ2 − 3θ + 2
+θ3
+(20)
+µ4 = θ4λ(3λ + 1) − θ3(6λ + 1) + 2θ2(3λ + 5) − 18θ + 9
+θ4
+(21)
+The first raw and second central moments are mean and variance of the PoiG(λ, θ) dis-
+tribution, respectively. Let γ1 and γ2 denote the coefficients of skewness and kurtosis,
+respectively. Using the central moments, these coefficients can be derived in closed forms
+as follows.
+β1 = µ32
+µ23 = (θ3λ + θ2 − 3θ + 2)2
+(θ2λ − θ + 1)3
+γ1 =
+�
+β1 =
+�
+(θ3λ + θ2 − 3θ + 2)2
+(θ2λ − θ + 1)3
+β2 = µ4
+µ22 = θ4λ(3λ + 1) − θ3(6λ + 1) + 2θ2(3λ + 5) − 18θ + 9
+(θ2λ − θ + 1)2
+γ2 = β2 − 3 = θ4λ(3λ + 1) − θ3(6λ + 1) + 2θ2(3λ + 5) − 18θ + 9
+(θ2λ − θ + 1)2
+− 3
+Remark 3
+• As θ → 1, β1 → 1
+λ and as θ → 0, β1 → 4.
+• As θ → 1, β2 → 3 + 1
+λ and as θ → 0, β2 → 9.
+The statements made in Remark 3 can easily be realized visually from Figure 3 and Figure
+4, respectively. Clearly, as λ → ∞, the distribution tends to attain normal shape with
+β1 → 0 and β2 → 3.
+3.4
+Dispersion index and coefficient of variation
+The
+dispersion index determines whether a distribution is suitable for modelling an
+over, under and equi-dispersed dataset or not. Let IY denote the dispersion index of the
+distribution of the random variable Y . When IY is more or less than one, the distribution
+of Y can accommodate over-dispersion or under-dispersion, respectively. The notion of
+equi-dispersion is indicated when IY = 1. The dispersion index is given by
+IY = σ2
+µ = 1 +
+(1 − θ)2
+θ(1 + λθ − θ).
+10
+
+Figure 3: Skewness of PoiG(λ, θ) for θ ∈ {0.2, 0.4, 0.6, 0.8}. The ith plot corresponds to
+the ith value of θ for different values of λ in the x-axis.
+Figure 4: Kurtosis of PoiG(λ, θ) for θ ∈ {0.2, 0.4, 0.6, 0.8}. The ith plot corresponds to
+the ith value of θ for different values of λ in the x-axis.
+From the expression of IY above, it follows that the PoiG distribution is equi-dispersed
+when θ = 1 and over-dispersed for all 0 < θ < 1. From Figure 5, it can be observed that
+IY increases with decreasing λ and θ.
+The coefficient of variation (CV) is an indicator for data variability. Higher value of the
+CV indicates the capability of a distribution to model data with higher variability. Note
+that,
+CV (Y ) =
+√
+λθ2 − θ + 1
+λθ − θ + 1
+× 100%.
+3.5
+Mode
+In Section 3.7, we show that PoiG(λ, θ) is unimodal. Note that,
+pY (1) ≤ pY (0)
+=⇒
+(1 + λ − θ)θe−λ ≤ θe−λ
+=⇒
+λθe−λ − θ2e−λ ≤ 0
+=⇒
+λ − θ ≤ 0
+=⇒
+λ ≤ θ.
+The converse is trivially true. Thus, the distribution has mode at zero for λ ≤ θ. Figure
+1 clearly shows that the mode is zero for λ = 0, 0.5 and θ > 0, 0.5. For the equality case,
+11
+
+71
+6
+5
+4
+2
+3
+0
+10
+20
+30
+40
+50
+0
+5
+10
+15
+20
+25
+0
+5
+10
+15
+0
+2
+4
+6
+8
+1010.
+12 t
+8
+8
+10
+6
+8
+6
+2
+0
+10
+20
+30
+40
+50
+0
+10
+20
+30
+40
+50
+0
+10
+20
+30
+40
+50
+0
+10
+20
+30
+40
+50Figure 5: Dispersion index of PoiG(λ, θ).
+Figure 6: Probability mass function of PoiG(λ, θ) for λ = θ ∈ {0.2, 0.4, 0.6, 0.8}.
+that is λ = θ, the masses at zero and at unity are the same. Figure 6 clearly exhibits this
+fact. However, for the λ > θ case, the distribution has non-zero mode. Unfortunately, an
+explicit expression for this non-zero mode is difficult to find, if not impossible.
+3.6
+Reliability properties
+Reliability function of a discrete random variable Y at y is defined as the probability of
+Y assuming values greater than or equal to y. The reliability function is also termed as
+the survival function. The survival function of Y ∼ PoiG(λ, θ) is
+SY (y) = P(Y ≥ y) = 1 − Γ(y, λ)
+Γy
++ (1 − θ)y
+Γy
+exp
+� λθ
+1 − θ
+�
+Γ
+�
+y,
+λ
+1 − θ
+�
+.
+(22)
+The hazard rate or failure rate of a discrete random variable T at time point t is defined
+as the conditional probability of failure at t, given that the survival time is at least t.
+The hazard rate function (hrf) of Y ∼ PoiG(λ, θ) can be obtained by using (1) and (4)
+12
+
+0=0.75
+入=0
+入=1
+入=5
+入=50
+0=0.15
+0=0.30
+0=0.45
+0=0.60
+ly
+ly
+7
+20
+15
+5
+4
+10
+3
+10
+20
+30
+40
+50
+0.0
+0.2
+0.4
+0.6
+0.8
+1.00.25
+0.35
+0.35
+0.15
+0.30
+0.20
+0.30
+0.25
+0.25
+0.10
+0.15
+0.20
+0.20
+0.10
+0.15
+0.15
+0.05
+0.05
+0.10
+0.10
+0.05
+0.05
+1
+2
+4
+6
+224
+0
+2
+6
+8
+10
+0
+2
+4
+8as follows.
+hY (y) = P(Y = y)
+P(Y ≥ y) =
+θ(1 − θ)y
+Γ(y + 1) exp
+� λθ
+1 − θ
+�
+Γ
+�
+y + 1,
+λ
+1 − θ
+�
+1 − Γ(y, λ)
+Γy
++ (1 − θ)y
+Γy
+exp
+� λθ
+1 − θ
+�
+Γ
+�
+y,
+λ
+1 − θ
+�
+=
+θ(1 − θ)y exp
+� λθ
+1 − θ
+�
+Γ
+�
+y + 1,
+λ
+1 − θ
+�
+Γ(y + 1) − yΓ(y, λ) + y(1 − θ)y exp
+� λθ
+1 − θ
+�
+Γ
+�
+y,
+λ
+1 − θ
+�.
+(23)
+The hrf for different choices of the parameters are exhibited in Figure 7.
+The PoiG
+distribution exhibits constant failure rate when λ is very small and it exhibits an increasing
+failure rate, up to a specific time period, when λ increases.
+In reliability studies, the mean residual life is the expected additional lifetime given that
+a component has survived until a fixed time. If the random variable Y ∼ PoiG(λ, θ)
+represents the life of a component, then the mean residual life is
+µY (y) = E(Y − y|Y ≥ y)
+=
+�∞
+y=k(y − k)P(Y = y)
+P(Y ≥ y)
+=
+�∞
+y=k ¯F(y)
+¯F(k − 1)
+=
+�∞
+y=k
+�
+1 − Γ(y, λ)
+Γy
++ (1 − θ)y
+Γy
+exp
+� λθ
+1 − θ
+�
+Γ
+�
+y,
+λ
+1 − θ
+��
+1 − Γ(k − 1, λ)
+Γ(k − 1)
++ (1 − θ)k−1
+Γ(k − 1) exp
+� λθ
+1 − θ
+�
+Γ
+�
+k − 1,
+λ
+1 − θ
+�.
+(24)
+3.7
+Monotonic Properties
+Y ∼ PoiG(λ, θ) is log-concave if the following holds for all y ≥ 1.
+p2
+Y (y) ≥ pY (y − 1)pY (y + 1)
+A log-concave distribution possesses several desirable properties. Some of the notable
+examples of log-concave distributions are the Bernoulli, binomial, Poisson, geometric, and
+negative binomial. Convolution of two independent log-concave distributions is also a log-
+concave distribution [21]. Being the convolution of Poisson and Geometric distributions,
+the proposed PoiG distribution is log-concave. Consequently, the following statements
+hold good for the PoiG distribution ([23] and [3]).
+• Strongly unimodal.
+• At most one exponential tail.
+• All the moments exist.
+• Log-concave survival function.
+13
+
+Figure 7: Hazard rate function of PoiG(λ, θ) for λ ∈ {0, 0.5, 5, 10} row-wise and θ ∈
+{0.2, 0.4, 0.6, 0.8} column-wise. The (i, j)th plot corresponds to the ith value of λ and jth
+value of θ for i, j = 1, 2, 3, 4.
+• Monotonically increasing hazard rate function (see Figure 7).
+• Monotonically decreasing mean residual life function.
+14
+
+0.20
+0.4
+0.6
+0.8
+0.5
+0.15
+0.3
+0.4
+0.6
+0.10
+0.2
+0.3
+0.4
+0.05
+0.2
+0.1
+0.1
+0.2
+F.
+10
+15
+20
+25
+30
+0
+5
+10
+25
+30
+0
+5
+30
+15
+20
+10
+15
+20
+25
+0
+5
+10
+15
+20
+25
+30
+0.20 E
+0.4
+0.6 F
+0.8 F
+0.5
+0.15
+0
+0.4.
+0.6
+0.10
+0.2
+0.3
+0.4
+0.2
+0.05
+0.1
+0.1
+0.2
+10
+15
+20
+25
+30
+E
+0
+5
+10
+15
+20
+25
+30
+0
+5
+10
+15
+20
+25
+30
+0
+5
+10
+15
+20
+0.20 E
+0.4 E
+0.6 F
+0.8 t
+0.5
+0.15
+0.3
+0.4
+0.6
+0.10
+0.2
+0
+0.4
+0.1
+0.2
+0.05
+0.1
+0.2
+.
+.i
+F.i
+0
+5
+10
+15
+20
+30
+0
+5
+10
+15
+20
+25
+30
+0
+5
+10
+15
+20
+25
+30
+0
+5
+10
+15
+25
+30
+0.20 E
+0.4 t
+0.6 t
+0.5
+0.6
+0.15 E
+0.3
+0.5
+0.4
+0.4
+0.10
+0.2
+0.3
+0
+0.05
+0.1 [
+0.2
+0.2
+0.1
+0.1
+0
+5
+10
+15
+30
+0
+5
+10
+15
+20
+25
+30
+0
+5
+10
+15
+20
+25
+30
+0
+5
+10
+15
+20
+25
+303.8
+Stochastic ordering
+Stochastic order is an important statistical property used to compare the behaviour of
+different random variables [4]. We have considered here the likelihood ratio order ≥lr. Let
+X ∼ PoiG(λ1, θ) and Y ∼ PoiG(λ2, θ). Then Y is said to be smaller than X in the usual
+likelihood ratio order, that is Y ≤lr X) if L(x) = pX(x)/pY (x) is an increasing function
+in x, that is L(x) ≤ L(x + 1) for all 0 < θ < 1 and λ2 < λ1. Note that,
+pX(x) = θ(1 − θ)xe−λ1
+x
+�
+i=0
+1
+Γ(i + 1)
+� λ1
+1 − θ
+�i
+,
+x = 0, 1, 2, ...
+pY (x) = θ(1 − θ)xe−λ2
+x
+�
+i=0
+1
+Γ(i + 1)
+� λ2
+1 − θ
+�i
+,
+x = 0, 1, 2, ... .
+L(x) = exp [−(λ1 − λ2)]
+�x
+i=0
+1
+Γ(i + 1)
+� λ1
+1 − θ
+�i
+�x
+i=0
+1
+Γ(i + 1)
+� λ2
+1 − θ
+�i,
+x = 0, 1, 2, ...
+It is easy to see that, L(x) ≤ L(x + 1) for all 0 < θ < 1 and λ2 < λ1.
+Let Y ≤st X denote P(Y ≥ x) ≤ P(X ≥ x) for all x. This is the notion of stochastic
+ordering. Similarly, the hazard rate order Y ≤hr X implies
+pX(x)
+P(X ≥ x) ≤
+pY (x)
+P(Y ≥ x)
+for all x. The reversed hazard rate order Y ≤rh X implies
+pY (x)
+P(Y ≤ x) ≤
+pX(x)
+P(X ≤ x)
+for all x.
+From the likelihood ratio order of X and Y , the following statements are
+immediate [4].
+• Stochastic order: Y ≤st X.
+• Hazard rate order: Y ≤hr X.
+• Reverse hazard rate order: Y ≤rh X.
+4
+Estimation
+Let Y = (Y1, Y2, ..., Yn) be a random sample of size n from the PoiG(λ, θ) distribution
+and y = (y1, y2, ..., yn) be a realization on Y. The objective of this section is estimate the
+parameters λ and θ based on the available data y. We present two different methods of
+estimation. We also find asymptotic confidence intervals for both the parameters based
+on the maximum likelihood estimates.
+4.1
+Method of moments
+Using the expressions in (14) and (19), the mean and the variance of Y ∼ PoiG(λ, θ) are
+as follows.
+µ
+′
+1 = λ + 1 − θ
+θ
+and µ2 = λ + 1 − θ
+θ2
+15
+
+Now by subtracting µ2 from µ
+′
+1,
+µ
+′
+1 − µ2 = 1 − θ
+θ
+− 1 − θ
+θ2
+=⇒ µ
+′
+1 − µ2 = 1 − θ
+θ
+�
+1 − 1
+θ
+�
+=⇒ µ2 − µ
+′
+1 =
+�1 − θ
+θ
+�2
+=⇒ 1 − θ
+θ
+=
+�
+µ2 − µ
+′
+1
+=⇒ θ =
+1
+1 +
+�
+µ2 − µ
+′
+1
+(25)
+By putting θ from (25) in µ
+′
+1, we obtain
+λ = µ
+′
+1 −
+�
+µ2 − µ
+′
+1
+(26)
+This method involves equating sample moments with theoretical moments.
+Thus, by
+equating the first sample moment about the origin m
+′
+1 = �n
+i=1 yi/n to µ
+′
+1 and the second
+sample moment about the mean m2 = �n
+i=1(yi − ¯y)2/n to µ2 in equation (25) and (26),
+we obtain the following estimators for λ and θ.
+ˆλMM = m
+′
+1 −
+�
+m2 − m
+′
+1
+(27)
+ˆθMM =
+1
+1 +
+�
+m2 − m
+′
+1
+(28)
+4.2
+Maximum likelihood method
+Using the pmf of Y ∼ PoiG(λ, θ) in (1), the log-likelihood function of the parameters λ
+and θ can easily be found as
+l(λ, θ; y) = n log θ + ny log(1 − θ) + nλθ
+1 − θ +
+n
+�
+i=0
+log
+�
+�
+�
+�
+Γ
+�
+yi + 1,
+λ
+1 − θ
+�
+Γ(yi + 1)
+�
+�
+�
+� .
+(29)
+Let us define,
+β =
+λ
+1 − θ
+and for j = 1, 2, 3, ...
+αj(yi) =
+e−β
+Γ (yi + 1, β)
+1
+(1 − θ)j .
+Differentiating (29), with respect to parameters λ and θ, we get the score functions as
+∂
+∂λl(λ, θ; y) =
+nθ
+1 − θ −
+n
+�
+i=1
+α1(yi)βyi
+(30)
+∂
+∂θl(λ, θ; y) = n
+θ + n(λ − ¯y)
+1 − θ
++
+nλθ
+(1 − θ)2 −
+n
+�
+i=1
+λα2(yi)βyi.
+(31)
+16
+
+Ideally, the explicit maximum likelihood estimators are obtained by simultaneously solving
+the two equations obtained by setting right hand sides of (30) and (31) equal to zero.
+Unfortunately, the explicit expressions of the maximum likelihood estimators could not
+be obtained in this case due to the structural complexity. Thus, we directly optimize
+the log-likelihood function with respect to the parameters using appropriate numerical
+technique. Let ˆλML and ˆθML denote the maximum likelihood estimates (MLE) of λ and
+θ respectively.
+Now, our objective is to obtain asymptotic confidence intervals for both the parameters.
+For this purpose, we require the information matrix. The second-order partial derivative
+of the log-likelihood are given below.
+∂2l(λ, θ; y)
+∂λ2
+=
+n
+�
+i=1
+�
+(βyi − yiβyi−1)α2(yi) − β2yiα1(yi)2�
+∂2l(λ, θ; y)
+∂λ∂θ
+=
+n
+(1 − θ)2 +
+n
+�
+i=1
+�
+λ(βyi − yiβyi−1)α3(yi) − βyiα2(yi) − λ(1 − θ)β2yiα1(yi)2�
+∂2l(λ, θ; y)
+∂θ2
+= 2nλ − n¯y(1 − θ)
+(1 − θ)3
+− n
+θ2+
+n
+�
+i=1
+�
+((λ2 − 2λ(1 − θ))βyi − λ2yiβyi−1)α4(yi) − λ2β2yiα2(yi)2�
+The Fisher’s information matrix for (λ, θ) is
+I =
+�
+�
+�
+�
+�
+�
+−E
+�∂2l(λ, θ; y)
+∂λ2
+�
+−E
+�∂2l(λ, θ; y)
+∂λ∂θ
+�
+−E
+�∂2l(λ, θ; y)
+∂λ∂θ
+�
+−E
+�∂2l(λ, θ; y)
+∂θ2
+�
+.
+�
+�
+�
+�
+�
+�
+This can be approximated by
+�I =
+�
+�
+�
+�
+�
+−∂2l(λ, θ; y)
+∂λ2
+−∂2l(λ, θ; y)
+∂λ∂θ
+−∂2l(λ, θ; y)
+∂λ∂θ
+−∂2l(λ, θ; y)
+∂θ2
+.
+�
+�
+�
+�
+�
+(λ,θ)=(ˆλML,ˆθML)
+Under some general regularity conditions, for large n, √n(ˆλML − λ, ˆθML − θ) is bivariate
+normal with the mean vector (0, 0) and the dispersion matrix
+ˆI−1 =
+1
+I11I22 − I12I21
+�
+�
+I22
+−I12
+−I21
+I11
+�
+� =
+�
+�
+J11
+−J12
+−J21
+J22.
+�
+�
+Thus, the asymptotic (1−α)×100% confidence interval for λ and θ are given respectively
+by
+�
+�ˆλML − Zα
+2
+�
+J11 , ˆλML + Zα
+2
+�
+J11
+�
+� and
+�
+�ˆθML − Zα
+2
+�
+J22 , ˆθML + Zα
+2
+�
+J22
+�
+� .
+17
+
+5
+Discussion
+In this article, a new two-parameter distribution is proposed, extensively studied. Core
+of this work is theoretical development, its applied aspect is also important. From the
+application point of view, the proposed model is easy to use for modeling over-dispersed
+data. Despite the availability of several other over-dispersed count models, the proposed
+model may find wide applications due to the interpretability of its parameters.
+The
+parameter λ controls the tail of the distribution while the parameter θ adjusts for the over-
+dispersion present in a given dataset. Their combined effect gives flexibility to the shape
+of the distribution. When θ dominates λ, it keeps the J-shaped mass distribution and for
+large λ, the bell-shaped mass distribution. Consequently, the hump or the concentration of
+the observations is well accommodated. Simulation experiment to investigate performance
+of the point and asymptotic interval estimator and comparative real life data analysis will
+be reported in the complete version of the article.
+18
+
+References
+[1] Abramowitz, M., and Stegun, I. A. Handbook of mathematical functions with
+formulas, graphs, and mathematical tables, vol. 55. US Government printing office,
+1964.
+[2] Altun, E. A new generalization of geometric distribution with properties and ap-
+plications. Communications in Statistics-Simulation and Computation 49, 3 (2020),
+793–807.
+[3] Bagnoli, M., and Bergstrom, T. Log-concave probability and its applications.
+In Rationality and Equilibrium. Springer, 2006, pp. 217–241.
+[4] Bakouch, H. S., Jazi, M. A., and Nadarajah, S. A new discrete distribution.
+Statistics 48, 1 (2014), 200–240.
+[5] Bar-Lev, S. K., and Ridder, A. Exponential dispersion models for overdispersed
+zero-inflated count data. Communications in Statistics-Simulation and Computation
+(2021), 1–19.
+[6] Bardwell, G., and Crow, E. A two parameter family of hyper-Poisson distribu-
+tions. Journal of the American Statistical Association 59 (1964), 133–141.
+[7] Bourguignon, M., Gallardo, D. I., and Medeiros, R. M. A simple and
+useful regression model for underdispersed count data based on Bernoulli–Poisson
+convolution. Statistical Papers 63, 3 (2022), 821–848.
+[8] Bourguignon, M., and Weiß, C. H. An INAR (1) process for modeling count
+time series with equidispersion, underdispersion and overdispersion. Test 26, 4 (2017),
+847–868.
+[9] Campbell, N. L., Young, L. J., and Capuano, G. A. Analyzing over-dispersed
+count data in two-way cross-classification problems using generalized linear models.
+Journal of Statistical Computation and Simulation 63, 3 (1999), 263–281.
+[10] Chakraborty, S.
+On some distributional properties of the family of weighted
+generalized poisson distribution. Communications in Statistics—Theory and Methods
+39, 15 (2010), 2767–2788.
+[11] Chakraborty, S., and Bhati, D. Transmuted geometric distribution with ap-
+plications in modeling and regression analysis of count data. SORT-Statistics and
+Operations Research Transactions (2016), 153–176.
+[12] Chakraborty, S., and Gupta, R. D. Exponentiated geometric distribution: an-
+other generalization of geometric distribution. Communications in Statistics-Theory
+and Methods 44, 6 (2015), 1143–1157.
+[13] Chakraborty, S., and Ong, S. Mittag-leffler function distribution-a new gen-
+eralization of hyper-Poisson distribution.
+Journal of Statistical distributions and
+applications 4, 1 (2017), 1–17.
+[14] Cvijović, D. New integral representations of the polylogarithm function. Proceed-
+ings of the Royal Society A: Mathematical, Physical and Engineering Sciences 463,
+2080 (2007), 897–905.
+19
+
+[15] Del Castillo, J., and Pérez-Casany, M. Weighted poisson distributions for
+overdispersion and underdispersion situations. Annals of the Institute of Statistical
+Mathematics 50, 3 (1998), 567–585.
+[16] Efron, B. Double exponential-families and their use in generalized linear-regression.
+Journal of the American Statistical Association 81 (1986), 709–721.
+[17] Fisher, R. A., Corbet, A. S., and Williams, C. B. The relation between the
+number of species and the number of individuals in a random sample of an animal
+population. The Journal of Animal Ecology (1943), 42–58.
+[18] Gómez-Déniz, E. Another generalization of the geometric distribution. Test 19, 2
+(2010), 399–415.
+[19] Hassanzadeh, F., and Kazemi, I. Analysis of over-dispersed count data with
+extra zeros using the Poisson log-skew-normal distribution. Journal of Statistical
+Computation and Simulation 86, 13 (2016), 2644–2662.
+[20] Jain, G., and Consul, P. A generalized negative binomial distribution. SIAM
+Journal on Applied Mathematics 21, 4 (1971), 501–513.
+[21] Johnson, O.
+Log-concavity and the maximum entropy property of the poisson
+distribution. Stochastic Processes and their Applications 117, 6 (2007), 791–802.
+[22] Makcutek, J. A generalization of the geometric distribution and its application in
+quantitative linguistics. Romanian Reports in Physics 60, 3 (2008), 501–509.
+[23] Mark, Y. A. Log-concave probability distributions: Theory and statistical testing.
+Duke University Dept of Economics Working Paper, 95-03 (1997).
+[24] Mihoubi, M. Bell polynomials and binomial type sequences. Discrete Mathematics
+308, 12 (2008), 2450–2459.
+[25] Moghimbeigi, A., Eshraghian, M. R., Mohammad, K., and Mcardle,
+B. Multilevel zero-inflated negative binomial regression modeling for over-dispersed
+count data with extra zeros. Journal of Applied Statistics 35, 10 (2008), 1193–1202.
+[26] Moqaddasi Amiri, M., Tapak, L., and Faradmal, J. A mixed-effects least
+square support vector regression model for three-level count data. Journal of Statis-
+tical Computation and Simulation 89, 15 (2019), 2801–2812.
+[27] Nekoukhou, V., Alamatsaz, M., and Bidram, H. A discrete analogue of the
+generalized exponential distribution.
+Communications in Statistics - Theory and
+Methods 41, 11 (2012), 2000–2013.
+[28] Philippou, A., Georghiou, C., and Philippou, G. A generalized geometric
+distribution and some of its properties. Statistics and Probability Letters 1, 4 (1983),
+171–175.
+[29] Rodrigues-Motta, M., Pinheiro, H. P., Martins, E. G., Araújo, M. S.,
+and dos Reis, S. F. Multivariate models for correlated count data. Journal of
+Applied Statistics 40, 7 (2013), 1586–1596.
+[30] Sarvi, F., Moghimbeigi, A., and Mahjub, H. GEE-based zero-inflated gener-
+alized Poisson model for clustered over or under-dispersed count data. Journal of
+Statistical Computation and Simulation 89, 14 (2019), 2711–2732.
+20
+
+[31] Sellers, K. F., and Shmueli, G. A flexible regression model for count data. The
+Annals of Applied Statistics (2010), 943–961.
+[32] Tapak, L., Hamidi, O., Amini, P., and Verbeke, G.
+Random effect
+exponentiated-exponential geometric model for clustered/longitudinal zero-inflated
+count data. Journal of Applied Statistics 47, 12 (2020), 2272–2288.
+[33] Tripathi, R., Gupta, R., and White, T. Some generalizations of the geometric
+distribution. Sankhya Ser. B 49, 3 (1987), 218–223.
+[34] Tüzen, F., Erbaş, S., and Olmuş, H. A simulation study for count data models
+under varying degrees of outliers and zeros. Communications in Statistics-Simulation
+and Computation 49, 4 (2020), 1078–1088.
+[35] Wang, S., Cadigan, N., and Benoît, H. Inference about regression parameters
+using highly stratified survey count data with over-dispersion and repeated measure-
+ments. Journal of Applied Statistics 44, 6 (2017), 1013–1030.
+[36] Wang, Y., Young, L. J., and Johnson, D. E. A UMPU test for comparing means
+of two negative binomial distributions. Communications in Statistics-Simulation and
+Computation 30, 4 (2001), 1053–1075.
+[37] Wongrin, W., and Bodhisuwan, W. Generalized Poisson–Lindley linear model
+for count data. Journal of Applied Statistics 44, 15 (2017), 2659–2671.
+21
+
diff --git a/-tAzT4oBgHgl3EQfhPwa/content/tmp_files/load_file.txt b/-tAzT4oBgHgl3EQfhPwa/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..e68108b79d4684e55d4039d9ea437541ba51fb42
--- /dev/null
+++ b/-tAzT4oBgHgl3EQfhPwa/content/tmp_files/load_file.txt
@@ -0,0 +1,773 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf,len=772
+page_content='A new over-dispersed count model Anupama Nandi, Subrata Chakraborty, Aniket Biswas Dibrugarh University January 5, 2023 Abstract A new two-parameter discrete distribution, namely the PoiG distribution is derived by the convolution of a Poisson variate and an independently distributed geometric random variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' This distribution generalizes both the Poisson and geometric distri- butions and can be used for modelling over-dispersed as well as equi-dispersed count data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' A number of important statistical properties of the proposed count model, such as the probability generating function, the moment generating function, the moments, the survival function and the hazard rate function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Monotonic properties are studied such as the log concavity and the stochastic ordering are also investi- gated in detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Method of moment and the maximum likelihood estimators of the parameters of the proposed model are presented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' It is envisaged that the proposed distribution may prove to be useful for the practitioners for modelling over-dispersed count data compared to its closest competitors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Keywords Geometric distribution, Poisson distribution, Conway-Maxwell Poisson dis- tribution;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' BerG distribution;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' BerPoi distribution;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Incomplete gamma function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' MSC 2010 60E05, 62E15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='01480v1 [stat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='ME] 4 Jan 2023 1 Introduction The phenomenon of the variance of a count data being more than its mean is commonly termed as over-dispersion in the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Over-dispersion is relevant in many modelling applications and it is encountered more often compared to the phenomena of under- dispersion and equi-dispersion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' A number of count models are available in the literature for over-dispersed data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' However, addition of a simple yet adequate model is of importance given the ongoing research interest in this direction ([37], [25], [32], [35], [30], [29], [9], [19], [26], [34], [5], [2] and [36]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' The simplest and the most common count data model is the Poisson distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Its equi-dispersion characteristic is well-known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' This is a limitation for the Poisson model and to overcome this issue, several alternatives have been developed and used for their obvious advantage over the classical Poisson model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Notable among these distributions are the hyper-Poisson (HP) of Bardwell and Crow [6], generalized Poisson distribution of Jain and Consul [20], double-Poisson of Efron [16], weighted Poisson of Castillo and Pérez-Casany [15], weighted generalized Poisson distribution of Chakraborty [10], Mittag-Leffler function distribution of Chakraborty and Ong [13] and the popular COM-Poisson distribution Shmueli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' [31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' COM-Poisson generalizes the binomial and the negative binomial distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' The classical geometric and negative binomial models are also used for over-dispersed count datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' The gamma mixture of the Poisson distribution generates the negative binomial distribution [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Thus unlike the Poisson distribution, these two count models posses the over-dispersion characteristic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Consequently, several extensions of the geometric distribution have been introduced in the literature for over-dispersed count data modelling ([11], [12], [18], [20], [22], [27], [28], and [33] among others).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Two most widely used distributions for over- dispersed data are of course the negative binomial and COM-Poisson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' As pointed out earlier, there is still plenty of opportunity for developing new discrete distributions with simple structure and explicit interpretation, appropriate for over-dispersed data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Recently, Bourguignon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' have introduced the BerG distribution [8] by using the convolution of a Bernoulli random variable and a geometric random variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' In a very recent publication, Bourguignon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' have introduced the BerPoi distribution from a similar motivation [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' This is a convolution of a Bernoulli random variable and a Poisson random variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' The first one is capable of modelling over-dispersed, under-dispersed and equi-dispersed data whereas the second one is efficient for modelling under-dispersed data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' This approach is simple and has enormous potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Here we use this idea to develop a novel over-dispersed count model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' In this article, we propose a new discrete distribution derived from the convolution of two independent count random variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' The random variables are Poisson and geomet- ric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Hence we identify the proposed model as PoiG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' This two-parameter distribution has many advantages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Structural simplicity is one of them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' It is easy to comprehend unlike the COM-Poisson distribution, which involves a difficult normalising constant in its probability mass function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' A model with closed-form expressions of the mean and the variance is well-suited for regression modelling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Unlike the COM-Poisson distribution, mean and variance of the proposed distribution can be written in closed form expressions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' The proposed distribution extends both the Poisson and geometric distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Rest of the article is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' In section 2, we present the PoiG distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' In Section 3, we describe its important statistical properties such as recurrence relation, generating functions, moments, dispersion index, mode, reliability properties, monotonic 2 properties and stochastic ordering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' In Section 4, we present the moment and the max- imum likelihood methods of parameter estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' We conclude the article with a few limitations and future scopes of the current study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' 2 The PoiG distribution In this section, we introduce a novel discrete distribution by considering two independent discrete random variables Y1 and Y2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Let us denote the set of non-negative integers, {0, 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='} by N0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Also let, Y1 and Y2 follow the Poisson distribution with mean λ > 0 and the geometric distribution with mean 0 < 1/θ < 1, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Both Y1 and Y2 have the same support N0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' For convenience, we write Y1 ∼ P(λ) and Y2 ∼ G(θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Consider, Y = Y1 + Y2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Then, Pr(Y = y) = y � i=0 Pr(Y1 = i) Pr(Y2 = y − i) = y � i=0 e−λλi i!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' θ(1 − θ)y−i = θ(1 − θ)ye−λ y � i=0 1 i!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' � λ 1 − θ �i , y = 0, 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' (1) The distribution in (1) being the convolution Poisson and geometric, is named the PoiG distribution and we write Y ∼ PoiG(λ, θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Thus, the probability mass function (pmf) of PoiG(λ, θ) can be written as pY (y) = θ(1 − θ)y Γ(y + 1) exp � λθ 1 − θ � Γ � y + 1, λ 1 − θ � , y = 0, 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' (2) Figure 1 exhibits nature of the pmf for different choices of (λ, θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' The cumulative distri- bution function (cdf) of PoiG distribution is FY (y) = Pr(Y1 + Y2 ≤ y) = y � y1=0 y−y1 � y2=0 pY (y1)pY (y2) = y � y1=0 FG(y − y1)pY (y1) = y � y1=0 (1 − (1 − θ)y−y1+1)pY (y1) = y � y1=0 e−λλy1 y1!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' − (1 − θ)y+1e−λ y � y1=0 1 y1!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' � λ 1 − θ �y1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' (3) An explicit expression of (3) is given by FY (y) = Γ(y + 1, λ) Γ(y + 1) − (1 − θ)y+1 Γ(y + 1) exp � λθ 1 − θ � Γ � y + 1, λ 1 − θ � , y = 0, 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' (4) 3 Figure 2 exhibits nature of the cdf for different choices of (λ, θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' The mean and variance of the PoiG(λ, θ) distribution are given as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' E(Y ) = µ = λ + 1 − θ θ and V (Y ) = σ2 = λ + 1 − θ θ2 (5) Special cases For λ −→ 0, PoiG(λ, θ) behaves like G(θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' For θ −→ 1, PoiG(λ, θ) behaves like P(λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Remark 1 The incomplete gamma function [1] is defined as Γ(n, x) = � ∞ x t(n−1)e−tdt and it can also be rewrite as Γ(n, x) = (n − 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' �n−1 k=0 e−xxk k!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' , which is valid for positive values of n and any value of x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Thus the incomplete gamma function in (2) can be rewritten as Γ � y + 1, λ 1 − θ � = Γ(y + 1) y � i=0 1 Γ(i + 1) exp � − λ 1 − θ �� λ 1 − θ �i , where Γ(y + 1) = y!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' and Γ(i + 1) = i!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='. FY (0) = pY (0) = θe−λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Thus, the proportion of zeros in case of the PoiG distribu- tion tends to θ as λ → 0 and to zero as λ → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' 3 Properties of the PoiG distribution In this section, we explore several important statistical properties of the proposed PoiG(λ, θ) distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Some of the distributional properties studied here are the recurrence relation, probability generating function (pgf), moment generating function (mgf), characteristic function (cf), cumulant generating function (cgf), moments, coefficient of skewness and kurtosis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' We also study the reliability properties such as the survival function and the hazard rate function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Log-concavity and stochastic ordering of the proposed model are also investigated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='1 Recurrence relation Probability recurrence relation helps in finding the subsequent term using the preceding term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' It usually proves to be advantageous in computing the masses at different values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Note that, pY (y) = θ(1 − θ)y Γ(y + 1) exp � λθ 1 − θ � Γ � y + 1, λ 1 − θ � = θ(1 − θ)ye−λ y � i=0 1 Γ(i + 1) � λ 1 − θ �i = θ(1 − θ)ye−λsy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' 4 Figure 1: Probability mass function of PoiG(λ, θ) for λ ∈ {0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='5, 5, 10} and θ ∈ {0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='2, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='4, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='6, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='8}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' The (i, j)th plot corresponds to the ith value of λ and jth value of θ for i, j = 1, 2, 3, 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' 5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='4 f 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='6 t 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='8+ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='2 0 10 15 20 0 2 4 to 10 0 2 0 2 3 4 5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='15 F ° 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='5 § 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='3 E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='1 0 5 10 15 20 2 4 6 8 10 12 0 2 4 6 8 0 2 3 d 5 6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='10 E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='14 E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='02 : 0 5 10 15 20 25 30 0 5 10 15 0 5 10 5 0 2 4 6 8 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='12 E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='12 E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='02日 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='02 5 0 5 10 15 20 25 0 10 15 20 0 5 10 15 20Figure 2: Cumulative distribution function of PoiG(λ, θ) for λ ∈ {0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='5, 5, 10} and θ ∈ {0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='2, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='4, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='6, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='8} .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='The (i, j)th plot corresponds to the ith value of λ and jth value of θ for i, j = 1, 2, 3, 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' 6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='0 E 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='8 E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='2 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='0 E 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='0 F 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='0 E 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='0 E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='8 E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='8 E: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='6 E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='6 E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='2 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='0 E 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='0 F 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='0 E 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='0 E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='8 E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='8 E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='8 E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='8 E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='6 E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='6 E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='4 E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='2 0 5 10 15 20 25 30 5 10 15 20 25 30 10 15 20 25 30 0 5 10 15 20 25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='0 F 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='0 F 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='8 E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='8 E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='8 E 180 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='6 E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='6 F 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='4 E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='4 E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='4 E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='2 0 5 10 15 20 25 30 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30Where, sy = y � i=0 1 Γ(i + 1) � λ 1 − θ �i and sy+1 = sy + 1 Γ(y + 2) � λ 1 − θ �y+1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Now, pY (y + 1) = θ(1 − θ)y+1e−λsy+1 = θ(1 − θ)y+1e−λ � sy + 1 Γ(y + 2) � λ 1 − θ �y+1� = (1 − θ)pY (y) + θe−λ λy+1 Γ(y + 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' (6) This is the recurrence formula of the PoiG distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' It is easy to check that sy+1 sy = 1 + 1 syΓ(y + 2) � λ 1 − θ �y+1 = 1 as y −→ ∞, and pY (y + 1) pY (y) = (1 − θ) + θe−λ pY (y) λy+1 Γ(y + 2) = 1 − θ as y −→ ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' (7) From (7), it is clear that the behaviour of the tail of the distribution depends on θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' When θ −→ 0, the tail of the distribution decays relatively slowly, which implies long tail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' when θ −→ 1, the tail of the distribution decays fast, which implies short tail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' This can easily be verified from Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='2 Generating functions We use the notation H to denote a pgf and use the notation of the corresponding random variable in the subscript.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' For Y1 ∼ P(λ) and Y2 ∼ G(θ), HY1(s) = eλ(s−1) and HY2(s) = θ 1 − (1 − θ)s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Now by using the convolution property of probability generating function we obtain the pgf of PoiG(λ, θ) as HY (s) = θeλ(s−1) 1 − s + θs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' (8) Similar methods are used to obtain the other generating functions, including the mgf MY (t), cf φY (t) and cgf KY (t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' These are given below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' MY (t) = θeλ(t−1) 1 − (1 − θ)t (9) 7 φY (t) = θeλ(eit−1) 1 − (1 − θ)eit (10) KY (t) = λ(et − 1) + log � θ 1 − (1 − θ)et � (11) Let us discuss some useful definitions and notations for Result 1 given below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' The no- tation G(θ) has already been introduced in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Let R be the number of failures preceding the first success in a sequence of independent Bernoulli trials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' If the probability of success is θ ∈ (0, 1), then R is said to follow G(θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Suppose, we wait for the rth success.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Then the number of failures is a negative binomial random variable with index r and the parameter θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Let NB(r, θ) denote this distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Suppose Ri ∼ G(θ), for i = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', r independently and S ∼ NB(r, θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Then S = R1 + R2 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' + Rr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Thus, it is clear that the G(θ) is a particular case of NB(r, θ) with r = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Similar to the genesis of PoiG model, if we add one Poisson random variable and an independently distributed negative binomial random variable, it is possible to obtain a generalization of the PoiG model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' An appropriate notation for this distribution would have been PoiNB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' The objective of the current work is not to study this three-parameter distribution in detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' However, the following result establishes that the generalization from the geometric distribution to the negative binomial distribution translates similarly to the PoiG − PoiNB case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' This may prove to be a motivation for generalizing the proposed model to PoiNB in future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Result 1 The distribution of the sum of n independent PoiG random variables is a PoiNB random variable for fixed θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Mathematically, if Yi ∼ PoiG(λi, θ) for each i = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', n then, n � i=1 Yi ∼ PoiNB( n � i=1 λi, n, θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Proof of Result 1 From (8), the pgf of Yi ∼ PoiG(λi, θ) is HYi(s) = θeλi(s−1) 1 − s + θs for i = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' We can derive the pgf of sum of n independent PoiG(λi, θ) variates based on the convolution property of the pgf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Let, Z = Y1 + Y2 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='. + Yn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Then, HZ(s) = n � i=1 HYi(s) = θn (1 − s + θs)ne �n i=1 λi(s−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' (12) The term θn/(1−s+θs)n in (12) is the pgf of NB(n, θ) which is a generalisation of geomet- ric distribution and e �n i=1 λi(s−1) is pgf of P (�n i=1 λi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Thus �n i=1 Yi ∼ PoiNB (�n i=1 λi, n, θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' 8 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='3 Moments and related concepts The rth order raw moment of Y ∼ PoiG(λ, θ) can be obtained using the general expres- sions of the raw moments of Y1 ∼ P(λ) and Y2 ∼ G(θ) as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' E(Y r) = E � r � j=0 �Y j � Y1 jY2 y−j � = r � j=0 �Y j � E(Y1 j)E(Y2 y−j) Note that, E(Y1 j) = ∞ � Y1=0 Y1 j e−λλY1 Y1!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' = ∞ � Y1=0 λY1S(j, Y1) = φj(λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Here, S(j, Y1) is the Stirling number of the second kind [1] and φj(λ) is the Bell polynomial [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Again, E(Y2 y−j) = ∞ � Y2=0 Y2 y−jθ(1 − θ)Y2 = θ Li−(y−j)(1 − θ), where Li−(y−j)(1 − θ) is the polylogarithm of negative integers [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Hence E(Y r) = r � j=0 �Y j � φj(λ)θ Li−(y−j)(1 − θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' (13) The rth order raw moment can also be calculated by differentiating the mgf in (9) r times with respect to t and putting t = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' That is, E(Y r) = M (r) Y (0) = dr dtr [MY (t)]t=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Explicit expressions of the first four moments are listed below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' E(Y ) = λ + 1 − θ θ (14) E(Y 2) = 1 θ2[θ2(λ2 − λ + 1) + θ(2λ − 3) + 2] (15) E(Y 3) = 1 θ3[θ3(λ3 + λ − 1) + θ2(3λ2 − 6λ + 7) + θ(6λ − 12) + 6] (16) E(Y 4) = 1 θ4[θ4(λ4 + 2λ3 + λ2 − λ + 1) + θ3(4λ3 − 6λ2 + 14λ − 15) + 2θ2(6λ2 − 18λ + 25) + 12θ(2λ − 5) + 24] (17) 9 Using the above, explicit expressions of the first four central moments are given as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' µ1 = 0 (18) µ2 = λ + 1 − θ θ2 (19) µ3 = θ3λ + θ2 − 3θ + 2 θ3 (20) µ4 = θ4λ(3λ + 1) − θ3(6λ + 1) + 2θ2(3λ + 5) − 18θ + 9 θ4 (21) The first raw and second central moments are mean and variance of the PoiG(λ, θ) dis- tribution, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Let γ1 and γ2 denote the coefficients of skewness and kurtosis, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Using the central moments, these coefficients can be derived in closed forms as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' β1 = µ32 µ23 = (θ3λ + θ2 − 3θ + 2)2 (θ2λ − θ + 1)3 γ1 = � β1 = � (θ3λ + θ2 − 3θ + 2)2 (θ2λ − θ + 1)3 β2 = µ4 µ22 = θ4λ(3λ + 1) − θ3(6λ + 1) + 2θ2(3λ + 5) − 18θ + 9 (θ2λ − θ + 1)2 γ2 = β2 − 3 = θ4λ(3λ + 1) − θ3(6λ + 1) + 2θ2(3λ + 5) − 18θ + 9 (θ2λ − θ + 1)2 − 3 Remark 3 As θ → 1, β1 → 1 λ and as θ → 0, β1 → 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' As θ → 1, β2 → 3 + 1 λ and as θ → 0, β2 → 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' The statements made in Remark 3 can easily be realized visually from Figure 3 and Figure 4, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Clearly, as λ → ∞, the distribution tends to attain normal shape with β1 → 0 and β2 → 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='4 Dispersion index and coefficient of variation The dispersion index determines whether a distribution is suitable for modelling an over, under and equi-dispersed dataset or not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Let IY denote the dispersion index of the distribution of the random variable Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' When IY is more or less than one, the distribution of Y can accommodate over-dispersion or under-dispersion, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' The notion of equi-dispersion is indicated when IY = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' The dispersion index is given by IY = σ2 µ = 1 + (1 − θ)2 θ(1 + λθ − θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' 10 Figure 3: Skewness of PoiG(λ, θ) for θ ∈ {0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='2, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='4, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='6, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='8}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' The ith plot corresponds to the ith value of θ for different values of λ in the x-axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Figure 4: Kurtosis of PoiG(λ, θ) for θ ∈ {0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='2, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='4, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='6, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='8}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' The ith plot corresponds to the ith value of θ for different values of λ in the x-axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' From the expression of IY above, it follows that the PoiG distribution is equi-dispersed when θ = 1 and over-dispersed for all 0 < θ < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' From Figure 5, it can be observed that IY increases with decreasing λ and θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' The coefficient of variation (CV) is an indicator for data variability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Higher value of the CV indicates the capability of a distribution to model data with higher variability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Note that, CV (Y ) = √ λθ2 − θ + 1 λθ − θ + 1 × 100%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='5 Mode In Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='7, we show that PoiG(λ, θ) is unimodal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Note that, pY (1) ≤ pY (0) =⇒ (1 + λ − θ)θe−λ ≤ θe−λ =⇒ λθe−λ − θ2e−λ ≤ 0 =⇒ λ − θ ≤ 0 =⇒ λ ≤ θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' The converse is trivially true.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Thus, the distribution has mode at zero for λ ≤ θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Figure 1 clearly shows that the mode is zero for λ = 0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='5 and θ > 0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' For the equality case, 11 71 6 5 4 2 3 0 10 20 30 40 50 0 5 10 15 20 25 0 5 10 15 0 2 4 6 8 1010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' 12 t 8 8 10 6 8 6 2 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50Figure 5: Dispersion index of PoiG(λ, θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Figure 6: Probability mass function of PoiG(λ, θ) for λ = θ ∈ {0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='2, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='4, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='6, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='8}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' that is λ = θ, the masses at zero and at unity are the same.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Figure 6 clearly exhibits this fact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' However, for the λ > θ case, the distribution has non-zero mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Unfortunately, an explicit expression for this non-zero mode is difficult to find, if not impossible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='6 Reliability properties Reliability function of a discrete random variable Y at y is defined as the probability of Y assuming values greater than or equal to y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' The reliability function is also termed as the survival function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' The survival function of Y ∼ PoiG(λ, θ) is SY (y) = P(Y ≥ y) = 1 − Γ(y, λ) Γy + (1 − θ)y Γy exp � λθ 1 − θ � Γ � y, λ 1 − θ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' (22) The hazard rate or failure rate of a discrete random variable T at time point t is defined as the conditional probability of failure at t, given that the survival time is at least t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' The hazard rate function (hrf) of Y ∼ PoiG(λ, θ) can be obtained by using (1) and (4) 12 0=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='75 入=0 入=1 入=5 入=50 0=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='15 0=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='30 0=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='45 0=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='60 ly ly 7 20 15 5 4 10 3 10 20 30 40 50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='05 1 2 4 6 224 0 2 6 8 10 0 2 4 8as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' hY (y) = P(Y = y) P(Y ≥ y) = θ(1 − θ)y Γ(y + 1) exp � λθ 1 − θ � Γ � y + 1, λ 1 − θ � 1 − Γ(y, λ) Γy + (1 − θ)y Γy exp � λθ 1 − θ � Γ � y, λ 1 − θ � = θ(1 − θ)y exp � λθ 1 − θ � Γ � y + 1, λ 1 − θ � Γ(y + 1) − yΓ(y, λ) + y(1 − θ)y exp � λθ 1 − θ � Γ � y, λ 1 − θ �.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' (23) The hrf for different choices of the parameters are exhibited in Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' The PoiG distribution exhibits constant failure rate when λ is very small and it exhibits an increasing failure rate, up to a specific time period, when λ increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' In reliability studies, the mean residual life is the expected additional lifetime given that a component has survived until a fixed time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' If the random variable Y ∼ PoiG(λ, θ) represents the life of a component, then the mean residual life is µY (y) = E(Y − y|Y ≥ y) = �∞ y=k(y − k)P(Y = y) P(Y ≥ y) = �∞ y=k ¯F(y) ¯F(k − 1) = �∞ y=k � 1 − Γ(y, λ) Γy + (1 − θ)y Γy exp � λθ 1 − θ � Γ � y, λ 1 − θ �� 1 − Γ(k − 1, λ) Γ(k − 1) + (1 − θ)k−1 Γ(k − 1) exp � λθ 1 − θ � Γ � k − 1, λ 1 − θ �.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' (24) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='7 Monotonic Properties Y ∼ PoiG(λ, θ) is log-concave if the following holds for all y ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' p2 Y (y) ≥ pY (y − 1)pY (y + 1) A log-concave distribution possesses several desirable properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Some of the notable examples of log-concave distributions are the Bernoulli, binomial, Poisson, geometric, and negative binomial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Convolution of two independent log-concave distributions is also a log- concave distribution [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Being the convolution of Poisson and Geometric distributions, the proposed PoiG distribution is log-concave.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Consequently, the following statements hold good for the PoiG distribution ([23] and [3]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Strongly unimodal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' At most one exponential tail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' All the moments exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Log-concave survival function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' 13 Figure 7: Hazard rate function of PoiG(λ, θ) for λ ∈ {0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='5, 5, 10} row-wise and θ ∈ {0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='2, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='4, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='6, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='8} column-wise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' The (i, j)th plot corresponds to the ith value of λ and jth value of θ for i, j = 1, 2, 3, 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Monotonically increasing hazard rate function (see Figure 7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Monotonically decreasing mean residual life function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' 14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='2 F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' 10 15 20 25 30 0 5 10 25 30 0 5 30 15 20 10 15 20 25 0 5 10 15 20 25 30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='20 E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='6 F 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='8 F 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='15 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='2 10 15 20 25 30 E 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='20 E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='4 E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='6 F 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='8 t 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='2 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='i F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='i 0 5 10 15 20 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 25 30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='20 E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='4 t 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='6 t 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='15 E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='3 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='1 [ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='1 0 5 10 15 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 303.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='8 Stochastic ordering Stochastic order is an important statistical property used to compare the behaviour of different random variables [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' We have considered here the likelihood ratio order ≥lr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Let X ∼ PoiG(λ1, θ) and Y ∼ PoiG(λ2, θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Then Y is said to be smaller than X in the usual likelihood ratio order, that is Y ≤lr X) if L(x) = pX(x)/pY (x) is an increasing function in x, that is L(x) ≤ L(x + 1) for all 0 < θ < 1 and λ2 < λ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Note that, pX(x) = θ(1 − θ)xe−λ1 x � i=0 1 Γ(i + 1) � λ1 1 − θ �i , x = 0, 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' pY (x) = θ(1 − θ)xe−λ2 x � i=0 1 Γ(i + 1) � λ2 1 − θ �i , x = 0, 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' L(x) = exp [−(λ1 − λ2)] �x i=0 1 Γ(i + 1) � λ1 1 − θ �i �x i=0 1 Γ(i + 1) � λ2 1 − θ �i, x = 0, 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' It is easy to see that, L(x) ≤ L(x + 1) for all 0 < θ < 1 and λ2 < λ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Let Y ≤st X denote P(Y ≥ x) ≤ P(X ≥ x) for all x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' This is the notion of stochastic ordering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Similarly, the hazard rate order Y ≤hr X implies pX(x) P(X ≥ x) ≤ pY (x) P(Y ≥ x) for all x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' The reversed hazard rate order Y ≤rh X implies pY (x) P(Y ≤ x) ≤ pX(x) P(X ≤ x) for all x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' From the likelihood ratio order of X and Y , the following statements are immediate [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Stochastic order: Y ≤st X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Hazard rate order: Y ≤hr X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Reverse hazard rate order: Y ≤rh X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' 4 Estimation Let Y = (Y1, Y2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', Yn) be a random sample of size n from the PoiG(λ, θ) distribution and y = (y1, y2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', yn) be a realization on Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' The objective of this section is estimate the parameters λ and θ based on the available data y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' We present two different methods of estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' We also find asymptotic confidence intervals for both the parameters based on the maximum likelihood estimates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='1 Method of moments Using the expressions in (14) and (19), the mean and the variance of Y ∼ PoiG(λ, θ) are as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' µ ′ 1 = λ + 1 − θ θ and µ2 = λ + 1 − θ θ2 15 Now by subtracting µ2 from µ ′ 1, µ ′ 1 − µ2 = 1 − θ θ − 1 − θ θ2 =⇒ µ ′ 1 − µ2 = 1 − θ θ � 1 − 1 θ � =⇒ µ2 − µ ′ 1 = �1 − θ θ �2 =⇒ 1 − θ θ = � µ2 − µ ′ 1 =⇒ θ = 1 1 + � µ2 − µ ′ 1 (25) By putting θ from (25) in µ ′ 1, we obtain λ = µ ′ 1 − � µ2 − µ ′ 1 (26) This method involves equating sample moments with theoretical moments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Thus, by equating the first sample moment about the origin m ′ 1 = �n i=1 yi/n to µ ′ 1 and the second sample moment about the mean m2 = �n i=1(yi − ¯y)2/n to µ2 in equation (25) and (26), we obtain the following estimators for λ and θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' ˆλMM = m ′ 1 − � m2 − m ′ 1 (27) ˆθMM = 1 1 + � m2 − m ′ 1 (28) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='2 Maximum likelihood method Using the pmf of Y ∼ PoiG(λ, θ) in (1), the log-likelihood function of the parameters λ and θ can easily be found as l(λ, θ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' y) = n log θ + ny log(1 − θ) + nλθ 1 − θ + n � i=0 log � � � � Γ � yi + 1, λ 1 − θ � Γ(yi + 1) � � � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' (29) Let us define, β = λ 1 − θ and for j = 1, 2, 3, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' αj(yi) = e−β Γ (yi + 1, β) 1 (1 − θ)j .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Differentiating (29), with respect to parameters λ and θ, we get the score functions as ∂ ∂λl(λ, θ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' y) = nθ 1 − θ − n � i=1 α1(yi)βyi (30) ∂ ∂θl(λ, θ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' y) = n θ + n(λ − ¯y) 1 − θ + nλθ (1 − θ)2 − n � i=1 λα2(yi)βyi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' (31) 16 Ideally, the explicit maximum likelihood estimators are obtained by simultaneously solving the two equations obtained by setting right hand sides of (30) and (31) equal to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Unfortunately, the explicit expressions of the maximum likelihood estimators could not be obtained in this case due to the structural complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Thus, we directly optimize the log-likelihood function with respect to the parameters using appropriate numerical technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Let ˆλML and ˆθML denote the maximum likelihood estimates (MLE) of λ and θ respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Now, our objective is to obtain asymptotic confidence intervals for both the parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' For this purpose, we require the information matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' The second-order partial derivative of the log-likelihood are given below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' ∂2l(λ, θ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' y) ∂λ2 = n � i=1 � (βyi − yiβyi−1)α2(yi) − β2yiα1(yi)2� ∂2l(λ, θ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' y) ∂λ∂θ = n (1 − θ)2 + n � i=1 � λ(βyi − yiβyi−1)α3(yi) − βyiα2(yi) − λ(1 − θ)β2yiα1(yi)2� ∂2l(λ, θ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' y) ∂θ2 = 2nλ − n¯y(1 − θ) (1 − θ)3 − n θ2+ n � i=1 � ((λ2 − 2λ(1 − θ))βyi − λ2yiβyi−1)α4(yi) − λ2β2yiα2(yi)2� The Fisher’s information matrix for (λ, θ) is I = � � � � � � −E �∂2l(λ, θ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' y) ∂λ2 � −E �∂2l(λ, θ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' y) ∂λ∂θ � −E �∂2l(λ, θ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' y) ∂λ∂θ � −E �∂2l(λ, θ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' y) ∂θ2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' � � � � � � This can be approximated by �I = � � � � � −∂2l(λ, θ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' y) ∂λ2 −∂2l(λ, θ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' y) ∂λ∂θ −∂2l(λ, θ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' y) ∂λ∂θ −∂2l(λ, θ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' y) ∂θ2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' � � � � � (λ,θ)=(ˆλML,ˆθML) Under some general regularity conditions, for large n, √n(ˆλML − λ, ˆθML − θ) is bivariate normal with the mean vector (0, 0) and the dispersion matrix ˆI−1 = 1 I11I22 − I12I21 � � I22 −I12 −I21 I11 � � = � � J11 −J12 −J21 J22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' � � Thus, the asymptotic (1−α)×100% confidence interval for λ and θ are given respectively by � �ˆλML − Zα 2 � J11 , ˆλML + Zα 2 � J11 � � and � �ˆθML − Zα 2 � J22 , ˆθML + Zα 2 � J22 � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' 17 5 Discussion In this article, a new two-parameter distribution is proposed, extensively studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Core of this work is theoretical development, its applied aspect is also important.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' From the application point of view, the proposed model is easy to use for modeling over-dispersed data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Despite the availability of several other over-dispersed count models, the proposed model may find wide applications due to the interpretability of its parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' The parameter λ controls the tail of the distribution while the parameter θ adjusts for the over- dispersion present in a given dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Their combined effect gives flexibility to the shape of the distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' When θ dominates λ, it keeps the J-shaped mass distribution and for large λ, the bell-shaped mass distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Consequently, the hump or the concentration of the observations is well accommodated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Simulation experiment to investigate performance of the point and asymptotic interval estimator and comparative real life data analysis will be reported in the complete version of the article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' 18 References [1] Abramowitz, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', and Stegun, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Handbook of mathematical functions with formulas, graphs, and mathematical tables, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' US Government printing office, 1964.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' [2] Altun, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' A new generalization of geometric distribution with properties and ap- plications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Communications in Statistics-Simulation and Computation 49, 3 (2020), 793–807.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' [3] Bagnoli, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', and Bergstrom, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Log-concave probability and its applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' In Rationality and Equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Springer, 2006, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' 217–241.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' [4] Bakouch, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', Jazi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', and Nadarajah, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' A new discrete distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Statistics 48, 1 (2014), 200–240.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' [5] Bar-Lev, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', and Ridder, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Exponential dispersion models for overdispersed zero-inflated count data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Communications in Statistics-Simulation and Computation (2021), 1–19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' [6] Bardwell, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', and Crow, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' A two parameter family of hyper-Poisson distribu- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Journal of the American Statistical Association 59 (1964), 133–141.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' [7] Bourguignon, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', Gallardo, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', and Medeiros, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' A simple and useful regression model for underdispersed count data based on Bernoulli–Poisson convolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Statistical Papers 63, 3 (2022), 821–848.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' [8] Bourguignon, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', and Weiß, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' An INAR (1) process for modeling count time series with equidispersion, underdispersion and overdispersion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Test 26, 4 (2017), 847–868.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' [9] Campbell, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', Young, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', and Capuano, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Analyzing over-dispersed count data in two-way cross-classification problems using generalized linear models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Journal of Statistical Computation and Simulation 63, 3 (1999), 263–281.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' [10] Chakraborty, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' On some distributional properties of the family of weighted generalized poisson distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Communications in Statistics—Theory and Methods 39, 15 (2010), 2767–2788.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' [11] Chakraborty, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', and Bhati, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Transmuted geometric distribution with ap- plications in modeling and regression analysis of count data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' SORT-Statistics and Operations Research Transactions (2016), 153–176.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' [12] Chakraborty, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', and Gupta, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Exponentiated geometric distribution: an- other generalization of geometric distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Communications in Statistics-Theory and Methods 44, 6 (2015), 1143–1157.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' [13] Chakraborty, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', and Ong, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Mittag-leffler function distribution-a new gen- eralization of hyper-Poisson distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Journal of Statistical distributions and applications 4, 1 (2017), 1–17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' [14] Cvijović, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' New integral representations of the polylogarithm function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Proceed- ings of the Royal Society A: Mathematical, Physical and Engineering Sciences 463, 2080 (2007), 897–905.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' 19 [15] Del Castillo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', and Pérez-Casany, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Weighted poisson distributions for overdispersion and underdispersion situations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Annals of the Institute of Statistical Mathematics 50, 3 (1998), 567–585.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' [16] Efron, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Double exponential-families and their use in generalized linear-regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Journal of the American Statistical Association 81 (1986), 709–721.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' [17] Fisher, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', Corbet, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', and Williams, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' The relation between the number of species and the number of individuals in a random sample of an animal population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' The Journal of Animal Ecology (1943), 42–58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' [18] Gómez-Déniz, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Another generalization of the geometric distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Test 19, 2 (2010), 399–415.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' [19] Hassanzadeh, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', and Kazemi, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Analysis of over-dispersed count data with extra zeros using the Poisson log-skew-normal distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Journal of Statistical Computation and Simulation 86, 13 (2016), 2644–2662.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' [20] Jain, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', and Consul, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' A generalized negative binomial distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' SIAM Journal on Applied Mathematics 21, 4 (1971), 501–513.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' [21] Johnson, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Log-concavity and the maximum entropy property of the poisson distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Stochastic Processes and their Applications 117, 6 (2007), 791–802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' [22] Makcutek, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' A generalization of the geometric distribution and its application in quantitative linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Romanian Reports in Physics 60, 3 (2008), 501–509.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' [23] Mark, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Log-concave probability distributions: Theory and statistical testing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Duke University Dept of Economics Working Paper, 95-03 (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' [24] Mihoubi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Bell polynomials and binomial type sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Discrete Mathematics 308, 12 (2008), 2450–2459.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' [25] Moghimbeigi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', Eshraghian, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', Mohammad, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', and Mcardle, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Multilevel zero-inflated negative binomial regression modeling for over-dispersed count data with extra zeros.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Journal of Applied Statistics 35, 10 (2008), 1193–1202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' [26] Moqaddasi Amiri, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', Tapak, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', and Faradmal, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' A mixed-effects least square support vector regression model for three-level count data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Journal of Statis- tical Computation and Simulation 89, 15 (2019), 2801–2812.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' [27] Nekoukhou, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', Alamatsaz, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', and Bidram, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' A discrete analogue of the generalized exponential distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Communications in Statistics - Theory and Methods 41, 11 (2012), 2000–2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' [28] Philippou, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', Georghiou, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', and Philippou, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' A generalized geometric distribution and some of its properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Statistics and Probability Letters 1, 4 (1983), 171–175.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' [29] Rodrigues-Motta, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', Pinheiro, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', Martins, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', Araújo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', and dos Reis, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Multivariate models for correlated count data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Journal of Applied Statistics 40, 7 (2013), 1586–1596.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' [30] Sarvi, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', Moghimbeigi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', and Mahjub, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' GEE-based zero-inflated gener- alized Poisson model for clustered over or under-dispersed count data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Journal of Statistical Computation and Simulation 89, 14 (2019), 2711–2732.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' 20 [31] Sellers, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', and Shmueli, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' A flexible regression model for count data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' The Annals of Applied Statistics (2010), 943–961.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' [32] Tapak, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', Hamidi, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', Amini, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', and Verbeke, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Random effect exponentiated-exponential geometric model for clustered/longitudinal zero-inflated count data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Journal of Applied Statistics 47, 12 (2020), 2272–2288.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' [33] Tripathi, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', Gupta, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', and White, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Some generalizations of the geometric distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Sankhya Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' B 49, 3 (1987), 218–223.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' [34] Tüzen, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', Erbaş, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', and Olmuş, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' A simulation study for count data models under varying degrees of outliers and zeros.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Communications in Statistics-Simulation and Computation 49, 4 (2020), 1078–1088.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' [35] Wang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', Cadigan, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', and Benoît, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Inference about regression parameters using highly stratified survey count data with over-dispersion and repeated measure- ments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Journal of Applied Statistics 44, 6 (2017), 1013–1030.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' [36] Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', Young, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', and Johnson, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' A UMPU test for comparing means of two negative binomial distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Communications in Statistics-Simulation and Computation 30, 4 (2001), 1053–1075.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' [37] Wongrin, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=', and Bodhisuwan, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Generalized Poisson–Lindley linear model for count data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' Journal of Applied Statistics 44, 15 (2017), 2659–2671.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
+page_content=' 21' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tAzT4oBgHgl3EQfhPwa/content/2301.01480v1.pdf'}
diff --git a/.gitattributes b/.gitattributes
index 74628eaae05d0a989e42234afa8c8aba0dae464c..6e39c69d01a586b7ac2ac187e5adae5b8a3c5772 100644
--- a/.gitattributes
+++ b/.gitattributes
@@ -6901,3 +6901,46 @@ QdFQT4oBgHgl3EQfZTb8/content/2301.13316v1.pdf filter=lfs diff=lfs merge=lfs -tex
ytE4T4oBgHgl3EQfyA1G/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5tE2T4oBgHgl3EQf6wj3/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
QdFQT4oBgHgl3EQfZTb8/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+NtE2T4oBgHgl3EQfqwjT/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+PNE1T4oBgHgl3EQfaQRP/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+kdE2T4oBgHgl3EQfIgZc/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+X9FLT4oBgHgl3EQfUi8y/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+NdFIT4oBgHgl3EQfdCtI/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+FtFJT4oBgHgl3EQfDSx3/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+1NFKT4oBgHgl3EQfOi14/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+j9FIT4oBgHgl3EQfqivf/content/2301.11328v1.pdf filter=lfs diff=lfs merge=lfs -text
+DNAzT4oBgHgl3EQfGfv5/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+j9FIT4oBgHgl3EQfqivf/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+9dE4T4oBgHgl3EQfdwwo/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+edFQT4oBgHgl3EQfkDbq/content/2301.13357v1.pdf filter=lfs diff=lfs merge=lfs -text
+FtAzT4oBgHgl3EQfUfxu/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+ONE3T4oBgHgl3EQfCAkU/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+cNAyT4oBgHgl3EQfwfkz/content/2301.00648v1.pdf filter=lfs diff=lfs merge=lfs -text
+cdAzT4oBgHgl3EQfZvzP/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+ANFIT4oBgHgl3EQf-iyR/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+WdE0T4oBgHgl3EQfVwBf/content/2301.02268v1.pdf filter=lfs diff=lfs merge=lfs -text
+i9AyT4oBgHgl3EQf-_q2/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+FtFJT4oBgHgl3EQfDSx3/content/2301.11433v1.pdf filter=lfs diff=lfs merge=lfs -text
+2NE3T4oBgHgl3EQfnwo5/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+S9A0T4oBgHgl3EQfD__i/content/2301.02013v1.pdf filter=lfs diff=lfs merge=lfs -text
+gtE3T4oBgHgl3EQf3wvW/content/2301.04767v1.pdf filter=lfs diff=lfs merge=lfs -text
+1NFAT4oBgHgl3EQfjx2F/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+T9AyT4oBgHgl3EQfhPid/content/2301.00374v1.pdf filter=lfs diff=lfs merge=lfs -text
+CdAzT4oBgHgl3EQfGftE/content/2301.01028v1.pdf filter=lfs diff=lfs merge=lfs -text
+l9FKT4oBgHgl3EQfDy1k/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+9dE4T4oBgHgl3EQfdwwo/content/2301.05093v1.pdf filter=lfs diff=lfs merge=lfs -text
+B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf filter=lfs diff=lfs merge=lfs -text
+G9E1T4oBgHgl3EQf_QZd/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf filter=lfs diff=lfs merge=lfs -text
+adAyT4oBgHgl3EQfv_mu/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+X9FLT4oBgHgl3EQfUi8y/content/2301.12049v1.pdf filter=lfs diff=lfs merge=lfs -text
+g9E3T4oBgHgl3EQfIQkV/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+ftE4T4oBgHgl3EQfRQzA/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+jtE1T4oBgHgl3EQf0AX0/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+KNE0T4oBgHgl3EQfigEg/content/2301.02445v1.pdf filter=lfs diff=lfs merge=lfs -text
+ctFQT4oBgHgl3EQfijaX/content/2301.13350v1.pdf filter=lfs diff=lfs merge=lfs -text
+wdE0T4oBgHgl3EQfcACj/content/2301.02357v1.pdf filter=lfs diff=lfs merge=lfs -text
+odAzT4oBgHgl3EQfqv0U/content/2301.01632v1.pdf filter=lfs diff=lfs merge=lfs -text
+xtAyT4oBgHgl3EQfnvhT/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+6tE3T4oBgHgl3EQfpwpy/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+6tE0T4oBgHgl3EQffABm/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
diff --git a/0NE1T4oBgHgl3EQfkwRo/content/tmp_files/load_file.txt b/0NE1T4oBgHgl3EQfkwRo/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..8294f4a3081cacb512ef2bd7627f9095387d1041
--- /dev/null
+++ b/0NE1T4oBgHgl3EQfkwRo/content/tmp_files/load_file.txt
@@ -0,0 +1,617 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf,len=616
+page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='03277v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='DG] 9 Jan 2023 Functionals for the Study of LCK Metrics on Compact Complex Manifolds Dan Popovici and Erfan Soheil Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' We propose an approach to the existence problem for locally conformally K¨ahler metrics on compact complex manifolds by introducing and studying a functional that is different according to whether the complex dimension of the manifold is 2 or higher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 1 Introduction Let X be an n-dimensional compact complex manifold with n ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' In this paper, we propose a variational approach to the existence of locally conformally K¨ahler (lcK) metrics on X by introducing and analysing a functional in each of the cases n = 2 and n ≥ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' This functional, defined on the non-empty set HX of all the Hermitian metrics on X, assumes non-negative values and vanishes precisely on the lcK metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' We compute the first variation of our functional on both surfaces and higher-dimensional manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' We will identify a Hermitian metric on X with the associated C∞ positive definite (1, 1)-form ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' The set HX of all these metrics is a non-empty open convex cone in the infinite-dimensional real vector space C∞ 1, 1(X, R) of all the real-valued smooth (1, 1)-forms on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' As is well known, a Hermitian metric ω is called K¨ahler if dω = 0 and a complex manifold X is said to be K¨ahler if there exists a K¨ahler metric thereon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Meanwhile, the notion of locally conformally K¨ahler (lcK) manifold originates with I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Vaisman in [Vai76].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' There are several equivalent definitions of lcK manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' The one adopted in this paper stipulates that a complex manifold X is lcK if there exists an lcK metric thereon, while a Hermitian metric ω on X is said to be lcK if there exists a C∞ 1-form θ on X such that dθ = 0 and dω = ω ∧ θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' When it exists, the 1-form θ is unique and is called the Lee form of ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' For equivalent definitions of lcK manifolds, the reader is referred e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' to Definitions 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='18 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='29 of [OV22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' One of the early results in the theory of lcK manifolds is Vaisman’s theorem according to which any lcK metric on a compact K¨ahler manifold is, in fact, globally conformally K¨ahler.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' This theorem was extended to compact complex spaces with singularities by Preda and Stanciu in [PS22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' The question of when lcK metrics exist on a given compact complex manifold X has been extensively studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' For example, Otiman characterised the existence of such metrics with prescribed Lee form in terms of currents: given a d-closed 1-form θ on X and considering the associated twisted operator dθ = d+θ∧·, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='1 in [Oti14] stipulates that X admits an lcK metric whose Lee form is θ if and only if there are no non-trivial positive (1, 1)-currents on X that are (1, 1)-components of dθ-boundaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' On the other hand, Istrati investigated the relation between the existence of special lcK metrics on a compact complex manifold and the group of biholomorphisms of the manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Specifically, according to Theorem 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='2 in [Ist19], a compact lcK manifold X admits a Vaisman metric if the group of biholomorphisms of X contains a torus T that is not purely real.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' A compact torus T of 1 biholomorphisms of a compact complex manifold (X, J) is said to be purely real (in the sense of (1) of Definition 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' in [Ist19]) if its Lie algebra t satisfies the condition t ∩ Jt = 0, where J is the complex structure of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Recall that an lcK metric ω is said to be a Vaisman metric if ∇ωθ = 0, where θ is the Lee form of ω and ∇ω is the Levi-Civita connection determined by ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' The approach we propose in this paper to the issue of the existence of lcK metrics on a compact complex n-dimensional manifold X is analytic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Given an arbitrary Hermitian metric ω on X, the Lefschetz decomposition dω = (dω)prim + ω ∧ θω of dω into a uniquely determined ω-primitive part and a part divisible by ω with a uniquely de- termined quotient 1-form θω (the Lee form of ω) gives rise to the following dichotomy (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='2): (i) either n = 2, in which case (dω)prim = 0 but the Lee form θω need not be d-closed, so the lcK condition on ω is equivalent to dθω = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' This turns out to be equivalent to ∂θ1, 0 ω = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Therefore, we define our functional L : HX −→ [0, +∞) in this case to be L(ω) = ||∂θ1, 0 ω ||2 ω, namely its value at every Hermitian metric ω on X is defined to be the squared L2 ω-norm of ∂θ1, 0 ω .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' (ii) or n ≥ 3, in which case the lcK condition on ω is equivalent to the vanishing condition (dω)prim = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' This is further equivalent to the vanishing of either (∂ω)prim or (¯∂ω)prim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' We, therefore, define our functional L : HX −→ [0, +∞) in this case to be L(ω) = ||(¯∂ω)prim||2 ω, namely its value at every Hermitian metric ω on X is defined to be the squared L2 ω-norm of the ω-primitive part of the (1, 2)-form ¯∂ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' The main results of the paper are the computations of the first variation of our functional L in each of the cases n = 2 (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='4) and n ≥ 3 (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' While the functional L is scaling-invariant when n = 2, this fails to be the case when n ≥ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' In this latter case, we obtain two proofs – one as a corollary of the formula for the first variation of our functional (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='3), the other as a direct consequence of the behaviour of our functional in the scaling direction (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='2) – for the equivalence: ω is a critical point for the functional L if and only if ω is lcK Still in the case n ≥ 3, we introduce in Definition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='5 a normalised version �Lρ of the functional L depending on an arbitrary background Hermitian metric ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' The first variation of �Lρ is then deduced in Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='6 from the analogous computation for L obtained in Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' One motivation for the normalisation we propose in terms of a (possibly balanced and possibly moving) metric ρ stems from the conjecture predicting that the simultaneous existence of a balanced metric and of an lcK metric on a compact complex manifold ought to imply the existence of a K¨ahler metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' We hope to be able to develop this line of thought in future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 2 At the end of §.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='6, we use our scaling-invariant functionals L (in the case of compact complex surfaces) and �Lρ (in the case of higher-dimensional compact complex manifolds) to produce positive (1, 1)-currents whose failure to be either C∞ forms or strictly positive provides possible obstructions to the existence of lcK metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Acknowledgments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' This work is part of the second-named author’s thesis under the supervision of the first-named author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' The former wishes to thank the latter for constant support.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 2 Preliminaries In this section, we recast some standard material in the language of primitive forms and make a few observations that will be used in the next sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Let X be a complex manifold with dimCX = n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' We will denote by: (i) C∞ k (X, C), resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' C∞ p, q(X, C), the space of C∞ differential forms of degree k, resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' of bidegree (p, q) on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' When these forms α are real (in the sense that α = α), the corresponding spaces will be denoted by C∞ k (X, R), resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' C∞ p, q(X, R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' (ii) ΛkT ⋆X, resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Λp, qT ⋆X, the vector bundle of differential forms of degree k, resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' of bidegree (p, q), as well as the spaces of such forms considered in a pointwise way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' For any (1, 1)-form ρ ≥ 0, we will also use the following notation: ρk := ρk k!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' , 1 ≤ k ≤ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' When ρ = ω is C∞ and positive definite (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' ω is a Hermitian metric on X), it can immediately be checked that dωk = ωk−1 ∧ dω and ⋆ω ωk = ωn−k for all 1 ≤ k ≤ n, where ⋆ = ⋆ω is the Hodge star operator induced by ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Recall the following standard Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='1 A C∞ positive definite (1, 1)-form (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' a Hermitian metric) ω on a complex man- ifold X is said to be locally conformally K¨ahler (lcK) if dω = ω ∧ θ for some C∞ 1-form θ satisfying dθ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' The 1-form θ is uniquely determined, is real and is called the Lee form of ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' The obstruction to a given Hermitian metric ω being lcK depends on whether n = 2 or n ≥ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='2 Let X be a complex manifold with dimCX = n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' (i) If n = 2, for any Hermitian metric ω there exists a unique, possibly non-closed, C∞ 1-form θ = θω such that dω = ω ∧ θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Therefore, ω is lcK if and only if θω is d-closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 3 Moreover, for any Hermitian metric ω, the 2-form dθω is ω-primitive, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Λω(dθω) = 0, or equivalently, ω ∧ dθω = 0, while the Lee form is real and is explicitly given by the formula: θω = Λω(dω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' (1) Alternatively, if θω = θ1, 0 ω + θ0, 1 ω is the splitting of θω into components of pure types, we have θ1, 0 ω = Λω(∂ω) = −i¯∂⋆ω (2) and the analogous formulae for θ0, 1 ω = θ1, 0 ω obtained by taking conjugates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' (ii) If n ≥ 3, for any Hermitian metric ω there exists a unique ω-primitive C∞ 3-form (dω)prim and a unique C∞ 1-form θ = θω such that dω = (dω)prim + ω ∧ θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' The Lee form is real and is explicitly given by the formula θω = 1 n − 1 Λω(dω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' (3) Moreover, ω is lcK if and only if (dω)prim = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' If ω is lcK, then θ1, 0 ω = 1 n − 1 Λω(∂ω) = − i n − 1 ¯∂⋆ω (4) and the analogous formulae obtained by taking conjugates hold for θ0, 1 ω = θ1, 0 ω .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Recall that for any k ≤ n and any Hermitian metric ω on X, the multiplication map Ll ω = ωl ∧ · : ΛkT ⋆X −→ Λk+2lT ⋆X defined at every point of X is an isomorphism if l = n−k, is injective (but in general not surjective) for every l < n − k and is surjective (but in general not injective) for every l > n − k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' A k-form is said to be ω-primitive if it lies in the kernel of the multiplication map Ln−k+1 ω .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Equivalently, the ω-primitive k-forms are precisely those that lie in the kernel of Λω : ΛkT ⋆X −→ Λk−2T ⋆X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Also recall that for every k ≤ n, every k-form α admits a unique ⟨ , ⟩ω-orthogonal pointwise splitting (called the Lefschetz decomposition): α = αprim + ω ∧ β(1) prim + ω2 ∧ β(2) prim + · · · + ωr ∧ β(r) prim, (5) where r is the largest non-negative integer such that 2r ≤ k, αprim, β(1) prim, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' , β(r) prim are ω-primitive forms of respective degrees k, k −2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' , k −2r ≥ 0, and ⟨ , ⟩ω is the pointwise inner product defined by ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' We will call αprim the primitive part of α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Finally, recall the Hermitian commutation relation: i[Λω, ∂] = −(¯∂⋆ ω + ¯τ ⋆ ω) (6) proved in [Dem84], where τω := [Λω, ∂ω ∧ ·] is the torsion operator of order 0 and bidegree (1, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' This definition of τω yields ¯τ ⋆ ωω = [(¯∂ω ∧ ·)⋆, Lω](ω) = (¯∂ω ∧ ·)⋆(ω2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 4 On the other hand, if α1, 0 is any (1, 0)-form on X, let ¯ξα be the (0, 1)-vector field defined by the requirement ¯ξα⌟ω = α1, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' It is easily checked in local coordinates chosen about a given point x such that the metric ω is defined by the identity matrix at x, that the adjoint w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' ⟨ , ⟩ω of the contraction operator by ¯ξα is given by the formula (¯ξα⌟·)⋆ = −iα0, 1 ∧ ·, or equivalently − i¯ξα⌟· = (α0, 1 ∧ ·)⋆, where α0, 1 = α1, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Explicitly, if α0, 1 = � k ¯akd¯zk on a neighbourhood of x, then −i¯ξα⌟· = (α0, 1∧·)⋆ = � k ak ∂ ∂¯zk ⌟· at x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Hence, −i¯ξα⌟α0, 1 = � k |ak|2 = |α0, 1|2 ω at x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' We have just got the pointwise formula − i¯ξα⌟α0, 1 = |α0, 1|2 ω = |α1, 0|2 ω (7) at every point of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Now, suppose that dω = ω ∧ θω for some (necessarily real) 1-form θω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Then, ¯∂ω = ω ∧ θ0, 1 ω , so (¯∂ω ∧ ·)⋆ = −iΛω(¯ξθ⌟·), where ¯ξθ := ¯ξα with α1, 0 = θ1, 0 ω .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' The above formula for ¯τ ⋆ ωω translates to ¯τ ⋆ ωω = −iΛω(¯ξθ⌟ω2) = −2iΛω(ω ∧ (¯ξθ⌟ω)) = −2i[Λω, Lω](¯ξθ⌟ω) = −2i(n − 1)θ1, 0 ω The conclusion of this discussion is that, when dω = ω ∧ θω, formula (3) translates to θ1, 0 ω = 1 n − 1 Λω(∂ω) = 1 n − 1 [Λω, ∂](ω) = 1 n − 1 i¯∂⋆ ωω + 1 n − 1 i¯τ ⋆ ωω = 1 n − 1 i¯∂⋆ ωω + 2θ1, 0 ω , which amounts to θ1, 0 ω = − 1 n−1 i¯∂⋆ ωω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' This proves (4) for an arbitrary n, hence also (2) when n = 2, if the other statements in Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='2 have been proved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Proof of Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' (i) When n = 2, the map ω ∧ · : Λ1T ⋆X −→ Λ3T ⋆X is an isomorphism at every point of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' In particular, the 3-form dω is the image of a unique 1-form θ under this map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' To see that dθ is primitive, we apply d to the identity dω = ω ∧ θ to get 0 = d2ω = dω ∧ θ + ω ∧ dθ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Meanwhile, multiplying the same identity by θ, we get dω ∧ θ = ω ∧ θ ∧ θ = 0 since θ ∧ θ = 0 due to the degree of θ being 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Therefore, ω ∧ dθ = 0, which means that the 2-form dθ is ω-primitive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' To prove formula (1), we apply Λω to the identity dω = ω ∧ θ to get Λω(dω) = [Λω, Lω](θ) = −[Lω, Λω](θ) = −(1 − 2) θ = θ, where we used the identities Λω(θ) = 0 (for bidegree reasons) and [Lω, Λω] = (k − n) Id on k-forms (while here k = 1 and n = 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' (ii) The splitting dω = (dω)prim +ω ∧θ is the Lefschetz decomposition of dω w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' the metric ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Applying Λω, we get Λω(dω) = [Λω, Lω](θ) = −[Lω, Λω](θ) = −(1 − n) θ = (n − 1) θ, which proves (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' The implication “ω lcK =⇒ (dω)prim = 0“ follows at once from the definitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' To prove the reverse implication, suppose that (dω)prim = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' We have to show that θ is d-closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' The assumption means that dω = ω ∧ θ, so dω ∧ θ = ω ∧ θ ∧ θ = 0 and 0 = d2ω = dω ∧ θ + ω ∧ dθ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Consequently, ω ∧ dθ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Now, the multiplication of k-forms by ωl is injective whenever l ≤ n − k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' When n ≥ 3, 5 if we choose l = 1 and k = 2 we get that the multiplication of 2-forms by ω is injective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Hence, the identity ω ∧ dθ = 0 implies dθ = 0, so ω is lcK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' □ Another standard observation is that the Lefschetz decomposition transforms nicely, hence the lcK property is preserved, under conformal rescaling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='3 Let ω be an arbitrary Hermitian metric and let f be any smooth real-valued function on a compact complex n-dimensional manifold X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' If dω = (dω)prim + ω ∧ θω is the Lefschetz decomposition of dω w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' the metric ω (with the understanding that (dω)prim = 0 when n = 2), then d(efω) = ef(dω)prim + efω ∧ (θω + df) (8) is the Lefschetz decomposition of d(efω) w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' the metric �ω := efω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Consequently, ω is lcK if and only if any conformal rescaling efω of ω is lcK, while the Lee form transforms as θef ω = θω + df.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' In particular, when the lcK metric ω varies in a fixed conformal class, the Lee form θω varies in a fixed De Rham 1-class {θω}DR ∈ H1(X, R) called the Lee De Rham class associated with the given conformal class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Moreover, the map ω �→ θω defines a bijection from the set of lcK metrics in a given conformal class to the set of elements of the corresponding Lee De Rham 1-class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Differentiating, we get d(efω) = efdω + efω ∧ df = ef(dω)prim + efω ∧ (θω + df).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Meanwhile, it can immediately be checked that Λefω = e−fΛω, so ker Λefω = ker Λω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Thus, the ω-primitive forms coincide with the �ω-primitive forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Since Λ�ω commutes with the multiplication by any real-valued function, ef(dω)prim is �ω-primitive, so (8) is the Lefschetz decompostion of d�ω w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' �ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' □ When X is compact, we know from [Gau77] that every Hermitian metric ω on X admits a (unique up to a positive multiplicative constant) conformal rescaling �ω := efω that is a Gauduchon metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' These metrics are defined (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' [Gau77]) by the requirement that ∂ ¯∂�ωn−1 = 0, where n is the complex dimension of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' This fact, combined with Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='3, shows that no loss of generality is incurred in the study of the existence of lcK metrics on compact complex manifolds if we confine ourselves to Gauduchon metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' We end this review of known material with the following characterisation (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' [AD15, Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='5]) of Gauduchon metrics on surfaces in terms of their Lee forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='4 Let ω be a Hermitian metric on a complex surface X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' The following equivalence holds: ∂ ¯∂ω = 0 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' ω is a Gauduchon metric) ⇐⇒ ¯∂⋆ ωθ0, 1 ω = 0, where θ0, 1 ω is the component of type (0, 1) of the Lee form θω of ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' In particular, d⋆ ωθω = 0 if ω is Gauduchon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 6 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' We give a proof different from the one in [AD15] by making use of the Hermitian commutation relations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' By applying ∂ to the identity ¯∂ω = ω ∧ θ0, 1 ω and using the identity ∂ω = ω ∧ θ1, 0 ω , we get ∂ ¯∂ω = ∂ω ∧ θ0, 1 ω + ω ∧ ∂θ0, 1 ω = ω ∧ (θ1, 0 ω ∧ θ0, 1 ω + ∂θ0, 1 ω ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Taking Λω, we get Λω(∂ ¯∂ω) = [Λω, Lω](θ1, 0 ω ∧ θ0, 1 ω + ∂θ0, 1 ω ) + ω ∧ Λω(θ1, 0 ω ∧ θ0, 1 ω + ∂θ0, 1 ω ) = Λω(θ1, 0 ω ∧ θ0, 1 ω + ∂θ0, 1 ω ) ω, where the second identity follows from [Λω, Lω] = −(2 − 2) Id = 0 on 2-forms on complex surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Now, Λω(θ1, 0 ω ∧ θ0, 1 ω + ∂θ0, 1 ω ) is a function, so from the above identities we get the equivalences Λω(∂ ¯∂ω) = 0 ⇐⇒ Λω(θ1, 0 ω ∧ θ0, 1 ω + ∂θ0, 1 ω ) = 0 ⇐⇒ θ1, 0 ω ∧ θ0, 1 ω + ∂θ0, 1 ω is ω-primitive ⇐⇒ ω ∧ (θ1, 0 ω ∧ θ0, 1 ω + ∂θ0, 1 ω ) = 0 ⇐⇒ ∂ ¯∂ω = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' We remember the equivalence ∂ ¯∂ω = 0 ⇐⇒ Λω(θ1, 0 ω ∧ θ0, 1 ω ) + Λω(∂θ0, 1 ω ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Since Λω(iθ1, 0 ω ∧ θ0, 1 ω ) = |θ1, 0 ω |2 ω (immediate verification) and Λωθ0, 1 ω = 0 (for bidegree reasons), we get the equivalence: ∂ ¯∂ω = 0 ⇐⇒ |θ1, 0 ω |2 ω + i[Λω, ∂] θ0, 1 ω = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' The Hermitian commutation relation i[Λω, ∂] = −(¯∂⋆ ω + ¯τ ⋆ ω) (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' (6), see [Dem84]) transforms the last equivalence into ∂ ¯∂ω = 0 ⇐⇒ |θ1, 0 ω |2 ω − (¯∂⋆ ωθ0, 1 ω + ¯τ ⋆ ωθ0, 1 ω ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' (9) On the other hand, ¯τ ⋆ ω = [(¯∂ω ∧ ·)⋆, ω ∧ ·].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' From this we get Formula 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='5 For any Hermitian metric ω on a complex surface, we have ¯τ ⋆ ωθ0, 1 ω = |θ0, 1 ω |2 ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Proof of Formula 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Since (¯∂ω∧·)⋆θ0, 1 ω = 0 for bidegree reasons, we get ¯τ ⋆ ωθ0, 1 ω = (¯∂ω∧·)⋆(ω∧θ0, 1 ω ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Since ¯∂ω = ω ∧ θ0, 1 ω , we have (¯∂ω ∧ ·)⋆ = −iΛω(¯ξθ⌟·) (see (7) and the discussion there below), where ¯ξθ is the (0, 1)-vector field defined by the requirement ¯ξθ⌟ω = θ1, 0 ω .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Hence ¯τ ⋆ ωθ0, 1 ω = −iΛω(θ1, 0 ω ∧ θ0, 1 ω ) − iΛω[ω ∧ (¯ξθ⌟θ0, 1 ω )].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Since −i¯ξθ⌟θ0, 1 ω = |θ0, 1 ω |2 ω (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' (7)), we infer that ¯τ ⋆ ωθ0, 1 ω = −Λω(iθ1, 0 ω ∧ θ0, 1 ω ) + 2 |θ0, 1 ω |2 ω, since Λω(ω) = n = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Meanwhile, θ1, 0 ω = θ0, 1 ω , so we get Λω(iθ1, 0 ω ∧θ0, 1 ω ) = |θ1, 0 ω |2 ω = |θ0, 1 ω |2 ω (immediate verification in local coordinates).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Formula 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='5 is now proved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' □ End of proof of Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Formula 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='5 transforms equivalence (9) into ∂ ¯∂ω = 0 ⇐⇒ (|θ1, 0 ω |2 ω − |θ0, 1 ω |2 ω) − ¯∂⋆ ωθ0, 1 ω = 0 ⇐⇒ ¯∂⋆ ωθ0, 1 ω = 0 and we are done □ 7 3 An enerygy functional for the study of lcK metrics In what follows, we will restrict attention to the set HX := {ω ∈ C∞ 1, 1(X, R) | ω > 0} of all Hermitian metrics on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' This is a non-empty open cone in the infinite-dimensional vector space C∞ 1, 1(X, R) of all smooth real (1, 1)-forms on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' It will be called the Hermitian cone of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Building on Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='2, we introduce the following energy functional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' By || ||ω, respectively | |ω, we mean the L2-norm, respectively the pointwise norm, defined by ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='1 Let X be a compact complex manifold with dimCX = n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' (i) If n = 2, let L : HX −→ [0, +∞) be defined by L(ω) := � X ∂θ1, 0 ω ∧ ¯∂θ0, 1 ω = ||∂θ1, 0 ω ||2 ω, where θω is the Lee form of ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' (ii) If n ≥ 3, let L : HX −→ [0, +∞) be defined by L(ω) := � X i(¯∂ω)prim ∧ (¯∂ω)prim ∧ ωn−3 = ||(¯∂ω)prim||2 ω, where (¯∂ω)prim is the ω-primitive part of ¯∂ω in its Lefschetz decomposition (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' This definition is justified by the following observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='2 In the setup of Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='1, for every metric ω ∈ HX the following equivalence holds: ω is an lcK metric ⇐⇒ L(ω) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' • In the case n = 2, we know from (i) of Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='2 that ω is lcK if and only if dθω = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' This condition is equivalent to L(ω) = 0, where we set L(ω) := ||dθω||2 ω = � X dθω ∧ ⋆(d¯θω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' We also know from (i) of Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='2 that dθω is ω-primitive, so we get 0 = Λω(dθω) = Λω(∂θ1, 0 ω ) + Λω(∂θ0, 1 ω + ¯∂θ1, 0 ω ) + Λω(¯∂θ0, 1 ω ) = Λω(∂θ0, 1 ω + ¯∂θ1, 0 ω ), where the last identity follows from the previous one for bidegree reasons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' We infer that the (1, 1)- form ∂θ0, 1 ω + ¯∂θ1, 0 ω is ω-primitive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' But so are ∂θ1, 0 ω and ¯∂θ0, 1 ω for bidegree reasons, so we can apply the following general formula (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' [Voi02, Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='29, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 150]) that holds for any primitive form v of arbitrary bidegree (p, q) on any complex n-dimensional manifold: ⋆ v = (−1)k(k+1)/2 ip−q ωn−p−q ∧ v, where k := p + q, (10) 8 to get ⋆(dθω) = ∂θ1, 0 ω − (∂θ0, 1 ω + ¯∂θ1, 0 ω ) + ¯∂θ0, 1 ω .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' We infer that dθω ∧ ⋆(d¯θω) = [∂θ1, 0 ω + (∂θ0, 1 ω + ¯∂θ1, 0 ω ) + ¯∂θ0, 1 ω ] ∧ [∂θ1, 0 ω − (∂θ0, 1 ω + ¯∂θ1, 0 ω ) + ¯∂θ0, 1 ω ] = 2 ∂θ1, 0 ω ∧ ¯∂θ0, 1 ω − (∂θ0, 1 ω + ¯∂θ1, 0 ω )2 and finally that L(ω) = 2 L(ω) − � X (∂θ0, 1 ω + ¯∂θ1, 0 ω )2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' (11) On the other hand, the Stokes formula implies the first of the following identities 0 = � X dθω ∧ dθω = � X [∂θ1, 0 ω + (∂θ0, 1 ω + ¯∂θ1, 0 ω ) + ¯∂θ0, 1 ω ] ∧ [∂θ1, 0 ω + (∂θ0, 1 ω + ¯∂θ1, 0 ω ) + ¯∂θ0, 1 ω ] = 2 L(ω) + � X (∂θ0, 1 ω + ¯∂θ1, 0 ω )2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' (12) We conclude from (11) and (12) that L(ω) = 0 if and only if L(ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Thus, we have proved that ω is lcK if and only if L(ω) = 0, as claimed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' The identity L(ω) = ||∂θ1, 0 ω ||2 ω follows at once from the general formula (10) applied to the prim- itive (2, 0)-form ∂θ1, 0 ω .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Indeed, ⋆∂θ1, 0 ω = ∂θ1, 0 ω , hence ∂θ1, 0 ω ∧ ¯∂θ0, 1 ω = ∂θ1, 0 ω ∧ ⋆(∂θ1, 0 ω ) = |∂θ1, 0 ω |2 ω dVω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' In the case n ≥ 3, we know from (ii) of Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='2 that ω is lcK if and only if (dω)prim = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Now, (dω)prim = (∂ω)prim + (¯∂ω)prim and the forms (∂ω)prim and (¯∂ω)prim are conjugate to each other and of different pure types ((2, 1), respectively (1, 2)), so the vanishing of (dω)prim is equivalent to the vanishing of (¯∂ω)prim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Meanwhile, the standard formula (10) applied to the primitive (2, 1)-form (¯∂ω)prim = (∂ω)prim spells: ⋆ (¯∂ω)prim = i (¯∂ω)prim ∧ ωn−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' This proves the identity L(ω) = ||(¯∂ω)prim||2 ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Putting these pieces of information together, we get the following equivalences: ω lcK ⇐⇒ (dω)prim = 0 ⇐⇒ (¯∂ω)prim = 0 ⇐⇒ L(ω) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' The proof is complete.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' □ 4 First variation of the functional: case of complex surfaces Let S be a compact complex surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' (So, we set X = S when n = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=') We will compute the differential of the functional L : HS −→ [0, +∞) defined on the Hermitian cone of S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Let ω ∈ HS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Then, TωHS = C∞ 1, 1(S, R), so we will compute the differential dωL : C∞ 1, 1(S, R) −→ R by computing the derivative of L(ω + tγ) w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' t ∈ (−ε, ε) at t = 0 for any given real (1, 1)-form γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 9 Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='1 The differential at ω of the map HS ∋ ω �→ θ0, 1 ω = Λω(¯∂ω) is given by (dωθ0, 1 ω )(γ) = d dt|t=0Λω+tγ(¯∂ω + t ¯∂γ) = ⋆(γ ∧ ⋆¯∂ω) + Λω(¯∂γ), while the differential at ω of L is given by (dωL)(γ) = 2 Re � S ∂θ1, 0 ω ∧ ¯∂ � ⋆ (γ ∧ ⋆¯∂ω) + Λω(¯∂γ) � , for every form γ ∈ C∞ 1, 1(S, R), where ⋆ = ⋆ω is the Hodge star operator defined by the metric ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Before giving the proof of this lemma, we recall the following result from [DP22] that will be used several times in the sequel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='2 ([DP22], Lemmas 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='5 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='3) For any complex manifold X of any dimension n ≥ 2, for any bidegree (p, q) and any C∞ family (αt)t∈(−ε, ε) of forms αt ∈ C∞ p, q(X, C) with ε > 0 so small that ω + tγ > 0 for all t ∈ (−ε, ε), the following formulae hold: d dt ���� t=0 (Λω+tγαt) = Λω �dαt dt ���� t=0 � − (γ ∧ ·)⋆ ω α0 = Λω �dαt dt ���� t=0 � + (−1)p+q+1 ⋆ω (γ ∧ ⋆ωα0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' The former of the above equalities appears as such in Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='5 of [DP22], while the latter equality follows from the former and from formula (27) of Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='3 of [DP22] which states that ⋆ω(η ∧ ·) = (η ∧ ·)⋆ ω ⋆ω for any (1, 1)-form η on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Indeed, in our case, taking η = γ we get ¯η = γ since γ is real.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Moreover, composing with ⋆ω on the right and using the standard equality ⋆ω⋆ω = (−1)p+q Id on (p, q)-forms, we get ⋆ω(γ ∧ ·)⋆ω = (−1)p+q (γ ∧ ·)⋆ ω on (p, q)-forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Proof of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' The formula for (dωθ0, 1 ω )(γ) is an immediate consequence of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='2 applied with αt = ¯∂ω + t ¯∂γ (hence also with (p, q) = (1, 2)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' We further get: (dωL)(γ) = d dt|t=0L(ω + tγ) = d dt|t=0 � S ∂θ1, 0 ω+tγ ∧ ¯∂θ0, 1 ω+tγ = � S ∂ � ⋆ (γ ∧ ⋆∂ω) + Λω(∂γ) � ∧ ¯∂θ0, 1 ω + � S ∂θ1, 0 ω ∧ ¯∂ � ⋆ (γ ∧ ⋆¯∂ω) + Λω(¯∂γ) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' This is the stated formula for (dωL)(γ) since the two terms of the r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' expression are mutually conjugated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' □ We will now simplify the above expression of (dωL)(γ) starting with a preliminary observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='3 Let (X, ω) be an n-dimensional complex Hermitian manifold and let ⋆ = ⋆ω be the Hodge star operator defined by ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' (i) For every (0, 1)-form α on X, we have: ⋆(α ∧ ω) = iΛω(α ∧ ωn−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 10 Moreover, if n = 2, then ⋆(α ∧ ω) = iα for any (0, 1)-form α on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' (ii) If n = 2, then ⋆(γ ∧ α) = iΛω(γ ∧ α) for any (1, 1)-form γ and any (0, 1)-form α on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' In particular, ⋆¯∂ω = iθ0, 1 ω for any Hermitian metric ω on a complex surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' (iii) In arbitrary dimension n, for any (1, 1)-form γ and any (0, 1)-form α on X, we have: Λω(γ ∧ α) = (Λωγ) α + i ξα⌟γ, where ξα is the (unique) vector field of type (1, 0) defined by the requirement ξα⌟ω = iα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' (i) From the standard formula ⋆Λω = Lω⋆ (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' [Dem97, VI, §.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='1]) we get Λω = ⋆Lω⋆ on even-degreed forms and Λω = − ⋆ Lω⋆ on odd-degreed forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Consequently, ⋆(α ∧ ω) = ⋆Lωα = −(⋆Lω⋆) ⋆ α = Λω(⋆α) = Λω(−(1/i) α ∧ ωn−1/(n − 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' ), where we used the fact that ⋆⋆ = −1 on odd-degreed forms and the standard formula (10) applied to the (necessarily primitive) (0, 1)-form α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' When n = 2, we get ⋆(α ∧ ω) = iΛω(α ∧ ω) = i[Λω, Lω] α = −i(1 − 2) α = iα after using the general formula [Lω, Λω] = (k − n) on k-forms on n-dimensional complex manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' (ii) If n = 2, the map ω ∧ · : Λ1T ⋆X −→ Λ3T ⋆X is an isomorphism at every point of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Since γ ∧ α is a 3-form, there exists a unique 1-form β (necessarily of type (0, 1)) such that γ ∧ α = ω ∧ β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Moreover, β = Λω(γ ∧ α) because ω ∧ Λω(γ ∧ α) = [Lω, Λω](γ ∧ α) = γ ∧ α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Indeed, ω ∧ (γ ∧ α) = 0 for bidegree reasons (here n = 2) and [Lω, Λω] = (k − n) on k-forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Thus, γ ∧ α = ω ∧ Λω(γ ∧ α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' So, applying (i) for the second identity below, we get: ⋆(γ ∧ α) = ⋆(ω ∧ Λω(γ ∧ α)) = iΛω(ω ∧ Λω(γ ∧ α)) = i[Λω, Lω](Λω(γ ∧ α)) = iΛω(γ ∧ α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' For the last equality, we used again the general formula [Lω, Λω] = (k − n) on k-forms (n = 2 here).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' In order to prove the formula for ⋆¯∂ω, recall that ¯∂ω = ω ∧ θ0, 1 ω , so we get ⋆¯∂ω = ⋆(ω ∧ θ0, 1 ω ) = iΛω(ω ∧ θ0, 1 ω ) = i[Λω, Lω] θ0, 1 ω = −i(1 − 2) θ0, 1 ω , where we used the first part of (ii) to get the second identity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' (iii) Since the claimed identity is pointwise and involves only zero-th order operators, we fix an arbitrary point x ∈ X and choose local holomorphic coordinates about x such that at x we have ω = n� a=1 idza ∧ d¯za and γ = n� j=1 γj¯j idzj ∧ d¯zj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Then, Λω = −i n� j=1 ∂ ∂¯zj ⌟ ∂ ∂zj ⌟· at x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' If we set α = n� j=1 αj d¯zj (at any point),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' we get ξα = n� j=1 αj ∂ ∂zj (at 11 x) and the following equalities (at x): Λω(γ ∧ α) = −i n � j=1 ∂ ∂¯zj ⌟ ∂ ∂zj ⌟(γ ∧ α) (a) = −i n � j=1 ∂ ∂¯zj ⌟ �� ∂ ∂zj ⌟γ � ∧ α � = −i n � j=1 � ∂ ∂¯zj ⌟ ∂ ∂zj ⌟γ � ∧ α + i n � j=1 � ∂ ∂zj ⌟γ � ∧ � ∂ ∂¯zj ⌟α � (b) = � n � j=1 γj¯j � α − n � j=1 αjγj¯j d¯zj = (Λωγ) α + iξα⌟γ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' where (a) follows from (∂/∂zj)⌟α = 0 for bidegree reasons and (b) follows from (∂/∂zj)⌟γ = iγj¯j d¯zj and from (∂/∂¯zj)⌟α = αj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' This proves the desired equality at x, hence at any point since x was arbitrary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' □ We can now derive a simplified form of the first variation of the functional L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='4 Let S be a compact complex surface on which a Hermitian metric ω has been fixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' (i) The differential at ω ∈ HS of the functional L : HS −→ [0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' +∞) evaluated at any form γ ∈ C∞ 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 1(S,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' R) is given by any of the following three formulae: (dωL)(γ) = −2 Re � S Λω(γ) ∂θ1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 0 ω ∧ ¯∂θ0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 1 ω − 2 Re � S ∂θ1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 0 ω ∧ ¯∂Λω(γ) ∧ θ0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 1 ω + 2 Re � S ∂θ1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 0 ω ∧ ¯∂Λω(¯∂γ) −2 Re � S i∂θ1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 0 ω ∧ ¯∂(ξθ0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 1 ω ⌟γ) (13) = −2 Re � S Λω(γ) |∂θ1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 0 ω |2 ω dVω − 2 Re � S ∂θ1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 0 ω ∧ ¯∂Λω(γ) ∧ θ0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 1 ω − 2 Re i⟨⟨∂ ¯∂θ1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 0 ω ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' ∂γ⟩⟩ω −2 Re � S i∂θ1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 0 ω ∧ ¯∂(ξθ0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 1 ω ⌟γ) (14) = −2 Re � S ∂θ1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 0 ω ∧ ¯∂Λω(γ ∧ θ0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 1 ω ) − 2 Re i⟨⟨∂ ¯∂θ1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 0 ω ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' ∂γ⟩⟩ω,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' (15) where ⋆ = ⋆ω is the Hodge star operator defined by the metric ω and ξθ0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 1 ω is the vector field of type (1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 0) defined by the requirement ξθ0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 1 ω ⌟ω = iθ0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 1 ω .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' (ii) In particular, for any given ω ∈ HS, if we choose γ = ∂θ0, 1 ω + ¯∂θ1, 0 ω , we have (dωL)(γ) = −2 Re � S i∂θ1, 0 ω ∧ ¯∂ � ξθ0, 1 ω ⌟γ � = −2 Re � S ∂θ1, 0 ω ∧ ¯∂Λω(γ ∧ θ0, 1 ω ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' (i) From (ii) and (iii) of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='3 applied with α := iθ0, 1 ω , we get ⋆(γ ∧ ⋆¯∂ω) = ⋆(γ ∧ iθ0, 1 ω ) = i Λω(γ ∧ iθ0, 1 ω ) = −Λω(γ) θ0, 1 ω .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 12 Formula (13) follows from this and from Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' To get (14), we first notice that ¯∂θ0, 1 ω = ⋆¯∂θ0, 1 ω by the standard formula (10) applied to the (necessarily primitive) (0, 2)-form ¯∂θ0, 1 ω .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' This accounts for the first term on the r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' of (14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Then, we transform the third term in (13) as follows: 2 Re � S ∂θ1, 0 ω ∧ ¯∂Λω(¯∂γ) (a) = −2 Re � S ∂θ1, 0 ω ∧ ¯∂ ⋆ Lω ⋆ (¯∂γ) (b) = 2 Re � S ¯∂∂θ1, 0 ω ∧ ⋆(ω ∧ ⋆(¯∂γ)) (c) = 2 Re i � S ¯∂∂θ1, 0 ω ∧ ⋆(¯∂γ) (d) = 2 Re i � S ⟨¯∂∂θ1, 0 ω , ∂¯γ⟩ω dVω, where we used the standard identity Λω = − ⋆ Lω⋆ on odd-degreed forms to get (a), Stokes to get (b), part (i) of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='3 to get (c), and the definition of ⋆ to get (d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Finally, we recall that ¯γ = γ since γ is real.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Finally, (15) follows from Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='1 after using the equality ⋆(γ ∧ ⋆¯∂ω) = −Λω(γ ∧ θ0, 1 ω ) (seen above in the proof of (13)) and after transforming the third term in (13) as we did above in the proof of (14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' (ii) The stated choice of γ means that γ is the component (dθω)1, 1 of type (1, 1) of the primitive 2-form dθω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' (See (i) of Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='2 for the primitivity statement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=') Since Λω((dθω)2, 0) = 0 and Λω((dθω)0, 2) = 0 for bidegree reasons, we infer that Λω(γ) = Λω((dθω)1, 1) = Λω(dθω) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Therefore, the first two integrals on the r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' of (13) vanish.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Meanwhile, to handle the third integral on the r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' of (13), we notice that ∂¯γ = ∂ ¯∂θ1, 0 ω and this gives the second equality below: 2 Re � S ∂θ1, 0 ω ∧ ¯∂Λω(¯∂γ) = 2 Re i � S ⟨¯∂∂θ1, 0 ω , ∂¯γ⟩ω dVω = −2 Re i||¯∂∂θ1, 0 ω ||2 ω = 0, where the first equality above followed from the proof of (14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Thus, the r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' of formula (13) for (dωL)(γ) reduces to its last integral for this choice of γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' This proves the first claimed equality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' For the same reason as above, the latter term on the r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' of formula (15) for (dωL)(γ) vanishes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' This proves the second claimed equality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' □ As an application of (i) of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='4, we will now see that the differential dωL vanishes on all the real (1, 1)-forms γ that are ω-anti-primitive (in the sense that γ is ⟨ , ⟩ω-orthogonal to all the ω-primitive (1, 1)-forms, a condition which is equivalent to γ being a function multiple of ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='5 Let S be a compact complex surface on which a Hermitian metric ω has been fixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' For any real-valued C∞ function f on X, we have (dωL)(fω) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' In particular, for any real (1, 1)-form γ on S we have (dωL)(γ) = (dωL)(γprim), where γprim is the ω-primitive component of γ in its Lefschetz decomposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 13 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Applying formula (13) with γ = fω and using the obvious equalities Λω(fω) = 2f (recall that dimCS = 2) and ξθ0, 1 ω ⌟(fω) = f (iθ0, 1 ω ), we get: (dωL)(fω) = −4 Re � S f ∂θ1, 0 ω ∧ ¯∂θ0, 1 ω − 4 Re � S ∂θ1, 0 ω ∧ ¯∂f ∧ θ0, 1 ω +2 Re � S ∂θ1, 0 ω ∧ ¯∂Λω(f ¯∂ω + ¯∂f ∧ ω) − 2 Re � S i∂θ1, 0 ω ∧ (if ¯∂θ0, 1 ω + i¯∂f ∧ θ0, 1 ω ) = T1 + T2 + T3 + T4, (16) where T1, T2, T3 and T4 stand for the four terms, listed in order, on the r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' of the above expression for (dωL)(fω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Computing T3, we get: T3 = 2 Re � S ∂θ1, 0 ω ∧ ¯∂(f θ0, 1 ω ) + 2 Re � S ∂θ1, 0 ω ∧ ¯∂ � [Λω, Lω](¯∂f) � , where we used the equalities Λω(¯∂ω) = θ0, 1 ω (see (1)) and Λω(¯∂f) = 0 (which leads to Λω(¯∂f ∧ ω) = [Λω, Lω](¯∂f)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Now, it is standard that [Λω, Lω] = (n − k) Id on k-forms on an n-dimensional complex manifold, so in our case we get [Λω, Lω](¯∂f) = ¯∂f since n = 2 and k = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' We conclude that ¯∂([Λω, Lω](¯∂f)) = ¯∂2f = 0, hence T3 = 2 Re � S f ∂θ1, 0 ω ∧ ¯∂θ0, 1 ω + 2 Re � S ∂θ1, 0 ω ∧ ¯∂f ∧ θ0, 1 ω = T4, where the last equality follows at once from the definition of T4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Thus, formula (16) translates to (dωL)(fω) = T1 + T2 + T3 + T4 = (−4 + 4) Re � S f ∂θ1, 0 ω ∧ ¯∂θ0, 1 ω + (−4 + 4) Re � S ∂θ1, 0 ω ∧ ¯∂f ∧ θ0, 1 ω = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' This proves the first statement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' The second statement follows at once from the first, from the linearity of the map dωL and from the Lefschetz decomposition γ = γprim + (1/2) Λω(γ) ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' □ We hope that it will be possible in the future to prove that any Hermitian metric ω on a compact complex surface that is a critical point for the functional L is actually an lcK metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 5 First variation of the functional: case of dimension ≥ 3 In this section, we suppose that the complex dimension of X is n ≥ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' The goal is to compute the differential of the energy functional L introduced in Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='1-(ii).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Let ω be a Hermitian metric on X and let γ be a real (1, 1)-form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' The latter can bee seen as a tangent vector to HX at ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 14 Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='1 For any Hermitian metric ω and any real (1, 1)-form γ, we have: (dωL)(γ) = � X i(¯∂ω)prim ∧ (¯∂ω)prim ∧ γ ∧ ωn−4 +2Re ⟨⟨(¯∂ω)prim, (¯∂γ)prim⟩⟩ω − 2Re ⟨⟨θ0, 1 ω ∧ γ, (¯∂ω)prim⟩⟩ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' (17) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Recall (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' the conjugate of (4)) that (n−1) θ0, 1 ω = Λω(¯∂ω) for any Hermitian metric ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Now, for any real t sufficiency close to 0, ω + tγ is again a Hermitian metric on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Taking αt = ¯∂ω + t ¯∂γ in Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='2, we get the second equality below: (n − 1) d dt ���� t=0 θ0, 1 ω+tγ = d dt ���� t=0 Λω+tγ(¯∂ω + t¯∂γ) = Λω(¯∂γ) − (γ ∧ ·)⋆ ω (¯∂ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' (18) On the other hand, taking (d/dt)|t=0 in the expression for L(ω + tγ) given in (ii) of Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='1 (with ω + tγ in place of ω), we get: (dωL)(γ) = d dt ���� t=0 L(ω + tγ) = d dt ���� t=0 � X i(¯∂ω + t¯∂γ)prim ∧ (¯∂ω + t¯∂γ)prim ∧ (ω + tγ)n−3, (19) where the subscript prim indicates the (ω + tγ)-primitive part of the form to which it is attached.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Now, consider the Lefschetz decompositions (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' (5)) of ¯∂ω and ¯∂γ with respect to ω: ¯∂ω = (¯∂ω)prim + θ0, 1 ω ∧ ω ¯∂γ = (¯∂γ)prim + θ0, 1 γ ∧ ω and the Lefschetz decomposition of ¯∂ω + t¯∂γ with respect to ω + tγ: ¯∂ω + t¯∂γ = (¯∂ω + t¯∂γ)prim + θ0, 1 ω+tγ ∧ (ω + tγ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' By the above equations we get: (¯∂ω + t¯∂γ)prim = (¯∂ω)prim + θ0, 1 ω ∧ ω + t (¯∂γ)prim + t θ0, 1 γ ∧ ω − θ0, 1 ω+tγ ∧ (ω + tγ), (20) where primitivity is construed w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' the metric ω + tγ in the case of the left-hand side term and w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' the metric ω in the case of (¯∂ω)prim and (¯∂γ)prim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Thanks to (20), equality (19) becomes: (dωL)(γ) = d dt ����t=0 � X i � (¯∂ω)prim + θ0, 1 ω ∧ ω + t (¯∂γ)prim + t θ0, 1 γ ∧ ω − θ0, 1 ω+tγ ∧ (ω + tγ) � ∧ � (¯∂ω)prim + θ0, 1 ω ∧ ω + t (¯∂γ)prim + t θ0, 1 γ ∧ ω − θ0, 1 ω+tγ ∧ (ω + tγ) � ∧ (ω + tγ)n−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Now, d dt ����t=0 � θ0, 1 ω+tγ ∧ (ω + tγ) � = θ0, 1 ω ∧ γ + � d dt ����t=0 θ0, 1 ω+tγ � ∧ ω = θ0, 1 ω ∧ γ + 1 n − 1 � Λω(¯∂γ) − (γ ∧ ·)⋆ ω(¯∂ω) � ∧ ω, 15 where formula (18) was used to get the last equality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Using this,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' straightforward computations yield: (dωL)(γ) = I1 + I1 + I2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' (21) where I2 = � X i � (¯∂ω)prim + θ0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 1 ω ∧ ω − θ0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 1 ω ∧ ω � ∧ � (¯∂ω)prim + θ0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 1 ω ∧ ω − θ0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 1 ω ∧ ω � ∧ ωn−4 ∧ γ = � X i(¯∂ω)prim ∧ (¯∂ω)prim ∧ ωn−4 ∧ γ (22) and I1 = � X i � (¯∂γ)prim + θ0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 1 γ ∧ ω − θ0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 1 ω ∧ γ − 1 n − 1 � Λω(¯∂γ) − (γ ∧ ·)⋆ ω(¯∂ω) � ∧ ω � ∧ (∂ω)prim ∧ ωn−3 = � X i(¯∂γ)prim ∧ (∂ω)prim ∧ ωn−3 − � X i θ0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 1 ω ∧ γ ∧ (∂ω)prim ∧ ωn−3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' (23) where the last equality follows from (∂ω)prim ∧ ωn−2 = 0 (a consequence of the ω-primitivity of the 3-form (∂ω)prim) which leads to the vanishing of the products of the second and the fourth terms (that are multiples of ω) inside the large parenthesis with (∂ω)prim ∧ωn−3 in the integral on the first line of (23).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Now, due to the ω-primitivity of the 3-form (∂ω)prim, the standard formula (10) yields: ⋆(∂ω)prim = i (∂ω)prim ∧ ωn−3, (24) where ⋆ = ⋆ω is the Hodge star operator induced by ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Thus, (22) translates to I1 = � X (¯∂γ)prim ∧ ⋆(¯∂ω)prim − � X θ0, 1 ω ∧ γ ∧ ⋆(¯∂ω)prim = ⟨⟨(¯∂γ)prim, (¯∂ω)prim⟩⟩ω − ⟨⟨θ0, 1 ω ∧ γ, (¯∂ω)prim⟩⟩ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' This last formula for I1, together with (21) and (22), proves the contention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' □ Recall that we are interested in the set of critical points of L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' We now notice that a suitable choice of γ in the previous result leads to an explicit description of this set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Since equation (17) is valid for all real (1, 1)-forms γ, the choice γ = ω is licit, as any other choice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' We get the following Corollary 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='2 Let X be a compact complex manifold with dimCX = n ≥ 3 and let L be the functional defined in 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='1-(ii).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' For any Hermitian metric ω on X, we have: (dωL)(ω) = (n − 1) ∥(¯∂ω)prim∥2 ω = (n − 1) L(ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' (25) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Taking γ = ω in equation (17), we get: (dωL)(ω) = � X i(¯∂ω)prim ∧ (¯∂ω)prim ∧ ω ∧ ωn−4 + 2Re ⟨⟨(¯∂ω)prim, (¯∂ω)prim⟩⟩ω −2Re ⟨⟨θ0, 1 ω ∧ ω, (¯∂ω)prim⟩⟩ω = (n − 3)i � X (¯∂ω)prim ∧ (¯∂ω)prim ∧ ωn−3 + 2 ∥(¯∂ω)prim∥2 ω − 2Re ⟨⟨θ0, 1 ω , Λω((∂ω)prim)⟩⟩ω = (n − 1)∥(¯∂ω)prim∥2 ω, 16 where the last equality followed from (¯∂ω)prim∧ωn−3 = −i ⋆(¯∂ω)prim (see (24)) and from Λω((∂ω)prim)) = 0 (due to any ω-primitive form lying in the kernel of Λω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' □ An immediate consequence of Corollary 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='2 is the following Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='3 Let X be a compact complex manifold with dimCX = n ≥ 3 and let ω be a Hermitian metric on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' If ω is a critical point for the functional L defined in 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='1-(ii), then ω is lcK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' If ω is a critical point for L, then (dωL)(γ) = 0 for any real (1, 1)-form γ on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Taking γ = ω and using (25), we get (¯∂ω)prim = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' By (ii) of Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='2, this is equivalent to ω being lcK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' □ The converse follows trivially from what we already know.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Indeed, if ω is an lcK metric, L(ω) = 0 (by Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='2), so L achieves its minimum at ω since L ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Any minimum is, of course, a critical point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 6 Normalised energy functionals when dimCX ≥ 3 We start with the immediate observation that the functional introduced in (i) of Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='1 in the case of compact complex surfaces is scaling-invariant, so it does not need normalising.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='1 Let S be a compact complex surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' The functional L : HS −→ [0, +∞), L(ω) = � X ∂θ1, 0 ω ∧ ¯∂θ0, 1 ω , has the property: L(λω) = L(ω) for every constant λ > 0 and every Hermitian metric ω on S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Recall (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' (2)) that θ1, 0 ω = Λω(∂ω) and θ0, 1 ω = Λω(¯∂ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' On the other hand, for any constant λ > 0 and any form α of any bidegree (p, q), we have: Λλωα = 1 λ Λωα, as can be checked right away.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Therefore, θ1, 0 λω = θ1, 0 ω and θ0, 1 λω = θ0, 1 ω for every constant λ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' The contention follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' □ By contrast, the functional L : HX −→ [0, +∞) introduced in (ii) of Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='1 in the case of compact complex manifolds X with dimCX = n ≥ 3 is not scaling-invariant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Indeed, it follows at once from its definition that L(λω) = λn−1 L(ω) (26) for every constant λ > 0 and every Hermitian metric ω on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' This homogeneity property of L can be used to derive a short proof of the main property of L that was deduced in §.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='5 from the result of the computation of the first variation of L, namely from Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 17 Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='2 (Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='3 revisited) Let X be a compact complex manifold with dimCX = n ≥ 3 and let ω be a Hermitian metric on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' The following equivalence holds: ω is a critical point for the functional L defined in 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='1-(ii) if and only if ω is lcK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Suppose ω is a critical point for L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' This means that (dωL)(γ) = 0 for every real (1, 1)-form γ on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Taking γ = ω, we get the first eqsuality below: 0 = (dωL)(ω) = d dt ����t=0 L(ω + tω) = d dt ����t=0 � (1 + t)n−1 L(ω) � = (n − 1) L(ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Thus, whenever ω is a critical point for L, L(ω) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' This last fact is equivalent to the metric ω being lcK thanks to Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Conversely, if ω is lcK, it is a minimum point for L, hence also a critical point, because L(ω) = 0 by Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' □ On the other hand, recall the following by now standard Observation 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='3 Let ω be a Hermitian metric on a complex manifold X with dimCX = n ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' If ω is both lcK and balanced, ω is K¨ahler.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' The Lefschetz decomposition of dω spells dω = (dω)prim + ω ∧ θ, where (dω)prim is an ω-primitive 3-form and θ is a 1-form on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' We saw in Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='2 that ω is lcK if and only if (dω)prim = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' On the other hand, the following equivalences hold: ω is balanced ⇐⇒ dωn−1 = 0 ⇐⇒ ωn−2 ∧ dω = 0 ⇐⇒ dω is ω-primitive ⇐⇒ dω = (dω)prim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' We infer that, if ω is both lcK and balanced, dω = 0, so ω is K¨ahler.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' □ It is tempting to conjecture the existence of a K¨ahler metric in the more general situation where the lcK and balanced hypotheses are spread over possibly different metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Conjecture 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='4 Let X be a compact complex manifold with dimCX ≥ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' If an lcK metric ω and a balanced metric ρ exist on X, there exists a K¨ahler metric on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Together with the behaviour of L under rescaling (see (26)), this conjecture suggests a natural normalisation for our functional L when n ≥ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Definition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='5 Let X be a compact complex manifold with dimCX = n ≥ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Fix a Hermitian metric ρ on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' We define the ρ-dependent functional acting on the Hermitian metrics of X: �Lρ : HX → [0, +∞), �Lρ(ω) := L(ω) � � X ω ∧ ρn−1 �n−1, (27) where L is the functional introduced in (ii) of Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 18 It follows from (26) that the normalised functional �Lρ is scaling-invariant: �Lρ(λ ω) = �Lρ(ω) for every constant λ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Moreover, thanks to Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='2, �Lρ(ω) = 0 if and only of ω is an lcK metric on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' We now derive the formula for the first variation of the normalised functional �Lρ in terms of the similar expression for the unnormalised functional L that was computed in Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='6 Let X be a compact complex manifold with dimCX = n ≥ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Fix a Hermitian metric ρ on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Then, for any Hermitian metric ω and any real (1, 1)-form γ on X, we have: (dω �Lρ)(γ) = 1 � � X ω ∧ ρn−1 �n−1 � (dωL)(γ) − (n − 1) � X γ ∧ ρn−1 � X ω ∧ ρn−1 L(ω) � , (28) where (dωL)(γ) is given by formula (17) in Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Straightforward computations yield: (dω�Lρ)(γ) = d dt � 1 � � X(ω + tγ) ∧ ρn−1 �n−1 L(ω + tγ) � t=0 = 1 � � X ω ∧ ρn−1 �n−1 (dωL)(γ) − 1 � � X ω ∧ ρn−1 �2(n−1) (n − 1) � � X ω ∧ ρn−1 �n−2 � � X γ ∧ ρn−1 � L(ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' This is formula (28).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' □ A natural question is whether the critical points of any (or some) of the normalised functionals �Lρ are precisely the lcK metrics (if any) on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' The following result goes some way in this direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Corollary 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='7 Let X be a compact complex manifold with dimCX = n ≥ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Fix a Hermitian metric ρ on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Suppose a Hermitian metric ω is a critical point for �Lρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Then: (i) for every ρ-primitive real (1, 1)-form γ, (dωL)(γ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' (ii) if the metric ρ is Gauduchon, (dωL)(i∂ ¯∂ϕ) = 0 for any real-valued C2 function ϕ on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' (i) If γ is ρ-primitive, then γ ∧ ρn−1 = 0, so formula (28) reduces to (dω �Lρ)(γ) = (dωL)(γ) � � X ω ∧ ρn−1 �n−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Meanwhile, (dω �Lρ)(γ) = 0 for every real (1, 1)-form γ since ω is a critical point for �Lρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' The contention follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 19 (ii) Choose γ := ω + i∂ ¯∂ϕ for any function ϕ as in the statement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' We get: 0 (a) = � � X ω ∧ ρn−1 �n−1 (dω�Lρ)(ω + i∂ ¯∂ϕ) (b)= (dωL)(ω) − (n − 1) L(ω) + (dωL)(i∂ ¯∂ϕ) (c) = (dωL)(i∂ ¯∂ϕ), where ω being a critical point for �Lρ gave (a), formula (28) and the metric ρ being Gauduchon (the latter piece of information implying � X i∂ ¯∂ϕ ∧ ρn−1 = 0 thanks to the Stokes theorem) gave (b), while Corollary 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='2 gave (c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' □ As in the case of surfaces, our hope is that it will be possible in the future to prove that any Hermitian metric ω on a compact complex manifold of dimension ≥ 3 that is a critical point for one (or all) of the normalised functionals �Lρ is actually an lcK metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Concluding remarks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' (a) Let X be a compact complex manifold with dimCX = n ≥ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Fix a Hermitian metric ρ on X and consider the set Uρ of ρ-normalised Hermitian metrics ω on X such that � X ω ∧ ρn−1 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' By Definition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='5, we have �Lρ(ω) = L(ω) for every ω ∈ Uρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Moreover, since �Lρ is scaling-invariant, it is completely determined by its restriction to Uρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Let cρ := inf ω∈HX �Lρ(ω) = inf ω∈Uρ �Lρ(ω) = inf ω∈Uρ L(ω) ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' For every ε > 0, there exists a Hermitian metric ωε ∈ Uρ such that cρ ≤ L(ωε) < cρ + ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Since Uρ is a relatively compact subset of the space of positive (1, 1)-currents equipped with the weak topology of currents, there exists a subsequence εk ↓ 0 and a positive (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' the terminology of [Dem97, III-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=']) (1, 1)-current Tρ ≥ 0 on X such that the sequence (ωεk)k converges weakly to Tρ as k → +∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' By construction, we have: � X Tρ ∧ ρn−1 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' The possible failure of the current Tρ ≥ 0 to be either a C∞ form or strictly positive (for example in the sense that it is bounded below by a positive multiple of a Hermitian metric on X) constitutes an obstruction to the existence of minimisers for the functional �Lρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' If it eventually turns out that the critical points of �Lρ, if any, are precisely the lcK metrics of X, if any, they will further coincide with the minimisers of �Lρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' In that case, the currents Tρ will provide obstructions to the existence of lcK metrics on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' (b) The same discussion as in the above (a) can be had on a compact complex surface S using the (already scaling-invariant) functional L introduced in (i) of Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='1 if one can prove that its critical points coincide with the lcK metrics on S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 20 References [AD15] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Apostolov, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Dloussky — Locally Conformally Symplectic Structures on Compact Non- K¨ahler Complex Surfaces — Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Notices, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 9 (2016) 2717-2747.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' [DP22] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Dinew, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Popovici — A Variational Approach to SKT and Balanced Metrics — arXiv:2209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='12813v1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' [Dem 84] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Demailly — Sur l’identit´e de Bochner-Kodaira-Nakano en g´eom´etrie hermitienne — S´eminaire d’analyse P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Lelong, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Dolbeault, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Skoda (editors) 1983/1984, Lecture Notes in Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=', no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 1198, Springer Verlag (1986), 88-97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' [Dem97] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Demailly — Complex Analytic and Algebraic Geometry — http://www-fourier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='ujf- grenoble.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='fr/ demailly/books.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='html [Gau77] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Gauduchon — Le th´eor`eme de l’excentricit´e nulle — C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Sc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Paris, S´erie A, t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 285 (1977), 387-390.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' [Ist19] ˙N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Istrati — Existence Criteria for Special Locally Conformally K¨ahler Metrics — Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Pura Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 198 (2) (2019), 335-353.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' [OV22] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Ornea, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Verbitsky — Principles of Locally Conformally Kahler Geometry — arXiv:2208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='07188v2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' [Oti14] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Otiman — Currents on Locally Conformally K¨ahler Manifolds — Journal of Geometry and Physics, 86 (2014), 564-570.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' [Mic83] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Michelsohn — On the Existence of Special Metrics in Complex Geometry — Acta Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 143 (1983) 261-295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' [PS22] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Perdu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Stanciu — Vaisman Theorem for lcK Spaces —arXiv:2109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='01000v3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' [Vai76] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Vaisman, — On Locally Conformal Almost K¨ahler Manifolds — Israel J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' 24 (1976) 338-351.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' [Voi02] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Voisin — Hodge Theory and Complex Algebraic Geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' — Cambridge Studies in Advanced Mathematics, 76, Cambridge University Press, Cambridge, 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content=' Universit´e Paul Sabatier, Institut de Math´ematiques de Toulouse 118, route de Narbonne, 31062, Toulouse Cedex 9, France Email: popovici@math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='univ-toulouse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='fr and Soheil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='Erfan@math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='univ-toulouse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
+page_content='fr 21' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE1T4oBgHgl3EQfkwRo/content/2301.03277v1.pdf'}
diff --git a/0tFLT4oBgHgl3EQfpC-v/content/tmp_files/2301.12134v1.pdf.txt b/0tFLT4oBgHgl3EQfpC-v/content/tmp_files/2301.12134v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..0764289da0b40987492aa7981de1432ccbe7374e
--- /dev/null
+++ b/0tFLT4oBgHgl3EQfpC-v/content/tmp_files/2301.12134v1.pdf.txt
@@ -0,0 +1,553 @@
+Underwater Robotics Semantic Parser Assistant
+Jake Imyak
+imyak.1@osu.edu
+Parth Parekh
+parekh.86@osu.edu
+Cedric McGuire
+mcguire.389@osu.edu
+Abstract
+Semantic parsing is a means of taking natu-
+ral language and putting it in a form that a
+computer can understand. There has been a
+multitude of approaches that take natural lan-
+guage utterances and form them into lambda
+calculus expressions - mathematical functions
+to describe logic. Here, we experiment with
+a sequence to sequence model to take natural
+language utterances, convert those to lambda
+calculus expressions, when can then be parsed,
+and place them in an XML format that can be
+used by a finite state machine. Experimental
+results show that we can have a high accuracy
+model such that we can bridge the gap between
+technical and nontechnical individuals in the
+robotics field.
+1
+Credits
+Jake Imyak was responsible for the creation of
+the 1250 dataset terms and finding the RNN en-
+coder/decoder model. This took 48 Hours. Cedric
+McGuire was responsible for the handling of the
+output logical form via the implementation of the
+Tokenizer and Parser. This took 44 Hours. Parth
+Parekh assembled the Python structure for behavior
+tree as well as created the actions on the robot. This
+took 40 Hours. All group members were responsi-
+ble for the research, weekly meetings, presentation
+preparation, and the paper. In the paper, each group
+member was responsible for explaining their re-
+spective responsibilities with a collaborative effort
+on the abstract, credits, introduction, discussion,
+and references. A huge thanks to our Professor Dr.
+Huan Sun for being such a great guide through the
+world of Natural Language Processing.
+2
+Introduction
+Robotics is a hard field to master. Its one of the few
+fields which is truly interdisciplinary. This leads to
+engineers with many different backgrounds work-
+ing on one product. There are domains within this
+product that engineers within one subfield may not
+be able to work with. This leads to some engineers
+not being able to interact with the product properly
+without supervision.
+As already mentioned, we aim to create an
+interface for those engineers on the Underwa-
+ter Robotics Team (UWRT). Some members on
+UWRT specialize in other fields that are not soft-
+ware engineering. They are not able to create logic
+for the robot on their own. This leads to members
+of the team that are required to be around when
+pool testing the robot. This project wants to reduce
+or remove that component of creating logic for the
+robot. This project can also be applied to other
+robots very easily as all of the main concepts are
+generalized and only require the robots to imple-
+ment the actions that are used to train the project.
+3
+Robotics Background
+3.1
+Usage of Natural Language in Robotics
+Robots are difficult to produce logic for. One big
+problem that most robotics teams have is having
+non-technical members produce logical forms for
+the robot to understand. Those who do not code
+are not able to manually create logic quickly.
+3.2
+Finite State Machines
+One logical form that is common in the robotics
+space is a Finite State Machine (FSM). FSMs are
+popular because they allow a representation to be
+completely general while encoding the logic di-
+rectly into the logical form. This means things
+such as control flow, fallback states, and sequences
+to be directly encoded into the logical form itself.
+As illustrated in Figure 1, we can easily encode
+logic into this representation. Since it easily generi-
+fied, FSM’s can be used across any robot which im-
+arXiv:2301.12134v1 [cs.CL] 28 Jan 2023
+
+Figure 1:
+A FSM represented in Behaviortree.CPP
+(Fanconti, 2020) (Fanconti, 2020)
+plements the commands that are contained within
+it.
+3.3
+Underwater Robotics Team Robot
+Since 2016, The Underwater Robotics Team
+(UWRT) at The Ohio State University has iterated
+on the foundations of a single Autonomous Under-
+water Vehicle (AUV) each year to compete at the
+RoboSub competition. Breaking from tradition, the
+team decided to take the 2019-2021 school years
+to design and build a new vehicle to compete in
+the 2021 competition. Featuring an entirely new
+hull design, refactored software, and an improved
+electrical system, UWRT has created its brand-new
+vehicle, Tempest. (Parekh, 2021)
+3.3.1
+Vehicle
+Tempest is a 6 Degree of Freedom (DOF) AUV
+with vectored thrusters for linear axis motion and
+direct drive heave thrusters. This allows the robot to
+achieve any orientation in all 6 Degrees of freedom
+[X, Y , Z, Roll, Pitch, Yaw].
+Figure 2: A render of Tempest
+3.3.2
+Vehicle Experience
+With this vehicle, the team has focused on creat-
+ing a fully fleshed out experience. This includes
+commanding and controlling the vehicle. One big
+focus of the team was to make sure that any mem-
+ber, technical or non-technical was able to manage
+and operate the robot successfully.
+3.3.3
+Task Code System
+A step to fulfill this focus was to change the
+vehicle’s task code system to use the FSM rep-
+resentation.
+This is done through the library
+BehaviorTree.CPP (Fanconti, 2020). This generic
+FSM representation allows for Tempest to use
+generified logical forms that can be applied to ANY
+robotic plant as long as that plant implements those
+commands. This library also creates and maintains
+a Graphical User Interface (GUI) which allows for
+visual tracking and creation of FSM trees. Any tree
+created by the GUI is stored within an XML file
+to preserve the tree structure. The structure of the
+output of the XML syntax is explained within the
+parser section.
+4
+Data
+A dataset was to be created in order to use natu-
+ral language utterances to lambda calculus expres-
+sions that a parser would be able to recognize to
+convert to a finite state machine. For reference,
+the following datasets were considered: the Geo-
+query set(Zettlemoyer, 2012) and General Purpose
+Service Robotics commands set (Walker, 2019).
+The Geoquery dataset provided a foundation for
+a grammar to follow for the lambda calculus ex-
+pression such that consistency would hold for our
+parser. Moreover, the gpsr dataset provided an
+ample amount of examples and different general
+purpose robotics commands that could be extended
+within the dataset we curated.
+The dataset followed the following form: nat-
+ural language utterance followed by a tab then a
+lambda calculus expression. The lambda calcu-
+lus expression is of the form ( seq ( action0
+( $0 ( parameter ) ) ) ... ( actionN ( $N (
+parameter ) ) ). The power of the following ex-
+pression is that it can be extended to N number of
+actions in a given sequence, meaning that a user
+can hypothetically type in a very complex string
+of action and an expression will be constructed for
+said sequence. Moreover, the format of our dataset
+allows for it to be extended for any type of robotics
+
+Root
+root Fallback
+Sequence
+SubTreeExpanded
+A:PassThroughwindow
+door open sequence
+Collapse
+C: IsDooropen
+A:PassThroughDoor
+Sequence
+door closed sequence
+Inverter
+C RetryUntilSuccesful
+A:PassThroughDoor
+A:CloseDoor
+num_attempts
+4
+C:IsDooropen
+A:OpenDoorcommand that a user may have. They just need to
+include examples in the train set with said action
+and the model will consider it.
+The formal grammar is:
+< seq > : ( seq ( action ) [ (action) ] )
+< action > : actionName [ (parameter ] )
+< parameter > : paramName λ ( $n ( n ) )
+The dataset we created had 1000 entries in the
+training dataset and 250 entries in the test dataset.
+The size of the vocabulary |V | = 171 for the input
+text and |V | = 46 for the output text, which is
+similar in vocabulary size to the GeoQuery dataset.
+The expressions currently increase in complexity
+in terms of the number of actions within the se-
+quence. A way to extend the complexity of the ex-
+pressions would make the < seq > tag a nontermi-
+nal to chain together nested sequences. The actions
+within our dataset currently are as follows: move
+(params: x, y, z, roll, pitch, raw), flatten (params:
+num), say (params: words), clean (params: obj),
+bring (params: val), find (params: val), goal,
+and gate. The most complex sequence is a string
+of seven subsequent actions.
+5
+Model
+5.1
+Seq2Seq Model
+We decided to use the model presented in ”Lan-
+guage to Logical Form with Neural Attention”
+(Dong, 2016). There was an implementation on
+GitHub (AvikDelta, 2018) utilizing Google’s Ten-
+sorflow library to handle all implementation details
+of the following model. The part of the paper that
+was presented was the Sequence to Sequence model
+with an attention mechanism.
+Figure 3: Process of how input natural language are en-
+coded and decoded via recurrent neural networks and
+an attention mechanism to find the utterance’s respec-
+tive natural language form. (Dong and Lapata, 2016)
+The model interprets both the input and output
+from the network as sequences of information. This
+process is represented in Figure 3: input is passed
+to the encoder, then passed through the decoder,
+and through using the attention mechanism, we can
+get an output that is a lambda calculus expression.
+Both of these sequences can be represented as L-
+layer recurrent neural networks with long short-
+term memory (LSTM) that are used to take the
+tokens from the sentences and the expressions we
+have. The model creates 200 (can be changed to
+increase and decrease the size of the network) units
+of both LSTM cells and GRU cells. The GRU
+cells are used to help compensate for the vanishing
+gradient problem. These LSTM and GRU cells
+are used in the input sequence to encode x1, ..., xq
+into vectors. Then these vectors are what form
+the hidden state of the beginning of the sequence
+in the decoder. Then in the decoder, the topmost
+LSTM cell predicts the t-th output token by taking
+the softmax of the parameter matrix and the vector
+from the LSTM cell multiplied by a one-hot vector
+used to compute the probability of the output from
+the probability distribution. The softmax used here
+is sampled softmax, which only takes into account
+a subset of our vocabulary V rather than everything
+to help alleviate the difficulty of finding the softmax
+of a large vocabulary.
+5.2
+Attention Mechanism
+The model also implemented an attention mecha-
+nism to help with the predicted values. The mo-
+tivation behind the attention mechanism is to use
+the input sequence in the decoding process since
+it is relevant information for the prediction of the
+output token. To achieve this, a context vector is
+created which is the weighted sums of the hidden
+vectors in the encoder. Then this context vector is
+used as context to find the probability of generating
+a given output.
+5.3
+Training
+To train the model, the objective is the maximize
+the likelihood of predicting the correct logical form
+given some natural language expression. Hence,
+the goal is to minimize the sum of the log prob-
+ability of predicting logical form a given natural
+language utterance q summed over all training pairs.
+The model used the RMSProp algorithm which
+is an extension of the Adagrad optimizer but uti-
+lizes learning rate adaptation. Dropout is also used
+for regularization which helps out with a smaller
+datasets to prevent overfitting. We performed 90
+epochs.
+5.4
+Inference
+To perform inference, the argmax is found of the
+probability of candidate output given the natural
+
+AttentionLayer
+whatmicrosoftjobs
+answer(J,(compa
+ny(J,'microsoft).j
+do not require a
+ob,not(reqde
+bscs?
+g(J,bscs)))
+Input
+Sequence Sequence/Tree
+Logical
+Utterance
+Encoder
+Decoder
+Formlanguage utterance. Since it is not possible to find
+the probability of all possible outputs, the proba-
+bility is put in a form such that a beam search can
+be employed to generate each individual token of
+lambda calculus expression to get the appropriate
+output.
+6
+Results
+With the default parameters set, the Sequence to Se-
+quence model achieved 86.7% accuracy for exact
+matches on the test dataset. This is consistent with
+the model’s performance on the Geoquery dataset,
+achieving 83.9% accuracy. The test dataset pro-
+vided contained a 250 entries of similar utterances
+to the train dataset of various complexities ranging
+anywhere from one to six actions being performed.
+There are other methods of evaluating we would
+like to look into in the future such as computing
+something such as an F1 score rather than solely
+relying on exact logical form matching.
+This accuracy for exact logical forms is really
+important when using the parser. It allows for FSM
+representation to be easily and quickly built. We
+were able to build the XML representation and
+run basic commands on the robot with the model
+maintaining the order we said them in.
+7
+Logical Form Parser
+The logical form output of our model is sent to a
+custom parser. The goal of this parser is to translate
+the output form into BehaviorTree XML files, in
+which the robot is able to read in as a finite state
+machine.
+7.1
+Tokenizer
+The Tokenizer comprises the initial framework of
+the parser. It accepts the raw logical form as a
+String object and outputs a set of tokens in a Python
+List. These tokens are obtained by looking for sepa-
+rator characters (in our case, a space) present in the
+logical form and splitting them into an array-like
+structure. The Tokenizer method permits custom
+action, parameter, and variable names from the log-
+ical form input, thus allowing ease of scalability
+in implementing new robot actions. Our model’s
+output nature is not able to generate syntactically
+incorrect logical forms, thus our implementation
+does not check for invalid tokens and will assume
+all input is correct. The Tokenizer is stored in a
+static Singleton class such that it can be accessed
+anywhere in the program once initialized. It keeps
+track of the current token (using getToken()) and
+has an implementation to move forward to the next
+token skipToken(). This functionality is impor-
+tant for the object-oriented approach of the parser,
+discussed in the next section.
+7.2
+Parsing Lambda Calculus Expressions
+The output tokens from the Tokenizer must be in-
+terpreted into a proper Python from before they
+are staged to be turned into XML-formatted robot-
+ready trees. This is the function of the middle step
+of the parser, in which a tree of Python objects
+are built. The parser utilizes an object-oriented
+approach.
+As such, we include three objects:
+Sequence, Action, and Parameter, with each
+corresponding to an individual member of our cus-
+tom grammar. The objects orient themselves into
+a short 3-deep tree, consisting of a Sequence root,
+Action children, and Parameter grand-children.
+Each object has its own parse() method that will
+advance the tokenizer, validate the input structure,
+and assemble themselves into a Python structure to
+be staged into an XML file. The validations are en-
+forced through our grammar definitions in Section
+4.
+7.2.1
+Sequence Object
+The Sequence object is the first object initialized
+by the parser, along with the root of our action
+tree. Each Sequence is composed of a list of 0 or
+more child actions to be executed in the order they
+appear. The parseSequence() method will parse
+each individual action using parseSAction(), all
+the while assembling a list of child actions for this
+Sequence object. As of now, Sequence objects
+are unable to be their own children (i.e. nesting
+Sequences is not permitted). However, if required,
+the Sequence object’s parseSequence() method
+can be modified to recognize a nested action se-
+quence and recursively parse it.
+7.2.2
+Action Object
+Action objects define the title of the action be-
+ing performed. Similar to Sequence, Action ob-
+jects have an internally stored list, however with
+Parameter objects as children. There may be
+any number of parameters, including none. When
+parseAction() method is called, the program val-
+idates the tokens and will call parseParameter()
+on each Parameter child identified by the action.
+
+7.2.3
+Parameter Object
+The Parameter object is a simple object that
+stores a parameter’s name and value. The parser
+does not have a check for what the name of the pa-
+rameter is, nor does it have any restrictions to what
+the value can be.
+parseParameter() searches
+through the tokens for these two items and stores
+them as attributes to the Parameter object. This
+implementation of parameter is scalable with robot
+parameters and allows any new configuration of
+parameter to pass by without any changes in the
+parser as a whole. If a new parameter is needed for
+the robot, it only has to be trained into the Seq2Seq
+model on the frontend and into the robot itself on
+the backend; the Parameter object should take care
+of it all the same.
+7.3
+BehaviorTree Output
+In the end, the parser outputs an XML file which
+can be read in to BehaviorTree.CPP (Fanconti,
+2020). An example of this file structure is shown
+in Figure 4.
+Figure 4:
+A FSM that was generated from test input
+through our RNN
+This file structure is useful because it encodes
+sequence of actions within it. The leaves of the
+sequence are always in order. The tree can also
+encode subtrees into the sequence which we have
+not implemented yet.
+8
+Discussion
+8.1
+Summary
+We learned that semantic parsing is excellent tool
+at bridging the gap between both technical and non-
+technical individuals. The power within semantic
+parsing with robotics is that any human can auto-
+mate any task just through using their words. Our
+dataset is written in a way that just extending the
+entries with another robot’s tasks that use a behav-
+ior tree to perform action, that robot’s actions can
+be automated as well.
+8.2
+Future Plans
+Future plans with this project would be to ex-
+pand the logical flow that can be implemented
+with BehaviorTree.CPP. As an FSM library, Behav-
+iorTree.CPP implements many more helper func-
+tions to create more complicated FSMs. These
+include things like if statements fallback nodes,
+and subtrees. This would be a valid expansion
+of our RNN’s logical output and with more time,
+we could support the full range of features from
+BehaviorTree.CPP
+We would also like to implement a front end
+user interface to make this service more accessible
+to anyone who was not technical. Right now, the
+only means of running our program is through the
+command line which is not suitable for individuals
+who are nontechnical. Moreover, including a speak-
+to-text component to this project would elevate it
+since an individual would be able to directly tell a
+robot what commands to do, similar to a human.
+8.3
+Source Code
+You can view the source code here:
+https://
+github.com/jrimyak/parse_seq2seq
+References
+Vinyals, O., Kaiser, L., Koo, T., Petrov, S., Sutskever,
+I. & Hinton, G. Grammar as a Foreign Language.
+(2015),
+Dong, L. & Lapata, M. Language to Logical Form with
+Neural Attention. (2016),
+Yao, Z., Tang, Y., Yih, W., Sun, H. & Su, Y. An Im-
+itation Game for Learning Semantic Parsers from
+User Interaction. Proceedings Of The 2020 Confer-
+ence On Empirical Methods In Natural Language
+Processing (EMNLP). (2020),
+Yao, Z., Su, Y., Sun, H. & Yih, W. Model-based In-
+teractive Semantic Parsing: A Unified Framework
+and A Text-to-SQL Case Study. Proceedings Of The
+2019 Conference On Empirical Methods In Natu-
+ral Language Processing And The 9th International
+Joint Conference On Natural Language Processing
+(EMNLP-IJCNLP). pp. 5450-5461 (2019),
+Walker, N., Peng, Y. & Cakmak, M. Neural Se-
+mantic Parsing with Anonymization for Command
+Understanding in General-Purpose Service Robots.
+Lecture Notes In Computer Science. pp. 337-350
+(2019),
+Dukes, K. Supervised Semantic Parsing of Robotic
+Spatial Commands .SemEval-2014 Task 6. (2014),
+Walker, N. GPSR Commands Dataset. (Zenodo,2019),
+https://zenodo.org/record/3244800,
+
+test.xm
+1
+
+2
+
+3
+
+4
+
+6
+
+7
+
+8
+
+6Avikdelta parse seq2seq. GitHub Repository. (2018),
+https://github.com/avikdelta/parse_
+seq2seq,
+Faconti, D. BehaviorTree - Groot. GitHub Repository.
+(2020),
+https://github.com/BehaviorTree/
+Groot,
+Faconti,
+D. BehaviorTree.CPP. Github Repository.
+(2020),
+https://github.com/BehaviorTree/
+BehaviorTree.CPP,
+Hwang, W., Yim, J., Park, S. & Seo, M. A Compre-
+hensive Exploration on WikiSQL with Table-Aware
+Word Contextualization. (2019),
+OSU-UWRT.
+Riptide
+Autonomy.
+GitHub
+Reposi-
+tory. (2021), https://github.com/osu-uwrt/
+riptide_autonomy,
+Parekh, P., et al. The Ohio State University Underwater
+Robotics Tempest AUV Design and Implementa-
+tion
+(2021)
+https://robonation.org/app/
+uploads/sites/4/2021/07/RoboSub_2021_
+The-Ohio-State-U_TDR-compressed.pdf,
+Zettlemoyer, L. & Collins, M. Learning to Map Sen-
+tences to Logical Form: Structured Classification
+with Probabilistic Categorial Grammars. (2012),
+
diff --git a/0tFLT4oBgHgl3EQfpC-v/content/tmp_files/load_file.txt b/0tFLT4oBgHgl3EQfpC-v/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..aaac2df6bba1ce4beaf2a09caac263a0db976ce8
--- /dev/null
+++ b/0tFLT4oBgHgl3EQfpC-v/content/tmp_files/load_file.txt
@@ -0,0 +1,257 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf,len=256
+page_content='Underwater Robotics Semantic Parser Assistant Jake Imyak imyak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='1@osu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='edu Parth Parekh parekh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='86@osu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='edu Cedric McGuire mcguire.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='389@osu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='edu Abstract Semantic parsing is a means of taking natu- ral language and putting it in a form that a computer can understand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' There has been a multitude of approaches that take natural lan- guage utterances and form them into lambda calculus expressions - mathematical functions to describe logic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Here, we experiment with a sequence to sequence model to take natural language utterances, convert those to lambda calculus expressions, when can then be parsed, and place them in an XML format that can be used by a finite state machine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Experimental results show that we can have a high accuracy model such that we can bridge the gap between technical and nontechnical individuals in the robotics field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' 1 Credits Jake Imyak was responsible for the creation of the 1250 dataset terms and finding the RNN en- coder/decoder model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' This took 48 Hours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Cedric McGuire was responsible for the handling of the output logical form via the implementation of the Tokenizer and Parser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' This took 44 Hours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Parth Parekh assembled the Python structure for behavior tree as well as created the actions on the robot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' This took 40 Hours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' All group members were responsi- ble for the research, weekly meetings, presentation preparation, and the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' In the paper, each group member was responsible for explaining their re- spective responsibilities with a collaborative effort on the abstract, credits, introduction, discussion, and references.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' A huge thanks to our Professor Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Huan Sun for being such a great guide through the world of Natural Language Processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' 2 Introduction Robotics is a hard field to master.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Its one of the few fields which is truly interdisciplinary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' This leads to engineers with many different backgrounds work- ing on one product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' There are domains within this product that engineers within one subfield may not be able to work with.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' This leads to some engineers not being able to interact with the product properly without supervision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' As already mentioned, we aim to create an interface for those engineers on the Underwa- ter Robotics Team (UWRT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Some members on UWRT specialize in other fields that are not soft- ware engineering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' They are not able to create logic for the robot on their own.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' This leads to members of the team that are required to be around when pool testing the robot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' This project wants to reduce or remove that component of creating logic for the robot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' This project can also be applied to other robots very easily as all of the main concepts are generalized and only require the robots to imple- ment the actions that are used to train the project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' 3 Robotics Background 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='1 Usage of Natural Language in Robotics Robots are difficult to produce logic for.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' One big problem that most robotics teams have is having non-technical members produce logical forms for the robot to understand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Those who do not code are not able to manually create logic quickly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='2 Finite State Machines One logical form that is common in the robotics space is a Finite State Machine (FSM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' FSMs are popular because they allow a representation to be completely general while encoding the logic di- rectly into the logical form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' This means things such as control flow, fallback states, and sequences to be directly encoded into the logical form itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' As illustrated in Figure 1, we can easily encode logic into this representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Since it easily generi- fied, FSM’s can be used across any robot which im- arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='12134v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='CL] 28 Jan 2023 Figure 1: A FSM represented in Behaviortree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='CPP (Fanconti, 2020) (Fanconti, 2020) plements the commands that are contained within it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='3 Underwater Robotics Team Robot Since 2016, The Underwater Robotics Team (UWRT) at The Ohio State University has iterated on the foundations of a single Autonomous Under- water Vehicle (AUV) each year to compete at the RoboSub competition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Breaking from tradition, the team decided to take the 2019-2021 school years to design and build a new vehicle to compete in the 2021 competition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Featuring an entirely new hull design, refactored software, and an improved electrical system, UWRT has created its brand-new vehicle, Tempest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' (Parekh, 2021) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='1 Vehicle Tempest is a 6 Degree of Freedom (DOF) AUV with vectored thrusters for linear axis motion and direct drive heave thrusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' This allows the robot to achieve any orientation in all 6 Degrees of freedom [X, Y , Z, Roll, Pitch, Yaw].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Figure 2: A render of Tempest 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='2 Vehicle Experience With this vehicle, the team has focused on creat- ing a fully fleshed out experience.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' This includes commanding and controlling the vehicle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' One big focus of the team was to make sure that any mem- ber, technical or non-technical was able to manage and operate the robot successfully.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='3 Task Code System A step to fulfill this focus was to change the vehicle’s task code system to use the FSM rep- resentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' This is done through the library BehaviorTree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='CPP (Fanconti, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' This generic FSM representation allows for Tempest to use generified logical forms that can be applied to ANY robotic plant as long as that plant implements those commands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' This library also creates and maintains a Graphical User Interface (GUI) which allows for visual tracking and creation of FSM trees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Any tree created by the GUI is stored within an XML file to preserve the tree structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' The structure of the output of the XML syntax is explained within the parser section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' 4 Data A dataset was to be created in order to use natu- ral language utterances to lambda calculus expres- sions that a parser would be able to recognize to convert to a finite state machine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' For reference, the following datasets were considered: the Geo- query set(Zettlemoyer, 2012) and General Purpose Service Robotics commands set (Walker, 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' The Geoquery dataset provided a foundation for a grammar to follow for the lambda calculus ex- pression such that consistency would hold for our parser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Moreover, the gpsr dataset provided an ample amount of examples and different general purpose robotics commands that could be extended within the dataset we curated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' The dataset followed the following form: nat- ural language utterance followed by a tab then a lambda calculus expression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' The lambda calcu- lus expression is of the form ( seq ( action0 ( $0 ( parameter ) ) ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' ( actionN ( $N ( parameter ) ) ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' The power of the following ex- pression is that it can be extended to N number of actions in a given sequence, meaning that a user can hypothetically type in a very complex string of action and an expression will be constructed for said sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Moreover, the format of our dataset allows for it to be extended for any type of robotics Root root Fallback Sequence SubTreeExpanded A:PassThroughwindow door open sequence Collapse C: IsDooropen A:PassThroughDoor Sequence door closed sequence Inverter C RetryUntilSuccesful A:PassThroughDoor A:CloseDoor num_attempts 4 C:IsDooropen A:OpenDoorcommand that a user may have.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' They just need to include examples in the train set with said action and the model will consider it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' The formal grammar is: < seq > : ( seq ( action ) [ (action) ] ) < action > : actionName [ (parameter ] ) < parameter > : paramName λ ( $n ( n ) ) The dataset we created had 1000 entries in the training dataset and 250 entries in the test dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' The size of the vocabulary |V | = 171 for the input text and |V | = 46 for the output text, which is similar in vocabulary size to the GeoQuery dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' The expressions currently increase in complexity in terms of the number of actions within the se- quence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' A way to extend the complexity of the ex- pressions would make the < seq > tag a nontermi- nal to chain together nested sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' The actions within our dataset currently are as follows: move (params: x, y, z, roll, pitch, raw), flatten (params: num), say (params: words), clean (params: obj), bring (params: val), find (params: val), goal, and gate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' The most complex sequence is a string of seven subsequent actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' 5 Model 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='1 Seq2Seq Model We decided to use the model presented in ”Lan- guage to Logical Form with Neural Attention” (Dong, 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' There was an implementation on GitHub (AvikDelta, 2018) utilizing Google’s Ten- sorflow library to handle all implementation details of the following model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' The part of the paper that was presented was the Sequence to Sequence model with an attention mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Figure 3: Process of how input natural language are en- coded and decoded via recurrent neural networks and an attention mechanism to find the utterance’s respec- tive natural language form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' (Dong and Lapata, 2016) The model interprets both the input and output from the network as sequences of information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' This process is represented in Figure 3: input is passed to the encoder, then passed through the decoder, and through using the attention mechanism, we can get an output that is a lambda calculus expression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Both of these sequences can be represented as L- layer recurrent neural networks with long short- term memory (LSTM) that are used to take the tokens from the sentences and the expressions we have.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' The model creates 200 (can be changed to increase and decrease the size of the network) units of both LSTM cells and GRU cells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' The GRU cells are used to help compensate for the vanishing gradient problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' These LSTM and GRU cells are used in the input sequence to encode x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=', xq into vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Then these vectors are what form the hidden state of the beginning of the sequence in the decoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Then in the decoder, the topmost LSTM cell predicts the t-th output token by taking the softmax of the parameter matrix and the vector from the LSTM cell multiplied by a one-hot vector used to compute the probability of the output from the probability distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' The softmax used here is sampled softmax, which only takes into account a subset of our vocabulary V rather than everything to help alleviate the difficulty of finding the softmax of a large vocabulary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='2 Attention Mechanism The model also implemented an attention mecha- nism to help with the predicted values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' The mo- tivation behind the attention mechanism is to use the input sequence in the decoding process since it is relevant information for the prediction of the output token.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' To achieve this, a context vector is created which is the weighted sums of the hidden vectors in the encoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Then this context vector is used as context to find the probability of generating a given output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='3 Training To train the model, the objective is the maximize the likelihood of predicting the correct logical form given some natural language expression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Hence, the goal is to minimize the sum of the log prob- ability of predicting logical form a given natural language utterance q summed over all training pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' The model used the RMSProp algorithm which is an extension of the Adagrad optimizer but uti- lizes learning rate adaptation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Dropout is also used for regularization which helps out with a smaller datasets to prevent overfitting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' We performed 90 epochs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content="4 Inference To perform inference, the argmax is found of the probability of candidate output given the natural AttentionLayer whatmicrosoftjobs answer(J,(compa ny(J,'microsoft)." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='j do not require a ob,not(reqde bscs?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' g(J,bscs))) Input Sequence Sequence/Tree Logical Utterance Encoder Decoder Formlanguage utterance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Since it is not possible to find the probability of all possible outputs, the proba- bility is put in a form such that a beam search can be employed to generate each individual token of lambda calculus expression to get the appropriate output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' 6 Results With the default parameters set, the Sequence to Se- quence model achieved 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='7% accuracy for exact matches on the test dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' This is consistent with the model’s performance on the Geoquery dataset, achieving 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='9% accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' The test dataset pro- vided contained a 250 entries of similar utterances to the train dataset of various complexities ranging anywhere from one to six actions being performed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' There are other methods of evaluating we would like to look into in the future such as computing something such as an F1 score rather than solely relying on exact logical form matching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' This accuracy for exact logical forms is really important when using the parser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' It allows for FSM representation to be easily and quickly built.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' We were able to build the XML representation and run basic commands on the robot with the model maintaining the order we said them in.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' 7 Logical Form Parser The logical form output of our model is sent to a custom parser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' The goal of this parser is to translate the output form into BehaviorTree XML files, in which the robot is able to read in as a finite state machine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='1 Tokenizer The Tokenizer comprises the initial framework of the parser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' It accepts the raw logical form as a String object and outputs a set of tokens in a Python List.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' These tokens are obtained by looking for sepa- rator characters (in our case, a space) present in the logical form and splitting them into an array-like structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' The Tokenizer method permits custom action, parameter, and variable names from the log- ical form input, thus allowing ease of scalability in implementing new robot actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Our model’s output nature is not able to generate syntactically incorrect logical forms, thus our implementation does not check for invalid tokens and will assume all input is correct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' The Tokenizer is stored in a static Singleton class such that it can be accessed anywhere in the program once initialized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' It keeps track of the current token (using getToken()) and has an implementation to move forward to the next token skipToken().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' This functionality is impor- tant for the object-oriented approach of the parser, discussed in the next section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='2 Parsing Lambda Calculus Expressions The output tokens from the Tokenizer must be in- terpreted into a proper Python from before they are staged to be turned into XML-formatted robot- ready trees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' This is the function of the middle step of the parser, in which a tree of Python objects are built.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' The parser utilizes an object-oriented approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' As such, we include three objects: Sequence, Action, and Parameter, with each corresponding to an individual member of our cus- tom grammar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' The objects orient themselves into a short 3-deep tree, consisting of a Sequence root, Action children, and Parameter grand-children.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Each object has its own parse() method that will advance the tokenizer, validate the input structure, and assemble themselves into a Python structure to be staged into an XML file.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' The validations are en- forced through our grammar definitions in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='1 Sequence Object The Sequence object is the first object initialized by the parser, along with the root of our action tree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Each Sequence is composed of a list of 0 or more child actions to be executed in the order they appear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' The parseSequence() method will parse each individual action using parseSAction(), all the while assembling a list of child actions for this Sequence object.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' As of now, Sequence objects are unable to be their own children (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' nesting Sequences is not permitted).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' However, if required, the Sequence object’s parseSequence() method can be modified to recognize a nested action se- quence and recursively parse it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='2 Action Object Action objects define the title of the action be- ing performed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Similar to Sequence, Action ob- jects have an internally stored list, however with Parameter objects as children.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' There may be any number of parameters, including none.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' When parseAction() method is called, the program val- idates the tokens and will call parseParameter() on each Parameter child identified by the action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='3 Parameter Object The Parameter object is a simple object that stores a parameter’s name and value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' The parser does not have a check for what the name of the pa- rameter is, nor does it have any restrictions to what the value can be.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' parseParameter() searches through the tokens for these two items and stores them as attributes to the Parameter object.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' This implementation of parameter is scalable with robot parameters and allows any new configuration of parameter to pass by without any changes in the parser as a whole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' If a new parameter is needed for the robot, it only has to be trained into the Seq2Seq model on the frontend and into the robot itself on the backend;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' the Parameter object should take care of it all the same.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='3 BehaviorTree Output In the end, the parser outputs an XML file which can be read in to BehaviorTree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='CPP (Fanconti, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' An example of this file structure is shown in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Figure 4: A FSM that was generated from test input through our RNN This file structure is useful because it encodes sequence of actions within it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' The leaves of the sequence are always in order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' The tree can also encode subtrees into the sequence which we have not implemented yet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' 8 Discussion 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='1 Summary We learned that semantic parsing is excellent tool at bridging the gap between both technical and non- technical individuals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' The power within semantic parsing with robotics is that any human can auto- mate any task just through using their words.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Our dataset is written in a way that just extending the entries with another robot’s tasks that use a behav- ior tree to perform action, that robot’s actions can be automated as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='2 Future Plans Future plans with this project would be to ex- pand the logical flow that can be implemented with BehaviorTree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='CPP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' As an FSM library, Behav- iorTree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='CPP implements many more helper func- tions to create more complicated FSMs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' These include things like if statements fallback nodes, and subtrees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' This would be a valid expansion of our RNN’s logical output and with more time, we could support the full range of features from BehaviorTree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='CPP We would also like to implement a front end user interface to make this service more accessible to anyone who was not technical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Right now, the only means of running our program is through the command line which is not suitable for individuals who are nontechnical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Moreover, including a speak- to-text component to this project would elevate it since an individual would be able to directly tell a robot what commands to do, similar to a human.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='3 Source Code You can view the source code here: https:// github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='com/jrimyak/parse_seq2seq References Vinyals, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=', Kaiser, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=', Koo, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=', Petrov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=', Sutskever, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' & Hinton, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Grammar as a Foreign Language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' (2015), Dong, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' & Lapata, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Language to Logical Form with Neural Attention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' (2016), Yao, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=', Tang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=', Yih, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=', Sun, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' & Su, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' An Im- itation Game for Learning Semantic Parsers from User Interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Proceedings Of The 2020 Confer- ence On Empirical Methods In Natural Language Processing (EMNLP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' (2020), Yao, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=', Su, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=', Sun, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' & Yih, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Model-based In- teractive Semantic Parsing: A Unified Framework and A Text-to-SQL Case Study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Proceedings Of The 2019 Conference On Empirical Methods In Natu- ral Language Processing And The 9th International Joint Conference On Natural Language Processing (EMNLP-IJCNLP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' 5450-5461 (2019), Walker, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=', Peng, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' & Cakmak, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Neural Se- mantic Parsing with Anonymization for Command Understanding in General-Purpose Service Robots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Lecture Notes In Computer Science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' 337-350 (2019), Dukes, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Supervised Semantic Parsing of Robotic Spatial Commands .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='SemEval-2014 Task 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' (2014), Walker, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' GPSR Commands Dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' (Zenodo,2019), https://zenodo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='org/record/3244800, test.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='xm 1 2 3 4 6 7 8 6Avikdelta parse seq2seq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' GitHub Repository.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' (2018), https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='com/avikdelta/parse_ seq2seq, Faconti, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' BehaviorTree - Groot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' GitHub Repository.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' (2020), https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='com/BehaviorTree/ Groot, Faconti, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' BehaviorTree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='CPP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Github Repository.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' (2020), https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='com/BehaviorTree/ BehaviorTree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='CPP, Hwang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=', Yim, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=', Park, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' & Seo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' A Compre- hensive Exploration on WikiSQL with Table-Aware Word Contextualization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' (2019), OSU-UWRT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Riptide Autonomy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' GitHub Reposi- tory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' (2021), https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='com/osu-uwrt/ riptide_autonomy, Parekh, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' The Ohio State University Underwater Robotics Tempest AUV Design and Implementa- tion (2021) https://robonation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='org/app/ uploads/sites/4/2021/07/RoboSub_2021_ The-Ohio-State-U_TDR-compressed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content='pdf, Zettlemoyer, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' & Collins, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' Learning to Map Sen- tences to Logical Form: Structured Classification with Probabilistic Categorial Grammars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
+page_content=' (2012),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFLT4oBgHgl3EQfpC-v/content/2301.12134v1.pdf'}
diff --git a/1NFAT4oBgHgl3EQfjx2F/vector_store/index.faiss b/1NFAT4oBgHgl3EQfjx2F/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..6b1e51cfade5ce9890d2dd5560516379241e47ba
--- /dev/null
+++ b/1NFAT4oBgHgl3EQfjx2F/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:3bd5cc73774d3a9794bb686b1252c14981e7646f255741c42411abd127d8a1ba
+size 983085
diff --git a/1NFKT4oBgHgl3EQfOi14/vector_store/index.faiss b/1NFKT4oBgHgl3EQfOi14/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..ab0b288b587042446e8a78d315b7e683607cce9f
--- /dev/null
+++ b/1NFKT4oBgHgl3EQfOi14/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4db162a1b372b12f6d7e18b533b21750c15690dcf1b2a7ddbdf9c4f3bfc88e5e
+size 2949165
diff --git a/2NE3T4oBgHgl3EQfnwo5/vector_store/index.faiss b/2NE3T4oBgHgl3EQfnwo5/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..5ac77a72c2e9e68f585a88f5e34a27422ecdd8a5
--- /dev/null
+++ b/2NE3T4oBgHgl3EQfnwo5/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:49bec3d77ebab617b8b56672133d0b1d577d1c9daed027f7da3c146a572ba126
+size 655405
diff --git a/39E1T4oBgHgl3EQfAgJ2/content/tmp_files/2301.02840v1.pdf.txt b/39E1T4oBgHgl3EQfAgJ2/content/tmp_files/2301.02840v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..29bdaa014fb388c49b23226b3ce2c23e9ad1a39e
--- /dev/null
+++ b/39E1T4oBgHgl3EQfAgJ2/content/tmp_files/2301.02840v1.pdf.txt
@@ -0,0 +1,1755 @@
+arXiv:2301.02840v1 [cs.NI] 7 Jan 2023
+Network Slicing: Market Mechanism and
+Competitive Equilibria
+Panagiotis Promponas, and Leandros Tassiulas
+Department of Electrical Engineering and Institute for Network Science, Yale University, USA
+{panagiotis.promponas, leandros.tassiulas}@yale.edu
+Abstract—Towards addressing spectral scarcity and enhancing
+resource utilization in 5G networks, network slicing is a
+promising technology to establish end-to-end virtual networks
+without requiring additional infrastructure investments. By
+leveraging Software Defined Networks (SDN) and Network
+Function Virtualization (NFV), we can realize slices completely
+isolated and dedicated to satisfy the users’ diverse Quality
+of Service (QoS) prerequisites and Service Level Agreements
+(SLAs). This paper focuses on the technical and economic
+challenges that emerge from the application of the network
+slicing architecture to real-world scenarios. We consider a market
+where multiple Network Providers (NPs) own the physical
+infrastructure and offer their resources to multiple Service
+Providers (SPs). Then, the SPs offer those resources as slices
+to their associated users. We propose a holistic iterative model
+for the network slicing market along with a clock auction that
+converges to a robust ǫ-competitive equilibrium. At the end of
+each cycle of the market, the slices are reconfigured and the SPs
+aim to learn the private parameters of their users. Numerical
+results are provided that validate and evaluate the convergence
+of the clock auction and the capability of the proposed market
+architecture to express the incentives of the different entities of
+the system.
+Index Terms—Network Slicing, Mechanism Design, Network
+Economics, Bayesian Inference
+I. INTRODUCTION
+The ascending trend of the volume of the data traffic,
+as well as the vast number of connected devices, puts
+pressure on the industries to enhance resource utilization in
+5G wireless networks. With the advent of 5G networks and
+Internet of Things (IoT), researchers aim at a technological
+transformation to simultaneously improve throughput, extend
+network coverage and augment the users’ quality of service
+without wasting valuable resources. Despite the significant
+advances brought by the enhanced network architectures and
+technologies, spectral scarcity will still impede the realization
+of the full potential of 5G technology.
+In the future 5G networks, verticals need distinct network
+services as they may differ in their Quality of Service (QoS)
+requirements, Service Level Agreements (SLAs), and key
+performance indicators (KPIs). Such a need highlights the
+inefficiency of the previous architecture technologies which
+were based on a ”one network fits all” nature. In this
+This paper appeared in INFOCOM 2023.
+The research work was supported by the Office of Naval Research under
+project numbers N00014-19-1-2566, N00173-21-1-G006 and by the National
+Science Foundation under the project number CNS-2128530.
+direction, network slicing is a promising technology that
+enables the transition from one-size-fits-all to one-size-per-
+service abstraction [1], which is customized for the distinct
+use cases in a contemporary 5G network model.
+Using Software Defined Networks (SDN) and Network
+Function Virtualization (NFV), those slices are associated with
+completely isolated resources that can be tailored on-demand
+to satisfy the diverse QoS prerequisites and SLAs. Resource
+allocation in network slicing plays a pivotal role in load
+balancing, resource utilization and networking performance
+[2]. Nevertheless, such a resource allocation model faces
+various challenges in terms of isolation, customization, and
+end-to-end coordination which involves both the core but also
+the Radio Access Network (RAN) [3].
+In a typical network slicing scenario, multiple Network
+Providers (NPs), own the physical infrastructure and offer
+their resources to multiple Service Providers (SPs). Possible
+services of the SPs include e-commerce, video, gaming, virtual
+reality, wearable smart devices, and other IoT devices. The
+SPs offer their resources as completely isolated slices to their
+associated users. Thereby, such a system contains three types
+of actors that interact with each other and compete for the same
+resources, either monetary or networking. This paper focuses
+on the technical and economic challenges that emerge from
+the application of this architecture to real-world scenarios.
+A. Related Work
+User
+Satisfaction
+&
+Sigmoid
+Functions:
+Network
+applications can be separated into elastic (e.g. email, text
+file transfer) and inelastic (e.g. audio/video phone, video
+conference, tele-medicine) [4]. Utilities for elastic applications
+are modeled as concave functions that increase with the
+resources with diminishing returns [4]. On the other hand,
+the utility function for an inelastic traffic is modeled as
+a non-concave and usually as a sigmoid function. Such
+non-concavities impose challenges for the optimization of
+a network, but are suitable with the 5G era where the
+services may differ in their QoS requirements [5]. In that
+direction, multiple works in the literature employ sigmoid
+utility functions for the network users [5]–[13]. Nevertheless,
+all of these works consider either one SP and model the
+interaction between the users, or multiple SPs that compete
+for a fixed amount of resources (e.g. bandwidth).
+Network
+Slicing
+in
+5G
+Networks: Network slicing
+introduces various challenges to the resource allocation in 5G
+
+networks in terms of isolation, customization, elasticity, and
+end-to-end coordination [2]. Most surveys on network slicing
+investigate its multiple business models motivated by 5G, the
+fundamental architecture of a slice and the state-of-the-art
+algorithms of network slicing [2], [14], [15]. Microeconomic
+theories such as non-cooperative games and/or mechanism
+design arise as perfect tools to model the trading of network
+infrastructure and radio resources that takes place in network
+slicing [9], [16]–[18].
+Mechanism Design in Network Slicing: Multiple auction
+mechanisms have been used to identify the business model
+of a network slicing market (see a survey in [16]). Contrary
+to our work, the majority of the literature considers a single-
+sided auction, a model that assumes that a single NP owns the
+whole infrastructure of the market [9], [18]–[22]. For example,
+[9] considers a Vickrey–Clarke–Groves (VCG) auction-based
+model where the NP plays the role of an auctioneer and
+distributes discrete physical resource blocks. We find [3] and
+[17] to be closer to our work, since the authors employ
+the double-sided auction introduced by [23] to maximize the
+social welfare of a system with multiple NPs. Contrary to our
+work, the auction proposed in [23] assumes concave utility
+functions for the different actors and requires the computation
+of their gradients for its convergence. The aforementioned
+assumptions might lead to an over-simplification of a more
+complex networking architecture (e.g. that of the network
+slicing model) where the utility function for a user with
+inelastic traffic is expressed as a sigmoid function [9] and that
+of an SP as an optimization problem [3].
+B. Contributions
+Our work develops an iterative market model for the
+network
+slicing
+architecture,
+where
+multiple
+NPs
+with
+heterogeneous Radio Access Technologies (RATs), own the
+physical infrastructure and offer their resources to multiple
+SPs. The latter offer the resources as slices to their associated
+users. Specifically, we propose a five-step iterative model
+for the network slicing market that converges to a robust ǫ-
+competitive equilibrium even when the utility functions of
+the different actors are non-concave. In every cycle of the
+proposed model, the slices are reconfigured and the SPs learn
+the private parameters of their associated end-users to make the
+equilibrium of the next cycle more efficient. The introduced
+market model, can be seen as a framework that suits well
+to various networking problems where three types of actors
+are involved: those who own the physical infrastructure, those
+who lease part of it to sell services and those who enjoy the
+services (e.g. data-offloading [23]).
+For the interaction between the SPs and the NPs and for
+the convergence of the market to an equilibrium, we propose
+an iterative clock auction. Such dynamic auctions are used
+in the literature to auction divisible goods [24], [25]. The
+key differentiating aspects of the proposed auction, are (i) the
+relaxation of the common assumptions that the utility functions
+are concave and their gradients can be analytically computed,
+(ii) it provides highly usable price discovery, and (iii) it is a
+double-sided auction, and thus appropriate for a market with
+multiple NPs. Numerical results are provided that validate
+and evaluate the convergence of the clock auction and the
+capability of the proposed market architecture to express the
+incentives of the different entities of the system.
+II. MARKET MODEL & INCENTIVES
+In this section we describe the different entities of the
+network slicing market and their conflicting incentives.
+A. Market Model
+A typical slicing system model [2], [3], [14], [15] consists of
+multiple SPs represented by M = {1, 2, . . ., M} and multiple
+NPs that own RANs of possibly different RATs, represented
+by a set K = {1, 2, . . ., K}. Each SP owns a slice with a
+predetermined amount of isolated resources (e. g., bandwidth)
+and is associated with a set of users, Um, that serves through its
+slices. For the rest of the paper and without loss of generality
+we assume that each NP owns exactly one RAN, so we use
+the terms RAN and NP interchangeably.
+1) Network Providers: The multiple NPs of the system
+can quantify their radio resources as the performance level of
+the same network metric (e.g., downlink throughput) [3]. Let
+x(m,k) denote the amount of resources NP k allocates to SP
+m, and the vector xm := (x(m,k))k∈K to denote the amount of
+resources m gets from every NP. Without loss of generality [3],
+capacity Ck limits the amount of resources that can be offered
+from NP k, i.e., �M
+m=1 x(m,k) ≤ Ck. Let C = (Ck)k∈K. For
+the rest of the paper, we assume that there is a constant cost
+related to operation and management overheads induced to the
+NP. The main goal of every NP k is to maximize its profits
+by adjusting the price per unit of resources, denoted by ck.
+2) Service Providers & Associated Users: The main goal of
+an SP is to purchase resources from a single or multiple NPs in
+order to maximize its profit, which depends on its associated
+users’ satisfaction. The connectivity of a user i ∈ Um is
+denoted by a vector βi = (β(k,i))k∈K, where β(k,i) is a non-
+negative number representing factors such as the link quality
+i.e., numbers in (0, 1] that depend on the path loss. Moreover,
+each user i of the SP m, is associated with a service class,
+c(i), depending on their preferences. We denote the set of the
+possible service classes of SP m as Cm = {Cm
+1 , . . . , Cm
+cm}
+and thus c(i) ∈ Cm,
+∀i ∈ Um. Each SP m, is trying to
+distribute the resources purchased from the NPs, i.e., xm,
+to maximize its profit. This process, referred to as intra-slice
+resource allocation, is described in detail in Section II-B.
+Throughout the paper, we assume that the number of users
+of every SP m, i.e., |Um|, is much greater than the number
+of SPs, which is much greater than the number of NPs in
+the market. This assumption is made often in the mechanism
+design literature and is sufficient to ensure that the end-users
+and the SPs have limited information of the market [23], [26].
+The latter let us consider them as price-takers. In the following
+section, we describe in detail the intra-slice resource allocation
+problem from the perspective of an SP who tries to maximize
+the satisfaction of its associated users.
+
+B. Intra-Slice Resource Allocation
+The problem of the intra-slice resource allocation concerns
+the distribution of the resources, xm, from the SP m to
+its associated users. Specifically, every SP m allocates a
+portion of x(m,k) to its associated user i, denoted as r(k,i).
+Let ri := (r(k,i))k∈K and rm := (ri)i∈Um. For ease of
+notation, the resources, ri, of a user i ∈ Um, as well as the
+connectivities, βi, are not indexed by m because i is assumed
+to be a unique identifier for the user. Although every user i
+is assigned with r(k,i) resources from RAN k, because of its
+connectivity βi, the aggregated amount of resources it gets
+is zi := βT
+i ri. Moreover, let zm := (zi)i∈Um. In a feasible
+intra-slice allocation it should hold that xm ⪰ �
+i∈Um ri for
+each SP m.
+Every SP should distribute the obtained resources among
+its users to maximize their satisfaction. Towards providing
+intuition behind the employment of sigmoidal functions in the
+literature to model user satisfaction (e.g. see [5]–[12]), note
+that by making the same assumption as logistic regression,
+we model the logit1 of the probability that a user is satisfied,
+as a linear function of the resources. Hence, the probability
+that user i is satisfied with the amount of resources zi, say
+P[QoS sati], satisfies log(
+P [QoS sati]
+1−P [QoS sati]) = tz
+c(i)(zi − kc(i))
+and thus:
+P[QoS sati] =
+etz
+c(i)(zi−kc(i))
+1 + etz
+c(i)(zi−kc(i)) ,
+(1)
+where kc(i) ≥ 0 denotes the prerequisite amount of resources
+of the user i and tz
+c(i)
+≥ 0 expresses how ”tight” this
+prerequisite is. Note that the probability of a user being
+satisfied with respect to the value of zi, is a sigmoid function
+with inflection point kc(i). We assume that the user’s service
+class fully determines its private parameters, hence every user
+i ∈ c(i) has QoS prerequisite kc(i) and sensitivity parameter
+tz
+c(i). These parameters are unknown to the users, so the SP’s
+goal to eventually learn them is challenging (Section III-C).
+Given the previous analysis, the aggregated satisfaction of
+the users of the SP m is um(rm) := �
+i∈Um ui(ri) ( [10],
+[7]), where
+ui(ri) :=
+etz
+c(i)(βT
+i ri−kc(i))
+1 + etz
+c(i)(βT
+i ri−kc(i)) .
+(2)
+Note that the function ui(·) can be expressed as a function of
+zi as well. With a slight abuse of notation, we switch between
+the two by changing the input variable. We can write the final
+optimization problem for the intra-slice allocation of SP m as:
+(IN-SL):
+max
+rm
+um(rm)
+s.t.
+ri ⪰ 0,
+∀i ∈ Um
+xm ⪰
+�
+i∈Um
+ri
+In case the amount of resources obtained from every NP, xm,
+is not given, SP m can optimize it together with the intra-
+1The logit function is defined as logit(p) = log(
+p
+1−p ).
+slice resource allocation. Hence, SP m can solve the following
+problem
+(P):
+max
+rm,xm
+Ψm(rm, xm) := um(rm) − cT xm
+s.t.
+ri ⪰ 0,
+∀i ∈ Um
+xm ⪰
+�
+i∈Um
+ri
+Recall that ck denotes the price per unit of resources
+announced from every NP k. In Problem P , the objective
+function Ψm can be thought of as the profit of SP m. Let the
+solution of the above problem be ψ∗
+m.
+Problems IN-SL and P are maximization problems of
+a summation of sigmoid functions over a linear set of
+constraints. In [27] the problem of maximizing a sum of
+sigmoid functions over a convex constraint set is addressed.
+This work shows that this problem is generally NP-hard and
+it proposes an approximation algorithm, using a branch-and-
+bound method, to find an approximate solution to the sigmoid
+programming problem.
+In the rest of the section, we study three variations of
+problem P. Specifically, in Section II-B1, we study the case
+where the end-users are charged to get the resources from
+the SPs and in Sections II-B2 and II-B3 we regularize and
+concavify P respectively, something that will facilitate the
+analysis of the rest of the paper.
+1) Price Mechanism in P: In this subsection we argue that
+Problem P is expressive enough to capture the case where
+every user i is charged for its assigned resources. Let pi be
+the amount of money that user i should pay to receive the zi
+resources. In that case, the SPs should modify Problems IN-
+SL and P accordingly. First, note that user i’s satisfaction may
+depend also on pi. Similarly with the previous section, we can
+express the satisfaction of user i with respect to the price pi
+using a sigmoid function as P[price sati] =
+1
+1+e
+tp
+c(i)(pi−bc(i)) ,
+where bc(i) ≥ 0 is the budget of the user i for the prerequisite
+resources kc(i), and tp
+c(i) ≥ 0 expresses how ”tight” is this
+budget. We can now model the acceptance probability function
+[7] as P[sati] = P[price sati]P[QoS sati], and hence the
+expected total revenue, or the new utility of SP m, u
+′
+m, is
+modeled as
+u
+′
+m(rm, pm) :=
+�
+i∈Um
+P[sati]pi.
+(3)
+From Eq. (3), it is possible for SP m to immediately determine
+the optimal price ˆpi to ask from any user i ∈ Um. This follows
+from the fact that for positive pi the function admits a unique
+critical point, ˆp. Therefore, by just adding proper coefficients
+to the terms of Problem IN-SL and P, we can embed a pricing
+mechanism for the end-users in the model. For the rest of the
+paper, without loss of generality in our model, we assume that
+the end-users are not charged for the obtained resources.
+2) Regularization of P : We can regularize Problem P ,
+with a small positive λm. In that manner, we encourage dense
+
+solutions and hence we avoid situations where a problem in
+one RAN completely disrupts the operation of the SP.
+( ¯
+P ):
+max
+rm,xm
+Ψm(rm, xm) − λm∥xm∥2
+2
+s.t.
+ri ⪰ 0,
+∀i ∈ Um
+xm ⪰
+�
+i∈Um
+ri
+In the regularized problem
+¯
+P , note that larger values of
+λm penalize the vectors xm with greater L2 norms. Let the
+solution of Problem ¯
+P be ¯ψ∗
+m. The Lemma below, shows that
+for small λm, the optimal values ¯ψ∗
+m and ψ∗
+m are close. Its
+proof is simple and thus ommited for brevity.
+Lemma 1. Let (r∗
+m, x∗
+m) and (¯r∗
+m, ¯x∗
+m) be solutions of
+Problems P and ¯
+P respectively. Then,
+ψ∗
+m − λm∥x∗
+m∥2
+2 ≤ ¯ψ∗
+m ≤ ψ∗
+m − λm∥¯x∗
+m∥2
+2
+Lemma 1, proves that the regularization of P was (almost)
+without loss of optimality. In the next section, we proceed by
+concavifying Problem ¯
+P . The new concavified problem will
+be a fundamental building block of the auction analysis in
+Section III-A.
+3) Concavification of
+¯P : To concavify
+¯P , we replace
+every summand of um with its tightest concave envelope,
+i.e., the pointwise infimum over all concave functions that are
+greater or equal. For the sigmoid function ui(zi) the concave
+envelope, ˆui(zi), has a closed form given by
+ˆui(zi) =
+�
+ui(0) + ui(w)−ui(0)
+w
+zi
+0≤zi≤w
+ui(zi)
+w≤zi
+,
+for some w > ki which can be found easily by bisection
+[27]. Fig. 1 depicts the concavification of the aforementioned
+sigmoid functions for kc(·) = 100 and three different values
+for tz
+c(·). Note that for the lowest tz
+c(·) (elastic traffic) we get the
+best approximation whilst for the largest (inelastic traffic/tight
+QoS prerequisites) we get the worst.
+To exploit the closed form of the envelope ˆui(zi), instead
+of problem ¯P , we will concavify the equivalent problem:
+( ˜
+P ):
+max
+rm,xm,zm,
+�
+i∈Um
+fi(ri, zi) − cT xm − λm∥xm∥2
+2,
+s.t.
+(ri, zi) ∈ Si,
+∀i ∈ Um
+xm ⪰
+�
+i∈Um
+ri
+where Si
+:=
+{(ri, zi)
+:
+ri
+⪰
+0, zi
+=
+βT
+i ri } and
+fi(ri, zi) := ui(zi) with domain Si. The following lemma
+uses the concave envelope of the sigmoid function ui(zi),
+to compute the concave envelope of fi(ri, zi) and hence the
+concavification of the problem ˜
+P . Its proof is based on the
+definition of the concave envelope and is omitted for brevity.
+Lemma 2. The concave envelope of the function fi(ri, zi) :=
+e
+tz
+c(i)(zi−kc(i))
+1+e
+tz
+c(i)(zi−kc(i)) with domain Si, ˆfi(ri, zi), has the following
+closed form (with domain Si):
+ˆfi(ri, zi) = ˆui(zi),
+∀(ri, zi) ∈ Si.
+Therefore, SP m can concavify ˜P as follows:
+( ˆ
+P ):
+max
+rm,xm,zm
+�
+i∈Um
+ˆfi(ri, zi) − cT xm − λm∥xm∥2
+2
+s.t.
+(ri, zi) ∈ Si,
+∀i ∈ Um
+xm ⪰
+�
+i∈Um
+ri
+Note that ˆ
+P is strongly concave and thus admits a unique
+maximizer. Let the solution and the optimal point of problem
+ˆ
+P be ˆψ∗
+m and (ˆx∗
+m, ˆr∗
+m) respectively. Ultimately, we would
+like to compare the solution of the concavified ˆ
+P with the
+one of the original problem P . Towards that direction, we
+first define the nonconcavity of a function as follows [28]:
+Definition 1 (Nonconcavity of a function). We define the
+nonconcavity ρ(f) of a function f : S → R with domain
+S, to be
+ρ(f) = sup
+x ( ˆf(x) − f(x)).
+Let F denote a set of possibly non-concave functions. Then
+define ρ[j](F) to be the jth largest of the nonconcavities of
+the functions in F. The theorem below, summarizes the main
+result of this section, which is that every SP can solve the
+concavified ˆ
+P instead of the original P , since the former
+provides a constant bound approximation of the latter. Recall
+that Ψm(ˆr∗
+m, ˆx∗
+m) is the profit of SP m, evaluated at the
+solution of ˆ
+P and that K is the number of the NPs.
+Theorem 1. Let (r∗
+m, x∗
+m) and (¯r∗
+m, ¯x∗
+m) be solutions of
+Problems P
+and
+¯
+P
+respectively. Moreover, let
+ˆF
+:=
+{ui}i∈Um. Then,
+ψ∗
+m − ǫ − δ1(λm) ≤ Ψm(ˆr∗
+m, ˆx∗
+m) ≤ ψ∗
+m + δ2(λm),
+where δ1(λm)
+:=
+λm(∥x∗
+m∥2
+2 − ∥ˆx∗
+m∥2
+2), δ2(λm)
+:=
+λm(∥ˆx∗
+m∥2
+2 − ∥¯x∗
+m∥2
+2) and ǫ = �K
+j=1 ρ[j]( ˆF).
+Proof:
+Note that ¯ψ∗
+m is also given by solving ˜
+P and that (ˆr∗
+m, ˆx∗
+m)
+with the corresponding optimal value ˆψ∗
+m, are given by solving
+ˆ
+P . Therefore, from [28, Th. 1], we have that
+¯ψ∗
+m −
+K
+�
+j=1
+ρ[j]( ˆF) ≤ um(ˆr∗
+m) − cT ˆx∗
+m − λm∥ˆx∗
+m∥2
+2 ≤ ¯ψ∗
+m
+The result follows from Lemma 1.
+Remark 1. The values of δ1 and δ2 decrease as λm decreases
+and hence for small regularization penalties they can get
+arbitrarily close to zero.
+Remark 2. The approximation error, ǫ, depends on the K
+greatest nonconcavities of the set {ui}i∈Um. There are two
+conditions that ensure negligible approximation error, i.e.,
+ǫ << ψ∗
+m: i) the end-users have concave utility functions
+(in that case ǫ → 0) or, ii) the market is profitable enough
+for every SP m and hence ψ∗
+m >> K. Condition ii) makes
+the error negligible since ǫ ≤ K, and it can be satisfied for
+example when the supply of the market, C, is sufficiently large.
+
+0
+50
+100
+150
+200
+250
+300
+z
+i
+0.2
+0.4
+0.6
+0.8
+1.0
+utility
+Sigmoid Utility
+Concave Envelope
+(a)
+0
+50
+100
+150
+200
+250
+300
+z
+i
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+utility
+Sigmoid Utility
+Concave Envelope
+(b)
+0
+50
+100
+150
+200
+250
+300
+z
+i
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+utility
+Sigmoid Utility
+Concave Envelope
+(c)
+Fig. 1: Concave Envelopes of sigmoid utility functions with kc(·) =
+100 and (a) tz
+c(·) = 0.02, (b) tz
+c(·) = 0.2 and (c) tz
+c(·) = 2.
+Theorem 1, implies that every SP can solve Problem ˆ
+P ,
+which is a concave program with a unique solution, to find
+an approximate solution to P . This observation fosters the
+convergence analysis of the proposed auction in Section III-A.
+III. NETWORK SLICING MARKET CYCLE
+In this section, we study the evolution of the network slicing
+market using an iterative model that consists of 5-step cycles.
+We refer to the following sequence of steps as a market cycle:
+S1. |Um| prospective users appear to every SP m.
+S2. The vector xm, i.e., the distribution of the resources from
+the NPs to SP m is determined for every m. To achieve
+that in a distributed fashion, an auction between the SPs
+and the NPs should be realized.
+S3. Given xm, each SP m determines the vectors ri and
+hence the amount of resources zi for every user i ∈ Um
+(intra-slice resource allocation).
+S4. After receiving the resources, each user i determines and
+reports to the SP whether the QoS received was enough
+or not to complete its application.
+S5. The SPs exploit the responses of their users, to estimate
+their private parameters and hence to distribute the
+resources more efficiently in the next cycle.
+It is important for the vector xm to be determined before
+the intra-slice resource allocation, since the first serves as the
+capacity in the resources available to SP m. In the following,
+we expand upon each (non-trivial) step of the market cycle.
+A. Step S2 - Clock Auction for the Network Slicing Market
+In this section, we develop and analyze a clock auction
+between the SPs and the NPs, that converges to a market’s
+equilibrium. Specifically, we describe the goal (Section
+III-A1), the steps (Section III-A2), and the convergence
+(Section III-A3) of the auction.
+1) Auction Goal: Note that the solutions of the problems
+P and ˆ
+P appear to be a function of the prices c1, . . . , cK. Let
+the demand of SP m, given the price vector c, be denoted as
+x∗
+m(c) or ˆx∗
+m(c) depending on whether SP m uses Problem
+P or ˆ
+P to ask for resources. Let also r∗
+m(c) and ˆr∗
+m(c)
+be optimal intra-slice resource allocation vectors respectively.
+Hence, (r∗
+m(c), x∗
+m(c)) and (ˆr∗
+m(c), ˆx∗
+m(c)) are maximizers
+of P and ˆ
+P respectively (given c). Since Problem P may
+admit multiple solutions, let the set Dm(c) be defined as
+Dm(c) :=
+�
+x∗
+m : {∃r∗
+m : {Ψm(r∗
+m, x∗
+m) = ψ∗
+m given c}
+�
+.
+We define a Competitive equilibrium as follows:
+Definition
+2
+(Competitive
+equilibrium).
+Competitive
+equilibrium of the Network Slicing Market is defined to be
+any price vector c† and allocation of the resources of the
+NPs x†, such that:
+i. x†
+m ∈ Dm(c†) for every SP m, and
+ii. C = �
+m∈M x†
+m (the demand equals the supply).
+Note that in a competitive equilibrium, every SP m gets
+resources that could maximize its profit given the price vector.
+Because a competitive equilibrium sets a balance between the
+interests of all participants, it appears to be the settling point
+of the markets in economic analysis [26], [29]. Nevertheless,
+since the SPs’ demands are expressed by solving a non-
+concave program, we define an ǫ-competitive equilibrium
+which will be the ultimate goal of the proposed clock auction.
+Definition
+3
+(ǫ-Competitive
+equilibrium).
+ǫ-Competitive
+equilibrium of the Network Slicing Market is defined to be
+any price vector ˆc† and allocation of the resources of the NPs
+ˆx†, such that:
+i. For every SP m, there exists an ǫ ≥ 0 and a feasible intra-
+slice resource allocation vector ˆr†
+m (given ˆx†
+m), such that:
+ψ∗
+m − ǫ ≤ Ψm(ˆr†
+m, ˆx†
+m) ≤ ψ∗
+m + ǫ, and
+ii. C = �
+m∈M ˆx†
+m (the demand equals the supply).
+Observe that the first condition of the above definition
+ensures that every SP is satisfied (up to a constant) with
+the obtained resources in a sense that it operates close to its
+maximum possible profit. From Theorem 1, note that if there
+exists a price vector ˆc† such that C = �
+m∈M ˆx∗
+m(ˆc†), then
+the prices in ˆc† with the allocation ˆx† := ˆx∗(ˆc†) form an
+ǫ-competitive equilibrium. Finding such a price vector, is the
+motivation of the proposed clock auction. For the rest of the
+paper we make the following assumption:
+Assumption 1. The SPs calculate their demand and intra-
+resource allocation by solving Problem ˆ
+P .
+This is a reasonable assumption since in Theorem 1 and the
+corresponding Remarks 1 and 2, we proved that by solving
+a (strictly) concave problem, every SP can operate near its
+optimal profit. Therefore, for the rest of the paper, we call
+ˆx∗
+m(c), the demand of SP m given the prices c.
+2) Auction Description: We propose the following clock
+auction that converges to an ǫ-competitive equilibrium of the
+Network Slicing market (Theorem 2). As we will prove in
+Theorem 3, this equilibrium is robust since the convergent
+price vector is the unique one that clears the market, i.e., makes
+the demand to equal the supply.
+
+i. An
+auctioneer
+announces
+a
+price
+vector
+c,
+each
+component of which corresponds to the price that an NP
+sells a unit of its resources.
+ii. The bidders (SPs) report their demands.
+iii. If the aggregated demand received by an NP is greater
+than its available supply, the price of that NP is increased
+and vice versa. In other words, the auctioneer adjusts the
+price vector according to Walrasian tatonnement.
+iv. The process repeats until the price vector converges.
+Note that the components of the price vector change
+simultaneously and independently. Hence different brokers
+can cooperate to jointly clear the market efficiently in a
+decentralized fashion [23]. Let the excess demand, Z(c), be
+the difference between the aggregate demand and supply:
+Z(c) = −C + �
+m∈M ˆx∗
+m(c). In Walrasian tatonnement, the
+price vector adjusts in continuous time according to excess
+demand as ˙c = f(Z(c(t))), where f is a continuous, sign-
+preserving transformation [24]. For the rest of the paper, we
+set f to be the identity function and thus ˙c = Z(c(t)). In
+auctions based on Walrasian tatonnement, the payments are
+only valid after the convergence of the mechanism [30].
+3) Auction Convergence: Towards proving the convergence
+of the auction, we provide the lemma below which proves that
+the concavified version of the intra-slice resource allocation
+problem IN − SL, can be thought of as a concave function.
+The proof is ommitted as a direct extension of [3] and [31].
+Lemma 3. The function Um(xm) shown below is concave.
+Um(xm) := max
+rm,zm
+�
+i∈Um
+ˆfi(ri, zi)
+s.t.
+(ri, zi) ∈ Si,
+∀i ∈ Um
+xm ⪰
+�
+i∈Um
+ri
+(4)
+Using the function Um, we can rewrite Problem ˆ
+P as
+max
+xm⪰0
+Um(xm) − λm − cT xm∥xm∥2
+2.
+The following theorem studies the convergence of the auction.
+Theorem 2. Starting from any price vector cinit, the proposed
+clock auction converges to an ǫ-competitive equilibrium.
+Proof: The proof relies on a global stability argument
+similarly to [24], [29]. Let Vm(·) denote m’s net indirect
+utility function:
+Vm(c) = max
+xm⪰0
+{Um(xm) − λm∥xm∥2
+2 − cT xm}.
+Let a candidate Lyapunov function be V(c) := cT C +
+�
+m∈M Vm(c). To study the convergence of the auction we
+should find the time derivative of the above Lyapunov function:
+˙V(c)= ˙c·
+�
+CT +�
+m∈M
+d
+dc
+�
+maxxm⪰0{Um(xm)−λm∥xm∥2
+2−cT xm}
+��
+.
+Hence, we deduce that:
+˙V(c) =
+�
+CT +
+�
+m∈M
+{−ˆx∗T
+m (c)}
+�
+· ˙c = −ZT(c(t)) · Z(c(t)).
+The above holds true since the function h(xm) := Um(xm)−
+λm∥xm∥2
+2, has as concave conjugate the function (see [31])
+h∗(s) = max
+xm⪰0{h(xm) − cT xm},
+and hence ∇h∗(s) = arg maxxm⪰0{Um(xm)− λm∥xm∥2
+2 −
+cT xm}. Therefore, V(·) is a decreasing function of time and
+converges to its minimum. Note that in the convergent point
+the supply equals the demand for every NP.
+The market might admit multiple ǫ-competitive equilibria.
+Nevertheless, the equilibrium point that the clock auction
+converges is robust in the following sense: given Assumption
+1, the price vector that clears the market is unique. Therefore,
+essentially, in Theorem 2 we proved that the proposed clock
+auction converges to that unique price vector. This is formally
+proposed by the following theorem.
+Theorem 3. There exists a unique price vector c† such that
+�
+m∈M ˆx∗
+m(c†) = C.
+Towards proving Theorem 3 we provide Lemmata 4 and 5.
+First, we show that if a component in the price vector changes,
+the demand of an SP who used to obtain resources from the
+corresponding NP, should change as well.
+Lemma 4. For two distinct price vectors c, ¯c with ∃k : ck ̸=
+¯ck, it holds true that
+ˆx∗
+m(c) = ˆx∗
+m(¯c) ⇒ ˆx∗
+(m,k)(c) = ˆx∗
+(m,k)(¯c) = 0.
+Proof: Let such price vectors, ¯c and c, with ck ̸= ¯ck.
+Since ˆx∗
+m(c) is the optimal point of problem ˆ
+P given c,
+applying KKT will give:
+ˆx∗
+(m,k)(c) = 0
+or
+∂{Um(xm) − λm∥xm∥2
+2}
+∂x(m,k)
+����
+ˆx∗m(c)
+= ck. (5)
+However, ˆx∗
+m(¯c) is optimal for ˆ
+P given ¯c. Employing a similar
+equation as (5) proves that if ˆx∗
+m(c) = ˆx∗
+m(¯c) then it can only
+hold that ˆx∗
+(m,k)(c) = ˆx∗
+(m,k)(¯c) = 0.
+Definition
+4
+(WARP property). The aggregate demand
+function satisfies the Weak Axiom of Revealed Preferences
+(WARP), if for different price vectors c and ¯c, it holds that:
+cT ·
+�
+m∈M
+ˆx∗
+m(¯c) ≤ cT ·
+�
+m∈M
+ˆx∗
+m(c) ⇒
+¯cT ·
+�
+m∈M
+ˆx∗
+m(¯c) < ¯cT ·
+�
+m∈M
+ˆx∗
+m(c)
+Lemma 5. The aggregate demand function satisfies the WARP
+for distinct price vectors c, ¯c such that �
+m∈M ˆx∗
+m(c) ≻ 0
+and �
+m∈M ˆx∗
+m(¯c) ≻ 0.
+Proof: Since c ̸= ¯c then ∃k ∈ K : ck ̸= ¯ck. Furthermore,
+we have that �
+m∈M ˆx∗
+m(c) ≻ 0 and hence ∃m1 ∈ M
+such that ˆx∗
+m1,k(c) > 0. Using Lemma 4 we conclude that
+ˆx∗
+m1(c) ̸= ˆx∗
+m1(¯c). Hence, since Problem ˆ
+P admits a unique
+global maximum we have that:
+�
+m∈M
+�
+Um(ˆx∗
+m(c)) − λm∥ˆx∗
+m(c)∥2
+2 − cT · ˆx∗
+m(c)
+�
+>
+
+�
+m∈M
+�
+Um(ˆx∗
+m(¯c)) − λm∥ˆx∗
+m(¯c)∥2
+2 − cT · ˆx∗
+m(¯c)
+�
+Now, the above combined with the WARP hypothesis,
+�
+m∈M
+cT · ˆx∗
+m(¯c) ≤
+�
+m∈M
+cT · ˆx∗
+m(c),
+gives:
+�
+m∈M
+�
+Um(ˆx∗
+m(c)) − λm∥ˆx∗
+m(c)∥2
+2
+�
+>
+�
+m∈M
+�
+Um(ˆx∗
+m(¯c)) − λm∥ˆx∗
+m(¯c)∥2
+2
+�
+.
+(6)
+The result follows by switching the roles of c and ¯c and
+combine the inequalities.
+We can now prove Theorem 3 as follows.
+proof of Theorem 3:
+Towards a contradiction, assume
+that there exist two distinct (non-zero) price vectors c and ¯c
+that satisfy �
+m∈M ˆx∗
+m(¯c) = �
+m∈M ˆx∗
+m(c) = C and thus
+cT ·
+� �
+m∈M
+ˆx∗
+m(¯c) −
+�
+m∈M
+ˆx∗
+m(c)
+�
+= 0.
+(7)
+Therefore, from Lemma 5 we know that:
+¯cT ·
+�
+m∈M
+ˆx∗
+m(¯c) < ¯cT ·
+�
+m∈M
+ˆx∗
+m(c),
+(8)
+which is a contradiction because of the hypothesis.
+Remark 3. Theorems 2 and 3 together with Remarks 1 and 2
+imply that if the users’ traffic is elastic, or the total capacity
+C of the NPs is sufficiently large, the clock auction converges
+monotonically to the unique competitive equilibrium of the
+market.
+At the end of step S2, the final price vector ˆc† and the final
+demands of each SP m, ˆx∗
+m, have been determined.
+B. Intra-Slice Resource Allocation & Feedback (Steps S3, S4)
+At the beginning of step S3, every SP m is aware of the
+convergent point ˆx∗
+m and hence it can allocate the resources
+either by solving the sigmoid program IN − SL, or by
+using the convergent approximate solution, ˆr∗
+m. At that step,
+an SP can also determine whether it will overbook network
+resources. Overbooking, is a common practice in airlines and
+hotel industries and is now being used in the network slicing
+problem [32], [33]. This management model allocates the
+same resources to users of the network expecting that not
+everyone uses their booked capacity. In that case, SP m solves
+Problem IN−SL whilst setting increased obtained resources,
+xov
+m = ˆx∗
+m +α%◦ ˆx∗
+m, for a relatively small positive α. Here,
+◦ denotes the component-wise multiplication operator.
+During the step S4 of the cycle, each user i, receives their
+resources ri, and provide feedback on whether it was satisfied
+or not. In the next step, the SPs can use the these responses
+to learn the private parameters of the different service classes.
+C. Learning the Parameters (Step S5)
+At the final step of the cycle, the SPs exploit the data they
+obtained to learn the private parameters of their users. In that
+fashion, the market ”learns” its equilibrium. For the rest of
+the paper, for generality, we assume the pricing mechanism
+introduced in Section II-B1. Therefore, for every user i, the
+SPs get to know whether it is satisfied by the pair of resources-
+price (zi, pi). A Bayesian inference model needs the data, a
+model for the private parameters and a prior distribution.
+Model: The observed data is the outcome of the Bernoulli
+variables sati|θc(i)
+∼ Bernoulli(P[sati]) for every user
+i, where θc(i)
+=
+(tp
+c(i), bc(i), tz
+c(i), kc(i)) is the tuple of
+the private parameters that we want to infer. Prior: Let
+the prior distribution for every parameter of θc(i) have
+probability density functions πtp
+c(i)(·), πbc(i)(·), πtz
+c(i)(·) and
+πkc(i)(·) respectively. The SPs infer the private parameters
+θc(i) for each service class using the Bayes rule separately:
+p(θc(i)|data) ∝ Ln(data|θc(i))π(θc(i)), where p(θc(i)|data)
+is the posterior distribution of θc(i), Ln(data|θc(i)) is the
+likelihood of the data given our model and π(θc(i)) is the
+prior distribution. Assuming independent private parameters,
+π(θc(i)) is the product of the distinct prior distributions, and
+for each class c we have that:
+Ln(data|θc(i)) =
+�
+i∈Cm
+c
+P[sati]fi(1 − P[sati])1−fi,
+where fi is 1 when user i is satisfied and 0 when not.
+The SPs can use Marcov Chain Monte Carlo (MCMC) with
+Metropolis Sampling, to find the posterior distribution after
+each market cycle. As the market evolves, the SPs exploit the
+previous posterior distributions to find better priors for the next
+cycle.
+IV. CENTRALIZED SOLUTION
+In case there exists a centralized entity that knows the utility
+function of every SP, it can optimize the social welfare, i.e.,
+the summation of the utility functions of the service and the
+network providers. This centralized problem can be formulated
+as follows:
+(SWM):
+max
+rm
+�
+m∈M
+um(rm)
+s.t.
+ri ⪰ 0,
+∀i ∈ Um
+�
+m∈M
+�
+i∈Um
+ri ⪯ C
+The SW M problem, can be solved with any chosen positive
+approximation error, using the framework of sigmoidal
+programming [27].
+V. NUMERICAL RESULTS
+A. Auction Convergence & Parameter Tuning
+In this section we study the convergence of the clock
+auction, as well as the impact that the various parameters have
+on its behavior. For this simulation, we assume a small market
+with 3 NPs with capacities C1 = 850, C2 = 750, C3 = 755
+
+0
+2
+4
+6
+8
+10
+12
+14
+Iterations
+0
+1
+2
+3
+4
+5
+6
+7
+L2 Norm of the Excess Demand
+1e6
+cinit = [0.62, 0.64, 0.58]
+cinit = [1.2, 1.4, 1.1]
+cinit = [0.2, 0.4, 0.1]
+cinit = [0.4, 0.4, 1.1]
+(a)
+0
+10
+20
+30
+40
+50
+Iterations
+0
+2500
+5000
+7500
+10000
+12500
+15000
+17500
+L2 Norm of the Excess Demand
+κ = 10^{-4}
+κ = 10^{-5}
+κ = 10^{-6}
+(b)
+Fig. 2: L2 norm of the excess demand vector throughout the clock
+auction (a) for κ = 10−4 and various initialization price vectors
+cinit, and (b) for cT
+init = [0.62, 0.64, 0.58] and different values of
+κ.
+Cost of NP1
+0.30.40.50.60.7 0.8 0.9 1.0 1.1
+Cost of NP2
+0.4
+0.6
+0.8
+1.0
+1.2
+Cost of NP3
+0.4
+0.5
+0.6
+0.7
+0.8
+0.9
+1.0
+cinit = [0.62, 0.64, 0.58]
+cinit = [1.2, 1.4, 1.1]
+cinit = [0.2, 0.4, 0.1]
+cinit = [0.4, 0.4, 1.1]
+Fig. 3: Illustrating Theorem 2. Starting from any price vector cinit,
+the clock auction converges to the market clearing prices c†.
+and 5 SPs with 6 users and 3 distinct service classes each.
+The users’ private parameters are set as follows: for an i in
+the first class tz
+c(i) = tp
+c(i) = 0.2, kc(i) = bc(i) = 100, for the
+second class tz
+c(i) = tp
+c(i) = 2, kc(i) = bc(i) = 120, and for the
+third class tz
+c(i) = tp
+c(i) = 20, kc(i) = bc(i) = 150. Such values
+indicate that the users wish to pay a unit of monetary value
+for a unit of offered resources.
+To discretize the auction, we change the cost vector
+according to a step value, κ, as ct+1 = ct + κZ(ct). Fig. 2
+depicts the L2 norm of the excess demand vector throughout
+the clock auction for different cost vector initializations cinit
+(Fig 2a), and for different step values κ (Fig. 2b). By
+simulating the clock auction, we deduce that the clearing price
+vector is c†T = [0.6116, 0.6273, 0.5811]. In Fig. 2a note that
+the closer the initialization cost vector is to c†T , the faster
+the convergence becomes. Fig. 2b, connotes the need for a
+proper choice of the step value κ. Clearly, κ = 10−4 gives
+the fastest convergence and as we decrease the step values
+it becomes slower. Nevertheless, since Theorem 2 is proved
+for the continuous case, large values of κ cannot guarantee
+the convergence of the auction to an equilibrium. In Fig. 3
+observe that the convergence of the auction does not depend
+on the initialization of the cost vector (Theorem 2).
+SP1/NP1
+SP1/NP2
+SP2/NP1
+SP2/NP2
+Service Provider/Network Provider
+0
+200
+400
+600
+800
+1000
+1200
+1400
+x
+m,
+k
+Auction
+SPP
+oSPP(5%)
+SWM
+Fig. 4: Total amount of resources obtained by every SP m from
+every NP k in the market, x(m,k).
+B. Visualization of the Resource Allocation
+In this section, we get insights on the allocation of
+the resources in the market. We assume 2 NPs with
+C1 = C2 = 1400 and 2 SPs with 10 users each and one shared
+service class with tz
+c(i) = tp
+c(i) = 0.2 and kc(i) = bc(i) = 100
+for all i. The first SP (SP1) is near the first NP (NP1)
+and far from NP2 and hence, we set [β(1,1), . . . , β(1,10)] =
+[0.99, 0.96, 0.87, 0.85, 0.82, 0.81, 0.80, 0.80, 0.70, 0.70]
+and
+β(2,i) = 0.2, ∀i ∈ U1. Moreover, for the users of SP2 we set
+β1,i = β2,i = 0.8, ∀i ∈ U2.
+We compare the resource allocation of four different
+methods. First, ’Auction’ refers to the resource allocation that
+results immediately after the auction. ’SPP’ takes ˆx∗
+m from the
+equilibrium but performs the intra-slice of every SP by solving
+IN − SL. We also study the method ’oSPP(5%)’, which
+mimics the SPP method but with 5% overbooked resources.
+Finally, ’SWM’ refers to the solution of the Problem SW M.
+Fig. 4 shows the amount of resources obtained from the
+two SPs. All methods allocate the majority of the resources
+of NP1 to SP1 since its users have greater connectivity with
+it. Although the users of SP2 have equally high connectivity
+with both NPs, all of the four methods were flexible enough
+to allocate the resources of NP2 to SP2. Note that none of the
+methods gives resources from NP2 to SP1.
+Fig. 5 depicts the intra-slice resource allocations. In Fig.
+5a observe that the greater the connectivity of a user is,
+the less resources it gets. That is because users with good
+connectivity factors meet their prerequisite QoS using less
+resources and hence SP1 could maximize its expected profit
+by giving them less. Note that ’SPP’ gives no resources to the
+user with the worst connectivity whereas with the overbooking,
+SP1 gets enough resources to make attractive offers to every
+user. Therefore, ’SPP’ might make an unfair allocation, since
+when the resources are not enough, it neglects the users with
+bad connectivity. In Fig. 5c, note that the homogeneity in the
+connectivities of the users of SP2 forces every method to fairly
+divide the resources among them.
+Fig. 6a shows the expected value of the total revenue, or the
+social welfare. ’SWM’ gives the greatest revenue among the
+methods that do not overbook. Nevertheless, although ’SPP’
+is a completely distributed solution and was not designed to
+maximize the total revenue, it performs very close to ’SWM’.
+Moreover, a 5% overbooking leads to greater revenues.
+
+1
+2
+3
+4
+5
+6
+7
+8
+9
+10
+User ID of SP1
+0
+25
+50
+75
+100
+125
+150
+175
+r
+1,
+i
+Auction
+SPP
+oSPP(5%)
+SWM
+(a)
+1
+2
+3
+4
+5
+6
+7
+8
+9
+10
+User ID of SP2
+0
+10
+20
+30
+40
+50
+r
+1,
+i
+Auction
+SPP
+oSPP(5%)
+SWM
+(b)
+1
+2
+3
+4
+5
+6
+7
+8
+9
+10
+User ID of SP2
+0
+20
+40
+60
+80
+100
+120
+140
+160
+r
+2,
+i
+Auction
+SPP
+oSPP(5%)
+SWM
+(c)
+Fig. 5: The solution of the intra-slice resource allocation problem from the perspective of the two different SPs of the market. Specifically,
+how (a) SP1 distributed the resources of NP1, i.e., r1,i for every i in U1, (b) SP2 distributed the resources of NP1, i.e., r1,i for every i in
+U2, and (c) SP2 distributed the resources of NP2, i.e., r2,i for every i in U2.
+Auction
+SPP
+oSPP(5%)
+SWM
+Resource Allocation Method
+0
+200
+400
+600
+800
+1000
+1200
+1400
+1600
+Expected T
+otal Revenue
+1575.31
+1598.16
+1677.81
+1611.54
+(a)
+Auction
+SPP
+oSPP(5%)
+SWM
+Resource Allocation Method
+0
+100
+200
+300
+400
+500
+600
+700
+800
+Expected Revenue of SP1
+746.85
+769.65
+827.42
+806.49
+(b)
+Auction
+SPP
+οSPP(5%)
+SWM
+Resource Allocation Method
+0
+100
+200
+300
+400
+500
+600
+700
+800
+Expected Revenue of SP2
+828.46
+828.51
+850.39
+805.06
+(c)
+Fig. 6: Illustrating the expected revenue (given by Eq. (3)) for the four different resource allocation methods. Fig. (a) shows the aggregated
+expected revenue, Fig. (b) shows the expected revenue of SP1, and Fig. (c) shows the expected revenue of SP2.
+C. Impact of Bayesian Inference
+The previous results are extracted after a sufficient number
+of cycles, when the SPs have learned the parameters of the
+end-users. In this section, we consider an SP with 10 users
+and one service class that employs Bayesian inference to learn
+the private parameter tz
+c(i) for every i. We set the true value
+of the parameter to be tz
+c(i) = 2. The other parameters are
+set tp
+c(i) = 2, kc(i) = bc(i) = 120 and β1,i = 0.9, ∀i ∈ U1.
+We assume one more SP with a unique service class with
+tp
+c(i) = tz
+c(i) = 0.2, kc(i) = bc(i) = 100 and β2,i = 0.9∀i ∈ U2.
+Finally, there are 2 NPs with C1 = C2 = 1200.
+In this example, SP1 sets as prior distribution the normal
+N(0.02, 2) and hence assumes elastic traffic. At the end
+of each market cycle, the SP makes an estimation, ˆtz
+c(i),
+by calculating the mean of the posterior distribution. Fig. 7
+depicts the histogram of the posterior distribution for the first
+two market cycles. Observe that even in the third market cycle,
+SP1 can estimate with high accuracy the actual value of the
+parameter. In Table I, note that the perceived revenue, i.e., the
+expected revenue calculated using the estimation, is different
+between the cycles that ˆtz
+c(i) differs from tz
+c(i). Hence, it is
+impossible for the SPs to maximize their expected profits
+when they don’t know the actual values of the parameters.
+Indeed, observe that the bad estimate of ˆtz
+c(i) = 0.02 gives
+poor expected revenue compared to the last two cycles.
+VI. CONCLUDING REMARKS
+In this paper we focus on the technical and economic
+challenges that emerge from the application of the network
+slicing architecture to real world scenarios. Taking into
+0
+2
+4
+6
+8
+0.0
+0.1
+0.2
+0.3
+0.4
+tc(i)
+z
+(a)
+0
+1
+2
+3
+4
+5
+6
+0.0
+0.1
+0.2
+0.3
+0.4
+0.5
+tc(i)
+z
+(b)
+Fig. 7: Posterior distribution of the unknown private parameter tz
+c(i)
+in (a) the first Market Cycle, and (b) in the second Market Cycle.
+Cycle
+ˆtz
+c(i)
+Acquired
+Resources
+Perceived
+Revenue
+Actual
+Revenue
+1
+0.02
+1087
+530.26
+699
+2
+1.68
+1370
+1160.77
+1163.48
+3
+2.01
+1365
+1161.42
+1161.42
+TABLE I: Bayesian inference in different market cycles.
+consideration the heterogenity of the users’ service classes
+we introduce an iterative market model along with a clock
+auction that converges to a robust ǫ-competitive equilibrium.
+Finally, we propose a Bayesian inference model, for the SPs
+to learn the private parameters of their users and make the
+next equilibria more efficient. Numerical results validate the
+convergence of the clock auction and the capability of the
+proposed framework to capture the different incentives.
+
+REFERENCES
+[1] Q.
+Zhang,
+F.
+Liu,
+and
+C.
+Zeng,
+“Adaptive
+interference-aware
+vnf placement for service-customized 5g network slices,” in IEEE
+INFOCOM 2019-IEEE Conference on Computer Communications.
+IEEE, 2019, pp. 2449–2457.
+[2] R.
+Su,
+D.
+Zhang,
+R.
+Venkatesan,
+Z.
+Gong,
+C.
+Li,
+F.
+Ding,
+F. Jiang, and Z. Zhu, “Resource allocation for network slicing in 5g
+telecommunication networks: A survey of principles and models,” IEEE
+Network, vol. 33, no. 6, pp. 172–179, 2019.
+[3] Q. Qin, N. Choi, M. R. Rahman, M. Thottan, and L. Tassiulas, “Network
+slicing in heterogeneous software-defined rans,” in IEEE INFOCOM
+2020-IEEE Conference on Computer Communications.
+IEEE, 2020,
+pp. 2371–2380.
+[4] Q.-V. Pham and W.-J. Hwang, “Network utility maximization-based
+congestion control over wireless networks: A survey and potential
+directives,” IEEE Communications Surveys & Tutorials, vol. 19, no. 2,
+pp. 1173–1200, 2016.
+[5] J.-W. Lee, R. R. Mazumdar, and N. B. Shroff, “Non-convex optimization
+and rate control for multi-class services in the internet,” IEEE/ACM
+transactions on networking, vol. 13, no. 4, pp. 827–840, 2005.
+[6] J. Liu, “A theoretical framework for solving the optimal admissions
+control
+with
+sigmoidal
+utility
+functions,”
+in
+2013
+International
+Conference on Computing, Networking and Communications (ICNC).
+IEEE, 2013, pp. 237–242.
+[7] A. Lieto, I. Malanchini, S. Mandelli, E. Moro, and A. Capone,
+“Strategic network slicing management in radio access networks,” IEEE
+Transactions on Mobile Computing, 2020.
+[8] Q. Zhu and R. Boutaba, “Nonlinear quadratic pricing for concavifiable
+utilities in network rate control,” in IEEE GLOBECOM 2008-2008 IEEE
+Global Telecommunications Conference.
+IEEE, 2008, pp. 1–6.
+[9] L. Gao, P. Li, Z. Pan, N. Liu, and X. You, “Virtualization framework
+and vcg based resource block allocation scheme for lte virtualization,” in
+2016 IEEE 83rd Vehicular Technology Conference (VTC Spring). IEEE,
+2016, pp. 1–6.
+[10] G. Lee, H. Kim, Y. Cho, and S.-H. Lee, “Qoe-aware scheduling for
+sigmoid optimization in wireless networks,” IEEE Communications
+Letters, vol. 18, no. 11, pp. 1995–1998, 2014.
+[11] M. Hemmati, B. McCormick, and S. Shirmohammadi, “Qoe-aware
+bandwidth allocation for video traffic using sigmoidal programming,”
+IEEE MultiMedia, vol. 24, no. 4, pp. 80–90, 2017.
+[12] L. Tan, Z. Zhu, F. Ge, and N. Xiong, “Utility maximization resource
+allocation
+in wireless networks: Methods and algorithms,” IEEE
+Transactions on systems, man, and cybernetics: systems, vol. 45, no. 7,
+pp. 1018–1034, 2015.
+[13] S. Papavassiliou, E. E. Tsiropoulou, P. Promponas, and P. Vamvakas,
+“A paradigm shift toward satisfaction, realism and efficiency in wireless
+networks resource sharing,” IEEE Network, vol. 35, no. 1, pp. 348–355,
+2020.
+[14] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck,
+“Network slicing and softwarization: A survey on principles, enabling
+technologies,
+and
+solutions,”
+IEEE
+Communications
+Surveys
+&
+Tutorials, vol. 20, no. 3, pp. 2429–2453, 2018.
+[15] S. Vassilaras, L. Gkatzikis, N. Liakopoulos, I. N. Stiakogiannakis, M. Qi,
+L. Shi, L. Liu, M. Debbah, and G. S. Paschos, “The algorithmic aspects
+of network slicing,” IEEE Communications Magazine, vol. 55, no. 8,
+pp. 112–119, 2017.
+[16] U. Habiba and E. Hossain, “Auction mechanisms for virtualization
+in 5g cellular networks: basics, trends, and open challenges,” IEEE
+Communications Surveys & Tutorials, vol. 20, no. 3, pp. 2264–2293,
+2018.
+[17] D. Zhang, Z. Chang, F. R. Yu, X. Chen, and T. H¨am¨al¨ainen, “A double
+auction mechanism for virtual resource allocation in sdn-based cellular
+network,” in 2016 IEEE 27th Annual International Symposium on
+Personal, Indoor, and Mobile Radio Communications (PIMRC).
+IEEE,
+2016, pp. 1–6.
+[18] F. Fu and U. C. Kozat, “Wireless network virtualization as a sequential
+auction game,” in 2010 Proceedings IEEE INFOCOM.
+IEEE, 2010,
+pp. 1–9.
+[19] H. Ahmadi, I. Macaluso, I. Gomez, L. DaSilva, and L. Doyle,
+“Virtualization of spatial streams for enhanced spectrum sharing,” in
+2016 IEEE Global Communications Conference (GLOBECOM). IEEE,
+2016, pp. 1–6.
+[20] B. Cao, W. Lang, Y. Li, Z. Chen, and H. Wang, “Power allocation in
+wireless network virtualization with buyer/seller and auction game,” in
+2015 IEEE Global Communications Conference (GLOBECOM). IEEE,
+2015, pp. 1–6.
+[21] K. Zhu and E. Hossain, “Virtualization of 5g cellular networks as
+a hierarchical combinatorial auction,” IEEE Transactions on Mobile
+Computing, vol. 15, no. 10, pp. 2640–2654, 2015.
+[22] K. Zhu, Z. Cheng, B. Chen, and R. Wang, “Wireless virtualization as
+a hierarchical combinatorial auction: An illustrative example,” in 2017
+IEEE Wireless Communications and Networking Conference (WCNC).
+IEEE, 2017, pp. 1–6.
+[23] G.
+Iosifidis,
+L.
+Gao,
+J.
+Huang,
+and
+L.
+Tassiulas,
+“A
+double-
+auction mechanism for mobile data-offloading markets,” IEEE/ACM
+Transactions on Networking, vol. 23, no. 5, pp. 1634–1647, 2014.
+[24] L. M. Ausubel and P. Cramton, “Auctioning many divisible goods,”
+Journal of the European Economic Association, vol. 2, no. 2-3, pp.
+480–493, 2004.
+[25] L. M. Ausubel, P. Cramton, and P. Milgrom, “The clock-proxy auction:
+A practical combinatorial auction design,” Handbook of Spectrum
+Auction Design, pp. 120–140, 2006.
+[26] S. SHEN, “First fundamental theorem of welfare economics,” 2018.
+[27] M. Udell and S. Boyd, “Maximizing a sum of sigmoids,” Optimization
+and Engineering, pp. 1–25, 2013.
+[28] ——, “Bounding duality gap for separable problems with linear
+constraints,” Computational Optimization and Applications, vol. 64,
+no. 2, pp. 355–378, 2016.
+[29] M. Bichler, M. Fichtl, and G. Schwarz, “Walrasian equilibria from an
+optimization perspective: A guide to the literature,” Naval Research
+Logistics (NRL), vol. 68, no. 4, pp. 496–513, 2021.
+[30] C. Courcoubetis and R. Weber, Pricing communication networks:
+economics, technology and modelling.
+John Wiley & Sons, 2003.
+[31] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
+Cambridge university press, 2004.
+[32] J. X. Salvat, L. Zanzi, A. Garcia-Saavedra, V. Sciancalepore, and
+X. Costa-Perez, “Overbooking network slices through yield-driven
+end-to-end orchestration,” in Proceedings of the 14th International
+Conference on emerging Networking EXperiments and Technologies,
+2018, pp. 353–365.
+[33] C. Marquez, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez,
+“Resource sharing efficiency in network slicing,” IEEE Transactions on
+Network and Service Management, vol. 16, no. 3, pp. 909–923, 2019.
+
+This figure "fig1.png" is available in "png"� format from:
+http://arxiv.org/ps/2301.02840v1
+
diff --git a/39E1T4oBgHgl3EQfAgJ2/content/tmp_files/load_file.txt b/39E1T4oBgHgl3EQfAgJ2/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..385ff7c35052a649344331377a28869325df5b1d
--- /dev/null
+++ b/39E1T4oBgHgl3EQfAgJ2/content/tmp_files/load_file.txt
@@ -0,0 +1,813 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf,len=812
+page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='02840v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='NI] 7 Jan 2023 Network Slicing: Market Mechanism and Competitive Equilibria Panagiotis Promponas, and Leandros Tassiulas Department of Electrical Engineering and Institute for Network Science, Yale University, USA {panagiotis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='promponas, leandros.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='tassiulas}@yale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='edu Abstract—Towards addressing spectral scarcity and enhancing resource utilization in 5G networks, network slicing is a promising technology to establish end-to-end virtual networks without requiring additional infrastructure investments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' By leveraging Software Defined Networks (SDN) and Network Function Virtualization (NFV), we can realize slices completely isolated and dedicated to satisfy the users’ diverse Quality of Service (QoS) prerequisites and Service Level Agreements (SLAs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' This paper focuses on the technical and economic challenges that emerge from the application of the network slicing architecture to real-world scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' We consider a market where multiple Network Providers (NPs) own the physical infrastructure and offer their resources to multiple Service Providers (SPs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Then, the SPs offer those resources as slices to their associated users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' We propose a holistic iterative model for the network slicing market along with a clock auction that converges to a robust ǫ-competitive equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' At the end of each cycle of the market, the slices are reconfigured and the SPs aim to learn the private parameters of their users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Numerical results are provided that validate and evaluate the convergence of the clock auction and the capability of the proposed market architecture to express the incentives of the different entities of the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Index Terms—Network Slicing, Mechanism Design, Network Economics, Bayesian Inference I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' INTRODUCTION The ascending trend of the volume of the data traffic, as well as the vast number of connected devices, puts pressure on the industries to enhance resource utilization in 5G wireless networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' With the advent of 5G networks and Internet of Things (IoT), researchers aim at a technological transformation to simultaneously improve throughput, extend network coverage and augment the users’ quality of service without wasting valuable resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Despite the significant advances brought by the enhanced network architectures and technologies, spectral scarcity will still impede the realization of the full potential of 5G technology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' In the future 5G networks, verticals need distinct network services as they may differ in their Quality of Service (QoS) requirements, Service Level Agreements (SLAs), and key performance indicators (KPIs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Such a need highlights the inefficiency of the previous architecture technologies which were based on a ”one network fits all” nature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' In this This paper appeared in INFOCOM 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' The research work was supported by the Office of Naval Research under project numbers N00014-19-1-2566, N00173-21-1-G006 and by the National Science Foundation under the project number CNS-2128530.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' direction, network slicing is a promising technology that enables the transition from one-size-fits-all to one-size-per- service abstraction [1], which is customized for the distinct use cases in a contemporary 5G network model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Using Software Defined Networks (SDN) and Network Function Virtualization (NFV), those slices are associated with completely isolated resources that can be tailored on-demand to satisfy the diverse QoS prerequisites and SLAs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Resource allocation in network slicing plays a pivotal role in load balancing, resource utilization and networking performance [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Nevertheless, such a resource allocation model faces various challenges in terms of isolation, customization, and end-to-end coordination which involves both the core but also the Radio Access Network (RAN) [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' In a typical network slicing scenario, multiple Network Providers (NPs), own the physical infrastructure and offer their resources to multiple Service Providers (SPs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Possible services of the SPs include e-commerce, video, gaming, virtual reality, wearable smart devices, and other IoT devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' The SPs offer their resources as completely isolated slices to their associated users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Thereby, such a system contains three types of actors that interact with each other and compete for the same resources, either monetary or networking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' This paper focuses on the technical and economic challenges that emerge from the application of this architecture to real-world scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Related Work User Satisfaction & Sigmoid Functions: Network applications can be separated into elastic (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' email, text file transfer) and inelastic (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' audio/video phone, video conference, tele-medicine) [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Utilities for elastic applications are modeled as concave functions that increase with the resources with diminishing returns [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' On the other hand, the utility function for an inelastic traffic is modeled as a non-concave and usually as a sigmoid function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Such non-concavities impose challenges for the optimization of a network, but are suitable with the 5G era where the services may differ in their QoS requirements [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' In that direction, multiple works in the literature employ sigmoid utility functions for the network users [5]–[13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Nevertheless, all of these works consider either one SP and model the interaction between the users, or multiple SPs that compete for a fixed amount of resources (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' bandwidth).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Network Slicing in 5G Networks: Network slicing introduces various challenges to the resource allocation in 5G networks in terms of isolation, customization, elasticity, and end-to-end coordination [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Most surveys on network slicing investigate its multiple business models motivated by 5G, the fundamental architecture of a slice and the state-of-the-art algorithms of network slicing [2], [14], [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Microeconomic theories such as non-cooperative games and/or mechanism design arise as perfect tools to model the trading of network infrastructure and radio resources that takes place in network slicing [9], [16]–[18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Mechanism Design in Network Slicing: Multiple auction mechanisms have been used to identify the business model of a network slicing market (see a survey in [16]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Contrary to our work, the majority of the literature considers a single- sided auction, a model that assumes that a single NP owns the whole infrastructure of the market [9], [18]–[22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' For example, [9] considers a Vickrey–Clarke–Groves (VCG) auction-based model where the NP plays the role of an auctioneer and distributes discrete physical resource blocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' We find [3] and [17] to be closer to our work, since the authors employ the double-sided auction introduced by [23] to maximize the social welfare of a system with multiple NPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Contrary to our work, the auction proposed in [23] assumes concave utility functions for the different actors and requires the computation of their gradients for its convergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' The aforementioned assumptions might lead to an over-simplification of a more complex networking architecture (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' that of the network slicing model) where the utility function for a user with inelastic traffic is expressed as a sigmoid function [9] and that of an SP as an optimization problem [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Contributions Our work develops an iterative market model for the network slicing architecture, where multiple NPs with heterogeneous Radio Access Technologies (RATs), own the physical infrastructure and offer their resources to multiple SPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' The latter offer the resources as slices to their associated users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Specifically, we propose a five-step iterative model for the network slicing market that converges to a robust ǫ- competitive equilibrium even when the utility functions of the different actors are non-concave.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' In every cycle of the proposed model, the slices are reconfigured and the SPs learn the private parameters of their associated end-users to make the equilibrium of the next cycle more efficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' The introduced market model, can be seen as a framework that suits well to various networking problems where three types of actors are involved: those who own the physical infrastructure, those who lease part of it to sell services and those who enjoy the services (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' data-offloading [23]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' For the interaction between the SPs and the NPs and for the convergence of the market to an equilibrium, we propose an iterative clock auction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Such dynamic auctions are used in the literature to auction divisible goods [24], [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' The key differentiating aspects of the proposed auction, are (i) the relaxation of the common assumptions that the utility functions are concave and their gradients can be analytically computed, (ii) it provides highly usable price discovery, and (iii) it is a double-sided auction, and thus appropriate for a market with multiple NPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Numerical results are provided that validate and evaluate the convergence of the clock auction and the capability of the proposed market architecture to express the incentives of the different entities of the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' MARKET MODEL & INCENTIVES In this section we describe the different entities of the network slicing market and their conflicting incentives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Market Model A typical slicing system model [2], [3], [14], [15] consists of multiple SPs represented by M = {1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=', M} and multiple NPs that own RANs of possibly different RATs, represented by a set K = {1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=', K}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Each SP owns a slice with a predetermined amount of isolated resources (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=', bandwidth) and is associated with a set of users, Um, that serves through its slices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' For the rest of the paper and without loss of generality we assume that each NP owns exactly one RAN, so we use the terms RAN and NP interchangeably.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 1) Network Providers: The multiple NPs of the system can quantify their radio resources as the performance level of the same network metric (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=', downlink throughput) [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Let x(m,k) denote the amount of resources NP k allocates to SP m, and the vector xm := (x(m,k))k∈K to denote the amount of resources m gets from every NP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Without loss of generality [3], capacity Ck limits the amount of resources that can be offered from NP k, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=', �M m=1 x(m,k) ≤ Ck.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Let C = (Ck)k∈K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' For the rest of the paper, we assume that there is a constant cost related to operation and management overheads induced to the NP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' The main goal of every NP k is to maximize its profits by adjusting the price per unit of resources, denoted by ck.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 2) Service Providers & Associated Users: The main goal of an SP is to purchase resources from a single or multiple NPs in order to maximize its profit, which depends on its associated users’ satisfaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' The connectivity of a user i ∈ Um is denoted by a vector βi = (β(k,i))k∈K, where β(k,i) is a non- negative number representing factors such as the link quality i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=', numbers in (0, 1] that depend on the path loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Moreover, each user i of the SP m, is associated with a service class, c(i), depending on their preferences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' We denote the set of the possible service classes of SP m as Cm = {Cm 1 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' , Cm cm} and thus c(i) ∈ Cm, ∀i ∈ Um.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Each SP m, is trying to distribute the resources purchased from the NPs, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=', xm, to maximize its profit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' This process, referred to as intra-slice resource allocation, is described in detail in Section II-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Throughout the paper, we assume that the number of users of every SP m, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=', |Um|, is much greater than the number of SPs, which is much greater than the number of NPs in the market.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' This assumption is made often in the mechanism design literature and is sufficient to ensure that the end-users and the SPs have limited information of the market [23], [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' The latter let us consider them as price-takers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' In the following section, we describe in detail the intra-slice resource allocation problem from the perspective of an SP who tries to maximize the satisfaction of its associated users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Intra-Slice Resource Allocation The problem of the intra-slice resource allocation concerns the distribution of the resources, xm, from the SP m to its associated users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Specifically, every SP m allocates a portion of x(m,k) to its associated user i, denoted as r(k,i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Let ri := (r(k,i))k∈K and rm := (ri)i∈Um.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' For ease of notation, the resources, ri, of a user i ∈ Um, as well as the connectivities, βi, are not indexed by m because i is assumed to be a unique identifier for the user.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Although every user i is assigned with r(k,i) resources from RAN k, because of its connectivity βi, the aggregated amount of resources it gets is zi := βT i ri.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Moreover, let zm := (zi)i∈Um.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' In a feasible intra-slice allocation it should hold that xm ⪰ � i∈Um ri for each SP m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Every SP should distribute the obtained resources among its users to maximize their satisfaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Towards providing intuition behind the employment of sigmoidal functions in the literature to model user satisfaction (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' see [5]–[12]), note that by making the same assumption as logistic regression, we model the logit1 of the probability that a user is satisfied, as a linear function of the resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Hence, the probability that user i is satisfied with the amount of resources zi, say P[QoS sati], satisfies log( P [QoS sati] 1−P [QoS sati]) = tz c(i)(zi − kc(i)) and thus: P[QoS sati] = etz c(i)(zi−kc(i)) 1 + etz c(i)(zi−kc(i)) , (1) where kc(i) ≥ 0 denotes the prerequisite amount of resources of the user i and tz c(i) ≥ 0 expresses how ”tight” this prerequisite is.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Note that the probability of a user being satisfied with respect to the value of zi, is a sigmoid function with inflection point kc(i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' We assume that the user’s service class fully determines its private parameters, hence every user i ∈ c(i) has QoS prerequisite kc(i) and sensitivity parameter tz c(i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' These parameters are unknown to the users, so the SP’s goal to eventually learn them is challenging (Section III-C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Given the previous analysis, the aggregated satisfaction of the users of the SP m is um(rm) := � i∈Um ui(ri) ( [10], [7]), where ui(ri) := etz c(i)(βT i ri−kc(i)) 1 + etz c(i)(βT i ri−kc(i)) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' (2) Note that the function ui(·) can be expressed as a function of zi as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' With a slight abuse of notation, we switch between the two by changing the input variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' We can write the final optimization problem for the intra-slice allocation of SP m as: (IN-SL): max rm um(rm) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' ri ⪰ 0, ∀i ∈ Um xm ⪰ � i∈Um ri In case the amount of resources obtained from every NP, xm, is not given, SP m can optimize it together with the intra- 1The logit function is defined as logit(p) = log( p 1−p ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' slice resource allocation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Hence, SP m can solve the following problem (P): max rm,xm Ψm(rm, xm) := um(rm) − cT xm s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' ri ⪰ 0, ∀i ∈ Um xm ⪰ � i∈Um ri Recall that ck denotes the price per unit of resources announced from every NP k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' In Problem P , the objective function Ψm can be thought of as the profit of SP m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Let the solution of the above problem be ψ∗ m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Problems IN-SL and P are maximization problems of a summation of sigmoid functions over a linear set of constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' In [27] the problem of maximizing a sum of sigmoid functions over a convex constraint set is addressed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' This work shows that this problem is generally NP-hard and it proposes an approximation algorithm, using a branch-and- bound method, to find an approximate solution to the sigmoid programming problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' In the rest of the section, we study three variations of problem P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Specifically, in Section II-B1, we study the case where the end-users are charged to get the resources from the SPs and in Sections II-B2 and II-B3 we regularize and concavify P respectively, something that will facilitate the analysis of the rest of the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 1) Price Mechanism in P: In this subsection we argue that Problem P is expressive enough to capture the case where every user i is charged for its assigned resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Let pi be the amount of money that user i should pay to receive the zi resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' In that case, the SPs should modify Problems IN- SL and P accordingly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' First, note that user i’s satisfaction may depend also on pi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Similarly with the previous section, we can express the satisfaction of user i with respect to the price pi using a sigmoid function as P[price sati] = 1 1+e tp c(i)(pi−bc(i)) , where bc(i) ≥ 0 is the budget of the user i for the prerequisite resources kc(i), and tp c(i) ≥ 0 expresses how ”tight” is this budget.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' We can now model the acceptance probability function [7] as P[sati] = P[price sati]P[QoS sati], and hence the expected total revenue, or the new utility of SP m, u ′ m, is modeled as u ′ m(rm, pm) := � i∈Um P[sati]pi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' (3) From Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' (3), it is possible for SP m to immediately determine the optimal price ˆpi to ask from any user i ∈ Um.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' This follows from the fact that for positive pi the function admits a unique critical point, ˆp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Therefore, by just adding proper coefficients to the terms of Problem IN-SL and P, we can embed a pricing mechanism for the end-users in the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' For the rest of the paper, without loss of generality in our model, we assume that the end-users are not charged for the obtained resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 2) Regularization of P : We can regularize Problem P , with a small positive λm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' In that manner, we encourage dense solutions and hence we avoid situations where a problem in one RAN completely disrupts the operation of the SP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' ( ¯ P ): max rm,xm Ψm(rm, xm) − λm∥xm∥2 2 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' ri ⪰ 0, ∀i ∈ Um xm ⪰ � i∈Um ri In the regularized problem ¯ P , note that larger values of λm penalize the vectors xm with greater L2 norms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Let the solution of Problem ¯ P be ¯ψ∗ m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' The Lemma below, shows that for small λm, the optimal values ¯ψ∗ m and ψ∗ m are close.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Its proof is simple and thus ommited for brevity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Let (r∗ m, x∗ m) and (¯r∗ m, ¯x∗ m) be solutions of Problems P and ¯ P respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Then, ψ∗ m − λm∥x∗ m∥2 2 ≤ ¯ψ∗ m ≤ ψ∗ m − λm∥¯x∗ m∥2 2 Lemma 1, proves that the regularization of P was (almost) without loss of optimality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' In the next section, we proceed by concavifying Problem ¯ P .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' The new concavified problem will be a fundamental building block of the auction analysis in Section III-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 3) Concavification of ¯P : To concavify ¯P , we replace every summand of um with its tightest concave envelope, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=', the pointwise infimum over all concave functions that are greater or equal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' For the sigmoid function ui(zi) the concave envelope, ˆui(zi), has a closed form given by ˆui(zi) = � ui(0) + ui(w)−ui(0) w zi 0≤zi≤w ui(zi) w≤zi , for some w > ki which can be found easily by bisection [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 1 depicts the concavification of the aforementioned sigmoid functions for kc(·) = 100 and three different values for tz c(·).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Note that for the lowest tz c(·) (elastic traffic) we get the best approximation whilst for the largest (inelastic traffic/tight QoS prerequisites) we get the worst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' To exploit the closed form of the envelope ˆui(zi), instead of problem ¯P , we will concavify the equivalent problem: ( ˜ P ): max rm,xm,zm, � i∈Um fi(ri, zi) − cT xm − λm∥xm∥2 2, s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' (ri, zi) ∈ Si, ∀i ∈ Um xm ⪰ � i∈Um ri where Si := {(ri, zi) : ri ⪰ 0, zi = βT i ri } and fi(ri, zi) := ui(zi) with domain Si.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' The following lemma uses the concave envelope of the sigmoid function ui(zi), to compute the concave envelope of fi(ri, zi) and hence the concavification of the problem ˜ P .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Its proof is based on the definition of the concave envelope and is omitted for brevity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' The concave envelope of the function fi(ri, zi) := e tz c(i)(zi−kc(i)) 1+e tz c(i)(zi−kc(i)) with domain Si, ˆfi(ri, zi), has the following closed form (with domain Si): ˆfi(ri, zi) = ˆui(zi), ∀(ri, zi) ∈ Si.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Therefore, SP m can concavify ˜P as follows: ( ˆ P ): max rm,xm,zm � i∈Um ˆfi(ri, zi) − cT xm − λm∥xm∥2 2 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' (ri, zi) ∈ Si, ∀i ∈ Um xm ⪰ � i∈Um ri Note that ˆ P is strongly concave and thus admits a unique maximizer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Let the solution and the optimal point of problem ˆ P be ˆψ∗ m and (ˆx∗ m, ˆr∗ m) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Ultimately, we would like to compare the solution of the concavified ˆ P with the one of the original problem P .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Towards that direction, we first define the nonconcavity of a function as follows [28]: Definition 1 (Nonconcavity of a function).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' We define the nonconcavity ρ(f) of a function f : S → R with domain S, to be ρ(f) = sup x ( ˆf(x) − f(x)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Let F denote a set of possibly non-concave functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Then define ρ[j](F) to be the jth largest of the nonconcavities of the functions in F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' The theorem below, summarizes the main result of this section, which is that every SP can solve the concavified ˆ P instead of the original P , since the former provides a constant bound approximation of the latter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Recall that Ψm(ˆr∗ m, ˆx∗ m) is the profit of SP m, evaluated at the solution of ˆ P and that K is the number of the NPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Let (r∗ m, x∗ m) and (¯r∗ m, ¯x∗ m) be solutions of Problems P and ¯ P respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Moreover, let ˆF := {ui}i∈Um.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Then, ψ∗ m − ǫ − δ1(λm) ≤ Ψm(ˆr∗ m, ˆx∗ m) ≤ ψ∗ m + δ2(λm), where δ1(λm) := λm(∥x∗ m∥2 2 − ∥ˆx∗ m∥2 2), δ2(λm) := λm(∥ˆx∗ m∥2 2 − ∥¯x∗ m∥2 2) and ǫ = �K j=1 ρ[j]( ˆF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Proof: Note that ¯ψ∗ m is also given by solving ˜ P and that (ˆr∗ m, ˆx∗ m) with the corresponding optimal value ˆψ∗ m, are given by solving ˆ P .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Therefore, from [28, Th.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 1], we have that ¯ψ∗ m − K � j=1 ρ[j]( ˆF) ≤ um(ˆr∗ m) − cT ˆx∗ m − λm∥ˆx∗ m∥2 2 ≤ ¯ψ∗ m The result follows from Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' The values of δ1 and δ2 decrease as λm decreases and hence for small regularization penalties they can get arbitrarily close to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' The approximation error, ǫ, depends on the K greatest nonconcavities of the set {ui}i∈Um.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' There are two conditions that ensure negligible approximation error, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=', ǫ << ψ∗ m: i) the end-users have concave utility functions (in that case ǫ → 0) or, ii) the market is profitable enough for every SP m and hence ψ∗ m >> K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Condition ii) makes the error negligible since ǫ ≤ K, and it can be satisfied for example when the supply of the market, C, is sufficiently large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 0 50 100 150 200 250 300 z i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='0 utility Sigmoid Utility Concave Envelope (a) 0 50 100 150 200 250 300 z i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='0 utility Sigmoid Utility Concave Envelope (b) 0 50 100 150 200 250 300 z i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='0 utility Sigmoid Utility Concave Envelope (c) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 1: Concave Envelopes of sigmoid utility functions with kc(·) = 100 and (a) tz c(·) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='02, (b) tz c(·) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='2 and (c) tz c(·) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Theorem 1, implies that every SP can solve Problem ˆ P , which is a concave program with a unique solution, to find an approximate solution to P .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' This observation fosters the convergence analysis of the proposed auction in Section III-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' NETWORK SLICING MARKET CYCLE In this section, we study the evolution of the network slicing market using an iterative model that consists of 5-step cycles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' We refer to the following sequence of steps as a market cycle: S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' |Um| prospective users appear to every SP m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' The vector xm, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=', the distribution of the resources from the NPs to SP m is determined for every m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' To achieve that in a distributed fashion, an auction between the SPs and the NPs should be realized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' S3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Given xm, each SP m determines the vectors ri and hence the amount of resources zi for every user i ∈ Um (intra-slice resource allocation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' S4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' After receiving the resources, each user i determines and reports to the SP whether the QoS received was enough or not to complete its application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' S5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' The SPs exploit the responses of their users, to estimate their private parameters and hence to distribute the resources more efficiently in the next cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' It is important for the vector xm to be determined before the intra-slice resource allocation, since the first serves as the capacity in the resources available to SP m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' In the following, we expand upon each (non-trivial) step of the market cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Step S2 - Clock Auction for the Network Slicing Market In this section, we develop and analyze a clock auction between the SPs and the NPs, that converges to a market’s equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Specifically, we describe the goal (Section III-A1), the steps (Section III-A2), and the convergence (Section III-A3) of the auction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 1) Auction Goal: Note that the solutions of the problems P and ˆ P appear to be a function of the prices c1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' , cK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Let the demand of SP m, given the price vector c, be denoted as x∗ m(c) or ˆx∗ m(c) depending on whether SP m uses Problem P or ˆ P to ask for resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Let also r∗ m(c) and ˆr∗ m(c) be optimal intra-slice resource allocation vectors respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Hence, (r∗ m(c), x∗ m(c)) and (ˆr∗ m(c), ˆx∗ m(c)) are maximizers of P and ˆ P respectively (given c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Since Problem P may admit multiple solutions, let the set Dm(c) be defined as Dm(c) := � x∗ m : {∃r∗ m : {Ψm(r∗ m, x∗ m) = ψ∗ m given c} � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' We define a Competitive equilibrium as follows: Definition 2 (Competitive equilibrium).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Competitive equilibrium of the Network Slicing Market is defined to be any price vector c† and allocation of the resources of the NPs x†, such that: i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' x† m ∈ Dm(c†) for every SP m, and ii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' C = � m∈M x† m (the demand equals the supply).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Note that in a competitive equilibrium, every SP m gets resources that could maximize its profit given the price vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Because a competitive equilibrium sets a balance between the interests of all participants, it appears to be the settling point of the markets in economic analysis [26], [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Nevertheless, since the SPs’ demands are expressed by solving a non- concave program, we define an ǫ-competitive equilibrium which will be the ultimate goal of the proposed clock auction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Definition 3 (ǫ-Competitive equilibrium).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' ǫ-Competitive equilibrium of the Network Slicing Market is defined to be any price vector ˆc† and allocation of the resources of the NPs ˆx†, such that: i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' For every SP m, there exists an ǫ ≥ 0 and a feasible intra- slice resource allocation vector ˆr† m (given ˆx† m), such that: ψ∗ m − ǫ ≤ Ψm(ˆr† m, ˆx† m) ≤ ψ∗ m + ǫ, and ii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' C = � m∈M ˆx† m (the demand equals the supply).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Observe that the first condition of the above definition ensures that every SP is satisfied (up to a constant) with the obtained resources in a sense that it operates close to its maximum possible profit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' From Theorem 1, note that if there exists a price vector ˆc† such that C = � m∈M ˆx∗ m(ˆc†), then the prices in ˆc† with the allocation ˆx† := ˆx∗(ˆc†) form an ǫ-competitive equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Finding such a price vector, is the motivation of the proposed clock auction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' For the rest of the paper we make the following assumption: Assumption 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' The SPs calculate their demand and intra- resource allocation by solving Problem ˆ P .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' This is a reasonable assumption since in Theorem 1 and the corresponding Remarks 1 and 2, we proved that by solving a (strictly) concave problem, every SP can operate near its optimal profit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Therefore, for the rest of the paper, we call ˆx∗ m(c), the demand of SP m given the prices c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 2) Auction Description: We propose the following clock auction that converges to an ǫ-competitive equilibrium of the Network Slicing market (Theorem 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' As we will prove in Theorem 3, this equilibrium is robust since the convergent price vector is the unique one that clears the market, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=', makes the demand to equal the supply.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' An auctioneer announces a price vector c, each component of which corresponds to the price that an NP sells a unit of its resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' ii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' The bidders (SPs) report their demands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' iii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' If the aggregated demand received by an NP is greater than its available supply, the price of that NP is increased and vice versa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' In other words, the auctioneer adjusts the price vector according to Walrasian tatonnement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' iv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' The process repeats until the price vector converges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Note that the components of the price vector change simultaneously and independently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Hence different brokers can cooperate to jointly clear the market efficiently in a decentralized fashion [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Let the excess demand, Z(c), be the difference between the aggregate demand and supply: Z(c) = −C + � m∈M ˆx∗ m(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' In Walrasian tatonnement, the price vector adjusts in continuous time according to excess demand as ˙c = f(Z(c(t))), where f is a continuous, sign- preserving transformation [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' For the rest of the paper, we set f to be the identity function and thus ˙c = Z(c(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' In auctions based on Walrasian tatonnement, the payments are only valid after the convergence of the mechanism [30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 3) Auction Convergence: Towards proving the convergence of the auction, we provide the lemma below which proves that the concavified version of the intra-slice resource allocation problem IN − SL, can be thought of as a concave function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' The proof is ommitted as a direct extension of [3] and [31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' The function Um(xm) shown below is concave.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Um(xm) := max rm,zm � i∈Um ˆfi(ri, zi) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' (ri, zi) ∈ Si, ∀i ∈ Um xm ⪰ � i∈Um ri (4) Using the function Um, we can rewrite Problem ˆ P as max xm⪰0 Um(xm) − λm − cT xm∥xm∥2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' The following theorem studies the convergence of the auction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Starting from any price vector cinit, the proposed clock auction converges to an ǫ-competitive equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Proof: The proof relies on a global stability argument similarly to [24], [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Let Vm(·) denote m’s net indirect utility function: Vm(c) = max xm⪰0 {Um(xm) − λm∥xm∥2 2 − cT xm}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Let a candidate Lyapunov function be V(c) := cT C + � m∈M Vm(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' To study the convergence of the auction we should find the time derivative of the above Lyapunov function: ˙V(c)= ˙c· � CT +� m∈M d dc � maxxm⪰0{Um(xm)−λm∥xm∥2 2−cT xm} �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Hence, we deduce that: ˙V(c) = � CT + � m∈M {−ˆx∗T m (c)} � ˙c = −ZT(c(t)) · Z(c(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' The above holds true since the function h(xm) := Um(xm)− λm∥xm∥2 2, has as concave conjugate the function (see [31]) h∗(s) = max xm⪰0{h(xm) − cT xm}, and hence ∇h∗(s) = arg maxxm⪰0{Um(xm)− λm∥xm∥2 2 − cT xm}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Therefore, V(·) is a decreasing function of time and converges to its minimum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Note that in the convergent point the supply equals the demand for every NP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' The market might admit multiple ǫ-competitive equilibria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Nevertheless, the equilibrium point that the clock auction converges is robust in the following sense: given Assumption 1, the price vector that clears the market is unique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Therefore, essentially, in Theorem 2 we proved that the proposed clock auction converges to that unique price vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' This is formally proposed by the following theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' There exists a unique price vector c† such that � m∈M ˆx∗ m(c†) = C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Towards proving Theorem 3 we provide Lemmata 4 and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' First, we show that if a component in the price vector changes, the demand of an SP who used to obtain resources from the corresponding NP, should change as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' For two distinct price vectors c, ¯c with ∃k : ck ̸= ¯ck, it holds true that ˆx∗ m(c) = ˆx∗ m(¯c) ⇒ ˆx∗ (m,k)(c) = ˆx∗ (m,k)(¯c) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Proof: Let such price vectors, ¯c and c, with ck ̸= ¯ck.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Since ˆx∗ m(c) is the optimal point of problem ˆ P given c, applying KKT will give: ˆx∗ (m,k)(c) = 0 or ∂{Um(xm) − λm∥xm∥2 2} ∂x(m,k) ���� ˆx∗m(c) = ck.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' (5) However, ˆx∗ m(¯c) is optimal for ˆ P given ¯c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Employing a similar equation as (5) proves that if ˆx∗ m(c) = ˆx∗ m(¯c) then it can only hold that ˆx∗ (m,k)(c) = ˆx∗ (m,k)(¯c) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Definition 4 (WARP property).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' The aggregate demand function satisfies the Weak Axiom of Revealed Preferences (WARP), if for different price vectors c and ¯c, it holds that: cT · � m∈M ˆx∗ m(¯c) ≤ cT · � m∈M ˆx∗ m(c) ⇒ ¯cT · � m∈M ˆx∗ m(¯c) < ¯cT · � m∈M ˆx∗ m(c) Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' The aggregate demand function satisfies the WARP for distinct price vectors c, ¯c such that � m∈M ˆx∗ m(c) ≻ 0 and � m∈M ˆx∗ m(¯c) ≻ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Proof: Since c ̸= ¯c then ∃k ∈ K : ck ̸= ¯ck.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Furthermore, we have that � m∈M ˆx∗ m(c) ≻ 0 and hence ∃m1 ∈ M such that ˆx∗ m1,k(c) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Using Lemma 4 we conclude that ˆx∗ m1(c) ̸= ˆx∗ m1(¯c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Hence, since Problem ˆ P admits a unique global maximum we have that: � m∈M � Um(ˆx∗ m(c)) − λm∥ˆx∗ m(c)∥2 2 − cT · ˆx∗ m(c) � > � m∈M � Um(ˆx∗ m(¯c)) − λm∥ˆx∗ m(¯c)∥2 2 − cT · ˆx∗ m(¯c) � Now, the above combined with the WARP hypothesis, � m∈M cT · ˆx∗ m(¯c) ≤ � m∈M cT · ˆx∗ m(c), gives: � m∈M � Um(ˆx∗ m(c)) − λm∥ˆx∗ m(c)∥2 2 � > � m∈M � Um(ˆx∗ m(¯c)) − λm∥ˆx∗ m(¯c)∥2 2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' (6) The result follows by switching the roles of c and ¯c and combine the inequalities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' We can now prove Theorem 3 as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' proof of Theorem 3: Towards a contradiction, assume that there exist two distinct (non-zero) price vectors c and ¯c that satisfy � m∈M ˆx∗ m(¯c) = � m∈M ˆx∗ m(c) = C and thus cT · � � m∈M ˆx∗ m(¯c) − � m∈M ˆx∗ m(c) � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' (7) Therefore, from Lemma 5 we know that: ¯cT · � m∈M ˆx∗ m(¯c) < ¯cT · � m∈M ˆx∗ m(c), (8) which is a contradiction because of the hypothesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Theorems 2 and 3 together with Remarks 1 and 2 imply that if the users’ traffic is elastic, or the total capacity C of the NPs is sufficiently large, the clock auction converges monotonically to the unique competitive equilibrium of the market.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' At the end of step S2, the final price vector ˆc† and the final demands of each SP m, ˆx∗ m, have been determined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Intra-Slice Resource Allocation & Feedback (Steps S3, S4) At the beginning of step S3, every SP m is aware of the convergent point ˆx∗ m and hence it can allocate the resources either by solving the sigmoid program IN − SL, or by using the convergent approximate solution, ˆr∗ m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' At that step, an SP can also determine whether it will overbook network resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Overbooking, is a common practice in airlines and hotel industries and is now being used in the network slicing problem [32], [33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' This management model allocates the same resources to users of the network expecting that not everyone uses their booked capacity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' In that case, SP m solves Problem IN−SL whilst setting increased obtained resources, xov m = ˆx∗ m +α%◦ ˆx∗ m, for a relatively small positive α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Here, denotes the component-wise multiplication operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' During the step S4 of the cycle, each user i, receives their resources ri, and provide feedback on whether it was satisfied or not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' In the next step, the SPs can use the these responses to learn the private parameters of the different service classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Learning the Parameters (Step S5) At the final step of the cycle, the SPs exploit the data they obtained to learn the private parameters of their users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' In that fashion, the market ”learns” its equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' For the rest of the paper, for generality, we assume the pricing mechanism introduced in Section II-B1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Therefore, for every user i, the SPs get to know whether it is satisfied by the pair of resources- price (zi, pi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' A Bayesian inference model needs the data, a model for the private parameters and a prior distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Model: The observed data is the outcome of the Bernoulli variables sati|θc(i) ∼ Bernoulli(P[sati]) for every user i, where θc(i) = (tp c(i), bc(i), tz c(i), kc(i)) is the tuple of the private parameters that we want to infer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Prior: Let the prior distribution for every parameter of θc(i) have probability density functions πtp c(i)(·), πbc(i)(·), πtz c(i)(·) and πkc(i)(·) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' The SPs infer the private parameters θc(i) for each service class using the Bayes rule separately: p(θc(i)|data) ∝ Ln(data|θc(i))π(θc(i)), where p(θc(i)|data) is the posterior distribution of θc(i), Ln(data|θc(i)) is the likelihood of the data given our model and π(θc(i)) is the prior distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Assuming independent private parameters, π(θc(i)) is the product of the distinct prior distributions, and for each class c we have that: Ln(data|θc(i)) = � i∈Cm c P[sati]fi(1 − P[sati])1−fi, where fi is 1 when user i is satisfied and 0 when not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' The SPs can use Marcov Chain Monte Carlo (MCMC) with Metropolis Sampling, to find the posterior distribution after each market cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' As the market evolves, the SPs exploit the previous posterior distributions to find better priors for the next cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' CENTRALIZED SOLUTION In case there exists a centralized entity that knows the utility function of every SP, it can optimize the social welfare, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=', the summation of the utility functions of the service and the network providers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' This centralized problem can be formulated as follows: (SWM): max rm � m∈M um(rm) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' ri ⪰ 0, ∀i ∈ Um � m∈M � i∈Um ri ⪯ C The SW M problem, can be solved with any chosen positive approximation error, using the framework of sigmoidal programming [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' NUMERICAL RESULTS A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Auction Convergence & Parameter Tuning In this section we study the convergence of the clock auction, as well as the impact that the various parameters have on its behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' For this simulation, we assume a small market with 3 NPs with capacities C1 = 850, C2 = 750, C3 = 755 0 2 4 6 8 10 12 14 Iterations 0 1 2 3 4 5 6 7 L2 Norm of the Excess Demand 1e6 cinit = [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='62, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='64, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='58] cinit = [1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='2, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='4, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='1] cinit = [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='2, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='4, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='1] cinit = [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='4, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='4, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='1] (a) 0 10 20 30 40 50 Iterations 0 2500 5000 7500 10000 12500 15000 17500 L2 Norm of the Excess Demand κ = 10^{-4} κ = 10^{-5} κ = 10^{-6} (b) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 2: L2 norm of the excess demand vector throughout the clock auction (a) for κ = 10−4 and various initialization price vectors cinit, and (b) for cT init = [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='62, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='64, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='58] and different values of κ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Cost of NP1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='1 Cost of NP2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='2 Cost of NP3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='0 cinit = [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='62, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='64, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='58] cinit = [1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='2, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='4, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='1] cinit = [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='2, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='4, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='1] cinit = [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='4, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='4, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='1] Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 3: Illustrating Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Starting from any price vector cinit, the clock auction converges to the market clearing prices c†.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' and 5 SPs with 6 users and 3 distinct service classes each.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' The users’ private parameters are set as follows: for an i in the first class tz c(i) = tp c(i) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='2, kc(i) = bc(i) = 100, for the second class tz c(i) = tp c(i) = 2, kc(i) = bc(i) = 120, and for the third class tz c(i) = tp c(i) = 20, kc(i) = bc(i) = 150.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Such values indicate that the users wish to pay a unit of monetary value for a unit of offered resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' To discretize the auction, we change the cost vector according to a step value, κ, as ct+1 = ct + κZ(ct).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 2 depicts the L2 norm of the excess demand vector throughout the clock auction for different cost vector initializations cinit (Fig 2a), and for different step values κ (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 2b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' By simulating the clock auction, we deduce that the clearing price vector is c†T = [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='6116, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='6273, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='5811].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 2a note that the closer the initialization cost vector is to c†T , the faster the convergence becomes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 2b, connotes the need for a proper choice of the step value κ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Clearly, κ = 10−4 gives the fastest convergence and as we decrease the step values it becomes slower.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Nevertheless, since Theorem 2 is proved for the continuous case, large values of κ cannot guarantee the convergence of the auction to an equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 3 observe that the convergence of the auction does not depend on the initialization of the cost vector (Theorem 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' SP1/NP1 SP1/NP2 SP2/NP1 SP2/NP2 Service Provider/Network Provider 0 200 400 600 800 1000 1200 1400 x m, k Auction SPP oSPP(5%) SWM Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 4: Total amount of resources obtained by every SP m from every NP k in the market, x(m,k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Visualization of the Resource Allocation In this section, we get insights on the allocation of the resources in the market.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' We assume 2 NPs with C1 = C2 = 1400 and 2 SPs with 10 users each and one shared service class with tz c(i) = tp c(i) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='2 and kc(i) = bc(i) = 100 for all i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' The first SP (SP1) is near the first NP (NP1) and far from NP2 and hence, we set [β(1,1), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' , β(1,10)] = [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='99, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='96, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='87, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='85, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='82, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='81, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='80, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='80, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='70, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='70] and β(2,i) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='2, ∀i ∈ U1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Moreover, for the users of SP2 we set β1,i = β2,i = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='8, ∀i ∈ U2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' We compare the resource allocation of four different methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' First, ’Auction’ refers to the resource allocation that results immediately after the auction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' ’SPP’ takes ˆx∗ m from the equilibrium but performs the intra-slice of every SP by solving IN − SL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' We also study the method ’oSPP(5%)’, which mimics the SPP method but with 5% overbooked resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Finally, ’SWM’ refers to the solution of the Problem SW M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 4 shows the amount of resources obtained from the two SPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' All methods allocate the majority of the resources of NP1 to SP1 since its users have greater connectivity with it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Although the users of SP2 have equally high connectivity with both NPs, all of the four methods were flexible enough to allocate the resources of NP2 to SP2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Note that none of the methods gives resources from NP2 to SP1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 5 depicts the intra-slice resource allocations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 5a observe that the greater the connectivity of a user is, the less resources it gets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' That is because users with good connectivity factors meet their prerequisite QoS using less resources and hence SP1 could maximize its expected profit by giving them less.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Note that ’SPP’ gives no resources to the user with the worst connectivity whereas with the overbooking, SP1 gets enough resources to make attractive offers to every user.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Therefore, ’SPP’ might make an unfair allocation, since when the resources are not enough, it neglects the users with bad connectivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 5c, note that the homogeneity in the connectivities of the users of SP2 forces every method to fairly divide the resources among them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 6a shows the expected value of the total revenue, or the social welfare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' ’SWM’ gives the greatest revenue among the methods that do not overbook.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Nevertheless, although ’SPP’ is a completely distributed solution and was not designed to maximize the total revenue, it performs very close to ’SWM’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Moreover, a 5% overbooking leads to greater revenues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 1 2 3 4 5 6 7 8 9 10 User ID of SP1 0 25 50 75 100 125 150 175 r 1, i Auction SPP oSPP(5%) SWM (a) 1 2 3 4 5 6 7 8 9 10 User ID of SP2 0 10 20 30 40 50 r 1, i Auction SPP oSPP(5%) SWM (b) 1 2 3 4 5 6 7 8 9 10 User ID of SP2 0 20 40 60 80 100 120 140 160 r 2, i Auction SPP oSPP(5%) SWM (c) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 5: The solution of the intra-slice resource allocation problem from the perspective of the two different SPs of the market.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Specifically, how (a) SP1 distributed the resources of NP1, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=', r1,i for every i in U1, (b) SP2 distributed the resources of NP1, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=', r1,i for every i in U2, and (c) SP2 distributed the resources of NP2, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=', r2,i for every i in U2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Auction SPP oSPP(5%) SWM Resource Allocation Method 0 200 400 600 800 1000 1200 1400 1600 Expected T otal Revenue 1575.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='31 1598.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='16 1677.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='81 1611.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='54 (a) Auction SPP oSPP(5%) SWM Resource Allocation Method 0 100 200 300 400 500 600 700 800 Expected Revenue of SP1 746.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='85 769.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='65 827.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='42 806.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='49 (b) Auction SPP οSPP(5%) SWM Resource Allocation Method 0 100 200 300 400 500 600 700 800 Expected Revenue of SP2 828.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='46 828.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='51 850.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='39 805.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='06 (c) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 6: Illustrating the expected revenue (given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' (3)) for the four different resource allocation methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' (a) shows the aggregated expected revenue, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' (b) shows the expected revenue of SP1, and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' (c) shows the expected revenue of SP2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Impact of Bayesian Inference The previous results are extracted after a sufficient number of cycles, when the SPs have learned the parameters of the end-users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' In this section, we consider an SP with 10 users and one service class that employs Bayesian inference to learn the private parameter tz c(i) for every i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' We set the true value of the parameter to be tz c(i) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' The other parameters are set tp c(i) = 2, kc(i) = bc(i) = 120 and β1,i = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='9, ∀i ∈ U1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' We assume one more SP with a unique service class with tp c(i) = tz c(i) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='2, kc(i) = bc(i) = 100 and β2,i = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='9∀i ∈ U2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Finally, there are 2 NPs with C1 = C2 = 1200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' In this example, SP1 sets as prior distribution the normal N(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='02, 2) and hence assumes elastic traffic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' At the end of each market cycle, the SP makes an estimation, ˆtz c(i), by calculating the mean of the posterior distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 7 depicts the histogram of the posterior distribution for the first two market cycles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Observe that even in the third market cycle, SP1 can estimate with high accuracy the actual value of the parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' In Table I, note that the perceived revenue, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=', the expected revenue calculated using the estimation, is different between the cycles that ˆtz c(i) differs from tz c(i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Hence, it is impossible for the SPs to maximize their expected profits when they don’t know the actual values of the parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Indeed, observe that the bad estimate of ˆtz c(i) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='02 gives poor expected revenue compared to the last two cycles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' CONCLUDING REMARKS In this paper we focus on the technical and economic challenges that emerge from the application of the network slicing architecture to real world scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Taking into 0 2 4 6 8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='4 tc(i) z (a) 0 1 2 3 4 5 6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='5 tc(i) z (b) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 7: Posterior distribution of the unknown private parameter tz c(i) in (a) the first Market Cycle, and (b) in the second Market Cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Cycle ˆtz c(i) Acquired Resources Perceived Revenue Actual Revenue 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='02 1087 530.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='26 699 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='68 1370 1160.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='77 1163.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='48 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='01 1365 1161.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='42 1161.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='42 TABLE I: Bayesian inference in different market cycles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' consideration the heterogenity of the users’ service classes we introduce an iterative market model along with a clock auction that converges to a robust ǫ-competitive equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Finally, we propose a Bayesian inference model, for the SPs to learn the private parameters of their users and make the next equilibria more efficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Numerical results validate the convergence of the clock auction and the capability of the proposed framework to capture the different incentives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' REFERENCES [1] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Zhang, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Liu, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Zeng, “Adaptive interference-aware vnf placement for service-customized 5g network slices,” in IEEE INFOCOM 2019-IEEE Conference on Computer Communications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' IEEE, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 2449–2457.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' [2] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Su, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Zhang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Venkatesan, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Gong, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Li, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Ding, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Jiang, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Zhu, “Resource allocation for network slicing in 5g telecommunication networks: A survey of principles and models,” IEEE Network, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 33, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 172–179, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' [3] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Qin, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Choi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Rahman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Thottan, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Tassiulas, “Network slicing in heterogeneous software-defined rans,” in IEEE INFOCOM 2020-IEEE Conference on Computer Communications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' IEEE, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 2371–2380.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' [4] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='-V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Pham and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Hwang, “Network utility maximization-based congestion control over wireless networks: A survey and potential directives,” IEEE Communications Surveys & Tutorials, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 19, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 1173–1200, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' [5] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Lee, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Mazumdar, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Shroff, “Non-convex optimization and rate control for multi-class services in the internet,” IEEE/ACM transactions on networking, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 13, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 827–840, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' [6] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Liu, “A theoretical framework for solving the optimal admissions control with sigmoidal utility functions,” in 2013 International Conference on Computing, Networking and Communications (ICNC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' IEEE, 2013, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 237–242.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' [7] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Lieto, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Malanchini, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Mandelli, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Moro, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Capone, “Strategic network slicing management in radio access networks,” IEEE Transactions on Mobile Computing, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' [8] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Zhu and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Boutaba, “Nonlinear quadratic pricing for concavifiable utilities in network rate control,” in IEEE GLOBECOM 2008-2008 IEEE Global Telecommunications Conference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' IEEE, 2008, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' [9] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Gao, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Pan, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Liu, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' You, “Virtualization framework and vcg based resource block allocation scheme for lte virtualization,” in 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' IEEE, 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' [10] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Lee, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Kim, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Cho, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Lee, “Qoe-aware scheduling for sigmoid optimization in wireless networks,” IEEE Communications Letters, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 18, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 11, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 1995–1998, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' [11] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Hemmati, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' McCormick, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Shirmohammadi, “Qoe-aware bandwidth allocation for video traffic using sigmoidal programming,” IEEE MultiMedia, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 24, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 80–90, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' [12] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Tan, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Zhu, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Ge, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Xiong, “Utility maximization resource allocation in wireless networks: Methods and algorithms,” IEEE Transactions on systems, man, and cybernetics: systems, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 45, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 7, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 1018–1034, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' [13] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Papavassiliou, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Tsiropoulou, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Promponas, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Vamvakas, “A paradigm shift toward satisfaction, realism and efficiency in wireless networks resource sharing,” IEEE Network, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 35, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 348–355, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' [14] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Afolabi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Taleb, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Samdanis, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Ksentini, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Flinck, “Network slicing and softwarization: A survey on principles, enabling technologies, and solutions,” IEEE Communications Surveys & Tutorials, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 20, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 2429–2453, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' [15] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Vassilaras, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Gkatzikis, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Liakopoulos, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Stiakogiannakis, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Qi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Shi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Liu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Debbah, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Paschos, “The algorithmic aspects of network slicing,” IEEE Communications Magazine, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 55, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 112–119, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' [16] U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Habiba and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Hossain, “Auction mechanisms for virtualization in 5g cellular networks: basics, trends, and open challenges,” IEEE Communications Surveys & Tutorials, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 20, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 2264–2293, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' [17] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Zhang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Chang, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Yu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Chen, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' H¨am¨al¨ainen, “A double auction mechanism for virtual resource allocation in sdn-based cellular network,” in 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' IEEE, 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' [18] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Fu and U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Kozat, “Wireless network virtualization as a sequential auction game,” in 2010 Proceedings IEEE INFOCOM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' IEEE, 2010, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 1–9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' [19] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Ahmadi, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Macaluso, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Gomez, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' DaSilva, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Doyle, “Virtualization of spatial streams for enhanced spectrum sharing,” in 2016 IEEE Global Communications Conference (GLOBECOM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' IEEE, 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' [20] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Cao, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Lang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Chen, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Wang, “Power allocation in wireless network virtualization with buyer/seller and auction game,” in 2015 IEEE Global Communications Conference (GLOBECOM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' IEEE, 2015, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' [21] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Zhu and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Hossain, “Virtualization of 5g cellular networks as a hierarchical combinatorial auction,” IEEE Transactions on Mobile Computing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 15, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 2640–2654, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' [22] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Zhu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Cheng, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Chen, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Wang, “Wireless virtualization as a hierarchical combinatorial auction: An illustrative example,” in 2017 IEEE Wireless Communications and Networking Conference (WCNC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' IEEE, 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' [23] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Iosifidis, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Gao, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Huang, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Tassiulas, “A double- auction mechanism for mobile data-offloading markets,” IEEE/ACM Transactions on Networking, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 23, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 1634–1647, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' [24] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Ausubel and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Cramton, “Auctioning many divisible goods,” Journal of the European Economic Association, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 2, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 2-3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 480–493, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' [25] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Ausubel, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Cramton, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Milgrom, “The clock-proxy auction: A practical combinatorial auction design,” Handbook of Spectrum Auction Design, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 120–140, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' [26] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' SHEN, “First fundamental theorem of welfare economics,” 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' [27] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Udell and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Boyd, “Maximizing a sum of sigmoids,” Optimization and Engineering, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 1–25, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' [28] ——, “Bounding duality gap for separable problems with linear constraints,” Computational Optimization and Applications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 64, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 355–378, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' [29] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Bichler, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Fichtl, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Schwarz, “Walrasian equilibria from an optimization perspective: A guide to the literature,” Naval Research Logistics (NRL), vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 68, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 496–513, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' [30] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Courcoubetis and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Weber, Pricing communication networks: economics, technology and modelling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' John Wiley & Sons, 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' [31] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Boyd, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Boyd, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Vandenberghe, Convex optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Cambridge university press, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' [32] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Salvat, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Zanzi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Garcia-Saavedra, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Sciancalepore, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Costa-Perez, “Overbooking network slices through yield-driven end-to-end orchestration,” in Proceedings of the 14th International Conference on emerging Networking EXperiments and Technologies, 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 353–365.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' [33] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Marquez, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Gramaglia, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Fiore, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Banchs, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' Costa-Perez, “Resource sharing efficiency in network slicing,” IEEE Transactions on Network and Service Management, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 16, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' 909–923, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content=' This figure "fig1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='png" is available in "png"� format from: http://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='org/ps/2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
+page_content='02840v1' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQfAgJ2/content/2301.02840v1.pdf'}
diff --git a/4NAzT4oBgHgl3EQf9f64/content/tmp_files/2301.01921v1.pdf.txt b/4NAzT4oBgHgl3EQf9f64/content/tmp_files/2301.01921v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..4aa75714a4655a739ef0b2b1e88ebd3cb11a5363
--- /dev/null
+++ b/4NAzT4oBgHgl3EQf9f64/content/tmp_files/2301.01921v1.pdf.txt
@@ -0,0 +1,2025 @@
+Control over Berry Curvature Dipole with Electric Field in WTe2
+Xing-Guo Ye,1,* Huiying Liu,2,* Peng-Fei Zhu,1,* Wen-Zheng Xu,1,* Shengyuan A. Yang,2
+Nianze Shang,1 Kaihui Liu,1 and Zhi-Min Liao
+1,†
+1State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics,
+Peking University, Beijing 100871, China
+2Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore, 487372, Singapore
+Berry curvature dipole plays an important role in various nonlinear quantum phenomena. However,
+the maximum symmetry allowed for nonzero Berry curvature dipole in the transport plane is a single
+mirror line, which strongly limits its effects in materials. Here, via probing the nonlinear Hall effect, we
+demonstrate the generation of Berry curvature dipole by applied dc electric field in WTe2, which is used to
+break the symmetry constraint. A linear dependence between the dipole moment of Berry curvature and the
+dc electric field is observed. The polarization direction of the Berry curvature is controlled by the relative
+orientation of the electric field and crystal axis, which can be further reversed by changing the polarity of
+the dc field. Our Letter provides a route to generate and control Berry curvature dipole in broad material
+systems and to facilitate the development of nonlinear quantum devices.
+Berry curvature is an important geometrical property
+of Bloch bands, which can lead to a transverse velocity of
+Bloch electrons moving under an external electric field
+[1–6]. Hence, it is often regarded as a kind of magnetic field
+in momentum space, leading to various exotic transport
+phenomena, such as anomalous Hall effect (AHE) [1],
+anomalous Nernst effect [7], and extra phase shift in
+quantum oscillations [8]. The integral of Berry curvature
+over the Brillouin zone for fully occupied bands gives rise
+to the Chern number [5], which is one of the central
+concepts of topological physics.
+Recently, Sodemann and Fu [9] proposed that the dipole
+moment of Berry curvature over the occupied states, known
+as Berry curvature dipole (BCD), plays an important role in
+the second-order nonlinear AHE in time-reversal-invariant
+materials. For transport in the x-y plane which is typical in
+experiments, the relevant BCD components form an in-
+plane pseudovector with Dα ¼
+R
+k f0ð∂αΩzÞ [9], where Dα
+is the BCD component along direction α, k is the wave
+vector, the integral is over the Brillouin zone and with
+summation over the band index, f0 is the Fermi distribution
+(in the absence of external field), Ωz is out-of-plane Berry
+curvature, and ∂α ¼ ∂=∂kα. It results in a second-harmonic
+Hall voltage in response to a longitudinal ac probe current,
+which could find useful applications in high-frequency
+rectifiers, wireless charging, energy harvesting, and infra-
+red detection, etc. BCD and its associated nonlinear AHE
+have been predicted in several material systems [9–11]
+and experimentally detected in systems such as two-
+dimensional (2D) monolayer or few-layer WTe2 [12–15],
+Weyl semimetal TaIrTe4 [16], 2D MoS2, and WSe2
+[17–20], corrugated bilayer graphene [21], and a few
+topological materials [22–25]. However, a severe limitation
+is that BCD obeys a rather stringent symmetry constraint.
+In the transport plane, the maximum symmetry allowed
+for Dα is a single mirror line [9]. In several previous
+Letters [17–21], one needs to perform additional material
+engineering such as lattice strain or interlayer twisting to
+generate a sizable BCD. This constraint limits the available
+material platforms with nonzero BCD, unfavorable for the
+in-depth exploration of BCD-related physics and practical
+applications.
+Recent works suggested an alternative route to obtain
+nonzero BCD, that is, utilizing the Berry connection
+polarizability to achieve a field-induced BCD, where the
+additional lattice engineering is unnecessary [26,27]. The
+Berry connection polarizability is also a band geometric
+quantity, related to the field-induced positional shift of
+Bloch electrons [28]. It is a second-rank tensor, defined as
+GabðkÞ ¼ ½∂Að1Þ
+a ðkÞ=∂Eb�, where Að1Þ is the field-induced
+Berry connection, E is the applied electric field [28], and
+the superscript “(1)” represents that the physical quantity is
+the first order term of electric field. Then, the E field
+induced Berry curvature is given by Ωð1Þ ¼ ∇k × ðG
+↔
+EÞ
+[27], where the double arrow indicates a second-rank
+tensor. This field-induced Berry curvature will lead to a
+field-induced BCD Dð1Þ
+α . Considering transport in the x-y
+plane and applied dc E field also in the plane, we
+have Dð1Þ
+α ¼
+R
+kf0ð∂αΩð1Þ
+z Þ¼εzγμ
+R
+kf0½∂αð∂γGμνÞ�Eν, where
+α; γ; μ; ν ¼ x, y, and εzγμ is the Levi-Civita symbol. In
+systems where the original BCD is forbidden by the crystal
+symmetry, the field-induced BCD by an external E field
+1
+
+could generally be nonzero and become the dominant
+contribution. In such a case, the symmetry is lowered by
+the applied E field, and the induced BCD should be linear
+with E and its direction also controllable by the E field. So
+far, this BCD caused by Berry connection polarizability
+and its field control have not been experimentally demon-
+strated yet, and the nonlinear Hall effect derived from this
+mechanism has not been observed.
+In this Letter, we report the manipulation of electric field
+induced BCD due to the Berry connection polarizability.
+Utilizing a dc electric field Edc to produce BCD in bulk
+WTe2 (for which the inherent BCD is symmetry forbid-
+den), the second-harmonic Hall voltage V2ω
+H is measured as
+a response to an applied ac current Iω. Both orientation and
+magnitude of the induced BCD are highly tunable by the
+applied Edc. Our Letter provides a general route to extend
+BCD to abundant material platforms with high tunability,
+promising for practical applications.
+The WTe2 devices were fabricated with circular disc
+electrodes (device S1) or Hall-bar shaped electrodes
+(device S2). The WTe2 flakes were exfoliated from
+bulk crystal and then transferred onto the prefabricated
+electrodes (Supplemental Material, Note 1 [29]). The WTe2
+thickness of device S1 is 8.4 nm (Supplemental Material,
+Fig. S1 [29]), corresponding to a 12-layer WTe2, and we
+present the results from device S1 in the main text. The
+crystal orientations of WTe2 devices were identified
+by their long, straight edges [12] and further confirmed
+by both polarized Raman spectroscopy (Supplemental
+Material, Note 2 [29]) and angle-dependent transport
+measurements (Supplemental Material, Note 3 [29]). The
+electron mobility of device S1 is ∼ 4974 cm2=V s at 5 K
+(Supplemental Material, Note 4 [29]).
+In our experiments, we use thick Td-WTe2 samples
+(thickness ∼8.4 nm), which have an effective inversion
+symmetry in the x-y plane (which is the transport plane).
+This is formed by the combination of the mirror symmetry
+Ma and the glide mirror symmetry ˜Mb, as indicated in
+Fig. 1(c). The in-plane inversion leads to the absence
+of inherent in-plane BCD and hence the nonlinear Hall
+effect in bulk (see Supplemental Material, Note 5 [29] for
+detailed symmetry analysis). Because ˜Mb involves a half-
+cell translation along the c axis and hence is broken on the
+sample surface, a small but nonzero intrinsic BCD may
+exist on the surface. In fact, such BCD due to surface
+symmetry breaking has already been reported [13], and is
+also observed in our samples, although the signal is much
+weaker in thicker samples (see Supplemental Material,
+Fig. S9 [29]).
+To induce BCD in bulk WTe2 through Berry connection
+polarizability, a dc electric field Edc is applied in the x-y
+plane. As shown in Figs. 1(a) and 1(b), the field-induced
+Berry curvature shows a dipolelike distribution with non-
+zero BCD (theoretical calculations; see Supplemental
+Material, Note 6 [29]). The induced BCD can be controlled
+by the dc E field and should satisfy the following symmetry
+requirements. Because the presence of a mirror symmetry
+would force the BCD to be perpendicular to the mirror
+plane [9], the induced BCD Dð1Þ must be perpendicular to
+Edc when Edc is along the a or b axis. Control experiments
+were carried out in device S1 to confirm the above
+expectations. The measurement configuration is shown
+in Fig. 1(d) (see Supplemental Material, Fig. S2 [29],
+for circuit schematic). The probe ac current with ac field Eω
+and frequency ω was applied approximately along the −a
+axis, satisfying Eω ≪ Edc, and the second-harmonic Hall
+(c)
+(d)
+(e)
+(f)
+(a)
+(b)
+FIG. 1.
+(a) and (b) The field-induced Berry curvature Ωð1Þ
+c ðkÞ in the kz ¼ 0 plane by a dc electric field Edc ¼ 3 kV=m applied along
+(a) a or (b) b axis, respectively. The unit of Ωð1Þ
+c ðkÞ is Å2. The green arrows indicate the direction of Edc. The gray lines depict the Fermi
+surface. (c) The a-b plane of monolayer Td-WTe2. (d) The optical image of device S1, where an angle θ is defined. (e) and (f) The
+second-harmonic Hall voltage V2ω
+H as Edc (e) along b axis (θ ¼ 0°), and (f) along −a axis (θ ¼ 90°) at 5 K. The Eω is applied along −a
+axis, as schematized in (d).
+2
+
+voltage V2ω
+H was measured to reveal the nonlinear Hall
+effect. The Edc that is used to produce BCD was applied
+along the direction characterized by the angle θ, which is
+the angle between the direction of Edc and the baseline of a
+pair of electrodes [white line in Fig. 1(d)] that is approx-
+imately along the b axis. Then Edc along θ ¼ 0° (b axis)
+and θ ¼ 90° (−a axis) correspond to the induced Dð1Þ along
+the a axis and b axis, respectively. Because the nonlinear
+Hall voltage V2ω
+H
+is proportional to Dð1Þ · Eω [9], the
+nonlinear Hall effect should be observed for EωkDð1Þ
+and be vanishing for Eω⊥Dð1Þ.
+As shown in Fig. 1(e), when Edc along θ ¼ 0°, nonlinear
+Hall voltage V2ω
+H is indeed observed as expected. The Edc
+along the b axis induces BCD along the a axis, leading to
+nonzero V2ω
+H since Eω is applied along the −a axis. The
+second-order nature is verified by both the second-
+harmonic signal and parabolic I-V characteristics. It is
+found that the nonlinear Hall voltage is highly tunable by
+the magnitude of Edc. The sign reverses when Edc is
+reversed. Moreover, the nonlinear Hall voltage is linearly
+proportional to Edc (Supplemental Material [29] Fig. S11),
+as we expected. As for Edc along θ ¼ 90°, as shown in
+Fig. 1(f), the V2ω
+H is much suppressed, which is at least one
+order of magnitude smaller than the V2ω
+H
+in Fig. 1(e).
+Because in this case the Edc along the a axis induces BCD
+along the b axis, Eω is almost perpendicular to BCD,
+leading to negligible nonlinear Hall effect. Similar results
+are also reproduced in device S2 (Supplemental Material
+[29], Fig. S12). Such control experiments are well con-
+sistent with our theoretical expectation and confirm the
+validity of field-induced BCD.
+Besides the crystalline axis (θ ¼ 0° and 90°), we also
+study the case when Edc is applied along arbitrary θ
+directions to obtain the complete angle dependence of
+field-induced BCD. Here, Eω is applied along the −a or b
+axis, to detect the BCD component along the a or b axis,
+i.e., Dð1Þ ¼ ½Dð1Þ
+a ðθÞ; Dð1Þ
+b ðθÞ�, where Dð1Þ
+a
+and Dð1Þ
+b
+are the
+BCD components along the a and b axis, respectively. The
+measurement configurations are shown in Figs. 2(a) and
+2(d). Figures 2(b) and 2(e) show the second-order Hall
+voltage as a function of θ, with the magnitude of Edc fixed
+at 3 kV=m. The second-order Hall response ½E2ω
+H =ðEωÞ2� is
+calculated by E2ω
+H ¼ ðV2ω
+H =WÞ and Eω ¼ ðIωRk=LÞ, where
+W is the channel width, Rk is the longitudinal resistance,
+and L is the channel length. As shown in Figs. 2(c) and 2(f),
+½E2ω
+H =ðEωÞ2� demonstrates a strong anisotropy, closely
+related to the inherent symmetry of WTe2. First of all, it
+is worth noting that the second-order Hall signal is
+negligible at Edc ¼ 0. This is consistent with our previous
+analysis that the inherent bulk in-plane BCD is symmetry
+forbidden [26,27]. Second, ½E2ω
+H =ðEωÞ2� almost vanishes
+when EdckEω along a or b axis. This is constrained by the
+mirror symmetries Ma or
+˜Mb, forcing the BCD to be
+perpendicular to the mirror plane in such configurations.
+(a)
+(b)
+(c)
+(d)
+(e)
+(f)
+FIG. 2.
+(a) and (d) Measurement configuration for the second-order AHE with (a) Eωk − a axis and (d) Eωkb axis, respectively. The
+Edc, satisfying Edc ≫ Eω, is rotated to along various directions. (b) and (e) The second-order Hall voltage V2ω
+H as a function of Iω at
+fixed Edc ¼ 3 kV=m but along various directions and at 5 K with (b) Eωk − a axis and (e) Eωkb axis, respectively. (c) and (f) The
+second-order Hall signal ½E2ω
+H =ðEωÞ2� as a function of θ at 5 K with (c) Eωk − a axis and (f) Eωkb axis, respectively.
+3
+
+Thus, when EdckEω along the a or b axis, the induced BCD
+is perpendicular to Edc and Eω, satisfying Dð1Þ · Eω ¼ 0,
+which leads to almost vanished second-order Hall signals.
+Moreover, ½E2ω
+H =ðEωÞ2� exhibits a sensitive dependence on
+the angle θ, indicating the BCD is highly tunable by the
+orientation of Edc. A local minimum of ½E2ω
+H =ðEωÞ2� is
+found at an intermediate angle around θ ¼ 30° when
+Eωk − a axis in Fig. 2(c). This is because ½E2ω
+H =ðEωÞ2�
+depends not only on ðDð1Þ · c
+EωÞ, i.e., the projection of the
+pseudovector Dð1Þ to the direction of Eω, but also on the
+anisotropy of conductivity in WTe2. The two terms show
+different dependence on the angle θ, leading to a local
+minimum around θ ¼ 30°.
+Through control experiments and symmetry analysis, the
+extrinsic effects, such as diode effect, thermal effect, and
+thermoelectric effect, could be safely ruled out as the main
+reason of the observed second-order nonlinear AHE (see
+Supplemental Material, Note 9 [29]). To further investigate
+this effect, the temperature dependence and scaling law of
+the second-order nonlinear Hall signal are studied. By
+changing the temperature, V2ω
+H and longitudinal conduc-
+tivity σxx were collected, where the magnitude of Edc was
+fixed at 3 kV=m. Figures 3(a) and 3(c) show the V2ω
+H at
+different temperatures with Eωk − a axis, θ ¼ 0° and Eωkb
+axis, θ ¼ 90°, respectively. A relatively small but nonzero
+second-order Hall signal is observed at 286 K. The scaling
+law, that is, the second-order Hall signal ½E2ω
+H =ðEωÞ2�
+versus σxx, is presented and analyzed in Figs. 3(b) and
+3(d) for different angles θ. The σxx was calculated by
+σxx ¼ð1=RkÞðL=WdÞ, where d is the thickness of WTe2,
+and was varied by changing temperature. According to
+Ref. [42], the scaling law between ½E2ω
+H =ðEωÞ2� and σxx
+satisfies ½E2ω
+H =ðEωÞ2� ¼ C0 þ C1σxx þ C2σ2xx. The coeffi-
+cients C2 and C1 involve the mixing contributions from
+various skew scattering processes [42–45], such as impu-
+rity scattering, phonon scattering, and mixed scattering
+from both phonons and impurities [42]. C0 is mainly
+contributed by the intrinsic mechanism, i.e., the field-
+induced BCD here. As shown in Figs. 3(b) and 3(d), the
+scaling law is well fitted for all angles θ.
+It
+is
+found
+that
+C0
+shows
+strong
+anisotropy
+(Supplemental Material [29], Fig. S18), indicating the
+field-induced BCD is also strongly dependent on angle
+θ. The value of field-induced BCD can be estimated
+through D ¼ ð2ℏ2n=m�eÞ½E2ω
+H =ðEωÞ2� [12], where ℏ is
+the reduced Planck constant, e is the electron charge, m� ¼
+0.3me is the effective electron mass, n is the carrier density.
+Here, we replace the ½E2ω
+H =ðEωÞ2� by the coefficient C0
+from the scaling law fitting. The two components of BCD
+along the a and b axes, denoted as Dð1Þ
+a
+and Dð1Þ
+b , are
+calculated from the fitting curves with the magnitude of Edc
+fixed at 3 kV=m under the Eωk − a axis and the Eωkb axis,
+respectively. As shown in Figs. 4(a) and 4(b), it is found
+that Dð1Þ
+a
+shows a cos θ dependence on θ, whereas Dð1Þ
+b
+(a)
+(b)
+(c)
+(d)
+FIG. 3.
+(a) and (c) The second-harmonic Hall voltage at various
+temperatures with the magnitude of Edc fixed at 3 kV=m (a) under
+Eωk − a axis, θ ¼ 0° and (c) under Eωkb axis, θ ¼ 90°. (b),(d)
+Second-order Hall signal ½E2ω
+H =ðEωÞ2� as a function of σxx
+(b) under Eωk − a axis and (d) under Eωkb axis at various θ
+with the magnitude of Edc fixed at 3 kV=m. The temperature
+range for the scaling law in (b) and (d) is 50–286 K.
+(a)
+(b)
+(c)
+FIG. 4.
+The induced Berry curvature dipole as a function of θ with the magnitude of Edc fixed at 3 kV=m for (a) the component along
+a axis, Dð1Þ
+a and (b) the component along b axis, Dð1Þ
+b . (c) The relationship between the field-induced Berry curvature dipole Dð1Þ and the
+applied Edc ¼ 3 kV=m along different directions. The scale bar of Dð1Þ is 0.2 nm.
+4
+
+shows a sin θ dependence. Such angle dependence is
+well consistent with the theoretical predications (see
+Supplemental Material [29], Note 6). According to the
+two components Dð1Þ
+a
+and Dð1Þ
+b , the field induced BCD
+vector of Dð1Þ is synthesized for Edc along various
+directions, as presented in Fig. 4(c). It is found that both
+the magnitude and orientation of the field-induced BCD are
+highly tunable by the dc field.
+In summary, we have demonstrated the generation,
+modulation, and detection of the induced BCD due to
+the Berry connection polarizability in WTe2. It is found that
+the direction of the generated BCD is controlled by the
+relative orientation between the applied Edc direction
+and the crystal axis, and its magnitude is proportional to
+the intensity of Edc. Using independent control of the
+two applied fields, our Letter demonstrates an efficient
+approach to probe the nonlinear transport tensor symmetry,
+which is also helpful for full characterization of nonlinear
+transport coefficients. Moreover, the manipulation of BCD
+up to room temperature by electric means without addi-
+tional symmetry breaking will greatly extend the BCD-
+related physics [46,47] to more general materials and
+should be valuable for developing devices utilizing the
+geometric properties of Bloch electrons.
+This work was supported by National Key Research and
+Development Program of China (No. 2018YFA0703703),
+National Natural Science Foundation of China (Grants
+No. 91964201 and No. 61825401), and Singapore MOE
+AcRF Tier 2 (MOE-T2EP50220-0011). We are grateful to
+Dr. Yanfeng Ge at SUTD for inspired discussions.
+*These authors contributed equally to this work.
+†liaozm@pku.edu.cn
+[1] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and
+N. P. Ong, Anomalous Hall effect, Rev. Mod. Phys. 82,
+1539 (2010).
+[2] J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and
+T. Jungwirth, Spin Hall effects, Rev. Mod. Phys. 87, 1213
+(2015).
+[3] D. Xiao, W. Yao, and Q. Niu, Valley-Contrasting Physics in
+Graphene: Magnetic Moment and Topological Transport,
+Phys. Rev. Lett. 99, 236809 (2007).
+[4] L. Šmejkal, Y. Mokrousov, B. Yan, and A. H. MacDonald,
+Topological antiferromagnetic spintronics, Nat. Phys. 14,
+242 (2018).
+[5] D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on
+electronic properties, Rev. Mod. Phys. 82, 1959 (2010).
+[6] M.-C. Chang and Q. Niu, Berry phase, hyperorbits, and the
+Hofstadter spectrum: Semiclassical dynamics in magnetic
+Bloch bands, Phys. Rev. B 53, 7010 (1996).
+[7] M. T. Dau, C. Vergnaud, A. Marty, C. Beign´e, S.
+Gambarelli, V. Maurel, T. Journot, B. Hyot, T. Guillet, B.
+Gr´evin et al., The valley Nernst effect in WSe2, Nat.
+Commun. 10, 5796 (2019).
+[8] B.-C. Lin, S. Wang, S. Wiedmann, J.-M. Lu, W.-Z. Zheng,
+D. Yu, and Z.-M. Liao, Observation of an Odd-Integer
+Quantum Hall Effect from Topological Surface States in
+Cd3As2, Phys. Rev. Lett. 122, 036602 (2019).
+[9] I. Sodemann and L. Fu, Quantum Nonlinear Hall Effect
+Induced by Berry Curvature Dipole in Time-Reversal
+Invariant Materials, Phys. Rev. Lett. 115, 216806 (2015).
+[10] J.-S. You, S. Fang, S.-Y. Xu, E. Kaxiras, and T. Low, Berry
+curvature dipole current in the transition metal dichalcoge-
+nides family, Phys. Rev. B 98, 121109(R) (2018).
+[11] Y. Zhang, J. van den Brink, C. Felser, and B. Yan, Electri-
+cally tunable nonlinear anomalous Hall effect in two-
+dimensional transition-metal dichalcogenides WTe2 and
+MoTe2, 2D Mater. 5, 044001 (2018).
+[12] Q. Ma, S.-Y. Xu, H. Shen, D. MacNeill, V. Fatemi, T.-R.
+Chang, A. M. M. Valdivia, S. Wu, Z. Du, C.-H. Hsu et al.,
+Observation of the nonlinear Hall effect under time-reversal-
+symmetric conditions, Nature (London) 565, 337 (2019).
+[13] K. Kang, T. Li, E. Sohn, J. Shan, and K. F. Mak, Nonlinear
+anomalous Hall effect in few-layer WTe2, Nat. Mater. 18,
+324 (2019).
+[14] S.-Y. Xu, Q. Ma, H. Shen, V. Fatemi, S. Wu, T.-R. Chang,
+G. Chang, A. M. M. Valdivia, C.-K. Chan, Q. D. Gibson, J.
+Zhou, Z. Liu, K. Watanabe, T. Taniguchi, H. Lin, R. J. Cava,
+L. Fu, N. Gedik, and P. Jarillo-Herrero, Electrically switch-
+able Berry curvature dipole in the monolayer topological
+insulator WTe2, Nat. Phys. 14, 900 (2018).
+[15] J. Xiao, Y. Wang, H. Wang, C. D. Pemmaraju, S. Wang, P.
+Muscher, E. J. Sie, C. M. Nyby, T. P. Devereaux, X. Qian
+et al., Berry curvature memory through electrically driven
+stacking transitions, Nat. Phys. 16, 1028 (2020).
+[16] D. Kumar, C.-H. Hsu, R. Sharma, T.-R. Chang, P. Yu, J.
+Wang, G. Eda, G. Liang, and H. Yang, Room-temperature
+nonlinear Hall effect and wireless radiofrequency rectifica-
+tion in Weyl semimetal TaIrTe4, Nat. Nanotechnol. 16, 421
+(2021).
+[17] J. Lee, Z. Wang, H. Xie, K. F. Mak, and J. Shan, Valley
+magnetoelectricity in single-layer MoS2, Nat. Mater. 16,
+887 (2017).
+[18] J. Son, K.-H. Kim, Y. H. Ahn, H.-W. Lee, and J. Lee, Strain
+Engineering of the Berry Curvature Dipole and Valley
+Magnetization in Monolayer MoS2, Phys. Rev. Lett. 123,
+036806 (2019).
+[19] M.-S. Qin, P.-F. Zhu, X.-G. Ye, W.-Z. Xu, Z.-H. Song, J.
+Liang, K. Liu, and Z.-M. Liao, Strain tunable Berry curvature
+dipole, orbital magnetization and nonlinear Hall effect in
+WSe2 monolayer, Chin. Phys. Lett. 38, 017301 (2021).
+[20] M. Huang, Z. Wu, J. Hu, X. Cai, E. Li, L. An, X. Feng, Z.
+Ye, N. Lin, K. T. Law et al., Giant nonlinear Hall effect in
+twisted WSe2, Natl. Sci. Rev. nwac232 (2022).
+[21] S.-C. Ho, C.-H. Chang, Y.-C. Hsieh, S.-T. Lo, B. Huang,
+T.-H.-Y. Vu, C. Ortix, and T.-M. Chen, Hall effects in
+artificially corrugated bilayer graphene without breaking
+time-reversal
+symmetry,
+Nat.
+Electron.
+4,
+116
+(2021).
+[22] P. He, H. Isobe, D. Zhu, C.-H. Hsu, L. Fu, and H. Yang,
+Quantum frequency doubling in the topological insulator
+Bi2Se3, Nat. Commun. 12, 698 (2021).
+[23] O. O.
+Shvetsov,
+V. D.
+Esin,
+A. V.
+Timonina,
+N. N.
+Kolesnikov, and E. V. Deviatov, Non-linear Hall effect in
+5
+
+three-dimensional Weyl and Dirac semimetals, JETP Lett.
+109, 715 (2019).
+[24] S. Dzsaber, X. Yan, M. Taupin, G. Eguchi, A. Prokofiev, T.
+Shiroka, P. Blaha, O. Rubel, S. E. Grefe, H.-H. Lai et al.,
+Giant spontaneous Hall effect in a nonmagnetic Weyl–
+Kondo semimetal, Proc. Natl. Acad. Sci. U.S.A. 118,
+e2013386118 (2021).
+[25] A. Tiwari, F. Chen, S. Zhong, E. Drueke, J. Koo, A.
+Kaczmarek, C. Xiao, J. Gao, X. Luo, Q. Niu et al., Giant
+c-axis nonlinear anomalous Hall effect in Td-MoTe2 and
+WTe2, Nat. Commun. 12, 2049 (2021).
+[26] S. Lai, H. Liu, Z. Zhang, J. Zhao, X. Feng, N. Wang, C.
+Tang, Y. Liu, K. S. Novoselov, S. A. Yang et al., Third-order
+nonlinear Hall effect induced by the Berry-connection
+polarizability tensor, Nat. Nanotechnol. 16, 869 (2021).
+[27] H. Liu, J. Zhao, Y.-X. Huang, X. Feng, C. Xiao, W. Wu, S.
+Lai, W.-b. Gao, and S. A. Yang, Berry connection polar-
+izability tensor and third-order Hall effect, Phys. Rev. B 105,
+045118 (2022).
+[28] Y. Gao, S. A. Yang, and Q. Niu, Field Induced Positional
+Shift of Bloch Electrons and Its Dynamical Implications,
+Phys. Rev. Lett. 112, 166601 (2014).
+[29] See
+Supplemental
+Material
+at
+http://link.aps.org/
+supplemental/10.1103/PhysRevLett.130.016301 for device
+fabrication, electrical measurements, calculation details,
+polarized Raman spectroscopy of few-layer WTe2, transport
+properties of the devices, angle-dependent third-order
+anomalous Hall effect, symmetry analysis of WTe2, theory
+analysis of the field-induced Berry curvature dipole, control
+experiments in device S2, extrinsic effects that may induce
+nonlinear transport, and anisotropy of the scaling parame-
+ters, which includes Refs. [30–41].
+[30] L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T.
+Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller et al.,
+One-dimensional electrical contact to a two-dimensional
+material, Science 342, 614 (2013).
+[31] G. Kresse and J. Hafner, Ab initio molecular dynamics for
+open-shell transition metals, Phys. Rev. B 48, 13115 (1993).
+[32] G. Kresse and J. Furthmüller, Efficient iterative schemes for
+ab initio total-energy calculations using a plane-wave basis
+set, Phys. Rev. B 54, 11169 (1996).
+[33] P. E. Blöchl, Projector augmented-wave method, Phys. Rev.
+B 50, 17953 (1994).
+[34] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized
+Gradient Approximation Made Simple, Phys. Rev. Lett. 77,
+3865 (1996).
+[35] G. Pizzi et al., Wannier90 as a community code: New
+features and applications, J. Phys. Condens. Matter 32,
+165902 (2020).
+[36] M. Kim, S. Han, J. H. Kim, J.-U. Lee, Z. Lee, and H.
+Cheong, Determination of the thickness and orientation of
+few-layer tungsten ditelluride using polarized Raman spec-
+troscopy, 2D Mater. 3, 034004 (2016).
+[37] M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M.
+Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger,
+N. P. Ong et al., Large, non-saturating magnetoresistance in
+WTe2, Nature (London) 514, 205 (2014).
+[38] V. Fatemi, Q. D. Gibson, K. Watanabe, T. Taniguchi, R. J.
+Cava, and P. Jarillo-Herrero, Magnetoresistance and quan-
+tum oscillations of an electrostatically tuned semimetal-
+to-metal transition in ultrathin WTe2, Phys. Rev. B 95,
+041410(R) (2017).
+[39] X. Zhang, V. Kakani, J. M. Woods, J. J. Cha, and
+X. Shi, Thickness dependence of magnetotransport proper-
+ties of tungsten ditelluride, Phys. Rev. B 104, 165126
+(2021).
+[40] T. Akamatsu et al., Avan der Waals interface that creates in-
+plane polarization and a spontaneous photovoltaic effect,
+Science 372, 68 (2021).
+[41] C. Dames and G. Chen, 1ω, 2ω, and 3ω methods for
+measurements of thermal properties, Rev. Sci. Instrum. 76,
+124902 (2005).
+[42] Z. Z. Du, C. M. Wang, S. Li, H.-Z. Lu, and X. C. Xie,
+Disorder-induced nonlinear Hall effect with time-reversal
+symmetry, Nat. Commun. 10, 3047 (2019).
+[43] Y. Tian, L. Ye, and X. Jin, Proper Scaling of the Anomalous
+Hall Effect, Phys. Rev. Lett. 103, 087206 (2009).
+[44] L. Ye, M. Kang, J. Liu, F. von Cube, C. R. Wicker, T.
+Suzuki, C. Jozwiak, A. Bostwick, E. Rotenberg, D. C. Bell
+et al., Massive Dirac fermions in a ferromagnetic kagome
+metal, Nature (London) 555, 638 (2018).
+[45] H. Isobe, S.-Y. Xu, and L. Fu, High-frequency rectification
+via chiral Bloch electrons, Sci. Adv. 6, eaay2497 (2020).
+[46] X.-G. Ye, P.-F. Zhu, W.-Z. Xu, N. Shang, K. Liu, and Z.-M.
+Liao, Orbit-transfer torque driven field-free switching of
+perpendicular magnetization, Chin. Phys. Lett. 39, 037303
+(2022).
+[47] S. Sinha, P. C. Adak, A. Chakraborty, K. Das, K. Debnath,
+L. D. V.
+Sangani,
+K.
+Watanabe,
+T.
+Taniguchi,
+U. V.
+Waghmare, A. Agarwal, and M. M. Deshmukh, Berry
+curvature dipole senses topological transition in a moir´e
+superlattice, Nat. Phys. 18, 765 (2022).
+6
+
+1
+
+Supplemental Material for
+Control over Berry curvature dipole with electric field in WTe2
+Xing-Guo Ye1,+, Huiying Liu2,+, Peng-Fei Zhu1,+, Wen-Zheng Xu1,+, Shengyuan A.
+Yang2, Nianze Shang1, Kaihui Liu1, and Zhi-Min Liao1,*
+1 State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for
+Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China.
+2 Research Laboratory for Quantum Materials, Singapore University of Technology
+and Design, Singapore, 487372, Singapore.
++ These authors contributed equally.
+* Email: liaozm@pku.edu.cn
+This file contains supplemental Figures S1-S18 and Notes 1-10.
+Note 1: Device fabrication, experimental and calculation methods.
+Note 2: Polarized Raman spectroscopy of WTe2.
+Note 3: Angle-dependent longitudinal resistance and third-order nonlinear Hall effect.
+Note 4: Magnetotransport properties of WTe2.
+Note 5: Symmetry analysis of WTe2.
+Note 6: Theoretical analysis and calculations of field-induced Berry curvature dipole.
+Note 7: Electric field dependence of second-order Hall signals.
+Note 8: Control experiments in device S2.
+Note 9: Discussions of other possible origins of the second order AHE.
+Note 10: Angle dependence of parameter C0 obtained from the fittings of scaling law.
+
+
+
+2
+
+Supplemental Note 1: Device fabrication, experimental and calculation methods.
+1) Device fabrication
+The WTe2 flakes were exfoliated from bulk crystal by scotch tape and then
+transferred onto the polydimethylsiloxane (PDMS). The PDMS was then covered onto
+a Si substrate with 285 nm-thick SiO2, where the Si substrate was precleaned by air
+plasma, and further heated for about 1 minute at 90℃ to transfer the WTe2 flakes onto
+Si substrate. Disk and Hall bar-shaped Ti/Au electrodes (around 10 nm thick) were
+prefabricated on individual SiO2/Si substrates with e-beam lithography, metal
+deposition and lift-off. Exfoliated BN (around 20 nm thick) and WTe2 flakes (around
+5-20 nm thick) were sequentially picked up and then transferred onto the Ti/Au
+electrodes using a polymer-based dry transfer technique [30]. The atomic force
+microscope image of device S1 is shown in Fig. S1. The thickness of this sample is 8.4
+nm, corresponding to a 12-layer WTe2. The whole exfoliation and transfer processes
+were done in an argon-filled glove box with O2 and H2O content below 0.01 parts per
+million to avoid sample degeneration.
+
+Figure S1: (a) The atomic force microscope image of device S1. (b) The line profile
+shows the thickness of the WTe2 sample is 8.4 nm.
+
+0
+1
+2
+3
+4
+5
+0
+3
+6
+9
+Height (nm)
+Line profile (mm)
+8.4 nm
+3
+WTe2
+(a)
+(b)
+
+3
+
+2) Electrical transport measurements and circuit schematic
+All the transport measurements were carried out in an Oxford cryostat with a
+variable temperature insert and a superconducting magnet. First-, second- and third-
+harmonic signals were collected by standard lock-in techniques (Stanford Research
+Systems Model SR830) with frequency ω . Frequency equals 17.777 Hz unless
+otherwise stated.
+The circuit schematic with multiple sources in experiments is depicted in Fig. S2.
+The a.c. and d.c. sources are both effective current sources. The original SR830 a.c.
+source is a voltage source. In experiments, we connected the SR830 voltage source and
+a protective resistor with resistance value 𝑅𝑝 in series (𝑅𝑝 = 100 kΩ for device S1
+and 𝑅𝑝 = 10 kΩ for device S2), as shown in Fig. S2. The resistance of WTe2 channel
+is in the order of 10 Ω, much less than 𝑅𝑝, which makes the SR830 source an effective
+current source with excitation current 𝐼𝜔 ≅ 𝑈𝜔 𝑅𝑝
+⁄
+, where 𝑈𝜔 is the source voltage.
+The Keithley 2400 current source is used for the d.c source. As shown in Fig. S2,
+the positive and negative terminals of the Keithley source are connected to a pair of
+diagonal electrodes to form a loop circuit, i.e., a floating loop. The d.c. electric field is
+obtained by 𝐸𝑑𝑐 =
+𝐼𝑑𝑐𝑅𝜃
+𝐿 , where 𝐼𝑑𝑐 is the applied d.c. current, 𝑅𝜃 is the resistance
+of WTe2 along direction 𝜃, and 𝐿 is the channel length of WTe2. The impedance of
+the floating Keithley source to ground is measured to be ~60 MΩ. While, the negative
+terminal of SR830 source is directly connected to the ground.
+
+4
+
+
+Figure S2: Schematic structure of the circuit for measurements in device S1.
+
+3) Spectral purity of lock-in measurements
+For the lock-in measurements, the used integration time is 300 ms and the filter
+roll-off is 24 dB/octave, that is, the cutoff (-3 dB) frequency for the low-pass filter is
+0.531 Hz and the filter roll-off is 24 dB per octave. For our lock-in measurements, the
+narrow detection bandwidth (±0.531 Hz) effectively avoided the spectral leakage.
+The spectral purity of the lock-in homodyne circuit is verified by the control
+experiments of the lock-in measurements of a resistor. The first-, second- and third-
+harmonic voltages of a resistor with resistance ~100 Ω are measured using the same
+frequency (17.777 Hz), integration time (300 ms) and filter roll-off (24 dB/octave) as
+used in experiments, as shown in Fig. S3. The first-harmonic voltage shows linear
+dependence on the alternating current, consistent with the resistance value ~100 Ω. The
+second- and third-harmonic voltages are four orders of magnitude smaller than the first-
+harmonic voltage, which indicates the high purity of spectrum of the lock-in homodyne
+circuit.
+Keithley 2400
+current source
+SR830 voltage
+source
+SR830 lock-in
+measurement
+
+5
+
+
+Figure S3: Lock-in measurements for a resistor with resistance ~𝟏𝟎𝟎 𝛀.
+a, The first-harmonic voltage versus the alternating current.
+b, The second- and third-harmonic voltages versus the alternating current.
+
+4) Validity of electrical measurements with the two sources
+In our experiments, the Keithley source is used as the d.c. current source, which
+has an output impedance ~20 MΩ. The a.c. current source is realized by connecting a
+resistor 𝑅𝑝 in series (𝑅𝑝 = 100 kΩ for device S1 and 𝑅𝑝 = 10 kΩ for device S2) in
+series with the SR830 voltage source. Both the a.c. and d.c. current sources have
+effectively large output impedance comparing to the sample resistance ~10 Ω, so that
+they can be considered as independent current sources. These two current sources can
+be applied to the device simultaneously, having well-defined potential differences. To
+further confirm the validity of our electrical measurements with the two current sources,
+we design a test circuit, as shown in Fig. S4(a). The a.c. current flowing through 𝑅2
+was calculated by measuring the first-harmonic voltage 𝑉ω of 𝑅2 and 𝐼𝜔 = 𝑉𝜔/𝑅2.
+The d.c. current is applied by the Keithley current source and is measured by measuring
+the d.c. voltage 𝑉𝑑𝑐 of 𝑅2 and 𝐼𝑑𝑐 = 𝑉𝑑𝑐/𝑅2. As shown in Fig. S4(b), where the a.c.
+voltage of SR830 source is fixed at 1 V, it is found that the 𝐼𝜔 is unchanged when
+0
+0.1
+0.2
+0.3
+0.4
+0.5
+0
+10
+20
+30
+40
+50
+V (mV)
+I (mA)
+0
+0.1
+0.2
+0.3
+0.4
+0.5
+-1
+0
+1
+ n = 2
+ n = 3
+Vn (mV)
+I (mA)
+(a)
+(b)
+
+6
+
+varying the d.c. current by Keithley source, while measured 𝐼𝑑𝑐 is almost the same as
+the output current of the Keithley source. In Fig. S4(c), where the d.c. current of
+Keithley source is fixed, it is found that 𝐼𝜔 well satisfies 𝐼𝜔 = 𝑈𝜔/(𝑅1 + 𝑅2 +
+𝑅3) ≅ 𝑈𝜔 𝑅𝑝
+⁄
+ with 𝑈𝜔 as the SR830 source voltage and 𝑅𝑝 = 𝑅1 . These results
+clearly confirm the a.c. and d.c. sources are effectively independent with negligible
+current shunt between each other.
+
+Figure S4: Validity of the electrical measurements with two sources.
+a, Schematic of the test circuit.
+b, The 𝐼𝜔 and 𝐼𝑑𝑐 as a function of the Keithley source current with SR830 source
+voltage 𝑈𝜔 fixed at 1 V.
+c, The 𝐼𝜔 and 𝐼𝑑𝑐 as a function of the SR830 source voltage 𝑈𝜔 with Keithley
+source current fixed at 1 mA.
+
+SR830 voltage source
+Keithley 2400 current source
+SR830 lock-in
+measurement
+(a)
+(b)
+(c)
+0
+1
+2
+3
+4
+5
+0
+10
+20
+30
+40
+50
+I (mA)
+U (V)
+0.9
+1
+1.1
+Keithley source current=1 mA
+Idc (mA)
+-4
+-2
+0
+2
+4
+8
+10
+12
+I (mA)
+Keithley source current (mA)
+U = 1 V
+-4
+-2
+0
+2
+4
+Idc (mA)
+
+7
+
+5) Calculation methods
+First-principles calculations were performed to reveal the properties of the Berry
+connection polarizability tensor and field-induced Berry curvature dipole in WTe2. The
+electronic structures were carried out in the framework of density functional theory as
+implemented in the Vienna ab initio simulation package [31,32] with the projector
+augmented wave method [33] and Perdew, Burke, and Ernzerh of exchange correlation
+functionals [34]. For the convergence of the results, the spin–orbit coupling was
+included self-consistently in the calculations of electronic structures with the kinetic
+energy cutoff of 600 eV and Monkhorst-Pack k mesh of 14 × 8 × 4. We used d orbitals
+of W atom and p orbitals of Te atoms to construct Wannier functions [35]. While
+evaluating the band geometric quantities, we consider the finite temperature effect in
+the distribution function and a lifetime broadening of 𝑘𝐵𝑇 with 𝑇 = 5 K.
+
+
+
+
+8
+
+Supplemental Note 2: Polarized Raman spectroscopy of WTe2.
+The crystalline orientation of WTe2 device was determined by the polarized
+Raman spectroscopy in the parallel polarization configuration [36]. Figure S5 shows
+the polarized Raman spectrum of device S2 as an example. The optical image of device
+S2 is displayed in Fig. S5(a). Raman spectroscopy was measured with 514 nm
+excitation wavelengths through a linearly polarized solid-state laser beam. The
+polarization of the excitation laser was controlled by a quarter-wave plate and a
+polarizer. We collected the Raman scattered light with the same polarization as the
+excitation laser. A typical Raman spectroscopy of device S2 is shown in Fig. S5(b),
+where five Raman peaks are identified, belonging to the A1 modes of WTe2 [36]. We
+further measured the polarization dependence of intensities of peaks P2 and P11
+[denoted in Fig. S5(b)] in Figs. S5(c) and S5(d), respectively. Based on previous
+reports [36], the polarization direction with maximum intensity was assigned as the b
+axis. The measured crystalline orientation is further indicated in the optical image [Fig.
+S5(a)], where the applied a.c. current is approximately parallel to a axis.
+
+9
+
+
+Figure S5: Polarized Raman spectroscopy of WTe2 to determine the crystalline
+orientation.
+a, Optical image of device S2. The crystalline axes, i.e., a axis and b axis, determined
+by the polarized Raman spectroscopy, are denoted by the black arrows. The applied a.c.
+current is also noted by the red arrow, which is approximately aligned with a axis.
+b, A typical Raman spectrum measured with 514 nm excitation wavelengths, where the
+polarization direction is approximately along b axis. Five Raman peaks are observed,
+which belong to the A1 modes of WTe2 [36].
+c,d, Polarization dependence of intensities of peaks (c) P2 and (d) P11. Here the
+polarization angle takes 0° along the b axis, along which maximum intensity is
+observed [36].
+
+
+60
+120
+180
+240
+300
+0
+100
+200
+300
+Intensity (a.u.)
+Wavenumber (cm-1)
+0
+60
+120
+180
+240
+300
+0
+60
+120
+180
+240
+300
+b
+a
+10 mm
+(a)
+(b)
+(c)
+(d)
+P2
+P10
+P11
+P2
+P11
+b axis
+b axis
+
+10
+
+Supplemental Note 3: Angle-dependent longitudinal resistance and third-order
+nonlinear Hall effect.
+The third-order anomalous Hall effect (AHE) is investigated in device S1, as
+shown in Fig. S6(a). By exploiting the circular disc electrode structure, the angle-
+dependence of the third-order AHE is measured. It shows highly sensitive to the
+crystalline orientation, as shown in Fig. S6(c), which inherits from the intrinsic
+anisotropy of WTe2 [26]. Based on the symmetry of WTe2 [26], the third-order AHE
+shows angle-dependence following the formula
+E𝐻
+3ω
+(𝐸𝜔)3 ∝
+cos(θ−θ0)sin(θ−θ0)[(χ22r4−3χ12r2)sin2(θ−θ0)+(3χ21r2−χ11)cos2(θ−θ0)]
+(cos2(θ−θ0)+𝑟sin2(θ−θ0))3
+,
+where 𝐸𝐻
+3𝜔 =
+𝑉𝐻
+3𝜔
+𝑊 , 𝐸𝜔 =
+𝐼𝜔𝑅∥
+𝐿 , 𝑉𝐻
+3𝜔 is the third-harmonic Hall voltage, 𝐼𝜔 is the
+applied a.c. current, 𝑅∥ is the longitudinal resistance, 𝑊 and 𝐿 are channel width
+and length, respectively, r is the resistance anisotropy, 𝜒𝑖𝑗 are elements of the third-
+order susceptibility tensor, 𝜃0 is the angle misalignment between 𝜃 = 0° and
+crystalline b axis. The fitting curve for this angle dependence is shown by the red line
+in Fig. S6(c), which yields the misalignment 𝜃0 ~1.5°. In addition to the third-order
+AHE, the longitudinal (𝑅∥) resistance also shows strong anisotropy [13], as shown in
+Fig. S6(b), following
+𝑅∥(𝜃) = 𝑅𝑏𝑐𝑜𝑠2(𝜃 − 𝜃0) + 𝑅𝑎𝑠𝑖𝑛2(𝜃 − 𝜃0),
+consistent with previous results [13], where 𝑅𝑎 and 𝑅𝑏 are resistance along
+crystalline a and b axis, respectively.
+
+11
+
+
+Figure S6: Angle-dependence of third-order nonlinear Hall effect in device S1 at
+5 K.
+a, The third-harmonic anomalous Hall voltages at various 𝜃. Here 𝜃 is defined as the
+relative angle between the alternating current and the baseline (approximately along b
+axis).
+b,c, (b) Rxx and (c) third-order Hall signal
+E𝐻
+3ω
+(𝐸𝜔)3 as a function of 𝜃, respectively.
+
+
+
+0
+0.5
+1
+-15
+-10
+-5
+0
+5
+10
+15
+ 0
+ 30
+ 60
+V3
+H (mV)
+E (kV/m)
+ 90
+ 120
+ 150
+16
+24
+Rxx (W)
+0
+60
+120
+180
+240
+300
+360
+-50
+0
+50
+V3
+H /(V)3 (V-2)
+q ()
+(a)
+(b)
+(c)
+
+12
+
+Supplemental Note 4: Magnetotransport properties of WTe2.
+The magneto-transport properties of the device S1 were investigated. Figure S7(a)
+shows the resistivity as a function of temperature. The resistivity decreases upon
+decreasing temperature with a residual-resistivity at low temperatures, showing typical
+metallic behaviors. Figure S7(b) shows the magnetoresistance (MR) and Hall
+resistance as a function of magnetic field. MR is defined as
+𝑅𝑥𝑥(𝐵)−𝑅𝑥𝑥(0)
+𝑅𝑥𝑥(0)
+× 100%. The
+low residual resistance and large, non-saturated MR indicate the high quality of the
+WTe2 devices [37,38]. The carrier mobility of device S1 is estimated as high as
+4974.4 cm2/(V ⋅ s). Moreover, resistance oscillations due to the formations of Landau
+levels are also observed, as shown in Fig. S7(c), indicative of the high crystal quality.
+The oscillation ∆𝑅𝑥𝑥 is obtained by subtracting a parabolic background. The fast
+Fourier transform (FFT) is performed, as shown in Fig. S7(d). Three frequencies are
+observed, indicating the multiple Fermi pockets in WTe2, which is consistent with
+previous work [37-39]. The dominant peak of FFT 𝑓1 is around 44 T.
+
+13
+
+
+Figure S7: Transport properties of the device S1.
+a, The resistivity as a function of temperature.
+b, Magnetoresistance and Hall resistance at 5 K.
+c, Oscillations of Rxx at 5 K. The ∆𝑅𝑥𝑥 is obtained by subtracting a parabolic
+background.
+d, The FFT analysis of ∆𝑅𝑥𝑥 oscillations, where three peaks are obtained.
+
+
+0
+50
+100 150 200 250 300
+0
+20
+40
+60
+80
+100
+rxx (cm×mW)
+T (K)
+-15 -10
+-5
+0
+5
+10
+15
+0
+500
+1000
+1500
+2000
+MR (%)
+B (T)
+-60
+-40
+-20
+0
+20
+40
+Rxy (W)
+0.05
+0.1
+0.15
+0.2
+0.25
+-6
+-3
+0
+3
+6
+DRxx (W)
+1/B (T-1)
+100
+200
+300
+0
+200
+400
+600
+800
+FFT amplitude (a.u.)
+Frequency (T)
+f1
+f2
+f3
+(a)
+(b)
+(c)
+(d)
+
+14
+
+Supplemental Note 5: Symmetry analysis of WTe2.
+Td-WTe2 has a distorted crystal structure with low symmetry. Here we analyze the
+thickness dependence of the symmetry in WTe2 in details. Figure S8(a) shows the b-c
+plane of monolayer WTe2. Each monolayer consists of a layer of W atoms sandwiched
+between two layers of Te atoms, denoted as Te1 (denoted in yellow) and Te2 (denoted
+in red), respectively. The inversion symmetry of the monolayer is approximately
+satisfied, and Te1 is equivalent to Te2. The presence of inversion symmetry forces Berry
+curvature dipole (BCD) to be zero. However, as a perpendicular displacement field is
+applied to break the inversion symmetry, the Te1 is no longer equivalent to Te2. As
+shown in the bottom of Fig. S8(a), an in-plane electric polarization along b axis can be
+induced by the out-of-plane displacement field. The electric polarization along b axis
+plays a similar role as the d.c. electric field in our work, leading to nonzero BCD along
+a axis.
+Nonzero BCD in bilayer WTe2 origins from crystal symmetry breaking. The
+largest symmetry in bilayer WTe2 is a single mirror symmetry 𝑀𝑎 with bc plane as
+mirror plane. As shown in Fig. S8(b), the stacking between the two layers makes bilayer
+WTe2 inversion symmetry breaking. Under inversion operation, the top and bottom
+layers are swapped, which fails to coincide with each other. As shown in Fig. S8(b),
+Te1 is not equivalent to Te2 due to the stacking arrangement in bilayer. Therefore, an
+in-plane electric polarization P along b axis exists, similar to the case in monolayer with
+an out-of-plane displacement field. The polarization P is able to induce nonzero BCD
+along the perpendicular crystalline axis, i.e., along a axis.
+
+15
+
+In fact, such in-plane polarization P along b axis in monolayer and bilayer WTe2 is
+already evidenced by the circular photogalvanic effect [14]. The symmetry breaking
+induced polarization is also confirmed in various 2D materials, such as WSe2/black
+phosphorus heterostructures [40].
+In trilayer and thicker WTe2, as shown in Fig. S8(c), the Te1 and Te2 are equivalent
+in bulk, leading to vanished electric polarization. The in-plane inversion symmetry in
+bulk forbids the presence of in-plane BCD. However, the inversion is broken on surface.
+Therefore, for trilayer and thicker WTe2, a small but nonzero BCD may occur on surface.
+
+Figure S8: Crystal structure of Td-WTe2.
+a, b-c plane of monolayer Td-WTe2.
+b, b-c plane of bilayer Td-WTe2. The stacking arrangement breaks the inversion
+symmetry.
+c, b-c plane of trilayer Td-WTe2.
+
+Importantly, the surface BCD and it induced second-order AHE in few-layer WTe2
+Inversion operation
+W
+Te2
+c
+b
+Te1
+E
+b
+(a)
+(b)
+(c)
+
+16
+
+is reported in Ref. [13], which is also observed in our device. We measured the second-
+order AHE without the application of Edc in a WTe2 device, as shown in Fig. S9. This
+second-order AHE is observable when applying 𝐼𝜔 in the order of 1 mA. By
+comparison, the second-order AHE induced by d.c. field is observable when applying
+𝐼𝜔 smaller than 0.05 mA (Fig. 1 of main text). The calculated BCD along a axis 𝐷𝑎
+without the application of Edc is ~0.03 nm, which is one order of magnitude smaller
+than 𝐷𝑎
+(1) ~0.29 nm measured under Edc = 3kV/m (Fig. 4 of main text). These results
+confirm the validity of Edc induced BCD in our work.
+
+Figure S9: The second-order AHE without external d.c. electric field in WTe2 at
+1.8 K.
+
+
+
+0
+0.5
+1
+1.5
+2
+0
+10
+20
+30
+40
+V2
+H (mV)
+I (mA)
+
+17
+
+Supplemental Note 6: Theoretical analysis and calculations of field-induced Berry
+curvature dipole.
+The electric field-induced Berry curvature depends on the Berry connection
+polarizability tensor and the applied d.c. field with the relation that
+𝛀(1) = 𝛁𝐤 × (𝐆⃡𝐄𝑑𝑐),
+Ωβ
+(1)(𝑛, 𝒌) = εβγμ[∂γ𝐺μν(𝑛, 𝒌)]𝐸ν
+dc,
+with 𝐺μν(𝑛, 𝒌) = 2𝑒Re ∑
+(𝐴μ)𝑛𝑚(𝐴ν)𝑚𝑛
+ε𝑛−ε𝑚
+𝑚≠𝑛
+ , where 𝐴𝑚𝑛 is the interband Berry
+connection and 𝑒 is the electron charge. The superscript “(1)” represents that the
+physical quantity is the first order term of electric field. Here the Greek letters refer to
+the spatial directions, 𝑚, 𝑛 refer to the energy band indices, εβγμ is the Levi-Civita
+symbol, and 𝜕𝛾 is short for 𝜕/𝜕𝑘𝛾 . The Berry connection polarizability tensor of
+WTe2 is calculated and shown in Figs. S10(a)-(c). From the definition, the field-induced
+BCD is
+𝐷αβ
+(1) = ∫ [𝑑𝒌]𝑓0 (∂αΩβ
+(1))
+𝑘
+= εβγμ ∫ [𝑑𝒌]𝑓0[∂α(∂γ𝐺μν)]𝐸ν
+dc
+𝑘
+,
+where ∫ [𝑑𝒌]
+𝑘
+= ∑
+1
+(2π)3 ∭ 𝑑𝒌
+𝑛
+ is taken over the first Brillouin zone of the system and
+summed over all energy bands.
+In two-dimensional systems, 𝛀(1) is constrained to the out of plane direction, and
+BCD behaves as a pseudo vector in the plane. Here we choose our coordinate frame
+along the crystal principal axes 𝑎, 𝑏, 𝑐 . By applying a d.c. electric field 𝐄dc =
+(Ea
+dc, Eb
+dc) in the 𝑎𝑏 plane, the induced Ω𝑐
+(1) reads
+Ω𝑐
+(1)(𝑛, 𝒌) = (𝜕𝑎𝐺𝑏𝑎 − 𝜕𝑏𝐺𝑎𝑎)Ea
+dc + (𝜕𝑎𝐺𝑏𝑏 − 𝜕𝑏𝐺𝑎𝑏)Eb
+dc.
+𝐷α
+(1) defined in a few-layer 2D system can be approximately derived from 𝐷αc(bulk)
+(1)
+ of
+
+18
+
+the bulk system by 𝐷α
+(1) = 𝑑𝐷αc(bulk)
+(1)
+ , where 𝑑 is the thickness of the film. The
+independent components of 𝐷α
+(1) are related to the Berry connection polarizability
+tensor, 𝐄dc and 𝑑. The mirror symmetry 𝑀𝑎 and the glide symmetry 𝑀̃𝑏 in WTe2
+constrain 𝐷α
+(1) to be
+𝐷𝑎
+(1) = ∫[𝑑𝑘] f0[∂a(∂aGbb) − ∂a(∂bGab)]Eb
+dc𝑑
+k
+,
+𝐷𝑏
+(1) = ∫[𝑑𝑘] f0[∂b(𝜕𝑎𝐺𝑏𝑎) − ∂b(𝜕𝑏𝐺𝑎𝑎)]Ea
+dc𝑑
+k
+,
+where the other terms are prohibited by symmetry. In the experiment, the d.c. electric
+field is applied along a direction with an angle 𝜃 between 𝑏 axis, which can be
+expressed
+as
+𝐄dc = 𝐸dc(− sin 𝜃 , cos 𝜃) .
+The
+induced
+BCD
+𝐃(1)(𝜃) =
+(𝐷𝑎
+(1)(𝜃), 𝐷𝑏
+(1)(𝜃)) hence reads
+𝐷𝑎
+(1)(𝜃) = ∫[𝑑𝑘] f0[∂a(∂aGbb) − ∂a(∂bGab)]Edc
+k
+cos 𝜃 𝑑,
+𝐷𝑏
+(1)(𝜃) = ∫[𝑑𝑘] f0[∂b(∂bGaa) − ∂b(∂aGba)]Edc
+k
+sin 𝜃 𝑑.
+With the field-induced BCD, the second-order Hall current of an a.c. electric field
+𝐄ω is [9]
+𝑗𝛼
+2ω = −εαμγ
+𝑒3𝜏
+2(1 + 𝑖ωτ)ℏ2 𝐷βμ
+(1)𝐸β
+ω𝐸γ
+ω.
+ In two-dimensional systems, where 𝛀(1) is along out of plane direction and
+𝐷αc
+(1) = ∫ [𝑑𝒌]𝑓0(∂αΩc
+(1))
+𝑘
+, it is equivalent to
+𝒋2ω = −
+𝑒3𝜏
+2(1 + 𝑖ωτ)ℏ2 (𝒛̂ × 𝐄ω)[D(1)(𝜃) ⋅ Eω].
+The magnitude of induced second-order Hall conductivity is determined by
+D(1)(𝜃) ⋅ 𝐄̂ω, which is the projection of the pseudo vector 𝐃(1) to the direction of 𝐄ω,
+
+19
+
+and the direction of Hall current is perpendicular to 𝐄ω. Consequently, we can measure
+the 𝐄dc induced BCD 𝐃(1) by detecting its projective component 𝐷𝑎
+(1)(𝜃) or
+𝐷𝑏
+(1)(𝜃) with an a.c. electric field along the corresponding direction. From the above
+derivation, when the direction of the d.c electric field varies in the 𝑎𝑏 plane, the
+independent components of induced BCD 𝐷𝑎
+(1) and 𝐷𝑏
+(1) change as a cosine and a sine
+function, respectively. This relation is clearly demonstrated by our experimental results
+in Fig. 4 of main text.
+With first-principles calculations, we estimate the extreme value of 𝐷𝑎
+(1)(0°) and
+𝐷𝑏
+(1)(90°), as shown in Fig. S10(d). It is taken that 𝑑 ∼ 8.4 nm and 𝐸dc ∼ 3 kV/m
+according to the experiment. 𝐷𝑎
+(1)(0°) and 𝐷𝑏
+(1)(90°) refer to 𝐷𝑎
+(1) and 𝐷𝑏
+(1) as the
+applied 𝐸dc along the b axis and -a axis, respectively. It is found that 𝐷𝑏
+(1)(90°)
+varies from ~-0.14 nm to 0 as tuning chemical potential away from 0, and 𝐷𝑎
+(1)(0°)
+shows a non-monotonic change between 0.18 and -0.13 nm as changing chemical
+potential. The experimental results of 𝐷𝑏
+(1)(90°) ~-0.05 nm and 𝐷𝑎
+(1)(0°) ~-0.28 nm
+(Fig. 4 in main text) agree well with the calculations on the order of magnitude.
+
+Figure S10: Calculations of Berry connection polarizability tensor and field-
+(a)
+(b)
+(c)
+(d)
+
+0.2
+-D(0°)
+(nm)
+0.1
+.-.D"(90°)
+0
+D(1)
+-0.1
+=3kV/m
+-0.2
+-20
+-10
+0
+10
+20
+μ(meV)106
+G
+104
+102
+X
+0
+-102
+-104
+-106
+Y
+Gbb
+10°
+104
+102
+X
+0
+-102
+-104
+-106
+Y106
+104
+102
+X
+0
+-102
+-104
+-106
+Y20
+
+induced Berry curvature dipole in WTe2.
+a-c, The calculated distribution of Berry connection polarizability tensor elements (a)
+𝐺𝑎𝑎, (b) 𝐺𝑏𝑏, (c) 𝐺𝑎𝑏 in the 𝑘𝑧 = 0 plane of the Brillouin Zone for the occupied
+bands. The unit of BCP is Å2 ⋅ V−1. The grey lines depict the Fermi surface.
+d, Calculated field-induced BCD 𝐷𝑎
+(1)(0°) and 𝐷𝑏
+(1)(90°) with respect to the
+chemical potential 𝜇 when 𝐸dc = 3 kV/m. In the calculations, the finite temperature
+effect is considered with a boarding of 𝑘𝐵𝑇 at 5 K.
+
+
+
+21
+
+Supplemental Note 7: Electric field dependence of second-order Hall signals.
+The second-harmonic I-V characteristics in Fig. 1(e) of main text are converted
+into the 𝑉𝐻
+2𝜔 versus (𝑉𝜔)2 in Fig. S11(a), where linear relationships are observed.
+The
+E𝐻
+2ω
+(𝐸𝜔)2 as a function of the applied 𝐸𝑑𝑐 is further calculated and presented in Fig.
+S11(b).
+
+Figure S11: Second-order AHE modulated by d.c. electric field at 5 K.
+a, The second-harmonic Hall voltage 𝑉𝐻
+2𝜔 as a function of (𝑉𝜔)2 as 𝐄𝑑𝑐 along b
+axis and 𝐄𝜔 along -a axis.
+b, The second-order Hall signal
+E𝐻
+2ω
+(𝐸𝜔)2 as a function of 𝐸𝑑𝑐 at 𝜃 = 0° and 𝜃 = 90°
+with 𝐄𝜔 ∥ −𝑎 axis.
+
+
+
+0
+5
+10
+15
+20
+25
+30
+-6
+-4
+-2
+0
+2
+4
+6
+Edc (kV/m)
+ 3
+ 1.5
+ 0
+ -1.5
+ -3
+V2
+H (mV)
+(V)2 (10-8 V2)
+q = 0
+E -a axis
+-3
+-2
+-1
+0
+1
+2
+3
+-9
+-6
+-3
+0
+3
+6
+9
+ q
+ 0
+ 90
+E2
+H /(E)2 (10-5 m/V)
+Edc (kV/m)
+E -a axis
+(a)
+(b)
+
+22
+
+Supplemental Note 8: Control experiments in device S2.
+To demonstrate the symmetry constraint in WTe2, control experiments were
+carried out in device S2. As schematically shown in Figs. S12(a), (d), the a.c. and d.c.
+current sources are applied. The SR830 is an effective a.c. current source as connecting
+a resistor in series with output impedance 10 kΩ. The d.c. source is the Keithley current
+source with output impedance ~20 MΩ. For the d.c. field applied along a and b axis,
+respectively, the first-harmonic Hall voltage shows no obvious dependence on 𝐄𝑑𝑐, as
+shown in Figs. S12(b) and S12(e), which indicate the independence of the two electric
+sources. When applying 𝐄𝑑𝑐 ∥ 𝐄𝜔 ∥ 𝑎 axis, no second-order nonlinear Hall effect can
+be observed in Fig. S12(c). Nevertheless, upon applying 𝐄𝑑𝑐 ⊥ 𝐄𝜔 and 𝐄𝜔 ∥ 𝑎 axis,
+as shown in Fig. S12(f), nonzero second-order nonlinear Hall effect emerges due to the
+𝐄𝑑𝑐 induced Berry curvature dipole along a axis.
+
+Figure S12: The measurements by applying both d.c. electric field 𝐄𝒅𝒄 and a.c.
+current in devices S2 at 1.8 K.
+a, Schematic of the measurement configuration for (b) and (c).
+0
+0.1
+0.2
+0.3
+0.4
+0.5
+-2
+-1
+0
+1
+2
+3
+Edc (104 V/m)
+ -10.7
+ -5.2
+ -1.5
+ 0
+ 1.5
+ 5.2
+ 10.7
+V2
+⊥ (mV)
+I (mA)
+E ⊥ Edc
+0
+0.1
+0.2
+0.3
+0.4
+0.5
+-1
+-0.5
+0
+0.5
+1
+Edc
+ (104 V/m)
+ 2.5
+ -2.5
+V2
+⊥ (mV)
+I (mA)
+E Edc
+0
+0.1
+0.2
+0.3
+0.4
+0.5
+0
+0.5
+1
+1.5
+Edc (104 V/m)
+ -5.2
+ 5.2
+V
+H (mV)
+I (mA)
+E ⊥ Edc
+0
+0.1
+0.2
+0.3
+0.4
+0.5
+0
+0.5
+1
+1.5
+Edc (104 V/m)
+ 2.5
+ -2.5
+V
+H (mV)
+I (mA)
+E Edc
+SR830
+voltage source
+Keithley 2400
+current source
+SR830
+voltage source
+Keithley 2400
+current source
+b
+a
+b
+a
+(a)
+(b)
+(c)
+(d)
+(e)
+(f)
+
+23
+
+b, First-harmonic Hall voltage 𝑉𝐻
+𝜔 under 𝐄𝑑𝑐 ∥ 𝐄𝜔 ∥ 𝑎 axis.
+c, There is no clear second-harmonic Hall voltage 𝑉𝐻
+2𝜔 under 𝐄𝑑𝑐 ∥ 𝐄𝜔 ∥ 𝑎 axis.
+d, Schematic of the measurement configuration for (e) and (f).
+e, The 𝑉𝐻
+𝜔 under various 𝐄𝑑𝑐 with 𝐄𝑑𝑐 ⊥ 𝐄𝜔 and 𝐄𝜔 ∥ 𝑎 axis.
+f, The 𝑉𝐻
+2𝜔 under various 𝐄𝑑𝑐 with 𝐄𝑑𝑐 ⊥ 𝐄𝜔 and 𝐄𝜔 ∥ 𝑎 axis.
+
+
+
+24
+
+Supplemental Note 9: Discussions of other possible origins of the second order
+AHE.
+1) Diode effect. An accidental diode due to the contact can lead to a rectification,
+causing high-order transport, which, however, can be safely ruled out in this work due
+to the following reasons:
+(a) Extrinsic signals of this origin should be strongly contact dependent. Thus, the
+angle-dependence should be also coupled to extrinsic contacts. Nevertheless, the angle-
+dependence of second-order AHE in Fig. 2 and Fig. S12 is well consistent with the
+inherent symmetry of WTe2, which excludes the extrinsic origins.
+(b) The two-terminal d.c. measurements for all the diagonal electrodes show linear
+I-V characteristics, as shown in Fig. S13(a), excluding the existence of diode effect.
+Linear fittings are performed for the two-terminal I-V curves. The R-square of the linear
+fittings is at least larger than 0.99997, indicating perfect linearity. Further, the deviation
+from linearity is analyzed by subtracting the linear-dependent part, as shown in Fig.
+S13(b). It is found ∆Vdc, i.e., the deviation part, is four orders of magnitude smaller
+than the original Vdc, indicating a negligible nonlinearity. Moreover, the ∆Vdc shows
+no obvious current or angle dependence (Fig. S13(b)), and its magnitude is also much
+smaller than that of the higher-harmonic Hall voltages (Fig. S13(c)), further indicating
+that the observed higher-order transport in this work is failed to be attributed to the
+diode effect induced by contact.
+
+
+25
+
+
+Figure S13: Two-terminal d.c. measurements at 5 K in device S1.
+a, Current-voltage curves from two-terminal d.c. measurements for all the diagonal
+electrodes.
+b, The current dependence of ∆Vdc, that is, the deviations from the linearity of the
+current-voltage curves in Fig. S13a.
+c, The comparation of the ∆Vdc, 𝑉𝐻
+2𝜔 and 𝑉𝐻
+3𝜔. For ∆Vdc and 𝑉𝐻
+3𝜔, the excitation
+current is applied at 𝜃 = 30°, while for 𝑉𝐻
+2𝜔, the excitation current is applied along a
+axis and a d.c. field 3 kV/m is applied at 𝜃 = 30°.
+
+2) Capacitive effect. Contact resistance is generally inevitable between the metal
+electrodes and two-dimensional materials, which would induce an accidental capacitive
+effect, resulting in higher-order transport effect. Here, the second-order AHE shows a
+negligible dependence on frequency, as shown in Fig. S14(a), excluding the capacitive
+effect. The phase of the second-harmonic Hall voltage is also investigated, where the Y
+signal dominates over the X signal (Fig. S14(b)). The phase of the second-harmonic
+Hall voltage is approximately ±90°, as shown in Fig. S14(c). These features further
+exclude the capacitive effect.
+-0.6
+0
+0.6
+-10
+0
+10
+Vdc (mV)
+Idc (mA)
+ 90
+ 120
+ 150
+ 0
+ 30
+ 60
+(a)
+(b)
+(c)
+-0.6
+-0.4
+-0.2
+0
+0.2
+0.4
+0.6
+-0.04
+-0.02
+0
+0.02
+0.04
+ 0
+ 30
+ 60
+DVdc (mV)
+Idc (mA)
+ 90
+ 120
+ 150
+0
+0.2
+0.4
+-5
+0
+5
+10
+V (mV)
+Excitation current (mA)
+ DVdc
+ V2
+H
+ V3
+H
+
+26
+
+
+Figure S14: Frequency-dependence and phase of second-order AHE in device S1
+at 5 K and with 𝐄𝐝𝐜 = 𝟑 𝐤𝐕/𝐦 at 𝜽 = 𝟔𝟎°.
+a, The second-order Hall signals at different frequencies.
+b, The X and Y signals of the second-order Hall voltages.
+c, The absolute value of the phase of the second-order Hall voltages.
+
+3) Thermal effect. The thermal effect can also induce a second-order signal [41]. If the
+observed nonlinear Hall effect origins from thermal effect, it should response to both
+longitudinal and transverse d.c. electric field. However, as shown in Fig. S12, when
+applying 𝐄𝑑𝑐 ∥ 𝐄𝜔 ∥ 𝑎 axis, no second-order nonlinear Hall effect is observed.
+Nevertheless, upon applying 𝐄𝜔 ⊥ 𝐄𝑑𝑐 , nonzero second-order nonlinear Hall effect
+emerges. This observation is clearly inconsistent with the thermal effect. Moreover, the
+observed second-order nonlinear Hall effect shows strong anisotropy, as shown in Fig.
+2 of main text. The angle-dependence of the d.c. field-induced second-order Hall effect
+is well consistent with the inherent symmetry of WTe2, which is failed to be explained
+by the thermal effect.
+4) Thermoelectric effect. Joule heating induced temperature gradient across the
+sample can drive a thermoelectric voltage, leading to second-order nonlinear Hall effect.
+This thermoelectric effect can also be excluded due to the following reasons:
+0.01
+0.02
+0.03
+0.04
+0.05
+0
+20
+40
+60
+80
+100
+abs(phase) ()
+I (mA)
+0
+0.01 0.02 0.03 0.04 0.05
+-2.5
+-2
+-1.5
+-1
+-0.5
+0
+ X signal
+ Y signal
+V2
+H (mV)
+I (mA)
+(b)
+(c)
+0
+0.01 0.02 0.03 0.04 0.05
+-2.5
+-2
+-1.5
+-1
+-0.5
+0
+ 17.777 Hz
+ 77.777 Hz
+ 177.77 Hz
+ 777.77 Hz
+ 1777.7 Hz
+V2
+H (mV)
+I (mA)
+(a)
+
+27
+
+(a) Uniform Joule heating will not induce a temperature gradient and thus no
+thermoelectric voltage across the sample.
+(b) To generate thermoelectric voltage, the Joule heating should couple with
+external asymmetry, such as contact junction or flake shape, which should be unrelated
+to the inherent symmetry of WTe2. However, the anisotropy of second-order nonlinear
+Hall effect is well consistent with the inherent symmetry analysis, as shown in Fig. 2
+of main text.
+5) A residue of the first-harmonic Hall response 𝑽𝑯
+𝝎. The influence of 𝑉𝐻
+𝜔 on the
+𝑉𝐻
+2𝜔 can be ruled out because the first- and second-harmonic signals show different
+dependence on the d.c. electric field. As shown in Fig. S15, the first-harmonic Hall
+signal (𝑉𝐻
+𝜔) shows that the I-V curves under 𝐸𝑑𝑐 = ±3 kV/m overlap with each other.
+By comparison, the second-harmonic Hall signal (𝑉𝐻
+2𝜔 ) shows an anti-symmetric
+dependence on 𝐸𝑑𝑐, where the sign of 𝑉𝐻
+2𝜔 is changed upon changing the sign of 𝐸𝑑𝑐.
+This indicates that the existence of the first order signal 𝑉𝐻
+𝜔 will not affect the
+measurements of the second order signal 𝑉𝐻
+2𝜔.
+
+Figure S15: The first- and second-harmonic signals at 5 K as 𝐄𝒅𝒄 along b axis
+(𝜽 = 𝟎°) and 𝐄𝝎 along -a axis.
+a, The first-harmonic Hall voltage 𝑉𝐻
+𝜔 as a function of 𝐼𝜔 at 𝐸𝑑𝑐 = ±3 kV/m.
+0
+0.01 0.02 0.03 0.04 0.05
+-6
+-4
+-2
+0
+2
+4
+6
+Edc (kV/m)
+ 3
+ -3
+V2
+H (mV)
+I (mA)
+q = 0
+(a)
+(b)
+0
+0.01 0.02 0.03 0.04 0.05
+0
+0.01
+0.02
+0.03
+0.04
+0.05
+Edc (kV/m)
+ 3
+ -3
+V
+H (mV)
+I (mA)
+
+28
+
+b, The second-harmonic Hall voltage 𝑉𝐻
+2𝜔.
+
+6) Trivial effect by d.c. source. We measured the first-harmonic longitudinal voltage
+upon applying Edc = 3 kV/m , as shown in Fig. S16. It is clearly found that when
+reversing the sign of d.c. electric field, the I-V curves overlapped with each other. The
+results show that the d.c. source will not affect the a.c. measurements.
+
+Figure S16: The first-harmonic longitudinal voltage versus current under
+different d.c. electric fields at 5 K. The 𝐄𝝎 and 𝐄𝒅𝒄 are along a axis.
+
+7) Longitudinal nonlinearity originating from a circuit artifact. We have measured
+both the second-harmonic Hall and longitudinal voltage at all the angles, as shown in
+Fig. S17. The measurement configuration is shown in the inset of Fig. S17(d) with d.c.
+field applied at angle 𝜃. It is clearly found that the Hall nonlinearity is dominated over
+longitudinal one, which guarantees that the observed second-order Hall effect doesn’t
+originate from the longitudinal nonlinearity induced by a circuit artifact.
+0
+0.01 0.02 0.03 0.04 0.05
+0
+0.2
+0.4
+0.6
+0.8
+V
+xx (mV)
+I (mA)
+Edc (kV/m)
+ 3
+ -3
+
+29
+
+
+Figure S17: The second-harmonic Hall 𝑽𝑯
+𝟐𝝎 and longitudinal voltage 𝑽𝑳
+𝟐𝝎 with
+𝐄𝝎 ∥ −𝒂 axis and 𝐄𝒅𝒄 = 𝟏. 𝟓 𝐤𝐕/𝐦 along different angles at 5 K. The angle 𝜽 is
+defined in Fig. 1(d) of main text.
+
+
+
+0
+0.01 0.02 0.03 0.04 0.05
+0
+0.2
+0.4
+0.6
+ V2
+H
+ V2
+L
+V2 (mV)
+I (mA)
+0
+0.01 0.02 0.03 0.04 0.05
+-0.5
+0
+0.5
+1
+1.5
+2
+2.5
+ V2
+H
+ V2
+L
+V2 (mV)
+I (mA)
+0
+0.01 0.02 0.03 0.04 0.05
+-0.5
+0
+0.5
+1
+1.5
+2
+ V2
+H
+ V2
+L
+V2 (mV)
+I (mA)
+0
+0.01 0.02 0.03 0.04 0.05
+0
+0.5
+1
+1.5
+2
+2.5
+ V2
+H
+ V2
+L
+V2 (mV)
+I (mA)
+0
+0.01 0.02 0.03 0.04 0.05
+-2.5
+-2
+-1.5
+-1
+-0.5
+0
+ V2
+H
+ V2
+L
+V2 (mV)
+I (mA)
+0
+0.01 0.02 0.03 0.04 0.05
+-1.5
+-1
+-0.5
+0
+ V2
+H
+ V2
+L
+V2 (mV)
+I (mA)
+a
+b
+(a)
+(b)
+(c)
+(d)
+(e)
+(f)
+
+30
+
+Supplemental Note 10: Angle dependence of parameter C0 obtained from the
+fittings of scaling law.
+The second-order Hall signal
+EH
+2ω
+(𝐸𝜔)2 is found to satisfy scaling law
+EH
+2ω
+(𝐸𝜔)2 = 𝐶0 +
+𝐶1𝜎𝑥𝑥 + 𝐶2𝜎𝑥𝑥
+2 . For 𝐄𝑑𝑐 = 3 kV/m with a fixed direction (angle 𝜃), a set of curves of
+VH
+2ω vs. Iω is measured at different temperatures as Iω is applied along -a axis and b
+axis, respectively. Through varying temperature, the 𝜎𝑥𝑥 is changed accordingly.
+Therefore, for a fixed angle 𝜃, the relationship between
+EH
+2ω
+(𝐸𝜔)2 and 𝜎𝑥𝑥 is plotted. By
+fitting the experimental data, the parameter 𝐶0 is then obtained and presented in Fig.
+S18.
+
+Figure S18: Angle-dependence of the coefficient 𝑪𝟎.
+a,b, The coefficient 𝐶0 as a function of 𝜃 with the amplitude of 𝐄𝑑𝑐 fixed at 3 kV/m
+for (a) 𝐄𝜔 ∥ −𝑎 axis and (b) 𝐄𝜔 ∥ 𝑏 axis.
+
+0
+60
+120
+180
+240
+300
+360
+-0.6
+-0.4
+-0.2
+0
+0.2
+0.4
+0.6
+C0 (10-7 m/V)
+q (o)
+0
+60
+120
+180
+240
+300
+360
+-2
+-1
+0
+1
+2
+C0 (10-7 m/V)
+q (o)
+(a)
+(b)
+axis
+axis
+
diff --git a/4NAzT4oBgHgl3EQf9f64/content/tmp_files/load_file.txt b/4NAzT4oBgHgl3EQf9f64/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..b98be33f960e6cc619f978350dff6372933bdc45
--- /dev/null
+++ b/4NAzT4oBgHgl3EQf9f64/content/tmp_files/load_file.txt
@@ -0,0 +1,1360 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf,len=1359
+page_content='Control over Berry Curvature Dipole with Electric Field in WTe2 Xing-Guo Ye,1,* Huiying Liu,2,* Peng-Fei Zhu,1,* Wen-Zheng Xu,1,* Shengyuan A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Yang,2 Nianze Shang,1 Kaihui Liu,1 and Zhi-Min Liao 1,† 1State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China 2Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore, 487372, Singapore Berry curvature dipole plays an important role in various nonlinear quantum phenomena.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' However, the maximum symmetry allowed for nonzero Berry curvature dipole in the transport plane is a single mirror line, which strongly limits its effects in materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Here, via probing the nonlinear Hall effect, we demonstrate the generation of Berry curvature dipole by applied dc electric field in WTe2, which is used to break the symmetry constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' A linear dependence between the dipole moment of Berry curvature and the dc electric field is observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The polarization direction of the Berry curvature is controlled by the relative orientation of the electric field and crystal axis, which can be further reversed by changing the polarity of the dc field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Our Letter provides a route to generate and control Berry curvature dipole in broad material systems and to facilitate the development of nonlinear quantum devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Berry curvature is an important geometrical property of Bloch bands, which can lead to a transverse velocity of Bloch electrons moving under an external electric field [1–6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Hence, it is often regarded as a kind of magnetic field in momentum space, leading to various exotic transport phenomena, such as anomalous Hall effect (AHE) [1], anomalous Nernst effect [7], and extra phase shift in quantum oscillations [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The integral of Berry curvature over the Brillouin zone for fully occupied bands gives rise to the Chern number [5], which is one of the central concepts of topological physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Recently, Sodemann and Fu [9] proposed that the dipole moment of Berry curvature over the occupied states, known as Berry curvature dipole (BCD), plays an important role in the second-order nonlinear AHE in time-reversal-invariant materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' For transport in the x-y plane which is typical in experiments, the relevant BCD components form an in- plane pseudovector with Dα ¼ R k f0ð∂αΩzÞ [9], where Dα is the BCD component along direction α, k is the wave vector, the integral is over the Brillouin zone and with summation over the band index, f0 is the Fermi distribution (in the absence of external field), Ωz is out-of-plane Berry curvature, and ∂α ¼ ∂=∂kα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' It results in a second-harmonic Hall voltage in response to a longitudinal ac probe current, which could find useful applications in high-frequency rectifiers, wireless charging, energy harvesting, and infra- red detection, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' BCD and its associated nonlinear AHE have been predicted in several material systems [9–11] and experimentally detected in systems such as two- dimensional (2D) monolayer or few-layer WTe2 [12–15], Weyl semimetal TaIrTe4 [16], 2D MoS2, and WSe2 [17–20], corrugated bilayer graphene [21], and a few topological materials [22–25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' However, a severe limitation is that BCD obeys a rather stringent symmetry constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' In the transport plane, the maximum symmetry allowed for Dα is a single mirror line [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' In several previous Letters [17–21], one needs to perform additional material engineering such as lattice strain or interlayer twisting to generate a sizable BCD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' This constraint limits the available material platforms with nonzero BCD, unfavorable for the in-depth exploration of BCD-related physics and practical applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Recent works suggested an alternative route to obtain nonzero BCD, that is, utilizing the Berry connection polarizability to achieve a field-induced BCD, where the additional lattice engineering is unnecessary [26,27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The Berry connection polarizability is also a band geometric quantity, related to the field-induced positional shift of Bloch electrons [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' It is a second-rank tensor, defined as GabðkÞ ¼ ½∂Að1Þ a ðkÞ=∂Eb�, where Að1Þ is the field-induced Berry connection, E is the applied electric field [28], and the superscript “(1)” represents that the physical quantity is the first order term of electric field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Then, the E field induced Berry curvature is given by Ωð1Þ ¼ ∇k × ðG ↔ EÞ [27], where the double arrow indicates a second-rank tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' This field-induced Berry curvature will lead to a field-induced BCD Dð1Þ α .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Considering transport in the x-y plane and applied dc E field also in the plane, we have Dð1Þ α ¼ R kf0ð∂αΩð1Þ z Þ¼εzγμ R kf0½∂αð∂γGμνÞ�Eν, where α;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' γ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' μ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' ν ¼ x, y, and εzγμ is the Levi-Civita symbol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' In systems where the original BCD is forbidden by the crystal symmetry, the field-induced BCD by an external E field 1 could generally be nonzero and become the dominant contribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' In such a case, the symmetry is lowered by the applied E field, and the induced BCD should be linear with E and its direction also controllable by the E field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' So far, this BCD caused by Berry connection polarizability and its field control have not been experimentally demon- strated yet, and the nonlinear Hall effect derived from this mechanism has not been observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' In this Letter, we report the manipulation of electric field induced BCD due to the Berry connection polarizability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Utilizing a dc electric field Edc to produce BCD in bulk WTe2 (for which the inherent BCD is symmetry forbid- den), the second-harmonic Hall voltage V2ω H is measured as a response to an applied ac current Iω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Both orientation and magnitude of the induced BCD are highly tunable by the applied Edc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Our Letter provides a general route to extend BCD to abundant material platforms with high tunability, promising for practical applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The WTe2 devices were fabricated with circular disc electrodes (device S1) or Hall-bar shaped electrodes (device S2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The WTe2 flakes were exfoliated from bulk crystal and then transferred onto the prefabricated electrodes (Supplemental Material, Note 1 [29]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The WTe2 thickness of device S1 is 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='4 nm (Supplemental Material, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S1 [29]), corresponding to a 12-layer WTe2, and we present the results from device S1 in the main text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The crystal orientations of WTe2 devices were identified by their long, straight edges [12] and further confirmed by both polarized Raman spectroscopy (Supplemental Material, Note 2 [29]) and angle-dependent transport measurements (Supplemental Material, Note 3 [29]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The electron mobility of device S1 is ∼ 4974 cm2=V s at 5 K (Supplemental Material, Note 4 [29]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' In our experiments, we use thick Td-WTe2 samples (thickness ∼8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='4 nm), which have an effective inversion symmetry in the x-y plane (which is the transport plane).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' This is formed by the combination of the mirror symmetry Ma and the glide mirror symmetry ˜Mb, as indicated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 1(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The in-plane inversion leads to the absence of inherent in-plane BCD and hence the nonlinear Hall effect in bulk (see Supplemental Material, Note 5 [29] for detailed symmetry analysis).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Because ˜Mb involves a half- cell translation along the c axis and hence is broken on the sample surface, a small but nonzero intrinsic BCD may exist on the surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' In fact, such BCD due to surface symmetry breaking has already been reported [13], and is also observed in our samples, although the signal is much weaker in thicker samples (see Supplemental Material, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S9 [29]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' To induce BCD in bulk WTe2 through Berry connection polarizability, a dc electric field Edc is applied in the x-y plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' As shown in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 1(a) and 1(b), the field-induced Berry curvature shows a dipolelike distribution with non- zero BCD (theoretical calculations;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' see Supplemental Material, Note 6 [29]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The induced BCD can be controlled by the dc E field and should satisfy the following symmetry requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Because the presence of a mirror symmetry would force the BCD to be perpendicular to the mirror plane [9], the induced BCD Dð1Þ must be perpendicular to Edc when Edc is along the a or b axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Control experiments were carried out in device S1 to confirm the above expectations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The measurement configuration is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 1(d) (see Supplemental Material, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S2 [29], for circuit schematic).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The probe ac current with ac field Eω and frequency ω was applied approximately along the −a axis, satisfying Eω ≪ Edc, and the second-harmonic Hall (c) (d) (e) (f) (a) (b) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' (a) and (b) The field-induced Berry curvature Ωð1Þ c ðkÞ in the kz ¼ 0 plane by a dc electric field Edc ¼ 3 kV=m applied along (a) a or (b) b axis, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The unit of Ωð1Þ c ðkÞ is Å2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The green arrows indicate the direction of Edc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The gray lines depict the Fermi surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' (c) The a-b plane of monolayer Td-WTe2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' (d) The optical image of device S1, where an angle θ is defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' (e) and (f) The second-harmonic Hall voltage V2ω H as Edc (e) along b axis (θ ¼ 0°), and (f) along −a axis (θ ¼ 90°) at 5 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The Eω is applied along −a axis, as schematized in (d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 2 voltage V2ω H was measured to reveal the nonlinear Hall effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The Edc that is used to produce BCD was applied along the direction characterized by the angle θ, which is the angle between the direction of Edc and the baseline of a pair of electrodes [white line in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 1(d)] that is approx- imately along the b axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Then Edc along θ ¼ 0° (b axis) and θ ¼ 90° (−a axis) correspond to the induced Dð1Þ along the a axis and b axis, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Because the nonlinear Hall voltage V2ω H is proportional to Dð1Þ · Eω [9], the nonlinear Hall effect should be observed for EωkDð1Þ and be vanishing for Eω⊥Dð1Þ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 1(e), when Edc along θ ¼ 0°, nonlinear Hall voltage V2ω H is indeed observed as expected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The Edc along the b axis induces BCD along the a axis, leading to nonzero V2ω H since Eω is applied along the −a axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The second-order nature is verified by both the second- harmonic signal and parabolic I-V characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' It is found that the nonlinear Hall voltage is highly tunable by the magnitude of Edc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The sign reverses when Edc is reversed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Moreover, the nonlinear Hall voltage is linearly proportional to Edc (Supplemental Material [29] Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S11), as we expected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' As for Edc along θ ¼ 90°, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 1(f), the V2ω H is much suppressed, which is at least one order of magnitude smaller than the V2ω H in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 1(e).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Because in this case the Edc along the a axis induces BCD along the b axis, Eω is almost perpendicular to BCD, leading to negligible nonlinear Hall effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Similar results are also reproduced in device S2 (Supplemental Material [29], Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Such control experiments are well con- sistent with our theoretical expectation and confirm the validity of field-induced BCD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Besides the crystalline axis (θ ¼ 0° and 90°), we also study the case when Edc is applied along arbitrary θ directions to obtain the complete angle dependence of field-induced BCD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Here, Eω is applied along the −a or b axis, to detect the BCD component along the a or b axis, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=', Dð1Þ ¼ ½Dð1Þ a ðθÞ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Dð1Þ b ðθÞ�, where Dð1Þ a and Dð1Þ b are the BCD components along the a and b axis, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The measurement configurations are shown in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 2(a) and 2(d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Figures 2(b) and 2(e) show the second-order Hall voltage as a function of θ, with the magnitude of Edc fixed at 3 kV=m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The second-order Hall response ½E2ω H =ðEωÞ2� is calculated by E2ω H ¼ ðV2ω H =WÞ and Eω ¼ ðIωRk=LÞ, where W is the channel width, Rk is the longitudinal resistance, and L is the channel length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' As shown in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 2(c) and 2(f), ½E2ω H =ðEωÞ2� demonstrates a strong anisotropy, closely related to the inherent symmetry of WTe2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' First of all, it is worth noting that the second-order Hall signal is negligible at Edc ¼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' This is consistent with our previous analysis that the inherent bulk in-plane BCD is symmetry forbidden [26,27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Second, ½E2ω H =ðEωÞ2� almost vanishes when EdckEω along a or b axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' This is constrained by the mirror symmetries Ma or ˜Mb, forcing the BCD to be perpendicular to the mirror plane in such configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' (a) (b) (c) (d) (e) (f) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' (a) and (d) Measurement configuration for the second-order AHE with (a) Eωk − a axis and (d) Eωkb axis, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The Edc, satisfying Edc ≫ Eω, is rotated to along various directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' (b) and (e) The second-order Hall voltage V2ω H as a function of Iω at fixed Edc ¼ 3 kV=m but along various directions and at 5 K with (b) Eωk − a axis and (e) Eωkb axis, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' (c) and (f) The second-order Hall signal ½E2ω H =ðEωÞ2� as a function of θ at 5 K with (c) Eωk − a axis and (f) Eωkb axis, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 3 Thus, when EdckEω along the a or b axis, the induced BCD is perpendicular to Edc and Eω, satisfying Dð1Þ · Eω ¼ 0, which leads to almost vanished second-order Hall signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Moreover, ½E2ω H =ðEωÞ2� exhibits a sensitive dependence on the angle θ, indicating the BCD is highly tunable by the orientation of Edc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' A local minimum of ½E2ω H =ðEωÞ2� is found at an intermediate angle around θ ¼ 30° when Eωk − a axis in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 2(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' This is because ½E2ω H =ðEωÞ2� depends not only on ðDð1Þ · c EωÞ, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=', the projection of the pseudovector Dð1Þ to the direction of Eω, but also on the anisotropy of conductivity in WTe2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The two terms show different dependence on the angle θ, leading to a local minimum around θ ¼ 30°.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Through control experiments and symmetry analysis, the extrinsic effects, such as diode effect, thermal effect, and thermoelectric effect, could be safely ruled out as the main reason of the observed second-order nonlinear AHE (see Supplemental Material, Note 9 [29]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' To further investigate this effect, the temperature dependence and scaling law of the second-order nonlinear Hall signal are studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' By changing the temperature, V2ω H and longitudinal conduc- tivity σxx were collected, where the magnitude of Edc was fixed at 3 kV=m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Figures 3(a) and 3(c) show the V2ω H at different temperatures with Eωk − a axis, θ ¼ 0° and Eωkb axis, θ ¼ 90°, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' A relatively small but nonzero second-order Hall signal is observed at 286 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The scaling law, that is, the second-order Hall signal ½E2ω H =ðEωÞ2� versus σxx, is presented and analyzed in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 3(b) and 3(d) for different angles θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The σxx was calculated by σxx ¼ð1=RkÞðL=WdÞ, where d is the thickness of WTe2, and was varied by changing temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' According to Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [42], the scaling law between ½E2ω H =ðEωÞ2� and σxx satisfies ½E2ω H =ðEωÞ2� ¼ C0 þ C1σxx þ C2σ2xx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The coeffi- cients C2 and C1 involve the mixing contributions from various skew scattering processes [42–45], such as impu- rity scattering, phonon scattering, and mixed scattering from both phonons and impurities [42].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' C0 is mainly contributed by the intrinsic mechanism, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=', the field- induced BCD here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' As shown in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 3(b) and 3(d), the scaling law is well fitted for all angles θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' It is found that C0 shows strong anisotropy (Supplemental Material [29], Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S18), indicating the field-induced BCD is also strongly dependent on angle θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The value of field-induced BCD can be estimated through D ¼ ð2ℏ2n=m�eÞ½E2ω H =ðEωÞ2� [12], where ℏ is the reduced Planck constant, e is the electron charge, m� ¼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='3me is the effective electron mass, n is the carrier density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Here, we replace the ½E2ω H =ðEωÞ2� by the coefficient C0 from the scaling law fitting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The two components of BCD along the a and b axes, denoted as Dð1Þ a and Dð1Þ b , are calculated from the fitting curves with the magnitude of Edc fixed at 3 kV=m under the Eωk − a axis and the Eωkb axis, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' As shown in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 4(a) and 4(b), it is found that Dð1Þ a shows a cos θ dependence on θ, whereas Dð1Þ b (a) (b) (c) (d) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' (a) and (c) The second-harmonic Hall voltage at various temperatures with the magnitude of Edc fixed at 3 kV=m (a) under Eωk − a axis, θ ¼ 0° and (c) under Eωkb axis, θ ¼ 90°.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' (b),(d) Second-order Hall signal ½E2ω H =ðEωÞ2� as a function of σxx (b) under Eωk − a axis and (d) under Eωkb axis at various θ with the magnitude of Edc fixed at 3 kV=m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The temperature range for the scaling law in (b) and (d) is 50–286 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' (a) (b) (c) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The induced Berry curvature dipole as a function of θ with the magnitude of Edc fixed at 3 kV=m for (a) the component along a axis, Dð1Þ a and (b) the component along b axis, Dð1Þ b .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' (c) The relationship between the field-induced Berry curvature dipole Dð1Þ and the applied Edc ¼ 3 kV=m along different directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The scale bar of Dð1Þ is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='2 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 4 shows a sin θ dependence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Such angle dependence is well consistent with the theoretical predications (see Supplemental Material [29], Note 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' According to the two components Dð1Þ a and Dð1Þ b , the field induced BCD vector of Dð1Þ is synthesized for Edc along various directions, as presented in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 4(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' It is found that both the magnitude and orientation of the field-induced BCD are highly tunable by the dc field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' In summary, we have demonstrated the generation, modulation, and detection of the induced BCD due to the Berry connection polarizability in WTe2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' It is found that the direction of the generated BCD is controlled by the relative orientation between the applied Edc direction and the crystal axis, and its magnitude is proportional to the intensity of Edc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Using independent control of the two applied fields, our Letter demonstrates an efficient approach to probe the nonlinear transport tensor symmetry, which is also helpful for full characterization of nonlinear transport coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Moreover, the manipulation of BCD up to room temperature by electric means without addi- tional symmetry breaking will greatly extend the BCD- related physics [46,47] to more general materials and should be valuable for developing devices utilizing the geometric properties of Bloch electrons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' This work was supported by National Key Research and Development Program of China (No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 2018YFA0703703), National Natural Science Foundation of China (Grants No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 91964201 and No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 61825401), and Singapore MOE AcRF Tier 2 (MOE-T2EP50220-0011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' We are grateful to Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Yanfeng Ge at SUTD for inspired discussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' These authors contributed equally to this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' †liaozm@pku.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='cn [1] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Nagaosa, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Sinova, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Onoda, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' MacDonald, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Ong, Anomalous Hall effect, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 82, 1539 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [2] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Sinova, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Valenzuela, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Wunderlich, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Back, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Jungwirth, Spin Hall effects, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 87, 1213 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [3] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Xiao, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Yao, and Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Niu, Valley-Contrasting Physics in Graphene: Magnetic Moment and Topological Transport, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 99, 236809 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [4] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Šmejkal, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Mokrousov, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Yan, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' MacDonald, Topological antiferromagnetic spintronics, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 14, 242 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [5] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Xiao, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Chang, and Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Niu, Berry phase effects on electronic properties, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 82, 1959 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [6] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Chang and Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Niu, Berry phase, hyperorbits, and the Hofstadter spectrum: Semiclassical dynamics in magnetic Bloch bands, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' B 53, 7010 (1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [7] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Dau, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Vergnaud, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Marty, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Beign´e, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Gambarelli, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Maurel, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Journot, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Hyot, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Guillet, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Gr´evin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=', The valley Nernst effect in WSe2, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 10, 5796 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [8] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Lin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Wang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Wiedmann, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Lu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Zheng, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Yu, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Liao, Observation of an Odd-Integer Quantum Hall Effect from Topological Surface States in Cd3As2, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 122, 036602 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [9] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Sodemann and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Fu, Quantum Nonlinear Hall Effect Induced by Berry Curvature Dipole in Time-Reversal Invariant Materials, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 115, 216806 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [10] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' You, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Fang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Xu, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Kaxiras, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Low, Berry curvature dipole current in the transition metal dichalcoge- nides family, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' B 98, 121109(R) (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [11] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Zhang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' van den Brink, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Felser, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Yan, Electri- cally tunable nonlinear anomalous Hall effect in two- dimensional transition-metal dichalcogenides WTe2 and MoTe2, 2D Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 5, 044001 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [12] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Ma, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Xu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Shen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' MacNeill, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Fatemi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Chang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Valdivia, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Wu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Du, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Hsu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=', Observation of the nonlinear Hall effect under time-reversal- symmetric conditions, Nature (London) 565, 337 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [13] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Kang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Li, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Sohn, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Shan, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Mak, Nonlinear anomalous Hall effect in few-layer WTe2, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 18, 324 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [14] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Xu, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Ma, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Shen, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Fatemi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Wu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Chang, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Chang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Valdivia, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Chan, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Gibson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Zhou, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Liu, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Watanabe, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Taniguchi, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Lin, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Cava, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Fu, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Gedik, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Jarillo-Herrero, Electrically switch- able Berry curvature dipole in the monolayer topological insulator WTe2, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 14, 900 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [15] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Xiao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Wang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Wang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Pemmaraju, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Wang, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Muscher, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Sie, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Nyby, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Devereaux, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Qian et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=', Berry curvature memory through electrically driven stacking transitions, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 16, 1028 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [16] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Kumar, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Hsu, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Sharma, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Chang, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Yu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Wang, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Eda, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Liang, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Yang, Room-temperature nonlinear Hall effect and wireless radiofrequency rectifica- tion in Weyl semimetal TaIrTe4, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Nanotechnol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 16, 421 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [17] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Lee, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Wang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Xie, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Mak, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Shan, Valley magnetoelectricity in single-layer MoS2, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 16, 887 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [18] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Son, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Kim, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Ahn, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Lee, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Lee, Strain Engineering of the Berry Curvature Dipole and Valley Magnetization in Monolayer MoS2, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 123, 036806 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [19] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Qin, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Zhu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Ye, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Xu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Song, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Liang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Liu, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Liao, Strain tunable Berry curvature dipole, orbital magnetization and nonlinear Hall effect in WSe2 monolayer, Chin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 38, 017301 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [20] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Huang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Wu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Hu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Cai, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Li, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' An, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Feng, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Ye, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Lin, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Law et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=', Giant nonlinear Hall effect in twisted WSe2, Natl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' nwac232 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [21] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Ho, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Chang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Hsieh, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Lo, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Huang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Vu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Ortix, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Chen, Hall effects in artificially corrugated bilayer graphene without breaking time-reversal symmetry, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Electron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 4, 116 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [22] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' He, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Isobe, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Zhu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Hsu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Fu, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Yang, Quantum frequency doubling in the topological insulator Bi2Se3, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 12, 698 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [23] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Shvetsov, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Esin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Timonina, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Kolesnikov, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Deviatov, Non-linear Hall effect in 5 three-dimensional Weyl and Dirac semimetals, JETP Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 109, 715 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [24] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Dzsaber, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Yan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Taupin, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Eguchi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Prokofiev, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Shiroka, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Blaha, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Rubel, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Grefe, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Lai et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=', Giant spontaneous Hall effect in a nonmagnetic Weyl– Kondo semimetal, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Natl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 118, e2013386118 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [25] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Tiwari, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Chen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Zhong, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Drueke, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Koo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Kaczmarek, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Xiao, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Gao, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Luo, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Niu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=', Giant c-axis nonlinear anomalous Hall effect in Td-MoTe2 and WTe2, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 12, 2049 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [26] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Lai, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Liu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Zhang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Zhao, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Feng, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Wang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Tang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Liu, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Novoselov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Yang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=', Third-order nonlinear Hall effect induced by the Berry-connection polarizability tensor, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Nanotechnol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 16, 869 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [27] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Liu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Zhao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Huang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Feng, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Xiao, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Wu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Lai, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Gao, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Yang, Berry connection polar- izability tensor and third-order Hall effect, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' B 105, 045118 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [28] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Gao, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Yang, and Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Niu, Field Induced Positional Shift of Bloch Electrons and Its Dynamical Implications, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 112, 166601 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [29] See Supplemental Material at http://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='org/ supplemental/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='130.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='016301 for device fabrication, electrical measurements, calculation details, polarized Raman spectroscopy of few-layer WTe2, transport properties of the devices, angle-dependent third-order anomalous Hall effect, symmetry analysis of WTe2, theory analysis of the field-induced Berry curvature dipole, control experiments in device S2, extrinsic effects that may induce nonlinear transport, and anisotropy of the scaling parame- ters, which includes Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [30–41].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [30] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Wang, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Meric, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Huang, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Gao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Gao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Tran, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Taniguchi, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Watanabe, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Campos, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Muller et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=', One-dimensional electrical contact to a two-dimensional material, Science 342, 614 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [31] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Kresse and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Hafner, Ab initio molecular dynamics for open-shell transition metals, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' B 48, 13115 (1993).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [32] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Kresse and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' B 54, 11169 (1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [33] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Blöchl, Projector augmented-wave method, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' B 50, 17953 (1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [34] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Perdew, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Burke, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Ernzerhof, Generalized Gradient Approximation Made Simple, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 77, 3865 (1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [35] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Pizzi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=', Wannier90 as a community code: New features and applications, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Condens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Matter 32, 165902 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [36] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Kim, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Han, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Kim, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Lee, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Lee, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Cheong, Determination of the thickness and orientation of few-layer tungsten ditelluride using polarized Raman spec- troscopy, 2D Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 3, 034004 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [37] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Ali, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Xiong, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Flynn, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Tao, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Gibson, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Schoop, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Liang, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Haldolaarachchige, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Hirschberger, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Ong et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=', Large, non-saturating magnetoresistance in WTe2, Nature (London) 514, 205 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [38] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Fatemi, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Gibson, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Watanabe, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Taniguchi, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Cava, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Jarillo-Herrero, Magnetoresistance and quan- tum oscillations of an electrostatically tuned semimetal- to-metal transition in ultrathin WTe2, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' B 95, 041410(R) (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [39] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Zhang, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Kakani, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Woods, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Cha, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Shi, Thickness dependence of magnetotransport proper- ties of tungsten ditelluride, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' B 104, 165126 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [40] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Akamatsu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=', Avan der Waals interface that creates in- plane polarization and a spontaneous photovoltaic effect, Science 372, 68 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [41] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Dames and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Chen, 1ω, 2ω, and 3ω methods for measurements of thermal properties, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Instrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 76, 124902 (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [42] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Du, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Wang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Li, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Lu, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Xie, Disorder-induced nonlinear Hall effect with time-reversal symmetry, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 10, 3047 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [43] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Tian, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Ye, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Jin, Proper Scaling of the Anomalous Hall Effect, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 103, 087206 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [44] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Ye, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Kang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Liu, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' von Cube, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Wicker, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Suzuki, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Jozwiak, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Bostwick, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Rotenberg, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Bell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=', Massive Dirac fermions in a ferromagnetic kagome metal, Nature (London) 555, 638 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [45] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Isobe, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Xu, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Fu, High-frequency rectification via chiral Bloch electrons, Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 6, eaay2497 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [46] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Ye, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Zhu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Xu, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Shang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Liu, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Liao, Orbit-transfer torque driven field-free switching of perpendicular magnetization, Chin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 39, 037303 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [47] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Sinha, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Adak, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Chakraborty, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Das, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Debnath, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Sangani, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Watanabe, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Taniguchi, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Waghmare, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Agarwal, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Deshmukh, Berry curvature dipole senses topological transition in a moir´e superlattice, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 18, 765 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 6 1 Supplemental Material for Control over Berry curvature dipole with electric field in WTe2 Xing-Guo Ye1,+, Huiying Liu2,+, Peng-Fei Zhu1,+, Wen-Zheng Xu1,+, Shengyuan A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Yang2, Nianze Shang1, Kaihui Liu1, and Zhi-Min Liao1,* 1 State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 2 Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore, 487372, Singapore.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' + These authors contributed equally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Email: liaozm@pku.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='cn This file contains supplemental Figures S1-S18 and Notes 1-10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Note 1: Device fabrication, experimental and calculation methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Note 2: Polarized Raman spectroscopy of WTe2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Note 3: Angle-dependent longitudinal resistance and third-order nonlinear Hall effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Note 4: Magnetotransport properties of WTe2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Note 5: Symmetry analysis of WTe2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Note 6: Theoretical analysis and calculations of field-induced Berry curvature dipole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Note 7: Electric field dependence of second-order Hall signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Note 8: Control experiments in device S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Note 9: Discussions of other possible origins of the second order AHE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Note 10: Angle dependence of parameter C0 obtained from the fittings of scaling law.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 2 Supplemental Note 1: Device fabrication, experimental and calculation methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 1) Device fabrication The WTe2 flakes were exfoliated from bulk crystal by scotch tape and then transferred onto the polydimethylsiloxane (PDMS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The PDMS was then covered onto a Si substrate with 285 nm-thick SiO2, where the Si substrate was precleaned by air plasma, and further heated for about 1 minute at 90℃ to transfer the WTe2 flakes onto Si substrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Disk and Hall bar-shaped Ti/Au electrodes (around 10 nm thick) were prefabricated on individual SiO2/Si substrates with e-beam lithography, metal deposition and lift-off.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Exfoliated BN (around 20 nm thick) and WTe2 flakes (around 5-20 nm thick) were sequentially picked up and then transferred onto the Ti/Au electrodes using a polymer-based dry transfer technique [30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The atomic force microscope image of device S1 is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The thickness of this sample is 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='4 nm, corresponding to a 12-layer WTe2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The whole exfoliation and transfer processes were done in an argon-filled glove box with O2 and H2O content below 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='01 parts per million to avoid sample degeneration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Figure S1: (a) The atomic force microscope image of device S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' (b) The line profile shows the thickness of the WTe2 sample is 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='4 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 0 1 2 3 4 5 0 3 6 9 Height (nm) Line profile (mm) 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='4 nm 3 WTe2 (a) (b) 3 2) Electrical transport measurements and circuit schematic All the transport measurements were carried out in an Oxford cryostat with a variable temperature insert and a superconducting magnet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' First-, second- and third- harmonic signals were collected by standard lock-in techniques (Stanford Research Systems Model SR830) with frequency ω .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Frequency \uf077 equals 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='777 Hz unless otherwise stated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The circuit schematic with multiple sources in experiments is depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' and d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' sources are both effective current sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The original SR830 a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' source is a voltage source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' In experiments, we connected the SR830 voltage source and a protective resistor with resistance value 𝑅𝑝 in series (𝑅𝑝 = 100 kΩ for device S1 and 𝑅𝑝 = 10 kΩ for device S2), as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The resistance of WTe2 channel is in the order of 10 Ω, much less than 𝑅𝑝, which makes the SR830 source an effective current source with excitation current 𝐼𝜔 ≅ 𝑈𝜔 𝑅𝑝 ⁄ , where 𝑈𝜔 is the source voltage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The Keithley 2400 current source is used for the d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S2, the positive and negative terminals of the Keithley source are connected to a pair of diagonal electrodes to form a loop circuit, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=', a floating loop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' electric field is obtained by 𝐸𝑑𝑐 = 𝐼𝑑𝑐𝑅𝜃 𝐿 , where 𝐼𝑑𝑐 is the applied d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' current, 𝑅𝜃 is the resistance of WTe2 along direction 𝜃, and 𝐿 is the channel length of WTe2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The impedance of the floating Keithley source to ground is measured to be ~60 MΩ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' While, the negative terminal of SR830 source is directly connected to the ground.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 4 Figure S2: Schematic structure of the circuit for measurements in device S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 3) Spectral purity of lock-in measurements For the lock-in measurements, the used integration time is 300 ms and the filter roll-off is 24 dB/octave, that is, the cutoff (-3 dB) frequency for the low-pass filter is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='531 Hz and the filter roll-off is 24 dB per octave.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' For our lock-in measurements, the narrow detection bandwidth (±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='531 Hz) effectively avoided the spectral leakage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The spectral purity of the lock-in homodyne circuit is verified by the control experiments of the lock-in measurements of a resistor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The first-, second- and third- harmonic voltages of a resistor with resistance ~100 Ω are measured using the same frequency (17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='777 Hz), integration time (300 ms) and filter roll-off (24 dB/octave) as used in experiments, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The first-harmonic voltage shows linear dependence on the alternating current, consistent with the resistance value ~100 Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The second- and third-harmonic voltages are four orders of magnitude smaller than the first- harmonic voltage, which indicates the high purity of spectrum of the lock-in homodyne circuit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Keithley 2400 current source SR830 voltage source SR830 lock-in measurement 5 Figure S3: Lock-in measurements for a resistor with resistance ~𝟏𝟎𝟎 𝛀.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' a, The first-harmonic voltage versus the alternating current.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' b, The second- and third-harmonic voltages versus the alternating current.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 4) Validity of electrical measurements with the two sources In our experiments, the Keithley source is used as the d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' current source, which has an output impedance ~20 MΩ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' current source is realized by connecting a resistor 𝑅𝑝 in series (𝑅𝑝 = 100 kΩ for device S1 and 𝑅𝑝 = 10 kΩ for device S2) in series with the SR830 voltage source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Both the a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' and d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' current sources have effectively large output impedance comparing to the sample resistance ~10 Ω, so that they can be considered as independent current sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' These two current sources can be applied to the device simultaneously, having well-defined potential differences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' To further confirm the validity of our electrical measurements with the two current sources, we design a test circuit, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S4(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' current flowing through 𝑅2 was calculated by measuring the first-harmonic voltage 𝑉ω of 𝑅2 and 𝐼𝜔 = 𝑉𝜔/𝑅2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' current is applied by the Keithley current source and is measured by measuring the d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' voltage 𝑉𝑑𝑐 of 𝑅2 and 𝐼𝑑𝑐 = 𝑉𝑑𝑐/𝑅2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S4(b), where the a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' voltage of SR830 source is fixed at 1 V, it is found that the 𝐼𝜔 is unchanged when 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 0 10 20 30 40 50 V\uf077 (mV) I\uf077 (mA) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 1 0 1 n = 2 n = 3 Vn\uf077 (mV) I\uf077 (mA) (a) (b) 6 varying the d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' current by Keithley source, while measured 𝐼𝑑𝑐 is almost the same as the output current of the Keithley source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S4(c), where the d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' current of Keithley source is fixed, it is found that 𝐼𝜔 well satisfies 𝐼𝜔 = 𝑈𝜔/(𝑅1 + 𝑅2 + 𝑅3) ≅ 𝑈𝜔 𝑅𝑝 ⁄ with 𝑈𝜔 as the SR830 source voltage and 𝑅𝑝 = 𝑅1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' These results clearly confirm the a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' and d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' sources are effectively independent with negligible current shunt between each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Figure S4: Validity of the electrical measurements with two sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' a, Schematic of the test circuit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' b, The 𝐼𝜔 and 𝐼𝑑𝑐 as a function of the Keithley source current with SR830 source voltage 𝑈𝜔 fixed at 1 V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' c, The 𝐼𝜔 and 𝐼𝑑𝑐 as a function of the SR830 source voltage 𝑈𝜔 with Keithley source current fixed at 1 mA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' SR830 voltage source Keithley 2400 current source SR830 lock-in measurement (a) (b) (c) 0 1 2 3 4 5 0 10 20 30 40 50 I\uf077 (mA) U\uf077 (V) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='9 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='1 Keithley source current=1 mA Idc (mA) 4 2 0 2 4 8 10 12 I\uf077 (mA) Keithley source current (mA) U\uf077 = 1 V 4 2 0 2 4 Idc (mA) 7 5) Calculation methods First-principles calculations were performed to reveal the properties of the Berry connection polarizability tensor and field-induced Berry curvature dipole in WTe2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The electronic structures were carried out in the framework of density functional theory as implemented in the Vienna ab initio simulation package [31,32] with the projector augmented wave method [33] and Perdew, Burke, and Ernzerh of exchange correlation functionals [34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' For the convergence of the results, the spin–orbit coupling was included self-consistently in the calculations of electronic structures with the kinetic energy cutoff of 600 eV and Monkhorst-Pack k mesh of 14 × 8 × 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' We used d orbitals of W atom and p orbitals of Te atoms to construct Wannier functions [35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' While evaluating the band geometric quantities, we consider the finite temperature effect in the distribution function and a lifetime broadening of 𝑘𝐵𝑇 with 𝑇 = 5 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 8 Supplemental Note 2: Polarized Raman spectroscopy of WTe2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The crystalline orientation of WTe2 device was determined by the polarized Raman spectroscopy in the parallel polarization configuration [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Figure S5 shows the polarized Raman spectrum of device S2 as an example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The optical image of device S2 is displayed in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S5(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Raman spectroscopy was measured with 514 nm excitation wavelengths through a linearly polarized solid-state laser beam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The polarization of the excitation laser was controlled by a quarter-wave plate and a polarizer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' We collected the Raman scattered light with the same polarization as the excitation laser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' A typical Raman spectroscopy of device S2 is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S5(b), where five Raman peaks are identified, belonging to the A1 modes of WTe2 [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' We further measured the polarization dependence of intensities of peaks P2 and P11 [denoted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S5(b)] in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S5(c) and S5(d), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Based on previous reports [36], the polarization direction with maximum intensity was assigned as the b axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The measured crystalline orientation is further indicated in the optical image [Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S5(a)], where the applied a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' current is approximately parallel to a axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 9 Figure S5: Polarized Raman spectroscopy of WTe2 to determine the crystalline orientation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' a, Optical image of device S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The crystalline axes, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=', a axis and b axis, determined by the polarized Raman spectroscopy, are denoted by the black arrows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The applied a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' current is also noted by the red arrow, which is approximately aligned with a axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' b, A typical Raman spectrum measured with 514 nm excitation wavelengths, where the polarization direction is approximately along b axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Five Raman peaks are observed, which belong to the A1 modes of WTe2 [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' c,d, Polarization dependence of intensities of peaks (c) P2 and (d) P11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Here the polarization angle takes 0° along the b axis, along which maximum intensity is observed [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 60 120 180 240 300 0 100 200 300 Intensity (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=') Wavenumber (cm-1) 0 60 120 180 240 300 0 60 120 180 240 300 b a 10 mm (a) (b) (c) (d) P2 P10 P11 P2 P11 b axis b axis 10 Supplemental Note 3: Angle-dependent longitudinal resistance and third-order nonlinear Hall effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The third-order anomalous Hall effect (AHE) is investigated in device S1, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S6(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' By exploiting the circular disc electrode structure, the angle- dependence of the third-order AHE is measured.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' It shows highly sensitive to the crystalline orientation, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S6(c), which inherits from the intrinsic anisotropy of WTe2 [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Based on the symmetry of WTe2 [26], the third-order AHE shows angle-dependence following the formula E𝐻 3ω (𝐸𝜔)3 ∝ cos(θ−θ0)sin(θ−θ0)[(χ22r4−3χ12r2)sin2(θ−θ0)+(3χ21r2−χ11)cos2(θ−θ0)] (cos2(θ−θ0)+𝑟sin2(θ−θ0))3 , where 𝐸𝐻 3𝜔 = 𝑉𝐻 3𝜔 𝑊 , 𝐸𝜔 = 𝐼𝜔𝑅∥ 𝐿 , 𝑉𝐻 3𝜔 is the third-harmonic Hall voltage, 𝐼𝜔 is the applied a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' current, 𝑅∥ is the longitudinal resistance, 𝑊 and 𝐿 are channel width and length, respectively, r is the resistance anisotropy, 𝜒𝑖𝑗 are elements of the third- order susceptibility tensor, 𝜃0 is the angle misalignment between 𝜃 = 0° and crystalline b axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The fitting curve for this angle dependence is shown by the red line in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S6(c), which yields the misalignment 𝜃0 ~1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5°.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' In addition to the third-order AHE, the longitudinal (𝑅∥) resistance also shows strong anisotropy [13], as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S6(b), following 𝑅∥(𝜃) = 𝑅𝑏𝑐𝑜𝑠2(𝜃 − 𝜃0) + 𝑅𝑎𝑠𝑖𝑛2(𝜃 − 𝜃0), consistent with previous results [13], where 𝑅𝑎 and 𝑅𝑏 are resistance along crystalline a and b axis, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 11 Figure S6: Angle-dependence of third-order nonlinear Hall effect in device S1 at 5 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' a, The third-harmonic anomalous Hall voltages at various 𝜃.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Here 𝜃 is defined as the relative angle between the alternating current and the baseline (approximately along b axis).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' b,c, (b) Rxx and (c) third-order Hall signal E𝐻 3ω (𝐸𝜔)3 as a function of 𝜃, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 1 15 10 5 0 5 10 15 0\uf0b0 30\uf0b0 60\uf0b0 V3\uf077 H (mV) E\uf077 (kV/m) 90\uf0b0 120\uf0b0 150\uf0b0 16 24 Rxx (W) 0 60 120 180 240 300 360 50 0 50 V3\uf077 H /(V\uf077)3 (V-2) q (\uf0b0) (a) (b) (c) 12 Supplemental Note 4: Magnetotransport properties of WTe2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The magneto-transport properties of the device S1 were investigated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Figure S7(a) shows the resistivity as a function of temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The resistivity decreases upon decreasing temperature with a residual-resistivity at low temperatures, showing typical metallic behaviors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Figure S7(b) shows the magnetoresistance (MR) and Hall resistance as a function of magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' MR is defined as 𝑅𝑥𝑥(𝐵)−𝑅𝑥𝑥(0) 𝑅𝑥𝑥(0) × 100%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The low residual resistance and large, non-saturated MR indicate the high quality of the WTe2 devices [37,38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The carrier mobility of device S1 is estimated as high as 4974.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='4 cm2/(V ⋅ s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Moreover, resistance oscillations due to the formations of Landau levels are also observed, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S7(c), indicative of the high crystal quality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The oscillation ∆𝑅𝑥𝑥 is obtained by subtracting a parabolic background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The fast Fourier transform (FFT) is performed, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S7(d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Three frequencies are observed, indicating the multiple Fermi pockets in WTe2, which is consistent with previous work [37-39].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The dominant peak of FFT 𝑓1 is around 44 T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 13 Figure S7: Transport properties of the device S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' a, The resistivity as a function of temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' b, Magnetoresistance and Hall resistance at 5 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' c, Oscillations of Rxx at 5 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The ∆𝑅𝑥𝑥 is obtained by subtracting a parabolic background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' d, The FFT analysis of ∆𝑅𝑥𝑥 oscillations, where three peaks are obtained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 0 50 100 150 200 250 300 0 20 40 60 80 100 rxx (cm×mW) T (K) 15 -10 5 0 5 10 15 0 500 1000 1500 2000 MR (%) B (T) 60 40 20 0 20 40 Rxy (W) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='25 6 3 0 3 6 DRxx (W) 1/B (T-1) 100 200 300 0 200 400 600 800 FFT amplitude (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=') Frequency (T) f1 f2 f3 (a) (b) (c) (d) 14 Supplemental Note 5: Symmetry analysis of WTe2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Td-WTe2 has a distorted crystal structure with low symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Here we analyze the thickness dependence of the symmetry in WTe2 in details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Figure S8(a) shows the b-c plane of monolayer WTe2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Each monolayer consists of a layer of W atoms sandwiched between two layers of Te atoms, denoted as Te1 (denoted in yellow) and Te2 (denoted in red), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The inversion symmetry of the monolayer is approximately satisfied, and Te1 is equivalent to Te2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The presence of inversion symmetry forces Berry curvature dipole (BCD) to be zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' However, as a perpendicular displacement field is applied to break the inversion symmetry, the Te1 is no longer equivalent to Te2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' As shown in the bottom of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S8(a), an in-plane electric polarization along b axis can be induced by the out-of-plane displacement field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The electric polarization along b axis plays a similar role as the d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' electric field in our work, leading to nonzero BCD along a axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Nonzero BCD in bilayer WTe2 origins from crystal symmetry breaking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The largest symmetry in bilayer WTe2 is a single mirror symmetry 𝑀𝑎 with bc plane as mirror plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S8(b), the stacking between the two layers makes bilayer WTe2 inversion symmetry breaking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Under inversion operation, the top and bottom layers are swapped, which fails to coincide with each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S8(b), Te1 is not equivalent to Te2 due to the stacking arrangement in bilayer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Therefore, an in-plane electric polarization P along b axis exists, similar to the case in monolayer with an out-of-plane displacement field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The polarization P is able to induce nonzero BCD along the perpendicular crystalline axis, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=', along a axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 15 In fact, such in-plane polarization P along b axis in monolayer and bilayer WTe2 is already evidenced by the circular photogalvanic effect [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The symmetry breaking induced polarization is also confirmed in various 2D materials, such as WSe2/black phosphorus heterostructures [40].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' In trilayer and thicker WTe2, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S8(c), the Te1 and Te2 are equivalent in bulk, leading to vanished electric polarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The in-plane inversion symmetry in bulk forbids the presence of in-plane BCD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' However, the inversion is broken on surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Therefore, for trilayer and thicker WTe2, a small but nonzero BCD may occur on surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Figure S8: Crystal structure of Td-WTe2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' a, b-c plane of monolayer Td-WTe2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' b, b-c plane of bilayer Td-WTe2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The stacking arrangement breaks the inversion symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' c, b-c plane of trilayer Td-WTe2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Importantly, the surface BCD and it induced second-order AHE in few-layer WTe2 Inversion operation W Te2 c b Te1 E b (a) (b) (c) 16 is reported in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' [13], which is also observed in our device.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' We measured the second- order AHE without the application of Edc in a WTe2 device, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' This second-order AHE is observable when applying 𝐼𝜔 in the order of 1 mA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' By comparison, the second-order AHE induced by d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' field is observable when applying 𝐼𝜔 smaller than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='05 mA (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 1 of main text).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The calculated BCD along a axis 𝐷𝑎 without the application of Edc is ~0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='03 nm, which is one order of magnitude smaller than 𝐷𝑎 (1) ~0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='29 nm measured under Edc = 3kV/m (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 4 of main text).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' These results confirm the validity of Edc induced BCD in our work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Figure S9: The second-order AHE without external d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' electric field in WTe2 at 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='8 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 2 0 10 20 30 40 V2\uf077 H (mV) I\uf077 (mA) 17 Supplemental Note 6: Theoretical analysis and calculations of field-induced Berry curvature dipole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The electric field-induced Berry curvature depends on the Berry connection polarizability tensor and the applied d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' field with the relation that 𝛀(1) = 𝛁𝐤 × (𝐆⃡𝐄𝑑𝑐), Ωβ (1)(𝑛, 𝒌) = εβγμ[∂γ𝐺μν(𝑛, 𝒌)]𝐸ν dc, with 𝐺μν(𝑛, 𝒌) = 2𝑒Re ∑ (𝐴μ)𝑛𝑚(𝐴ν)𝑚𝑛 ε𝑛−ε𝑚 𝑚≠𝑛 , where 𝐴𝑚𝑛 is the interband Berry connection and 𝑒 is the electron charge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The superscript “(1)” represents that the physical quantity is the first order term of electric field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Here the Greek letters refer to the spatial directions, 𝑚, 𝑛 refer to the energy band indices, εβγμ is the Levi-Civita symbol, and 𝜕𝛾 is short for 𝜕/𝜕𝑘𝛾 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The Berry connection polarizability tensor of WTe2 is calculated and shown in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S10(a)-(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' From the definition, the field-induced BCD is 𝐷αβ (1) = ∫ [𝑑𝒌]𝑓0 (∂αΩβ (1)) 𝑘 = εβγμ ∫ [𝑑𝒌]𝑓0[∂α(∂γ𝐺μν)]𝐸ν dc 𝑘 , where ∫ [𝑑𝒌] 𝑘 = ∑ 1 (2π)3 ∭ 𝑑𝒌 𝑛 is taken over the first Brillouin zone of the system and summed over all energy bands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' In two-dimensional systems, 𝛀(1) is constrained to the out of plane direction, and BCD behaves as a pseudo vector in the plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Here we choose our coordinate frame along the crystal principal axes 𝑎, 𝑏, 𝑐 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' By applying a d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' electric field 𝐄dc = (Ea dc, Eb dc) in the 𝑎𝑏 plane, the induced Ω𝑐 (1) reads Ω𝑐 (1)(𝑛, 𝒌) = (𝜕𝑎𝐺𝑏𝑎 − 𝜕𝑏𝐺𝑎𝑎)Ea dc + (𝜕𝑎𝐺𝑏𝑏 − 𝜕𝑏𝐺𝑎𝑏)Eb dc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 𝐷α (1) defined in a few-layer 2D system can be approximately derived from 𝐷αc(bulk) (1) of 18 the bulk system by 𝐷α (1) = 𝑑𝐷αc(bulk) (1) , where 𝑑 is the thickness of the film.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The independent components of 𝐷α (1) are related to the Berry connection polarizability tensor, 𝐄dc and 𝑑.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The mirror symmetry 𝑀𝑎 and the glide symmetry 𝑀̃𝑏 in WTe2 constrain 𝐷α (1) to be 𝐷𝑎 (1) = ∫[𝑑𝑘] f0[∂a(∂aGbb) − ∂a(∂bGab)]Eb dc𝑑 k , 𝐷𝑏 (1) = ∫[𝑑𝑘] f0[∂b(𝜕𝑎𝐺𝑏𝑎) − ∂b(𝜕𝑏𝐺𝑎𝑎)]Ea dc𝑑 k , where the other terms are prohibited by symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' In the experiment, the d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' electric field is applied along a direction with an angle 𝜃 between 𝑏 axis, which can be expressed as 𝐄dc = 𝐸dc(− sin 𝜃 , cos 𝜃) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The induced BCD 𝐃(1)(𝜃) = (𝐷𝑎 (1)(𝜃), 𝐷𝑏 (1)(𝜃)) hence reads 𝐷𝑎 (1)(𝜃) = ∫[𝑑𝑘] f0[∂a(∂aGbb) − ∂a(∂bGab)]Edc k cos 𝜃 𝑑, 𝐷𝑏 (1)(𝜃) = ∫[𝑑𝑘] f0[∂b(∂bGaa) − ∂b(∂aGba)]Edc k sin 𝜃 𝑑.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' With the field-induced BCD, the second-order Hall current of an a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' electric field 𝐄ω is [9] 𝑗𝛼 2ω = −εαμγ 𝑒3𝜏 2(1 + 𝑖ωτ)ℏ2 𝐷βμ (1)𝐸β ω𝐸γ ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' In two-dimensional systems, where 𝛀(1) is along out of plane direction and 𝐷αc (1) = ∫ [𝑑𝒌]𝑓0(∂αΩc (1)) 𝑘 , it is equivalent to 𝒋2ω = − 𝑒3𝜏 2(1 + 𝑖ωτ)ℏ2 (𝒛̂ × 𝐄ω)[D(1)(𝜃) ⋅ Eω].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The magnitude of induced second-order Hall conductivity is determined by D(1)(𝜃) ⋅ 𝐄̂ω, which is the projection of the pseudo vector 𝐃(1) to the direction of 𝐄ω, 19 and the direction of Hall current is perpendicular to 𝐄ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Consequently, we can measure the 𝐄dc induced BCD 𝐃(1) by detecting its projective component 𝐷𝑎 (1)(𝜃) or 𝐷𝑏 (1)(𝜃) with an a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' electric field along the corresponding direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' From the above derivation, when the direction of the d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c electric field varies in the 𝑎𝑏 plane, the independent components of induced BCD 𝐷𝑎 (1) and 𝐷𝑏 (1) change as a cosine and a sine function, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' This relation is clearly demonstrated by our experimental results in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 4 of main text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' With first-principles calculations, we estimate the extreme value of 𝐷𝑎 (1)(0°) and 𝐷𝑏 (1)(90°), as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S10(d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' It is taken that 𝑑 ∼ 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='4 nm and 𝐸dc ∼ 3 kV/m according to the experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 𝐷𝑎 (1)(0°) and 𝐷𝑏 (1)(90°) refer to 𝐷𝑎 (1) and 𝐷𝑏 (1) as the applied 𝐸dc along the b axis and -a axis, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' It is found that 𝐷𝑏 (1)(90°) varies from ~-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='14 nm to 0 as tuning chemical potential away from 0, and 𝐷𝑎 (1)(0°) shows a non-monotonic change between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='18 and -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='13 nm as changing chemical potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The experimental results of 𝐷𝑏 (1)(90°) ~-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='05 nm and 𝐷𝑎 (1)(0°) ~-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='28 nm (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 4 in main text) agree well with the calculations on the order of magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Figure S10: Calculations of Berry connection polarizability tensor and field- (a) (b) (c) (d) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='2 D(0°) (nm) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='-.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='D"(90°) 0 D(1) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='1 =3kV/m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='2 20 10 0 10 20 μ(meV)106 G 104 102 X 0 102 104 106 Y Gbb 10° 104 102 X 0 102 104 106 Y106 104 102 X 0 102 104 106 Y20 induced Berry curvature dipole in WTe2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' a-c, The calculated distribution of Berry connection polarizability tensor elements (a) 𝐺𝑎𝑎, (b) 𝐺𝑏𝑏, (c) 𝐺𝑎𝑏 in the 𝑘𝑧 = 0 plane of the Brillouin Zone for the occupied bands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The unit of BCP is Å2 ⋅ V−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The grey lines depict the Fermi surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' d, Calculated field-induced BCD 𝐷𝑎 (1)(0°) and 𝐷𝑏 (1)(90°) with respect to the chemical potential 𝜇 when 𝐸dc = 3 kV/m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' In the calculations, the finite temperature effect is considered with a boarding of 𝑘𝐵𝑇 at 5 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 21 Supplemental Note 7: Electric field dependence of second-order Hall signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The second-harmonic I-V characteristics in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 1(e) of main text are converted into the 𝑉𝐻 2𝜔 versus (𝑉𝜔)2 in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S11(a), where linear relationships are observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The E𝐻 2ω (𝐸𝜔)2 as a function of the applied 𝐸𝑑𝑐 is further calculated and presented in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S11(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Figure S11: Second-order AHE modulated by d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' electric field at 5 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' a, The second-harmonic Hall voltage 𝑉𝐻 2𝜔 as a function of (𝑉𝜔)2 as 𝐄𝑑𝑐 along b axis and 𝐄𝜔 along -a axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' b, The second-order Hall signal E𝐻 2ω (𝐸𝜔)2 as a function of 𝐸𝑑𝑐 at 𝜃 = 0° and 𝜃 = 90° with 𝐄𝜔 ∥ −𝑎 axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 0 5 10 15 20 25 30 6 4 2 0 2 4 6 Edc (kV/m) 3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 3 V2\uf077 H (mV) (V\uf077)2 (10-8 V2) q = 0\uf0b0 E\uf077 \uf07c\uf07c -a axis 3 2 1 0 1 2 3 9 6 3 0 3 6 9 q 0\uf0b0 90\uf0b0 E2\uf077 H /(E\uf077)2 (10-5 m/V) Edc (kV/m) E\uf077 \uf07c\uf07c -a axis (a) (b) 22 Supplemental Note 8: Control experiments in device S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' To demonstrate the symmetry constraint in WTe2, control experiments were carried out in device S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' As schematically shown in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S12(a), (d), the a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' and d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' current sources are applied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The SR830 is an effective a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' current source as connecting a resistor in series with output impedance 10 kΩ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' source is the Keithley current source with output impedance ~20 MΩ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' For the d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' field applied along a and b axis, respectively, the first-harmonic Hall voltage shows no obvious dependence on 𝐄𝑑𝑐, as shown in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S12(b) and S12(e), which indicate the independence of the two electric sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' When applying 𝐄𝑑𝑐 ∥ 𝐄𝜔 ∥ 𝑎 axis, no second-order nonlinear Hall effect can be observed in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S12(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Nevertheless, upon applying 𝐄𝑑𝑐 ⊥ 𝐄𝜔 and 𝐄𝜔 ∥ 𝑎 axis, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S12(f), nonzero second-order nonlinear Hall effect emerges due to the 𝐄𝑑𝑐 induced Berry curvature dipole along a axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Figure S12: The measurements by applying both d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' electric field 𝐄𝒅𝒄 and a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' current in devices S2 at 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='8 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' a, Schematic of the measurement configuration for (b) and (c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 2 1 0 1 2 3 Edc (104 V/m) 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='7 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='2 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='7 V2\uf077 ⊥ (mV) I\uf077 (mA) E\uf077 ⊥ Edc 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 1 Edc \uf07c\uf07c (104 V/m) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 V2\uf077 ⊥ (mV) I\uf077 (mA) E\uf077 \uf07c\uf07c Edc 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 Edc (104 V/m) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='2 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='2 V\uf077 H (mV) I\uf077 (mA) E\uf077 ⊥ Edc 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 Edc (104 V/m) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 V\uf077 H (mV) I\uf077 (mA) E\uf077 \uf07c\uf07c Edc SR830 voltage source Keithley 2400 current source SR830 voltage source Keithley 2400 current source b a b a (a) (b) (c) (d) (e) (f) 23 b, First-harmonic Hall voltage 𝑉𝐻 𝜔 under 𝐄𝑑𝑐 ∥ 𝐄𝜔 ∥ 𝑎 axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' c, There is no clear second-harmonic Hall voltage 𝑉𝐻 2𝜔 under 𝐄𝑑𝑐 ∥ 𝐄𝜔 ∥ 𝑎 axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' d, Schematic of the measurement configuration for (e) and (f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' e, The 𝑉𝐻 𝜔 under various 𝐄𝑑𝑐 with 𝐄𝑑𝑐 ⊥ 𝐄𝜔 and 𝐄𝜔 ∥ 𝑎 axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' f, The 𝑉𝐻 2𝜔 under various 𝐄𝑑𝑐 with 𝐄𝑑𝑐 ⊥ 𝐄𝜔 and 𝐄𝜔 ∥ 𝑎 axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 24 Supplemental Note 9: Discussions of other possible origins of the second order AHE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 1) Diode effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' An accidental diode due to the contact can lead to a rectification, causing high-order transport, which, however, can be safely ruled out in this work due to the following reasons: (a) Extrinsic signals of this origin should be strongly contact dependent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Thus, the angle-dependence should be also coupled to extrinsic contacts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Nevertheless, the angle- dependence of second-order AHE in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 2 and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S12 is well consistent with the inherent symmetry of WTe2, which excludes the extrinsic origins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' (b) The two-terminal d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' measurements for all the diagonal electrodes show linear I-V characteristics, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S13(a), excluding the existence of diode effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Linear fittings are performed for the two-terminal I-V curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The R-square of the linear fittings is at least larger than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='99997, indicating perfect linearity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Further, the deviation from linearity is analyzed by subtracting the linear-dependent part, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S13(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' It is found ∆Vdc, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=', the deviation part, is four orders of magnitude smaller than the original Vdc, indicating a negligible nonlinearity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Moreover, the ∆Vdc shows no obvious current or angle dependence (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S13(b)), and its magnitude is also much smaller than that of the higher-harmonic Hall voltages (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S13(c)), further indicating that the observed higher-order transport in this work is failed to be attributed to the diode effect induced by contact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 25 Figure S13: Two-terminal d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' measurements at 5 K in device S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' a, Current-voltage curves from two-terminal d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' measurements for all the diagonal electrodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' b, The current dependence of ∆Vdc, that is, the deviations from the linearity of the current-voltage curves in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S13a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' c, The comparation of the ∆Vdc, 𝑉𝐻 2𝜔 and 𝑉𝐻 3𝜔.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' For ∆Vdc and 𝑉𝐻 3𝜔, the excitation current is applied at 𝜃 = 30°, while for 𝑉𝐻 2𝜔, the excitation current is applied along a axis and a d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' field 3 kV/m is applied at 𝜃 = 30°.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 2) Capacitive effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Contact resistance is generally inevitable between the metal electrodes and two-dimensional materials, which would induce an accidental capacitive effect, resulting in higher-order transport effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Here, the second-order AHE shows a negligible dependence on frequency, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S14(a), excluding the capacitive effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The phase of the second-harmonic Hall voltage is also investigated, where the Y signal dominates over the X signal (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S14(b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The phase of the second-harmonic Hall voltage is approximately ±90°, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S14(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' These features further exclude the capacitive effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='6 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='6 10 0 10 Vdc (mV) Idc (mA) 90\uf0b0 120\uf0b0 150\uf0b0 0\uf0b0 30\uf0b0 60\uf0b0 (a) (b) (c) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='2 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='02 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='04 0\uf0b0 30\uf0b0 60\uf0b0 DVdc (mV) Idc (mA) 90\uf0b0 120\uf0b0 150\uf0b0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='4 5 0 5 10 V (mV) Excitation current (mA) DVdc V2\uf077 H V3\uf077 H 26 Figure S14: Frequency-dependence and phase of second-order AHE in device S1 at 5 K and with 𝐄𝐝𝐜 = 𝟑 𝐤𝐕/𝐦 at 𝜽 = 𝟔𝟎°.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' a, The second-order Hall signals at different frequencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' b, The X and Y signals of the second-order Hall voltages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' c, The absolute value of the phase of the second-order Hall voltages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 3) Thermal effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The thermal effect can also induce a second-order signal [41].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' If the observed nonlinear Hall effect origins from thermal effect, it should response to both longitudinal and transverse d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' electric field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' However, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S12, when applying 𝐄𝑑𝑐 ∥ 𝐄𝜔 ∥ 𝑎 axis, no second-order nonlinear Hall effect is observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Nevertheless, upon applying 𝐄𝜔 ⊥ 𝐄𝑑𝑐 , nonzero second-order nonlinear Hall effect emerges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' This observation is clearly inconsistent with the thermal effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Moreover, the observed second-order nonlinear Hall effect shows strong anisotropy, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 2 of main text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The angle-dependence of the d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' field-induced second-order Hall effect is well consistent with the inherent symmetry of WTe2, which is failed to be explained by the thermal effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 4) Thermoelectric effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Joule heating induced temperature gradient across the sample can drive a thermoelectric voltage, leading to second-order nonlinear Hall effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' This thermoelectric effect can also be excluded due to the following reasons: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='05 0 20 40 60 80 100 abs(phase) (\uf0b0) I\uf077 (mA) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='05 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 0 X signal Y signal V2\uf077 H (mV) I\uf077 (mA) (b) (c) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='05 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 0 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='777 Hz 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='777 Hz 177.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='77 Hz 777.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='77 Hz 1777.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='7 Hz V2\uf077 H (mV) I\uf077 (mA) (a) 27 (a) Uniform Joule heating will not induce a temperature gradient and thus no thermoelectric voltage across the sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' (b) To generate thermoelectric voltage, the Joule heating should couple with external asymmetry, such as contact junction or flake shape, which should be unrelated to the inherent symmetry of WTe2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' However, the anisotropy of second-order nonlinear Hall effect is well consistent with the inherent symmetry analysis, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 2 of main text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 5) A residue of the first-harmonic Hall response 𝑽𝑯 𝝎.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The influence of 𝑉𝐻 𝜔 on the 𝑉𝐻 2𝜔 can be ruled out because the first- and second-harmonic signals show different dependence on the d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' electric field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S15, the first-harmonic Hall signal (𝑉𝐻 𝜔) shows that the I-V curves under 𝐸𝑑𝑐 = ±3 kV/m overlap with each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' By comparison, the second-harmonic Hall signal (𝑉𝐻 2𝜔 ) shows an anti-symmetric dependence on 𝐸𝑑𝑐, where the sign of 𝑉𝐻 2𝜔 is changed upon changing the sign of 𝐸𝑑𝑐.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' This indicates that the existence of the first order signal 𝑉𝐻 𝜔 will not affect the measurements of the second order signal 𝑉𝐻 2𝜔.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Figure S15: The first- and second-harmonic signals at 5 K as 𝐄𝒅𝒄 along b axis (𝜽 = 𝟎°) and 𝐄𝝎 along -a axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' a, The first-harmonic Hall voltage 𝑉𝐻 𝜔 as a function of 𝐼𝜔 at 𝐸𝑑𝑐 = ±3 kV/m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='05 6 4 2 0 2 4 6 Edc (kV/m) 3 3 V2\uf077 H (mV) I\uf077 (mA) q = 0\uf0b0 (a) (b) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='05 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='05 Edc (kV/m) 3 3 V\uf077 H (mV) I\uf077 (mA) 28 b, The second-harmonic Hall voltage 𝑉𝐻 2𝜔.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 6) Trivial effect by d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' We measured the first-harmonic longitudinal voltage upon applying Edc = 3 kV/m , as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' It is clearly found that when reversing the sign of d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' electric field, the I-V curves overlapped with each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The results show that the d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' source will not affect the a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Figure S16: The first-harmonic longitudinal voltage versus current under different d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' electric fields at 5 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The 𝐄𝝎 and 𝐄𝒅𝒄 are along a axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 7) Longitudinal nonlinearity originating from a circuit artifact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' We have measured both the second-harmonic Hall and longitudinal voltage at all the angles, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The measurement configuration is shown in the inset of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S17(d) with d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' field applied at angle 𝜃.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' It is clearly found that the Hall nonlinearity is dominated over longitudinal one, which guarantees that the observed second-order Hall effect doesn’t originate from the longitudinal nonlinearity induced by a circuit artifact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='05 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='8 V\uf077 xx (mV) I\uf077 (mA) Edc (kV/m) 3 3 29 Figure S17: The second-harmonic Hall 𝑽𝑯 𝟐𝝎 and longitudinal voltage 𝑽𝑳 𝟐𝝎 with 𝐄𝝎 ∥ −𝒂 axis and 𝐄𝒅𝒄 = 𝟏.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 𝟓 𝐤𝐕/𝐦 along different angles at 5 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The angle 𝜽 is defined in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 1(d) of main text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='05 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='6 V2\uf077 H V2\uf077 L V2\uf077 (mV) I\uf077 (mA) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 V2\uf077 H V2\uf077 L V2\uf077 (mV) I\uf077 (mA) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 2 V2\uf077 H V2\uf077 L V2\uf077 (mV) I\uf077 (mA) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='05 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 V2\uf077 H V2\uf077 L V2\uf077 (mV) I\uf077 (mA) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='05 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 0 V2\uf077 H V2\uf077 L V2\uf077 (mV) I\uf077 (mA) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='05 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='5 0 V2\uf077 H V2\uf077 L V2\uf077 (mV) I\uf077 (mA) a b (a) (b) (c) (d) (e) (f) 30 Supplemental Note 10: Angle dependence of parameter C0 obtained from the fittings of scaling law.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' The second-order Hall signal EH 2ω (𝐸𝜔)2 is found to satisfy scaling law EH 2ω (𝐸𝜔)2 = 𝐶0 + 𝐶1𝜎𝑥𝑥 + 𝐶2𝜎𝑥𝑥 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' For 𝐄𝑑𝑐 = 3 kV/m with a fixed direction (angle 𝜃), a set of curves of VH 2ω vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Iω is measured at different temperatures as Iω is applied along -a axis and b axis, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Through varying temperature, the 𝜎𝑥𝑥 is changed accordingly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Therefore, for a fixed angle 𝜃, the relationship between EH 2ω (𝐸𝜔)2 and 𝜎𝑥𝑥 is plotted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' By fitting the experimental data, the parameter 𝐶0 is then obtained and presented in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' S18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' Figure S18: Angle-dependence of the coefficient 𝑪𝟎.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' a,b, The coefficient 𝐶0 as a function of 𝜃 with the amplitude of 𝐄𝑑𝑐 fixed at 3 kV/m for (a) 𝐄𝜔 ∥ −𝑎 axis and (b) 𝐄𝜔 ∥ 𝑏 axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content=' 0 60 120 180 240 300 360 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='2 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
+page_content='6 C0 (10-7 m/V) q (o) 0 60 120 180 240 300 360 2 1 0 1 2 C0 (10-7 m/V) q (o) (a) (b) axis axis' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NAzT4oBgHgl3EQf9f64/content/2301.01921v1.pdf'}
diff --git a/6tE0T4oBgHgl3EQffABm/vector_store/index.faiss b/6tE0T4oBgHgl3EQffABm/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..6d9efcec8ddfac387049284b7c0dfdfa2586f025
--- /dev/null
+++ b/6tE0T4oBgHgl3EQffABm/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:335f0a36ae23f1ee3ded154094f80a2640b9752e45c32b0faaef44668d8d19e2
+size 2293805
diff --git a/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf b/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..1447200275fb324ab7e8cfa80c30eda3ff3abe08
--- /dev/null
+++ b/6tE3T4oBgHgl3EQfpwpy/content/2301.04645v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c914e43f38b796da326874a8042b66b391cec9dc61d6ad1b1ffa68fb152afad7
+size 142542
diff --git a/6tE3T4oBgHgl3EQfpwpy/vector_store/index.faiss b/6tE3T4oBgHgl3EQfpwpy/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..3f6e023c6a99b54745954185662f28084239b365
--- /dev/null
+++ b/6tE3T4oBgHgl3EQfpwpy/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:0ea1e08d426c6ee9124641cce4c0d346268698fef43cfe175eee5daeecaeed07
+size 720941
diff --git a/6tE3T4oBgHgl3EQfpwpy/vector_store/index.pkl b/6tE3T4oBgHgl3EQfpwpy/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..1b60e36eba3c5c0059983421ada8eca5f5c4fbcf
--- /dev/null
+++ b/6tE3T4oBgHgl3EQfpwpy/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:0379813fc11359e2808844f7774d8762bf6ac05e43dfc36e6bf7a3c57aa247a2
+size 32934
diff --git a/7NE3T4oBgHgl3EQfqApm/vector_store/index.pkl b/7NE3T4oBgHgl3EQfqApm/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..63abcca1528f2d9d92d133a379c0330f0fdf0da8
--- /dev/null
+++ b/7NE3T4oBgHgl3EQfqApm/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:822da5373ee8d6e9a254350664f96860eec18ffac562e3d8e9cc023e2955c75e
+size 255837
diff --git a/89AyT4oBgHgl3EQfQ_ZE/content/tmp_files/2301.00056v1.pdf.txt b/89AyT4oBgHgl3EQfQ_ZE/content/tmp_files/2301.00056v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..6e08540130601d3bac8d810b432ac339dd632483
--- /dev/null
+++ b/89AyT4oBgHgl3EQfQ_ZE/content/tmp_files/2301.00056v1.pdf.txt
@@ -0,0 +1,372 @@
+MNRAS 000, 1–4 (2022)
+Preprint 30 December 2022
+Compiled using MNRAS LATEX style file v3.0
+A Bayesian Neural Network Approach to identify Stars and AGNs
+observed by XMM Newton ★
+Sarvesh Gharat,1† and Bhaskar Bose2
+1 Centre for Machine Intelligence and Data Science, Indian Institute of Technology Bombay, 400076, Mumbai, India
+2 Smart Mobility Group, Tata Consultancy Services, 560067, Bangalore, India
+Accepted XXX. Received YYY; in original form ZZZ
+ABSTRACT
+In today’s era, a tremendous amount of data is generated by different observatories and manual classification of data is something
+which is practically impossible. Hence, to classify and categorize the objects there are multiple machine and deep learning
+techniques used. However, these predictions are overconfident and won’t be able to identify if the data actually belongs to the
+trained class. To solve this major problem of overconfidence, in this study we propose a novel Bayesian Neural Network which
+randomly samples weights from a distribution as opposed to the fixed weight vector considered in the frequentist approach. The
+study involves the classification of Stars and AGNs observed by XMM Newton. However, for testing purposes, we consider CV,
+Pulsars, ULX, and LMX along with Stars and AGNs which the algorithm refuses to predict with higher accuracy as opposed
+to the frequentist approaches wherein these objects are predicted as either Stars or AGNs. The proposed algorithm is one of
+the first instances wherein the use of Bayesian Neural Networks is done in observational astronomy. Additionally, we also make
+our algorithm to identify stars and AGNs in the whole XMM-Newton DR11 catalogue. The algorithm almost identifies 62807
+data points as AGNs and 88107 data points as Stars with enough confidence. In all other cases, the algorithm refuses to make
+predictions due to high uncertainty and hence reduces the error rate.
+Key words: methods: data analysis – methods: observational – methods: miscellaneous
+1 INTRODUCTION
+Since the last few decades, a large amount of data is regularly
+generated by different observatories and surveys. The classification
+of this enormous amount of data by professional astronomers is
+time-consuming as well as practically impossible. To make the
+process simpler, various citizen science projects (Desjardins et al.
+2021) (Cobb 2021) (Allf et al. 2022) (Faherty et al. 2021) are
+introduced which has been reducing the required time by some
+extent. However, there are many instances wherein classifying the
+objects won’t be simple and may require domain expertise.
+In this modern era, wherein Machine Learning and Neural Net-
+works are widely used in multiple fields, there has been significant
+development in the use of these algorithms in Astronomy. Though
+these algorithms are accurate with their predictions there is certainly
+some overconfidence (Kristiadi et al. 2020) (Kristiadi et al. 2021)
+associated with it. Besides that, these algorithms tend to classify
+every input as one of the trained classes (Beaumont & Haziza 2022)
+irrespective of whether it actually belongs to those trained classes
+eg: The algorithm trained to classify stars will also predict AGNs as
+one of the stars. To solve this major issue, in this study we propose a
+Bayesian Neural Network (Jospin et al. 2022) (Charnock et al. 2022)
+★ Based on observations obtained with XMM-Newton, an ESA science mis-
+sion with instruments and contributions directly funded by ESA Member
+States and NASA
+† E-mail: sarveshgharat19@gmail.com
+which refuses to make a prediction whenever it isn’t confident about
+its predictions. The proposed algorithm is implemented on the data
+collected by XMM-Newton (Jansen et al. 2001). We do a binary
+classification to classify Stars and AGNs (Małek et al. 2013) (Golob
+et al. 2021). Additionally to test our algorithm with the inputs which
+don’t belong to the trained class we consider data observed from CV,
+Pulsars, ULX, and LMX. Although, the algorithm doesn’t refuse to
+predict all these objects, but the number of objects it predicts for
+these 4 classes is way smaller than that of trained classes.
+For the trained classes, the algorithm gives its predictions for al-
+most 64% of the data points and avoids predicting the output when-
+ever it is not confident about its predictions. The achieved accuracy
+in this binary classification task whenever the algorithm gives its
+prediction is 98.41%. On the other hand, only 14.6% of the incor-
+rect data points are predicted as one of the classes by the algorithm.
+The percentage decrease from 100% to 14.6% in the case of different
+inputs is what dominates our model over other frequentist algorithms.
+2 METHODOLOGY
+In this section, we discuss the methodology used to perform this
+study. This section is divided into the following subsections.
+• Data Collection and Feature Extraction
+• Model Architecture
+• Training and Testing
+© 2022 The Authors
+
+2
+S. Gharat et al.
+Class
+Catalogue
+AGN
+VERONCAT (Véron-Cetty & Véron 2010)
+LMX
+NGC3115CXO (Lin et al. 2015)
+RITTERLMXB (Ritter & Kolb 2003)
+LMXBCAT (Liu et al. 2007)
+INTREFCAT (Ebisawa et al. 2003)
+M31XMMXRAY (Stiele et al. 2008)
+M31CFCXO (Hofmann et al. 2013)
+RASS2MASS (Haakonsen & Rutledge 2009)
+Pulsars
+ATNF (Manchester et al. 2005)
+FERMIL2PSR (Abdo et al. 2013)
+CV
+CVC (Drake et al. 2014)
+ULX
+XSEG (Drake et al. 2014)
+Stars
+CSSC (Skiff 2014)
+Table 1. Catalogues used to create labeled data
+Class
+Training Data
+Test Data
+AGN
+8295
+2040
+LMX
+0
+49
+Pulsars
+0
+174
+CV
+0
+36
+ULX
+0
+261
+Stars
+6649
+1628
+Total
+14944
+4188
+Table 2. Data distribution after cross-matching all the data points with cata-
+logs mentioned in Table 1
+2.1 Data Collection and Feature Extraction
+In this study, we make use of data provided in "XMM-DR11 SEDs"
+Webb et al. (2020). We further cross-match the collected data with
+different vizier (Ochsenbein et al. 2000) catalogs. Please refer to
+Table 1 to view all the catalogs used in this study. As the proposed
+algorithm is a "supervised Bayesian algorithm", this happens to be
+one of the important steps for our algorithm to work.
+The provided data has 336 different features that can increase
+computational complexity by a larger extent and also has a lot of
+missing data points. Therefore in this study, we consider a set of
+18 features corresponding to the observed source. The considered
+features for all the sources are available on our Github repository,
+more information of which is available on the official webpage 1 of
+the observatory. After cross-matching and reducing the number of
+features, we were left with a total of 19136 data points. The data
+distribution can be seen in Table 2. We further also plot the sources
+(Refer Figure1) based on their "Ra" and "Dec" to confirm if the
+data coverage of the considered sources matches with the actual data
+covered by the telescope.
+1 http://xmmssc.irap.omp.eu/Catalogue/4XMM-DR11/col_unsrc.
+html
+Figure 1. Sky map coverage of considered data points
+The collected data is further classified into train and test according
+to the 80 : 20 splitting condition. The exact number of data points is
+mentioned in Table 2
+2.2 Model Architecture
+The proposed model has 1 input, hidden and output layers (refer
+Figure 2) with 18, 512, and 2 neurons respectively. The reason for
+having 18 neurons in the input layer is the number of input features
+considered in this study. Further, to increase the non-linearity of the
+output, we make use of "Relu" (Fukushima 1975) (Agarap 2018) as
+an activation function for the first 2 layers. On the other hand, the
+output layer makes use of "Softmax" to make the predictions. This
+is done so that the output of the model will be the probability of
+image belonging to a particular class (Nwankpa et al. 2018) (Feng
+& Lu 2019).
+The "optimizer" and "loss" used in this study are "Adam" (Kingma
+et al. 2020) and "Trace Elbo" (Wingate & Weber 2013) (Ranganath
+et al. 2014) respectively. The overall idea of BNN (Izmailov et al.
+2021) (Jospin et al. 2022) (Goan & Fookes 2020) is to have a pos-
+terior distribution corresponding to all weights and biases such that,
+the output distribution produced by these posterior distributions is
+similar to that of the categorical distributions defined in the training
+dataset. Hence, convergence, in this case, can be achieved by min-
+imizing the KL divergence between the output and the categorical
+distribution or just by maximizing the ELBO (Wingate & Weber
+2013) (Ranganath et al. 2014). We make use of normal distributions
+which are initialized with random mean and variance as prior (For-
+tuin et al. 2021), along with the likelihood derived from the data to
+construct the posterior distribution.
+2.3 Training and Testing
+The proposed model is constructed using Pytorch (Paszke et al.
+2019) and Pyro (Bingham et al. 2019). The training of the model
+is conducted on Google Colaboratory, making use of NVIDIA
+K80 GPU (Carneiro et al. 2018). The model is trained over 2500
+epochs with a learning rate of 0.01. Both these parameters i.e
+number of epochs and learning rate has to be tuned and are done by
+iterating the algorithm multiple times with varying parameter values.
+The algorithm is further asked to make 100 predictions corre-
+sponding to every sample in the test set. Every time it makes the
+prediction, the corresponding prediction probability varies. This is
+due to random sampling of weights and biases from the trained dis-
+tributions. Further, the algorithm considers the "mean" and "standard
+deviation" corresponding to those probabilities to make a decision
+as to proceed with classification or not.
+MNRAS 000, 1–4 (2022)
+
+4
+45°
+31
+15*
+15*
+30*
+45*
+60
+-75"BNN Classifier
+3
+Figure 2. Model Architecture
+AGN
+Stars
+AGN
+1312
+6
+Stars
+31
+986
+Table 3. Confusion Matrix for classified data points
+Class
+Precision
+Recall
+F1 Score
+AGN
+0.99
+0.97
+0.98
+Stars
+0.97
+0.99
+0.98
+Average
+0.98
+0.98
+0.98
+Table 4. Classification report for classified data points
+3 RESULTS AND DISCUSSION
+The proposed algorithm is one of the initial attempts to implement
+"Bayesian Neural Networks" in observational astronomy which
+has shown significant results. The algorithm gives the predictions
+with an accuracy of more than 98% whenever it agrees to make
+predictions for trained classes.
+Table 3 represents confusion matrix of classified data. To calculate
+accuracy, we make use of the given formula.
+Accuracy =
+𝑎11 + 𝑎22
+𝑎11 + 𝑎12 + 𝑎21 + 𝑎22
+× 100
+In our case, the calculated accuracy is
+Accuracy =
+1312 + 986
+1312 + 6 + 31 + 986 × 100 = 98.4%
+As accuracy is not the only measure to evaluate any classification
+model, we further calculate precision, recall and f1 score correspond-
+ing to both the classes as shown in Table 4
+Although, the obtained results from simpler "BNN" can be
+obtained via complex frequentist models, the uniqueness of the
+algorithm is that it agrees to classify only 14% of the unknown
+classes as one of the trained classes as opposed to frequentist
+approaches wherein all those samples are classified as one of these
+classes. Table 5 shows the percentage of data from untrained classes
+Class
+AGN
+Star
+CV
+13.8 %
+0 %
+Pulsars
+2.3 %
+6.3 %
+ULX
+14.9 %
+6.5 %
+LMX
+2 %
+26.5 %
+Total
+9.4 %
+7.8 %
+Table 5. Percentage of misidentified data points
+which are predicted as a Star or a AGN.
+As the algorithm gives significant results on labelled data, we make
+use of it to identify the possible Stars and AGNs in the raw data 2.
+The algorithm almost identifies almost 7.1% of data as AGNs and
+10.04% of data as AGNs. Numerically, the number happens to be
+62807 and 88107 respectively. Although, there’s high probability that
+there exists more Stars and AGNs as compared to the given number
+the algorithm simply refuses to give the prediction as it isn’t enough
+confident with the same.
+4 CONCLUSIONS
+In this study, we propose a Bayesian approach to identify Stars and
+AGNs observed by XMM Newton. The proposed algorithm avoids
+making predictions whenever it is unsure about the predictions. Im-
+plementing such algorithms will help in reducing the number of
+wrong predictions which is one of the major drawbacks of algo-
+rithms making use of the frequentist approach. This is an important
+thing to consider as there always exists a situation wherein the algo-
+rithm receives an input on which it is never trained. The proposed
+algorithm also identifies 62807 Stars and 88107 AGNs in the data
+release 11 by XMM-Newton.
+5 CONFLICT OF INTEREST
+The authors declare that they have no conflict of interest.
+DATA AVAILABILITY
+The raw data used in this study is publicly made available by XMM
+Newton data archive. All the codes corresponding to the algorithm
+and the predicted objects along with the predictions will be publicly
+made available on "Github" and "paperswithcode" by June 2023.
+REFERENCES
+Abdo A., et al., 2013, The Astrophysical Journal Supplement Series, 208, 17
+Agarap A. F., 2018, arXiv preprint arXiv:1803.08375
+Allf B. C., Cooper C. B., Larson L. R., Dunn R. R., Futch S. E., Sharova M.,
+Cavalier D., 2022, BioScience, 72, 651
+Beaumont J.-F., Haziza D., 2022, Canadian Journal of Statistics
+Bingham E., et al., 2019, The Journal of Machine Learning Research, 20, 973
+2 http://xmmssc.irap.omp.eu/Catalogue/4XMM-DR11/col_unsrc.
+html
+MNRAS 000, 1–4 (2022)
+
+h2
+54
+S. Gharat et al.
+Carneiro T., Da Nóbrega R. V. M., Nepomuceno T., Bian G.-B., De Albu-
+querque V. H. C., Reboucas Filho P. P., 2018, IEEE Access, 6, 61677
+Charnock T., Perreault-Levasseur L., Lanusse F., 2022, in , Artificial Intelli-
+gence for High Energy Physics. World Scientific, pp 663–713
+Cobb B., 2021, in Astronomical Society of the Pacific Conference Series.
+p. 415
+Desjardins R., Pahud D., Doerksen N., Laczko M., 2021, in Astronomical
+Society of the Pacific Conference Series. p. 23
+Drake A., et al., 2014, Monthly Notices of the Royal Astronomical Society,
+441, 1186
+Ebisawa K., Bourban G., Bodaghee A., Mowlavi N., 2003, Astronomy &
+Astrophysics, 411, L59
+Faherty J. K., et al., 2021, The Astrophysical Journal, 923, 48
+Feng J., Lu S., 2019, in Journal of physics: conference series. p. 022030
+Fortuin V., Garriga-Alonso A., Ober S. W., Wenzel F., Rätsch G., Turner R. E.,
+van der Wilk M., Aitchison L., 2021, arXiv preprint arXiv:2102.06571
+Fukushima K., 1975, Biological cybernetics, 20, 121
+Goan E., Fookes C., 2020, in , Case Studies in Applied Bayesian Data Science.
+Springer, pp 45–87
+Golob A., Sawicki M., Goulding A. D., Coupon J., 2021, Monthly Notices of
+the Royal Astronomical Society, 503, 4136
+Haakonsen C. B., Rutledge R. E., 2009, The Astrophysical Journal Supple-
+ment Series, 184, 138
+Hofmann F., Pietsch W., Henze M., Haberl F., Sturm R., Della Valle M.,
+Hartmann D. H., Hatzidimitriou D., 2013, Astronomy & Astrophysics,
+555, A65
+Izmailov P., Vikram S., Hoffman M. D., Wilson A. G. G., 2021, in Interna-
+tional conference on machine learning. pp 4629–4640
+Jansen F., et al., 2001, Astronomy & Astrophysics, 365, L1
+Jospin L. V., Laga H., Boussaid F., Buntine W., Bennamoun M., 2022, IEEE
+Computational Intelligence Magazine, 17, 29
+Kingma D. P., Ba J. A., Adam J., 2020, arXiv preprint arXiv:1412.6980, 106
+Kristiadi A., Hein M., Hennig P.,2020, in International conferenceon machine
+learning. pp 5436–5446
+Kristiadi A., Hein M., Hennig P., 2021, Advances in Neural Information
+Processing Systems, 34, 18789
+Lin D., et al., 2015, The Astrophysical Journal, 808, 19
+Liu Q., Van Paradijs J., Van Den Heuvel E., 2007, Astronomy & Astrophysics,
+469, 807
+Małek K., et al., 2013, Astronomy & Astrophysics, 557, A16
+Manchester R. N., Hobbs G. B., Teoh A., Hobbs M., 2005, The Astronomical
+Journal, 129, 1993
+Nwankpa C., Ijomah W., Gachagan A., Marshall S., 2018, arXiv preprint
+arXiv:1811.03378
+Ochsenbein F., Bauer P., Marcout J., 2000, Astronomy and Astrophysics
+Supplement Series, 143, 23
+Paszke A., et al., 2019, Advances in neural information processing systems,
+32
+Ranganath R., Gerrish S., Blei D., 2014, in Artificial intelligence and statistics.
+pp 814–822
+Ritter H., Kolb U., 2003, Astronomy & Astrophysics, 404, 301
+Skiff B., 2014, VizieR Online Data Catalog, pp B–mk
+Stiele H., Pietsch W., Haberl F., Freyberg M., 2008, Astronomy & Astro-
+physics, 480, 599
+Véron-Cetty M.-P., Véron P., 2010, Astronomy & Astrophysics, 518, A10
+Webb N., et al., 2020, Astronomy & Astrophysics, 641, A136
+Wingate D., Weber T., 2013, arXiv preprint arXiv:1301.1299
+This paper has been typeset from a TEX/LATEX file prepared by the author.
+MNRAS 000, 1–4 (2022)
+
diff --git a/89AyT4oBgHgl3EQfQ_ZE/content/tmp_files/load_file.txt b/89AyT4oBgHgl3EQfQ_ZE/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..23b4b85c99c0079833dd736e58a623989538c179
--- /dev/null
+++ b/89AyT4oBgHgl3EQfQ_ZE/content/tmp_files/load_file.txt
@@ -0,0 +1,327 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf,len=326
+page_content='MNRAS 000, 1–4 (2022) Preprint 30 December 2022 Compiled using MNRAS LATEX style file v3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='0 A Bayesian Neural Network Approach to identify Stars and AGNs observed by XMM Newton ★ Sarvesh Gharat,1† and Bhaskar Bose2 1 Centre for Machine Intelligence and Data Science, Indian Institute of Technology Bombay, 400076, Mumbai, India 2 Smart Mobility Group, Tata Consultancy Services, 560067, Bangalore, India Accepted XXX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' Received YYY;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' in original form ZZZ ABSTRACT In today’s era, a tremendous amount of data is generated by different observatories and manual classification of data is something which is practically impossible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' Hence, to classify and categorize the objects there are multiple machine and deep learning techniques used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' However, these predictions are overconfident and won’t be able to identify if the data actually belongs to the trained class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' To solve this major problem of overconfidence, in this study we propose a novel Bayesian Neural Network which randomly samples weights from a distribution as opposed to the fixed weight vector considered in the frequentist approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' The study involves the classification of Stars and AGNs observed by XMM Newton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' However, for testing purposes, we consider CV, Pulsars, ULX, and LMX along with Stars and AGNs which the algorithm refuses to predict with higher accuracy as opposed to the frequentist approaches wherein these objects are predicted as either Stars or AGNs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' The proposed algorithm is one of the first instances wherein the use of Bayesian Neural Networks is done in observational astronomy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' Additionally, we also make our algorithm to identify stars and AGNs in the whole XMM-Newton DR11 catalogue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' The algorithm almost identifies 62807 data points as AGNs and 88107 data points as Stars with enough confidence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' In all other cases, the algorithm refuses to make predictions due to high uncertainty and hence reduces the error rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' Key words: methods: data analysis – methods: observational – methods: miscellaneous 1 INTRODUCTION Since the last few decades, a large amount of data is regularly generated by different observatories and surveys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' The classification of this enormous amount of data by professional astronomers is time-consuming as well as practically impossible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' To make the process simpler, various citizen science projects (Desjardins et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' 2021) (Cobb 2021) (Allf et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' 2022) (Faherty et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' 2021) are introduced which has been reducing the required time by some extent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' However, there are many instances wherein classifying the objects won’t be simple and may require domain expertise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' In this modern era, wherein Machine Learning and Neural Net- works are widely used in multiple fields, there has been significant development in the use of these algorithms in Astronomy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' Though these algorithms are accurate with their predictions there is certainly some overconfidence (Kristiadi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' 2020) (Kristiadi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' 2021) associated with it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' Besides that, these algorithms tend to classify every input as one of the trained classes (Beaumont & Haziza 2022) irrespective of whether it actually belongs to those trained classes eg: The algorithm trained to classify stars will also predict AGNs as one of the stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' To solve this major issue, in this study we propose a Bayesian Neural Network (Jospin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' 2022) (Charnock et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' 2022) ★ Based on observations obtained with XMM-Newton, an ESA science mis- sion with instruments and contributions directly funded by ESA Member States and NASA † E-mail: sarveshgharat19@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='com which refuses to make a prediction whenever it isn’t confident about its predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' The proposed algorithm is implemented on the data collected by XMM-Newton (Jansen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' 2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' We do a binary classification to classify Stars and AGNs (Małek et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' 2013) (Golob et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' Additionally to test our algorithm with the inputs which don’t belong to the trained class we consider data observed from CV, Pulsars, ULX, and LMX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' Although, the algorithm doesn’t refuse to predict all these objects, but the number of objects it predicts for these 4 classes is way smaller than that of trained classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' For the trained classes, the algorithm gives its predictions for al- most 64% of the data points and avoids predicting the output when- ever it is not confident about its predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' The achieved accuracy in this binary classification task whenever the algorithm gives its prediction is 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='41%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' On the other hand, only 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='6% of the incor- rect data points are predicted as one of the classes by the algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' The percentage decrease from 100% to 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='6% in the case of different inputs is what dominates our model over other frequentist algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' 2 METHODOLOGY In this section, we discuss the methodology used to perform this study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' This section is divided into the following subsections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' Data Collection and Feature Extraction Model Architecture Training and Testing © 2022 The Authors 2 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' Gharat et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' Class Catalogue AGN VERONCAT (Véron-Cetty & Véron 2010) LMX NGC3115CXO (Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' 2015) RITTERLMXB (Ritter & Kolb 2003) LMXBCAT (Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' 2007) INTREFCAT (Ebisawa et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' 2003) M31XMMXRAY (Stiele et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' 2008) M31CFCXO (Hofmann et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' 2013) RASS2MASS (Haakonsen & Rutledge 2009) Pulsars ATNF (Manchester et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' 2005) FERMIL2PSR (Abdo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' 2013) CV CVC (Drake et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' 2014) ULX XSEG (Drake et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' 2014) Stars CSSC (Skiff 2014) Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' Catalogues used to create labeled data Class Training Data Test Data AGN 8295 2040 LMX 0 49 Pulsars 0 174 CV 0 36 ULX 0 261 Stars 6649 1628 Total 14944 4188 Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' Data distribution after cross-matching all the data points with cata- logs mentioned in Table 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='1 Data Collection and Feature Extraction In this study, we make use of data provided in "XMM-DR11 SEDs" Webb et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' We further cross-match the collected data with different vizier (Ochsenbein et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' 2000) catalogs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' Please refer to Table 1 to view all the catalogs used in this study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' As the proposed algorithm is a "supervised Bayesian algorithm", this happens to be one of the important steps for our algorithm to work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' The provided data has 336 different features that can increase computational complexity by a larger extent and also has a lot of missing data points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' Therefore in this study, we consider a set of 18 features corresponding to the observed source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' The considered features for all the sources are available on our Github repository, more information of which is available on the official webpage 1 of the observatory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' After cross-matching and reducing the number of features, we were left with a total of 19136 data points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' The data distribution can be seen in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' We further also plot the sources (Refer Figure1) based on their "Ra" and "Dec" to confirm if the data coverage of the considered sources matches with the actual data covered by the telescope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' 1 http://xmmssc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='irap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='omp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='eu/Catalogue/4XMM-DR11/col_unsrc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' html Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' Sky map coverage of considered data points The collected data is further classified into train and test according to the 80 : 20 splitting condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' The exact number of data points is mentioned in Table 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='2 Model Architecture The proposed model has 1 input, hidden and output layers (refer Figure 2) with 18, 512, and 2 neurons respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' The reason for having 18 neurons in the input layer is the number of input features considered in this study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' Further, to increase the non-linearity of the output, we make use of "Relu" (Fukushima 1975) (Agarap 2018) as an activation function for the first 2 layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' On the other hand, the output layer makes use of "Softmax" to make the predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' This is done so that the output of the model will be the probability of image belonging to a particular class (Nwankpa et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' 2018) (Feng & Lu 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' The "optimizer" and "loss" used in this study are "Adam" (Kingma et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' 2020) and "Trace Elbo" (Wingate & Weber 2013) (Ranganath et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' 2014) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' The overall idea of BNN (Izmailov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' 2021) (Jospin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' 2022) (Goan & Fookes 2020) is to have a pos- terior distribution corresponding to all weights and biases such that, the output distribution produced by these posterior distributions is similar to that of the categorical distributions defined in the training dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' Hence, convergence, in this case, can be achieved by min- imizing the KL divergence between the output and the categorical distribution or just by maximizing the ELBO (Wingate & Weber 2013) (Ranganath et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' We make use of normal distributions which are initialized with random mean and variance as prior (For- tuin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' 2021), along with the likelihood derived from the data to construct the posterior distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='3 Training and Testing The proposed model is constructed using Pytorch (Paszke et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' 2019) and Pyro (Bingham et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' The training of the model is conducted on Google Colaboratory, making use of NVIDIA K80 GPU (Carneiro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' The model is trained over 2500 epochs with a learning rate of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' Both these parameters i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='e number of epochs and learning rate has to be tuned and are done by iterating the algorithm multiple times with varying parameter values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' The algorithm is further asked to make 100 predictions corre- sponding to every sample in the test set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' Every time it makes the prediction, the corresponding prediction probability varies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' This is due to random sampling of weights and biases from the trained dis- tributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' Further, the algorithm considers the "mean" and "standard deviation" corresponding to those probabilities to make a decision as to proceed with classification or not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' MNRAS 000, 1–4 (2022) 4 45° 31 15* 15* 30* 45* 60 75"BNN Classifier 3 Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' Model Architecture AGN Stars AGN 1312 6 Stars 31 986 Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' Confusion Matrix for classified data points Class Precision Recall F1 Score AGN 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='99 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='97 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='98 Stars 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='97 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='99 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='98 Average 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='98 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='98 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='98 Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' Classification report for classified data points 3 RESULTS AND DISCUSSION The proposed algorithm is one of the initial attempts to implement "Bayesian Neural Networks" in observational astronomy which has shown significant results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' The algorithm gives the predictions with an accuracy of more than 98% whenever it agrees to make predictions for trained classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' Table 3 represents confusion matrix of classified data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' To calculate accuracy, we make use of the given formula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' Accuracy = 𝑎11 + 𝑎22 𝑎11 + 𝑎12 + 𝑎21 + 𝑎22 × 100 In our case, the calculated accuracy is Accuracy = 1312 + 986 1312 + 6 + 31 + 986 × 100 = 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='4% As accuracy is not the only measure to evaluate any classification model,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' we further calculate precision,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' recall and f1 score correspond- ing to both the classes as shown in Table 4 Although,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' the obtained results from simpler "BNN" can be obtained via complex frequentist models,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' the uniqueness of the algorithm is that it agrees to classify only 14% of the unknown classes as one of the trained classes as opposed to frequentist approaches wherein all those samples are classified as one of these classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' Table 5 shows the percentage of data from untrained classes Class AGN Star CV 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='8 % 0 % Pulsars 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='3 % 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='3 % ULX 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='9 % 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='5 % LMX 2 % 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='5 % Total 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='4 % 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='8 % Table 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' Percentage of misidentified data points which are predicted as a Star or a AGN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' As the algorithm gives significant results on labelled data, we make use of it to identify the possible Stars and AGNs in the raw data 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' The algorithm almost identifies almost 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='1% of data as AGNs and 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='04% of data as AGNs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' Numerically, the number happens to be 62807 and 88107 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' Although, there’s high probability that there exists more Stars and AGNs as compared to the given number the algorithm simply refuses to give the prediction as it isn’t enough confident with the same.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' 4 CONCLUSIONS In this study, we propose a Bayesian approach to identify Stars and AGNs observed by XMM Newton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' The proposed algorithm avoids making predictions whenever it is unsure about the predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' Im- plementing such algorithms will help in reducing the number of wrong predictions which is one of the major drawbacks of algo- rithms making use of the frequentist approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' This is an important thing to consider as there always exists a situation wherein the algo- rithm receives an input on which it is never trained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' The proposed algorithm also identifies 62807 Stars and 88107 AGNs in the data release 11 by XMM-Newton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' 5 CONFLICT OF INTEREST The authors declare that they have no conflict of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' DATA AVAILABILITY The raw data used in this study is publicly made available by XMM Newton data archive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' All the codes corresponding to the algorithm and the predicted objects along with the predictions will be publicly made available on "Github" and "paperswithcode" by June 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' REFERENCES Abdo A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', 2013, The Astrophysical Journal Supplement Series, 208, 17 Agarap A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', 2018, arXiv preprint arXiv:1803.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='08375 Allf B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Cooper C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Larson L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Dunn R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Futch S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Sharova M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Cavalier D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', 2022, BioScience, 72, 651 Beaumont J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Haziza D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', 2022, Canadian Journal of Statistics Bingham E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', 2019, The Journal of Machine Learning Research, 20, 973 2 http://xmmssc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='irap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='omp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='eu/Catalogue/4XMM-DR11/col_unsrc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' html MNRAS 000, 1–4 (2022) h2 54 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' Gharat et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' Carneiro T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Da Nóbrega R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Nepomuceno T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Bian G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', De Albu- querque V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Reboucas Filho P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', 2018, IEEE Access, 6, 61677 Charnock T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Perreault-Levasseur L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Lanusse F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', 2022, in , Artificial Intelli- gence for High Energy Physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' World Scientific, pp 663–713 Cobb B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', 2021, in Astronomical Society of the Pacific Conference Series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' 415 Desjardins R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Pahud D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Doerksen N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Laczko M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', 2021, in Astronomical Society of the Pacific Conference Series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' 23 Drake A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', 2014, Monthly Notices of the Royal Astronomical Society, 441, 1186 Ebisawa K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Bourban G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Bodaghee A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Mowlavi N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', 2003, Astronomy & Astrophysics, 411, L59 Faherty J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', 2021, The Astrophysical Journal, 923, 48 Feng J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Lu S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', 2019, in Journal of physics: conference series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' 022030 Fortuin V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Garriga-Alonso A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Ober S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Wenzel F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Rätsch G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Turner R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', van der Wilk M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Aitchison L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', 2021, arXiv preprint arXiv:2102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='06571 Fukushima K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', 1975, Biological cybernetics, 20, 121 Goan E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Fookes C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', 2020, in , Case Studies in Applied Bayesian Data Science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' Springer, pp 45–87 Golob A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Sawicki M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Goulding A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Coupon J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', 2021, Monthly Notices of the Royal Astronomical Society, 503, 4136 Haakonsen C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Rutledge R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', 2009, The Astrophysical Journal Supple- ment Series, 184, 138 Hofmann F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Pietsch W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Henze M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Haberl F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Sturm R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Della Valle M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Hartmann D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Hatzidimitriou D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', 2013, Astronomy & Astrophysics, 555, A65 Izmailov P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Vikram S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Hoffman M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Wilson A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', 2021, in Interna- tional conference on machine learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' pp 4629–4640 Jansen F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', 2001, Astronomy & Astrophysics, 365, L1 Jospin L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Laga H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Boussaid F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Buntine W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Bennamoun M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', 2022, IEEE Computational Intelligence Magazine, 17, 29 Kingma D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Ba J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Adam J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', 2020, arXiv preprint arXiv:1412.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='6980, 106 Kristiadi A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Hein M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Hennig P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=',2020, in International conferenceon machine learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' pp 5436–5446 Kristiadi A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Hein M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Hennig P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', 2021, Advances in Neural Information Processing Systems, 34, 18789 Lin D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', 2015, The Astrophysical Journal, 808, 19 Liu Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Van Paradijs J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Van Den Heuvel E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', 2007, Astronomy & Astrophysics, 469, 807 Małek K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', 2013, Astronomy & Astrophysics, 557, A16 Manchester R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Hobbs G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Teoh A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Hobbs M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', 2005, The Astronomical Journal, 129, 1993 Nwankpa C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Ijomah W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Gachagan A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Marshall S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', 2018, arXiv preprint arXiv:1811.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='03378 Ochsenbein F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Bauer P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Marcout J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', 2000, Astronomy and Astrophysics Supplement Series, 143, 23 Paszke A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', 2019, Advances in neural information processing systems, 32 Ranganath R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Gerrish S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Blei D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', 2014, in Artificial intelligence and statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' pp 814–822 Ritter H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Kolb U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', 2003, Astronomy & Astrophysics, 404, 301 Skiff B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', 2014, VizieR Online Data Catalog, pp B–mk Stiele H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Pietsch W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Haberl F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Freyberg M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', 2008, Astronomy & Astro- physics, 480, 599 Véron-Cetty M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Véron P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', 2010, Astronomy & Astrophysics, 518, A10 Webb N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', 2020, Astronomy & Astrophysics, 641, A136 Wingate D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', Weber T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=', 2013, arXiv preprint arXiv:1301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content='1299 This paper has been typeset from a TEX/LATEX file prepared by the author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
+page_content=' MNRAS 000, 1–4 (2022)' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AyT4oBgHgl3EQfQ_ZE/content/2301.00056v1.pdf'}
diff --git a/99E5T4oBgHgl3EQfRQ7z/vector_store/index.pkl b/99E5T4oBgHgl3EQfRQ7z/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..b95c340c6da3f7a316f8fcd66ae5b9f0f8d78a84
--- /dev/null
+++ b/99E5T4oBgHgl3EQfRQ7z/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:985f60497c14d9ab63b556366c0ee837e164d0849cb76182f223c956021b0d0c
+size 233276
diff --git a/9dE4T4oBgHgl3EQfdwwo/content/2301.05093v1.pdf b/9dE4T4oBgHgl3EQfdwwo/content/2301.05093v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..ba5e7b9731ac17c8a1b55a81e452dd9a12d13500
--- /dev/null
+++ b/9dE4T4oBgHgl3EQfdwwo/content/2301.05093v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:50334824fa5e4c1fb968eb00bcd8da986e3988417ea0e0409cac4bc7536fdeea
+size 6542313
diff --git a/9dE4T4oBgHgl3EQfdwwo/vector_store/index.faiss b/9dE4T4oBgHgl3EQfdwwo/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..68c13cad5aede06a1a84178f9e0e3b489a75bbd0
--- /dev/null
+++ b/9dE4T4oBgHgl3EQfdwwo/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:97b468a86900a36f07ea08f098d48cb6182100e2f78399a40b40e17c099b7af5
+size 4915245
diff --git a/A9FIT4oBgHgl3EQf_Swz/content/tmp_files/2301.11414v1.pdf.txt b/A9FIT4oBgHgl3EQf_Swz/content/tmp_files/2301.11414v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..c6119e5a44bf63ee86dbd11502bcb7b7853e5939
--- /dev/null
+++ b/A9FIT4oBgHgl3EQf_Swz/content/tmp_files/2301.11414v1.pdf.txt
@@ -0,0 +1,1626 @@
+A Simple Algorithm For Scaling Up Kernel Methods
+Teng Andrea Xu†, Bryan Kelly‡, and Semyon Malamud†
+†Swiss Finance Institute, EPFL
+andrea.xu,semyon.malamud@epfl.ch
+‡Yale School of Management, Yale University
+bryan.kelly@yale.edu
+Abstract
+The recent discovery of the equivalence between infinitely wide neural networks
+(NNs) in the lazy training regime and Neural Tangent Kernels (NTKs) Jacot et al.
+[2018] has revived interest in kernel methods. However, conventional wisdom suggests
+kernel methods are unsuitable for large samples due to their computational complexity
+and memory requirements. We introduce a novel random feature regression algorithm
+that allows us (when necessary) to scale to virtually infinite numbers of random fea-
+tures. We illustrate the performance of our method on the CIFAR-10 dataset.
+arXiv:2301.11414v1 [cs.LG] 26 Jan 2023
+
+1
+Introduction
+Modern neural networks operate in the over-parametrized regime, which sometimes requires
+orders of magnitude more parameters than training data points. Effectively, they are interpo-
+lators (see, Belkin [2021]) and overfit the data in the training sample, with no consequences
+for the out-of-sample performance. This seemingly counterintuitive phenomenon is some-
+times called “benign overfit” [Bartlett et al., 2020, Tsigler and Bartlett, 2020].
+In the so-called lazy training regime Chizat et al. [2019], wide neural networks (many
+nodes in each layer) are effectively kernel regressions, and “early stopping” commonly used
+in neural network training is closely related to ridge regularization [Ali et al., 2019]. See,
+Jacot et al. [2018], Hastie et al. [2019], Du et al. [2018, 2019a], Allen-Zhu et al. [2019]. Recent
+research also emphasizes the “double descent,” in which expected forecast error drops in the
+high-complexity regime. See, for example, Zhang et al. [2016], Belkin et al. [2019a,b], Spigler
+et al. [2019], Belkin et al. [2020].
+These discoveries made many researchers argue that we need to gain a deeper under-
+standing of kernel methods (and, hence, random feature regressions) and their link to deep
+learning. See, e.g., Belkin et al. [2018]. Several recent papers have developed numerical
+algorithms for scaling kernel-type methods to large datasets and large numbers of random
+features. See, e.g., Zandieh et al. [2021], Ma and Belkin [2017], Arora et al. [2019a], Shankar
+et al. [2020]. In particular, Arora et al. [2019b] show how NTK combined with the support
+vector machines (SVM) (see also Fern´andez-Delgado et al. [2014]) perform well on small
+data tasks relative to many competitors, including the highly over-parametrized ResNet-34.
+In particular, while modern deep neural networks do generalize on small datasets (see, e.g.,
+Olson et al. [2018]), Arora et al. [2019b] show that kernel-based methods achieve superior
+performance in such small data environments. Similarly, Du et al. [2019b] find that the graph
+neural tangent kernel (GNTK) dominates graph neural networks on datasets with up to 5000
+2
+
+samples. Shankar et al. [2020] show that, while NTK is a powerful kernel, it is possible to
+build other classes of kernels (they call Neural Kernels) that are even more powerful and are
+often at par with extremely complex deep neural networks.
+In this paper, we develop a novel form of kernel ridge regression that can be applied to
+any kernel and any way of generating random features. We use a doubly stochastic method
+similar to that in Dai et al. [2014], with an important caveat: We generate (potentially large,
+defined by the RAM constraints) batches of random features and then use linear algebraic
+properties of covariance matrices to recursively update the eigenvalue decomposition of the
+feature covariance matrix, allowing us to perform the optimization in one shot across a large
+grid of ridge parameters.
+The paper is organized as follows. Section 2 discusses related work. In Section 3, we
+provide a novel random feature regression mathematical formulation and algorithm. Then,
+Section 4 and Section 5 present numerical results and conclusions, respectively.
+2
+Related Work
+Before the formal introduction of the NTK in Jacot et al. [2018], numerous papers discussed
+the intriguing connections between infinitely wide neural networks and kernel methods. See,
+e.g., Neal [1996]; Williams [1997]; Le Roux and Bengio [2007]; Hazan and Jaakkola [2015];
+Lee et al. [2018]; Matthews et al. [2018]; Novak et al. [2018]; Garriga-Alonso et al. [2018];
+Cho and Saul [2009]; Daniely et al. [2016]; Daniely [2017].
+As in the standard random
+feature approximation of the kernel ridge regression (see Rahimi and Recht [2007]), only the
+network’s last layer is trained in the standard kernel ridge regression. A surprising discovery
+of Jacot et al. [2018] is that (infinitely) wide neural networks in the lazy training regime
+converge to a kernel even though all network layers are trained. The corresponding kernel,
+the NTK, has a complex structure dependent on the neural network’s architecture. See also
+Lee et al. [2019], Arora et al. [2019a] for more results about the link between NTK and the
+3
+
+underlying neural network, and Novak et al. [2019] for an efficient algorithm for implementing
+the NTK. In a recent paper, Shankar et al. [2020] introduce a new class of kernels and show
+that they perform remarkably well on even very large datasets, achieving a 90% accuracy on
+the CIFAR-10 dataset. While this performance is striking, it comes at a huge computational
+cost. Shankar et al. [2020] write:
+“CIFAR-10/CIFAR-100 consist of 60, 000 32 × 32 × 3 images and MNIST consists of
+70, 000 28 × 28 images. Even with this constraint, the largest compositional kernel matrices
+we study took approximately 1000 GPU hours to compute. Thus, we believe an imperative
+direction of future work is reducing the complexity of each kernel evaluation. Random feature
+methods or other compression schemes could play a significant role here.
+In this paper, we offer one such highly scalable scheme based on random features. How-
+ever, computing the random features underlying the Neural Kernels of Shankar et al. [2020]
+would require developing non-trivial numerical algorithms based on the recursive iteration
+of non-linear functions. We leave this as an important direction for future research.
+As in standard kernel ridge regressions, we train our random feature regression on the
+full sample. This is a key computational limitation for large datasets. After all, one of
+the reasons for the success of modern deep learning is the possibility of training them us-
+ing stochastic gradient descent on mini-batches of data. Ma and Belkin [2017] shows how
+mini-batch training can be applied to kernel ridge regression.
+A key technical difficulty
+arises because kernel matrices (equivalently, covariance matrices of random features) have
+eigenvalues that decay very quickly. Yet, these low eigenvalues contain essential informa-
+tion and cannot be neglected. Our regression method can be easily modified to allow for
+mini-batches. Furthermore, it is known that mini-batch linear regression can even lead to
+performance gains in the high-complexity regime. As LeJeune et al. [2020] show, one can run
+regression on mini-batches and then treat the obtained predictions as an ensemble. LeJeune
+et al. [2020] prove that, under technical conditions, the average of these predictions attains
+4
+
+a lower generalization error than the full-train-sample-based regression. We test this mini-
+batch ensemble approach using our method and show that, indeed, with moderately-sized
+mini-batches, the method’s performance matches that of the full sample regression.
+Moreover, there is an intriguing connection between mini-batch regressions and spectral
+dimensionality reduction. By construction, the feature covariance matrix with a mini-batch
+of size B has at most B non-zero eigenvalues.
+Thus, a mini-batch effectively performs
+a dimensionality reduction on the covariance matrix. Intuitively, we expect that the two
+methods (using a mini-batch of size B or using the full sample but only keeping B largest
+eigenvalues) should achieve comparable performance. We show that this is indeed the case
+for small sample sizes. However, the spectral method for larger-sized samples (N ≥ 10000)
+is superior to the mini-batch method unless we use very large mini-batches. For example,
+on the full CIFAR-10 dataset, the spectral method outperforms the mini-batch approach by
+3% (see Section 4 for details).
+3
+Random Features Ridge Regression and Classifica-
+tion
+Suppose that we have a train sample (X, y)
+=
+(xi, yi)N
+i=1, xi ∈ Rd, yi ∈ R, so that
+X ∈ RN×d, y ∈ RN×1. Following Rahimi and Recht [2007] we construct a large number of
+random features f(x; θp), p = 1, . . . , P, where f is a non-linear function and θp are sampled
+from some distribution, and P is a large number.
+We denote S = f(X; θ) ∈ RN×P as
+the train sample realizations of random features. Following Rahimi and Recht [2007], we
+consider the random features ridge regression,
+β(z) = (S⊤S/N + zI)−1S⊤y/N ,
+(1)
+5
+
+as an approximation for kernel ridge regression when P → ∞. For classification problems,
+it is common to use categorical cross-entropy as the objective. However, as Belkin [2021]
+explains, minimizing the mean-squared error with one-hot encoding often achieves superior
+generalization performance. Here, we follow this approach. Given the K labels, k = 1, . . . , K,
+we build the one-hot encoding matrix Q = (qi,k) where qi,k = 1yi=k. Then, we get
+β(z) = (S⊤S/N + zI)−1S⊤Q/N ∈ RP×K .
+(2)
+Then, for each test feature vector s = f(x; θ) ∈ RP, we get a vector β(z)⊤s ∈ RK. Next,
+define the actual classifier as
+k(x; z) = arg max{β(z)⊤s} ∈ {1, · · · , K} .
+(3)
+3.1
+Dealing with High-Dimensional Features
+A key computational (hardware) limitation of kernel methods comes from the fact that,
+when P is large, computing the matrix S⊤S ∈ RP×P becomes prohibitively expensive, in
+particular, because S cannot even be stored in RAM. We start with a simple observation
+that the following identity implies that storing all these features is not necessary:1
+(S⊤S/N + zI)−1S⊤ = S⊤(SS⊤/N + zI)−1 ,
+(4)
+and therefore we can compute β(z) as
+β(z) = S⊤(SS⊤/N + zI)−1y/N .
+(5)
+Suppose now we split S into multiple blocks, S1, . . . , SK, where Sk ∈ RN×P1 for all
+1This identity follows directly from (S⊤S/N + zI)S⊤ = S⊤(SS⊤/N + zI).
+6
+
+k = 1, . . . , K, for some small P1, with KP1 = P. Then,
+Ψ = SS⊤ =
+K
+�
+k=1
+SkS⊤
+k
+(6)
+can be computed by generating the blocks Sk, one at a time, and recursively adding SkS⊤
+k up.
+Once Ψ has been computed, one can calculate its eigenvalue decomposition, Ψ = V DV ⊤,
+and then evaluate Q(z) = (Ψ/N + zI)−1y/N
+= V (D + zI)−1V ⊤y/N ∈ RN in one go for
+a grid of z. Then, using the same seeds, we can again generate the random features Sk and
+compute βk(z) = S⊤
+k Q(z) ∈ RP1. Then, β(z) = (βk(z))K
+k=1 ∈ RP . The logic described above
+is formalized in Algorithm 1.
+Algorithm 1 FABR
+Require: P1, P, X ∈ RN×d, y ∈ RN, z, voc curve
+blocks ← P//P1
+k ← 0
+Ψ ← 0N×N
+while k < blocks do
+Generate Sk ∈ RN×P1 Use k as seed
+Ψ ← Ψ + SkSk⊤
+if k in voc curve then
+DV ← eigen( Ψ
+N )
+Qk(z) ← V (D + zI)−1V ⊤ y
+N
+▷ Store Qk(z)
+end if
+k = k + 1
+end while
+DV ← eigen( Ψ
+N )
+Q(z) ← V (D + zI)−1V ⊤ y
+N
+k ← 0
+while k < blocks do
+(re-)Generate Sk ∈ RN×P1
+▷ Use k as seed
+βk(z) ← S⊤
+k Q(z)
+ˆy += Skβk
+end while
+7
+
+3.2
+Dealing with Massive Datasets
+The above algorithm relies crucially on the assumption that N is small. Suppose now that
+the sample size N is so large that storing and eigen-decomposing the matrix SS⊤ ∈ RN×N
+becomes prohibitively expensive. In this case, we proceed as follows.
+Define for all k = 1, . . . , K
+Ψk =
+k
+�
+κ=1
+SkS⊤
+k ∈ RN×N, Ψ0 = 0N×N ,
+(7)
+and let λ1(A) ≥ · · · ≥ λN(A) be the eigenvalues of a symmetric matrix A ∈ RN×N. Our
+goal is to design an approximation to (ΨK + zI)−1, based on a simple observation that the
+eigenvalues of the empirically observed Ψk matrices tend to decay very quickly, with only
+a few hundreds of largest eigenvalues being significantly different from zero. In this case,
+we can fix a ν ∈ N and design a simple, rank−ν approximation to ΨK by annihilating all
+eigenvalues below λν(ΨK). As we now show, it is possible to design a recursive algorithm for
+constructing such an approximation to ΨK, dealing with small subsets of random features
+simultaneously. To this end, we proceed as follows.
+Suppose we have constructed an approximation ˆΨk ∈ RN×N to Ψk with rank ν, and
+let Vk ∈ RN×ν be the corresponding matrix of orthogonal eigenvectors for the non-zero
+eigenvalues, and Dk ∈ Rν×ν the diagonal matrix of eigenvalues so that ˆΨk = VkDkV ⊤
+k
+and
+V ⊤
+k Vk = Iν×ν. Instead of storing the full ˆΨk matrix, we only need to store the pair (Vk, Dk).
+For all k = 1, . . . , K, we now define
+˜Ψk+1 = ˆΨk + Sk+1S⊤
+k+1 .
+(8)
+This N × N matrix is a theoretical construct. We never actually compute it (see Algorithm
+8
+
+2). Let Θk = I − VkV ⊤
+k be the orthogonal projection on the kernel of ˆΨk, and
+˜Sk+1 = ΘkSk+1 = Sk+1 − Vk
+����
+N×ν
+(V ⊤
+k Sk+1
+� �� �
+ν×P1
+)
+(9)
+be Sk+1 orthogonalized with respect to the columns of Vk. Then, we define ˜Wk+1 = ˜Sk+1( ˜Sk+1 ˜S⊤
+k+1)−1/2
+to be the orthogonalized columns of ˜Sk+1, and ˆVk+1 = [Vk, ˜Wk+1]. To compute ˜Sk+1( ˜Sk+1 ˜S⊤
+k+1)−1/2,
+we use the following lemma that, once again, uses smart eigenvalue decomposition techniques
+to avoid dealing with the N × N matrix ˜Sk+1 ˜S⊤
+k+1.
+Lemma 1. Let ˜S⊤
+k+1 ˜Sk+1
+�
+��
+�
+ν×ν
+= Wδ ˜W ⊤ be the eigenvalue decomposition of ˜S⊤
+k+1 ˜Sk+1. Then,
+˜W = ˜Sk+1Wδ−1/2 is the matrix of eigenvectors of ˜Sk+1 ˜S⊤
+k+1 for the non-zero eigenvalues.
+Thus,
+˜Sk+1( ˜Sk+1 ˜S⊤
+k+1)−1/2 =
+˜Wk+1 .
+(10)
+By construction, the columns of ˆVk+1 form an orthogonal basis of the span of the columns
+of Vk, Sk+1, and hence
+Ψk+1,∗ = ˆV ⊤
+k+1 ˜Ψk+1 ˆVk+1 ∈ R(P1+ν)×(P1+ν)
+(11)
+has the same non-zero eigenvalues as ˜Ψk+1. We then define ˜Vk+1 ∈ R(P1+ν)×ν to be the
+matrix with eigenvectors of Ψk+1,∗ for the largest ν eigenvalues, and we denote the diagonal
+matrix of these eigenvalues by Dk+1 ∈ Rν×ν, and then we define Vk+1 =
+ˆVk+1 ˜Vk+1 . Then,
+ˆΨk+1
+=
+Vk+1Dk+1Vk+1
+=
+Πk+1 ˜Ψk+1Πk+1 , where Πk+1
+=
+ˆVk+1 ˜Vk+1 ˜V ⊤
+k+1 ˆV ⊤
+k+1 is the
+orthogonal projection onto the eigen-subspace of ˜Ψk+1 for the largest ν eigenvalues.
+Lemma 2. We have ˆΨk ≤ ˜Ψk ≤ ΨK and
+∥Ψk − ˆΨk∥ ≤
+k
+�
+i=1
+λν+1(Ψi) ≤ k λν+1(ΨK) ,
+(12)
+9
+
+and
+∥(Ψk+1 + zI)−1 − (ˆΨk+1 + zI)−1∥ ≤ z−2
+k
+�
+i=1
+λν+1(Ψi) .
+(13)
+There is another important aspect of our algorithm: It allows us to directly compute
+the performance of models with an expanding level of complexity. Indeed, since we load
+random features in batches of size P1, we generate predictions for P ∈ [P1, 2P1, · · · , KP1].
+This is useful because we might use it to calibrate the optimal degree of complexity and
+because we can directly study the double descent-like phenomena, see, e.g., Belkin et al.
+[2019a] and Nakkiran et al. [2021]. That is the effect of complexity on the generalization
+error. In the next section, we do this. As we show, consistent with recent theoretical results
+Kelly et al. [2022], with sufficient shrinkage, the double descent curve disappears, and the
+performance becomes almost monotonic in complexity. Following Kelly et al. [2022], we
+name this phenomenon the virtue of complexity (VoC) and the corresponding performance
+plots the VoC curves. See, Figure 6 below.
+We call this algorithm Fast Annihilating Batch Regression (FABR) as it annihilates all
+eigenvalues below λν(ΨK) and allows to solve the random features ridge regression in one go
+for a grid of z. Algorithm 2 formalizes the logic described above.
+4
+Numerical Results
+This section presents several experimental results on different datasets to evaluate FABR’s
+performance and applications. In contrast to the most recent computational power demand
+in kernel methods, e.g., Shankar et al. [2020], we ran all experiments on a laptop, a MacBook
+Pro model A2485, equipped with an M1 Max with a 10-core CPU and 32 GB RAM.
+10
+
+Algorithm 2 FABR-ν
+Require: ν, P1, P, X ∈ RN×d, y ∈ RN, z, voc curve
+blocks ← P//P1
+k ← 0
+while k < blocks do
+Generate Sk ∈ RN×P1
+▷ Use k as seed to generate the random features
+if k = 0 then
+˜d, ˜V ← eigen(S⊤
+k Sk)
+V ← Sk ˜V diag( ˜d)− 1
+2
+V0 ← V:,min(ν,P1)
+▷ Save V0
+d0 ← ˜d:min(ν,P1)
+▷ Save d0
+if k in voc curve then
+Q0(z) ← V0(diag(d0) + zI)−1V ⊤
+0 y
+▷ Save Q0(z)
+end if
+else if k > 0 then
+˜Sk ← (I − Vk−1V ⊤
+k−1)Sk
+Γk ← ˜
+S⊤
+k ˜Sk
+δk, Wk ← eigen(Γk)
+Keep top min(ν, P1) eigenvalues and eigenvectors from δk, Wk
+˜
+Wk ← ˜SkWkdiag(δk)− 1
+2
+ˆVk ← [Vk−1, ˜
+Wk]
+¯Vk ← ˆ
+V ⊤
+k Vk−1
+¯
+Wk ← ¯Vkdiag(dk−1) ¯
+V ⊤
+k
+¯Sk ← ˆ
+V ⊤
+k Sk
+¯Zk ← ¯SkS⊤
+k
+Ψ∗ ← ¯
+Wk ¯Zk
+dk, Vk ← eigen(Ψ∗)
+Keep top min(ν, P1) eigenvalues and eigenvectors from dk, Vk
+Vk ← ˆVkVk
+▷ Save dk, Vk
+if k in voc curve then
+Qk(z) ← Vk(diag(dk) + zI)−1V ⊤
+k y
+▷ Save Qk(z)
+end if
+end if
+k = k + 1
+end while
+k ← 0
+while k < blocks do
+(re-)Generate Sk ∈ RN×P1
+▷ Use k as seed to generate the random features
+βk(z) ← S⊤
+k Qk(z)
+ˆy += Skβk
+end while
+11
+
+4.1
+A comparison with sklearn
+We now aim to show FABR’s training and prediction time with respect to the number of
+features d. To this end, we do not use any random feature projection or the rank-ν matrix
+approximation described in Section 3.1. We draw N = 5000 i.i.d. samples from ⊗d
+j=1N(0, 1)
+and let
+yi = xiβ + ϵi
+∀i = 1, . . . , N,
+where β ∼ ⊗d
+j=1N(0, 1), and ϵi ∼ N(0, 1) for all i = 1, . . . , N. Then, we define
+yi =
+�
+�
+�
+�
+�
+�
+�
+1
+if yi > median(y),
+0
+otherwise
+∀i = 1, . . . , N.
+Next, we create a set of datasets for classification with varying complexity d and keep the
+first 4000 samples as the training set and the remaining 1000 as the test set. We show in
+Figure 1 the average training and prediction time (in seconds) of FABR with a different
+number of regularizers ( we denote this number by |z|) and sklearn RidgeClassifier with
+an increasing number of features d. The training and prediction time is averaged over five
+independent runs. As one can see, our method is drastically faster when d > 10000. E.g., for
+d = 100000 we outperform sklearn by approximately 5 and 25 times for |z| = 5 and |z| = 50,
+respectively. Moreover, one can notice that the number of different shrinkages |z| does not
+affect FABR. We report a more detailed table with average training and prediction time and
+standard deviation in Appendix B.
+4.2
+Experiments on Real Datasets
+We assess FABR’s performance on both small and big datasets regimes for further evaluation.
+For all experiments, we perform a random features kernel ridge regression for demeaned one-
+12
+
+0
+20000
+40000
+60000
+80000 100000
+d
+0
+200
+400
+600
+800
+Training and Prediction Time (s)
+FABR - |z| = 5
+FABR - |z| = 10
+FABR - |z| = 20
+FABR - |z| = 50
+sklearn - |z| = 5
+sklearn - |z| = 10
+sklearn - |z| = 20
+sklearn - |z| = 50
+Figure 1: The figure above compares FABR training and prediction time, shown on the y-
+axis, in black, against sklearn’s RidgeClassifier, in red, for an increasing amount of features,
+shown on the x-axis, and the number of shrinkages z.
+Here, |z| denotes the number of
+different values of z for which we perform the training.
+hot labels and solve the optimization problem using FABR as described in Section 3.
+4.2.1
+Data Representation
+Table 1: The table below shows the average test accuracy and standard deviation of
+ResNet-34, CNTK, and FABR on the subsampled CIFAR-10 datasets. The test accuracy is
+average over twenty independent runs.
+n
+ResNet-34
+14-layer CNTK
+z=1
+z=100
+z=10000
+z=100000
+10
+14.59% ± 1.99%
+15.33% ± 2.43%
+18.50% ± 2.18%
+18.50% ± 2.18%
+18.42% ± 2.13%
+18.13% ± 2.01%
+20
+17.50% ± 2.47%
+18.79% ± 2.13%
+20.84% ± 2.38%
+20.85% ± 2.38%
+20.78% ± 2.35%
+20.13% ± 2.34%
+40
+19.52% ± 1.39%
+21.34% ± 1.91%
+25.09% ± 1.76%
+25.10% ± 1.76%
+25.14% ± 1.75%
+24.41% ± 1.88%
+80
+23.32% ± 1.61%
+25.48% ± 1.91%
+29.61% ± 1.35%
+29.60% ± 1.35%
+29.62% ± 1.39%
+28.63% ± 1.66%
+160
+28.30% ± 1.38%
+30.48% ± 1.17%
+34.86% ± 1.12%
+34.87% ± 1.12%
+35.02% ± 1.11%
+33.54% ± 1.24%
+320
+33.15% ± 1.20%
+36.57% ± 0.88%
+40.46% ± 0.73%
+40.47% ± 0.73%
+40.66% ± 0.72%
+39.34% ± 0.72%
+640
+41.66% ± 1.09%
+42.63% ± 0.68%
+45.68% ± 0.71%
+45.68% ± 0.72%
+46.17% ± 0.68%
+44.91% ± 0.72%
+1280
+49.14% ± 1.31%
+48.86% ± 0.68%
+50.30% ± 0.57%
+50.32% ± 0.56%
+51.05% ± 0.54%
+49.74% ± 0.42%
+FABR requires, like any standard kernel methods or randomized-feature techniques, a
+good data representation. Usually, we don’t know such a representation a-priori, and learning
+a good kernel is outside the scope of this paper. Therefore, we build a simple Convolutional
+Neural Network (CNN) mapping h : Rd → RD; that extracts image features ˜x ∈ RD for
+some sample x ∈ Rd. The CNN is not optimized; we use it as a simple random feature
+mapping. The CNN architecture, shown in Fig. 2, alternates a 3 × 3 convolution layer with
+13
+
+GlobalAveragePool
+3x3 Convolution
+ReLU
+2x2 Average Pool
+BatchNormalization
+3x3 Convolution
+ReLU
+2x2 Average Pool
+BatchNormalization
+3x3 Convolution
+ReLU
+2x2 Average Pool
+BatchNormalization
+3x3 Convolution
+ReLU
+2x2 Average Pool
+BatchNormalization
+Figure 2: CNN architecture used to extract image features.
+a ReLU activation function, a 2 × 2 Average Pool, and a BatchNormalization layer Ioffe
+and Szegedy [2015]. Convolutional layers weights are initialized using He Uniform He et al.
+[2015]. To vectorize images, we use a global average pooling layer that has proven to enforce
+correspondences between feature maps and to be more robust to spatial translations of the
+input Lin et al. [2013]. We finally obtain the train and test random features realizations
+s = f(˜x, θ). Specifically, we use the following random features mapping
+si = σ(W ˜x),
+(14)
+where W ∈ RP×D with wi,j ∼ N(0, 1) and σ is some elementwise activation function. This
+14
+
+can be described as a one-layer neural network with random weights W.
+To show the
+importance of over-parametrized models, throughout the results, we report the complexity,
+c, of the model as c = P/N, that is, the ratio between the parameters (dimensions) and the
+number of observations. See Belkin et al. [2019a], Hastie et al. [2019], Kelly et al. [2022].
+4.2.2
+Small Datasets
+We now study the performance of FABR on the subsampled CIFAR-10 dataset Krizhevsky
+et al. [2009].
+To this end, we reproduce the same experiment described in Arora et al.
+[2019b]. In particular, we obtain random subsampled training set (y; X) = (yi; xi)n
+i=1 where
+n ∈ {10, 20, 40, 80, 160, 320, 640, 1280} and test on the whole test set of size 10000. We make
+sure that exactly n/10 sample from each image class is in the training sample. We train
+FABR using random features projection of the subsampled training set
+S = σ(Wg(X)) ∈ Rn×P,
+where g is an untrained CNN from Figure 2, randomly initialized using He Uniform distri-
+bution. In this experiment, we push the model complexity c to 100; in other words, FABR’s
+number of parameters equals a hundred times the number of observations in the subsample.
+As n is small, we deliberately do not perform any low-rank covariance matrix approximation.
+Finally, we run our model twenty times and report the mean out-of-sample performance and
+the standard deviation. We report in Table 1 FABR’s performance for different shrinkages
+(z) together with ResNet-34 and the 14-layers CNTK. Without any complicated random fea-
+ture projection, FABR can outperform both ResNet-34 and CNTK. FABR’s test accuracy
+increases with the model’s complexity c on different (n) subsampled CIFAR-10 datasets. We
+show Figure 3 as an example for n = 10. Additionally, we show, to better observe the double
+descent phenomena, truncated curves at c = 25 for all CIFAR-10 subsamples in Figure 4.
+The full curves are shown in Appendix B. To sum up this section findings:
+15
+
+Figure 3: The figures above show FABR’s test accuracy increases with the model’s complexity
+c on the subsampled CIFAR-10 dataset for n = 10. The test accuracy is averaged over five
+independent runs.
+• FABR, with enough complexity together and a simple random feature projection, is
+able to outperform deep neural networks (ResNet-34) and CNTKs.
+• FABR always reaches the maximum accuracy beyond the interpolation threshold.
+• Moreover, if the random feature ridge regression shrinkage z is sufficiently high, the
+double descent phenomenon disappears, and the accuracy does not drop at the inter-
+polation threshold point, i.e., when c = 1 or n = P. Following Kelly et al. [2022], we
+call this phenomenon virtue of complexity (VoC).
+4.2.3
+Big Datasets
+In this section, we repeat the same experiments described in Section 4.2.2, but we extend
+the training set size n up to the full CIFAR-10 dataset. For each n, we train FABR, FABR-ν
+with a rank-ν approximation as described in Algorithm 2, and the min-batch-FABR. We
+use ν = 2000 and batch size = 2000 in the last two algorithms. Following Arora et al.
+[2019b], we train ResNet-34 as the benchmark for 160 epochs, with an initial learning rate
+of 0.001 and a batch size of 32. We decrease the learning rate by ten at epochs 80 and 120.
+ResNet-34 always reaches close to perfect accuracy on the training set, i.e., above 99%. We
+16
+
+0.18
+0.16
+(%)
+Z = 10-5
+Accuracy
+z= 10-1
+0.14
+Z= 100
+z= 101
+0.12
+z= 102
+z= 103
+z= 104
+0.10
+Z= 105
+0
+20
+40
+60
+80
+100
+c(a) n = 10
+(b) n = 20
+(c) n = 40
+(d) n = 80
+(e) n = 160
+(f) n = 320
+(g) n = 640
+(h) n = 1280
+Figure 4: The figures above show FABR’s test accuracy increases with the model’s complexity
+c on different (n) subsampled CIFAR-10 datasets. The expanded dataset follows similar
+patterns. We truncate the curve for c > 25 to better show the double descent phenomena.
+The full curves are shown in Appendix B. Notice that when the shrinkage is sufficiently
+high, the double descent disappears, and the accuracy monotonically increases in complexity.
+Following Kelly et al. [2022], we name this phenomenon the virtue of complexity (VoC). The
+test accuracy is averaged over 20 independent runs.
+run each training five times and report mean out-of-sample performance and its standard
+deviation. As the training sample is sufficiently large already, we set the model complexity
+to only c = 15, meaning that for the full sample, FABR performs a random feature ridge
+regression with P = 7.5 × 105. We report the results in Tables 4.2.3 and 3.
+Table 2: The table below shows the average test accuracy and standard deviation of ResNet-
+34 and FABR on the subsampled and full CIFAR-10 dataset. The test accuracy is average
+over five independent runs.
+n
+ResNet-34
+z=1
+z=100
+z=10000
+z=100000
+2560
+48.12% ± 0.69%
+52.24% ± 0.29%
+52.45% ± 0.21%
+54.29% ± 0.44%
+48.28% ± 0.37%
+5120
+56.03% ± 0.82%
+55.34% ± 0.32%
+55.74% ± 0.34%
+58.29% ± 0.20%
+52.06% ± 0.08%
+10240
+63.21% ± 0.26%
+58.36% ± 0.45%
+58.86% ± 0.54%
+62.17% ± 0.35%
+55.75% ± 0.18%
+20480
+69.24% ± 0.47%
+61.08% ± 0.17%
+61.65% ± 0.27%
+65.12% ± 0.19%
+59.34% ± 0.14%
+50000
+75.34% ± 0.21%
+66.38% ± 0.00%
+66.98% ± 0.00%
+68.62% ± 0.00%
+63.25% ± 0.00%
+The experiment delivers a number of additional conclusions:
+• First, we observe that, while for small train sample sizes of n ≤ 10000, simple kernel
+17
+
+0.45
+0.40
+-
+(%)
+0.35
+Z = 10-5
+Accuracy
+0.30
+Z= 10-1
+z= 100
+0.25
+z= 101
+0.20
+z = 102
+z= 103
+0.15
+z= 104
+Z= 105
+0.10
+0
+5
+10
+15
+20
+25
+c0.5
+0.4
+%)
+Z = 10-5
+Accuracy
+Z= 10-1
+0.3
+z=100
+z= 101
+z = 102
+0.2
+Z= 103
+z= 104
+Z= 105
+0.1
+0
+5
+10
+15
+20
+25
+c0.16
+(%)
+Z = 10-5
+cy
+0.14
+Z= 10-1
+Accura
+Z= 100
+z= 101
+0.12
+z = 102
+z= 103
+z= 104
+0.10
+Z= 105
+0
+5
+10
+15
+20
+25
+c-
+0.20
+-
+0.18
+(%)
+0.16
+Z = 10-5
+Accuracy
+Z= 10-1
+z= 100
+0.14
+z= 101
+z = 102
+0.12
+Z= 103
+z= 104
+0.10
+Z= 105
+0
+5
+10
+15
+20
+25
+c-
+0.24
+0.22
+0.20
+Z = 10-5
+Accuracy
+0.18
+Z= 10-1
+z= 100
+0.16
+z= 101
+z = 102
+0.14
+z= 103
+z= 104
+0.12
+Z= 105
+0
+5
+10
+15
+20
+25
+c0.275
+0.250
+(%)
+0.225
+Z = 10-5
+ Accuracy
+Z= 10-1
+0.200
+z= 100
+0.175
+z= 101
+z= 102
+0.150
+z= 103
+z = 104
+0.125
+Z= 105
+0.100
+0
+5
+10
+15
+20
+25
+c1
+0.30
+-
+(%)
+Z = 10-5
+0.25
+Accuracy
+Z = 10-1
+z= 100
+0.20
+z= 101
+z= 102
+z= 103
+0.15
+Z= 104
+Z=105
+0.10
+0
+5
+10
+15
+20
+25
+c0.40
+-
+0.35
+-
+(%)
+0.30
+Z = 10-5
+Accuracy
+Z= 10-1
+0.25
+z= 100
+z= 101
+0.20
+Z= 102
+z= 103
+0.15
+z= 104
+Z= 105
+0.10
+0
+5
+10
+15
+20
+25
+c(a) n = 2560
+(b) n = 50000
+Figure 5: The figures above show FABR’s test accuracy increases with the model’s complexity
+c on the subsampled CIFAR-10 dataset 5a and the full CIFAR-10 dataset 5b. FABR is trained
+using a ν = 2000 low-rank covariance matrix approximation. Notice that we still observe a
+(shifted) double descent when ν ≈ n. The same phenomenon disappears when ν ≪ n. The
+test accuracy is averaged over five independent runs.
+Table 3: The table below shows the average test accuracy and standard deviation of FABR-ν
+and mini-batch FABR on the subsampled and full CIFAR-10 dataset. The test accuracy is
+average over five independent runs.
+z = 1
+z = 100
+z = 10000
+z = 100000
+FABR
+batch = 2000
+ν = 2000
+batch = 2000
+ν = 2000
+batch = 2000
+ν = 2000
+batch = 2000
+ν = 2000
+n
+2560
+53.13% ± 0.38%
+53.48% ± 0.22%
+53.15% ± 0.42%
+53.63% ± 0.24%
+52.01% ± 0.51%
+54.05% ± 0.44%
+46.78% ± 0.52%
+48.23% ± 0.34%
+5120
+57.68% ± 0.18%
+57.63% ± 0.19%
+57.70% ± 0.16%
+57.63% ± 0.18%
+56.83% ± 0.27%
+57.53% ± 0.11%
+51.42% ± 0.22%
+51.75% ± 0.14%
+10240
+59.79% ± 0.35%
+61.20% ± 0.39%
+59.79% ± 0.35%
+61.20% ± 0.38%
+58.63% ± 0.28%
+60.63% ± 0.21%
+53.73% ± 0.37%
+55.16% ± 0.34%
+20480
+61.56% ± 0.35%
+63.50% ± 0.12%
+61.55% ± 0.37%
+63.50% ± 0.13%
+60.90% ± 0.20%
+62.92% ± 0.12%
+57.10% ± 0.19%
+58.40% ± 0.21%
+50000
+62.74% ± 0.10%
+65.45% ± 0.18%
+62.74% ± 0.10%
+65.44% ± 0.18%
+62.35% ± 0.05%
+65.04% ± 0.19%
+59.99% ± 0.02%
+61.71% ± 0.09%
+methods achieve performance comparable with that of DNNs, this is not the case for
+n > 20000. Beating DNNs on big datasets with shallow methods requires more complex
+kernels, such as those in Shankar et al. [2020], Li et al. [2019].
+• Second, we confirm the findings of Ma and Belkin [2017], Lee et al. [2020] suggesting
+that the role of small
+eigenvalues is important. For example, FABR-ν with ν = 2000 loses several percent of
+accuracy on larger datasets.
+18
+
+0.55-
+0.50
+(%)
+0.45
+z = 10-5
+Accuracy
+z= 10-1
+0.40
+z= 100
+z= 101
+0.35
+z= 102
+z= 103
+0.30
+z= 104
+z= 105
+0.0
+2.5
+5.0
+7.5
+10.0
+12.5
+15.0
+c0.65
+0.60
+z= 10-5
+0.55
+z= 10-1
+z= 100
+0.50
+z= 101
+z= 102
+0.45
+Z= 103
+z= 104
+z= 105
+0.40
+0.0
+2.5
+5.0
+7.5
+10.0
+12.5
+15.0
+c• Third, surprisingly, both the mini-batch FABR and FABR-ν sometimes achieve higher
+accuracy than the full sample regression on moderately-sized datasets. See Tables 2
+and 3. Understanding these phenomena is an interesting direction for future research.
+• Fourth, the double descent phenomenon naturally appears for both FABR-ν and the
+mini-batch FABR but only when ν ≈ n or batch size ≈ n. However, the double descent
+phenomenon disappears when ν ≪ n. This intriguing finding is shown in Figure 5 for
+FABR-ν, and in Appendix B for the mini-batch FABR.
+• Fifth, on average, FABR-ν outperforms mini-batch FABR on larger datasets.
+5
+Conclusion and Discussion
+The recent discovery of the equivalence between infinitely wide neural networks (NNs) in
+the lazy training regime and neural tangent kernels (NTKs) Jacot et al. [2018] has revived
+interest in kernel methods. However, these kernels are extremely complex and usually re-
+quire running on big and expensive computing clusters Avron et al. [2017], Shankar et al.
+[2020] due to memory (RAM) requirements. This paper proposes a highly scalable random
+features ridge regression that can run on a simple laptop. We name it Fast Annihilating
+Batch Regression (FABR). Thanks to the linear algebraic properties of covariance matrices,
+this tool can be applied to any kernel and any way of generating random features. More-
+over, we provide several experimental results to assess its performance. We show how FABR
+can outperform (in training and prediction speed) the current state-of-the-art ridge classi-
+fier’s implementation. Then, we show how a simple data representation strategy combined
+with a random features ridge regression can outperform complicated kernels (CNTKs) and
+over-parametrized Deep Neural Networks (ResNet-34) in the few-shot learning setting. The
+experiments section concludes by showing additional results on big datasets. In this paper,
+we focus on very simple classes of random features. Recent findings (see, e.g., Shankar et al.
+19
+
+[2020]) suggest that highly complex kernel architectures are necessary to achieve competi-
+tive performance on large datasets. Since each kernel regression can be approximated with
+random features, our method is potentially applicable to these kernels as well. However,
+directly computing the random feature representation of such complex kernels is non-trivial
+and we leave it for future research.
+20
+
+References
+Alnur Ali, J Zico Kolter, and Ryan J Tibshirani. A continuous-time view of early stopping for
+least squares regression. In The 22nd International Conference on Artificial Intelligence
+and Statistics, pages 1370–1378. PMLR, 2019.
+Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via
+over-parameterization. In International Conference on Machine Learning, pages 242–252.
+PMLR, 2019.
+Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang.
+On exact computation with an infinitely wide neural net. Advances in Neural Information
+Processing Systems, 32, 2019a.
+Sanjeev Arora, Simon S Du, Zhiyuan Li, Ruslan Salakhutdinov, Ruosong Wang, and Dingli
+Yu. Harnessing the power of infinitely wide deep nets on small-data tasks. arXiv preprint
+arXiv:1910.01663, 2019b.
+Haim Avron, Kenneth L Clarkson, and David P Woodruff. Faster kernel ridge regression
+using sketching and preconditioning. SIAM Journal on Matrix Analysis and Applications,
+38(4):1116–1138, 2017.
+Peter L Bartlett, Philip M Long, G´abor Lugosi, and Alexander Tsigler. Benign overfitting in
+linear regression. Proceedings of the National Academy of Sciences, 117(48):30063–30070,
+2020.
+Mikhail Belkin. Fit without fear: remarkable mathematical phenomena of deep learning
+through the prism of interpolation. Acta Numerica, 30:203–248, 2021.
+Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand deep learning we need
+21
+
+to understand kernel learning. In International Conference on Machine Learning, pages
+541–549. PMLR, 2018.
+Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
+learning practice and the classical bias–variance trade-off. Proceedings of the National
+Academy of Sciences, 116(32):15849–15854, 2019a.
+Mikhail Belkin, Alexander Rakhlin, and Alexandre B Tsybakov. Does data interpolation
+contradict statistical optimality?
+In The 22nd International Conference on Artificial
+Intelligence and Statistics, pages 1611–1619. PMLR, 2019b.
+Mikhail Belkin, Daniel Hsu, and Ji Xu. Two models of double descent for weak features.
+SIAM Journal on Mathematics of Data Science, 2(4):1167–1180, 2020.
+Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable pro-
+gramming. Advances in Neural Information Processing Systems, 32, 2019.
+Youngmin Cho and Lawrence Saul. Kernel methods for deep learning. Advances in neural
+information processing systems, 22, 2009.
+Bo Dai, Bo Xie, Niao He, Yingyu Liang, Anant Raj, Maria-Florina F Balcan, and Le Song.
+Scalable kernel methods via doubly stochastic gradients. Advances in neural information
+processing systems, 27, 2014.
+Amit Daniely. Sgd learns the conjugate kernel class of the network. Advances in Neural
+Information Processing Systems, 30, 2017.
+Amit Daniely, Roy Frostig, and Yoram Singer.
+Toward deeper understanding of neural
+networks: The power of initialization and a dual view on expressivity. Advances in neural
+information processing systems, 29, 2016.
+22
+
+Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds
+global minima of deep neural networks. In International conference on machine learning,
+pages 1675–1685. PMLR, 2019a.
+Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh.
+Gradient descent provably
+optimizes over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.
+Simon S Du, Kangcheng Hou, Russ R Salakhutdinov, Barnabas Poczos, Ruosong Wang,
+and Keyulu Xu. Graph neural tangent kernel: Fusing graph neural networks with graph
+kernels. Advances in neural information processing systems, 32, 2019b.
+Manuel Fern´andez-Delgado, Eva Cernadas, Sen´en Barro, and Dinani Amorim. Do we need
+hundreds of classifiers to solve real world classification problems? The journal of machine
+learning research, 15(1):3133–3181, 2014.
+Adri`a Garriga-Alonso, Carl Edward Rasmussen, and Laurence Aitchison. Deep convolu-
+tional networks as shallow gaussian processes. In International Conference on Learning
+Representations, 2018.
+Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J Tibshirani. Surprises in
+high-dimensional ridgeless least squares interpolation. arXiv preprint arXiv:1903.08560,
+2019.
+Tamir Hazan and Tommi Jaakkola. Steps toward deep kernel methods from infinite neural
+networks. arXiv preprint arXiv:1508.05133, 2015.
+Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
+Surpassing human-level performance on imagenet classification.
+In Proceedings of the
+IEEE international conference on computer vision, pages 1026–1034, 2015.
+Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
+23
+
+by reducing internal covariate shift. In International conference on machine learning, pages
+448–456. PMLR, 2015.
+Arthur Jacot, Franck Gabriel, and Cl´ement Hongler. Neural tangent kernel: Convergence
+and generalization in neural networks. Advances in neural information processing systems,
+31, 2018.
+Bryan T Kelly, Semyon Malamud, and Kangying Zhou. The virtue of complexity in return
+prediction. 2022.
+Alex Krizhevsky, Geoffrey Hinton, et al.
+Learning multiple layers of features from tiny
+images. 2009.
+Nicolas Le Roux and Yoshua Bengio. Continuous neural networks. In Artificial Intelligence
+and Statistics, pages 404–411. PMLR, 2007.
+Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington,
+and Jascha Sohl-Dickstein. Deep neural networks as gaussian processes. In International
+Conference on Learning Representations, 2018.
+Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
+Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear
+models under gradient descent. Advances in neural information processing systems, 32,
+2019.
+Jaehoon Lee, Samuel Schoenholz, Jeffrey Pennington, Ben Adlam, Lechao Xiao, Roman
+Novak, and Jascha Sohl-Dickstein. Finite versus infinite neural networks: an empirical
+study. Advances in Neural Information Processing Systems, 33:15156–15172, 2020.
+Daniel LeJeune, Hamid Javadi, and Richard Baraniuk. The implicit regularization of ordi-
+nary least squares ensembles. In International Conference on Artificial Intelligence and
+Statistics, pages 3525–3535. PMLR, 2020.
+24
+
+Zhiyuan Li, Ruosong Wang, Dingli Yu, Simon S Du, Wei Hu, Ruslan Salakhutdinov,
+and Sanjeev Arora.
+Enhanced convolutional neural tangent kernels.
+arXiv preprint
+arXiv:1911.00809, 2019.
+Min Lin, Qiang Chen, and Shuicheng Yan.
+Network in network.
+arXiv preprint
+arXiv:1312.4400, 2013.
+Siyuan Ma and Mikhail Belkin. Diving into the shallows: a computational perspective on
+large-scale shallow learning. Advances in neural information processing systems, 30, 2017.
+Alexander G de G Matthews, Mark Rowland, Jiri Hron, Richard E Turner, and Zoubin
+Ghahramani. Gaussian process behaviour in wide deep neural networks. arXiv preprint
+arXiv:1804.11271, 2018.
+Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya
+Sutskever.
+Deep double descent: Where bigger models and more data hurt.
+Journal
+of Statistical Mechanics: Theory and Experiment, 2021(12):124003, 2021.
+Radford M Neal. Priors for infinite networks. In Bayesian Learning for Neural Networks,
+pages 29–53. Springer, 1996.
+Roman Novak, Lechao Xiao, Yasaman Bahri, Jaehoon Lee, Greg Yang, Jiri Hron, Daniel A
+Abolafia, Jeffrey Pennington, and Jascha Sohl-dickstein.
+Bayesian deep convolutional
+networks with many channels are gaussian processes.
+In International Conference on
+Learning Representations, 2018.
+Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A Alemi, Jascha Sohl-
+Dickstein, and Samuel S Schoenholz.
+Neural tangents: Fast and easy infinite neural
+networks in python. arXiv preprint arXiv:1912.02803, 2019.
+Matthew Olson, Abraham Wyner, and Richard Berk. Modern neural networks generalize on
+small data sets. Advances in Neural Information Processing Systems, 31, 2018.
+25
+
+Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances
+in neural information processing systems, 20, 2007.
+Vaishaal Shankar, Alex Fang, Wenshuo Guo, Sara Fridovich-Keil, Jonathan Ragan-Kelley,
+Ludwig Schmidt, and Benjamin Recht. Neural kernels without tangents. In International
+Conference on Machine Learning, pages 8614–8623. PMLR, 2020.
+Stefano Spigler, Mario Geiger, St´ephane d’Ascoli, Levent Sagun, Giulio Biroli, and Matthieu
+Wyart. A jamming transition from under-to over-parametrization affects generalization in
+deep learning. Journal of Physics A: Mathematical and Theoretical, 52(47):474001, 2019.
+A. Tsigler and P. L. Bartlett. Benign overfitting in ridge regression, 2020.
+Christopher KI Williams. Computing with infinite networks. In Advances in Neural Infor-
+mation Processing Systems 9: Proceedings of the 1996 Conference, volume 9, page 295.
+MIT Press, 1997.
+Amir Zandieh, Insu Han, Haim Avron, Neta Shoham, Chaewon Kim, and Jinwoo Shin.
+Scaling neural tangent kernels via sketching and random features.
+In M. Ranzato,
+A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Ad-
+vances in Neural Information Processing Systems, volume 34, pages 1062–1073. Cur-
+ran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/file/
+08ae6a26b7cb089ea588e94aed36bd15-Paper.pdf.
+Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.
+Understanding
+deep
+learning
+requires
+rethinking
+generalization.
+arXiv preprint
+arXiv:1611.03530, 2016.
+26
+
+A
+Proofs
+Proof of Lemma 2. We have
+Ψk+1 = Ψk + Sk+1S′
+k+1
+˜Ψk+1 = ˆΨk + Sk+1S′
+k+1
+ˆΨk+1 = Pk+1 ˜Ψk+1Pk+1 .
+(15)
+By the definition of the spectral projection, we have
+∥˜Ψk+1 − ˆΨk+1∥ ≤ λν+1(˜Ψk+1) ≤ λν+1(Ψk+1) ,
+(16)
+and hence
+∥Ψk+1 − ˆΨk+1∥
+≤ ∥Ψk+1 − ˜Ψk+1∥ + ∥˜Ψk+1 − ˆΨk+1∥
+= ∥Ψk − ˆΨk∥ + ∥˜Ψk+1 − ˆΨk+1∥)
+≤ ∥Ψk − ˆΨk∥ + λν+1(Ψk+1) ,
+(17)
+and the claim follows by induction. The last claim follows from the simple inequality
+∥(Ψk+1 + zI)−1 − (ˆΨk+1 + zI)−1∥ ≤ z−2∥Ψk+1 − ˆΨk+1∥ .
+(18)
+B
+Additional Experimental Results
+This section provides additional experiments and findings that may help the community with
+future research.
+First, we dive into more details about our comparison with sklearn. Table 4 shows a more
+27
+
+detailed training and prediction time comparison between FABR and sklearn. In particular,
+we average training and prediction time over five independent runs. The experiment settings
+are explained in Section 4.1. We show how one, depending on the number shrinkages |z|,
+would start considering using FABR when the number of observations in the dataset n ≈
+5000. In this case, we have used the numpy linear algebra library to decompose FABR’s
+covariance matrix, which appears to be faster than the scipy counterpart. We share our
+code in the following repository: https://github.com/tengandreaxu/fabr.
+Second, while Figure 4 shows FABR’s test accuracy on increasing complexity c truncated
+curves, we present here the whole picture; i.e., Figure 6 shows full FABR’s test accuracy
+increases with the model’s complexity c on different (n) subsampled CIFAR-10 datasets
+averaged over twenty independent runs.
+The expanded dataset follows similar patterns.
+Similar to Figure 4, one can notice that when the shrinkage is sufficiently high, the double
+descent disappears, and the accuracy monotonically increases in complexity.
+Third, the double descent phenomenon naturally appears for both FABR-ν and the
+mini-batch FABR but only when ν ≈ n or batch size ≈ n. However, the double descent
+phenomenon disappears when ν ≪ n.
+This intriguing finding is shown in Figure 5 for
+FABR-ν, and here, in Figure 7, we report the same curves for mini-batch FABR.
+28
+
+(a) n = 10
+(b) n = 20
+(c) n = 40
+(d) n = 80
+(e) n = 160
+(f) n = 320
+(g) n = 640
+(h) n = 1280
+Figure 6: The figure above shows the full FABR’s accuracy increase with the model’s com-
+plexity c in the small dataset regime. The expanded dataset follows similar patterns.
+(a) n = 2560
+(b) n = 50000
+Figure 7: Similar to Figure 5, the figures above show FABR’s test accuracy increases with
+the model’s complexity c on the subsampled CIFAR-10 dataset 7a and the full CIFAR-10
+dataset 7b. FABR trains using mini-batches with batch size=2000 in both cases. Notice that
+we still observe a (shifted) double descent when batch size ≈ n, while the same phenomenon
+disappears when batch size ≪ n. The test accuracy is averaged over 5 independent runs.
+29
+
+0.20
+0.18
+(%)
+Z = 10-5
+Accuracy
+0.16
+z= 10-1
+Z= 100
+0.14
+z= 101
+z= 102
+0.12
+z= 103
+z= 104
+0.10
+Z= 105
+0
+20
+40
+60
+80
+100
+c0.24
+0.22
+(%)
+0.20
+Z = 10-5
+ Accuracy
+Z= 10-1
+0.18
+z=100
+0.16
+z= 101
+z = 102
+0.14
+z= 103
+z= 104
+0.12
+Z= 105
+0
+20
+40
+60
+80
+100
+c0.30
+0.25
+(%)
+Z = 10-5
+Accuracy
+z= 10-1
+0.20
+z= 100
+z= 101
+z= 102
+0.15
+z= 103
+z= 104
+Z= 105
+0.10
+0
+20
+40
+60
+80
+100
+c0.35
+0.30
+(%)
+Z = 10-5
+Accuracy
+0.25
+z= 10-1
+z= 100
+0.20
+z= 101
+Z= 102
+z= 103
+0.15
+z= 104
+Z= 105
+0.10
+0
+20
+40
+60
+80
+100
+c0.40
+0.35
+%)
+0.30
+Z = 10-5
+Accuracy
+z= 10-1
+0.25
+z= 100
+z= 101
+0.20
+Z= 102
+z= 103
+0.15
+z= 104
+Z= 105
+0.10
+0
+20
+40
+60
+80
+100
+c0.45
+0.40
+0.35
+Z = 10-5
+Accuracy
+0.30
+Z= 10-1
+z=100
+0.25
+z= 101
+z= 102
+0.20
+z= 103
+0.15
+z= 104
+z= 105
+0.10
+0
+20
+40
+60
+80
+100
+c0.5
+0.4
+[%)
+Z = 10-5
+Accuracy
+Z= 10-1
+0.3
+Z= 100
+z= 101
+z= 102
+0.2
+Z= 103
+z= 104
+Z= 105
+0.1
+0
+20
+40
+60
+80
+100
+c0.50.
+(%)
+0.45
+z= 10-5
+Accuracy
+0.40
+z= 10-1
+z= 100
+z= 101
+0.35
+z= 102
+z= 103
+0.30
+z= 104
+z= 105
+0.25
+0.0
+2.5
+5.0
+7.5
+10.0
+12.5
+15.0
+c0.60
+(%)
+0.55
+z= 10-5
+Accuracy
+z= 10-1
+z= 100
+0.50
+Z= 101
+z= 102
+0.45
+z= 103
+z= 104
+z= 105
+0.40
+0.0
+2.5
+5.0
+7.5
+10.0
+12.5
+15.0
+c0.18
+0.16
+(%)
+Z = 10-5
+Accuracy
+z= 10-1
+0.14
+Z= 100
+z= 101
+0.12
+z= 102
+z= 103
+z= 104
+0.10
+Z= 105
+0
+20
+40
+60
+80
+100
+cTable 4: The table below shows FABR and sklearn’s training and prediction time (in sec-
+onds) on a synthetic dataset. We vary the dataset number of features d and the number of
+shrinkages (|z|). We report the average running time and the standard deviation over five
+independent runs.
+|z| = 5
+|z| = 10
+|z| = 20
+|z| = 50
+FABR
+sklearn
+FABR
+sklearn
+FABR
+sklearn
+FABR
+sklearn
+d
+10
+7.72s ± 0.36s
+0.01s ± 0.00s
+6.90s ± 0.77s
+0.02s ± 0.00s
+7.04s ± 0.67s
+0.03s ± 0.00s
+7.44s ± 0.57s
+0.07s ± 0.01s
+100
+7.35s ± 0.36s
+0.06s ± 0.02s
+6.58s ± 0.34s
+0.11s ± 0.01s
+7.61s ± 1.14s
+0.24s ± 0.04s
+7.3s ± 0.49s
+0.53s ± 0.06s
+500
+7.37s ± 0.44s
+0.33s ± 0.16s
+6.81s ± 0.25s
+0.54s ± 0.03s
+7.02s ± 0.35s
+1.01s ± 0.07s
+7.44s ± 0.48s
+2.41s ± 0.21s
+1000
+7.62s ± 0.31s
+0.58s ± 0.21s
+7.38s ± 0.23s
+1.06s ± 0.04s
+7.51s ± 0.24s
+2.04s ± 0.04s
+7.69s ± 0.08s
+4.79s ± 0.36s
+2000
+8.33s ± 0.42s
+1.21s ± 0.03s
+8.09s ± 0.73s
+2.44s ± 0.05s
+8.33s ± 0.24s
+4.87s ± 0.07s
+8.29s ± 0.47s
+12.21s ± 0.15s
+3000
+9.24s ± 0.25s
+2.49s ± 0.05s
+9.18s ± 0.41s
+5.08s ± 0.03s
+9.51s ± 0.20s
+10.06s ± 0.02s
+9.67s ± 0.41s
+25.67s ± 0.23s
+5000
+10.64s ± 0.86s
+5.36s ± 0.05s
+11.01s ± 0.7s
+10.74s ± 0.06s
+11.57s ± 0.81s
+21.31s ± 0.12s
+11.54s ± 0.41s
+54.18s ± 0.73s
+10000
+11.49s ± 0.66s
+17.87s ± 8.58s
+11.81s ± 0.47s
+28.32s ± 10.53s
+11.61s ± 0.49s
+44.72s ± 9.99s
+12.55s ± 0.3s
+101.58s ± 15.66s
+25000
+13.89s ± 0.21s
+27.79s ± 8.75s
+14.50s ± 0.45s
+49.84s ± 9.68s
+14.46s ± 0.96s
+94.08s ± 10.94s
+15.68s ± 0.74s
+224.31s ± 11.75s
+50000
+17.99s ± 0.22s
+50.51s ± 8.99s
+18.27s ± 0.37s
+92.88s ± 10.45s
+19.10s ± 0.37s
+176.24s ± 10.07s
+19.68s ± 0.85s
+422.95s ± 13.22s
+100000
+25.30s ± 0.39s
+95.57s ± 0.25s
+26.16s ± 0.46s
+177.54s ± 3.77s
+27.93s ± 0.35s
+340.32s ± 3.74s
+29.48s ± 1.38s
+816.25s ± 4.35s
+30
+
diff --git a/A9FIT4oBgHgl3EQf_Swz/content/tmp_files/load_file.txt b/A9FIT4oBgHgl3EQf_Swz/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..d73fa2eec7a8c5e73f670768c07e11d3a77de9a7
--- /dev/null
+++ b/A9FIT4oBgHgl3EQf_Swz/content/tmp_files/load_file.txt
@@ -0,0 +1,1167 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf,len=1166
+page_content='A Simple Algorithm For Scaling Up Kernel Methods Teng Andrea Xu†, Bryan Kelly‡, and Semyon Malamud† †Swiss Finance Institute, EPFL andrea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='xu,semyon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='malamud@epfl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='ch ‡Yale School of Management, Yale University bryan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='kelly@yale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='edu Abstract The recent discovery of the equivalence between infinitely wide neural networks (NNs) in the lazy training regime and Neural Tangent Kernels (NTKs) Jacot et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2018] has revived interest in kernel methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' However, conventional wisdom suggests kernel methods are unsuitable for large samples due to their computational complexity and memory requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' We introduce a novel random feature regression algorithm that allows us (when necessary) to scale to virtually infinite numbers of random fea- tures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' We illustrate the performance of our method on the CIFAR-10 dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='11414v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='LG] 26 Jan 2023 1 Introduction Modern neural networks operate in the over-parametrized regime, which sometimes requires orders of magnitude more parameters than training data points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Effectively, they are interpo- lators (see, Belkin [2021]) and overfit the data in the training sample, with no consequences for the out-of-sample performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' This seemingly counterintuitive phenomenon is some- times called “benign overfit” [Bartlett et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=', 2020, Tsigler and Bartlett, 2020].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' In the so-called lazy training regime Chizat et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2019], wide neural networks (many nodes in each layer) are effectively kernel regressions, and “early stopping” commonly used in neural network training is closely related to ridge regularization [Ali et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=', 2019].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' See, Jacot et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2018], Hastie et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2019], Du et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2018, 2019a], Allen-Zhu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2019].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Recent research also emphasizes the “double descent,” in which expected forecast error drops in the high-complexity regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' See, for example, Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2016], Belkin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2019a,b], Spigler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2019], Belkin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2020].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' These discoveries made many researchers argue that we need to gain a deeper under- standing of kernel methods (and, hence, random feature regressions) and their link to deep learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' See, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=', Belkin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2018].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Several recent papers have developed numerical algorithms for scaling kernel-type methods to large datasets and large numbers of random features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' See, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=', Zandieh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2021], Ma and Belkin [2017], Arora et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2019a], Shankar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2020].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' In particular, Arora et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2019b] show how NTK combined with the support vector machines (SVM) (see also Fern´andez-Delgado et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2014]) perform well on small data tasks relative to many competitors, including the highly over-parametrized ResNet-34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' In particular, while modern deep neural networks do generalize on small datasets (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=', Olson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2018]), Arora et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2019b] show that kernel-based methods achieve superior performance in such small data environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Similarly, Du et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2019b] find that the graph neural tangent kernel (GNTK) dominates graph neural networks on datasets with up to 5000 2 samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Shankar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2020] show that, while NTK is a powerful kernel, it is possible to build other classes of kernels (they call Neural Kernels) that are even more powerful and are often at par with extremely complex deep neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' In this paper, we develop a novel form of kernel ridge regression that can be applied to any kernel and any way of generating random features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' We use a doubly stochastic method similar to that in Dai et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2014], with an important caveat: We generate (potentially large, defined by the RAM constraints) batches of random features and then use linear algebraic properties of covariance matrices to recursively update the eigenvalue decomposition of the feature covariance matrix, allowing us to perform the optimization in one shot across a large grid of ridge parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' The paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Section 2 discusses related work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' In Section 3, we provide a novel random feature regression mathematical formulation and algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Then, Section 4 and Section 5 present numerical results and conclusions, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' 2 Related Work Before the formal introduction of the NTK in Jacot et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2018], numerous papers discussed the intriguing connections between infinitely wide neural networks and kernel methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' See, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=', Neal [1996];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Williams [1997];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Le Roux and Bengio [2007];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Hazan and Jaakkola [2015];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2018];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Matthews et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2018];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Novak et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2018];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Garriga-Alonso et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2018];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Cho and Saul [2009];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Daniely et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2016];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Daniely [2017].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' As in the standard random feature approximation of the kernel ridge regression (see Rahimi and Recht [2007]), only the network’s last layer is trained in the standard kernel ridge regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' A surprising discovery of Jacot et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2018] is that (infinitely) wide neural networks in the lazy training regime converge to a kernel even though all network layers are trained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' The corresponding kernel, the NTK, has a complex structure dependent on the neural network’s architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' See also Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2019], Arora et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2019a] for more results about the link between NTK and the 3 underlying neural network, and Novak et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2019] for an efficient algorithm for implementing the NTK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' In a recent paper, Shankar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2020] introduce a new class of kernels and show that they perform remarkably well on even very large datasets, achieving a 90% accuracy on the CIFAR-10 dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' While this performance is striking, it comes at a huge computational cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Shankar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2020] write: “CIFAR-10/CIFAR-100 consist of 60, 000 32 × 32 × 3 images and MNIST consists of 70, 000 28 × 28 images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Even with this constraint, the largest compositional kernel matrices we study took approximately 1000 GPU hours to compute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Thus, we believe an imperative direction of future work is reducing the complexity of each kernel evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Random feature methods or other compression schemes could play a significant role here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' In this paper, we offer one such highly scalable scheme based on random features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' How- ever, computing the random features underlying the Neural Kernels of Shankar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2020] would require developing non-trivial numerical algorithms based on the recursive iteration of non-linear functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' We leave this as an important direction for future research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' As in standard kernel ridge regressions, we train our random feature regression on the full sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' This is a key computational limitation for large datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' After all, one of the reasons for the success of modern deep learning is the possibility of training them us- ing stochastic gradient descent on mini-batches of data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Ma and Belkin [2017] shows how mini-batch training can be applied to kernel ridge regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' A key technical difficulty arises because kernel matrices (equivalently, covariance matrices of random features) have eigenvalues that decay very quickly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Yet, these low eigenvalues contain essential informa- tion and cannot be neglected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Our regression method can be easily modified to allow for mini-batches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Furthermore, it is known that mini-batch linear regression can even lead to performance gains in the high-complexity regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' As LeJeune et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2020] show, one can run regression on mini-batches and then treat the obtained predictions as an ensemble.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' LeJeune et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2020] prove that, under technical conditions, the average of these predictions attains 4 a lower generalization error than the full-train-sample-based regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' We test this mini- batch ensemble approach using our method and show that, indeed, with moderately-sized mini-batches, the method’s performance matches that of the full sample regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Moreover, there is an intriguing connection between mini-batch regressions and spectral dimensionality reduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' By construction, the feature covariance matrix with a mini-batch of size B has at most B non-zero eigenvalues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Thus, a mini-batch effectively performs a dimensionality reduction on the covariance matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Intuitively, we expect that the two methods (using a mini-batch of size B or using the full sample but only keeping B largest eigenvalues) should achieve comparable performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' We show that this is indeed the case for small sample sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' However, the spectral method for larger-sized samples (N ≥ 10000) is superior to the mini-batch method unless we use very large mini-batches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' For example, on the full CIFAR-10 dataset, the spectral method outperforms the mini-batch approach by 3% (see Section 4 for details).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' 3 Random Features Ridge Regression and Classifica- tion Suppose that we have a train sample (X, y) = (xi, yi)N i=1, xi ∈ Rd, yi ∈ R, so that X ∈ RN×d, y ∈ RN×1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Following Rahimi and Recht [2007] we construct a large number of random features f(x;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' θp), p = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' , P, where f is a non-linear function and θp are sampled from some distribution, and P is a large number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' We denote S = f(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' θ) ∈ RN×P as the train sample realizations of random features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Following Rahimi and Recht [2007], we consider the random features ridge regression, β(z) = (S⊤S/N + zI)−1S⊤y/N , (1) 5 as an approximation for kernel ridge regression when P → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' For classification problems, it is common to use categorical cross-entropy as the objective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' However, as Belkin [2021] explains, minimizing the mean-squared error with one-hot encoding often achieves superior generalization performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Here, we follow this approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Given the K labels, k = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' , K, we build the one-hot encoding matrix Q = (qi,k) where qi,k = 1yi=k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Then, we get β(z) = (S⊤S/N + zI)−1S⊤Q/N ∈ RP×K .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' (2) Then, for each test feature vector s = f(x;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' θ) ∈ RP, we get a vector β(z)⊤s ∈ RK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Next, define the actual classifier as k(x;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' z) = arg max{β(z)⊤s} ∈ {1, · · · , K} .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' (3) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='1 Dealing with High-Dimensional Features A key computational (hardware) limitation of kernel methods comes from the fact that, when P is large, computing the matrix S⊤S ∈ RP×P becomes prohibitively expensive, in particular, because S cannot even be stored in RAM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' We start with a simple observation that the following identity implies that storing all these features is not necessary:1 (S⊤S/N + zI)−1S⊤ = S⊤(SS⊤/N + zI)−1 , (4) and therefore we can compute β(z) as β(z) = S⊤(SS⊤/N + zI)−1y/N .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' (5) Suppose now we split S into multiple blocks, S1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' , SK, where Sk ∈ RN×P1 for all 1This identity follows directly from (S⊤S/N + zI)S⊤ = S⊤(SS⊤/N + zI).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' 6 k = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' , K, for some small P1, with KP1 = P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Then, Ψ = SS⊤ = K � k=1 SkS⊤ k (6) can be computed by generating the blocks Sk, one at a time, and recursively adding SkS⊤ k up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Once Ψ has been computed, one can calculate its eigenvalue decomposition, Ψ = V DV ⊤, and then evaluate Q(z) = (Ψ/N + zI)−1y/N = V (D + zI)−1V ⊤y/N ∈ RN in one go for a grid of z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Then, using the same seeds, we can again generate the random features Sk and compute βk(z) = S⊤ k Q(z) ∈ RP1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Then, β(z) = (βk(z))K k=1 ∈ RP .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' The logic described above is formalized in Algorithm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Algorithm 1 FABR Require: P1, P, X ∈ RN×d, y ∈ RN, z, voc curve blocks ← P//P1 k ← 0 Ψ ← 0N×N while k < blocks do Generate Sk ∈ RN×P1 Use k as seed Ψ ← Ψ + SkSk⊤ if k in voc curve then DV ← eigen( Ψ N ) Qk(z) ← V (D + zI)−1V ⊤ y N ▷ Store Qk(z) end if k = k + 1 end while DV ← eigen( Ψ N ) Q(z) ← V (D + zI)−1V ⊤ y N k ← 0 while k < blocks do (re-)Generate Sk ∈ RN×P1 ▷ Use k as seed βk(z) ← S⊤ k Q(z) ˆy += Skβk end while 7 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='2 Dealing with Massive Datasets The above algorithm relies crucially on the assumption that N is small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Suppose now that the sample size N is so large that storing and eigen-decomposing the matrix SS⊤ ∈ RN×N becomes prohibitively expensive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' In this case, we proceed as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Define for all k = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' , K Ψk = k � κ=1 SkS⊤ k ∈ RN×N, Ψ0 = 0N×N , (7) and let λ1(A) ≥ · · · ≥ λN(A) be the eigenvalues of a symmetric matrix A ∈ RN×N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Our goal is to design an approximation to (ΨK + zI)−1, based on a simple observation that the eigenvalues of the empirically observed Ψk matrices tend to decay very quickly, with only a few hundreds of largest eigenvalues being significantly different from zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' In this case, we can fix a ν ∈ N and design a simple, rank−ν approximation to ΨK by annihilating all eigenvalues below λν(ΨK).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' As we now show, it is possible to design a recursive algorithm for constructing such an approximation to ΨK, dealing with small subsets of random features simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' To this end, we proceed as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Suppose we have constructed an approximation ˆΨk ∈ RN×N to Ψk with rank ν, and let Vk ∈ RN×ν be the corresponding matrix of orthogonal eigenvectors for the non-zero eigenvalues, and Dk ∈ Rν×ν the diagonal matrix of eigenvalues so that ˆΨk = VkDkV ⊤ k and V ⊤ k Vk = Iν×ν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Instead of storing the full ˆΨk matrix, we only need to store the pair (Vk, Dk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' For all k = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' , K, we now define ˜Ψk+1 = ˆΨk + Sk+1S⊤ k+1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' (8) This N × N matrix is a theoretical construct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' We never actually compute it (see Algorithm 8 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Let Θk = I − VkV ⊤ k be the orthogonal projection on the kernel of ˆΨk, and ˜Sk+1 = ΘkSk+1 = Sk+1 − Vk ���� N×ν (V ⊤ k Sk+1 � �� � ν×P1 ) (9) be Sk+1 orthogonalized with respect to the columns of Vk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Then, we define ˜Wk+1 = ˜Sk+1( ˜Sk+1 ˜S⊤ k+1)−1/2 to be the orthogonalized columns of ˜Sk+1, and ˆVk+1 = [Vk, ˜Wk+1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' To compute ˜Sk+1( ˜Sk+1 ˜S⊤ k+1)−1/2, we use the following lemma that, once again, uses smart eigenvalue decomposition techniques to avoid dealing with the N × N matrix ˜Sk+1 ˜S⊤ k+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Let ˜S⊤ k+1 ˜Sk+1 � �� � ν×ν = Wδ ˜W ⊤ be the eigenvalue decomposition of ˜S⊤ k+1 ˜Sk+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Then, ˜W = ˜Sk+1Wδ−1/2 is the matrix of eigenvectors of ˜Sk+1 ˜S⊤ k+1 for the non-zero eigenvalues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Thus, ˜Sk+1( ˜Sk+1 ˜S⊤ k+1)−1/2 = ˜Wk+1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' (10) By construction, the columns of ˆVk+1 form an orthogonal basis of the span of the columns of Vk, Sk+1, and hence Ψk+1,∗ = ˆV ⊤ k+1 ˜Ψk+1 ˆVk+1 ∈ R(P1+ν)×(P1+ν) (11) has the same non-zero eigenvalues as ˜Ψk+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' We then define ˜Vk+1 ∈ R(P1+ν)×ν to be the matrix with eigenvectors of Ψk+1,∗ for the largest ν eigenvalues, and we denote the diagonal matrix of these eigenvalues by Dk+1 ∈ Rν×ν, and then we define Vk+1 = ˆVk+1 ˜Vk+1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Then, ˆΨk+1 = Vk+1Dk+1Vk+1 = Πk+1 ˜Ψk+1Πk+1 , where Πk+1 = ˆVk+1 ˜Vk+1 ˜V ⊤ k+1 ˆV ⊤ k+1 is the orthogonal projection onto the eigen-subspace of ˜Ψk+1 for the largest ν eigenvalues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' We have ˆΨk ≤ ˜Ψk ≤ ΨK and ∥Ψk − ˆΨk∥ ≤ k � i=1 λν+1(Ψi) ≤ k λν+1(ΨK) , (12) 9 and ∥(Ψk+1 + zI)−1 − (ˆΨk+1 + zI)−1∥ ≤ z−2 k � i=1 λν+1(Ψi) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' (13) There is another important aspect of our algorithm: It allows us to directly compute the performance of models with an expanding level of complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Indeed, since we load random features in batches of size P1, we generate predictions for P ∈ [P1, 2P1, · · · , KP1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' This is useful because we might use it to calibrate the optimal degree of complexity and because we can directly study the double descent-like phenomena, see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=', Belkin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2019a] and Nakkiran et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2021].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' That is the effect of complexity on the generalization error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' In the next section, we do this.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' As we show, consistent with recent theoretical results Kelly et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2022], with sufficient shrinkage, the double descent curve disappears, and the performance becomes almost monotonic in complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Following Kelly et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2022], we name this phenomenon the virtue of complexity (VoC) and the corresponding performance plots the VoC curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' See, Figure 6 below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' We call this algorithm Fast Annihilating Batch Regression (FABR) as it annihilates all eigenvalues below λν(ΨK) and allows to solve the random features ridge regression in one go for a grid of z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Algorithm 2 formalizes the logic described above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' 4 Numerical Results This section presents several experimental results on different datasets to evaluate FABR’s performance and applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' In contrast to the most recent computational power demand in kernel methods, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=', Shankar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2020], we ran all experiments on a laptop, a MacBook Pro model A2485, equipped with an M1 Max with a 10-core CPU and 32 GB RAM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' 10 Algorithm 2 FABR-ν Require: ν,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' P1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' P,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' X ∈ RN×d,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' y ∈ RN,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' z,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' voc curve blocks ← P//P1 k ← 0 while k < blocks do Generate Sk ∈ RN×P1 ▷ Use k as seed to generate the random features if k = 0 then ˜d,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' ˜V ← eigen(S⊤ k Sk) V ← Sk ˜V diag( ˜d)− 1 2 V0 ← V:,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='min(ν,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='P1) ▷ Save V0 d0 ← ˜d:min(ν,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='P1) ▷ Save d0 if k in voc curve then Q0(z) ← V0(diag(d0) + zI)−1V ⊤ 0 y ▷ Save Q0(z) end if else if k > 0 then ˜Sk ← (I − Vk−1V ⊤ k−1)Sk Γk ← ˜ S⊤ k ˜Sk δk,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Wk ← eigen(Γk) Keep top min(ν,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' P1) eigenvalues and eigenvectors from δk,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Wk ˜ Wk ← ˜SkWkdiag(δk)− 1 2 ˆVk ← [Vk−1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' ˜ Wk] ¯Vk ← ˆ V ⊤ k Vk−1 ¯ Wk ← ¯Vkdiag(dk−1) ¯ V ⊤ k ¯Sk ← ˆ V ⊤ k Sk ¯Zk ← ¯SkS⊤ k Ψ∗ ← ¯ Wk ¯Zk dk,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Vk ← eigen(Ψ∗) Keep top min(ν,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' P1) eigenvalues and eigenvectors from dk,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Vk Vk ← ˆVkVk ▷ Save dk,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Vk if k in voc curve then Qk(z) ← Vk(diag(dk) + zI)−1V ⊤ k y ▷ Save Qk(z) end if end if k = k + 1 end while k ← 0 while k < blocks do (re-)Generate Sk ∈ RN×P1 ▷ Use k as seed to generate the random features βk(z) ← S⊤ k Qk(z) ˆy += Skβk end while 11 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='1 A comparison with sklearn We now aim to show FABR’s training and prediction time with respect to the number of features d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' To this end, we do not use any random feature projection or the rank-ν matrix approximation described in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' We draw N = 5000 i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' samples from ⊗d j=1N(0, 1) and let yi = xiβ + ϵi ∀i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' , N, where β ∼ ⊗d j=1N(0, 1), and ϵi ∼ N(0, 1) for all i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' , N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Then, we define yi = � � � � � � � 1 if yi > median(y), 0 otherwise ∀i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' , N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Next, we create a set of datasets for classification with varying complexity d and keep the first 4000 samples as the training set and the remaining 1000 as the test set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' We show in Figure 1 the average training and prediction time (in seconds) of FABR with a different number of regularizers ( we denote this number by |z|) and sklearn RidgeClassifier with an increasing number of features d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' The training and prediction time is averaged over five independent runs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' As one can see, our method is drastically faster when d > 10000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=', for d = 100000 we outperform sklearn by approximately 5 and 25 times for |z| = 5 and |z| = 50, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Moreover, one can notice that the number of different shrinkages |z| does not affect FABR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' We report a more detailed table with average training and prediction time and standard deviation in Appendix B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='2 Experiments on Real Datasets We assess FABR’s performance on both small and big datasets regimes for further evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' For all experiments,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' we perform a random features kernel ridge regression for demeaned one- 12 0 20000 40000 60000 80000 100000 d 0 200 400 600 800 Training and Prediction Time (s) FABR - |z| = 5 FABR - |z| = 10 FABR - |z| = 20 FABR - |z| = 50 sklearn - |z| = 5 sklearn - |z| = 10 sklearn - |z| = 20 sklearn - |z| = 50 Figure 1: The figure above compares FABR training and prediction time,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' shown on the y- axis,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' in black,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' against sklearn’s RidgeClassifier,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' in red,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' for an increasing amount of features,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' shown on the x-axis,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' and the number of shrinkages z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Here, |z| denotes the number of different values of z for which we perform the training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' hot labels and solve the optimization problem using FABR as described in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='1 Data Representation Table 1: The table below shows the average test accuracy and standard deviation of ResNet-34, CNTK, and FABR on the subsampled CIFAR-10 datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' The test accuracy is average over twenty independent runs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' n ResNet-34 14-layer CNTK z=1 z=100 z=10000 z=100000 10 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='59% ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='99% 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='33% ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='43% 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='50% ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='18% 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='50% ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='18% 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='42% ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='13% 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='13% ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='01% 20 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='50% ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='47% 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='79% ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='13% 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='84% ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='38% 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='85% ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='38% 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='78% ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='35% 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='13% ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='34% 40 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='52% ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='39% 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='34% ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='91% 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='09% ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='76% 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='10% ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='76% 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='14% ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='75% 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='41% ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='88% 80 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='32% ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='61% 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='48% ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='91% 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='61% ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='35% 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='60% ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='35% 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='62% ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='39% 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='63% ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='66% 160 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='30% ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='38% 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='48% ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='17% 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='86% ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='12% 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='87% ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='12% 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='02% ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='11% 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='54% ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='24% 320 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='15% ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='20% 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='57% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='88% 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='46% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='73% 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='47% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='73% 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='66% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='72% 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='34% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='72% 640 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='66% ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='09% 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='63% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='68% 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='68% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='71% 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='68% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='72% 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='17% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='68% 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='91% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='72% 1280 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='14% ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='31% 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='86% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='68% 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='30% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='57% 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='32% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='56% 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='05% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='54% 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='74% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='42% FABR requires, like any standard kernel methods or randomized-feature techniques, a good data representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Usually, we don’t know such a representation a-priori, and learning a good kernel is outside the scope of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Therefore, we build a simple Convolutional Neural Network (CNN) mapping h : Rd → RD;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' that extracts image features ˜x ∈ RD for some sample x ∈ Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' The CNN is not optimized;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' we use it as a simple random feature mapping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' The CNN architecture, shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' 2, alternates a 3 × 3 convolution layer with 13 GlobalAveragePool 3x3 Convolution ReLU 2x2 Average Pool BatchNormalization 3x3 Convolution ReLU 2x2 Average Pool BatchNormalization 3x3 Convolution ReLU 2x2 Average Pool BatchNormalization 3x3 Convolution ReLU 2x2 Average Pool BatchNormalization Figure 2: CNN architecture used to extract image features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' a ReLU activation function, a 2 × 2 Average Pool, and a BatchNormalization layer Ioffe and Szegedy [2015].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Convolutional layers weights are initialized using He Uniform He et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2015].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' To vectorize images, we use a global average pooling layer that has proven to enforce correspondences between feature maps and to be more robust to spatial translations of the input Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2013].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' We finally obtain the train and test random features realizations s = f(˜x, θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Specifically, we use the following random features mapping si = σ(W ˜x), (14) where W ∈ RP×D with wi,j ∼ N(0, 1) and σ is some elementwise activation function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' This 14 can be described as a one-layer neural network with random weights W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' To show the importance of over-parametrized models, throughout the results, we report the complexity, c, of the model as c = P/N, that is, the ratio between the parameters (dimensions) and the number of observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' See Belkin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2019a], Hastie et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2019], Kelly et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2022].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='2 Small Datasets We now study the performance of FABR on the subsampled CIFAR-10 dataset Krizhevsky et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2009].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' To this end, we reproduce the same experiment described in Arora et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2019b].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' In particular, we obtain random subsampled training set (y;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' X) = (yi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' xi)n i=1 where n ∈ {10, 20, 40, 80, 160, 320, 640, 1280} and test on the whole test set of size 10000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' We make sure that exactly n/10 sample from each image class is in the training sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' We train FABR using random features projection of the subsampled training set S = σ(Wg(X)) ∈ Rn×P, where g is an untrained CNN from Figure 2, randomly initialized using He Uniform distri- bution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' In this experiment, we push the model complexity c to 100;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' in other words, FABR’s number of parameters equals a hundred times the number of observations in the subsample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' As n is small, we deliberately do not perform any low-rank covariance matrix approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Finally, we run our model twenty times and report the mean out-of-sample performance and the standard deviation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' We report in Table 1 FABR’s performance for different shrinkages (z) together with ResNet-34 and the 14-layers CNTK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Without any complicated random fea- ture projection, FABR can outperform both ResNet-34 and CNTK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' FABR’s test accuracy increases with the model’s complexity c on different (n) subsampled CIFAR-10 datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' We show Figure 3 as an example for n = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Additionally, we show, to better observe the double descent phenomena, truncated curves at c = 25 for all CIFAR-10 subsamples in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' The full curves are shown in Appendix B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' To sum up this section findings: 15 Figure 3: The figures above show FABR’s test accuracy increases with the model’s complexity c on the subsampled CIFAR-10 dataset for n = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' The test accuracy is averaged over five independent runs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' FABR, with enough complexity together and a simple random feature projection, is able to outperform deep neural networks (ResNet-34) and CNTKs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' FABR always reaches the maximum accuracy beyond the interpolation threshold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Moreover, if the random feature ridge regression shrinkage z is sufficiently high, the double descent phenomenon disappears, and the accuracy does not drop at the inter- polation threshold point, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=', when c = 1 or n = P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Following Kelly et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2022], we call this phenomenon virtue of complexity (VoC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='3 Big Datasets In this section, we repeat the same experiments described in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='2, but we extend the training set size n up to the full CIFAR-10 dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' For each n, we train FABR, FABR-ν with a rank-ν approximation as described in Algorithm 2, and the min-batch-FABR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' We use ν = 2000 and batch size = 2000 in the last two algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Following Arora et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2019b], we train ResNet-34 as the benchmark for 160 epochs, with an initial learning rate of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='001 and a batch size of 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' We decrease the learning rate by ten at epochs 80 and 120.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' ResNet-34 always reaches close to perfect accuracy on the training set, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=', above 99%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' We 16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='16 (%) Z = 10-5 Accuracy z= 10-1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='14 Z= 100 z= 101 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='12 z= 102 z= 103 z= 104 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='10 Z= 105 0 20 40 60 80 100 c(a) n = 10 (b) n = 20 (c) n = 40 (d) n = 80 (e) n = 160 (f) n = 320 (g) n = 640 (h) n = 1280 Figure 4: The figures above show FABR’s test accuracy increases with the model’s complexity c on different (n) subsampled CIFAR-10 datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' The expanded dataset follows similar patterns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' We truncate the curve for c > 25 to better show the double descent phenomena.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' The full curves are shown in Appendix B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Notice that when the shrinkage is sufficiently high, the double descent disappears, and the accuracy monotonically increases in complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Following Kelly et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2022], we name this phenomenon the virtue of complexity (VoC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' The test accuracy is averaged over 20 independent runs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' run each training five times and report mean out-of-sample performance and its standard deviation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' As the training sample is sufficiently large already, we set the model complexity to only c = 15, meaning that for the full sample, FABR performs a random feature ridge regression with P = 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='5 × 105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' We report the results in Tables 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='3 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Table 2: The table below shows the average test accuracy and standard deviation of ResNet- 34 and FABR on the subsampled and full CIFAR-10 dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' The test accuracy is average over five independent runs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' n ResNet-34 z=1 z=100 z=10000 z=100000 2560 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='12% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='69% 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='24% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='29% 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='45% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='21% 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='29% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='44% 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='28% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='37% 5120 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='03% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='82% 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='34% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='32% 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='74% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='34% 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='29% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='20% 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='06% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='08% 10240 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='21% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='26% 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='36% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='45% 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='86% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='54% 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='17% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='35% 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='75% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='18% 20480 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='24% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='47% 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='08% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='17% 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='65% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='27% 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='12% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='19% 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='34% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='14% 50000 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='34% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='21% 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='38% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='00% 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='98% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='00% 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='62% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='00% 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='25% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='00% The experiment delivers a number of additional conclusions: First, we observe that, while for small train sample sizes of n ≤ 10000, simple kernel 17 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='40 (%) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='35 Z = 10-5 Accuracy 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='30 Z= 10-1 z= 100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='25 z= 101 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='20 z = 102 z= 103 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='15 z= 104 Z= 105 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='10 0 5 10 15 20 25 c0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='4 %) Z = 10-5 Accuracy Z= 10-1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='3 z=100 z= 101 z = 102 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='2 Z= 103 z= 104 Z= 105 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='1 0 5 10 15 20 25 c0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='16 (%) Z = 10-5 cy 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='14 Z= 10-1 Accura Z= 100 z= 101 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='12 z = 102 z= 103 z= 104 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='10 Z= 105 0 5 10 15 20 25 c- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='18 (%) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='16 Z = 10-5 Accuracy Z= 10-1 z= 100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='14 z= 101 z = 102 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='12 Z= 103 z= 104 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='10 Z= 105 0 5 10 15 20 25 c- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='24 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='22 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='20 Z = 10-5 Accuracy 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='18 Z= 10-1 z= 100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='16 z= 101 z = 102 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='14 z= 103 z= 104 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='12 Z= 105 0 5 10 15 20 25 c0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='275 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='250 (%) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='225 Z = 10-5 Accuracy Z= 10-1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='200 z= 100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='175 z= 101 z= 102 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='150 z= 103 z = 104 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='125 Z= 105 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='100 0 5 10 15 20 25 c1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='30 (%) Z = 10-5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='25 Accuracy Z = 10-1 z= 100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='20 z= 101 z= 102 z= 103 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='15 Z= 104 Z=105 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='10 0 5 10 15 20 25 c0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='35 (%) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='30 Z = 10-5 Accuracy Z= 10-1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='25 z= 100 z= 101 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='20 Z= 102 z= 103 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='15 z= 104 Z= 105 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='10 0 5 10 15 20 25 c(a) n = 2560 (b) n = 50000 Figure 5: The figures above show FABR’s test accuracy increases with the model’s complexity c on the subsampled CIFAR-10 dataset 5a and the full CIFAR-10 dataset 5b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' FABR is trained using a ν = 2000 low-rank covariance matrix approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Notice that we still observe a (shifted) double descent when ν ≈ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' The same phenomenon disappears when ν ≪ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' The test accuracy is averaged over five independent runs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Table 3: The table below shows the average test accuracy and standard deviation of FABR-ν and mini-batch FABR on the subsampled and full CIFAR-10 dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' The test accuracy is average over five independent runs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' z = 1 z = 100 z = 10000 z = 100000 FABR batch = 2000 ν = 2000 batch = 2000 ν = 2000 batch = 2000 ν = 2000 batch = 2000 ν = 2000 n 2560 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='13% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='38% 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='48% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='22% 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='15% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='42% 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='63% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='24% 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='01% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='51% 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='05% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='44% 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='78% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='52% 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='23% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='34% 5120 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='68% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='18% 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='63% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='19% 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='70% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='16% 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='63% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='18% 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='83% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='27% 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='53% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='11% 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='42% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='22% 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='75% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='14% 10240 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='79% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='35% 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='20% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='39% 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='79% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='35% 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='20% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='38% 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='63% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='28% 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='63% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='21% 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='73% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='37% 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='16% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='34% 20480 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='56% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='35% 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='50% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='12% 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='55% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='37% 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='50% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='13% 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='90% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='20% 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='92% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='12% 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='10% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='19% 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='40% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='21% 50000 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='74% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='10% 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='45% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='18% 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='74% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='10% 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='44% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='18% 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='35% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='05% 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='04% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='19% 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='99% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='02% 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='71% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='09% methods achieve performance comparable with that of DNNs, this is not the case for n > 20000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Beating DNNs on big datasets with shallow methods requires more complex kernels, such as those in Shankar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2020], Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2019].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Second, we confirm the findings of Ma and Belkin [2017], Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2020] suggesting that the role of small eigenvalues is important.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' For example, FABR-ν with ν = 2000 loses several percent of accuracy on larger datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' 18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='55- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='50 (%) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='45 z = 10-5 Accuracy z= 10-1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='40 z= 100 z= 101 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='35 z= 102 z= 103 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='30 z= 104 z= 105 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='0 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='5 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='0 c0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='60 z= 10-5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='55 z= 10-1 z= 100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='50 z= 101 z= 102 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='45 Z= 103 z= 104 z= 105 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='0 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='5 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='0 c• Third, surprisingly, both the mini-batch FABR and FABR-ν sometimes achieve higher accuracy than the full sample regression on moderately-sized datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' See Tables 2 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Understanding these phenomena is an interesting direction for future research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Fourth, the double descent phenomenon naturally appears for both FABR-ν and the mini-batch FABR but only when ν ≈ n or batch size ≈ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' However, the double descent phenomenon disappears when ν ≪ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' This intriguing finding is shown in Figure 5 for FABR-ν, and in Appendix B for the mini-batch FABR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Fifth, on average, FABR-ν outperforms mini-batch FABR on larger datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' 5 Conclusion and Discussion The recent discovery of the equivalence between infinitely wide neural networks (NNs) in the lazy training regime and neural tangent kernels (NTKs) Jacot et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2018] has revived interest in kernel methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' However, these kernels are extremely complex and usually re- quire running on big and expensive computing clusters Avron et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2017], Shankar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' [2020] due to memory (RAM) requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' This paper proposes a highly scalable random features ridge regression that can run on a simple laptop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' We name it Fast Annihilating Batch Regression (FABR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Thanks to the linear algebraic properties of covariance matrices, this tool can be applied to any kernel and any way of generating random features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' More- over, we provide several experimental results to assess its performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' We show how FABR can outperform (in training and prediction speed) the current state-of-the-art ridge classi- fier’s implementation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Then, we show how a simple data representation strategy combined with a random features ridge regression can outperform complicated kernels (CNTKs) and over-parametrized Deep Neural Networks (ResNet-34) in the few-shot learning setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' The experiments section concludes by showing additional results on big datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' In this paper, we focus on very simple classes of random features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Recent findings (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=', Shankar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' 19 [2020]) suggest that highly complex kernel architectures are necessary to achieve competi- tive performance on large datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Since each kernel regression can be approximated with random features, our method is potentially applicable to these kernels as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' However, directly computing the random feature representation of such complex kernels is non-trivial and we leave it for future research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' 20 References Alnur Ali, J Zico Kolter, and Ryan J Tibshirani.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' A continuous-time view of early stopping for least squares regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' In The 22nd International Conference on Artificial Intelligence and Statistics, pages 1370–1378.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' PMLR, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' A convergence theory for deep learning via over-parameterization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' In International Conference on Machine Learning, pages 242–252.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' PMLR, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' On exact computation with an infinitely wide neural net.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Advances in Neural Information Processing Systems, 32, 2019a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Sanjeev Arora, Simon S Du, Zhiyuan Li, Ruslan Salakhutdinov, Ruosong Wang, and Dingli Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Harnessing the power of infinitely wide deep nets on small-data tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' arXiv preprint arXiv:1910.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='01663, 2019b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Haim Avron, Kenneth L Clarkson, and David P Woodruff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Faster kernel ridge regression using sketching and preconditioning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' SIAM Journal on Matrix Analysis and Applications, 38(4):1116–1138, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Peter L Bartlett, Philip M Long, G´abor Lugosi, and Alexander Tsigler.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Benign overfitting in linear regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Proceedings of the National Academy of Sciences, 117(48):30063–30070, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Mikhail Belkin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Fit without fear: remarkable mathematical phenomena of deep learning through the prism of interpolation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Acta Numerica, 30:203–248, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Mikhail Belkin, Siyuan Ma, and Soumik Mandal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' To understand deep learning we need 21 to understand kernel learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' In International Conference on Machine Learning, pages 541–549.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' PMLR, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Reconciling modern machine- learning practice and the classical bias–variance trade-off.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Proceedings of the National Academy of Sciences, 116(32):15849–15854, 2019a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Mikhail Belkin, Alexander Rakhlin, and Alexandre B Tsybakov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Does data interpolation contradict statistical optimality?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' In The 22nd International Conference on Artificial Intelligence and Statistics, pages 1611–1619.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' PMLR, 2019b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Mikhail Belkin, Daniel Hsu, and Ji Xu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Two models of double descent for weak features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' SIAM Journal on Mathematics of Data Science, 2(4):1167–1180, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Lenaic Chizat, Edouard Oyallon, and Francis Bach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' On lazy training in differentiable pro- gramming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Advances in Neural Information Processing Systems, 32, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Youngmin Cho and Lawrence Saul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Kernel methods for deep learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Advances in neural information processing systems, 22, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Bo Dai, Bo Xie, Niao He, Yingyu Liang, Anant Raj, Maria-Florina F Balcan, and Le Song.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Scalable kernel methods via doubly stochastic gradients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Advances in neural information processing systems, 27, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Amit Daniely.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Sgd learns the conjugate kernel class of the network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Advances in Neural Information Processing Systems, 30, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Amit Daniely, Roy Frostig, and Yoram Singer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Toward deeper understanding of neural networks: The power of initialization and a dual view on expressivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Advances in neural information processing systems, 29, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' 22 Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Gradient descent finds global minima of deep neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' In International conference on machine learning, pages 1675–1685.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' PMLR, 2019a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Gradient descent provably optimizes over-parameterized neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' arXiv preprint arXiv:1810.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='02054, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Simon S Du, Kangcheng Hou, Russ R Salakhutdinov, Barnabas Poczos, Ruosong Wang, and Keyulu Xu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Graph neural tangent kernel: Fusing graph neural networks with graph kernels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Advances in neural information processing systems, 32, 2019b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Manuel Fern´andez-Delgado, Eva Cernadas, Sen´en Barro, and Dinani Amorim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Do we need hundreds of classifiers to solve real world classification problems?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' The journal of machine learning research, 15(1):3133–3181, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Adri`a Garriga-Alonso, Carl Edward Rasmussen, and Laurence Aitchison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Deep convolu- tional networks as shallow gaussian processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' In International Conference on Learning Representations, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J Tibshirani.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Surprises in high-dimensional ridgeless least squares interpolation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' arXiv preprint arXiv:1903.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='08560, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Tamir Hazan and Tommi Jaakkola.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Steps toward deep kernel methods from infinite neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' arXiv preprint arXiv:1508.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='05133, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Delving deep into rectifiers: Surpassing human-level performance on imagenet classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' In Proceedings of the IEEE international conference on computer vision, pages 1026–1034, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Sergey Ioffe and Christian Szegedy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Batch normalization: Accelerating deep network training 23 by reducing internal covariate shift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' In International conference on machine learning, pages 448–456.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' PMLR, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Arthur Jacot, Franck Gabriel, and Cl´ement Hongler.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Neural tangent kernel: Convergence and generalization in neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Advances in neural information processing systems, 31, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Bryan T Kelly, Semyon Malamud, and Kangying Zhou.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' The virtue of complexity in return prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Alex Krizhevsky, Geoffrey Hinton, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Learning multiple layers of features from tiny images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Nicolas Le Roux and Yoshua Bengio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Continuous neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' In Artificial Intelligence and Statistics, pages 404–411.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' PMLR, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington, and Jascha Sohl-Dickstein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Deep neural networks as gaussian processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' In International Conference on Learning Representations, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl- Dickstein, and Jeffrey Pennington.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Wide neural networks of any depth evolve as linear models under gradient descent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Advances in neural information processing systems, 32, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Jaehoon Lee, Samuel Schoenholz, Jeffrey Pennington, Ben Adlam, Lechao Xiao, Roman Novak, and Jascha Sohl-Dickstein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Finite versus infinite neural networks: an empirical study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Advances in Neural Information Processing Systems, 33:15156–15172, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Daniel LeJeune, Hamid Javadi, and Richard Baraniuk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' The implicit regularization of ordi- nary least squares ensembles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' In International Conference on Artificial Intelligence and Statistics, pages 3525–3535.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' PMLR, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' 24 Zhiyuan Li, Ruosong Wang, Dingli Yu, Simon S Du, Wei Hu, Ruslan Salakhutdinov, and Sanjeev Arora.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Enhanced convolutional neural tangent kernels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' arXiv preprint arXiv:1911.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='00809, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Min Lin, Qiang Chen, and Shuicheng Yan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Network in network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' arXiv preprint arXiv:1312.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='4400, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Siyuan Ma and Mikhail Belkin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Diving into the shallows: a computational perspective on large-scale shallow learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Advances in neural information processing systems, 30, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Alexander G de G Matthews, Mark Rowland, Jiri Hron, Richard E Turner, and Zoubin Ghahramani.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Gaussian process behaviour in wide deep neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' arXiv preprint arXiv:1804.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='11271, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Deep double descent: Where bigger models and more data hurt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Journal of Statistical Mechanics: Theory and Experiment, 2021(12):124003, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Radford M Neal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Priors for infinite networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' In Bayesian Learning for Neural Networks, pages 29–53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Springer, 1996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Roman Novak, Lechao Xiao, Yasaman Bahri, Jaehoon Lee, Greg Yang, Jiri Hron, Daniel A Abolafia, Jeffrey Pennington, and Jascha Sohl-dickstein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Bayesian deep convolutional networks with many channels are gaussian processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' In International Conference on Learning Representations, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A Alemi, Jascha Sohl- Dickstein, and Samuel S Schoenholz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Neural tangents: Fast and easy infinite neural networks in python.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' arXiv preprint arXiv:1912.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='02803, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Matthew Olson, Abraham Wyner, and Richard Berk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Modern neural networks generalize on small data sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Advances in Neural Information Processing Systems, 31, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' 25 Ali Rahimi and Benjamin Recht.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Random features for large-scale kernel machines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Advances in neural information processing systems, 20, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Vaishaal Shankar, Alex Fang, Wenshuo Guo, Sara Fridovich-Keil, Jonathan Ragan-Kelley, Ludwig Schmidt, and Benjamin Recht.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Neural kernels without tangents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' In International Conference on Machine Learning, pages 8614–8623.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' PMLR, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Stefano Spigler, Mario Geiger, St´ephane d’Ascoli, Levent Sagun, Giulio Biroli, and Matthieu Wyart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' A jamming transition from under-to over-parametrization affects generalization in deep learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Journal of Physics A: Mathematical and Theoretical, 52(47):474001, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Tsigler and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Bartlett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Benign overfitting in ridge regression, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Christopher KI Williams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Computing with infinite networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' In Advances in Neural Infor- mation Processing Systems 9: Proceedings of the 1996 Conference, volume 9, page 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' MIT Press, 1997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Amir Zandieh, Insu Han, Haim Avron, Neta Shoham, Chaewon Kim, and Jinwoo Shin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Scaling neural tangent kernels via sketching and random features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' In M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Ranzato, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Beygelzimer, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Dauphin, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Liang, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Wortman Vaughan, editors, Ad- vances in Neural Information Processing Systems, volume 34, pages 1062–1073.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Cur- ran Associates, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' URL https://proceedings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='neurips.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='cc/paper/2021/file/ 08ae6a26b7cb089ea588e94aed36bd15-Paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='pdf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Understanding deep learning requires rethinking generalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' arXiv preprint arXiv:1611.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='03530, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' 26 A Proofs Proof of Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' We have Ψk+1 = Ψk + Sk+1S′ k+1 ˜Ψk+1 = ˆΨk + Sk+1S′ k+1 ˆΨk+1 = Pk+1 ˜Ψk+1Pk+1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' (15) By the definition of the spectral projection, we have ∥˜Ψk+1 − ˆΨk+1∥ ≤ λν+1(˜Ψk+1) ≤ λν+1(Ψk+1) , (16) and hence ∥Ψk+1 − ˆΨk+1∥ ≤ ∥Ψk+1 − ˜Ψk+1∥ + ∥˜Ψk+1 − ˆΨk+1∥ = ∥Ψk − ˆΨk∥ + ∥˜Ψk+1 − ˆΨk+1∥) ≤ ∥Ψk − ˆΨk∥ + λν+1(Ψk+1) , (17) and the claim follows by induction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' The last claim follows from the simple inequality ∥(Ψk+1 + zI)−1 − (ˆΨk+1 + zI)−1∥ ≤ z−2∥Ψk+1 − ˆΨk+1∥ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' (18) B Additional Experimental Results This section provides additional experiments and findings that may help the community with future research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' First, we dive into more details about our comparison with sklearn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Table 4 shows a more 27 detailed training and prediction time comparison between FABR and sklearn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' In particular, we average training and prediction time over five independent runs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' The experiment settings are explained in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' We show how one, depending on the number shrinkages |z|, would start considering using FABR when the number of observations in the dataset n ≈ 5000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' In this case, we have used the numpy linear algebra library to decompose FABR’s covariance matrix, which appears to be faster than the scipy counterpart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' We share our code in the following repository: https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='com/tengandreaxu/fabr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Second, while Figure 4 shows FABR’s test accuracy on increasing complexity c truncated curves, we present here the whole picture;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=', Figure 6 shows full FABR’s test accuracy increases with the model’s complexity c on different (n) subsampled CIFAR-10 datasets averaged over twenty independent runs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' The expanded dataset follows similar patterns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Similar to Figure 4, one can notice that when the shrinkage is sufficiently high, the double descent disappears, and the accuracy monotonically increases in complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Third, the double descent phenomenon naturally appears for both FABR-ν and the mini-batch FABR but only when ν ≈ n or batch size ≈ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' However, the double descent phenomenon disappears when ν ≪ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' This intriguing finding is shown in Figure 5 for FABR-ν, and here, in Figure 7, we report the same curves for mini-batch FABR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' 28 (a) n = 10 (b) n = 20 (c) n = 40 (d) n = 80 (e) n = 160 (f) n = 320 (g) n = 640 (h) n = 1280 Figure 6: The figure above shows the full FABR’s accuracy increase with the model’s com- plexity c in the small dataset regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' The expanded dataset follows similar patterns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' (a) n = 2560 (b) n = 50000 Figure 7: Similar to Figure 5, the figures above show FABR’s test accuracy increases with the model’s complexity c on the subsampled CIFAR-10 dataset 7a and the full CIFAR-10 dataset 7b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' FABR trains using mini-batches with batch size=2000 in both cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' Notice that we still observe a (shifted) double descent when batch size ≈ n, while the same phenomenon disappears when batch size ≪ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' The test accuracy is averaged over 5 independent runs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' 29 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='18 (%) Z = 10-5 Accuracy 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='16 z= 10-1 Z= 100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='14 z= 101 z= 102 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='12 z= 103 z= 104 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='10 Z= 105 0 20 40 60 80 100 c0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='24 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='22 (%) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='20 Z = 10-5 Accuracy Z= 10-1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='18 z=100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='16 z= 101 z = 102 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='14 z= 103 z= 104 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='12 Z= 105 0 20 40 60 80 100 c0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='25 (%) Z = 10-5 Accuracy z= 10-1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='20 z= 100 z= 101 z= 102 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='15 z= 103 z= 104 Z= 105 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='10 0 20 40 60 80 100 c0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='30 (%) Z = 10-5 Accuracy 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='25 z= 10-1 z= 100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='20 z= 101 Z= 102 z= 103 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='15 z= 104 Z= 105 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='10 0 20 40 60 80 100 c0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='35 %) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='30 Z = 10-5 Accuracy z= 10-1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='25 z= 100 z= 101 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='20 Z= 102 z= 103 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='15 z= 104 Z= 105 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='10 0 20 40 60 80 100 c0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='35 Z = 10-5 Accuracy 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='30 Z= 10-1 z=100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='25 z= 101 z= 102 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='20 z= 103 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='15 z= 104 z= 105 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='10 0 20 40 60 80 100 c0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='4 [%) Z = 10-5 Accuracy Z= 10-1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='3 Z= 100 z= 101 z= 102 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='2 Z= 103 z= 104 Z= 105 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='1 0 20 40 60 80 100 c0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' (%) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='45 z= 10-5 Accuracy 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='40 z= 10-1 z= 100 z= 101 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='35 z= 102 z= 103 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='30 z= 104 z= 105 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='0 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='5 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='0 c0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='60 (%) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='55 z= 10-5 Accuracy z= 10-1 z= 100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='50 Z= 101 z= 102 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='45 z= 103 z= 104 z= 105 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='0 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='5 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='0 c0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='16 (%) Z = 10-5 Accuracy z= 10-1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='14 Z= 100 z= 101 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='12 z= 102 z= 103 z= 104 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='10 Z= 105 0 20 40 60 80 100 cTable 4: The table below shows FABR and sklearn’s training and prediction time (in sec- onds) on a synthetic dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' We vary the dataset number of features d and the number of shrinkages (|z|).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' We report the average running time and the standard deviation over five independent runs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content=' |z| = 5 |z| = 10 |z| = 20 |z| = 50 FABR sklearn FABR sklearn FABR sklearn FABR sklearn d 10 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='72s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='36s 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='01s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='00s 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='90s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='77s 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='02s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='00s 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='04s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='67s 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='03s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='00s 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='44s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='57s 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='07s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='01s 100 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='35s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='36s 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='06s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='02s 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='58s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='34s 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='11s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='01s 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='61s ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='14s 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='24s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='04s 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='3s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='49s 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='53s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='06s 500 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='37s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='44s 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='33s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='16s 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='81s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='25s 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='54s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='03s 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='02s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='35s 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='01s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='07s 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='44s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='48s 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='41s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='21s 1000 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='62s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='31s 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='58s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='21s 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='38s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='23s 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='06s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='04s 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='51s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='24s 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='04s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='04s 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='69s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='08s 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='79s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='36s 2000 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='33s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='42s 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='21s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='03s 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='09s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='73s 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='44s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='05s 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='33s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='24s 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='87s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='07s 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='29s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='47s 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='21s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='15s 3000 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='24s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='25s 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='49s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='05s 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='18s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='41s 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='08s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='03s 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='51s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='20s 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='06s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='02s 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='67s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='41s 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='67s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='23s 5000 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='64s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='86s 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='36s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='05s 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='01s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='7s 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='74s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='06s 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='57s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='81s 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='31s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='12s 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='54s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='41s 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='18s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='73s 10000 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='49s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='66s 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='87s ± 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='58s 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='81s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='47s 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='32s ± 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='53s 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='61s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='49s 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='72s ± 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='99s 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='55s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='3s 101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='58s ± 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='66s 25000 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='89s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='21s 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='79s ± 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='75s 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='50s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='45s 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='84s ± 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='68s 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='46s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='96s 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='08s ± 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='94s 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='68s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='74s 224.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='31s ± 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='75s 50000 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='99s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='22s 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='51s ± 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='99s 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='27s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='37s 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='88s ± 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='45s 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='10s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='37s 176.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='24s ± 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='07s 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='68s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='85s 422.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='95s ± 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='22s 100000 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='30s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='39s 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='57s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='25s 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='16s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='46s 177.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='54s ± 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='77s 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='93s ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='35s 340.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='32s ± 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='74s 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='48s ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='38s 816.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='25s ± 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
+page_content='35s 30' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FIT4oBgHgl3EQf_Swz/content/2301.11414v1.pdf'}
diff --git a/ANFIT4oBgHgl3EQf-iyR/vector_store/index.faiss b/ANFIT4oBgHgl3EQf-iyR/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..2a259006faf581af096c11502176dd308993339f
--- /dev/null
+++ b/ANFIT4oBgHgl3EQf-iyR/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:352353fa857996658be2c35bf9b7889b82dbe8cea97eae48d9a558c830b43f71
+size 3735597
diff --git a/ANFIT4oBgHgl3EQf-iyR/vector_store/index.pkl b/ANFIT4oBgHgl3EQf-iyR/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..fdfd7d2c1cea3aed5610481f0c93df821c3fd17a
--- /dev/null
+++ b/ANFIT4oBgHgl3EQf-iyR/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:adfd288be7a32edeb2df4b13df57ca4fbbc7c06cdefe7e951284b91080d24a75
+size 158965
diff --git a/B9E1T4oBgHgl3EQf9gbH/content/tmp_files/2301.03558v1.pdf.txt b/B9E1T4oBgHgl3EQf9gbH/content/tmp_files/2301.03558v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..909bd3f5ccbf152279b6ff954fc3643d46cb5afb
--- /dev/null
+++ b/B9E1T4oBgHgl3EQf9gbH/content/tmp_files/2301.03558v1.pdf.txt
@@ -0,0 +1,798 @@
+Draft version January 10, 2023
+Typeset using LATEX default style in AASTeX631
+Pre-merger sky localization of gravitational waves from binary neutron star mergers using deep
+learning
+Chayan Chatterjee
+1 and Linqing Wen
+1
+1Department of Physics, OzGrav-UWA, The University of Western Australia,
+35 Stirling Hwy, Crawley, Western Australia 6009, Australia
+ABSTRACT
+The simultaneous observation of gravitational waves (GW) and prompt electromagnetic counterparts
+from the merger of two neutron stars can help reveal the properties of extreme matter and gravity
+during and immediately after the final plunge. Rapid sky localization of these sources is crucial to
+facilitate such multi-messenger observations. Since GWs from binary neutron star (BNS) mergers can
+spend up to 10-15 mins in the frequency bands of the detectors at design sensitivity, early warning
+alerts and pre-merger sky localization can be achieved for sufficiently bright sources, as demonstrated
+in recent studies. In this work, we present pre-merger BNS sky localization results using CBC-SkyNet,
+a deep learning model capable of inferring sky location posterior distributions of GW sources at orders
+of magnitude faster speeds than standard Markov Chain Monte Carlo methods. We test our model’s
+performance on a catalog of simulated injections from Sachdev et al. (2020), recovered at 0-60 secs
+before merger, and obtain comparable sky localization areas to the rapid localization tool BAYESTAR.
+These results show the feasibility of our model for rapid pre-merger sky localization and the possibility
+of follow-up observations for precursor emissions from BNS mergers.
+1. INTRODUCTION
+The first direct detection of GWs from a merging binary black hole (BBH) system was made in 2015 (Abbott et al.
+(2016)), which heralded a new era in astronomy. Since then the LIGO-Virgo-KAGRA (LVK) Collaboration (Aasi et al.
+(2015); Acernese et al. (2014); Akutsu et al. (2019)) has made more than 90 detections of GWs from merging compact
+binaries (Abbott et al. (2021a)), including two confirmed detections from merging binary neutron stars (BNS) and at
+two from mergers of neutron star-black hole (NSBH) binaries (Abbott et al. (2021a,b)). The first detection of GWs
+from a BNS merger on August 17th, 2017 (GW170817) along with its associated electromagnetic (EM) counterpart
+revolutionized the field of multi-messenger astronomy (Abbott et al. (2017a)). This event involved the joint detection
+of the GW signal by LIGO and Virgo, and the prompt short gamma-ray burst (sGRB) observation by the Fermi-GBM
+and INTEGRAL space telescopes (Abbott et al. (2017b,c)) ∼ 2 secs after the merger. This joint observation of GWs
+and sGRB, along with the observations of EM emissions at all wavelengths for months after the event had a tremendous
+impact on astronomy, leading to – an independent measurement of the Hubble Constant (Abbott et al. (2017d)), new
+constraints on the neutron star equation of state (Abbott et al. (2019)) and confirmation of the speculated connection
+between sGRB and kilonovae with BNS mergers (Abbott et al. (2017b)).
+While more multi-messenger observations involving GWs are certainly desirable, the typical delays between a GW
+detection and the associated GCN alerts, which is of the order of a few minutes (Magee et al. (2021)), makes such joint
+discoveries extremely challenging. This is because the prompt EM emissions lasts for just 1-2 secs after merger, which
+means an advance warning system with pre-merger sky localization of such events is essential to enable joint GW and
+EM observations by ground and space-based telescopes (Haas et al. (2016); Nissanke et al. (2013); Dyer et al. (2022)).
+In recent years, several studies have shown that for a fraction of BNS events, it will be possible to issue alerts
+up to 60 secs before merger (Magee et al. (2021); Sachdev et al. (2020); Kovalam et al. (2022); Nitz et al. (2020)).
+Such early-warning detections, along with pre-merger sky localizations will facilitate rapid EM follow-up of prompt
+emissions. The observations of optical and ultraviolet emissions prior to mergers are necessary for understanding
+r-process nucleosynthesis (Nicholl et al. (2017)) and shock-heated ejecta (Metzger (2017)) post mergers. Prompt X-
+ray emission can reveal the final state of the remnant (Metzger & Piro (2014); Bovard et al. (2017); Siegel & Ciolfi
+(2016)), and early radio observations can reveal pre-merger magnetosphere interactions (Most & Philippov (2020)),
+arXiv:2301.03558v1 [astro-ph.HE] 30 Dec 2022
+
+ID2
+and help test theories connecting BNS mergers with fast radio bursts (Totani (2013); Wang et al. (2016); Dokuchaev
+& Eroshenko (2017)).
+In the last three LVK observation runs, five GW low-latency detection pipelines have processed data and sent out
+alerts in real-time. These pipelines are GstLAL (Sachdev et al. (2019)), SPIIR (Chu et al. (2022)), PyCBC (Usman
+et al. (2016)), MBTA (Aubin et al. (2021)), and cWB (Klimenko et al. (2016)). Of these, the first four pipelines use
+the technique of matched filtering (Hooper (2013)) to identify real GW signals in detector data, while cWB uses a
+coherent analysis to search for burst signals in detector data streams. In 2020, an end-to-end mock data challenge
+(Magee et al. (2021)) was conducted by the GstLAL and SPIIR search pipelines and successfully demonstrated their
+feasibility to send pre-merger alerts (Magee et al. (2021)). This study also estimated the expected rate of BNS mergers
+and their sky localization areas using the rapid localization tool, BAYESTAR (Singer & Price (2016)) using a four detector
+network consisting of LIGO Hanford (H1), LIGO Livingston (L1), Virgo (V1) and KAGRA in O4 detector sensitivity.
+In a previous study, Sachdev et al. (2020) (Sachdev et al. (2020)) showed early warning performance of the GstLAL
+pipeline over a month of simulated data with injections. Their study suggested that alerts could be issued 10s (60 s)
+before merger for 24 (3) BNS systems over the course of one year of observations of a three-detector Advanced network
+operating at design sensitivity. These findings were in broad agreement with the estimates of Cannon et al. (2012)
+(Cannon et al. (2012)) on the rates of early warning detections at design sensitivity. Sky localization was also obtained
+at various number of seconds before merger, using the online rapid sky localization software called BAYESTAR (Singer
+& Price (2016)), with the indication that around one event will be both detected before merger and localized within
+100 deg2, based on current BNS merger rate estimates.
+The online search pipelines, however, experience additional latencies owing to data transfer, calibration and filtering
+processes, which contribute up to 7-8 secs of delay in the publication of early warning alerts (Kovalam et al. (2022);
+Sachdev et al. (2020)). For sky localization, BAYESTAR typically takes 8 secs to produce skymaps, which is expected
+to reduce to 1-2 secs in the third observation run. This latency can, however, be potentially reduced further by the
+application of machine learning techniques, as demonstrated in Chatterjee et al. (2022) (Chatterjee et al. (2022)).
+In this Letter, we report pre-merger sky localization using deep learning for the first time. We obtain our results using
+CBC-SkyNet (Compact Binary Coalescence - Sky Localization Neural Network.), a normalizing flow model (Rezende &
+Mohamed (2015); Kingma et al. (2016); Papamakarios et al. (2017)) for sky localization of all types of compact binary
+coalescence sources (Chatterjee et al. (2022)). We test our model on simulated BNS events from the injection catalog
+in Sachdev et al. (2020) (Sachdev et al. (2020)), that consists of signals detected at 0 to 60 secs before merger using the
+GstLAL search pipeline. We compare our sky localization performance with BAYESTAR and find that our localization
+contours have comparable sky contour areas with BAYESTAR, at an inference speed of just a few milli-seconds using a
+P100 GPU.
+The paper is divided as follows: we briefly describe our normalizing flow model in Section 2. In Section 3, we describe
+the details of the simulations used to generate the training and test sets. In Section 4, we desribe our architecture of
+CBC-SkyNet. In Section 5, we discuss results obtained using our network on the dataset from Sachdev et al. (2020)
+(Sachdev et al. (2020)). Finally, we discuss future directions of this research in Section 6.
+2. METHOD
+Our neural network, CBC-SkyNet is based on a class of deep neural density estimators called normalizing flow,
+the details of which is provided in (Chatterjee et al. (2022)). CBC-SkyNet consists of three main components: (i)
+the normalizing flow, specifically, a Masked Autoregressive Flow (MAF) (Kingma et al. (2016); Papamakarios et al.
+(2017)) network, (ii) a ResNet-34 model (He et al. (2015)) that extracts features from the complex signal-to-noise
+(SNR) time series data which is obtained by matched filtering GW strains with BNS template waveforms, and (iii)
+a fully connected neural network whose inputs are the intrinsic parameters (component masses and z-component of
+spins) of the templates used to generate the SNR time series by matched filtering. The architecture of our model is
+shown in Figure 1. The features extracted by the ResNet-34 and fully connected networks from the SNR time series
+(ρ(t)) and best-matched intrinsic parameters (ˆθin) respectively, are combined into a single feature vector and passed
+as a conditional input to the MAF. The MAF is a normalizing flow with a specific architecture, that transforms a
+simple base distribution (a multi-variate Gaussian) z ∼ p(z) into a more complex target distribution x ∼ p(x) which
+in our case, is the posterior distribution of the right ascension (α) and declination angles (δ) of the GW events, given
+the SNR time series and intrinsic parameters p(α, δ|ρ(t), ˆθin).
+
+3
+Figure 1.
+Architecture of our model, CBC-SkyNet. The input data, consisting of the SNR time series, ρ(t) and intrinsic
+parameters, ˆθin are provided to the network through two separate channels: the ResNet-34 channel (only one ResNet block is
+shown here) and the multi-layered fully connected (Dense) network respectively. The features extracted by ρ(t) and ˆθin are then
+combined and provided as conditional input to the main component of CBC-SkyNet - the Masked Autoregressive Flow (MAF)
+network , denoted by f(z). The MAF draws samples, z, from a multivariate Gaussian, and learns a mapping between z to (α,
+δ), which are the right ascension and declination angles of the GW events.
+This mapping is learnt by the flow during training using the method of maximum likelihood, and can be expressed
+as:
+p(x) = π(z)
+����det∂f(z)
+∂z
+����
+−1
+,
+(1)
+If z is a random sample drawn from the base distribution π(z), and f is the invertible transformation parametrized by
+the normalizing flow, then the new random variable obtained after the transformation is x = f(z). The transformation,
+f can be made more flexible and expressive by stacking a chain of transformations together as follows:
+xk = fk ◦ . . . ◦ f1 (z0)
+(2)
+This helps the normalizing flow learn arbitrarily complex distributions, provided each of the transformations are
+invertible and the Jacobians are easy to evaluate. Neural posterior estimation (NPE) (Papamakarios & Murray (2016);
+Lueckmann et al. (2017); Greenberg et al. (2019)) techniques, including normalizing flows and conditional variational
+autoencoders have been used to estimate posterior distribution of BBH source parameters with high accuracy and
+speed (Dax et al. (2021); Gabbard et al. (2022); Chua & Vallisneri (2020)). Chatterjee et al. (2022) (Chatterjee
+et al. (2022)) used a normalizing flow to demonstrate rapid inference of sky location posteriors for all CBC sources for
+the first time. This work shows the first application of deep learning for pre-merger BNS sky localization and is an
+extension of the model introduced in Chatterjee et al. (2022)
+3.
+DATA GENERATION
+
+Hanford
+Livingston
+Virgo
+Conv 2D
+Dense (64)
+BatchNorm
+ReLU
+Conv2D
+Dense (64)
+Conv 2D
+BatchNorm
+Dense (64)
+BatchNorm
+Dense (64)
+Dense (64)
+ReLU
+90% area: 121 deg
+50% area: 34 deg
+60*
+Pz(z)
+Feature Vector
+f(z)
+30°
+2
+z ~ N(0, 1)D+1
+α, S ~ Pe(α, Slp(t), θin)4
+We train six different versions of CBC-SkyNet with distinct training sets (ρi(t), ˆθi
+in) for each “negative latency",
+i = 0, 10, 14, 28, 44, 58 secs before merger.
+Our training and test set injections parameters were sampled from the
+publicly available injection dataset used in Sachdev et al. (2020) Sachdev et al. (2020). These ˆθi
+in parameters were
+used to first simulate the BNS waveforms using the SpinTaylorT4 approximant (Sturani et al. (2010)) and then
+injected into Gaussian noise with advanced LIGO power spectral density (PSD) at design sensitivity (Littenberg &
+Cornish (2015)) to obtain the desired strains. The SNR time series, ρi(t), was then obtained by matched filtering the
+simulated BNS strains with template waveforms.
+For generating the training sets, the template waveforms for matched filtering were simulated using the optimal
+parameters, which have the exact same values as the injection parameters used to generate the detector strains.
+The SNR time series obtained by matched filtering the strains with the optimal templates, ρi
+opt(t), and the optimal
+intrinsic parameters, ˆθi,opt
+in
+, were then used as input to our network during the training process. For testing, the
+template parameters were sampled from publicly available data by Sachdev et al. (2020) (Sachdev et al. (2020)). These
+parameters correspond to the parameters of the maximum likelihood or ‘best-matched’ signal template recovered by
+the GstLAL matched-filtering search pipeline. Therefore the values of ˆθi
+in used during testing are close to, but is not
+the exact same as ˆθi,opt
+in
+. Similarly, the SNR time series ρi(t) is not exactly similar to the optimal ρi
+opt(t), and has a
+slightly lower peak amplitude than the corresponding ρi
+opt(t) peak because of the small mismatch between the injection
+parameters and the best-matched template waveform parameters.
+While our injections have the same parameter distribution as (Sachdev et al. (2020)), we only choose samples with
+network SNRs lying between 9 and 40, at each negative latency, for this analysis. This is because when the network
+is trained on samples with identical parameter distributions as the dataset from (Sachdev et al. (2020)), our model’s
+predictions on test samples with network SNRs > 40 tend to become spurious, with α and δ samples drawn from
+the predicted posterior distribution for these events having values outside their permissible ranges. This is because
+in the dataset from (Sachdev et al. (2020)), injection samples with SNR > 40 are much fewer in number compared
+to samples between SNR 9 and 40. This means for models trained on data with parameters from (Sachdev et al.
+(2020)), there exists very few training examples for SNR > 40 to learn from. Since Normalizing Flow models are
+known to fail at learning out-of-distribution data, as described in (Kirichenko et al. (2020)), our model fails to make
+accurate predictions at the high SNR limit. Although this can potentially be solved by generating training sets with
+uniform SNR distribution over the entire existing SNR range in (Sachdev et al. (2020)), which corresponds to a uniform
+distribution of sources in comoving volume up to a redshift of z=0.2, this would be require generating an unfeasibly
+large number of training samples for each negative latency. Also, such events detected with SNR > 40 are expected
+to be exceptionally rare, even at design sensitivities of advanced LIGO and Virgo, which is why we choose to ignore
+them for this study. We therefore generate samples with uniformly distributed SNRs between 9 and 40 for training,
+while our test samples have the same SNR distribution as (Sachdev et al. (2020)) between 9 and 40.
+4. NETWORK ARCHITECTURE
+In this section, we describe the architecture of the different components of our model. The MAF is implemented
+using a neural network that is designed to efficiently model conditional probability densities. This network is called
+Masked Autoencoder for Density Estimation (MADE) (Germain et al. (2015)). We stack 10 MADE blocks together
+to make a sufficiently expressive model, with each MADE block consisting of 5 layers with 256 neurons in each layer.
+In between each pair of MADE networks, we use batch normalization to stabilize training. We use a ResNet-34 model
+(He et al. (2015)), that is constructed using 2D convolutional and MaxPooling layers with skip connections, (He et al.
+(2015)) to extract features from the SNR time series data. The real and imaginary parts of the SNR time series are
+stacked vertically to generate a two dimensional input data stream for each training and test sample. The initial
+number of kernels for the convolutional layers of the ResNet model is chosen to be 32, which is doubled progressively
+through the network (He et al. (2015)). The final vector of features obtained by the ResNet are combined with the
+features extracted from the intrinsic parameters, ˆθi
+in, by the fully-connected network, consisting of 5 hidden layers
+with 64 neurons in each hidden layer. The combined feature vector is then passed as a conditional input to the MAF
+which learns the mapping between the base and target distributions during training.
+5. RESULTS
+In this section, we describe the results of the injection runs at each negative latency. Figure 2 (a) to (f) shows
+the histograms of the areas of the 90% credible intervals of the predicted posterior distributions from CBC-SkyNet
+
+5
+(blue) and BAYESTAR (orange), evaluated on the injections in (Sachdev et al. (2020)) with network SNRs between 9
+and 40. We observe that for most of the test sets, our model predicts smaller median 90% credible interval areas than
+BAYESTAR. Also, BAYESTAR shows much broader tails at < 100 deg2, compared to CBC-SkyNet, especially for 0 secs,
+10 secs and 15 secs before merger (Figures 2 (a), (b) and (c)). These injections, with 90% areas < 100 deg2 typically
+have SNR > 25, which shows that although CBC-SkyNet produces smaller 90 % contours on average, it fails to match
+BAYESTAR’s accuracy for high SNR cases. Especially at 0 secs before merger (Figure 2 (a)), the area of the smallest
+90% credible interval by CBC-SkyNet is 13 deg2, whereas for BAYESTAR, it is around 1 deg2. The number of injections
+localized with a 90% credible interval area between 10 - 15 deg2 by CBC-SkyNet is also much lower than BAYESTAR,
+although this effect is much less prominent for the other test sets.
+Similar results are found for the searched area distributions at 0 secs before merger (Figure 3 (a)), although the
+distributions of searched areas from for all other cases (Figure 3 (b) - (f)) from CBC-SkyNet and BAYESTAR are very
+similar. Figures 4 (a) and (b) show box and whisker plots for 90% credible interval areas and searched areas obtained
+by CBC-SkyNet (blue) and BAYESTAR (pink) respectively. We observe that our median 90% areas (white horizontal
+lines) for most of the cases are smaller than BAYESTAR’s.
+A possible explanation for these observations is as follows: BAYESTAR uses an adaptive sampling method (Singer &
+Price (2016)) to evaluate the densities, in which the posterior probability is first evaluated over Nside,0 = 16 HEALPix
+grids (Górski et al. (2005)), corresponding to a single sky grid area of 13.4 deg2. The highest probability grids are
+then adaptively subdivided into smaller grids over which the posterior is evaluated again. This process is repeated
+seven times, with the highest possible resolution at the end of the iteration being Nside = 211, with an area of ∼ 10−3
+deg2 for the smallest grid (Singer & Price (2016)).
+This adaptive sampling process, however, takes much longer to evaluate, compared to conventional evaluation over
+a uniform angular resolution in the sky. This is why for our analysis, we do not adopt the adaptive sampling process,
+since our primary aim is to improve the speed of pre-merger sky localization. Instead, we draw 5000 α and δ posterior
+samples each, from our model’s predicted posterior and then apply a 2-D Kernel Density Estimate (KDE) over these
+samples. We then evaluate the KDE over Nside,0 = 32 HEALPix grids, corresponding to a single grid area of ∼ 3.3
+deg2 to obtain our final result. Therefore, our chosen angular resolution results in sky grids which are much larger
+than BAYESTAR’s smallest sky grids after adaptive refinement. Therefore our approach results in larger 90% contours
+and searched areas than BAYESTAR for high network SNR cases where the angular resolution has a more significant
+impact in the overall result. The sampling process adopted by us may also explain why our median areas are smaller
+compared to BAYESTAR. During inference, after sampling α and δ from the predicted posterior, we evaluate the KDE
+with a fixed bandwidth of 0.03, chosen by cross-validation. This may result in a narrower contour estimate, on average,
+compared to BAYESTAR’s sampling method.
+Figures 5 (a) - (f) show P-P plots for a subset of injections at 0 secs, 10 secs, 15 secs, 28 secs, 44 secs and 58 secs
+before merger respectively. To obtain the P-P plots, we compute the percentile scores of the true right ascension and
+declination parameters within their marginalized posteriors and obtain the cumulative distribution of these scores.
+For accurate posteriors, the distribution of the percentile scores should be uniform, which means the cumulative
+distribution should be diagonal, which is evident from the figures. We also perform Kolmogorov-Smirnoff (KS) tests
+for each dataset to test our hypothesis that the percentile values for each set are uniformly distributed. The p-values
+from the KS tests, shown in the legend, for each parameter have values > 0.05, which means at a 95% level of
+significance, we cannot reject the null hypothesis that the percentile values are uniform, and thereby our posteriors
+are consistent with the expected distribution.
+Because of the low dimensionality of our input data, training our network takes less than an hour on a NVIDIA Tesla
+P100 GPU. Overall the sampling and evaluation step during inference takes a few milli-seconds for each injection on
+the same computational resource. Sample generation and matched filtering was implemented with a modified version
+of the code developed by (Gebhard et al. (2019)) that uses PyCBC software (Nitz et al. (2021)). CBC-SkyNet was written
+in TensorFlow 2.4 (Abadi et al. (2016)) using the Python language.
+6. DISCUSSION
+In summary, we have reported the first deep learning based approach for pre-merger sky localization of BNS sources,
+capable of orders of magnitude faster inference than Bayesian methods. Currently our model’s accuracy is similar to
+BAYESTAR on injections with network SNR between 9 and 40 at design sensitivity. The next step in this research would
+be to perform similar analysis on real detector data which has non-stationary noise and glitches that may corrupt
+
+6
+(a)
+(b)
+(c)
+(d)
+(e)
+(f)
+Figure 2.
+Top panel from (a) to (c): Histograms of the areas of the 90% credible intervals from CBC-SkyNet (blue) and
+BAYESTAR (orange) for 0 secs, 10 secs, 15 secs before merger are shown. Bottom panel from (d) to (f): Similar histograms for 28
+secs, 44 secs and 58 secs before merger are shown.
+the signal and affect detection and sky localization. A possible way to improve our model’s performance at high
+SNRs (> 25) would be to use a finer angular resolution in the sky for evaluating the posteriors. We can also train
+different versions of the model for different luminosity distance (and hence SNR) ranges. Our long-term goal is to
+construct an independent machine learning pipeline for pre-merger detection and localization of GW sources. The
+faster inference speed of machine learning models would be crucial for electromagnetic follow-up and observation of
+prompt and precursor emissions from compact binary mergers. This method is also scalable and can be applied for
+predicting the luminosity distance of the sources pre-merger, which would help obtain volumetric localization of the
+source and potentially identify host galaxies of BNS mergers.
+The authors would like to thank Dr. Foivois Diakogiannis, Kevin Vinsen, Prof. Amitava Datta and Damon Beveridge
+for useful comments on this work. This research was supported in part by the Australian Research Council Centre of
+Excellence for Gravitational Wave Discovery (OzGrav, through Project No. CE170100004). This research was under-
+taken with the support of computational resources from the Pople high-performance computing cluster of the Faculty of
+Science at the University of Western Australia. This work used the computer resources of the OzStar computer cluster
+at Swinburne University of Technology. The OzSTAR program receives funding in part from the Astronomy National
+Collaborative Research Infrastructure Strategy (NCRIS) allocation provided by the Australian Government. This
+research used data obtained from the Gravitational Wave Open Science Center (https://www.gw-openscience.org), a
+service of LIGO Laboratory, the LIGO Scientific Collaboration and the Virgo Collaboration. LIGO is funded by the
+U.S. National Science Foundation. Virgo is funded by the French Centre National de Recherche Scientifique (CNRS),
+the Italian Istituto Nazionale della Fisica Nucleare (INFN) and the Dutch Nikhef, with contributions by Polish and
+Hungarian institutes. This material is based upon work supported by NSF’s LIGO Laboratory which is a major facility
+fully funded by the National Science Foundation.
+1
+2
+3
+4
+5
+6
+7
+8
+9
+10
+11
+12
+13
+REFERENCES
+Aasi, J., Abbott, B. P., Abbott, R., et al. 2015, Classical
+and Quantum Gravity, 32, 074001,
+doi: 10.1088/0264-9381/32/7/074001
+Abadi, M., Agarwal, A., Barham, P., et al. 2016,
+TensorFlow: Large-Scale Machine Learning on
+Heterogeneous Distributed Systems
+
+CBC-SkyNet
+0.8
+Bayestar
+0.6
+Density
+0.4
+0.2
+0.0
+0
+1
+2
+3
+4
+90% credible interval area in log (deg2)1.2
+CBC-SkyNet
+Bayestar
+1.0
+0.8
+Density
+0.6
+0.4
+0.2
+0.0
+1
+2
+3
+4
+90% credible interval area in log (deg2)CBC-SkyNet
+1.25
+Bayestar
+1.00
+Density
+0.75
+0.50
+0.25
+0.00
+2
+1
+3
+4
+90% credible interval area in log (deg2)CBC-SkyNet
+Bayestar
+1.5
+Density
+1.0
+0.5
+0.0
+1
+2
+3
+4
+90% credible interval area in log (deg2)CBC-SkyNet
+Bayestar
+1.5
+Density
+1.0
+0.5
+0.0
+1
+2
+3
+4
+90% credible interval area in log (deg2)2.0
+CBC-SkyNet
+Bayestar
+1.5
+Density
+1.0
+0.5
+0.0
+1
+2
+3
+4
+90% credible interval area in log (deg2)7
+(a)
+(b)
+(c)
+(d)
+(e)
+(f)
+Figure 3.
+Top panel from (a) to (c): Histograms of the searched areas from CBC-SkyNet (blue) and BAYESTAR (orange) for 0
+secs, 10 secs, 15 secs before merger are shown. Bottom panel from (d) to (f): Similar histograms for 28 secs, 44 secs and 58 secs
+before merger are shown.
+(a)
+(b)
+Figure 4.
+(a) Box and whiskers plots showing the areas of the 90% credible intervals from CBC-SkyNet (blue) and BAYESTAR
+(pink) at 0 secs, 10 secs, 15 secs, 28 secs, 44 secs and 58 secs before merger. The boxes encompass 95% of the events and the
+whiskers extend up to the rest. The white lines within the boxes represent the median values of the respective data sets. (b)
+Similar box and whiskers plot as (a) for comparing searched areas from CBC-SkyNet (blue) and BAYESTAR (pink) at 0 secs, 10
+secs, 15 secs, 28 secs, 44 secs and 58 secs before merger.
+
+0.6
+CBC-SkyNet
+Bayestar
+0.5
+0.4
+Density
+0.3
+0.2
+0.1
+0.0
+-4
+-2
+0
+2
+4
+Searched area in log (deg2)0.6
+CBC-SkyNet
+Bayestar
+0.5
+0.4
+Density
+0.3
+0.2
+0.1
+0.0
+-4
+-2
+0
+2
+4
+Searched area in log (deg2)0.6
+CBC-SkyNet
+Bayestar
+0.5
+0.4
+Density
+0.3
+0.2
+0.1
+0.0
+-4
+-2
+0
+2
+4
+Searched area in log (deg2)CBC-SkyNet
+Bayestar
+0.5
+0.4
+Density
+0.3
+0.2
+0.1
+0.0
+-4
+-2
+0
+2
+4
+Searched area in log (deg2)0.6
+CBC-SkyNet
+Bayestar
+0.5
+0.4
+Density
+0.3
+0.2
+0.1
+0.0
+-4
+-2
+0
+2
+4
+Searched area in log (deg2)104.
+2
+in deg
+area
+103
+90% credible interval
+102
+CBC-SkyNet
+101
+Bayestar
+-10
+-15
+-28
+-44
+-58
+0
+Time from merger (in secs)104
+103.
+2
+6
+p
+Searched area in
+102
+101
+S
+100
+CBC-SkyNet
+Bayestar
+-10
+-15
+-28
+-44
+-58
+0
+Time from merger (in secs)CBC-SkyNet
+0.6
+Bayestar
+0.5
+Density
+0.4
+0.3
+0.2
+0.1
+0.0
+-4
+-2
+0
+2
+4
+Searched area in log (deg2)8
+(a)
+(b)
+(c)
+(d)
+(e)
+(f)
+Figure 5. (a) to (f): P–P plots for a subset of the total number of test samples at 0 secs, 10 secs, 15 secs, 28 secs, 44 secs and
+58 secs before merger. We compute the percentile values (denoted as p) of the true right ascension and declination parameters
+within their 1D posteriors. The figure shows the cumulative distribution function of the percentile values, which should lie close
+to the diagonal if the network is performing properly. The p-values of the KS test for each run is shown in the legend.
+
+1.0
+RA(0.101)
+Dec (0.0571)
+0.8
+Cumulative distribution
+0.6
+0.4
+0.2
+0.0
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+p1.0
+RA (0.817)
+Dec (0.325)
+0.8
+Cumulative distribution
+0.6
+0.4
+0.2
+0.0
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+p1.0
+RA (0.829)
+Dec (0.188)
+0.8
+Cumulative distribution
+0.6
+0.4
+0.2
+0.0
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+p1.0
+RA(0.0891)
+Dec (0.441)
+0.8
+Cumulative distribution
+0.6
+0.4
+0.2
+0.0
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+p1.0
+RA (0.0745)
+Dec (0.122)
+0.8
+Cumulative distribution
+0.6
+0.4
+0.2
+0.0
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+p1.0
+RA (0.338)
+Dec (0.147)
+0.8
+Cumulative distribution
+0.6
+0.4
+0.2
+0.0
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+p9
+Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016, Phys.
+Rev. Lett., 116, 061102,
+doi: 10.1103/PhysRevLett.116.061102
+—. 2017a, Phys. Rev. Lett., 119, 161101,
+doi: 10.1103/PhysRevLett.119.161101
+—. 2017b, The Astrophysical Journal Letters, 848, L12,
+doi: 10.3847/2041-8213/aa91c9
+—. 2017c, The Astrophysical Journal Letters, 848, L13,
+doi: 10.3847/2041-8213/aa920c
+—. 2017d, Nature, 551, 85, doi: 10.1038/nature24471
+—. 2019, Phys. Rev. X, 9, 011001,
+doi: 10.1103/PhysRevX.9.011001
+Abbott, R., Abbott, T. D., Acernese, F., et al. 2021a,
+GWTC-3: Compact Binary Coalescences Observed by
+LIGO and Virgo During the Second Part of the Third
+Observing Run
+Abbott, R., Abbott, T. D., Abraham, S., et al. 2021b, The
+Astrophysical Journal Letters, 915, L5,
+doi: 10.3847/2041-8213/ac082e
+Acernese, F., Agathos, M., Agatsuma, K., et al. 2014,
+Classical and Quantum Gravity, 32, 024001,
+doi: 10.1088/0264-9381/32/2/024001
+Akutsu, T., Ando, M., Arai, K., et al. 2019, Nature
+Astronomy, 3, 35, doi: 10.1038/s41550-018-0658-y
+Aubin, F., Brighenti, F., Chierici, R., et al. 2021, Classical
+and Quantum Gravity, 38, 095004,
+doi: 10.1088/1361-6382/abe913
+Bovard, L., Martin, D., Guercilena, F., et al. 2017, 96.
+https://www.osti.gov/pages/biblio/1415425
+Cannon, K., Cariou, R., Chapman, A., et al. 2012, The
+Astrophysical Journal, 748, 136,
+doi: 10.1088/0004-637X/748/2/136
+Chatterjee, C., Wen, L., Beveridge, D., Diakogiannis, F., &
+Vinsen, K. 2022, Rapid localization of gravitational wave
+sources from compact binary coalescences using deep
+learning
+Chu, Q., Kovalam, M., Wen, L., et al. 2022, PhRvD, 105,
+024023, doi: 10.1103/PhysRevD.105.024023
+Chua, A. J. K., & Vallisneri, M. 2020, Phys. Rev. Lett.,
+124, 041102, doi: 10.1103/PhysRevLett.124.041102
+Dax, M., Green, S. R., Gair, J., et al. 2021, Phys. Rev.
+Lett., 127, 241103, doi: 10.1103/PhysRevLett.127.241103
+Dokuchaev, V. I., & Eroshenko, Y. N. 2017
+Dyer, M. J., Ackley, K., Lyman, J., et al. 2022, in
+Proc.SPIE, Vol. 12182, The Gravitational-wave Optical
+Transient Observer (GOTO), 121821Y,
+doi: 10.1117/12.2629369
+Gabbard, H., Messenger, C., Heng, I. S., Tonolini, F., &
+Murray-Smith, R. 2022, Nature Physics, 18, 112,
+doi: 10.1038/s41567-021-01425-7
+Gebhard, T. D., Kilbertus, N., Harry, I., & Schölkopf, B.
+2019, Phys. Rev. D, 100, 063015,
+doi: 10.1103/PhysRevD.100.063015
+Germain, M., Gregor, K., Murray, I., & Larochelle, H. 2015
+Greenberg, D., Nonnenmacher, M., & Macke, J. 2019, in
+Proceedings of Machine Learning Research, Vol. 97,
+Proceedings of the 36th International Conference on
+Machine Learning, ed. K. Chaudhuri & R. Salakhutdinov
+(PMLR), 2404–2414.
+https://proceedings.mlr.press/v97/greenberg19a.html
+Górski, K. M., Hivon, E., Banday, A. J., et al. 2005, The
+Astrophysical Journal, 622, 759, doi: 10.1086/427976
+Haas, R., Ott, C. D., Szilagyi, B., et al. 2016, Phys. Rev. D,
+93, 124062, doi: 10.1103/PhysRevD.93.124062
+He, K., Zhang, X., Ren, S., & Sun, J. 2015, Deep Residual
+Learning for Image Recognition
+Hooper, S. 2013, PhD thesis
+Kingma, D. P., Salimans, T., Jozefowicz, R., et al. 2016,
+Improving Variational Inference with Inverse
+Autoregressive Flow
+Kirichenko, P., Izmailov, P., & Wilson, A. G. 2020, Why
+Normalizing Flows Fail to Detect Out-of-Distribution
+Data
+Klimenko, S., Vedovato, G., Drago, M., et al. 2016, Phys.
+Rev. D, 93, 042004, doi: 10.1103/PhysRevD.93.042004
+Kovalam, M., Patwary, M. A. K., Sreekumar, A. K., et al.
+2022, The Astrophysical Journal Letters, 927, L9,
+doi: 10.3847/2041-8213/ac5687
+Littenberg, T. B., & Cornish, N. J. 2015, Phys. Rev. D, 91,
+084034, doi: 10.1103/PhysRevD.91.084034
+Lueckmann, J.-M., Goncalves, P. J., Bassetto, G., et al.
+2017, in Advances in Neural Information Processing
+Systems, ed. I. Guyon, U. V. Luxburg, S. Bengio,
+H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett,
+Vol. 30 (Curran Associates, Inc.).
+https://proceedings.neurips.cc/paper/2017/file/
+addfa9b7e234254d26e9c7f2af1005cb-Paper.pdf
+Magee, R., Chatterjee, D., Singer, L. P., et al. 2021, The
+Astrophysical Journal Letters, 910, L21,
+doi: 10.3847/2041-8213/abed54
+Metzger, B. D. 2017, Welcome to the Multi-Messenger Era!
+Lessons from a Neutron Star Merger and the Landscape
+Ahead
+Metzger, B. D., & Piro, A. L. 2014, Monthly Notices of the
+Royal Astronomical Society, 439, 3916,
+doi: 10.1093/mnras/stu247
+Most, E. R., & Philippov, A. A. 2020, The Astrophysical
+Journal Letters, 893, L6, doi: 10.3847/2041-8213/ab8196
+
+10
+Nicholl, M., Berger, E., Kasen, D., et al. 2017, The
+Astrophysical Journal Letters, 848, L18,
+doi: 10.3847/2041-8213/aa9029
+Nissanke, S., Kasliwal, M., & Georgieva, A. 2013, The
+Astrophysical Journal, 767, 124,
+doi: 10.1088/0004-637X/767/2/124
+Nitz, A., Harry, I., Brown, D., et al. 2021, gwastro/pycbc:
+1.18.0 release of PyCBC, v1.18.0, Zenodo,
+doi: 10.5281/zenodo.4556907
+Nitz, A. H., Schäfer, M., & Canton, T. D. 2020, The
+Astrophysical Journal Letters, 902, L29,
+doi: 10.3847/2041-8213/abbc10
+Papamakarios, G., & Murray, I. 2016, Fast ϵ-free Inference
+of Simulation Models with Bayesian Conditional Density
+Estimation
+Papamakarios, G., Pavlakou, T., & Murray, I. 2017, in
+Advances in Neural Information Processing Systems, ed.
+I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
+R. Fergus, S. Vishwanathan, & R. Garnett, Vol. 30
+(Curran Associates, Inc.).
+https://proceedings.neurips.cc/paper/2017/file/
+6c1da886822c67822bcf3679d04369fa-Paper.pdf
+Rezende, D. J., & Mohamed, S. 2015, Variational Inference
+with Normalizing Flows
+Sachdev, S., Caudill, S., Fong, H., et al. 2019, The GstLAL
+Search Analysis Methods for Compact Binary Mergers in
+Advanced LIGO’s Second and Advanced Virgo’s First
+Observing Runs
+Sachdev, S., Magee, R., Hanna, C., et al. 2020, The
+Astrophysical Journal Letters, 905, L25,
+doi: 10.3847/2041-8213/abc753
+Siegel, D. M., & Ciolfi, R. 2016, The Astrophysical Journal,
+819, 14, doi: 10.3847/0004-637X/819/1/14
+Singer, L. P., & Price, L. R. 2016, Phys. Rev. D, 93,
+024013, doi: 10.1103/PhysRevD.93.024013
+Sturani, R., Fischetti, S., Cadonati, L., et al. 2010,
+Phenomenological gravitational waveforms from spinning
+coalescing binaries
+Totani, T. 2013, Publications of the Astronomical Society
+of Japan, 65, L12, doi: 10.1093/pasj/65.5.L12
+Usman, S. A., Nitz, A. H., Harry, I. W., et al. 2016,
+Classical and Quantum Gravity, 33, 215004,
+doi: 10.1088/0264-9381/33/21/215004
+Wang, J.-S., Yang, Y.-P., Wu, X.-F., Dai, Z.-G., & Wang,
+F.-Y. 2016, The Astrophysical Journal Letters, 822, L7,
+doi: 10.3847/2041-8205/822/1/L7
+
diff --git a/B9E1T4oBgHgl3EQf9gbH/content/tmp_files/load_file.txt b/B9E1T4oBgHgl3EQf9gbH/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..29035a7ffa7b4ecaae470c8208e50aadd6977a01
--- /dev/null
+++ b/B9E1T4oBgHgl3EQf9gbH/content/tmp_files/load_file.txt
@@ -0,0 +1,783 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf,len=782
+page_content='Draft version January 10,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2023 Typeset using LATEX default style in AASTeX631 Pre-merger sky localization of gravitational waves from binary neutron star mergers using deep learning Chayan Chatterjee 1 and Linqing Wen 1 1Department of Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' OzGrav-UWA,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' The University of Western Australia,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 35 Stirling Hwy,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Crawley,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Western Australia 6009,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Australia ABSTRACT The simultaneous observation of gravitational waves (GW) and prompt electromagnetic counterparts from the merger of two neutron stars can help reveal the properties of extreme matter and gravity during and immediately after the final plunge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Rapid sky localization of these sources is crucial to facilitate such multi-messenger observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Since GWs from binary neutron star (BNS) mergers can spend up to 10-15 mins in the frequency bands of the detectors at design sensitivity, early warning alerts and pre-merger sky localization can be achieved for sufficiently bright sources, as demonstrated in recent studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' In this work, we present pre-merger BNS sky localization results using CBC-SkyNet, a deep learning model capable of inferring sky location posterior distributions of GW sources at orders of magnitude faster speeds than standard Markov Chain Monte Carlo methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' We test our model’s performance on a catalog of simulated injections from Sachdev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2020), recovered at 0-60 secs before merger, and obtain comparable sky localization areas to the rapid localization tool BAYESTAR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' These results show the feasibility of our model for rapid pre-merger sky localization and the possibility of follow-up observations for precursor emissions from BNS mergers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' INTRODUCTION The first direct detection of GWs from a merging binary black hole (BBH) system was made in 2015 (Abbott et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2016)), which heralded a new era in astronomy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Since then the LIGO-Virgo-KAGRA (LVK) Collaboration (Aasi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2015);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Acernese et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2014);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Akutsu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2019)) has made more than 90 detections of GWs from merging compact binaries (Abbott et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2021a)), including two confirmed detections from merging binary neutron stars (BNS) and at two from mergers of neutron star-black hole (NSBH) binaries (Abbott et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2021a,b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' The first detection of GWs from a BNS merger on August 17th, 2017 (GW170817) along with its associated electromagnetic (EM) counterpart revolutionized the field of multi-messenger astronomy (Abbott et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2017a)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' This event involved the joint detection of the GW signal by LIGO and Virgo, and the prompt short gamma-ray burst (sGRB) observation by the Fermi-GBM and INTEGRAL space telescopes (Abbott et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2017b,c)) ∼ 2 secs after the merger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' This joint observation of GWs and sGRB, along with the observations of EM emissions at all wavelengths for months after the event had a tremendous impact on astronomy, leading to – an independent measurement of the Hubble Constant (Abbott et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2017d)), new constraints on the neutron star equation of state (Abbott et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2019)) and confirmation of the speculated connection between sGRB and kilonovae with BNS mergers (Abbott et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2017b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' While more multi-messenger observations involving GWs are certainly desirable, the typical delays between a GW detection and the associated GCN alerts, which is of the order of a few minutes (Magee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2021)), makes such joint discoveries extremely challenging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' This is because the prompt EM emissions lasts for just 1-2 secs after merger, which means an advance warning system with pre-merger sky localization of such events is essential to enable joint GW and EM observations by ground and space-based telescopes (Haas et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2016);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Nissanke et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2013);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Dyer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2022)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' In recent years, several studies have shown that for a fraction of BNS events, it will be possible to issue alerts up to 60 secs before merger (Magee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2021);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Sachdev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2020);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Kovalam et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2022);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Nitz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2020)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Such early-warning detections, along with pre-merger sky localizations will facilitate rapid EM follow-up of prompt emissions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' The observations of optical and ultraviolet emissions prior to mergers are necessary for understanding r-process nucleosynthesis (Nicholl et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2017)) and shock-heated ejecta (Metzger (2017)) post mergers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Prompt X- ray emission can reveal the final state of the remnant (Metzger & Piro (2014);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Bovard et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2017);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Siegel & Ciolfi (2016)), and early radio observations can reveal pre-merger magnetosphere interactions (Most & Philippov (2020)), arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='03558v1 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='HE] 30 Dec 2022 ID2 and help test theories connecting BNS mergers with fast radio bursts (Totani (2013);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2016);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Dokuchaev & Eroshenko (2017)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' In the last three LVK observation runs, five GW low-latency detection pipelines have processed data and sent out alerts in real-time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' These pipelines are GstLAL (Sachdev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2019)), SPIIR (Chu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2022)), PyCBC (Usman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2016)), MBTA (Aubin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2021)), and cWB (Klimenko et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2016)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Of these, the first four pipelines use the technique of matched filtering (Hooper (2013)) to identify real GW signals in detector data, while cWB uses a coherent analysis to search for burst signals in detector data streams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' In 2020, an end-to-end mock data challenge (Magee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2021)) was conducted by the GstLAL and SPIIR search pipelines and successfully demonstrated their feasibility to send pre-merger alerts (Magee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2021)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' This study also estimated the expected rate of BNS mergers and their sky localization areas using the rapid localization tool, BAYESTAR (Singer & Price (2016)) using a four detector network consisting of LIGO Hanford (H1), LIGO Livingston (L1), Virgo (V1) and KAGRA in O4 detector sensitivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' In a previous study, Sachdev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2020) (Sachdev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2020)) showed early warning performance of the GstLAL pipeline over a month of simulated data with injections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Their study suggested that alerts could be issued 10s (60 s) before merger for 24 (3) BNS systems over the course of one year of observations of a three-detector Advanced network operating at design sensitivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' These findings were in broad agreement with the estimates of Cannon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2012) (Cannon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2012)) on the rates of early warning detections at design sensitivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Sky localization was also obtained at various number of seconds before merger, using the online rapid sky localization software called BAYESTAR (Singer & Price (2016)), with the indication that around one event will be both detected before merger and localized within 100 deg2, based on current BNS merger rate estimates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' The online search pipelines, however, experience additional latencies owing to data transfer, calibration and filtering processes, which contribute up to 7-8 secs of delay in the publication of early warning alerts (Kovalam et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2022);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Sachdev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2020)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' For sky localization, BAYESTAR typically takes 8 secs to produce skymaps, which is expected to reduce to 1-2 secs in the third observation run.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' This latency can, however, be potentially reduced further by the application of machine learning techniques, as demonstrated in Chatterjee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2022) (Chatterjee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2022)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' In this Letter, we report pre-merger sky localization using deep learning for the first time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' We obtain our results using CBC-SkyNet (Compact Binary Coalescence - Sky Localization Neural Network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' ), a normalizing flow model (Rezende & Mohamed (2015);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Kingma et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2016);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Papamakarios et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2017)) for sky localization of all types of compact binary coalescence sources (Chatterjee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2022)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' We test our model on simulated BNS events from the injection catalog in Sachdev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2020) (Sachdev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2020)), that consists of signals detected at 0 to 60 secs before merger using the GstLAL search pipeline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' We compare our sky localization performance with BAYESTAR and find that our localization contours have comparable sky contour areas with BAYESTAR, at an inference speed of just a few milli-seconds using a P100 GPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' The paper is divided as follows: we briefly describe our normalizing flow model in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' In Section 3, we describe the details of the simulations used to generate the training and test sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' In Section 4, we desribe our architecture of CBC-SkyNet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' In Section 5, we discuss results obtained using our network on the dataset from Sachdev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2020) (Sachdev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2020)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Finally, we discuss future directions of this research in Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' METHOD Our neural network, CBC-SkyNet is based on a class of deep neural density estimators called normalizing flow, the details of which is provided in (Chatterjee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2022)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' CBC-SkyNet consists of three main components: (i) the normalizing flow, specifically, a Masked Autoregressive Flow (MAF) (Kingma et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2016);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Papamakarios et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2017)) network, (ii) a ResNet-34 model (He et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2015)) that extracts features from the complex signal-to-noise (SNR) time series data which is obtained by matched filtering GW strains with BNS template waveforms, and (iii) a fully connected neural network whose inputs are the intrinsic parameters (component masses and z-component of spins) of the templates used to generate the SNR time series by matched filtering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' The architecture of our model is shown in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' The features extracted by the ResNet-34 and fully connected networks from the SNR time series (ρ(t)) and best-matched intrinsic parameters (ˆθin) respectively, are combined into a single feature vector and passed as a conditional input to the MAF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' The MAF is a normalizing flow with a specific architecture, that transforms a simple base distribution (a multi-variate Gaussian) z ∼ p(z) into a more complex target distribution x ∼ p(x) which in our case, is the posterior distribution of the right ascension (α) and declination angles (δ) of the GW events, given the SNR time series and intrinsic parameters p(α, δ|ρ(t), ˆθin).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 3 Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Architecture of our model, CBC-SkyNet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' The input data, consisting of the SNR time series, ρ(t) and intrinsic parameters, ˆθin are provided to the network through two separate channels: the ResNet-34 channel (only one ResNet block is shown here) and the multi-layered fully connected (Dense) network respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' The features extracted by ρ(t) and ˆθin are then combined and provided as conditional input to the main component of CBC-SkyNet - the Masked Autoregressive Flow (MAF) network , denoted by f(z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' The MAF draws samples, z, from a multivariate Gaussian, and learns a mapping between z to (α, δ), which are the right ascension and declination angles of the GW events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' This mapping is learnt by the flow during training using the method of maximum likelihood, and can be expressed as: p(x) = π(z) ����det∂f(z) ∂z ���� −1 , (1) If z is a random sample drawn from the base distribution π(z), and f is the invertible transformation parametrized by the normalizing flow, then the new random variable obtained after the transformation is x = f(z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' The transformation, f can be made more flexible and expressive by stacking a chain of transformations together as follows: xk = fk ◦ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' ◦ f1 (z0) (2) This helps the normalizing flow learn arbitrarily complex distributions, provided each of the transformations are invertible and the Jacobians are easy to evaluate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Neural posterior estimation (NPE) (Papamakarios & Murray (2016);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Lueckmann et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2017);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Greenberg et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2019)) techniques, including normalizing flows and conditional variational autoencoders have been used to estimate posterior distribution of BBH source parameters with high accuracy and speed (Dax et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2021);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Gabbard et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2022);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Chua & Vallisneri (2020)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Chatterjee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2022) (Chatterjee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2022)) used a normalizing flow to demonstrate rapid inference of sky location posteriors for all CBC sources for the first time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' This work shows the first application of deep learning for pre-merger BNS sky localization and is an extension of the model introduced in Chatterjee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2022) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' DATA GENERATION Hanford Livingston Virgo Conv 2D Dense (64) BatchNorm ReLU Conv2D Dense (64) Conv 2D BatchNorm Dense (64) BatchNorm Dense (64) Dense (64) ReLU 90% area: 121 deg 50% area: 34 deg 60* Pz(z) Feature Vector f(z) 30° 2 z ~ N(0, 1)D+1 α, S ~ Pe(α, Slp(t), θin)4 We train six different versions of CBC-SkyNet with distinct training sets (ρi(t), ˆθi in) for each “negative latency", i = 0, 10, 14, 28, 44, 58 secs before merger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Our training and test set injections parameters were sampled from the publicly available injection dataset used in Sachdev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2020) Sachdev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' These ˆθi in parameters were used to first simulate the BNS waveforms using the SpinTaylorT4 approximant (Sturani et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2010)) and then injected into Gaussian noise with advanced LIGO power spectral density (PSD) at design sensitivity (Littenberg & Cornish (2015)) to obtain the desired strains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' The SNR time series, ρi(t), was then obtained by matched filtering the simulated BNS strains with template waveforms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' For generating the training sets, the template waveforms for matched filtering were simulated using the optimal parameters, which have the exact same values as the injection parameters used to generate the detector strains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' The SNR time series obtained by matched filtering the strains with the optimal templates, ρi opt(t), and the optimal intrinsic parameters, ˆθi,opt in , were then used as input to our network during the training process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' For testing, the template parameters were sampled from publicly available data by Sachdev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2020) (Sachdev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2020)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' These parameters correspond to the parameters of the maximum likelihood or ‘best-matched’ signal template recovered by the GstLAL matched-filtering search pipeline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Therefore the values of ˆθi in used during testing are close to, but is not the exact same as ˆθi,opt in .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Similarly, the SNR time series ρi(t) is not exactly similar to the optimal ρi opt(t), and has a slightly lower peak amplitude than the corresponding ρi opt(t) peak because of the small mismatch between the injection parameters and the best-matched template waveform parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' While our injections have the same parameter distribution as (Sachdev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2020)), we only choose samples with network SNRs lying between 9 and 40, at each negative latency, for this analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' This is because when the network is trained on samples with identical parameter distributions as the dataset from (Sachdev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2020)), our model’s predictions on test samples with network SNRs > 40 tend to become spurious, with α and δ samples drawn from the predicted posterior distribution for these events having values outside their permissible ranges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' This is because in the dataset from (Sachdev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2020)), injection samples with SNR > 40 are much fewer in number compared to samples between SNR 9 and 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' This means for models trained on data with parameters from (Sachdev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2020)), there exists very few training examples for SNR > 40 to learn from.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Since Normalizing Flow models are known to fail at learning out-of-distribution data, as described in (Kirichenko et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2020)), our model fails to make accurate predictions at the high SNR limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Although this can potentially be solved by generating training sets with uniform SNR distribution over the entire existing SNR range in (Sachdev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2020)), which corresponds to a uniform distribution of sources in comoving volume up to a redshift of z=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='2, this would be require generating an unfeasibly large number of training samples for each negative latency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Also, such events detected with SNR > 40 are expected to be exceptionally rare, even at design sensitivities of advanced LIGO and Virgo, which is why we choose to ignore them for this study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' We therefore generate samples with uniformly distributed SNRs between 9 and 40 for training, while our test samples have the same SNR distribution as (Sachdev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2020)) between 9 and 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' NETWORK ARCHITECTURE In this section, we describe the architecture of the different components of our model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' The MAF is implemented using a neural network that is designed to efficiently model conditional probability densities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' This network is called Masked Autoencoder for Density Estimation (MADE) (Germain et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2015)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' We stack 10 MADE blocks together to make a sufficiently expressive model, with each MADE block consisting of 5 layers with 256 neurons in each layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' In between each pair of MADE networks, we use batch normalization to stabilize training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' We use a ResNet-34 model (He et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2015)), that is constructed using 2D convolutional and MaxPooling layers with skip connections, (He et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2015)) to extract features from the SNR time series data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' The real and imaginary parts of the SNR time series are stacked vertically to generate a two dimensional input data stream for each training and test sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' The initial number of kernels for the convolutional layers of the ResNet model is chosen to be 32, which is doubled progressively through the network (He et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2015)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' The final vector of features obtained by the ResNet are combined with the features extracted from the intrinsic parameters, ˆθi in, by the fully-connected network, consisting of 5 hidden layers with 64 neurons in each hidden layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' The combined feature vector is then passed as a conditional input to the MAF which learns the mapping between the base and target distributions during training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' RESULTS In this section, we describe the results of the injection runs at each negative latency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Figure 2 (a) to (f) shows the histograms of the areas of the 90% credible intervals of the predicted posterior distributions from CBC-SkyNet 5 (blue) and BAYESTAR (orange), evaluated on the injections in (Sachdev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2020)) with network SNRs between 9 and 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' We observe that for most of the test sets, our model predicts smaller median 90% credible interval areas than BAYESTAR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Also, BAYESTAR shows much broader tails at < 100 deg2, compared to CBC-SkyNet, especially for 0 secs, 10 secs and 15 secs before merger (Figures 2 (a), (b) and (c)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' These injections, with 90% areas < 100 deg2 typically have SNR > 25, which shows that although CBC-SkyNet produces smaller 90 % contours on average, it fails to match BAYESTAR’s accuracy for high SNR cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Especially at 0 secs before merger (Figure 2 (a)), the area of the smallest 90% credible interval by CBC-SkyNet is 13 deg2, whereas for BAYESTAR, it is around 1 deg2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' The number of injections localized with a 90% credible interval area between 10 - 15 deg2 by CBC-SkyNet is also much lower than BAYESTAR, although this effect is much less prominent for the other test sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Similar results are found for the searched area distributions at 0 secs before merger (Figure 3 (a)), although the distributions of searched areas from for all other cases (Figure 3 (b) - (f)) from CBC-SkyNet and BAYESTAR are very similar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Figures 4 (a) and (b) show box and whisker plots for 90% credible interval areas and searched areas obtained by CBC-SkyNet (blue) and BAYESTAR (pink) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' We observe that our median 90% areas (white horizontal lines) for most of the cases are smaller than BAYESTAR’s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' A possible explanation for these observations is as follows: BAYESTAR uses an adaptive sampling method (Singer & Price (2016)) to evaluate the densities, in which the posterior probability is first evaluated over Nside,0 = 16 HEALPix grids (Górski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2005)), corresponding to a single sky grid area of 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='4 deg2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' The highest probability grids are then adaptively subdivided into smaller grids over which the posterior is evaluated again.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' This process is repeated seven times, with the highest possible resolution at the end of the iteration being Nside = 211, with an area of ∼ 10−3 deg2 for the smallest grid (Singer & Price (2016)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' This adaptive sampling process, however, takes much longer to evaluate, compared to conventional evaluation over a uniform angular resolution in the sky.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' This is why for our analysis, we do not adopt the adaptive sampling process, since our primary aim is to improve the speed of pre-merger sky localization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Instead, we draw 5000 α and δ posterior samples each, from our model’s predicted posterior and then apply a 2-D Kernel Density Estimate (KDE) over these samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' We then evaluate the KDE over Nside,0 = 32 HEALPix grids, corresponding to a single grid area of ∼ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='3 deg2 to obtain our final result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Therefore, our chosen angular resolution results in sky grids which are much larger than BAYESTAR’s smallest sky grids after adaptive refinement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Therefore our approach results in larger 90% contours and searched areas than BAYESTAR for high network SNR cases where the angular resolution has a more significant impact in the overall result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' The sampling process adopted by us may also explain why our median areas are smaller compared to BAYESTAR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' During inference, after sampling α and δ from the predicted posterior, we evaluate the KDE with a fixed bandwidth of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='03, chosen by cross-validation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' This may result in a narrower contour estimate, on average, compared to BAYESTAR’s sampling method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Figures 5 (a) - (f) show P-P plots for a subset of injections at 0 secs, 10 secs, 15 secs, 28 secs, 44 secs and 58 secs before merger respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' To obtain the P-P plots, we compute the percentile scores of the true right ascension and declination parameters within their marginalized posteriors and obtain the cumulative distribution of these scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' For accurate posteriors, the distribution of the percentile scores should be uniform, which means the cumulative distribution should be diagonal, which is evident from the figures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' We also perform Kolmogorov-Smirnoff (KS) tests for each dataset to test our hypothesis that the percentile values for each set are uniformly distributed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' The p-values from the KS tests, shown in the legend, for each parameter have values > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='05, which means at a 95% level of significance, we cannot reject the null hypothesis that the percentile values are uniform, and thereby our posteriors are consistent with the expected distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Because of the low dimensionality of our input data, training our network takes less than an hour on a NVIDIA Tesla P100 GPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Overall the sampling and evaluation step during inference takes a few milli-seconds for each injection on the same computational resource.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Sample generation and matched filtering was implemented with a modified version of the code developed by (Gebhard et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2019)) that uses PyCBC software (Nitz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2021)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' CBC-SkyNet was written in TensorFlow 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='4 (Abadi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (2016)) using the Python language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' DISCUSSION In summary, we have reported the first deep learning based approach for pre-merger sky localization of BNS sources, capable of orders of magnitude faster inference than Bayesian methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Currently our model’s accuracy is similar to BAYESTAR on injections with network SNR between 9 and 40 at design sensitivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' The next step in this research would be to perform similar analysis on real detector data which has non-stationary noise and glitches that may corrupt 6 (a) (b) (c) (d) (e) (f) Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Top panel from (a) to (c): Histograms of the areas of the 90% credible intervals from CBC-SkyNet (blue) and BAYESTAR (orange) for 0 secs, 10 secs, 15 secs before merger are shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Bottom panel from (d) to (f): Similar histograms for 28 secs, 44 secs and 58 secs before merger are shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' the signal and affect detection and sky localization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' A possible way to improve our model’s performance at high SNRs (> 25) would be to use a finer angular resolution in the sky for evaluating the posteriors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' We can also train different versions of the model for different luminosity distance (and hence SNR) ranges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Our long-term goal is to construct an independent machine learning pipeline for pre-merger detection and localization of GW sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' The faster inference speed of machine learning models would be crucial for electromagnetic follow-up and observation of prompt and precursor emissions from compact binary mergers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' This method is also scalable and can be applied for predicting the luminosity distance of the sources pre-merger, which would help obtain volumetric localization of the source and potentially identify host galaxies of BNS mergers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' The authors would like to thank Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Foivois Diakogiannis, Kevin Vinsen, Prof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Amitava Datta and Damon Beveridge for useful comments on this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' This research was supported in part by the Australian Research Council Centre of Excellence for Gravitational Wave Discovery (OzGrav, through Project No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' CE170100004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' This research was under- taken with the support of computational resources from the Pople high-performance computing cluster of the Faculty of Science at the University of Western Australia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' This work used the computer resources of the OzStar computer cluster at Swinburne University of Technology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' The OzSTAR program receives funding in part from the Astronomy National Collaborative Research Infrastructure Strategy (NCRIS) allocation provided by the Australian Government.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' This research used data obtained from the Gravitational Wave Open Science Center (https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='gw-openscience.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='org), a service of LIGO Laboratory, the LIGO Scientific Collaboration and the Virgo Collaboration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' LIGO is funded by the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' National Science Foundation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Virgo is funded by the French Centre National de Recherche Scientifique (CNRS), the Italian Istituto Nazionale della Fisica Nucleare (INFN) and the Dutch Nikhef, with contributions by Polish and Hungarian institutes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' This material is based upon work supported by NSF’s LIGO Laboratory which is a major facility fully funded by the National Science Foundation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 1 2 3 4 5 6 7 8 9 10 11 12 13 REFERENCES Aasi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Abbott, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Abbott, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2015, Classical and Quantum Gravity, 32, 074001, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='1088/0264-9381/32/7/074001 Abadi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Agarwal, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Barham, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2016, TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems CBC-SkyNet 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='8 Bayestar 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='6 Density 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0 0 1 2 3 4 90% credible interval area in log (deg2)1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='2 CBC-SkyNet Bayestar 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='8 Density 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0 1 2 3 4 90% credible interval area in log (deg2)CBC-SkyNet 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='25 Bayestar 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='00 Density 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='00 2 1 3 4 90% credible interval area in log (deg2)CBC-SkyNet Bayestar 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='5 Density 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0 1 2 3 4 90% credible interval area in log (deg2)CBC-SkyNet Bayestar 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='5 Density 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0 1 2 3 4 90% credible interval area in log (deg2)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0 CBC-SkyNet Bayestar 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='5 Density 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0 1 2 3 4 90% credible interval area in log (deg2)7 (a) (b) (c) (d) (e) (f) Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Top panel from (a) to (c): Histograms of the searched areas from CBC-SkyNet (blue) and BAYESTAR (orange) for 0 secs, 10 secs, 15 secs before merger are shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Bottom panel from (d) to (f): Similar histograms for 28 secs, 44 secs and 58 secs before merger are shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (a) (b) Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (a) Box and whiskers plots showing the areas of the 90% credible intervals from CBC-SkyNet (blue) and BAYESTAR (pink) at 0 secs, 10 secs, 15 secs, 28 secs, 44 secs and 58 secs before merger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' The boxes encompass 95% of the events and the whiskers extend up to the rest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' The white lines within the boxes represent the median values of the respective data sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (b) Similar box and whiskers plot as (a) for comparing searched areas from CBC-SkyNet (blue) and BAYESTAR (pink) at 0 secs, 10 secs, 15 secs, 28 secs, 44 secs and 58 secs before merger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='6 CBC-SkyNet Bayestar 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='4 Density 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0 4 2 0 2 4 Searched area in log (deg2)0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='6 CBC-SkyNet Bayestar 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='4 Density 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0 4 2 0 2 4 Searched area in log (deg2)0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='6 CBC-SkyNet Bayestar 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='4 Density 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0 4 2 0 2 4 Searched area in log (deg2)CBC-SkyNet Bayestar 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='4 Density 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0 4 2 0 2 4 Searched area in log (deg2)0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='6 CBC-SkyNet Bayestar 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='4 Density 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0 4 2 0 2 4 Searched area in log (deg2)104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2 in deg area 103 90% credible interval 102 CBC-SkyNet 101 Bayestar 10 15 28 44 58 0 Time from merger (in secs)104 103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2 6 p Searched area in 102 101 S 100 CBC-SkyNet Bayestar 10 15 28 44 58 0 Time from merger (in secs)CBC-SkyNet 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='6 Bayestar 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='5 Density 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0 4 2 0 2 4 Searched area in log (deg2)8 (a) (b) (c) (d) (e) (f) Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' (a) to (f): P–P plots for a subset of the total number of test samples at 0 secs, 10 secs, 15 secs, 28 secs, 44 secs and 58 secs before merger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' We compute the percentile values (denoted as p) of the true right ascension and declination parameters within their 1D posteriors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' The figure shows the cumulative distribution function of the percentile values, which should lie close to the diagonal if the network is performing properly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' The p-values of the KS test for each run is shown in the legend.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0 RA(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='101) Dec (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0571) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='8 Cumulative distribution 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0 p1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0 RA (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='817) Dec (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='325) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='8 Cumulative distribution 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0 p1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0 RA (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='829) Dec (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='188) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='8 Cumulative distribution 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0 p1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0 RA(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0891) Dec (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='441) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='8 Cumulative distribution 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0 p1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0 RA (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0745) Dec (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='122) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='8 Cumulative distribution 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0 p1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0 RA (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='338) Dec (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='147) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='8 Cumulative distribution 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0 p9 Abbott, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Abbott, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Abbott, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2016, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', 116, 061102, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='116.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='061102 —.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2017a, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', 119, 161101, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='119.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='161101 —.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2017b, The Astrophysical Journal Letters, 848, L12, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='3847/2041-8213/aa91c9 —.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2017c, The Astrophysical Journal Letters, 848, L13, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='3847/2041-8213/aa920c —.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2017d, Nature, 551, 85, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='1038/nature24471 —.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2019, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' X, 9, 011001, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='1103/PhysRevX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='011001 Abbott, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Abbott, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Acernese, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2021a, GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run Abbott, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Abbott, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Abraham, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2021b, The Astrophysical Journal Letters, 915, L5, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='3847/2041-8213/ac082e Acernese, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Agathos, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Agatsuma, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2014, Classical and Quantum Gravity, 32, 024001, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='1088/0264-9381/32/2/024001 Akutsu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Ando, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Arai, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2019, Nature Astronomy, 3, 35, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='1038/s41550-018-0658-y Aubin, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Brighenti, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Chierici, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2021, Classical and Quantum Gravity, 38, 095004, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='1088/1361-6382/abe913 Bovard, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Martin, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Guercilena, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2017, 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='osti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='gov/pages/biblio/1415425 Cannon, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Cariou, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Chapman, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2012, The Astrophysical Journal, 748, 136, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='1088/0004-637X/748/2/136 Chatterjee, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Wen, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Beveridge, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Diakogiannis, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', & Vinsen, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2022, Rapid localization of gravitational wave sources from compact binary coalescences using deep learning Chu, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Kovalam, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Wen, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2022, PhRvD, 105, 024023, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='024023 Chua, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', & Vallisneri, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2020, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', 124, 041102, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='124.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='041102 Dax, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Green, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Gair, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2021, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', 127, 241103, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='127.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='241103 Dokuchaev, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', & Eroshenko, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2017 Dyer, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Ackley, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Lyman, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2022, in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='SPIE, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 12182, The Gravitational-wave Optical Transient Observer (GOTO), 121821Y, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='1117/12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='2629369 Gabbard, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Messenger, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Heng, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Tonolini, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', & Murray-Smith, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2022, Nature Physics, 18, 112, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='1038/s41567-021-01425-7 Gebhard, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Kilbertus, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Harry, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', & Schölkopf, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2019, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' D, 100, 063015, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='063015 Germain, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Gregor, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Murray, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', & Larochelle, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2015 Greenberg, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Nonnenmacher, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', & Macke, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2019, in Proceedings of Machine Learning Research, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 97, Proceedings of the 36th International Conference on Machine Learning, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Chaudhuri & R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Salakhutdinov (PMLR), 2404–2414.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' https://proceedings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='mlr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='press/v97/greenberg19a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='html Górski, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Hivon, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Banday, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2005, The Astrophysical Journal, 622, 759, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='1086/427976 Haas, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Ott, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Szilagyi, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2016, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' D, 93, 124062, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='124062 He, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Zhang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Ren, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', & Sun, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2015, Deep Residual Learning for Image Recognition Hooper, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2013, PhD thesis Kingma, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Salimans, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Jozefowicz, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2016, Improving Variational Inference with Inverse Autoregressive Flow Kirichenko, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Izmailov, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', & Wilson, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2020, Why Normalizing Flows Fail to Detect Out-of-Distribution Data Klimenko, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Vedovato, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Drago, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2016, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' D, 93, 042004, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='042004 Kovalam, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Patwary, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Sreekumar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2022, The Astrophysical Journal Letters, 927, L9, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='3847/2041-8213/ac5687 Littenberg, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', & Cornish, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2015, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' D, 91, 084034, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='084034 Lueckmann, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Goncalves, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Bassetto, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2017, in Advances in Neural Information Processing Systems, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Guyon, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Luxburg, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Bengio, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Wallach, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Fergus, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Vishwanathan, & R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Garnett, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 30 (Curran Associates, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' https://proceedings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='neurips.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='cc/paper/2017/file/ addfa9b7e234254d26e9c7f2af1005cb-Paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='pdf Magee, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Chatterjee, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Singer, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2021, The Astrophysical Journal Letters, 910, L21, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='3847/2041-8213/abed54 Metzger, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2017, Welcome to the Multi-Messenger Era!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Lessons from a Neutron Star Merger and the Landscape Ahead Metzger, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', & Piro, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2014, Monthly Notices of the Royal Astronomical Society, 439, 3916, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='1093/mnras/stu247 Most, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', & Philippov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2020, The Astrophysical Journal Letters, 893, L6, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='3847/2041-8213/ab8196 10 Nicholl, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Berger, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Kasen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2017, The Astrophysical Journal Letters, 848, L18, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='3847/2041-8213/aa9029 Nissanke, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Kasliwal, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', & Georgieva, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2013, The Astrophysical Journal, 767, 124, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='1088/0004-637X/767/2/124 Nitz, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Harry, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Brown, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2021, gwastro/pycbc: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0 release of PyCBC, v1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='0, Zenodo, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='5281/zenodo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='4556907 Nitz, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Schäfer, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', & Canton, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2020, The Astrophysical Journal Letters, 902, L29, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='3847/2041-8213/abbc10 Papamakarios, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', & Murray, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2016, Fast ϵ-free Inference of Simulation Models with Bayesian Conditional Density Estimation Papamakarios, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Pavlakou, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', & Murray, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2017, in Advances in Neural Information Processing Systems, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Guyon, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Luxburg, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Bengio, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Wallach, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Fergus, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Vishwanathan, & R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Garnett, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 30 (Curran Associates, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' https://proceedings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='neurips.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='cc/paper/2017/file/ 6c1da886822c67822bcf3679d04369fa-Paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='pdf Rezende, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', & Mohamed, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2015, Variational Inference with Normalizing Flows Sachdev, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Caudill, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Fong, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2019, The GstLAL Search Analysis Methods for Compact Binary Mergers in Advanced LIGO’s Second and Advanced Virgo’s First Observing Runs Sachdev, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Magee, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Hanna, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2020, The Astrophysical Journal Letters, 905, L25, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='3847/2041-8213/abc753 Siegel, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', & Ciolfi, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2016, The Astrophysical Journal, 819, 14, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='3847/0004-637X/819/1/14 Singer, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', & Price, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2016, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' D, 93, 024013, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='024013 Sturani, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Fischetti, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Cadonati, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2010, Phenomenological gravitational waveforms from spinning coalescing binaries Totani, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2013, Publications of the Astronomical Society of Japan, 65, L12, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='1093/pasj/65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='L12 Usman, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Nitz, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Harry, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2016, Classical and Quantum Gravity, 33, 215004, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='1088/0264-9381/33/21/215004 Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Yang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Wu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', Dai, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='-G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=', & Wang, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content=' 2016, The Astrophysical Journal Letters, 822, L7, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
+page_content='3847/2041-8205/822/1/L7' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQf9gbH/content/2301.03558v1.pdf'}
diff --git a/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf b/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..805fe4df4bd8455131bf8c337bd74a23940a536f
--- /dev/null
+++ b/B9E4T4oBgHgl3EQfFQzj/content/2301.04885v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:539c3c373277403f6a408828805329e11a5e973396257197f07b97259f641970
+size 1279791
diff --git a/B9E4T4oBgHgl3EQfFQzj/vector_store/index.pkl b/B9E4T4oBgHgl3EQfFQzj/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..c3c8f3f519b4d902d5d463d2297336d32ef3870d
--- /dev/null
+++ b/B9E4T4oBgHgl3EQfFQzj/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:dd1980d7e48b9e5feccf9365ca03aa32f1794aa3d708d8a8b993a668ed2b9dc5
+size 73699
diff --git a/CdAzT4oBgHgl3EQfGftE/content/2301.01028v1.pdf b/CdAzT4oBgHgl3EQfGftE/content/2301.01028v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..7fa7d308ec22c5cd07f7042b31006da43a043997
--- /dev/null
+++ b/CdAzT4oBgHgl3EQfGftE/content/2301.01028v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:814f31820af1c6783d01ffc3510e7611218283e34e9b9fdad229ea6078553e5f
+size 13147693
diff --git a/DNAzT4oBgHgl3EQfGfv5/vector_store/index.faiss b/DNAzT4oBgHgl3EQfGfv5/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..f3378bed9f495b4d028b5d3814c296f12ff71109
--- /dev/null
+++ b/DNAzT4oBgHgl3EQfGfv5/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:716a9e7e1511e4b06a884118b9af2b201a4e5ab6ee650759a3a5031d447e5a71
+size 2228269
diff --git a/DtAzT4oBgHgl3EQfGvt3/content/tmp_files/2301.01033v1.pdf.txt b/DtAzT4oBgHgl3EQfGvt3/content/tmp_files/2301.01033v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..30031dfe4d1141cefdd2e3194663f6b67654d323
--- /dev/null
+++ b/DtAzT4oBgHgl3EQfGvt3/content/tmp_files/2301.01033v1.pdf.txt
@@ -0,0 +1,4876 @@
+Ca’ Foscari University
+Department of Environmental Sciences,
+Informatics and Statistics
+Dissecting Continual Learning
+a Structural and Data Analysis
+Ph.D. Thesis - Computer Science
+XXXIV Cycle
+Submitted by:
+Pelosin Francesco
+Supervisor:
+Prof. Torsello Andrea
+Venice, Italy - March, 2022
+arXiv:2301.01033v1 [cs.CV] 3 Jan 2023
+
+G
+.
+E
+DOMODissecting continual learning: a structural and data analysis
+2
+Chapter 0
+
+Abstract
+Deep Learning aims to discover how artificial neural networks learn the rich inter-
+nal representations required for difficult tasks such as recognizing objects or under-
+standing language. This hard question is still unanswered although we are constantly
+improving the performance of such systems spanning from computer vision problems
+to natural language processing tasks. Continual Learning (CL) is a field dedicated
+in devising algorithms able to achieve lifelong learning by overcoming the knowledge
+disruption of previously acquired concepts, a phenomenon that affects deep learn-
+ing architectures and that goes by the name of catastrophic forgetting. Currently,
+deep learning methods can achieve outstanding results when the data modeled does
+not undergo a considerable distribution shift in subsequent learning sessions, but as
+we expose the systems to such incremental setting, performance abruptly drops due
+to catastrophic forgetting. As the data generated in the world is continuously in-
+creasing, the demand to model such streams in a sequential fashion is increasing.
+As such, devising techniques to prevent knowledge corruption in neural networks
+is fundamental. Overcoming such limitations would allow us to build truly intelli-
+gent systems showing adaptability and human-like quality. Secondly, it would allow
+us to overcome the limitation, and onerous aspect, of retraining the architectures
+from scratch with the updated data. Such drawback comes from how deep neural
+networks learn, that is, they require several parameter updates to learn any given
+concept. This is also the exact reason why catastrophic forgetting happens, as we
+learn new concepts we overwrite old ones, while a truly intelligent system would show
+a stability-plasticity optimal trade-off. In this thesis, we first describe the background
+needed to understand continual learning in the computer vision realm. We do so with
+the introduction of a notation and a formal description of the problem. Then, we will
+introduce several CL setting variants and main solution categories proposed in the
+literature, along with an analysis of the state-of-the-art. We then first analyze one
+of the baseline approaches to continual learning and discover that in rehearsal-based
+techniques the quantity of data stored is a more important factor than the quality
+of memorized data. This trade-off surprisingly holds even for impressively high com-
+pression rates of the data. Secondly, this thesis proposes one of the early works on
+the study of incremental learning on vision transformer architectures (ViTs). In par-
+ticular, we will compare functional, weight, and attention regularization approaches
+for the challenging rehearsal-free CL. We then propose an asymmetric loss variant
+inspired by PODNet, achieving good capabilities in terms of plasticity. Among these
+contributions, we propose a simple, but effective baseline for off-the-shelf continual
+learning exploiting pretrained models and discuss its extension to unsupervised con-
+tinual learning, a topic that deserves further attention from the community. As the
+final work, we introduce a novel algorithm able to explore the environment through
+unsupervised visual pattern discovery.
+We then provide a conclusion and discuss
+further developments and promising paths to be followed by the CL research.
+Chapter 0
+3
+
+Dissecting continual learning: a structural and data analysis
+4
+Chapter 0
+
+Akwnowledgments
+First, I would like to express my gratitude to my supervisor Andrea Torsello, for all
+the deep insights and for welcoming me to pursue this research with him.
+Secondly, I would like to thank all the people that I encountered throughout these
+years, especially colleagues and friends that I met, a personal acknowledgment to
+Alessandro, Seyum, Fatima, and also the friends I met in Spain Hect´or, Laura, and
+Albin. I would also like to say thank everyone that loved me during this period, you
+gave me the strength to carry on this tough journey!
+Lastly, I would say that I learned a lot during these years, and the force that moved
+me to pursue a Ph.D., is the same force that allows us to expand and look for
+answers, to find meanings, and to unfold something beautiful.
+‘‘You’re pretty good’’
+Chapter 0
+5
+
+Dissecting continual learning: a structural and data analysis
+6
+Chapter 0
+
+Contents
+1
+Introduction
+9
+2
+Background and Motivation
+13
+2.1
+Artificial vs Natural Intelligence . . . . . . . . . . . . . . . . . . . .
+14
+2.2
+What is Continual Learning? . . . . . . . . . . . . . . . . . . . . .
+17
+2.2.1
+Stability-Plasticity Dilemma
+. . . . . . . . . . . . . . . . .
+19
+2.2.2
+Catastrophic Forgetting
+. . . . . . . . . . . . . . . . . . .
+20
+2.2.3
+A Visual Example . . . . . . . . . . . . . . . . . . . . . . .
+20
+3
+Continual Learning Framework
+25
+3.1
+Definition and Settings . . . . . . . . . . . . . . . . . . . . . . . .
+26
+3.1.1
+Online CL vs Offline CL
+. . . . . . . . . . . . . . . . . . .
+28
+3.1.2
+Task-Incremental vs Class-Incremental . . . . . . . . . . . .
+29
+3.2
+Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+30
+3.2.1
+Cumulative
+. . . . . . . . . . . . . . . . . . . . . . . . . .
+31
+3.2.2
+Finetuning . . . . . . . . . . . . . . . . . . . . . . . . . . .
+32
+7
+
+Dissecting continual learning: a structural and data analysis
+3.3
+State-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+33
+3.3.1
+Structural-based
+. . . . . . . . . . . . . . . . . . . . . . .
+33
+3.3.2
+Regularization-based . . . . . . . . . . . . . . . . . . . . .
+34
+3.3.3
+Rehearsal-based . . . . . . . . . . . . . . . . . . . . . . . .
+35
+4
+Works
+37
+4.1
+Smaller is Better: An Analysis of Instance Quantity/Quality Trade-
+off in Rehearsal-based Continual Learning . . . . . . . . . . . . . .
+38
+4.2
+Towards Exemplar-Free Continual Learning in Vision Transformers:
+an Account of Attention, Functional and Weight Regularization
+. .
+58
+4.3
+Simpler is Better: off-the-shelf Continual Learning through Pretrained
+Backbones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+76
+4.4
+Unsupervised Semantic Discovery through Visual Patterns detection
+85
+5
+Conclusions
+99
+8
+Chapter 0
+
+Chapter 1
+Introduction
+“The measure of intelligence is the ability to change”
+- Albert Einstein
+9
+
+Dissecting continual learning: a structural and data analysis
+The interconnections among entities in our world are growing. Along with this
+fact, the ability to keep track and record such data has accordingly increased. The
+need for systems that can cope with such phenomena is essential. Deep Learning
+(DL) revealed itself to be a powerful weapon to model such complex streams, es-
+pecially in Computer Vision and Natural Language Processing fields. The advent of
+DL unlocked the ability to develop outstanding technologies that can directly impact
+our lives. Self-driving cars are one example. Unfortunately not always the impact is
+positive, if not properly controlled. Therefore, the need for systems that show gen-
+eralization abilities and can cope with unexpected scenarios, is nowadays essential.
+To this end, we also need responsive machines, that can be trained to quickly learn
+new concepts with low resource consumption. In fact, what happens if the stream
+of data encountered by a deep learning model changes its quality over time? This
+particular question is tackled by Continual Learning (CL) whose aim is to develop
+lifelong learning machines, unlocking fast adaptability to new environments.
+Modern deep learning methods for computer vision adapt themselves only to the
+manifold they are trained on. Instead, we need to devise models which are plastic
+enough to generalize to distributional shifts in the data and do not require complete
+retraining. This challenge would be solved if training Deep Learning models would
+not be such a delicate process affected by unexpected drawbacks. In fact, when
+we introduce the notion of learning through time and expose the system to face
+incremental tasks of different nature, things can get really complicated.
+One of the drawbacks of incrementally learning is the so-called catastrophic for-
+getting, where the system is subject to an abrupt deterioration of past knowledge
+whenever asked to learn new concepts. This big limitation is broadly studied in con-
+tinual learning. To approach this delicate subject, in this thesis, we start by gently
+introducing some basic differences between artificial and natural intelligence. Here,
+we clarify some operative differences between artificial neural networks and some
+basic brain mechanisms arising from neuroscience. Then, we informally introduce
+the notion of continual learning and discuss the stability-plasticity dilemma along
+with the phenomenon of catastrophic forgetting of artificial neural networks. We
+proceed by introducing a more formal definition of incremental learning along with
+its fine-grained inclinations. Before moving to the contributions we introduce a brief
+overview of the state-of-the-art and define the main baselines which act as lower and
+upper bounds for continual learning methodologies.
+We step into the major contributions by focusing on rehearsal systems, a family of
+methods that exploit cache memories to replay previous knowledge. Here, we study
+how the compression of stored rehearsal data impacts the performance of the model.
+Tackling the memory side of CL, we provide a quality/quantity analysis through
+10
+Chapter 1
+
+Introduction
+the usage of several compression schemes. We consider also extreme compression
+rates, providing some insights. On top of that, we consider continual learning under
+low-resource constraints through the usage of random projections and, in particular,
+Extreme Learning Machines.
+To follow, as a second major contribution, we are among the first to investigate
+Vision Transformers in continual learning. In particular, we analyze several regular-
+ization schemes for ViTs, providing a first envision of rehearsal-free CL. We consider
+weight, functional and attentional regularizations, being the latter unexplored be-
+fore, we carefully study the application of regularizations to specific parts of the
+self-attention mechanism. As a side contribution we introduce a new asymmetric
+loss variant inspired by a contemporary continual learning method (PODNet) prin-
+cipled by the observation that new attention should not penalize the acquisition of
+new knowledge.
+We then further clarify the usage of pretrained models in continual learning
+through an experimental segment. We compare fully pretrained CNNs and Vision
+Transformers in several incremental benchmarks. We provide a clear simple baseline
+that requires few KBytes to operate and does not perform parameter updates. Being
+simple and effective, we discuss its extension to the unsupervised realm. Here we
+consider further extensions for future works.
+Along with these three contributions, we also study the ability of a system to
+autonomously discover new visual patterns, a notion embedded in an optimal incre-
+mental learner. We, therefore, provide a simple unsupervised pipeline able to discover
+semantic patterns on different visual scales. Finally, we conclude by wrapping up our
+perspectives on the main aforementioned challenges.
+As a final note, we hope this thesis finds a meaningful purpose in the CL com-
+munity, contributing to the development of Continual Learning and Computer Vision
+research.
+Chapter 1
+11
+
+Dissecting continual learning: a structural and data analysis
+Contibution Prefaction
+In this thesis we included some papers developed while pursuing the Ph.D.. The main
+contributions have been reported in Chapter 4. The chapter holds the outcome of
+several collaborations and with the following list we report the names of the authors
+and the venues where the works have been submitted:
+• The work reported in Section 4.1, has been accepted as oral poster to IJCNN
+2022. The authors who contributed to the work are (in order): Francesco
+Pelosin and Andrea Torsello from Ca’ Foscari University of Venice
+• The work reported in Section 4.2 is the outcome of the collaboration of the re-
+search period abroad and has been accepted as poster to the Continual Lerning
+Workshop of CVPR 2022. The authors who contributed to the work are (in
+order): Francesco Pelosin, Ca’ Foscari University of Venice (Equal Contrib);
+Saurav Jha, University of New South Wales, Australia (Equal Contrib); Andrea
+Torsello, Ca’ Foscari University of Venice, Italy; Bogdan Raducanu and Joost
+van de Weijer from Computer Vision Center, Spain.
+• The work reported in Section 4.3 has been accepted as poster to the Transform-
+ers for Vision Workshop of CVPR 2022 and it is single authored by Francesco
+Pelosin.
+• The work reported in Section 4.4, has been accepted to the S+SSPR 2020.
+The authors who contributed to the work are (in order): Francesco Pelosin;
+Andrea Gasparetto; Andrea Albarelli and Andrea Torsello, Ca Foscari University
+of Venice, Italy
+12
+Chapter 1
+
+Chapter 2
+Background and Motivation
+13
+
+Dissecting continual learning: a structural and data analysis
+2.1
+Artificial vs Natural Intelligence
+Although the recent developments and great achievements of the field of Artificial
+Intelligence, the fundamental nature of Artificial Neural Networks (ANNs) might still
+be a coarse approximation of how our biological brains work. With the mathematical
+introduction by [McCulloch and Pitts, 1943] and the introduction of the “Perceptron”
+by [Rosenblatt, 1958], which constitutes the smallest unit that form a ANN, we
+shaped our modeling of intelligence.
+An artificial neuron can be described as a
+cumulative summation of multiplications over some weights followed by a non-linear
+function.
+Then, after the introduction of the famous Multy Layer Perceptrons (MLPs) the
+structure of ANNs has not changed much: we work in a connectionist paradigm where
+the learning happens through a distributed signal activity via connections among ar-
+tificial neurons. In particular, the learning occurs by modifying connection strengths
+based on experience, this modification procedure has a particular name and it is the
+so-called backpropagation algorithm whose discovery can be traced back to [Rumel-
+hart et al., 1986] but with some earlier works by [Linnainmaa, 1976] (as an M.Sc.
+Thesis) as pointed in [Schmidhuber, 2014].
+The success of connectionists models span over different fields: Convolutional
+Neural Networks (CNN) for Computer Vision (CV) [He et al., 2016], Language Mod-
+els for Natural Language Processing (NLP) [Devlin et al., 2019], Deep Q-Learning
+Networks (DQN) for Reinforcement Learning [Agarwal et al., 2020], Generative Au-
+dio Models for Audio [van den Oord et al., 2016] and Graph Convolutional Networks
+(GCN) for graph data [Kipf and Welling, 2017].
+Connectionist models are a composition of several layers of artificial neurons,
+followed by a non-linearity. There are several types of layers each with its peculiar-
+ity. For example with the introduction of Batch Normalization [Ioffe and Szegedy,
+2015] we allowed the networks to achieve faster training. The introduction of some
+specialized units often allowed to excel in particular fields such as the convolutional
+operation [LeCun et al., 1998] for Computer Vision tasks and the Self-Attention
+mechanism in Natural Language Processing. [Vaswani et al., 2017], although the
+attention mechanism has achieved tremendous achievements in vision tasks thanks
+to [Dosovitskiy et al., 2021] and its introduction of Visual Transformers. Nowadays
+there is still no perfect mechanism/model for each scenario because we are still in
+the process of discovering how learning happens. For sure in the future, we might
+see other methodologies working in fields where they are not born from.
+14
+Chapter 2
+
+Background and Motivation
+Figure 2.1: Feature visualization of GoogLeNet [Szegedy et al., 2015], trained on the
+ImageNet [Russakovsky et al., 2015] dataset. Concepts in early layers are reported
+on left while concepts of last layers are on the right. The image is taken from [Olah
+et al., 2017]
+While attention-based models spread the knowledge, and feature representations,
+uniformly across the layers [Raghu et al., 2021], in classical convolution-based mod-
+els (such as ResNets [He et al., 2016]) the knowledge is constructed in a bottom-up
+fashion. This is a well-known fact. In particular, abstract concepts are always the
+result of the composition of simpler concepts. For example in early layers of CNNs
+for CV tasks, each neuron specializes in the detection of low-level features, while,
+as we move towards the head, the network learns patterns with more semantic rele-
+vance for us humans. This can be seen thanks to the beautiful visualization of [Olah
+et al., 2017] captured in Figure 2.1. This also reflects some neuroscientific discover-
+ies where hierarchies of more and more abstract concepts have been demonstrated
+repeatedly, especially in the visual brain areas [Riesenhuber and Poggio, 1999].
+While those resemblances are appealing to draw a connection between artificial
+and biological brains, the difference is still striking. For example, quite often Deep
+Learning models are static, that is, they are not altering their architecture over time
+but, in our biological brains, new connections can appear, while others can also cease
+to exist. This is also the so-called neuroplasticity of our brains, whose first scientific
+evidence has been reported by [Bennett et al., 1964].
+As we will see, continual
+learning and few other fields (e.g., dynamic routing, conditional computation, etc.)
+are the only ones going in this direction.
+On another note, time seems to be a major factor in both artificial and natural
+learning. Our current connectionist framework does not exploit the notion of time
+in learning. To accommodate such a factor we would need to redefine the current
+learning framework because so far the models process data but without being condi-
+tioned to when something is learned. There have been some attempts towards this
+Chapter 2
+15
+
+Edges (layer conv2do)
+Textures (layer mixed3a)
+Parts (layers mixed4b & mixed4c)Dissecting continual learning: a structural and data analysis
+direction by defining the learning as a system of differential equations taking into
+consideration time as a fundamental variable and also some attempts to implement
+it by [Betti et al., 2020], although the majority of the works still operate in the
+classical scenario.
+Another clear distinction between artificial and biological neurons lies in how they
+decide to fire. The artificial neuron receives inputs and multiplies them by some
+weights that are adapted during learning.
+To fire, it uses an activation function
+(such as ReLu [Agarap, 2018]), but the reality of biological neurons is different. Each
+biological neuron has its threshold resultant from a complex chemical interaction. A
+class of models that are trying to bridge this gap is Spiking Neural Networks [MAA,
+1997] where the firing of the neuron is determined by a threshold on the signal
+received. Note that also this simplified model mimics neither the creation nor the
+destruction of connections (dendrites or axons) between neurons, and ignores signal
+timing. However, this restricted model alone is powerful enough to work with simple
+classification tasks.
+Another important difference is that biological circuits contain a myriad of addi-
+tional details and complexity not translated to DL models, including diverse neural
+cell types [Tasic et al., 2018] with some recent attempts by [Doty et al., 2021] to
+bridge this gap by changing the activation function for each artificial neuron. Another
+attempt to introduce more complex structures has been proposed by [Sabour et al.,
+2017] with the introduction of Capsule Net models, a family of networks where the
+neurons are structured in hierarchies.
+The most widely known neuroscientific framework for the brain is the Comple-
+mentary Learning Systems (CLS) [McClelland et al., 1995]. This framework explains
+why the brain requires two deferentially specialized learning and memory systems,
+and it nicely specifies their central properties i.e., the hippocampus as a sparse,
+pattern-separated system for rapidly learning episodic memories, and the neocortex
+as a distributed, overlapping system that gradually integrates experienced episodes
+and extracts latent semantic structures.
+Instead, most of the proposed artificial
+models, are more of a well-engineered pipeline crafted to excel in a particular task
+such as Computer Vision, NLP, etc. and do not draw inspiration from such theo-
+ries, although a very recent work prosed by [Arani et al., 2022] explored over this
+direction. With some recent developments in the CL field, rehearsal systems [Parisi
+et al., 2019] (systems that replay old data through a buffer) can be recast with such
+a point of view. In fact, we can think of the rehearsal buffer (or the part of the CL
+system dedicated to storing “old” patterns used in replay) as a long-term memory
+while the other part of the architecture is the fast-paced learner of the intelligent
+agent i.e. the hippocampus. Perhaps the key to continual learning will be in the
+16
+Chapter 2
+
+Background and Motivation
+inspiration from neuroscientific models. Indeed recently [McCaffary, 2021] proposed
+a systematic review of the approaches in CL along with some insights into why we
+should pay more attention to neuroscientific theories.
+As we saw, the gap between artificial and biological models is still relevant and
+the two fields, nowadays, show big differences in their understanding of intelligence.
+However, one striking fact is that the artificial community has achieved impressive
+results without directly mimicking the current neuroscientific theories, suggesting
+that, perhaps, several paradigms of intelligence exist.
+2.2
+What is Continual Learning?
+“Every machine is built to make decisions, if it does not have the faculty to learn,
+it will act always in conformity to a mechanical scheme. We don’t have to let the
+machine decide about our conduct if we first have not studied the laws that rule its
+behavior, and made sure that such behavior will be based on principles that we can
+accept!”
+- Norbert Wiener
+Definition:
+The aforementioned quote is taken from “Introduction to Cybernet-
+ics”, and highlights the fact that the fundamental ability to continually learn is a
+very important skill that any intelligent system should possess. Although we are now
+able to devise powerful artificial systems achieving superhuman performance in some
+tasks, we, as humans, still exhibit a core ability that would be fundamental to repli-
+cate intelligence as we know it. The ability to learn new concepts without erasing
+past knowledge.
+These two aspects are the main objectives of Continual Learn-
+ing. First, exhibiting the ability to assimilate new concepts incrementally. Secondly,
+showing the capability of memorization i.e. not forgetting what has been previously
+learned. In a nutshell Continual Learning studies how to develop systems that
+learn incrementally over time without forgetting previously acquired knowledge.
+History:
+Continual Learning has drawn a lot of interest from the research commu-
+nity only in the later years even though the question itself is very old. One of the
+early papers trying to tackle this phenomenon has been proposed by [Carpenter and
+Grossberg, 1988] where the authors proposed a short-term and long-term memory
+pattern detector through the Adaptive Resonance Theory. In fact, to the best of
+our knowledge, this seems to be the earliest work proposed. Later, as connectionist
+Chapter 2
+17
+
+Dissecting continual learning: a structural and data analysis
+Figure 2.2:
+Continual learning spectrum.
+The optimal algorithm should exhibit
+enough plasticity to learn new tasks while retaining enough stability to not forget
+the acquired knowledge.
+models pave the way for modern Artificial Intelligence, other attempts and several
+proposals have been made. Later the work by [Ring et al., 1994] coined the term
+“Continual Learning”, here the system proposed, aimed to construct hierarchies of
+knowledge within a neural network. Later, with the works by [Thrun, 1995a] and
+[Thrun and Mitchell, 1995] Continual Learning started to get attention especially in
+both the Robotic and Reinforcement Learning research community.
+Terms:
+When we say Continual Learning we have two other equivalent terms: In-
+cremental Learning and Lifelong Learning. These terms can be used interchangeably
+and denote the same setting. There are no clear distinctions and probably the pref-
+erence of one over another is just a matter of the research field we are in.
+For
+example, in the computer science field, it seems that continual learning and incre-
+mental learning are more common. Other terms are used but differ in the specific
+continual setting they study. For example: Online Learning and Streaming Learning.
+These are very similar, and there is no clear distinction yet. These terms are used to
+describe algorithms that learn by observing an example just one time and, sometimes,
+the latter can also refer to systems that can respond to queries in real-time. We will
+introduce a more formal definition in the next chapter.
+Subject of CL:
+As we previously discussed, the study of Continual Learning is
+strictly tight with the widespread usage of connectionist models. In fact, before the
+advent of Artificial Neural Networks (ANNs), intelligence was modeled, usually, by a
+mixture of expert systems and clever algorithms. Posing the same “continual learning
+question” for these systems is still an interesting challenge, but the success of ANNs
+shifted the focus to connectionist models.
+18
+Chapter 2
+
+Optimal
+Stability
+Plasticity
+Very good at solving
+Very good adaptation
+old tasks
+to new tasksBackground and Motivation
+2.2.1
+Stability-Plasticity Dilemma
+Learning incrementally (or continually) with connectionist models requires one core
+ability, that is, to adapt to a changing environment. If the environment would
+not change over time, and we expose a system to operate on it, we would just need
+to understand, model, and hard-code the environment’s rules to the system and we
+would achieve perfect functionality.
+Unfortunately, the real world does not seem
+to behave in such a predictable way. Instead, our reality constantly changes and
+we need to redefine our knowledge, reshape it in light of new facts, have room to
+constantly learn something new, and recombine previous knowledge to understand a
+novel concept. This is not the only necessary property for an intelligent system, the
+counterpart is also important. In fact, some things do not change in the world, old
+challenges might propose again, and, therefore, fundamental knowledge should not
+be forgotten. A truly intelligent system would behave consistently on past lessons.
+It would be able to detect and recognize past challenges, delivering correct solutions.
+The researchers gave a name to this trade-off and it is called the stability-plasticity
+dilemma. The long-term goal of Continual Learning is to create a system able to
+achieve a perfect balance between these two abilities as depicted in Figure 2.2. As
+we will see, it is termed a “dilemma” since achieving the optimal trade-off is a very
+hard task.
+On top of these considerations dissecting new concepts and redefining them as
+a combination of old knowledge allows the forward transfer of intelligence. That is
+when we learn we sometimes can abstract the knowledge to solve a related problem.
+This is not uncommon it is the mechanism of analogy thinking where an “opera-
+tional pattern” can be used to solve problems in apparently different domains. As
+an example, [Hill et al., 2019] investigates such property of intelligence in artificial
+networks. On the other hand, continual learning should give the ability to better
+grasp the past knowledge improving the ability to past challenges. This is even more
+common and we can think of this kind of ability as the “experience” that an agent
+accumulates in a certain field or in solving a certain category of tasks.
+In a nutshell, the stability-plasticity dilemma can be considered the crux of intel-
+ligence. Showing adaptability to new environments while at the same time retaining
+knowledge of old environments seems to be the major qualities of an intelligent agent.
+Chapter 2
+19
+
+Dissecting continual learning: a structural and data analysis
+Figure 2.3: The original images for each task. This image shows the ground truth
+relative to Figure 2.5.
+2.2.2
+Catastrophic Forgetting
+One core aspect of deep neural networks lies in the fact that if we do not introduce
+any kind of mechanism to achieve the balance between stability and plasticity, the
+artificial network is naturally inclined to forget. That is, the neural networks put
+much more emphasis on plasticity rather than stability. From a neuroscientific point
+of view, this fact does not make much sense unless we think about neural networks as
+systems without any form of memory. The reality is that networks do have memory,
+but by the nature of the learning algorithms we overwrite such memory. As the model
+incrementally learns, each parameter in the network is modified by the updates of the
+backpropagation algorithm. The optimal continual learning method would be able to
+modify the parameters without altering the performances of old tasks. This seems
+not to happen and therefore neural networks are prone to the so-called catastrophic
+forgetting, the phenomenon where old knowledge is corrupted.
+2.2.3
+A Visual Example
+To better grasp the phenomenon of catastrophic forgetting, we will provide a visual
+example in the following section. As we discussed, catastrophic forgetting happens
+because the parameters tuned to solve a task (usually experienced before in time),
+are not suited for the currently experienced task. We hope to provide a clear visual
+example of the effects of catastrophic forgetting in a shallow architecture.
+As the name suggests Deep Learning refers to architectures with many layers
+on top of each other. Because of this huge depth, computer vision (but not only
+this community) was able to achieve impressive results in the domain of pattern
+recognition. Unfortunately, we still do not fully control how the knowledge is built
+inside a deep neural network and if we want to counter forgetting we would need
+such information. To do so, we would need to keep track of each parameter variation
+20
+Chapter 2
+
+8
+8
+8
+8Background and Motivation
+as we learn new concepts in a continuous fashion, but doing so, especially in such
+models, is hard if not an impossible job. Said that, on a small scale, we can still
+show what is going on inside a network. In the following toy example we try to
+track forgetting of an autoencoder by dissecting the learning process per task.
+We will use a simple one-layer autoencoder model and try to incrementally learn the
+famous MNIST [LeCun et al., 1998] dataset, still used in the continual literature to
+validate the proposed methods. We will divide the dataset into 5 tasks and learn to
+compress and reconstruct images. By doing so we will show the corruption of old
+images as we learn new tasks and connect them to the network’s variation of the
+parameters.
+The MNIST dataset is a grayscale dataset of 28 × 28 images of handwritten
+digits going from the digit 0 to the digit 9, here some examples:
+.
+The MNIST was constructed from NIST’s Special Database 3 and Special Database
+1, the first has been collected among Census Bureau employees and the second one
+among high school students. It has a training set of 60,000 examples, and a test set
+of 10,000 examples. We will divide the dataset in 5 tasks, the first 1 is composed of
+the digits
+, task 2 by
+, task 3 by
+, task 4 by
+and finally task 5 by
+Although the best practice to work with image data is to use CNNs, we will limit
+our toy example to a naive autoencoder model of linear layers. This choice allows
+us to better unfold and analyze the variation of the parameters due to its simplicity.
+The model is composed of a single layer encoder φ that encodes an image into a
+latent vector and a single layer decoder ψ that reconstructs the image. In particular,
+the single-layer encoder is a linear layer φ : R784 → R16 that will receive in input a
+flattened (28 × 28 = 784) representation of the image and compress into a latent
+vector of magnitude 16. The decoder, then take care of the reconstruction of the
+image by doing the reverse process, that is ψ : R16 → R784 i.e. given a latent vector
+of size 16 it decompresses it to a flattened image.
+More formally an autoencoder can be represented in the following way:
+ˆx = ψ(φ(x))
+Where x ∈ R784 is the flattened representation of an original image coming from a
+task t, φ is the encoder network and ψ is the decoder network, and ˆx ∈ R784 is the
+flattened representation of the reconstructed image. The objective is to optimize
+and, in particular, minimize the mean square error (MSE) between the original image
+and the encoder’s reconstruction. More formally we can define the objective function
+as:
+min
+φΘ,ψΘ L (x, ˆx) = min
+φΘ,ψΘ ∥x − ˆx∥2
+Chapter 2
+21
+
+Dissecting continual learning: a structural and data analysis
+Figure 2.4: Variation of the parameters grouped by task. Each bar plot shows the
+distribution of the weights, we can see that each task modifies internal parameters.
+Each weight is computed as the sum of all the connections of the particular latent
+neuron.
+Here φΘ represents the set of encoder’s parameters to be optimized while we use ψΘ
+for the decoder.
+By incrementally learning each task we want to show the corruption in the
+ability of reconstruction of previous tasks.
+The change in the parameters to
+accommodate the new task negatively impacts old tasks. In fact, if we try to retrieve
+old concepts we see catastrophic interference, that is, the network is confusing old
+concepts with newly learned ones. From now on let us refer to Figure 2.5, where
+is depicted the complete incremental learning and its effects.
+The grid reported
+encodes the performance of the autoencoder. Each row i refers to the model trained
+solely on data of task i but tested on all the other tasks. From the experiment, we
+can appreciate several effects. First, if we isolate the first column of the grid, we
+can visualize the performance of the original first task as time passes (we can think
+of it as the stability of the network as we will discuss in Section 4.2). Here, one
+can clearly see that feeding new concepts corrupts old ones. On the other hand,
+if we focus on the upper triangular section of the matrix, we see the ability of the
+model to generalize knowledge. This stresses the fact that generalization is a key
+component in continual learning. Intuitively more “general” models might experience
+less forgetting (further hints on this path can be found in Section 4.2 and Section
+4.3). The connected change in the weights for each task is reported in Figure 2.4
+(for both the encoder and decoder). As we can see, even a small change in the
+parameters dramatically impacts the stability plasticity trade-off.
+As reference in
+Figure 2.3 we report the ground truths.
+22
+Chapter 2
+
+Decoder
+Encoder
+Parameter Distribution
+Task1
+Task2
+Task3
+Task4
+Task5
+40
+-50
+30
+-100
+Weight
+Weight
+20
+-150
+10
+-200
+0
+-250
+Task1
+Task2
+Task3
+Task4
+Task5
+Parameter DistributionBackground and Motivation
+Figure 2.5: Results of the incremental training and test of the autoencoder model
+in the MNIST dataset were split into 5 tasks. Each row i of the grid, reports the
+performance of the model when trained on task i (or time ti) and tested on both old
+(left) and future (right) tasks. Training on previous tasks might unlock the intrinsic
+possibility to solve future tasks. This latest phenomenon is highlighted with the blue
+boxes. Ground truth in Figure 2.3.
+Chapter 2
+23
+
+3
+6
+5
+Catastrophic Forgetting
+Generalization Ability
+Train and Test on the same task, optimal plasticityDissecting continual learning: a structural and data analysis
+24
+Chapter 2
+
+Chapter 3
+Continual Learning Framework
+25
+
+Dissecting continual learning: a structural and data analysis
+3.1
+Definition and Settings
+Being Continual Learning a relatively new discipline, the community unfortunately
+still does not fully agree on a formal setting. This is also corroborated by the fact
+that incremental learning is under the research light of several communities. Among
+the most active communities, we have NLP, Computer Vision, Reinforcement Learn-
+ing, Neuroscience, and Robotics. Each of these communities has a well-established
+history and standard protocols, therefore, accommodating everyone in a common
+ground is still an ongoing process. However, in the following, we will introduce the
+most common definitions and settings shared in the Computer Vision literature.
+There have been some attempts to formalize a setting for continual learning
+[van de Ven and Tolias, 2019, Lomonaco and Maltoni, 2017] through the definition
+of learning protocols and new terminologies. We will see these different learning
+paradigms in the following sections, but the core feature underlying learning incre-
+mentally is that the data experiences some distributional shift, that is, the distribu-
+tion of the data changes over time. This is sufficient to abruptly cause forgetting
+in connectionist models, but we can define some settings which are more prone to
+cause such phenomenon, while others are more simple to overcome.
+The typical continual learning setting in computer vision is composed of a split
+dataset, where each (usually non-overlapping) split is considered an incremental task.
+Therefore, each task contains data from several classes. Although this is not the
+only way to define a continual learning scenario, this is the most prominent one as
+pointed out in these surveys [Mai et al., 2022, Delange et al., 2021, Parisi et al.,
+2019]. Let us define a more formal definition:
+Formal Definition:
+Given a dataset D containing (in our case) images, we want
+to split D in a sequence of n disjoint tasks that can be learned sequentially by our
+model:
+T = [t1, t2, . . . , tn]
+(3.1)
+where each task ti = (Ci, Di) is represented by a set of classes Ct =
+�
+ct
+1, ct
+2 . . . , ct
+nt
+�
+and training data Dt. We use Nt to represent the total number of classes in all tasks
+up to and including task t : Nt = �t
+i=1
+��Ci��. As a side note, usually in literature one
+would use the notation t to point at the current task (the task at time t) and t − 1
+to point to the task before the current one.
+A continual learning algorithm aims to model each task sequentially as time passes
+exposing the model at training time to each task in a sequential fashion. Operatively:
+26
+Chapter 3
+
+Continual Learning Framework
+first, the algorithm is trained with mini-batches of patterns coming from task 1. Here
+we will record the system performance. Then, the model is exposed to task 2 data
+and the process continues until task n. One visual example can be seen in Figure 3.1,
+here the MNIST dataset is split into 5 tasks with 2 classes each 1.
+The previously defined learning scenario takes into consideration a distinct transi-
+tion among tasks. In this particular case, we implicitly assume a reset signal between
+two tasks.
+When such signal is not present, and the transition between tasks is
+smooth, the complexity of the continual learning problem increases. If in this par-
+ticular setting we query the system for real-time response, we are talking about
+streaming learning [Hayes et al., 2019]. This setting is more challenging because
+the models are allowed much less time to consolidate previously seen knowledge
+and therefore are more prone to experience catastrophic forgetting. Since this the-
+sis focuses on computer vision problems, throughout the work we will stick to the
+introduced setting.
+Fine-Grained
+So far we limited the notion of a task as a split of a dataset, but
+what happens if in a new task we experience new instances of previously seen classes?
+To this end, more complete settings for continual learning benchmarking have been
+proposed. One example is constituted by [Lomonaco and Maltoni, 2017]. Here the
+authors, along with a new dedicate dataset, introduce three different settings by
+mixing the experience of old and new data. Specifically, here we report the different
+scenarios:
+• New Instances (NI): new training patterns of the same classes become avail-
+able in subsequent tasks. Here the model can experience new instances of old,
+previously seen, classes. With the possibility of seeing the same objects in new
+poses and conditions (illumination, background, occlusion, etc.). Here a good
+model is expected to incrementally consolidate its knowledge about the known
+classes without compromising what it has learned before.
+• New Classes (NC) : new training patterns belonging to different, never seen,
+classes become available in subsequent tasks. This is the classic scenario (the
+one we formally introduced) and a model should be able to deal with the new
+classes without losing accuracy on the previous ones.
+• New Instances and Classes (NIC): new training patterns belonging both to
+known and new classes become available in subsequent training tasks. A good
+1This particular setting takes the name of MNIST-split
+Chapter 3
+27
+
+Dissecting continual learning: a structural and data analysis
+model is expected to consolidate its knowledge about the known classes and
+learn the new ones. This is the most complete and difficult scenario since the
+addition of new classes poses the challenge of having good plasticity while the
+introduction of new old patterns asks for stability.
+In our opinion, this categorization is preferable since it provides a more complete
+description of a continual learning benchmark. In fact, if we assume, as an example,
+that each task data is generated by an independent source, the task data will be
+continually augmented with new information. This scenario is captured by the NIC
+setting and cannot be handled by the standard definition. Unfortunately, due to the
+recent development of the field, we usually assume the NC scenario independently.
+3.1.1
+Online CL vs Offline CL
+So far we introduced a basic notation, now we discuss how a model can be trained to
+face a continual learning stream of tasks and introduce the name of these scenarios.
+The continual learning literature distinguishes two options: online training and offline
+training.
+Online
+In particular, in the online continual learning protocol, the algorithm is re-
+quired to have a single parameter update per pattern (or one forward-pass). This
+is a very coercive setting and requires maximum performance in knowledge consoli-
+dation from the continual learner. In fact, this scenario is quite challenging because
+of the nature of Stochastic Gradient Descent i.e. the learning algorithm at the core
+connectionists models. Here the system might not have enough time to assimilate a
+concept, therefore weakening its understanding and subsequent stability.
+Offline
+In the offline learning protocol, instead, we are free to perform several
+parameter updates per pattern i.e. we are allowed to see an image more than once.
+For an incremental learner, this setting is a double edge sword, in one case it favors
+the consolidation of the concepts since setting a large number of epochs guarantees
+the correct training of a model.
+On the other side, if we do not introduce any
+forgetting prevention mechanism, this corrupts the old informational content of the
+network i.e. the system is more exposed to catastrophic forgetting.
+In the following paragraphs, we will introduce some of the settings that are now,
+28
+Chapter 3
+
+Continual Learning Framework
+Figure 3.1:
+Schematic representation of split-MNIST task protocol.Taken from
+[van de Ven and Tolias, 2019]
+de facto, shared among all the research communities researching continual learning.
+3.1.2
+Task-Incremental vs Class-Incremental
+Assuming an NC-type of task flow, two sub-settings have been widely adopted by
+the research community and are well-defined. The Task Incremental (TI) setting and
+the Class Incremental (CI) setting.
+Task-Incremental
+In the Task Incremental scenario, which is sometimes also re-
+ferred to as multi-head scenario or task aware (TAw) the learning happens sequen-
+tially, but at test time, the learner has also access to the task label. This scenario is
+also known as multi-head because a typical learning system can potentially dedicate
+a particular subsystem per task, that can be specifically queried at test time through
+the task label knowledge. Typically the subsystem is a classifier head on top of a
+backbone.
+More formally we consider task-incremental classification problems where at train-
+ing time the learner has access to:
+Dt = {(x1, y1, z1) , (x2, y2, z2) , . . . , (xmt, ymt, zmt)}
+while at test time the learner has access to:
+Dt = {(x1, z1) , (x2, z2) , . . . , (xmt, zmt)}
+where x are input features for a training sample, and y ∈ {0, 1}Nt is a one-hot class
+ground truth label vector corresponding to xi while z ∈ {0, 1}|T | is the is a one-hot
+task ground truth label vector. In a nutshell, during training for task t, the learner
+only has complete access to Dt, then we assume a reset signal among tasks i.e.
+Chapter 3
+29
+
+Task 1
+Task 2
+Task 3
+Task 4
+Task 5
+00
+first
+second
+first
+second
+first
+second
+first
+second
+first
+second
+class
+class
+class
+class
+class
+class
+class
+class
+class
+classDissecting continual learning: a structural and data analysis
+Ci ∩ Cj = ∅ if i ̸= j, and at test time the learner has access to patterns and their
+task label.
+Class-Incremental
+Instead, in class incremental scenario, also known as single-
+head or Task Agnostic (TAg) the system has both access to task and class label
+during training time, but at test time it only has raw data. This constitutes a harder
+problem, but also a more realistic scenario.
+More formally we consider class-incremental classification problems where at
+training time the learner has access to:
+Dt = {(x1, y1, z1) , (x2, y2, z2) , . . . , (xmt, ymt, zmt)}
+while at test time the learner has access only to:
+Dt = {x1, x2, . . . , xmt}
+where x are input features for a training sample, and y ∈ {0, 1}Nt is a one-hot class
+ground truth label vector corresponding to xi while z ∈ {0, 1}|T | is the is a one-hot
+task ground truth label vector, same as in TAW setting.
+Although taw scenarios are more interesting from a pure machine learning per-
+spective, the tag setting is more realistic. For example, let’s draw an analogy: let
+us consider a baby as our incremental algorithm. We want to teach the baby to
+recognize elements coming from a particular environment, for example, kitchen ac-
+cessories. Here the task label would be ’kitchen’. After the learning process has
+successfully terminated, whenever we ask the baby to recognize a fork, we do not
+need to provide a hint on the task (kitchen). In fact, the information of where
+he learned the concept should be irrelevant. This is also important because several
+objects can appear, and could be part of, several environments (tasks). For example,
+scissors can be found in the kitchen, but also in a studio. Therefore knowledge itself
+should be independent of the context where it is learned and, we think that class
+incremental setting provides a more useful challenge.
+3.2
+Baselines
+In this chapter, we will see the principal naive approaches and introduce an overview of
+the state-of-the-art. In particular, we will introduce the cumulative and the finetuning
+30
+Chapter 3
+
+Continual Learning Framework
+Figure 3.2: Depiction of the Cumulative/Joint approach for continual learning. The
+model is trained with all the data up to the current task ti. The updates flow in the
+backbone and in all the heads up to hi.
+methods which constitute, respectively, the upper and the lower bound to evaluate
+continual learning strategies. Moreover, we consider our model to be composed of
+a backbone (or a feature extractor) and a dedicated classifier (head) for each task.
+We do so in light of the majority of the works in continual learning and computer
+vision, which are composed of this very structure.
+3.2.1
+Cumulative
+To evaluate a continual learning algorithm we need an optimal method that acts as
+an upper bound. The cumulative strategy (also known as joint-training) consti-
+tutes the optimal continual learning strategy since mimics a learner with perfect
+memory. Indeed if we have perfect memory we can recall the past and not expe-
+rience forgetting, to this end a recent work from [Knoblauch et al., 2020] proved
+theoretically that optimal continual learning has a perfect memory and is NP-hard.
+To have optimal memory of the past, an algorithm should be able to save all the
+data that has been seen. This is a very inconvenient requirement and it must be
+avoided when considering the development of real lifelong learning systems. In fact,
+as the pace of real-world data generation is growing, such constraints would not be
+satisfied. Training from scratch with all the dataset data could be an upper bound
+approach, but it does not break down each incremental step upper bound. To this
+end, the cumulative strategy accumulates all the data seen up to a certain task and
+trains the network from scratch, therefore, providing an incremental upper bound.
+Chapter 3
+31
+
+to
+tN
+to
+t1
+tN
+to
+t1
+t1
+tN
+.Dissecting continual learning: a structural and data analysis
+Figure 3.3: Depiction of the Finetuning approach for continual learning. The model
+is trained exclusively with the data coming from the current task ti. The updates
+flow in the backbone and only in the hi head.
+More formally, for the cumulative approach, the data of task i is defined to be:
+ti =
+j=i
+�
+j=0
+tj
+when i = 1 . . . n to complete the incremental setting. At each time ti the model is
+trained on the cumulative data and therefore we are able to define the upper bound
+performance for each task i. One observation is that the cumulative performance in
+the last task it is equivalent to the performance of the model trained with the whole
+data. In Figure 3.2 we depict a visual example of the cumulative approach. Here
+for each task, the backbone is always updated along with the heads of competence.
+However the updates of the heads can be also shared among all the tasks, that is,
+each task data alters all heads parameters. Of course, this design choice does not
+favor the prevention of forgetting, instead, it allows the disruption of consolidated
+knowledge and we won’t consider this case2.
+3.2.2
+Finetuning
+We previously saw the upper bound for CL, that is, the optimal continual learning
+approach for a benchmark. Now, we introduce the finetuning approach which consti-
+tutes the lower bound methodology. Although we can argue that a random classifier
+would be the true lower bound, in practice we consider finetuning in which it is ab-
+sent of any forgetting prevention mechanisms. In fact, it is equal to the practice of
+2this is valid for finetuning too
+32
+Chapter 3
+
+to
+t1
+tN
+to
+t1
+tN
+to
+t1
+tNContinual Learning Framework
+transfer learning among subsequent tasks and measures the base resilience of the
+model against incremental scenarios. We also can consider it as a baseline to assess
+the generalization capabilities of a model.
+A depiction of the method is given in Figure 3.3. Here, the model is trained
+sequentially and each task head is updated with the data of its competence and, as
+in the cumulative approach, the backbone is always updated.
+3.3
+State-of-the-art
+In the following sections, we will introduce the main categorizations of the approaches
+proposed by the community. In particular, we will explain the core mechanism and
+show the pros and cons of each category. Although there is no absolute preferred
+solution, some approaches are more explored than others and show more promising
+results.
+3.3.1
+Structural-based
+Structural-based approaches, also known as architectural approaches or parameter-
+isolation methods, fight forgetting by altering the structural composition of the net-
+work itself. In particular, structural approaches instantiate dedicated modules as they
+experience new tasks. The first work falling in this category is perhaps Progressive
+Neural Networks (PNN) [Rusu et al., 2016] where the network is augmented with
+new connections spanning both height-wise and width-wise.
+In the task-aware setting, this approach constitutes a convenient and naive so-
+lution to fight catastrophic forgetting. In fact, having the task label at test time
+allows us to correctly determine a dedicated subnetwork. Instead, in task agnostic
+setting, we would not be able to select such a submodule. We can see very few
+structural-based approaches tackling class incremental setting due to the aforemen-
+tioned limitation [Lee et al., 2020, Rajasegaran et al., 2019]. That said, Structural
+approaches can be subdivided into Fixed Architecture (FA) and Dynamic Architec-
+ture (DA). FA only activates relevant parameters for each task without modifying
+the architecture [Mallya and Lazebnik, 2018, Kirkpatrick et al., 2017], while DA adds
+new parameters for new tasks while keeping old parameters unchanged [Yoon et al.,
+2018, Rusu et al., 2016]. Although architectural methods are very intuitive, they are
+Chapter 3
+33
+
+Dissecting continual learning: a structural and data analysis
+Figure 3.4: Architectural approaches for Continual Learning alter the structural prop-
+erties of the network itself.
+bulky. In fact, the major drawbacks are in the expansion of the parameters which
+can result in a memory-intensive method (DA), or in the architectural limitation of
+the number of parameters that can be saturated (FA).
+3.3.2
+Regularization-based
+In parameter based approaches also known as weight-regularization or data-regularization
+approaches, forgetting is handled with procedures that regularize the parameter up-
+dates. Among the most famous ones, there are Elastic Weight Consolidation (EWC)
+[Kirkpatrick et al., 2017] and Synaptic Intelligence (SI) [Zenke et al., 2017]. EWC
+was the first regularization-based approach using second-order information. In par-
+ticular, the procedure regularizes the updates through the Fisher information which
+is computed at each parameter update.
+Figure 3.5: Regularization approaches for Continual Learning alter only the parame-
+ters properties of the network.
+In this category, we can also find Learning without Forgetting (LwF) [Li and
+Hoiem, 2017], which is one of the most influential methods in continual learning
+literature. LwF uses Knowledge Distillation [Hinton et al., 2015] in the logits of the
+34
+Chapter 3
+
+Model 1
+Task 1
+Task i
+Model iTask iContinual Learning Framework
+network. The main strength of LwF lies in the fact that it does not use previously-
+stored examples while still being purely data-driven. In particular by storing the old
+model at time (t − 1) the method can distillate old knowledge by forwarding to
+the old model the current data. Since the introduction LwF, KD has been widely
+adopted by the continual learning community as part of new methodologies among
+the works we report [Douillard et al., 2020, Rebuffi et al., 2017, Buzzega et al.,
+2020, Pourkeshavarz and Sabokrou, 2022, Joseph et al., 2021, Wu et al., 2019,
+Banerjee et al., 2021, Javed and Shafait, 2018, Ahn et al., 2021, Dhar et al., 2019],
+but we are aware of many others that we do not report for brevity.
+The main
+strength of regularization-based approaches lies in their data/architecture constraint-
+free nature. In fact, they usually work with an underlying mathematical justification.
+This property surely allows a more principled continual learning strategy, but it can
+make the learning procedure cumbersome: computing second-order or estimating
+gradients directions, might slow down the learning while hindering it.
+3.3.3
+Rehearsal-based
+In rehearsal-based approaches (or data-replay approaches) the main mechanism ex-
+ploited to overcome forgetting, lies in the usage of a replay buffer for old exemplars.
+The methods falling under this category, dedicate a memory cache to store data
+examples encountered during the incremental training i.e. the system samples and
+stores images experienced in previous tasks. We can think of the buffer as long-term
+memory. In fact, what typically happens is that the memory is queried to augment
+the task at hand, that is, we retrieve and inject old examples to the current data
+batch. This mechanism prevents forgetting by allowing the network to directly recall
+past examples, a visual depiction can be seen in Figure 3.6.
+Perhaps the most famous work among rehearsal-based approaches is Experience
+Replay (ER) [Rolnick et al., 2019] inspired by the Reinforcement Learning community
+its strategy is replaying data by randomly selecting old examples. In the evolution
+of ER, which is Maximally Interfered Retrieval (ER-MIR) [Aljundi et al., 2019a],
+proposed a controlled sampling of the replays. Specifically, they retrieve the samples
+which are most interfered with, i.e. whose prediction will be most negatively impacted
+by the foreseen parameters update. Another famous method is Gradient Episodic
+Memory (GEM) [Lopez-Paz and Ranzato, 2017] in which the authors devised a
+system where the gradient update of the replay examples should follow the original
+direction.
+A closely related mechanism is generative replay (GEN) [Shin et al., 2017, van de
+Chapter 3
+35
+
+Dissecting continual learning: a structural and data analysis
+Figure 3.6: Rehearsal approaches for Continual Learning store old patterns to aug-
+ment the data of the current task.
+Ven and Tolias, 2018, Wu et al., 2018]. In this approach, old data is recorded in a
+buffer and then compressed, after that, a generative model such as a GAN [Goodfel-
+low et al., 2014], generates a synthetic version of the old distribution and augments
+the data of the current task. The main disadvantages of generative replay are that
+it takes a long time to train and it does not constitute a viable option for more com-
+plex datasets given the current state of deep generative models. Another approach
+devised by [Liu et al., 2020a] tries to overcome such limitations by generating inter-
+mediate features instead of the original data, trying to decrease the computational
+complexity of the generation procedure.
+The pros of rehearsal-based approaches are their simplicity and effectiveness. In
+fact, the methods with best performances in continual learning exploit exemplars as
+shown in this challenge review [Lomonaco et al., 2022] where the best approaches
+used exemplars. The drawback of rehearsal continual learning is the usage of a mem-
+ory buffer, which can be saturated as the number of tasks to be learned grows. To
+overcome such drawback some methods propose the usage of representative exem-
+plars [Hayes et al., 2019] and herding [Liu et al., 2020b] techniques aimed to reduce
+the amount of memory required. Here, an interesting work (GDumb) proposed by
+[Prabhu et al., 2020] offers a simple baseline to rehearsal systems and questions
+the advancements of continual learning research itself due to its outstanding perfor-
+mance. Besides its performance, the system is very simple. In particular, the model
+samples data as experiences the stream of incoming task data. It does so until it fills
+a rehearsal buffer, by taking care to balance the proportion among classes. When
+the task data stream ends the dumb learner (a simple MLP or CNN) is trained only
+on the buffer data. GDumb achieves state-of-the-art performances.
+36
+Chapter 3
+
+Old tasks
++
+Task i
+MemoryChapter 4
+Works
+37
+
+Dissecting continual learning: a structural and data analysis
+6
+4.1
+Smaller is Better: An Analysis of Instance Quan-
+tity/Quality Trade-off in Rehearsal-based Contin-
+ual Learning
+We begin our dissection by focusing on rehearsal-based methods i.e., solutions in
+where the learner exploits memory to revisit past data. Due to its prominet perfor-
+mance and the abrupt usage, rehearsal systems are nowadays one of the preferred
+countermeasures to fight catastrophic forgetting.
+So far, the focus from the community has been put into finding smart method-
+ologies to improve the incremental performance.
+Instead, we ask ourselves what
+happens if we boost the capacity of the memory buffer. How much does impact al-
+tering the data storable in the memory? Indeed, in this study, we propose an analysis
+of the memory quantity/quality trade-off adopting various data reduction approaches
+to increase the number of instances storable in memory. By apply complex instance
+compression techniques to the original data, such as deep encoders, but also trivial
+approaches such as image resizing and linear dimensionality reduction, we offer a
+simple study on the trade-off.
+Then we introduce the usage of Random Projections as compression scheme and
+offer a simple pipeline through Extreme Learning Machines to resource-constrained
+continual learning, an appealing scenario where computational and memory resources
+are limited.
+38
+Chapter 4
+
+Works
+Continual Learning (CL) is increasingly at the center of attention of the research
+community due to its promise of adapting to the dynamically changing environment
+resulting from the huge increase in size and heterogeneity of data available to learning
+systems. It has found applications in several domains. Its prime application, and still
+most active field, is computer vision, and in particular object detection [Gidaris and
+Komodakis, 2018, Thrun, 1995b, Parisi et al., 2019]; however it has since found
+applications in several other domains such as segmentation [Cermelli et al., 2020,
+Michieli and Zanuttigh, 2019, Yu et al., 2020a], where each segmented class has
+to be learned in an incremental fashion, as well as in other fields, among which we
+mention Reinforcement Learning (RL) [Xu and Zhu, 2018, Lomonaco et al., 2020]
+and Natural Language Processing (NLP) [Gupta et al., 2020, Sun et al., 2020,
+de Masson d’Autume et al., 2019].
+Ideally, the behaviour of CL systems should resemble human intelligence in its
+ability to incrementally learn in a dynamical environment [Hadsell et al., 2020], with
+minimal waste of resources, spatial or computational. The main problem encountered
+by these systems resides in the famous stability-plasticity dilemma of neuroscience,
+resulting in the so called catastrophic forgetting [McCloskey and Cohen, 1989], a
+phenomenon where new information dislodges or corrupts previously learned knowl-
+edge, resulting in the deterioration of the ability to solve previously learned tasks.
+Solutions to this problem typically incur in a increase in resource requirements
+[Lomonaco et al., 2022] both for CL’s very nature (the more tasks arrive the more
+data the agent need to process), and for the nature of the systems that try to solve
+it, both in the increased complexity of the typically deep learning models, and in the
+time and space requirements of continuously learning multiple models. This problem
+become particularly evident in rehearsal-based methods.
+Rehearsal-based methods, i.e., approaches that leverage a memory buffer to cope
+with catastrophic forgetting, are emerging as the most effective methodology to
+tackle CL. Their performance, backed by extensive empirical evidence [Lomonaco
+et al., 2022], finds also a theoretical justification in Knoblauch and co-workers’ finding
+that optimally solving CL would require perfect memory of the past [Knoblauch et al.,
+2020]. In fact, if we were able to completely re-train a new system with all previous
+data every time a new task arrives, Continual Learning would not appear to be any
+different from any other learning problem. However, this approach is both spatially
+and computationally infeasible for most real-world problems and we can argue it
+is precisely these memory and computational limitations that characterize CL and
+distinguish it from other learning problems.
+Our investigation aims to analyze the trade-offs on limited-memory CL systems.
+Chapter 4
+39
+
+Dissecting continual learning: a structural and data analysis
+Memory
+Data
+Train
+Rehearsal Method
+Reduction
+Time
+Figure 4.1: Our work analyzes the optimal instance quantity/quality trade-off in
+memory buffers of rehearsal-based Continual Learning systems. We carry out our
+analysis by applying several dimensionality reduction schemes to increase the quantity
+of storable data.
+In particular, we focus on the quantity/quality trade-off for memory instances. We
+do so through the analysis of several dimensionality-reduction schemes applied to
+data instances that allows us to increase the number of examples storable in our
+fixed-capacity memory. In particular we adopted deep learning encoders such as a
+variation of ResNet18 [He et al., 2016] and Variational Autoencoders (VAE) [Kingma
+and Welling, 2014], the simple yet surprisingly effective extreme resizing of image
+data, and, lastly, we explored Random Projections for dimensionality reduction. The
+latter scheme turns out to be very effective in low memory scenarios also reducing
+the model’s parameter complexity.
+Indeed, we will show that a variation of Ex-
+treme Learning Machines (ELM) offers a simple yet effective solution for resources-
+constrained CL systems.
+Our analysis will focus on computer vision tasks and use GDumb [Prabhu et al.,
+2020] as a rehearsal-baseline. GDumb is a model that has been proposed to question
+the community’s progress in CL thanks to the fact that in lieu of its outstanding sim-
+plicity, it was still able to provide state-of-the-art performance. Further, its simplicity
+also results in high versatility, as it proposes a general CL formulation comprising all
+task formulations in the literature. GDumb is fully rehearsal-based, and it is com-
+posed by a greedy sampler and a dumb learner, that is, the system does not introduce
+any particular strategy in the selection of replay data. Therefore, it represents the
+ideal candidate method to carry out our analysis.
+The experimental findings highlighted in this study are multiple: first, we show
+that when the memory buffer is fixed and extreme values of resizing of instance data is
+applied, we can easily push the state-of-the-art of CL rehearsal systems by a minimum
+of +6% to a maximum of +67% in terms of final accuracy. This surprising result
+suggests that the optimal trade-off between data quantity and quality is severely
+skewed toward the former and that in general the informational content required to
+40
+Chapter 4
+
+Works
+(b)
+or
+(c)
+Resize
+(a)
+Figure 4.2: Depiction of the three main dimensionality reduction techniques analyzed.
+In (a) random projection (RP) each image is vectorized (vi) and then orthogonally-
+projected through a random matrix Q into v ′
+i . In (b), the encoder φ outputs a latent
+vector v ′
+i (such as in VAEs) or a noise-free / shrinked image x′
+i (as in CutR). In (c),
+we adopt a simple image resizing strategy through standard biliniear interpolation.
+correctly classify images in standard datasets is relatively low. Then, we analyze
+the consumption of resources of rehearsal CL systems as we saturate the rehearsal
+buffer, and show that ELM offer a clear solution on CL systems constrained by very
+low resources environments.
+Related Works
+Following some recent surveys [Parisi et al., 2019, Hadsell et al., 2020, Mundt et al.,
+2020], we divide CL approaches into three main categories: regularization-based
+approaches, data rehearsal-based approaches and architectural-based approaches.
+Although a few novel theoretical frameworks based on meta-learning have been in-
+troduced recently [Hadsell et al., 2020], the majority still fall within these categories
+(or in a mixture of them).
+Regularization-based approaches address catastrophic forgetting by controlling
+each parameter’s importance through the subsequent tasks, by means of the ad-
+dition of a finely-tuned regularizing loss criterion.
+Elastic Weight Consolidation
+(EWC) [Kirkpatrick et al., 2017] was the first well established approach of this
+class.
+It uses Fisher information to estimate each parameter’s importance while
+discouraging the update for parameters with greatest task specificity. Learn without
+Forgetting (LwF) [Li and Hoiem, 2017] exploits the concept of “knowledge distil-
+lation” to preserve and regularize the output for old tasks. More recently, Learn-
+ing without Memorizing (LwM) [Dhar et al., 2019] adds in the loss an information
+preserving penalty exploiting attention maps, Continual Bayesian Neural Networks
+(UCB) [Ebrahimi et al., 2020] adapts the learning rate according to the uncertainty
+Chapter 4
+41
+
+Dissecting continual learning: a structural and data analysis
+defined in the probability distribution of the weights in the network, while Pomponi et
+al. [Pomponi et al., 2020] propose a regularization of network’s latent embeddings.
+Rehearsal-based
+Rehearsal-based solutions allocate a memory buffer of a prede-
+fined size and devise some smart schemes to store previously used data to be replayed
+in the future, i.e., to be added to future training samples. One of the first method-
+ologies developed is Experience Replay (ER) [Rolnick et al., 2019], which stores a
+small subset of previous samples and uses them to augment the incoming task-data.
+Aljundi et al. [Aljundi et al., 2019a] propose an evolution of ER which takes in consid-
+eration Maximal Interfered Retrieval (ER-MIR). Their proposal lies between rehearsal
+and regularization methods, its strategy is to retrieve the samples that are most in-
+terfered, i.e.
+whose prediction will be most negatively impacted by the foreseen
+parameters update. Among other mixed approaches we have Rebuffi et al. [Rebuffi
+et al., 2017] that proposes a method which simultaneously learns strong classifiers
+and data representation (iCaRL). Gradient Episodic Memory (GEM) [Lopez-Paz and
+Ranzato, 2017] and its improved version Averaged-GEM (AGEM) [Chaudhry et al.,
+2019a] exploits the memory buffer to constrain the parameter updates and stores
+the previous samples as trained points in the parameter space, while Gradient based
+Sample Selection (GSS)
+[Aljundi et al., 2019a] diversifies/prioritizes the gradient
+of the examples stored in the replay memory. Finally, a recent method proposed by
+Shim et al. [Shim et al., 2021] scores memory data samples according to their ability
+to preserve latent decision boundaries (ASER).
+Architectural-based
+Architectural methods alter their parameter space for each
+task. The most influential architectural-based approach is arguably Progressive Net-
+works (PN) [Rusu et al., 2016], where a dedicated network is instantiated for each
+task while Continual Learning with Adaptive Weights (CLAW) [Adel et al., 2020]
+grows a network that adaptively identifies which parts to share between tasks in a
+data-driven approach. Note that, in general, the approaches that use incremental
+modules suffer the lack of task labels at test time, since there is no easy way to
+decide which module to adopt.
+Method
+Before introducing the dimensionality reduction approaches adopted in our quan-
+tity/quality analysis we have to introduce the CL scenario considered and its task
+composition.
+Unfortunately the community has not yet converged to a unique
+42
+Chapter 4
+
+Works
+standard way to define a CL setting [van de Ven and Tolias, 2019].
+Here we
+adopt GDumb’s formulation which is the most general one and specifically resembles
+Lomonaco and Maltoni’s formulation [Lomonaco and Maltoni, 2017]. In particu-
+lar, we focus on the new class (NC)-type scenario [Lomonaco and Maltoni, 2017]
+where each task Ti introduces data instances of CTi new, previously unseen, classes.
+More formally a dataset benchmark D, containing examples from CD classes, is
+divided into n tasks.
+Each task, Ti with i = 1 . . . n, carries a set of examples
+Ti = {XTi, YTi} whose class is previously unseen i.e. YTj ∩ YTi = ∅ with j = 1 . . . i
+and YTi = {c1 . . . cTi}. In other words, the model experiences a shift in the distri-
+bution of data as we train on each new task. We also consider the more realistic
+class incremental scenario (CI), that is, we are not allowed to know task labels at
+test time.
+As incremental approach we use the recently proposed GDumb, which is com-
+posed of a simple learner and a greedy balancer. That is, given a fixed amount of
+memory M, each instance of task data is randomly sampled in order to balance class
+instances in the memory, so that, at the end of the Ti task experience, the memory
+contains an equal number of instances of all previously encountered classes i.e. each
+class has
+�
+M
+CD∗i
+�
+instances in memory.
+Besides providing state-of-the-art performances, GDumb has been proposed as
+standard baseline to question our progresses in continual learning research, since
+after experiencing a task, the simple learner (such as a ResNet18 [He et al., 2016]
+or a MLP) is trained only with memory data, making GDumb a fully rehearsal based
+approach with random filtering of incoming data, and thus the ideal candidate to
+carry our study. In the following paragraphs, we briefly describe all the strategies
+adopted for dimensionality reduction.
+Random Projections (RP)
+Extreme Learning Machines (ELM) [Huang et al., 2006] are a set of algorithms that
+exploit random projections as dimensionality reduction technique to preserve compu-
+tational and spatial resources while learning. ELM have been introduced in 2006 and
+recently have found application in neuroscience [Qureshi et al., 2016, Lama et al.,
+2017] and in other problems such as in molecular biology [Chen et al., 2020]. The
+idea can be roughly described as a composition of two modules where the first one
+performs a random projection of the data, while the second one is a learning model.
+The appealing property of RP lies in the Johnson-Lindenstrauss lemma [Johnson,
+1984] which states that given a set of points in a high dimensional plane, there is a
+Chapter 4
+43
+
+Dissecting continual learning: a structural and data analysis
+linear map to a subspace that roughly preserves the distances between data points
+by some approximation factor.
+The Johnson-Lindenstrauss lemma guarantees that we can obtain a low-distortion
+to the dimensionality reduction by multiplying each instance vector by a semi-orthogonal
+random matrix Qm×n in the (m, n) Stiefel manifold. More formally, let xi be an image
+of the current task of width, height and number of channels w, h, and c respectively,
+then the size of xi is n = hwc. We can consider its vectorization as vi ∈ Rn and its
+compressed representation
+v ′
+i = Qvi
+s.t.
+QTQ = Im
+(4.1)
+with v ′
+i ∈ Rm.
+The usage of ELM unsuspectedly unlocks two main advantages: First it allows
+us to exploit the dimensionality reduction by increasing the number data instances
+storable in the memory buffer. Secondly and, more importantly, allows us to use
+models with significantly fewer parameters. On the other hand, the approach loses
+coordinate contiguity and, with that, shift co-variance, rendering convolutional ap-
+proaches inapplicable.
+After the random projection, data instances will be forwarded to the greedy sam-
+pler of GDumb to fill the memory M. Then, we perform a rehearsal train with any
+MLP-like architecture, resulting in an order-of-magnitude reduction in the amount of
+parameters needed to process visual data allowing the usage of CL rehearsal based
+solutions in very low resource scenarios.
+Deep Encoders
+Deep encoders are neural models φ that take as input an image xi and, depending
+from the structure of such model, can output either a latent vectorial representation
+v ′
+i , or a squared feature map which we consider as a noise-free shrinked image x′
+i .
+Figure 4.2 (b) reports visually the two possible encoding scenarios. In this work,
+we adopt a Variational AutoEncoder (VAE) [Kingma and Welling, 2014] for the first
+case and a pretrained ResNet18 [He et al., 2016] cut up to a predefined block (CutR)
+as a prototype for the second.
+44
+Chapter 4
+
+Works
+CIFAR10
+Method
+Acc@600KiB
+Acc@1.5MiB
+Acc@3MiB
+EWC [Kirkpatrick et al., 2017]
+17.9 ± 0.3
+17.9 ± 0.3
+17.9 ± 0.3
+GEM [Lopez-Paz and Ranzato, 2017]
+16.8 ± 1.1
+17.1 ± 1.0
+17.5 ± 1.6
+AGEM [Chaudhry et al., 2019a]
+22.7 ± 1.8
+22.7 ± 1.9
+22.6 ± 0.7
+iCARL [Rebuffi et al., 2017]
+28.6 ± 1.2
+33.7 ± 1.6
+32.4 ± 2.1
+ER [Rolnick et al., 2019]
+27.5 ± 1.2
+33.1 ± 1.7
+41.3 ± 1.9
+ER-MIR [Aljundi et al., 2019a]
+29.8 ± 1.1
+40.0 ± 1.1
+47.6 ± 1.1
+ER5 [Aljundi et al., 2019a]
+-
+-
+42.4 ± 1.1
+ER-MIR5 [Aljundi et al., 2019a]
+-
+-
+49.3 ± 0.1
+GSS [Aljundi et al., 2019c]
+26.9 ± 1.2
+30.7 ± 1.2
+40.1 ± 1.4
+ASER [Shim et al., 2021]
+27.8 ± 1.0
+36.2 ± 1.1
+43.1 ± 1.2
+ASERµ [Shim et al., 2021]
+26.4 ± 1.5
+36.3 ± 1.2
+43.5 ± 1.4
+GDumb [Prabhu et al., 2020]
+35.0 ± 0.6
+45.8 ± 0.9
+61.3 ± 1.7
+Resize (8 × 8)
+55.5 ± 0.2
+64.5 ± 0.2
+73.1 ± 0.2
+ELM (128)
+43.0 ± 0.3
+47.1 ± 0.2
+50.0 ± 0.2
+CutR (8 × 8)
+54.4 ± 0.2
+60.9 ± 0.2
+71.6 ± 0.6
+Table 4.1: CIFAR10 experiments (5 runs)
+VAE
+Variational Autoencoders [Kingma and Welling, 2014] have been introduced
+as an efficient approximation of the posterior for arbitrary probabilistic models. A
+VAE is essentially an autoencoder that is trained with a reconstruction error between
+the input and decoded data, with a surplus loss that constitutes a variational objective
+term attempting to impose a normal latent space distribution. The variational loss is
+typically computed through a Kullback-Leibler divergence between the latent space
+distribution and the standard Gaussian, the total loss can be summarized as follows:
+L = Lr(xi, ˆxi) + LKL(q(zi|xi), p(zi))
+(4.2)
+given an input data image xi, the conditional distribution q(zi|xi) of the encoder,
+the standard Gaussian distribution p(zi), and the reconstructed data ˆxi. We use the
+encoding part of a VAE pretrained on a dataset by feeding each incoming image and
+retrieving the vectorial output representation v ′
+i , then the data point is forwarded to
+GDumb’s greedy sampler to feed M.
+CutR
+As our second encoding approach, we use a pretrained ResNet18 [He et al.,
+2016] cut up to a predefined block. ResNets models are Convolutional Neural Net-
+works (CNNs) introducing skip connections between convolutional blocks to alleviate
+the so called vanishing gradient [Hochreiter, 1998] problem afflicting deep architec-
+tures. The idea behind it, is to use the cut ResNet18 as a filtering module that
+outputs a smaller feature map, giving us x′
+i . In fact, we cut the network towards
+later blocks, since neurons in the last layers, encode more structured semantics with
+Chapter 4
+45
+
+Dissecting continual learning: a structural and data analysis
+ImageNet100
+CIFAR100
+Method
+Acc@12MiB
+Acc@24MiB
+Acc@3MiB
+Acc@6MiB
+AGEM [Chaudhry et al., 2019a]
+7.0 ± 0.4
+7.1 ± 0.5
+9.05 ± 0.4
+9.3 ± 0.4
+ER [Rolnick et al., 2019]
+8.7 ± 0.4
+11.8 ± 0.9
+11.02 ± 0.4
+14.6 ± 0.4
+EWC [Kirkpatrick et al., 2017]
+3.2 ± 0.3
+3.1 ± 0.3
+4.8 ± 0.2
+4.8 ± 0.2
+GSS [Aljundi et al., 2019c]
+7.5 ± 0.5
+10.7 ± 0.8
+9.3 ± 0.2
+10.9 ± 0.3
+ER-MIR [Aljundi et al., 2019a]
+8.1 ± 0.3
+11.2 ± 0.7
+11.2 ± 0.3
+14.1 ± 0.2
+ASER [Shim et al., 2021]
+11.7 ± 0.7
+14.4 ± 0.4
+12.3 ± 0.4
+14.7 ± 0.7
+ASERµ [Shim et al., 2021]
+12.2 ± 0.8
+14.8 ± 1.1
+14.0 ± 0.4
+17.2 ± 0.5
+GDumb [Prabhu et al., 2020]
+13.0 ± 0.3
+21.6 ± 0.3
+17.1 ± 0.2
+25.7 ± 0.7
+Resize (8 × 8)
+33.6 ± 0.2
+33.6 ± 0.3
+38.5 ± 0.4
+45.1 ± 0.2
+ELM (128)
+13.3 ± 0.2
+15.4 ± 0.4
+22.4 ± 0.3
+25.7 ± 0.3
+CutR (8 × 8)
+36.25 ± 0.4*
+36.27 ± 0.5*
+32.6 ± 0.6
+37.1 ± 0.2
+Table 4.2: ImageNet and CIFAR100 experiments (5 runs)
+respect to the early ones [Olah et al., 2017]. Therefore, we are able to extract se-
+mantic knowledge from unseen images leveraging transfer learning [Tan et al., 2018],
+that is, we exploit the ability of a model to generalize over unseed data. We refer
+to this method with the name CutR(esnet18). We use CutR instance encoding by
+feeding each image belonging to the current task and retrieving the shrinked out-
+put x′
+i which is then forwarded to the greedy sampler module of GDumb to fill the
+memory M.
+In our analysis, we adopted the less resource-hungry VAE scheme for datasets
+where shift co-variance is not as important, such as the MNIST, in which the digits
+are centered in the image and thus most approaches at the state-of-the-art use a
+MLP as classifier. In all other instances, we used the CutR scheme.
+Resizing
+We used also the simplest instance reduction approach one can think of i.e., resizing
+the images to very low resolution through standard bilinear interpolation. The resized
+images are then fed to the sampler of GDumb to balance the classes in M and all
+training and prediction is performed on the lowered resolution images.
+Independently of the approach adopted, all data instances are reduced before
+storing them in memory M, then we use GDumb’s greedy sampler to select and
+balance class instances, and finally, we use a suitable learner to fit memory data and
+assess the performance. In general, following GDumb, we adopt ResNet18 for large-
+scale image classification tasks for all approaches that maintain shift co-variance,
+reverting to a simple MLP for approaches without shift co-variance like RP.
+46
+Chapter 4
+
+Works
+Experiments
+We performed our analysis on the following standard benchmarks:
+• MNIST [LeCun et al., 1998]: the dataset is composed by 70000 28 × 28
+grayscale images of handwritten digits divided into 60000 training and 10000
+test images belonging to 10 classes.
+• CIFAR10 [Krizhevsky, 2009]: consists of 60000 RGB images of objects and
+animals. The size of each image is 32 × 32 divided in 10 classes, with 6000
+images per class. The dataset is split into 50000 training images and 10000
+test images.
+• CIFAR100 [Krizhevsky, 2009]: is composed by 60000, 32 × 32 RGB images
+subdivided in 100 classess with 600 images each.
+The dataset is split into
+60000 training images and 10000 test images.
+• ImageNet100 [Deng et al., 2009]: the dataset is composed of 64 × 64 RGB
+images divided in 100 classes; it is composed of 60000 images split into 50000
+training and 10000 test.
+• Core50 [Lomonaco and Maltoni, 2017]: the dataset is composed of 128 × 128
+RGB images of domestic objects divided in 50 classes. The set consists of
+164866 images split into 115366 training and 49500 test.
+Following [Prabhu et al., 2020], we use final accuracy as the evaluation metric
+throughout the work. The metric is computed at the end of all tasks against a test
+set of never seen before images composed of an equal number of instances per class.
+This allows us to directly compare against the largest number of competitors in the
+literature.
+All the experiments has been conducted with an Intel i7-4790K CPU with 32GB
+RAM and a 4GB GeForce GTX 980 machine running PyTorch 1.8.1+cu102.
+Parameter Sensitivity
+In the first experiment, we compared different dimensionality reduction strategies as
+we altered the parameters. The analysis was conducted on three different datasets:
+MNIST, CIFAR10 and ImageNet100.
+In this evaluation we fixed the amount of
+Chapter 4
+47
+
+Dissecting continual learning: a structural and data analysis
+memory buffer used for GDumb during rehearsal training, and we measured the
+final accuracy as the parameters varied for each dimensionality reduction method. In
+particular we subdivided both MNIST and CIFAR10 datasets into 5 tasks of 2 classes
+each, with 600 KiB dedicated memory buffer, while ImageNet100 was divided into
+10 tasks of 10 classes each, with 12 MiB memory buffer.
+Figure 4.3 plots the performance of the various schemes as we reduce the dimen-
+sionality of the instances and and thus increase their number in the allocated memory.
+The orange line represents the performance of the resize scheme. For the MNIST
+dataset, we considered eight different target sizes1 x′
+i ∈ {27 × 27, 24 × 24, 20 ×
+20, 16 × 16, 12 × 12, 8 × 8, 4 × 4, 2 × 2, 1 × 1}. We performed the same resizing for
+CIFAR10 data. We did not report CIFAR100 analysis since the data format is the
+same as CIFAR10 and the result would be analogous. For ImageNet100, we resized
+each instance to x′
+i ∈ {32 × 32, 24 × 24, 16 × 16, 6 × 6, 4 × 4, 2 × 2}.
+The green line of Figure 4.3 represents the deep encoders.
+In particular, for
+MNIST we used a VAE [Kingma and Welling, 2014] pretrained on KMNIST [Clanuwat
+et al., 2018] and analyzed the performance of GDumb with compressed instances as
+we altered the size of the latent embedding vector to v ′
+i ∈ {128, 64, 32, 16}. On
+the other hand, for the CIFAR10 and ImageNet100 dataset we considered different
+parameters for CutR. In particular, we cut the ResNet18 up to the sixth layer to get
+a 4 × 4 output, to the fifth to have a 8 × 8 encoding, and lastly up to the third block
+to get a 16 × 16 feature map.
+The CutR Resnet18 has been pretrained on the complete ImageNet, thus the
+results in the ImageNet100 benchmark can be biased. We denote these biased results
+with CutR*.
+Lastly, the blue line of Figure 4.3 reports the accuracy of Random Projection
+followed by an MLP classifier. We recall that this kind of architecture is a variation
+of an Extreme Learning Machine (ELM), therefore we will refer to it with the term
+ELM. We analyzed the final accuracy as the size of the random projection changes,
+in particular the embedding sizes considered are v ′
+i ∈ {512, 256, 128, 64, 32, 16} for
+all the datasets.
+For all the experiments in MNIST data, we used a 2-layer MLP with 400 hidden
+nodes as learning module, while we used a Resnet18 [He et al., 2016] for all the
+other analysis with exception of ELM scheme that maintains the 2-layer MLP model
+throughout. We did not perform any hyperparameter tuning on the learning module
+1throughout the work we omit to write the channel component for brevity
+48
+Chapter 4
+
+Works
+MNIST
+Method
+Acc@382KiB
+GEN [Hsu et al., 2018]
+75.5 ± 1.3
+GEN-MIR [Aljundi et al., 2019a]
+81.6 ± 0.9
+ER [Rolnick et al., 2019]
+82.1 ± 1.5
+GEM [Lopez-Paz and Ranzato, 2017]
+86.3 ± 1.4
+ER-MIR [Aljundi et al., 2019a]
+87.6 ± 0.7
+GDumb [Prabhu et al., 2020]
+91.9 ± 0.5
+Resize (8 × 8)
+97.2 ± 0.1
+ELM (128)
+95.0 ± 0.4
+VAE (32)
+94.6 ± 0.1
+Table 4.3: MNIST final accuracy (5 runs) analysis as we vary the memory for all
+schemes considered.
+in accordance with the GDumb [Prabhu et al., 2020] experimental protocol. For
+completeness we report the learning parameters: the system uses an SGD optimizer,
+a fixed batch size of 16, learning rates [0.05, 0.0005], an SGDR [Loshchilov and
+Hutter, 2017] schedule with T0 = 1, Tmult = 2 and warm start of 1 epoch. Early
+stopping with patience of 1 cycle of SGDR, along with standard data augmentation
+is used (normalization of data). GDumb uses cutmix [Yun et al., 2019] with p = 0.5
+and α = 1.0 for regularization on all datasets except MNIST.
+As we can also see from Figure 4.3 all the strategies considered unlock perfor-
+mance greatly above GDumb , thus suggesting that the quantity/quality trade-off
+is severely skewed toward quantity since each dimensionality reduction technique
+greatly improves the amount of data instances that can be stored in the memory
+buffer. It is also evident that the simple resizing strategy gives the best performance
+improving GDumb by +6% on MNIST and roughly by +20% on both CIFAR10 and
+ImageNet100 datasets.
+Moreover, we chose to consider extreme levels of encoding. We did so to find
+the level of compression that irreversibly corrupts spatial information and thus makes
+learning impossible. Surprisingly, it turns out that a 2 × 2 resizing still works on
+CIFAR10 data with perfomances above GDumb while a 1 × 1 resize is still better
+than a random classifier whose performance would be 20% of final accuracy. This
+is a strong evidence that the amount of data storable in the memory buffer plays
+a central role, but also that CIFAR10 dataset constitutes an unrealistic benchmark
+and should not been considered to assess novel methodologies in the future.
+After choosing and fixing the optimal parameters for each compression scheme,
+we study the performance of the rehearsal system as we alter the quantity of the
+memory allocated.
+In Tables 4.3,4.2 we compute the final accuracy for all the
+Chapter 4
+49
+
+Dissecting continual learning: a structural and data analysis
+Figure 4.3: At top-left the accuracy analysis of the MNIST dataset. In top-right we
+have the analysis of CIFAR10 and at bottom we have ImageNet100. The state-of-
+the-art (SOTA) method is plain GDumb with an MLP as incremental learner in the
+MNIST experiment and Resnet18 in the others. The number of instances in memory
+(i.e. the x axis) is in log scale. We report the results of (5 runs).
+datasets previously considered, with the addition of CIFAR100 with an increase of
+20% in performance. The amount of dedicated memory for the rehearsal buffer, has
+been chosen in order to be consistent with several other methods at GDumb , al-
+lowing us to compare GDumb’s performance on optimized memory schemes against
+other methods. As we can see, all memory optimizations still provide huge advan-
+tages as the memory buffer varies, suggesting again, that instance quantity plays a
+fundamental role in rehearsal systems even with extreme encoding settings.
+Finally, we note that the deep models used for classification have a large number
+of degrees of freedom and require a large amount of instances to be properly trained
+to capture the complexity of the task at hand. Simpler, lower dimensionality instances
+allow both for more instances and simpler classifiers with fewer parameters without
+50
+Chapter 4
+
+MNIST Fixed 382 KiB Memory
+CIFAR10 Fixed 600 KiB Memory
+0.98
+0.60
+x12x12-8x8
+RP+MLP (ELM)
+RP+MLP (ELM)
+8x8
+x16x16
+-¥- Resize+MLP
+0.55-
+16x16
+8x8
+4x4
+一样一
+Resize+ResNet
+0.96 -
+20x20
+.... VAE+MLP
+x12x12
+...
+CutR+ResNet
+128
+SOTA
+0.50 -
+SOTA
+32
+24x24
+0.94 -
+16x16
+256
+64
+.4x4
+racy
+*27x27
+64
+.4x4
+128
+Accur
+0.92
+64
+0.40
+24x24
+256
+32
+2x2
+128
+28x28 512
+0.90
+0.35
+16
+0.30 -
+16
+0.88 -
+*1x1
+32
+0.25
+0.86
+103
+104
+105
+103
+104
+105
+Memory Slots
+Memory Slots
+ImageNet100 Fixed 12000 KiB Memory
+RP+MLP (ELM)
+0.5 -
+样一
+Resize+ResNet
+16x16
+CutR*+ResNet
+SOTA
+0.4 -
+8x8
+8x8
+2
+16x16
+24x24
+.4x4
+32x32
+4x4
+0.2
+256
+128
+512
+64
+32
+x2x2
+0.1 -
+16
+0.0
+104
+105
+106
+Memory SlotsWorks
+Figure 4.4: We show the total amount of KiB used by the whole CL system. We
+measure the consumption as we saturate the rehearsal memory plus the storage of
+model parameters. The x−axis is in log scale.
+losing lot of informational content.
+Resource Consumption
+With the second experiment, we wanted to analyze the performance versus the total
+memory requirement for each approach. Here, we increased the number of instances
+in the memory buffer and added to the total consumption the working memory used
+by the classifier to store (and train) the parameters.
+We considered three different scenarios: first we used the plain GDumb CL system
+without dimensionality reduction (representing GDumb ), then we used ELM (with
+fixed embedding size of (v ′
+i = 128), and lastly the resizing scheme (images resized to
+x′
+i = 8×8). We selected the best parameters resulting from the previous experiment.
+We then assessed the performance and resource usage using a new dataset,
+namely the Core50 [Lomonaco and Maltoni, 2017]. The reason behind the use of
+Core50 to validate our findings is twofold: first, we test again whether the quantity
+of extremely encoded data plays a central role on our rehearsal scheme. Secondly, we
+measure the performance and the resource usage of a CL system on a more complex
+Chapter 4
+51
+
+MNIST
+CIFAR10
+CIFAR100
+1.0 -
+0.8 -
+0.4
+0.8
+0.6
+0.6 -
+0.2
+0.4
+0.4
+0.2
+0.0
+104
+105
+104
+105
+104
+105
+KiB
+KiB
+KiB
+ImageNet100
+Core50
+0.8
+ELM
+0.6
+GDumb
+0.6
+Accuracy
+Resize
+0.4
+0.4
+0.2
+0.2
+0.0
+0.0
+104
+105
+104
+105
+KiB
+KiBDissecting continual learning: a structural and data analysis
+set of tasks. We divided the dataset into 10 tasks of 5 classes each.
+In Figure 4.4, we report the results of this experiment. We can see that extreme
+levels of resizing still provide optimal results in all the datasets considered. One strik-
+ing finding is that in Core50 with extreme resizing, even if the size was not optimized
+for the dataset, the final accuracy is increased by +67% with respect to GDumb .
+Second, we note that ELM constitute a viable solution in low resources scenarios.
+Indeed, we can surpass the performance of GDumb for low memory scenarios where
+even just the classifier used in other approaches could not fit in the allocated memory,
+much less the rehearsal buffer. This is clearly observed from the Core50 results. We
+can appreciate that by randomly projecting image data and learning in a low resource
+scenario provides a boost of +34% in the final accuracy.
+Finally, it is worth noting there is a striking dissonance in the literature of rehersal-
+based method when the narrative around buffer-memory sizes revolves around deci-
+sions among sizes of the order of 300KiB to 600KiB when then the same systems
+adopt complex classifiers using several megabytes of memory just for the learned
+parameters and in the order of gigabytes of working memory for learning. In a real
+constrained-memory scenario a simpler classifier with more instances offers a clear
+advantage.
+Conclusion
+In this study, we analyzed the quantity/quality trade-off in rehearsal-based Continual
+Learning systems adopting several dimensionality reduction schemes to increase the
+number of instances in memory at the cost of possible loss in information. In par-
+ticular, we used deep encoders, random projections, and a simple resizing scheme.
+What we found is that even simple, but extremely compressed encodings of instance
+data provide a notable boost in performance with respect to the state of the art,
+suggesting that in order to cope with catastrophic forgetting, the optimization of the
+memory buffer can play a central role. Notably, the performance boost of extreme
+instance compression suggests that the quality/quantity trade-off is severely biased
+toward data quantity over data quality. We suspect that some fault might be in the
+overly simplistic datasets adopted by the community, but mostly the deep models
+used for classification are well known to be data-hungry and the instances stored are
+not sufficient to properly train them, but can suffice for simpler classifiers with fewer
+parameters working on simplified instances.
+It is worth noting there is a striking dissonance in the literature of rehearsal-based
+52
+Chapter 4
+
+Works
+method.
+The narrative on buffer-memory sizes revolves around decisions among
+sizes of the order of 300KiB to 600KiB when then the same systems adopt complex
+classifiers using several megabytes of memory just for the learned parameters and in
+the order of gigabytes of working memory for training. In a real constrained-memory
+scenario, a simpler classifier with more instances offers a clear advantage.
+In fact, in a real low-resources scenario deep convolutional systems using several
+megabytes of memory for the model parameters and gigabytes of working memory
+for learning are not a viable solution. In this case, a variation of Extreme Learning
+Machines offer a simple and effective solution.
+Other Experiments
+Fixed Data Instances
+With this experiment we aim to better show that instance quantity is preferable over
+instance quality. We fixed the number of data slots in the memory buffer, and we
+analyzed the performance as we alter the encoding size. In particular, we tested
+two datasets namely CIFAR10 and Core50. In CIFAR10 we fixed the buffer to 1000
+data slots, while in the latter benchmark we fixed it to be 8000 slots. What we
+can see from Figure 4.5 is that the improvement of performance is not given by the
+encoding’s smoothing property, and, again, we confirm that rehearsal systems are
+skewed towards data quantity.
+Chapter 4
+53
+
+Dissecting continual learning: a structural and data analysis
+Figure 4.5: Performance as we vary the parameters for each scheme on CIFAR10
+and Core50. In the former benchmark, the memory buffer is of 1000 fixed instances,
+while in the latter is of 8000.
+ELM Width Analysis
+As we specified in the work, we used a variation of an Extreme Learning Machine.
+In particular, the architecture is composed by a random projection module and a
+learning module. The first is implemented through an orthogonal random matrix.
+While the second is a two layer MLP. Throughout the study we used 400 hidden
+units as last layer before the output. We choose to do so to be consistent with
+GDumb experimental settings. With this experiment we analyze the accuracy metric
+as we change the number of hidden units. We fixed the encoded size of data to
+be v ′
+i 128. As memory buffer, we used a different number of data slots for different
+datasets. That is, for MNIST and CIFAR10 we adopted 2400 slots (600 KiB), in
+ImageNet100 we used 48000 instances i.e. 12 MiB, while for Core50 we used 8000
+slots (2 MiB). In Figure 4.6 we can see that 100 hidden units are sufficient to achieve
+54
+Chapter 4
+
+CIFAR10 ELM
+CIFAR10 Resize
+0.55
+0.38
+0.36
+0.50
+racy
+0.34
+Accu
+0.45
+0.32
+0.30
+0.40
+0.28
+16 64 128
+256
+512
+4x4
+8x8
+16x16
+24x24
+Encoding Size
+Encoding Size
+Core50 ELM
+Core50 Resize
+0.55
+0.36
+0.50
+Accuracy
+0.45
+0.34 -
+0.40
+0.32
+0.35
+0.30
+0.30
+16 64 128
+256
+.
+512
+4x4
+8x8
+16x16
+24x24
+Encoding Size
+Encoding SizeWorks
+the maximum performance. This, again, shows that more deep classifiers which are
+common in CL rehearsal literature, might need more data to be trained properly.
+Figure 4.6: Analysis of final accuracy as we alter the number of hidden units in ELM.
+Experiments with other Rehearsal Systems
+Throughout our study, we used GDumb to carry out our analysis. Although we ex-
+tensively motivated this choice, we also tested two different rehearsal systems. In
+particular we studied ER Rolnick et al. [2019] and ER-MIR Aljundi et al. [2019a] per-
+formance as we adapt them to work in a low resource scenario. We simply substitute
+the original learner with our ELM proposal. In Table 4.4 we report the performance
+of CIFAR10 with 600 KiB buffer memory and v ′
+i = 128 encoding. As validation
+metrics we used the final accuracy and the average forgetting Chaudhry et al. [2018]
+(lower is better). In order to train the systems, we used the official implementations
+found at https://github.com/optimass/Maximally Interfered Retrieval without any
+alteration of training hyperparameters. As we can see, the results suggest again
+that ELMs constitute a valid solution for low resource CL systems and that rehearsal
+solutions are biased toward data quantity over data quality.
+Chapter 4
+55
+
+ELM Width Analaysis
+1.0
+MNIST
+0.8
+CIFAR10
+ImageNet100
+Accuracy
+0.6
+Core50
+0.4
+0.2
+0.0
+0
+50
+100
+150
+200
+250
+300
+350
+Hidden NodesDissecting continual learning: a structural and data analysis
+CIFAR10 Fixed Memory 600 KiB
+Method
+Accuracy (A)
+Forgetting (F)
+ELM (A)
+ELM (F)
+ER Rolnick et al. [2019]
+27.5 ± 1.20
+48.0 ± 0.40
+42.0 ± 0.10
+41.2 ± 0.16
+ER-MIR Aljundi et al. [2019a]
+29.8 ± 1.10
+44.6 ± 0.48
+45.6 ± 0.10
+31.6 ± 0.01
+Table 4.4: Experiments in CIFAR10 with two different rehearsal systems in low
+resource scenario.
+Other Specifications
+Resource Consumption
+In Table 4.5 we report some summary statistics. In particular, we report GDumb’s
+performance improvements for two encoding schemes i.e. Resize (8 × 8) and ELM
+(v ′
+i = 128). We reported only the accuracy according to optimal parameters. We
+also added the compression factor C, the requirements to store model’s parameters
+Θ and the memory buffer M. We also report the quantity of GPU memory usage
+to train GDumb for each encoding scheme. We can see that there is a big gap on
+the training requirements and memory buffers.
+MNIST
+CIFAR10
+CIFAR100
+ImageNet100
+Core50
+Compression
+Params + M
+GPU Training
+Resize (8 × 8)
+(+6%)
+(+21%)
+(+20%)
+(+20%)
+(+67%)
+253:1
+60 MiB
+2.2 GiB
+ELM (128)
+(+10%)
+(+10%)
+(+10%)
+(+10%)
+(+10%)
+192:1
+16 MiB
+0.72 GiB
+Table 4.5: Performance summary and memory compression
+Datasets Specification
+For completeness, we report in Table 4.6 some specifications for the considered
+datasets. In particular, we provide the task subdivision for each dataset. As we can
+see MNIST and CIFAR10 have been split in 5 tasks of 2 classes each. This splitting
+is also known in literature as Split-CIFAR10 and Split-MNIST. For CIFAR10 and
+ImageNet100 benchmarks we used 10 tasks of 10 classes each, meanwhile for Core50
+we shuffled all scenarios and created 10 tasks of 5 classes each. The majority of the
+works fix the memory slots to define the memory buffer. In our case we used memory
+requirements expressed in KiB or MiB so that we could alter each slot consumption.
+56
+Chapter 4
+
+Works
+We provide a correspondence between memory requirements and memory slots in the
+case we consider original image sizes, we do so to ease future comparisons against
+our work.
+Experimental Settings
+Dataset
+Image size
+Memory Size
+# Instances
+Task Composition
+MNIST
+28x28x1
+382 KiB
+500
+5 tasks, 2 classes
+CIFAR10
+32x32x3
+600 KiB
+200
+5 tasks, 2 classes
+1.5 MiB
+500
+3 MiB
+1000
+6 MiB
+2000
+CIFAR100
+-
+-
+-
+10 tasks, 10 classes
+ImageNet100
+64x64x3
+12 MiB
+1000
+10 tasks, 10 classes
+24 MiB
+2000
+Core50
+128x128x3
+15 MiB
+312
+10 tasks, 5 classes
+Table 4.6: Dataset and memory statistics, in CIFAR100 row we omit the 2nd, 3rd
+and 4th columns since are equal to CIFAR10 row.
+Chapter 4
+57
+
+Dissecting continual learning: a structural and data analysis
+4.2
+Towards Exemplar-Free Continual Learning in Vi-
+sion Transformers: an Account of Attention, Func-
+tional and Weight Regularization
+While in the previous work we considered old data points as pivotal instrument to
+investigate catastrophic forgetting, now we focus on the structural properties of the
+model considered. In particular, we ask ourselves how some parts of a network, when
+properly regularized, impact to the overall performance of an incremental scenario.
+We decided to investigate the continual learning of Vision Transformers (ViT) for the
+challenging exemplar-free scenario. We opted to study ViTs since there are several
+works tackling CNNs while virtually no one focused to ViTs yet although they are
+getting consistently better at vision tasks.
+This work takes an initial step towards a surgical investigation of the self atten-
+tion mechanism (SAM) for designing coherent continual learning methods in ViTs.
+We first carry out an evaluation of established continual learning regularization tech-
+niques. We then examine the effect of regularization when applied to two key enablers
+of SAM: (a) the contextualized embedding layers, for their ability to capture well-
+scaled representations with respect to the values, and (b) the prescaled attention
+maps, for carrying value-independent global contextual information. We depict the
+perks of each distilling strategy on two image recognition benchmarks (CIFAR100
+and ImageNet-32) – while (a) leads to a better overall accuracy, (b) helps enhance
+the rigidity by maintaining competitive performances. Furthermore, we identify the
+limitation imposed by the symmetric nature of regularization losses.
+To alleviate
+this, we propose an asymmetric variant and apply it to the pooled output distillation
+(POD) loss adapted for ViTs. As we will see through the section, our experiments
+confirm that introducing asymmetry to POD boosts its plasticity while retaining sta-
+bility across (a) and (b). Moreover, we acknowledge low forgetting measures for all
+the compared methods, indicating that ViTs might be naturally inclined continual
+learners.
+58
+Chapter 4
+
+Works
+Transformers have shown excellent results for a wide range of language tasks
+[Brown et al., 2020, Roy et al., 2021] over the course of the last couple of years.
+Influenced by their initial results, Dosovitskiy et al. [Dosovitskiy et al., 2021] pro-
+posed Vision Transformers (ViTs) as the first firm yet competitive application of
+transformers within the computer vision community.2 ViTs’ applications have since
+spanned a range of vision tasks, including, but not limited to image classification
+[Touvron et al., 2021], object recognition [Liu et al., 2021], and image segmentation
+[Wang et al., 2021]. The singlemost essential element of their architecture remains
+the self-attention mechanism (SAM) that allows the learning of long-range interde-
+pendence between the elements of a sequence (or patches of an image). Another
+feature vital to their performance is the way they are pretrained in an often unsuper-
+vised or self-supervised manner over a large amount of data. This is then followed
+by the finetuning stage where they are adapted to a downstream task [Devlin et al.,
+2019].
+For ViTs to be able to operate in real-world scenarios, they must exploit streaming
+data, i.e., sequential availability of training data for each task.3 Storage limitations
+or privacy constraints further imply the restrictions on the storage of data from
+previous tasks. Task-incremental continual learning (CL) seeks to find solutions to
+such constraints by alleviating the event of catastrophic forgetting - a phenomena
+where the network has a dramatic drop in performance on data from previous tasks.
+Several solutions have been proposed to address forgetting, including regularization
+[Kirkpatrick et al., 2017, Aljundi et al., 2018, Zenke et al., 2017, Ritter et al., 2018],
+data replay [Chaudhry et al., 2019b, Aljundi et al., 2019a, Lopez-Paz and Ranzato,
+2017] and parameter isolation [Mallya and Lazebnik, 2018, Rusu et al., 2016, Aljundi
+et al., 2017, Lee et al., 2020].
+Most works on CL de nos jours study recurrent
+[Sodhani et al., 2020, Chiaro et al., 2020] and convolutional neural networks (CNNs)
+[Kirkpatrick et al., 2017]. However, little has been done to investigate different CL
+settings in the domain of ViTs. We, therefore, mark the first step for the domain by
+considering the further restrictive setting of exemplar-free CL with a zero overhead
+of storing any data from previous tasks. We consider this restriction for its real-world
+aptness to scenarios involving privacy regulations and/or data security considerations.
+Given that regularization-based methods form one of the main techniques for
+exemplar-free CL, we consider an in-depth analysis of these for ViTs. Regularization-
+based techniques are mainly organized along two branches: weight regularization
+methods (such as EWC [Kirkpatrick et al., 2017], SI [Zenke et al., 2017], MAS [Aljundi
+et al., 2018]) and functional regularization methods ( such as LwF [Li and Hoiem,
+2017], PODNET [Douillard et al., 2020]). As discussed above, the architectural
+2By firmness, we refer to the non-reliance on convolutional operations.
+3A task may encompass training data of one or more classes.
+Chapter 4
+59
+
+Dissecting continual learning: a structural and data analysis
+Figure 4.7: Self-attention mechanism comprising a vision transformer encoder. We
+compare Attention-based approaches computed prior to the softmax operation and
+Functional-based approaches computed on the contextualized embeddings.
+novelty of transformers lies in the SAM building a representation of a sequence by
+exhaustively learning relations among query-key pairs of its elements [Vaswani et al.,
+2017]. We show that for ViTs (and subsequently, all other architectures leveraging
+SAM), this property allows for a third form of regularization, which we coin Atten-
+tion Regularization (see Figure 4.7). We ground our idea in the hypothesis that
+when learning new tasks, the attention of the new model should still remain in the
+neighborhood of the attention of the previous model. As another contribution, we
+question the temporal symmetry currently applied to regularization losses; referring
+to the fact that they penalize the forgetting of previous knowledge and the acquiring
+of new knowledge equally (see Figure 4.8). With the aim of countering forgetting
+while mitigating the loss of plasticity, we then propose an asymmetric regulariza-
+60
+Chapter 4
+
+Queries
+Keys
+A
+(A) Scalar Product
+(B) Softmax/Scaling
+(C) Linear Combination
+B
+Values
+Functional-based
+Attention-based
+Contextualized
+EmbeddingsWorks
+tion loss that penalizes the loss of previous knowledge but not the acquiring of new
+knowledge. We index the major contributions of our work below:
+• We are the first to investigate continual learning in vision transformers in the
+more challenging exemplar-free setting. We perform a full analysis of regular-
+ization techniques to counter catastrophic forgetting.
+• Given the distinct role of self-attention in modeling short and long-range depen-
+dencies [Yang et al., 2021], we propose distilling the attention-level matrices
+of ViTs. Our findings show that such distillation offers accuracy scores on par
+with that of their more common functional counterpart while offering superior
+plasticity and forgetting. Motivated by the work of Douillard et al. [Douillard
+et al., 2020], we pool spatiality-induced attention distillation across our network
+layers.
+• We propose an asymmetric variant of functional and attention regularization
+which prevents forgetting while maintaining higher plasticity.
+Through our
+extensive experiments, we show that the proposed asymmetric loss surpasses
+its symmetric variant across a range of task incremental settings.
+Related Works
+Continual learning has been gaining contributions from the deep learning research
+community during the last few years. In the following, we list the most prominent
+ones:
+• Weight-based: these methods operate in the parameter space of the model
+through gradient updates. Elastic Weight Consolidation (EWC) [Kirkpatrick
+et al., 2017] and Synaptic Intelligence (SI) [Zenke et al., 2017] are two widely
+used methods in this family with the former being probably, the most well-
+known. EWC uses fisher information to identify the parameters important to
+individual tasks and penalizes their updates to preserve knowledge from older
+tasks. SI makes the neurons accumulate and exploit old task-specific knowledge
+to contrast forgetting.
+• Functional-based: these methods rely upon trading the plasticity for stability by
+training either the current (new) model on older data or vice-versa. Learning
+Without Forgetting (LWF) [Li and Hoiem, 2017] remains among the most
+Chapter 4
+61
+
+Dissecting continual learning: a structural and data analysis
+widely known approaches in this family.
+It employs Knowledge Distillation
+[Hinton et al., 2015] upon the logits of the network.
+• Parameter Isolation-based: also known as architectural approaches, these meth-
+ods tackle CF through a dynamic expansion of the network’s parameters as the
+number of tasks grow. Among the first widely known methods in this family
+remain Progressive Neural Network (PNN) [Rusu et al., 2016] followed by
+Dynamically Expandable Network (DEN) [Yoon et al., 2018] and Reinforced
+Continual Learing (RCL) [Xu and Zhu, 2018].
+The majority of the aforementioned works target CL in CNNs mainly due to
+their inductive bias allowing them to solve almost all problems that involve visual
+data. This can also be seen in several reviews [Mai et al., 2022, Biesialska et al.,
+2020, Delange et al., 2021, Parisi et al., 2019, Belouadah et al., 2021, Mai et al.,
+2022] reporting few approaches that consider architectures besides CNNs, despite
+the attempts to investigate CL in RNNs [Sodhani et al., 2020, Chiaro et al., 2020].
+Only recently have some works analyzed catastrophic forgetting in transformers.
+Among the earliest to do so remains that of Li et al. [Li et al., 2022] proposing
+the continual learning with transformers (COLT) framework for object detection in
+autonomous driving scenarios.
+Using the Swin Transformer [Liu et al., 2021] as
+the backbone for a CascadeRCNN detector, the authors show that the extracted
+features generalize better to unseen domains hence achieving lesser forgetting rates
+compared to ResNet50 and ResNet101 [He et al., 2016] backbones. In case of ViTs,
+Yu et al. [Yu et al., 2021] show that their vanilla counterparts are more prone to
+forgetting when trained from scratch. Alongside heavy augmentations, they employ
+a set of techniques to mitigate forgetting: (a) knowledge distillation, (b) balanced
+re-training of the head on exemplars (inspired by LUCIR [Hou et al., 2019]), and (c)
+prepending a convolutional stem to improve low-level feature extraction of ViTs.
+In their work studying the impact of model architectures in CL, Mirzadeh et al.
+[Mirzadeh et al., 2022] also experiment with ViTs in brief (with the rest of the work
+focusing mainly on CNNs). While they vary the number of attention heads of ViTs
+to show that this has little effect on the accuracy and forgetting scores, they further
+conclude that ViTs do offer more robustness to forgetting arising from distributional
+shifts when compared with their CNN-based counterparts with an equivalent num-
+ber of parameters. The conclusion remains in line with previous works [Paul and
+Chen, 2021]. Finally, [Douillard et al., 2021] attempt to overcome forgetting in ViTs
+through a parameter-isolation approach which dynamically expands the tokens pro-
+cessed by the last layer. For each task, they learn a new task-specific token per head.
+They then couple such approach through the usage of exemplars and knowledge dis-
+62
+Chapter 4
+
+Works
+tillation on backbone features. It is worth noting that these works rely either on
+pretrained feature extractors [Li et al., 2022] or rehearsal [Yu et al., 2021, Douillard
+et al., 2021] to defy forgetting. Thus the challenging scenario of exemplar-free CL
+in ViTs remains unmarked.
+Methodology
+We start by shortly describing the two main existing regularization techniques for
+continual learning. We then propose attention regularization as an alternative ap-
+proach tailored for ViTs. Lastly, we put forward an adaptation for functional and
+attention regularization which is designed to elevate plasticity while retaining stability
+levels.
+Functional and Weight Regularization
+Functional Regularization:
+We include LwF [Li and Hoiem, 2017] in this compo-
+nent since it constitutes one of the most prominent, and perhaps the most widely
+used regularization method acting on data. The appealing property of LwF lies in the
+fact it is exemplar-free, i.e., it uses only the data of the current task and maintains
+only the model at task t − 1 to exploit Knowledge Distillation [Hinton et al., 2015].
+Formally, LwF can be defined as:
+LLwF(θ) = λoLKD
+�
+Yo, ˆYo
+�
++ LCE
+�
+Yn, ˆYn
+�
++ R(θ)
+(4.3)
+where LKD is the knowledge distillation loss incorporated to impose stability on the
+outputs, ˆYo the predictions on the current task data from the old model and ˆYo the
+ground truth of such data. λo remains the temperature annealing factor for softmax
+logits while LCE is the standard cross entropy loss calculated upon the new task
+examples.
+Weight Regularization:
+These methods encourage the network to adapt to the
+current task data mainly by using those parameters of the network that are not
+considered important for previous tasks. As representative method we select EWC
+[Kirkpatrick et al., 2017]. EWC exploits second-order information to estimate the
+importance of parameters for the current task. The importance is approximated by
+Chapter 4
+63
+
+Dissecting continual learning: a structural and data analysis
+Figure 4.8: Visual illustration of the asymmetric loss.
+The image considers two
+generated attention maps (a) and (b) while training task 2.
+In case (a), when
+previous knowledge is lost, both the symmetric and assymetric regularization work
+correctly. However, in case (b), when new knowledge is acquired, this is penalized by
+the symmetric loss but not by the assymetric loss. The idea is that the assymetric
+loss leads to higher plasticity without hurting stability.
+the diagonal of the Fisher Information Matrix F:
+LEWC(θ) = LX(θ) +
+�
+j
+λ
+2Fj
+�
+θj − θ∗
+Y,j
+�2
+(4.4)
+where LX(θ) is the loss for task X, λ the regularization strength, and θ∗
+Y,j the optimal
+value of jth parameter after having learned task Y.
+Attention Regularization
+Self-Attention Mechanism:
+The self-attention mechanism (SAM) [Vaswani et al.,
+2017] forms the core of Transformer-based models and can be defined as:
+z = softmax
+�QKT
+√de
+�
+V
+(4.5)
+where Q, K, and V are respectively the projections of the Query, Key, and Values
+of the Rde input embeddings while z constitutes the new contextualized embed-
+dings. Our novel attention-based regularization intervenes prior to the computation
+64
+Chapter 4
+
+Attention
+Attention
+Symmetric
+Asymmetric
+Previous Model
+Current Model
+Regularization
+Regularization
+OK
+OK
+Penalize
+Penalize
+forgetting previous
+forgetting previous
+knowledge
+knowledge
+(a)
+NOT OK
+OK
+Penalize new
+New knowledge
+Task 1 : Dogs
+knowledge
+is notpenalized
+Task 2 : Deers
+(b)Works
+of the softmax operation of the standard self-attention mechanism as illustrated in
+Figure 4.7.
+In particular, given a ViT model at incremental step t and an SAM head k of
+layer l, we define the prescaled attention matrix At
+kl prior to the softmax operation
+as:
+At
+kl = QKT
+√de
+(4.6)
+We denote the attention matrix corresponding to the model at time step (t − 1)
+computed in a similar way as At−1
+kl . We employ this predecessor in the calculation of
+knowledge distillation in what follows.
+Pooled Attention Distillation:
+Functional approaches leverage network’s submod-
+ules typically to apply knowledge distillation [Hinton et al., 2015]. When the regular-
+ization takes place in intermediate layers, the model can experience excessive stability,
+therefore loosing in plasticity abilities [Douillard et al., 2020, Liu et al., 2020a, Yu
+et al., 2020b]. Amongst these methods, PODNet [Douillard et al., 2020] clearly
+identifies the problem of excessive stability.
+We devise a regularization approach
+which instead of regularizing functional submodules targets attention maps, the core
+mechanisms of SAMs.
+More formally, given the attention maps at steps t and (t − 1), we define
+LPAD
+�
+At−1
+kl , At
+kl
+�
+[Douillard et al., 2020] to be:
+LPAD-width
+�
+At−1
+kl , At
+kl
+�
++ LPAD-height
+�
+At−1
+kl , At
+kl
+�
+(4.7)
+where LPAD-width
+�
+At−1
+kl , At
+kl
+�
+=
+H
+�
+h=1
+DW
+�
+At−1
+kl , At
+kl
+�
+,
+LPAD-height
+�
+At−1
+kl , At
+kl
+�
+=
+W
+�
+w=1
+DH
+�
+At−1
+kl , At
+kl
+�
+,
+(4.8)
+DX
+�
+At−1
+kl , At
+kl
+�
+=
+�����
+X
+�
+x=1
+At−1
+kl,w,h −
+X
+�
+x=1
+At
+kl,w,h
+�����
+2
+(4.9)
+where, W and H indicate the width and height dimensions of the attention maps,
+and DX(a, b) is the sum total of the distance measure between maps a and b along
+X-th dimension. As shown in equation 4.9, the standard LPAD uses the difference
+Chapter 4
+65
+
+Dissecting continual learning: a structural and data analysis
+Figure 4.9: Mean and standard deviation of task-aware accuracy and forgetting
+scores for CIFAR100/10 and ImageNet/6 settings (over 3 random runs). Asymmetric
+approaches depict higher accuracy with respect to their symmetric counterparts. The
+low forgetting scores across all methods suggest an intrinsic forgetting resilience in
+vision transformer architectures.
+operator as the choice for D. We now point out the limitation of such symmetric D
+and introduce in the next section the notion of asymmetry into our distance measure.
+As previously mentioned, Douilllard el al. [Douillard et al., 2020] propose the
+pooled outputs distillation PODNet loss which leverages the symmetric Euclidean
+distance between the L2-normalized outputs of the convolutional layers of models at
+t and (t − 1) after pooling them along specific dimension(s). They achieve the best
+results upon combining the pooling along the spatial width and height axes which
+they term as the POD-spatial loss. Given the generic correspondence among the
+various pooling variants in their paper, our work is particularly influenced by POD-
+spatial as we pool attention maps of ViTs along two dimensions. In fact, throughout
+the experiments, we analyze this formulation when applied to the contextualized
+embeddings z resulting from a SAM operation. We would like to highlight that PAD
+differs from PODNet in two important factors: its applied to the attention and not
+directly on the layer output, and secondly, its marginalization is not on the spatial
+dimensions due to the fact that z does not encode the spatial dimension.
+Asymmetric Regularization
+The proposed attention regularization prevents forgetting of previous task by en-
+suring that the old attention maps be retained while the model learns to attend to
+new regions over tasks. However, the symmetric nature of DX (with respect to the
+two attention maps) means that any differences between the older and the newly
+learned attention maps lead to increased loss values (see Equation 4.8). We agree
+that penalizing a loss in attention with respect to previous knowledge is crucial in
+66
+Chapter 4
+
+Task Aware - avg 3 seeds
+.. FUNC(asym) ..... finetuning
+LwF
+ATT(sym)
+FUNC(sym)
+0.58
+0.28
+0.20
+0.100
+0T/001
+0.55
+ImageNet/6
+20.075.
+ 0.26
+curac
+CIFAR1(
+ 0.24
+For
+0.05
+0.025
+0.45
+0.22
+0.000
+0.00
+2
+3
+4
+5
+6
+89 10
+5678910
+6
+1
+2
+3
+2
+5
+6
+1
+4
+5
+Tasks
+Tasks
+Tasks
+TasksWorks
+addressing forgetting. However, also penalizing a gain in attention for newly learned
+knowledge is undesirable and may actually hurt the performance over subsequently
+learned tasks. In other words, punishing additional attention can be counterproduc-
+tive. As a result, we propose using an asymmetric variant of DX that can better
+retain previous knowledge:
+DX
+�
+At−1
+kl , At
+kl
+�
+=
+�����Fasym
+� X
+�
+x=1
+At−1
+kl,w,h −
+X
+�
+x=1
+At
+kl,w,h
+������
+2
+(4.10)
+where, Fasym is as asymmetric function.
+We experimented with ReLU [Nair and
+Hinton, 2010], ELU [Clevert et al., 2016] and Leaky ReLU [Maas et al., 2013] as
+choices for Fasym and found that in general, ReLU performed the best across our
+settings. By introducing the ReLU function, new attention generated by the current
+model at task t is not penalized. Attention present at task t − 1 but missing in the
+current model t is penalized. An illustration of the functioning of the new loss is
+provided in Figure 4.8.
+Based on our choice for DX from equations 4.9 and 4.10, we classify our final
+PAD loss as symmetric LPAD-sym or asymmetric LPAD-asym, respectively. Each of these
+losses are computed separately for each of the SAM head and model layer. The final
+asymmetric variant can thus be stated as:
+LPAD-asym(At−1
+kl , At
+kl) =
+1
+L
+L
+�
+1
+1
+K
+K
+�
+1
+LPAD (At−1
+kl , At
+kl)
+(4.11)
+where, K is the total number of heads per layer and L is the total number of layers
+of the model. Note that equation 4.11 can be adapted for LPAD-sym without loss of
+generality.
+Overall loss:
+We augment the asymmetric and symmetric PAD losses from equa-
+tion 4.11 with knowledge distillation loss LLwF [Li and Hoiem, 2017] and standard
+cross entropy loss LCE. The overall loss term takes the form:
+L = µLPAD-(a)sym + λLLwF + LCE
+(4.12)
+where µ, λ ∈ [0, 1] are two hyperparameters regulating the respective contributions.
+Note that when µ = 0, L degenerates to baseline finetuning for λ = 0 and to LwF
+for λ = 1.
+Chapter 4
+67
+
+Dissecting continual learning: a structural and data analysis
+Figure 4.10: Mean and standard deviation of task-aware plasticity-stability scores
+for CIFAR100/10 and ImageNet/6 settings (over 3 random runs). Asymmetric ap-
+proaches are more plastic compared to their symmetric counterparts while retaining
+competitive stability.
+Stability-Plasticity Curves:
+Several measures have been proposed in the CL lit-
+erature to assess the performance of an incremental learner. Besides the standard
+incremental accuracy, Lopez-Paz et al [Lopez-Paz and Ranzato, 2017] introduce the
+notion of Backward Transfert (BWT) and Forward Transfert (FWT). BWT mea-
+sures the ability of a system to propagate knowledge to past tasks, while FWT
+assesses the ability to generalize to future tasks. The CL community, however, still
+lacks consensus on a specific definition of the stability-plasticity dilemma. An ele-
+mental formulation for such quantification is thus desirable for allowing us to better
+grasp the balancing capabilities of an incremental learner at acquiring new knowledge
+without discarding previous concepts. To this end, we introduce stability-plasticity
+curves computed using task accuracy matrices.
+A task accuracy matrix M for an incremental learning setting composed of T
+tasks is defined to be a [0, 1]T ×T matrix, whose entries are the accuracies computed
+at each incremental step.4 For instance, Mi,j would constitute the test accuracy
+of task j when the system is learning task i. Subsequently, the diagonal entries of
+Mi, i give us the accuracies at the respective current tasks while the entries below
+the diagonal, i.e., j < i, give the performance of the model on past tasks. A visual
+depiction can be seen in Figure 4.11.
+We define the stability to be the performance on the first experienced task at
+any given time and plasticity to be the ability of the model to adapt to the current
+task. Namely, these constitute the first column M:,0 and the diagonal of the matrix
+diag(M). We employ the curves dervied from these definitions to better dissect the
+stability-plasticity dilemma of the methods analyzed in our work.
+4This calls for M to be lower trapezoidal.
+68
+Chapter 4
+
+Task Aware - avg 3 seeds
+EWC --. ATT(asym) -
+.-.FUNC(asym).....finetuning
+LwF
+ATT(sym)
+FUNC(sym)
+0.24
+0.32
+0.65
+0.55
+0.22
+CIFAR100/10
+0.30
+0.50
+0.40
+0.24
+0.16
+0.50
+0.35
+0.22
+0.14
+0.45
+0.30
+910
+8
+910
+1
+2
+3
+4
+5
+6
+1
+5
+7
+8
+1
+2
+3
+5
+6
+7
+1
+2
+3
+4
+5
+6
+Tasks
+Tasks
+Tasks
+TasksWorks
+Figure 4.11: Illustration of a task accuracy matrix: we fix stability to be the per-
+formance of the first task across time steps while we define plasticity to be the
+performance at the current step.
+Experiments
+In this section, we compare regularization-based methods for exemplar-free continual
+learning. We evaluate the newly proposed attention regularization and compare it
+with the existing functional (LwF) and feature regularization methods. We then
+ablate the usefulness of the newly proposed asymmetric loss as well as the importance
+of pooling before applying the regularization.
+Experimental Setup
+Setting:
+For our experiments, we adopt the variation of ViTs introduced by Xiao
+et al. [Xiao et al., 2021]. Here, the standard linear embedder of a ViT model is
+replaced by a smaller convolutional stem which helps build more resilient low-level
+features. Convolutional stems have previously been shown to improve performance
+and convergence speed in incremental learning settings [Yu et al., 2021]. We there-
+fore define our architecture to be a lightweight variation of a ViT-Base by setting
+L = 12 layers, K = 12 heads per layer and a de = 192 embedding size. The choice
+of a small embedding size has been made to speed up the training procedure and
+unlock the ability to handle larger batch sizes (1024 for our work).
+We analyze our task-incremental setting on two widely used image recognition
+datasets - namely CIFAR100 and ImageNet-32 with 100, and 300 classes each. Both
+datasets host 32×32 images. On CIFAR100, we consider a split of 10 tasks (denoted
+as CIFAR100/10 setting) where each incremental task is composed of 10 disjoint
+set of classes. On ImageNet-32, we split 6 tasks with 50 disjoint set of classes each
+Chapter 4
+69
+
+Acc.Matrix
+Test
+Train
+Stability
+PlasticityDissecting continual learning: a structural and data analysis
+(denoted as ImageNet/6).5
+Our total training epochs remain 200 (per task) for CIFAR100 and 100 for Im-
+ageNet32 with an initial learning rate of 0.01 and patience set of 20 epochs. We
+report our scores averaged over 3 random runs. We apply a constant padding of size
+4 across all our datasets. The train images are augmented using random crops of
+sizes 32 × 32 and random horizontal flips with a flipping probability of 50%. For test
+images, we only apply center crops of sizes 32 × 32.
+We compare the attentional and functional symmetric and asymmetric versions
+of LPAD-(a)sym. We use LwF [Li and Hoiem, 2017] and EWC [Kirkpatrick et al., 2017]
+as our basic functional and weight regularization approaches. For all our experiments
+relying on PAD losses, we performed a hyperparemeter search (using equation 4.12)
+for µ and λ by varying each in the range [0.5, 1.0] and found µ = λ = 1.0 to perform
+reasonably well. We thus stick to these values unless otherwise specified. For the
+sake of brevity, we indicate LPAD-asym with Asym att and LPAD-sym with Sym att.
+Note that these are both variations of equation 4.12. The functional approaches
+are analogous to their attentional counterparts except for the fact that they rely on
+the regularization of the contextualized embeddings rather than the attention matrix
+(see Figure 4.7). The latter correspond to Asym func and Sym func accordingly.
+Results
+We report accuracy as well as forgetting [Chaudhry et al., 2018] scores in task aware
+(taw) setting6. We further report taw plasticity-stability curves (based on Figure
+4.11) to provide insights upon how well the different models handle the trade-off.
+Accuracy and Forgetting:
+As seen in Figure 4.9, all asymmetric approaches show
+better performances with respect to their symmetric counterparts on CIFAR100/10
+with Asym att offering the best accuracy of 57.3% on the last task.
+The trend
+continues for ImageNet/6 with an exception of asymmetric functional approach with
+an accuracy of 27.55% falling behind its symmetric counterpart by 0.44%. In general,
+the asymmetric and symmetric losses lead to improved accuracy scores with respect
+to other methods. Moreover, we observe that all the methods depict good forgetting
+resilience with their forgetting scores running around ≈0.01%) except for EWC. This
+suggests us that vision transformers are better incremental learners but require more
+5Refer to Section 4.2 for experiments on additional settings.
+6The corresponding task agnostic scores can be found in Figure 4.14, Section 4.2.
+70
+Chapter 4
+
+Works
+CIFAR100/10 (taw)
+Asym Func
+Spatial
+Sym Func
+Spatial
+Asym Func
+Intact
+Sym Func
+Intact
+LwF
+Average Incr.
+Accuracy
+56.18%
+55.67%
+54.43%
+53.12%
+55.11%
+Last Task
+Accuracy
+57.26%
+56.92%
+56.04%
+54.59%
+55.93%
+Table 4.7: Comparison of intact (no pooling), spatial (pooling along width and
+height), and LwF.
+training and tuning efforts to achieve reasonable accuracies. This remark remains in
+accordance with prior studies [Mirzadeh et al., 2022, Paul and Chen, 2021]. In the
+particular case of EWC, we observe poor compatibility in terms of accuracy as well
+as forgetting – with the scores falling behind finetuning at times. We suspect that
+the method might not be less suited for ViTs due to its reliance on exhaustive fisher
+information estimation.
+Plasticity-stability tradeoff:
+We compare the dilemma for various methods in Fig-
+ure 4.10. With no distillation, finetuning is prone to the worst trading of plasticity
+for stability. Meanwhile, our asymmetric losses can be seen to be more plastic with
+respect to their symmetric counterparts while depicting comparable stability scores.
+This confirms our hypothesis regarding the nature of the asymmetry keeping it from
+discarding older attention while favoring the integration of new attention at the
+same time. Although, LwF with a last task score of 47.74% on CIFAR100/10 and
+32.0% on ImageNet/6, reports the best plasticity among our approaches, it clearly
+lags behind the pooling-based approaches at retaining stability. On the contrary, the
+(a)symmetric attention losses and the symmetric functional loss perform similar with
+a last task stability score of ≈ 0.23% on ImageNet/6 and ≈ 53% on CIFAR100/10.
+EWC shows good plasticity but virtually zero stability. This trend is in line with our
+previous comment on the limitation of EWC in Figure 4.9.
+Ablation study
+Towards the end goal of evaluating the effectiveness of PAD losses, we ablate
+the contribution of pooling on the CIFAR100/10 setting.
+In particular, we con-
+sider distilling the attention maps when these are: (a) pooled along both dimen-
+sions, i.e.,(A)sym Func Spatial (see Equation 4.7), and (b) not pooled at all, i.e.,
+Chapter 4
+71
+
+Dissecting continual learning: a structural and data analysis
+Figure 4.12: Mean and standard deviation of task-aware accuracy and forgetting
+scores for the additional CIFAR100/20 and CIFAR100/50 settings (over 3 random
+runs).
+(A)sym Func Intact. Distilling the intact maps of the latter setting imply enhanced
+stability over their pooled counterparts. Our standard accuracy and plasticity-stability
+measures across tasks can therefore be deemed redundant in this setting. As a conse-
+quence, we choose to compare the task-aware average incremental accuracy [Rebuffi
+et al., 2017] and the last task accuracy across (a) and (b) while contrasting these
+with LwF as a strong baseline. For further crisper observations, we limit our com-
+parisons to the functional setting. As shown in Table 4.7, we find that Asym Func
+Spatial consistently performs the best across both the metrics (with a gain of > 2%
+over Sym Func Intact in either metric). In general, distilling the intact attention
+maps can be seen to be hurting the performance of the models as their accuracy
+drop below that of the baseline LwF.
+Conclusion
+In this work, we adapted and analyzed several continual learning methods to counter
+forgetting in Vision Transformers mainly with the help of regularization. We then
+72
+Chapter 4
+
+Task Aware - avg 3 seeds
+EWC
+ATT(asym) --. FUNC(asym) .....
+finetuning
+LwF
+ATT(sym)
+FUNC(sym)
+0.15
+CIFAR100/50 Base
+0.55
+0.10
+0.50
+Accuracy
+0.45
+0.05
+0.40
+0.35
+0.00
+5
+6
+1
+2
+3
+4
+5
+1
+2
+3
+4
+6
+Tasks
+Tasks
+0.25
+CIFAR100/20 Base
+0.55
+0.20
+Accuracy
+0.15
+0.50
+0.10
+0.05
+0.45
+0.00
+1
+2
+3
+4
+5
+6
+7
+8
+9
+1
+2
+3
+4
+5
+6
+7
+8
+9
+Tasks
+TasksWorks
+introduced a novel PODNet-inspired regularization, based on the attention maps of
+self-attention mechanisms which we termed as Pooled Attention Distillation (PAD).
+Shedding light on its limitation at learning new attention, we devised its asymmetric
+version that avoids penalizing the addition of new knowledge in the model.
+We
+validated the superior plasticity of the asymmetric loss on several benchmarks.
+Besides the meticulous comparison of a range of regularization approaches, i.e.,
+functional (LwF), weight (EWC), and the proposed attention-based regularization,
+we extended the application of PAD to the functional submodules of ViTs. To this
+end, we investigated regularization in the contextualized embeddings of ViTs. The
+latter exploration led us to discover that the regularization of functional submodules
+can help achieve the best overall performances while the regularization of their at-
+tentional counterparts endow CL models with superior stability. Finally, we remarked
+the low forgetting scores of vision transformers across the incremental tasks and
+concluded that their enhanced generalization capabilities may endow them with a
+natural inclination for incremental learning. By making our code open-source, we
+hope to open the doors for future research along the direction of efficient continual
+learning with transformer-based architectures.
+Additional Settings
+We experiment on two further CIFAR100 settings with distinct cardinality of base
+task classes:
+• CIFAR100/20 Base, with 20 base task classes followed by 8 incremental tasks
+with 10 classes each,
+• CIFAR100/50 Base, with 50 base task classes followed by 5 incremental tasks
+with 10 classes each.
+The task aware accuracy and forgetting scores on these are shown in Figure
+4.12. We find the PAD-based losses to consistently outperform other regularization
+approaches with LwF being the closest tie. Along the direction of plasticity-stability
+tradeoff (see Figure 4.13), we observe that: (a) the attentional PAD losses retain
+better rigidity than their functional counterparts, and (b) the asymmetric variants of
+PAD losses are more plastic than their symmetric counterparts across these settings.
+These trends further validate our hypotheses in sections 4.2 and 4.2, respectively.
+Chapter 4
+73
+
+Dissecting continual learning: a structural and data analysis
+Figure 4.13: Mean and standard deviation of task-aware plasticity-stability scores for
+the additional CIFAR100/20 and CIFAR100/50 settings (over 3 random runs).
+Task Agnostic Results
+Figure 4.14 depicts the task-agnostic accuracy and forgetting scores for the settings
+mentioned in the main section as well as in Section 4.2. Given the contradictory
+terms of resource-scarce exemplar-free CL and data-hungry ViTs, task-agnostic eval-
+uations can be seen to be particularly challenging. The further avoidance of heavier
+data augmentations in our training settings can be seen to give rise to two major
+repercussions across the task-agnostic accuracies: (a) the scores remain consistently
+low, and (b) the models show smaller yet consistent variations in performances across
+all settings.
+That said, we find functional PAD losses to be performing the best on all but
+CIFAR100/50 setting. The larger proportion of base task classes in the latter setting
+can be seen to be greatly benefiting the learning of LwF (the least parameterized loss
+term). Further on the note of class proportions, we observe that an equal spread of
+classes across the tasks can be seen to have a smoothing effect on the variations of
+scores across different methods.
+74
+Chapter 4
+
+Task Aware- avg 3 seeds
+EWC
+ATT(asym)--. FUNC(asym)..... finetuning
+LwF
+ATT(sym)-
+FUNC(sym)
+0.7
+0.3501
+CIFAR100/50 Base
+0.325
+0.6
+0.300
+Plasticity
+Stability
+0.275
+0.5
+0.250
+0.4
+0.225
+0.200
+1
+2
+3
+4
+5
+6
+1
+2
+3
+4
+5
+6
+Tasks
+Tasks
+0.701
+Base
+0.45
+0.65
+CIFAR100/20
+0.40
+0.60
+Plasticity
+Stability
+0.55
+0.35
+0.50
+0.30
+0.45
+0.25
+1
+2
+3
+4
+5
+6
+7
+8
+9
+1
+2
+3
+4
+5
+6
+7
+8
+9
+Tasks
+TasksWorks
+On the contrary, the CIFAR100/50 setting leads to low variability of task-agnostic
+forgetting scores across the methods.
+This can again be attributed to the fact
+that a very large first task better leverages the generalization capabilities of ViTs
+thus making them better at avoiding forgetting over the subsequent incremental
+steps. This further adds to our reasoning regarding the natural resilience of ViTs
+to incremental learning settings. When compared across methods, the attentional
+variants of PAD losses can be seen to display the least amount of forgetting followed
+by their functional counterparts.
+Figure 4.14: Mean and standard deviation of task-agnostic accuracy and forgetting
+scores for CIFAR100/10, CIFAR100/20, CIFAR100/50, and ImageNet/6 settings
+(over 3 random runs).
+The larger proportion of base task classes (for example,
+CIFAR100/50) gives rise to higher variations of accuracies and lower variation of
+forgetting scores across methods – with the latter indicating the inclination of ViTs
+towards better generalization and preservation of knowledge.
+Chapter 4
+75
+
+Task Agnostic - avg 3 seeds
+EWC
+ATT(asym)
+FUNC(asym) ..... finetuning
+LWF
+ATT(sym)
+FUNC(sym)
+CIFAR100/50 Base
+CIFAR100/20 Base
+CIFAR100/10
+ImageNet/6
+0.35
+0.4
+0.5
+0.30
+0.20
+0.2
+0.2
+0.20
+0.10
+0.1
+i
+2
+3
+4
+5
+6
+5
+1
+8
+1
+2
+3
+4
+6
+1
+2
+4
+6
+7
+8
+¥910
+1
+2
+3
+4
+5
+6
+Tasks
+Tasks
+Tasks
+Tasks
+0.6
+0.251
+0.5
+0.3
+0.4
+0.20
+Forgetting
+0.2
+ 0.2
+0.1
+0.1
+0.05
+0.0
+0.0
+0.0 :
+0.00
+1
+2
+3
+4
+5
+6
+3
+4
+5
+6
+7
+2
+9
+1
+2
+3
+4
+5
+6
+7
+1
+2
+3
+1
+5
+6
+Tasks
+Tasks
+Tasks
+TasksDissecting continual learning: a structural and data analysis
+4.3
+Simpler is Better: off-the-shelf Continual Learn-
+ing through Pretrained Backbones
+In this section we propose a simple baseline for continual learning that leverages
+pretrained backbones. The approach devised is fast, since requires no parameters
+updates and has minimal memory requirements (order of KBytes). By providing such
+a simple baseline, and achieving strong performance on all the major benchmarks used
+in literature, we follow the concerns raised in Section 4.1 on the simplicity of the
+benchmarks used. Secondly, we show that pretraining cause the network to generalize
+at a point where the incremental learning of new tasks is very simple.
+In particular, the ”training” phase reorders data and exploit the power of pre-
+trained models to compute a class prototype and fill a memory bank. At inference
+time we match the closest prototype through a knn-like approach, providing us the
+prediction. We will see how this naive solution can act as an off-the-shelf continual
+learning system. In order to better consolidate our results, and merge the above
+two works, we use the devised pipeline with CNN and Vision Transformers. We will
+discover that thew latter have the ability to produce features of higher quality. As a
+side note we discuss some extension to the unsupervised realm.
+In a nutshell, this simple pipeline raises the same questions raised by previous
+works such as Prabhu et al. [2020] on the effective progresses made by the CL
+community especially in the dataset considered and the usage of pretrained models.
+76
+Chapter 4
+
+Works
+Figure 4.15: Depiction of our simple baseline. Our pipeline does not perform param-
+eters updates and consumes few KBytes as memory bank.
+Until now, the CL community mainly focused in the analysis of catastrophic
+forgetting in Convolutional Neural Networks (CNN) models. But, as can be seen
+by some recent works, Vision Transformers (ViT) are asserting themselves as a
+valuable alternative to CNNs for computer vision tasks, sometimes, achieving better
+performances with respect to CNNs Chen et al. [2022]. The power of ViTs lies in their
+less inductive bias Morrison et al. [2021] and in their subsequent better generalization
+ability. Thanks to this ability ViTs are naturally inclined continual learners, as pointed
+in Section 4.2.
+In transformer literature, the usage of pretrained backbones is becoming a must,
+in fact, training such systems requires extensive amount of data and careful hyper-
+parameters optimization. Using pretrained backbones is common also in Computer
+Chapter 4
+77
+
+Training
+1. Batch Reordering
+2.FeatureExtraction
+3. Prototype Creation
+feats c1
+C1
+p1
+H
+feats c2
+Task 1
+C2
+p2
+feats c3
+C3
+p3
+Visual
+Trans.
+feats_c4
+C4
+p4
+feats c5
+Task 2
+C5
+p5
+feats c6
+C6
+p6
+...
+...
+MemoryBank
+Test
+1. Feature extraction
+2. Match closest prototype
+p1
+p2
+Visual
+p3
+feat x
+Trans.
+p4
+p5
+p6
+MemoryBankDissecting continual learning: a structural and data analysis
+Vision communities where CNNs are the main player. In CL literature, the pretraining
+is frequent, but not constant. It is typically carried on half of the analyzed dataset
+or through a big initial task that has the objective of facilitating the learning of low
+level features. The very best results, however, have been achieved when we do not
+skip pretraining. This can be confirmed by the CVPR 2020 Continual Learning Chal-
+lenge summary report Lomonaco et al. [2022], where the authors noted that all the
+methods proposed solutions leveraging pretrained backbones.
+On top of that, simple baselines sometimes provide better results with respect to
+overly engineered CL solutions, GDumb Prabhu et al. [2020] is such an example. In
+the work, the authors showed superior performance against several methods at the
+state-of-the-art through a system composed just by a memory random sampler and
+a simple learner (CNN or MLP). From a practical point of view, these methods often
+constitute a simple, clear, fast, intuitive and efficient solution.
+Following these lines, we explore a knn-like method to perform off-the-shelf online
+continual learning leveraging the power of pretrained vision transformers. Our sys-
+tem constitutes a simple and memory-friendly architecture requiring zero parameters
+updates. Being our work one of the first using ViTs in CL, we propose a robust
+baseline for future works and provide an extensive comparison against CNNs.
+In brevity, the contributions are the following:
+• We devise a simple pipeline composed by a pretrained feature extractor and an
+incremental prototype bank. The latter is updated as new data is experienced.
+The overall cost of the method is in the storage of a pretrained backbone and
+few Kbytes for the memory bank.
+• We devise a baseline for future CL methodologies that will exploit pretrained
+Vision Transformers or Resnets. The baseline is fast and does not require any
+parameter update, yet achieving robust results in 200 lines of Python, unlocking
+reproducibility too.
+• We provide a comparison for our pipeline between Resnets and Visual Trans-
+formers. We discover that Vision Transformers produce more discriminative
+features, appealing also for the CL setting.
+• In light of such results, we arise the same questions, as GDumb Prabhu et al.
+[2020] does, in the progresses made by the CL community so far specifically in
+the quality of the datasets and in the usage of pretrained backbones.
+78
+Chapter 4
+
+Works
+Algorithm 1 Off-the-shelf CL. “Training”
+Require: ti, φ, M
+for ti ∈ T do
+G = GroupByClass(ti)
+for g ∈ G do
+f = φ(g)
+Extract features
+p = µ(f )
+Compute mean feature
+M ← p
+Store prototype in memory
+return M
+Related Works
+Only recently few works considered self-attention models in continual learning. Li et
+al. Li et al. [2022] proposed a framework for object detection exploiting Swin Trans-
+former Liu et al. [2021] as pretrained backbone for a CascadeRCNN detector, the
+authors show that the extracted features generalize better to unseen domains hence
+achieving lesser forgetting rates compared to ResNet50 He et al. [2016] backbones.
+This also follows the conclusions made by Paul and Chen Paul and Chen [2021] on
+the fact that vision transformers are more robust learners with respect to CNNs.
+Several methods in CL use pretrained backbones as feature extractors such as
+in Hayes et al Hayes and Kanan [2020] or Aljundi et al. [2019b], Hocquet et al.
+[2020] and sometimes the pretraining is carried on half (or a big portion) the dataset
+considered, as in PODNet Douillard et al. [2020] or in Yu et al. Yu et al. [2021].
+For a more complete review on CL methodologies we point out these recent surveys
+Parisi et al. [2019], Hadsell et al. [2020], Mundt et al. [2020].
+A similar study on pretraining for CL has been conducted by Mehta et al. Mehta
+et al. [2021]. In particular, they study the impact on catastrophic forgetting that
+a linear layer might accuse while using a pretrained backbone. Their study focuses
+only on Resnet18 for vision tasks, but they also include NLP tasks.
+Method
+Setting
+Continual Learning characterizes the learning by introducing the notion of
+subsequent tasks. In particular, the learning happens in an incremental fashion, that
+is, the model incrementally experiences different training sessions as time advances.
+Chapter 4
+79
+
+Dissecting continual learning: a structural and data analysis
+Practically, a learning dataset is split in chunks where each split is considered an
+incremental task containing data. CL being a relatively new field, the community
+is still converging to a common setting notation, but we focus on an online, task-
+agnostic NC-type scenario.
+Tat is, the model forwards a pattern just once and
+does not have the task label at test time. As a more fine grained specific we follow
+Lomonaco and Maltoni [2017] categorization and use a NC-type scenario where each
+task contains a disjoint group of classes.
+More formally, given a dataset D and a set of n disjoint tasks T that will be
+experienced sequentially:
+T = [t1, t2, . . . , tn]
+(4.13)
+each task ti = (Ci, Di) represented by a set of classes Ct = ct
+1, ct
+2 . . . , ct
+nt and
+training data Dt (images). We assume that the classes of each task do not overlap
+i.e. Ci � Cj = ∅ if i ̸= j
+“Training” Phase
+In the training phase, given a task ti ∈ T , a feature extractor
+φ and a memory bank as a dictionary M, the procedure does the following:
+1. First it performs batch reordering, that is, it groups the images of a given task
+by their class
+2. After grouping, it forwards each new subset to the feature extractor φ
+3. Given the feature representations of a group, it computes the mean of the
+features to create a class prototype
+4. Updates the memory bank M by storing the each computed prototype
+At the end of the training procedure for a given task ti, we would have a repre-
+sentative prototype vector for each class contained in ti. As we said, the prototype
+vector is computed as the mean feature representation of the patterns of the same
+class. A depiction of the “training” phase is reported in Figure 4.15, we also provide
+a pseudocode in Algorithm 1. We also point out that there is not formal “training”
+of the network, in fact we do not perform any parameter update, we simply exploit
+the pretrained models and construct a knn-like memory system.
+80
+Chapter 4
+
+Works
+Memory
+KiB class
+Params
+Model
+CIFAR100
+CIFAR10
+Core50
+Oxford
+Flowers102
+Tiny
+ImgNet200
+2 KiB
+11.7M
+resnet18
+0.53
+0.76
+0.72
+0.73
+0.55
+2 KiB
+21.8M
+resnet34
+0.55
+0.81
+0.74
+0.67
+0.62
+8 KiB
+25.5M
+resnet50
+0.59
+0.80
+0.71
+0.70
+0.63
+8 KiB
+60.1M
+resnet152
+0.67
+0.89
+0.72
+0.66
+0.76
+0.75 KiB
+5.6M
+ViT-T/16
+0.36
+0.63
+0.49
+0.54
+0.24
+3 KiB
+86.4M
+ViT-B/16
+0.64
+0.87
+0.74
+0.95
+0.63
+0.75 KiB
+5.6M
+DeiT-T/16
+0.57
+0.80
+0.73
+0.68
+0.64
+3 KiB
+86.4M
+DeiT-B/16
+0.68
+0.90
+0.80
+0.74
+0.79
+Table 4.8: Off-the-shelf accuracy performance on different dataset benchmarks, we
+both analyzed a CNN model and a ViT pretrained models.
+Test Phase
+After completing the training phase for a task ti the memory bank
+M will be populated by the prototypes of the classes encoundered so far. During
+this test phase, we simply use a knn-like approach. Given an image x, the updated
+memory bank M and the feature extractor φ we devise the test phase as follows:
+1. Forward the test image x to the feature extractor φ
+2. Compute a distance between the feature representation of the image and all
+prototypes contained in M
+3. We match the prototype with minimum distance and return its class
+In a nutshell, we perform k-nn with k=1 over the feature representation of an
+image, matching the class of the closes prototype in the bank. If the class selected
+is the same of the test example we would have a hit, a miss otherwise. Figure 4.15
+reports a visual depiction of the test procedure. As distance we use a simple l2, but
+several tests have been made with cosine similarity. Although the results with the
+cosine similarity are better, we opt for the l2 since provides the best speedup in the
+implementation through Pytorch.
+Experiments
+It is suspected that Visual Transformers generalize better with respect to CNN mod-
+els. To this end, we compare CNNs models and ViTs models as feature extractors.
+We selected four CNN models to compare against four attention-based models. In
+Chapter 4
+81
+
+Dissecting continual learning: a structural and data analysis
+particular, we selected DeiT-Base/15, DeiT-Tiny/15 Touvron et al. [2021], ViT-
+Base/16 and ViT-Tiny/16 Dosovitskiy et al. [2021] as visual transformers. While
+we opted for Resnet18/34/50/152 He et al. [2016] as CNN models. We used the
+timm Wightman [2019] library to fetch the pretrained models where all the models
+have been trained on ImageNet Deng et al. [2009] and the continuum Douillard
+and Lesort [2021] library to create the incremental setting for 5 datasets, namely
+CIFAR10/100, Core50, OxfordFlowers102 and TinyImageNet200.
+In all dataset benchmarks, we upscaled the images to 224 × 224 pixels in order
+to accommodate visual transformers which needs such imput dimension. We apply
+such transformation to resnet data too for a fair comparison. In order to match the
+closes prototype at test time, we used l2 as preferred measure.
+The main results are reported in Table 4.8. The pipeline is extremely simple,
+yet it achieves impressive performance as an off-the-shelf method, at cost of a very
+small overhead to store the prototype memory. In fact, at the end of the training
+phase, the memory bank translates only into few KBytes of storage. Although this
+preliminary work only consider task-agnostic setting, we remind that if at test time we
+are given the task label of the data, we can recast the method to work in task-aware
+setting. In this case, performing the test phase would be easier since the comparison
+of the test data will be carried only on a subset of the prototypes. On the same line,
+one can see that in Table 4.8 we do not report each dataset task split. In fact, our
+method works for any dataset split since it just need any partition of the datasets
+that respect a NC protocol i.e. as long as tasks are formed by images that can be
+grouped in classes. We can also appreciate that transformer architectures work best
+in all benchmarks, suggesting direct superior generalization capabilities with respect
+to CNNs or, at least, more discriminative features.
+Discussion
+In light of these results, we think that this work may be extended to be considered as a
+baseline to assess the performance continual learning methodologies using pretrained
+networks as feature extractors.
+In particular, a thorough investigation should be
+carried by substituting the k-nn approach with a linear classifier, this would allow
+also a better comparison between resnets and visual transformers.
+However, we
+think that these preliminary results are of interest to the Vision Transformer and CL
+research community.
+We then raise some concerns with respect to the procedure and the benchmarks
+82
+Chapter 4
+
+Works
+Figure 4.16: Direct off-the-shelf extension of the baseline proposed to tackle unsper-
+vised continual learning.
+used to assess new CL methodologies. As we can see, through a pretrained model, we
+can achieve impressive results with respect to the current CL state-of-the-art Parisi
+et al. [2019], Hadsell et al. [2020], Mundt et al. [2020]. This point have been also
+raised by GDumb Prabhu et al. [2020] where the authors questioned the progresses
+by providing a very simple baseline.
+Moreover, we can further extend this simple pipeline to be used in unsupervised
+continual learning. Actually, the extension is straightforward. In an unsupervised
+scenario the batch reordering step cannot be performed since we are not allowed to
+know each data class label. To cope with this lack of information one can substitute
+the step with any clustering algorithm such as K-means (we tried it but with no luck)
+or a more sophisticated approach such as autoencoders, self-organizing maps etc..
+The test phase of the unsupervised extension would be analogous to the supervised
+counterpart.
+Conclusion
+In this short ex[erimental segment we proposed a baseline for continual learning
+methodologies that exploit pretrained Vision Transformers and Resnets. We tackle
+online NC-type class-incremental learning scenario, the most common one, even
+though, our pipeline can be extended to different scenarios. Our off-the-shelf method
+Chapter 4
+83
+
+MemoryofPrototypes
+P
+feats c1
+feats c2
+p 2
+T_1
+feats c3
+p3
+pretr
+K-means
+model
+T_2
+feats _c4
+p4
+...
+feats c5
+p 5
+T_n
+feats_c6
+p6Dissecting continual learning: a structural and data analysis
+is conceptually simple yet gives strong results and can be implemented in 200 lines of
+Python therefore enhancing reproducibility. To assess the performance of different
+backbones our pipeline we compared Resnets models against Vision Transformers
+feature extractors pretrained on the same dataset, and show that vision transformers
+provide more powerful features. This suggests that Vision Transformers ability to
+encode knowledge is is broader. Then we raise some questions about CL research
+progress and note that with a pretrained model and a simple pipeline one can achieve
+strong results and, therefore, new methodologies should drop the usage of pretrained
+backbones when testing on such dataset benchmarks.
+84
+Chapter 4
+
+Works
+4.4
+Unsupervised Semantic Discovery through Visual
+Patterns detection
+So far, we directly investigated the impact of performance by altering structural and
+data properties of object recognition frameworks. If we step back a bit and consider a
+more broader vision about continual learning, we understand that, in order to adapt
+to a changing environment, an artificial agent should manifest also the ability to
+continuously discover new patterns, in our case visual patterns.
+We propose a smart pipeline that it is able to discover repetitive patterns in an
+image, by means of a threshold parameter. That is, if we alter this specific parameter,
+we are able to discover new semantic levels in a scene. This work goes a bit in
+another direction from the dissection of current continual learning methodologies
+treated in this thesis. Instead, it is a step towards the ability to build a system able
+to incrementally explore.
+To this end, we propose a new fast fully unsupervised method to discover se-
+mantic patterns. Our algorithm is able to hierarchically find visual categories and
+produce a segmentation mask. Through the modeling of what is a visual pattern
+in an image, we introduce the notion of “semantic levels” and devise a conceptual
+framework along with measures and a dedicated benchmark dataset for future com-
+parisons. Our algorithm is composed by two phases. A filtering phase, which selects
+semantical hotsposts by means of an accumulator space, then a clustering phase
+which propagates the semantic properties of the hotspots on a superpixels basis. We
+provide both qualitative and quantitative experimental validation, achieving optimal
+results.
+Chapter 4
+85
+
+Dissecting continual learning: a structural and data analysis
+While the vast majority of supervised object detection and segmentation ap-
+proaches leverage rich datasets with semantically labelled categories, unsupervised
+methods cannot rely on such a luxury. Indeed they are expected to infer from the
+image content itself what is a relevant object and which are its boundaries. This is a
+daunting task, as relevance is totally domain-specific and also highly subjective, espe-
+cially when taking in account human judgement, which exploits a lot of out-of-band
+information that cannot be found in the sheer image data.
+As a matter of fact, little effort have been put to investigate unsupervised auto-
+matic approaches to detect and segment semantically relevant objects without any
+additional information than the image or any a priori knowledge of the context. This
+is due to the fact that a unique definition of what is a relevant object (or, how we
+prefer to call it, a visual category) does not actually exist.
+This is especially true if we are seeking to set a formal definition that can be
+adopted across all the domains in a consistent manner with respect to human judge-
+ment.
+Within this section, we try to address this problem by considering a visual category
+each pattern which appearance is consistent enough across the image. In other words,
+we consider something to be a relevant object if it appears more than once, exhibiting
+consistent visual features in different parts of the scene.
+From a cognitive and perceptual point of view this makes a lot of sense. In fact,
+it is easy to observe that if a human is presented with images representing several
+different but recurring objects, even in a cluttered scene, he does not need to know
+what the objects actually are representing in order to be able to assign semantically-
+consistent labels to each of them. He would even be able to label each pixel, defining
+the boundaries of the objects.
+As an example, if someone takes a look at a large bin of different (but to some
+extent repeated) mechanical parts he never saw before, he is still able to tell one part
+from the other by exploiting their coherent visual and structural appearance. This
+ability is also preserved with slight changes in scale, orientation or partial occlusion
+of the objects.
+Since this automatic assignment to a visual category of recurrent object is both
+well-defined and quite natural in humans, it is a very good candidate as a rule for
+automatically detecting relevant objects in an unsupervised manner that has good
+chances of being coherent with human judgement applied to the same image.
+86
+Chapter 4
+
+Works
+Figure 4.17: A real world example of unsupervised segmentation of a grocery shelf.
+Our method can automatically discover both low-level coherent patterns (brands,
+flavor images and logos) and high-level compound objects (multi-packs and bricks)
+by controlling the semantical level of the detection and segmentation process.
+To be fair, we must also underline the fact that, in order to define the boundaries
+of a visual category and thus obtain a meaningful segmentation, also the level of detail
+must be taken into account. As an example, if we present to a human an image of
+a crowded road captured from a side, and we ask him to segment visual categories
+according to recurrent patterns, we could get slightly different results from different
+people depending on their attention to details. Some people will segment cars and
+trees. Other could consider the car body to be a different object from the wheels ad
+branches from the tree trunk. The most picky could even separate tires from wheel
+rims and segment out each single leaf. In practice semantic consistency can happen
+at different scale when dealing with compound objects presenting themselves internal
+self repetitions or made up of single parts that are also present in other objects.
+To address this aspect we also have to design a proper strategy to perform visual
+category detection and interpretation at a particular scale, according to the level of
+detail we want to express during the segmentation process. We define this level of
+detail as semantical level. Semantical levels, of course, do not map directly on specific
+high level concepts, such as whole objects, large parts or minute components. Rather
+the semantic level will act as a coarse degree of granularity of the segmentation
+process that will result in a hierarchical split of segments as it changes.
+These two definitions of visual categories and semantical levels, that will be
+developed throughout the remainder of the work, are the two key concepts driving
+our novel segmentation method.
+Chapter 4
+87
+
+Yoga
+Yogo
+Optimum
+Optimun
+Optimum
+Optimum
+OptimumDissecting continual learning: a structural and data analysis
+The ability of our approach to leverage repetitions to capture the internal rep-
+resentation in the real world and then extrapolates visual categories at a specific
+semantical level is actually achieved through the combination of a couple of standard
+techniques, slightly modified for the specific task, and of a few key steps specifically
+crafted to make the process work in a consistent way with respect to the cognitive
+process adopted by humans. This happens, for instance, by seeking for highly rel-
+evant repetitive structural patterns, called semantical hotspots, characterized by a
+novel feature descriptor, called splash. We do this through a scale-invariant method
+and with no continuous geometrical constraints on the visual pattern disposition.
+We also do not constrain ourselves to find only one visual pattern, which is another
+very common assumption with other approaches in literature. Rather our technique
+is designed from the start to be able to detect more patterns at once, being able to
+assign to each of them a different visual category label, corresponding to a different
+real world object or object part, according to the selected semantical level.
+Overall, with this study, we are offering to the community the following contri-
+butions:
+• A new pipeline, including the definition of a specially crafted feature descriptor,
+to capture semantical categories with the ability to hierarchically span over
+semantical levels;
+• A specially crafted conceptual framework to evaluate unsupervised semantic-
+driven segmentation methods through the introduction of the semantical levels
+notion along with a new metric;
+• A new dataset consisting of a few hundredths labelled images that can be used
+as a benchmark for visual repetition detection in general.
+The remainder of the section is organized as follows. Section 4.4 describes the
+related works with respect to feature extraction and automatic visual patterns de-
+tection. Section 4.4 introduces our method, giving details on the overall pipeline and
+on the implementation details. Section 4.4 presents an experimental evaluation and
+comparison with similar approaches. Finally, the conclusions are found in Section
+4.4.
+Code, dataset and notebooks used in this study will be made available for public
+use.
+88
+Chapter 4
+
+Works
+Related Works
+Several works have been proposed to tackle visual pattern discovery and detection.
+While the paper by Leung and Malik [Leung and Malik, 1996] could be consid-
+ered seminal, many other works build on their basic approach, working by detecting
+contiguous structures of similar patches by knowing the window size enclosing the
+distinctive pattern.
+One common procedure in order to describe what a pattern is, consists to first
+extract descriptive features such as SIFT to perform a clustering in the feature
+space and then model the group disposition over the image by exploiting geometrical
+constraints, as in [Pritts et al., 2014] and [Chum and Matas, 2010], or by relying
+only on appearance, as in [Doubek et al., 2010, Liu and Liu, 2013, Torii et al., 2015].
+The geometrical modeling of the repetitions usually is done by fitting a planar
+2-D lattice, or a deformation of it [Park et al., 2009], through RANSAC procedures
+as in [Schaffalitzky and Zisserman] [Pritts et al., 2014] or even by exploiting the
+mathematical theory of crystallographic groups as in [Liu et al., 2004]. Shechtman
+and Irani [Shechtman and Irani, 2007], also exploited an active learning environment
+to detect visual patterns in a semi-supervised fashion. For example Cheng et al.
+[Cheng et al., 2010] use input scribbles performed by a human to guide detection
+and extraction of such repeated elements, while Huberman and Fattal [Huberman
+and Fattal, 2016] ask the user to detect an object instance and then the detection
+is performed by exploiting correlation of patches near the input area.
+Recently, as a result of the new wave of AI-driven Computer Vision, a number of
+Deep Leaning based approaches emerged, in particular Lettry et al. [Lettry et al.,
+2017] argued that filter activation in a model such as AlexNet can be exploited in
+order to find regions of repeated elements over the image, thanks to the fact that
+filters over different layers show regularity in the activations when convolved with
+the repeated elements of the image. On top of the latter work, Rodr´ıguez-Pardo et
+al. [Rodr´ıguez-Pardo et al., 2019] proposed a modification to perform the texture
+synthesis step.
+A brief survey of visual pattern discovery in both video and image data, up to
+2013, is given by Wang et al. [Wang et al., 2014], unfortunately after that it seems
+that the computer vision community lost interest in this challenging problem. We
+point out that all the aforementioned methods look for only one particular visual
+repetition except for [Liu and Liu, 2013] that can be considered the most direct
+competitor and the main benchmark against which to compare our results.
+Chapter 4
+89
+
+Dissecting continual learning: a structural and data analysis
+Figure 4.18: (a) A splash in the image space with center in the keypoint ⃗cj. (b)
+H, with the superimposed splash at the center, you can note the different levels of
+the vote ordered by endpoint importance i.e. descriptor similarity. (c) 3D projec-
+tion showing the gaussian-like formations and the thresholding procedure of H. (d)
+Backprojection through the set S.
+Method Description
+Features Localization and Extraction
+We observe that any visual pattern is delimited by its contours. The first step of our
+algorithm, in fact, consists in the extraction of a set C of contour keypoints indicating
+a position ⃗cj in the image. To extract keypoints, we opted for the Canny algorithm,
+for its simplicity and efficiency, although more recent and better edge extractor could
+be used [Liu et al., 2019] to have a better overall procedure.
+A descriptor dj is then computed for each selected ⃗cj ∈ C thus obtaining a
+descriptor set D.
+In particular, we adopted the DAISY algorithm because of its
+appealing dense matching properties that nicely fit our scenario.
+Again, here we
+can replace this module of the pipeline with something more advanced such as [Ono
+et al., 2018] at the cost of some computational time.
+Semantic Hot Spots Detection
+In order to detect self-similar patterns in the image we start by associating the k
+most similar descriptors for each descriptor ⃗dj. We can visualize this data structure
+as a star subgraph with k endpoints called splash “centered” on descriptor ⃗dj. Figure
+4.18 (a) shows one.
+90
+Chapter 4
+
+2m
+Semantical Hotspots
+Tnxm
+Hw= Hw+g(w,h,(i))
+(i)
+Reproject
+Splash
+Accum
+S
+to Accum
+Threshold
+h.(
+(b)
+(a)
+(d)Works
+Splashes potentially encode repeated patterns in the image and similar patterns
+are then represented by similar splashes. The next step consists in separating these
+splashes from those that encode noise only, this is accomplished through an accu-
+mulator space.
+In particular, we consider a 2-D accumulator space H of size double the image.
+We then superimpose each splash on the space H and cast k votes as shown in Figure
+4.18 (b). In order to take into account the noise present in the splashes, we adopt
+a gaussian vote-casting procedure g(·). Similar superimposed splashes contribute to
+similar locations on the accumulator space, resulting in peak formations (Figure 4.18
+(c)). We summarize the voting procedure as follows:
+H ⃗w = H ⃗w + g( ⃗w,⃗h(j)
+i )
+(4.14)
+where ⃗h(j)
+i
+is the i-th splash endpoint of descriptor ⃗dj in accumulator coordinates and
+⃗w is the size of the gaussian vote. We filter all the regions in H which are above a
+certain threshold τ, to get a set S of the locations corresponding to the peaks in H.
+The τ parameter acts as a coarse filter and is not a critical parameter to the overall
+pipeline. A sufficient value is to set it to 0.05 · max(H). Lastly, in order to visualize
+the semantic hotspots in the image plane we map splash locations between H and
+the image plane by means of a backtracking structure V.
+In summary, the key insight here is that similar visual regions share similar splashes,
+we discern noisy splashes from representative splashes through an auxiliary structure,
+namely an accumulator.
+We then identify and backtrack in the image plane the
+semantic hotspots that are candidate points part of a visual repetition.
+Semantic Categories Definition and Extraction
+While the first part previously described acts as a filter for noisy keypoints allowing
+to obtain a good pool of candidates, we now transform the problem of finding visual
+categories in a problem of dense subgraphs extraction.
+We enclose semantic hotspots in superpixels, this extends the semantic signifi-
+cance of such identified points to a broader, but coherent, area. To do so we use
+the SLIC [Achanta et al., 2012] algorithm which is a simple and one of the fastest
+approaches to extract superpixels as pointed out in this recent survey [Stutz et al.,
+2018]. Then we choose the cardinality of the superpixels P to extract. This is the
+Chapter 4
+91
+
+Dissecting continual learning: a structural and data analysis
+Algorithm 2 Semantic categories extraction algorithm
+Require: G weighted undirected graph
+i = 0
+s∗ = − inf
+K∗ = ∅
+while Gi is not fully disconnected do
+i = i + 1
+Compute Gi by corroding each edge with the minimum edge weight
+Extract the set Ki of all connected components in Gi
+s(Gi, Ki) = �
+k∈Ki µ(k) − α |Ki|
+if s(Gi, Ki) > s∗ then
+s∗ = s(Gi, Ki)
+K∗ = Ki
+return s∗, K∗
+second and most fundamental parameter that will allow us to span over different
+semantic levels.
+Once the superpixels have been extracted, let G be an undirected weighted graph
+where each node correspond to a superpixel p ∈ P. In order to put edges between
+graph nodes (i.e. two superpixels), we exploit the splashes origin and endpoints. In
+particular the strength of the connection between two vertices in G is calculated with
+the number of splashes endpoints falling between the two in a mutual coherent way.
+So to put a weight of 1 between two nodes we need exactly 2 splashes endpoints
+falling with both origin and end point in the two candidate superpixels.
+With this construction scheme, the graph has clear dense subraphs formations.
+Therefore, the last part simply computes a partition of G where each connected
+component correspond to a cluster of similar superpixels. In order to achieve such
+objective we optimize a function that is maximized when we partition the graph to
+represent so. To this end we define the following density score that given G and a
+set K of connected components captures the optimality of the clustering:
+s(G, K) =
+�
+k∈K
+µ(k) − α |K|
+(4.15)
+where µ(k) is a function that computes the average edge weight in a undirected
+weighted graph.
+The first term, in the score function, assign a high vote if each connected compo-
+92
+Chapter 4
+
+Works
+nent is dense. While the second term acts as a regulator for the number of connected
+components. We also added a weighting factor α to better adjust the procedure. As
+a proxy to maximize this function we devised an iterative algorithm reported in Algo-
+rithm 2 based on graph corrosion and with temporal complexity of O(|E|2 +|E| |V |).
+At each step the procedure corrupts the graph edges by the minimum edge weight
+of G. For each corroded version of the graph that we call partition, we compute s to
+capture the density. Finally the algorithm selects the corroded graph partition which
+maximizes the s and subsequently extracts the node groups.
+In brevity we first enclose semantic hotspots in superpixels and consider each one
+as a node of a weighted graph. We then put edges with weight proportional to the
+number of splashes falling between two superpixels. This results in a graph with clear
+dense subgraphs formations that correspond to superpixels clusters i.e. semantic
+categories. The semantic categories detection translates in the extraction of dense
+subgraphs. To this end we devised an iterative algorithm based on graph corrosion
+where we let the procedure select the corroded graph partition that filters noisy edges
+and let dense subgraphs emerge. We do so by maximizing score that captures the
+density of each connected component.
+Experiments
+Dataset
+As we introduced in Section 4.4 one of the aims of this work is to provide a better
+comparative framework for visual pattern detection. To do so we created a public
+dataset by taking 104 pictures of store shelves. Each picture has been took with a
+5mpx camera with approximatively the same visual conditions. We also rectified the
+images to eliminate visual distortions.
+We manually segmented and labeled each repeating product in two different se-
+mantic levels. In the first semantic level products made by the same company share
+the same label. In the second semantic level visual repetitions consist in the exact
+identical products. In total the dataset is composed by 208 ground truth images,
+half in the first level and the rest for the second one.
+Chapter 4
+93
+
+Dissecting continual learning: a structural and data analysis
+Figure 4.19: (top) Analysis of measures as the number of superpixels |P| retrieved
+varies. The rightmost figure shows the running time of the algorithm. We repeated
+the experiments with the noisy version of the dataset but report only the mean since
+variation is almost equal to the original one. (bottom) Distributions of the measures
+for the two semantic levels, by varying the two main parameters r and |P|.
+µ-consistency
+We devised a new measure that captures the semantic consistency of a detected
+pattern that is a proxy of the average precision of detection.
+In fact, we want to be sure that all pattern instances fall on similar ground truth
+objects.
+First we introduce the concept of semantic consistency for a particular
+pattern ⃗p. Let ⃗P be the set of patterns discovered by the algorithm. Each pattern
+⃗p contains several instances ⃗pi. ⃗L is the set of ground truth categories, each ground
+truth category ⃗l contain several objects instances ⃗li. Let us define ⃗tp as the vector
+of ground truth labels touched by all instances of ⃗p. We say that ⃗p is consistent if
+all its instances ⃗pi, i = 0 . . . |⃗p| fall on ground truth regions sharing the same label.
+In this case ⃗tp would be uniform and we consider ⃗p a good detection. The worst
+scenario is when given a pattern ⃗p every ⃗pi falls on objects with different label ⃗l i.e.
+all the values in ⃗tp are different.
+To get an estimate of the overall consistency of the proposed detection, we
+average the consistency for each ⃗p ∈ ⃗P giving us:
+94
+Chapter 4
+
+Superpixels Analysis
+1.00
+11
+0.80
+0.85
+0.95
+10
+0.75
+0.80
+recall
+Time (sec.)
+ 0.70
+0.75
+0.85
+cal
+total
+0.70
+0.80
+0.65
+0.60
+First Level
+First Level
+First Level
+First Level + noise
+First Level + noise
+0.60
+0.70
+0.55
+Second Level
+Second Level
+Second Level
+Second Level + noise
+Second Level + noise
+Second Level + noise
+All Levels
+0.55
+mm
+mm
+000
+0
+Superpixels
+ Superpixels
+Superpixels
+Superpixels
+Measures Distributions
+1.0
+0.8
+0.6
+0.4
+0.2
+ First Level
+0.0
+ Second Level
+μ-consistency
+recall
+total recallWorks
+Figure 4.20: Qualitative comparison between [Liu and Liu, 2013] [14], [Lettry et al.,
+2017] [10] and our algorithm. Our method detects and segments more than one
+pattern and does not constrain itself to a particular geometrical disposition.
+µ-consistency =
+1
+���⃗P
+���
+�
+⃗p∈⃗P
+��mode
+�⃗tp
+���
+��⃗tp
+��
+(4.16)
+Recall
+The second measure is the classical recall over the objects retrieved by the algorithm.
+Since our object detector outputs more than one pattern we average the recall for
+each ground truth label by taking the best fitting pattern.
+1
+���⃗L
+���
+�
+⃗l∈⃗L
+max⃗p∈⃗P recall (⃗p,⃗l)
+(4.17)
+The last measure is the total recall, here we consider a hit if any of the pattern
+falls in a labeled region. In general we expect this to be higher than the recall.
+We report the summary performances in Figure 4.20. As can be seen the algo-
+rithm achieves a very high µ-consistency while still able to retrieve the majority of
+the ground truth patterns in both levels.
+One can observe in Figure 4.19 an inverse behaviour between recall and con-
+sistency as the number of superpixels retrieved grows. This is expected since less
+superpixels means bigger patterns, therefore it is more likely to retrieve more ground
+truth patterns.
+Chapter 4
+95
+
+[14]
+10
+OursDissecting continual learning: a structural and data analysis
+In order to study the robustness we repeated the same experiments with an altered
+version of our dataset. In particular for each image we applied one of the following
+corruptions: Additive Gaussian Noise (scale = 0.1 ∗ 255), Gaussian Blur (σ = 3),
+Spline Distortions (grid affine), Brightness (+100), and Linear Contrast (1.5).
+Qualitative Validation
+Firstly we begin the comparison by commenting on [Liu and Liu, 2013]. One can
+observe that our approach has a significant advantage in terms of how the visual pat-
+tern is modeled. While the authors model visual repetitions as geometrical artifacts
+associating points, we output a higher order representation of the visual pattern. In-
+deed the capability to provide a segmentation mask of the repeated instance region
+together the ability to span over different levels unlocks a wider range of use cases
+and applications.
+As qualitative comparison we also added the latest (and only) deep learning based
+methodology [Lettry et al., 2017] we found. This methodology is only able to find a
+single instance of visual pattern, namely the most frequent and most significant with
+respect to the filters weights. This means that the detection strongly depends from
+the training set of the CNN backbone, while our algorithm is fully unsupervised and
+data agnostic.
+Quantitative Validation
+We compared quantitatively our method against [Liu and Liu, 2013] that constitutes,
+to the best of our knowledge, the only work developed able to detect more than one
+visual pattern. We recreated the experimental settings of the authors by using the
+Face dataset [Li et al., 2007] as benchmark achieving 1.00 precision vs. 0.98 of [Liu
+and Liu, 2013] and 0.77 in recall vs. and 0.63. We considered a miss on the object
+retrieval task, if more than 20% of a pattern total area falls outside from the ground
+truth. The parameter used were |C| = 9000, k = 15, r = 30, τ = 5, |P| = 150. We
+also fixed the window of the gaussian vote to be 11 × 11 pixels throughout all the
+experiments.
+96
+Chapter 4
+
+Works
+Conclusions
+With this study we introduced a fast and unsupervised method addressing the prob-
+lem of finding semantic categories by detecting consistent visual pattern repetitions
+at a given scale.
+The proposed pipeline hierarchically detects self-similar regions
+represented by a segmentation mask.
+As we demonstrated in the experimental evaluation, our approach retrieves more
+than one pattern and achieves better performances with respect to competitors meth-
+ods. We also introduce the concept of semantic levels endowed with a dedicated
+dataset and a new metric to provide to other researchers tools to evaluate the con-
+sistency of their approaches.
+Acknowledgments
+We would like to express our gratitude to Alessandro Torcinovich and Filippo Berga-
+masco for their suggestions to improve the work. We also thank Mattia Mantoan
+for his work to produce the dataset labeling.
+Chapter 4
+97
+
+Dissecting continual learning: a structural and data analysis
+98
+Chapter 4
+
+Chapter 5
+Conclusions
+99
+
+Dissecting continual learning: a structural and data analysis
+In this thesis, we contributed spanned the dissection of continual learning by
+providing several structural and data analyses. First we provide a gentle introduction
+to the topic of continual learning starting by highlighting the difference between
+natural and artificial models. Among the differences we stress the importance of
+time, which is an essential component for developing lifelong learning machines.
+Then, we informally introduce the main challenges that continual learning systems
+must tackle. In particular, catastrophic forgetting and the stability plasticity dilemma.
+To better provide an intuition about these topics, we provided a visual example of
+catastrophic forgetting in an autoencoder model, showing how distributional shifts
+in the subsequent tasks result in the abrupt damage of past knowledge.
+Later, we move on by giving a more formal definition of continual learning settings
+prominently adopted in literature. We introduced the notions of class-incremental,
+task-incremental, online/offline learning along with a specification on other common
+settings in the field. Before moving on the contributions we provided a small literature
+review on the state-of-the-art by describing the main categories under which continual
+learning methods have been grouped.
+Finally, we move on the main contributions.
+First, we introduced a study on
+the quality/quantity trade-off in rehearsal-based continual learning.
+Here, we se-
+lected one of the most performant baselines, that is GDumb, and analyzed several
+compression techniques when applied to the replay buffer. We highlighted that the
+quantity of data is a far more important factor when storing examplars in the re-
+play buffer. We do so by considering different compression schemes with extreme
+rates. Then, we moved into the second major contribution which considers Visual
+Transformers in an incremental setting. Here, besides being one of the first works
+on visual transformers for continual learning, we provided a surgical investigation on
+regularization methods for ViTs in the challenging setting of rehearsal-free CL. We
+compared functional, weight and attentional regularizations, with the latter being
+a regularization in the matrix of the self-attention mechanism. Attentional regu-
+larizations provide comparable performance with respect to the other methods. As
+second contribution we also introduced a loss inspired by a method nowadays in vogue
+(PODNet) and devised an asymmetric variant. We show that the introduction of
+the asymmetric variant allows achieving more plasticity to the model when applied
+to different part of the mechanism of self-attention. Then, we proposed a study on
+off-the-shelf continual learning exploiting fully pretrained networks and, in particular,
+we proposed a simple baseline. The baseline is composed by a feature extractor and a
+knn-like prototype memory. The baseline is crafted to be performant in practical sce-
+narios achieving optimal results with a memory overhead of few KBytes. Moreover
+we discussed its possible extension to the realm of unsupervised continual learning.
+We then linked this preliminary discussion with the exploration of visual categories.
+100
+Chapter 5
+
+Conclusions
+To do so we introduce another work tackling unsupervised pattern discovery. In fact,
+the notion of discovery is naturally included into the notion of lifelong learning: an
+agent capable of lifelong learning, surely should possess the ability to autonomously
+discover new knowledge. We do so by introducing a new unsupervised algorithm to
+perform unsupervised semantic segmentation at different semantic scales.
+Further Developings
+With the several studies proposed, we want to highlight the directions where it might
+be more fruitful to investigate further to build better Continual Learning agents.
+A first warning we raised regards the dataset usage to assess the performance of
+CL algorithms. In particular, with Section 4.1 we see that extreme levels of buffer
+data resize still provide good results in rehearsal systems, suggesting that, perhaps,
+more realistic datasets should be included to devise more useful solutions. This find-
+ing is also supported by Section 4.3 which shows that tackling these benchmarks
+with a pretrained backbone is sufficient to overcome quasi-optimally continual learn-
+ing scenarios on 5 different datasets. This also suggests that pretraining could be
+a great advantage, in the generalization ability of the model, when building new CL
+algorithms.
+To tackle the aforementioned point, the community can focus more on unsuper-
+vised continual learning which is a natural and more challenging problem extension.
+While keeping the same datasets we can now also leverage pretrained backbones.
+While being appealing on its own, following this line is also greatly encouraged by
+the fact that there are virtually no works on such a topic.
+With the study proposed in Section 4.2 we show that ViTs are naturally inclined
+continual learners. We suspect that the less inductive bias carried by such models
+might be the key that allows such models to perform better in incremental scenarios.
+On another side, we see that the results obtained without pretraining have difficulty
+achieving CNN performances so easily (we can compare the results of Section 4.1
+and Section 4.2). This calls for the need to build less data-hungry models in line with
+the world’s fast-paced data generation. Within Section 4.2 we also propose a new
+way to assess Continual Learning methods. We think that the community still lacks
+of a principled way to measure the stability-plasticity trade-off. With our introduction
+of the two curves, we proposed an initial tentative to monitor the performance of a
+system.
+Chapter 5
+101
+
+Dissecting continual learning: a structural and data analysis
+Last but not least, with the work of Section 4.4 we stress that autonomously
+discovering new patterns should be a core ability of an intelligent system. In fact, if
+an agent can explore the real world and find hierarchies of knowledge without help,
+all it has to do to incrementally learn is to store such knowledge in some kind of
+long-term memory repository which translates into a compression problem.
+102
+Chapter 5
+
+Bibliography
+Networks of spiking neurons: The third generation of neural network models. Neural
+Networks, 1997.
+Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aur´elien Lucchi, Pascal Fua, and
+Sabine S¨usstrunk. SLIC superpixels compared to state-of-the-art superpixel meth-
+ods. IEEE Trans. Pattern Anal. Mach. Intell., 2012.
+Tameem Adel, Han Zhao, and Richard E. Turner. Continual learning with adap-
+tive weights (CLAW). In International Conference on Learning Representations,
+(ICLR), 2020.
+Abien Fred Agarap. Deep learning using rectified linear units (relu). ArXiv, 2018.
+Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic per-
+spective on offline reinforcement learning. In ICML, 2020.
+Hongjoon Ahn, Jihwan Kwak, Su Fang Lim, Hyeonsu Bang, Hyojun Kim, and Tae-
+sup Moon. Ss-il: Separated softmax for incremental learning. 2021 IEEE/CVF
+International Conference on Computer Vision (ICCV), pages 824–833, 2021.
+Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars. Expert gate: Lifelong
+learning with a network of experts. In Proceedings of the IEEE Conference on
+Computer Vision and Pattern Recognition, 2017.
+Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne
+Tuytelaars. Memory aware synapses: Learning what (not) to forget. In Proceedings
+of the European Conference on Computer Vision (ECCV), 2018.
+Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Laurent Charlin, Massimo Cac-
+cia, Min Lin, and Lucas Page-Caccia. Online continual learning with maximal inter-
+fered retrieval. In Advances in Neural Information Processing Systems (NeurIPS).
+Curran Associates, Inc., 2019a.
+Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars. Task-free continual learn-
+ing. In CVPR. Computer Vision Foundation / IEEE, 2019b.
+103
+
+Dissecting continual learning: a structural and data analysis
+Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sam-
+ple selection for online continual learning. In Hanna M. Wallach, Hugo Larochelle,
+Alina Beygelzimer, Florence d’Alch´e-Buc, Emily B. Fox, and Roman Garnett, edi-
+tors, Advances in Neural Information Processing Systems (NeurIPS), 2019c.
+Elahe Arani, Fahad Sarfraz, and Bahram Zonooz. Learning fast, learning slow: A
+general continual learning method based on complementary learning system. ICLR,
+2022.
+S. Banerjee, Vinay Kumar Verma, Toufiq Parag, Maneesh Kumar Singh, and Vinay P.
+Namboodiri. Class incremental online streaming learning. NeurIPS, 2021.
+Eden Belouadah, Adrian Popescu, and Ioannis Kanellos. A comprehensive study of
+class incremental learning algorithms for visual tasks. Neural Networks, 2021.
+Edward L. Bennett, Marian Cleeves Diamond, David Krech, and Mark Richard Rosen-
+zweig. Chemical and anatomical plasticity of brain changes in brain through expe-
+rience, demanded by learning theories, are found in experiments with rats. Science,
+1964.
+Alessandro Betti, Marco Gori, Simone Marullo, and Stefano Melacci. Developing
+constrained neural units over time. In International Joint Conference on Neural
+Networks, IJCNN. IEEE, 2020.
+Magdalena Biesialska, Katarzyna Biesialska, and Marta R. Costa-juss`a. Continual
+lifelong learning in natural language processing: A survey. In Proceedings of the
+28th International Conference on Computational Linguistics. International Com-
+mittee on Computational Linguistics, 2020.
+Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-
+fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
+Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
+Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-
+pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
+Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
+and Dario Amodei. Language models are few-shot learners. In Hugo Larochelle,
+Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,
+editors, Advances in Neural Information Processing Systems 33: Annual Confer-
+ence on Neural Information Processing Systems 2020, NeurIPS, 2020.
+Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calder-
+ara. Dark experience for general continual learning: a strong, simple baseline. In
+Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
+Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33:
+104
+Bibliography
+
+BIBLIOGRAPHY
+Annual Conference on Neural Information Processing Systems 2020, NeurIPS,
+2020.
+Gail A. Carpenter and Stephen Grossberg. The art of adaptive pattern recognition
+by a self-organizing neural network. Computer, 1988.
+Fabio Cermelli, Massimiliano Mancini, Samuel Rota Bulo, Elisa Ricci, and Barbara
+Caputo. Modeling the background for incremental learning in semantic segmenta-
+tion. In Conference on Computer Vision and Pattern Recognition (CVPR), 2020.
+Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr.
+Riemannian walk for incremental learning: Understanding forgetting and intransi-
+gence. In Proceedings of the European Conference on Computer Vision (ECCV),
+2018.
+Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny.
+Efficient lifelong learning with A-GEM. In International Conference on Learning
+Representations, (ICLR), 2019a.
+Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan,
+Puneet K. Dokania, Philip H. S. Torr, and Marc’Aurelio Ranzato. On tiny episodic
+memories in continual learning, 2019b.
+Hui Chen, Chao Tan, and Zan Lin.
+Ensemble of extreme learning machines for
+multivariate calibration of near-infrared spectroscopy. Spectrochimica Acta Part
+A: Molecular and Biomolecular Spectroscopy, 2020.
+Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. When vision transformers out-
+perform resnets without pretraining or strong data augmentations. ICLR, 2022.
+Ming-Ming Cheng, Fang-Lue Zhang, Niloy J. Mitra, Xiaolei Huang, and Shi-Min Hu.
+Repfinder: finding approximately repeated scene elements for image editing. ACM
+Trans. Graph., 2010.
+Riccardo Del Chiaro, Bartlomiej Twardowski, Andrew D. Bagdanov, and Joost van de
+Weijer. RATT: recurrent attention to transient tasks for continual image cap-
+tioning. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
+Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing
+Systems 33: Annual Conference on Neural Information Processing Systems 2020,
+NeurIPS, 2020.
+Ondrej Chum and Jiri Matas. Unsupervised discovery of co-occurrence in sparse high
+dimensional data. In The Twenty-Third IEEE Conference on Computer Vision and
+Pattern Recognition, CVPR 2010, 2010.
+Bibliography
+105
+
+Dissecting continual learning: a structural and data analysis
+Tarin Clanuwat, Mikel Bober-Irizar, A. Kitamoto, Alex Lamb, Kazuaki Yamamoto,
+and David Ha. Deep learning for classical japanese literature. ArXiv, 2018.
+Djork-Arn´e Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate
+deep network learning by exponential linear units (elus). In Yoshua Bengio and
+Yann LeCun, editors, 4th International Conference on Learning Representations,
+ICLR, 2016.
+Cyprien de Masson d’Autume, Sebastian Ruder, Lingpeng Kong, and Dani Yogatama.
+Episodic memory in lifelong language learning.
+In Hanna M. Wallach, Hugo
+Larochelle, Alina Beygelzimer, Florence d’Alch´e-Buc, Emily B. Fox, and Roman
+Garnett, editors, Advances in Neural Information Processing Systems (NeurIPS),
+2019.
+Matthias Delange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales
+Leonardis, Greg Slabaugh, and Tinne Tuytelaars.
+A continual learning survey:
+Defying forgetting in classification tasks. IEEE Transactions on Pattern Analysis
+and Machine Intelligence, 2021.
+Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. Imagenet:
+A large-scale hierarchical image database. In Society Conference on Computer
+Vision and Pattern Recognition (CVPR). IEEE, 2009.
+Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-
+training of deep bidirectional transformers for language understanding.
+In Jill
+Burstein, Christy Doran, and Thamar Solorio, editors, Proceedings of the 2019
+Conference of the North American Chapter of the Association for Computational
+Linguistics: Human Language Technologies, NAACL-HLT. Association for Com-
+putational Linguistics, 2019.
+Prithviraj Dhar, Rajat Vikram Singh, Kuan-Chuan Peng, Ziyan Wu, and Rama Chel-
+lappa.
+Learning without memorizing.
+In Conference on Computer Vision and
+Pattern Recognition (CVPR), 2019.
+Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
+Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
+Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words:
+Transformers for image recognition at scale. In 9th International Conference on
+Learning Representations, ICLR, 2021.
+Briar Doty, Stefan Mihalas, Anton Arkhipov, and Alex T. Piet. Heterogeneous ‘cell
+types’ can improve performance of deep neural networks. bioRxiv, 2021.
+106
+Bibliography
+
+BIBLIOGRAPHY
+Petr Doubek, Jiri Matas, Michal Perdoch, and Ondrej Chum. Image matching and
+retrieval by repetitive patterns. In 20th International Conference on Pattern Recog-
+nition, ICPR 2010, 2010.
+Arthur Douillard and Timoth´ee Lesort. Continuum: Simple management of complex
+continual learning scenarios, 2021.
+Arthur Douillard, Matthieu Cord, Charles Ollion, Thomas Robert, and Eduardo Valle.
+Podnet: Pooled outputs distillation for small-tasks incremental learning. In Pro-
+ceedings of the IEEE European Conference on Computer Vision (ECCV), 2020.
+Arthur Douillard, Alexandre Ram´e, Guillaume Couairon, and Matthieu Cord. Dy-
+tox: Transformers for continual learning with dynamic token expansion. CoRR,
+abs/2111.11326, 2021.
+Sayna Ebrahimi, Mohamed Elhoseiny, Trevor Darrell, and Marcus Rohrbach.
+Uncertainty-guided continual learning with bayesian neural networks.
+In Inter-
+national Conference on Learning Representations, (ICLR), 2020.
+Spyros Gidaris and Nikos Komodakis.
+Dynamic few-shot visual learning without
+forgetting. In Conference on Computer Vision and Pattern Recognition, (CVPR).
+IEEE, 2018.
+Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
+Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. Generative adversarial nets.
+In NIPS, 2014.
+Pankaj Gupta, Yatin Chaudhary, Thomas A. Runkler, and Hinrich Sch¨utze. Neural
+topic modeling with continual lifelong learning.
+In International Conference on
+Machine Learning, (ICML). PMLR, 2020.
+Raia Hadsell, D. Rao, Andrei A. Rusu, and Razvan Pascanu. Embracing change:
+Continual learning in deep neural networks. Trends in Cognitive Sciences, 2020.
+Tyler L. Hayes and Christopher Kanan. Lifelong machine learning with deep streaming
+linear discriminant analysis. In CVPR, 2020.
+Tyler L. Hayes, Nathan D. Cahill, and Christopher Kanan. Memory efficient experi-
+ence replay for streaming learning. In International Conference on Robotics and
+Automation, ICRA 2019, Montreal, QC, Canada, May 20-24, 2019. IEEE, 2019.
+Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
+image recognition. In Conference on Computer Vision and Pattern Recognition,
+(CVPR). IEEE, 2016.
+Bibliography
+107
+
+Dissecting continual learning: a structural and data analysis
+Felix Hill, Adam Santoro, David G. T. Barrett, Ari S. Morcos, and Timothy P.
+Lillicrap. Learning to make analogies by contrasting abstract relational structure. In
+7th International Conference on Learning Representations, ICLR. OpenReview.net,
+2019.
+Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a
+neural network. ArXiv, 2015.
+Sepp Hochreiter. The vanishing gradient problem during learning recurrent neural
+nets and problem solutions. International Journal of Uncertainty, Fuzziness and
+Knowledge-Based Systems, 1998.
+Guillaume Hocquet, Olivier Bichler, and Damien Querlioz. Ova-inn: Continual learn-
+ing with invertible neural networks.
+In 2020 International Joint Conference on
+Neural Networks (IJCNN), 2020.
+Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning
+a unified classifier incrementally via rebalancing.
+In The IEEE Conference on
+Computer Vision and Pattern Recognition (CVPR), June 2019.
+Yen-Chang Hsu, Y. Liu, and Z. Kira. Re-evaluating continual learning scenarios: A
+categorization and case for strong baselines. ArXiv, abs/1810.12488, 2018.
+Guang-Bin Huang, Lei Chen, and Chee Kheong Siew. Universal approximation using
+incremental constructive feedforward networks with random hidden nodes. IEEE
+Trans. Neural Networks, 2006.
+Inbar Huberman and Raanan Fattal. Detecting repeating objects using patch corre-
+lation analysis. In 2016 IEEE Conference on Computer Vision and Pattern Recog-
+nition, CVPR, 2016.
+Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
+training by reducing internal covariate shift. In Francis R. Bach and David M. Blei,
+editors, Proceedings of the 32nd International Conference on Machine Learning,
+ICML, JMLR Workshop and Conference Proceedings. JMLR.org, 2015.
+Khurram Javed and Faisal Shafait. Revisiting distillation and incremental classifier
+learning. In ACCV, 2018.
+W. Johnson.
+Extensions of lipschitz mappings into hilbert space.
+Contemporary
+mathematics, 1984.
+K. J. Joseph, Jathushan Rajasegaran, Salman Hameed Khan, Fahad Shahbaz Khan,
+Vineeth N. Balasubramanian, and Ling Shao. Incremental object detection via
+meta-learning.
+IEEE transactions on pattern analysis and machine intelligence
+TPAMI, 2021.
+108
+Bibliography
+
+BIBLIOGRAPHY
+Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Yoshua
+Bengio and Yann LeCun, editors, 2nd International Conference on Learning Rep-
+resentations, (ICLR), 2014.
+Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convo-
+lutional networks. In 5th International Conference on Learning Representations,
+ICLR 2017. OpenReview.net, 2017.
+James Kirkpatrick, Razvan Pascanu, Neil C. Rabinowitz, Joel Veness, Guillaume
+Desjardins, Andrei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
+Grabska-Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Kumaran, and
+Raia Hadsell. Overcoming catastrophic forgetting in neural networks. Proceedings
+of the National Academy of Sciences, 2017.
+Jeremias Knoblauch, Hisham Husain, and Tom Diethe. Optimal continual learning
+has perfect memory and is np-hard. In ICML, 2020.
+Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical
+report, University of Toronto, 2009.
+Ramesh Kumar Lama, Jeonghwan Gwak, Jeong-Seon Park, and Sang-Woong Lee.
+Diagnosis of alzheimer’s disease based on structural mri images using a regularized
+extreme learning machine and pca features. Journal of healthcare engineering,
+2017.
+Yann LeCun, L´eon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
+learning applied to document recognition. Proceedings of the IEEE, 1998.
+Soochan Lee, Junsoo Ha, Dongsu Zhang, and Gunhee Kim. A neural dirichlet process
+mixture model for task-free continual learning. In 8th International Conference on
+Learning Representations, ICLR, 2020.
+Louis Lettry, Michal Perdoch, Kenneth Vanhoey, and Luc Van Gool. Repeated pat-
+tern detection using CNN activations. In 2017 IEEE Winter Conference on Appli-
+cations of Computer Vision, WACV 2017, 2017.
+Thomas K. Leung and Jitendra Malik. Detecting, localizing and grouping repeated
+scene elements from an image. In Computer Vision - ECCV’96, 4th European
+Conference on Computer Vision, Proceedings, Volume I. Springer, 1996.
+Duo Li, Guimei Cao, Yunlu Xu, Zhanzhan Cheng, and Yi Niu.
+Technical report
+for iccv 2021 challenge sslad-track3b: Transformers are better continual learners.
+arXiv preprint arXiv:2201.04924, 2022.
+Bibliography
+109
+
+Dissecting continual learning: a structural and data analysis
+Fei-Fei Li, Robert Fergus, and Pietro Perona.
+Learning generative visual models
+from few training examples: An incremental bayesian approach tested on 101
+object categories. Comput. Vis. Image Underst., 2007.
+Zhizhong Li and Derek Hoiem. Learning without forgetting. transactions on pattern
+analysis and machine intelligence (PAMI), 2017.
+Seppo Linnainmaa. Taylor expansion of the accumulated rounding error. BIT Nu-
+merical Mathematics, 1976.
+Jingchen Liu and Yanxi Liu. GRASP recurring patterns from a single view. In IEEE
+Conference on Computer Vision and Pattern Recognition, 2013.
+Xialei Liu, Chenshen Wu, Mikel Menta, Luis Herranz, Bogdan Raducanu, Andrew D
+Bagdanov, Shangling Jui, and Joost van de Weijer.
+Generative feature replay
+for class-incremental learning.
+In Conference on Computer Vision and Pattern
+Recognition Workshops CVPRW, 2020a.
+Yanxi Liu, Robert T. Collins, and Yanghai Tsin. A computational model for periodic
+pattern perception based on frieze and wallpaper groups. IEEE Trans. Pattern
+Anal. Mach. Intell., 2004.
+Yaoyao Liu, Anan Liu, Yuting Su, Bernt Schiele, and Qianru Sun. Mnemonics train-
+ing: Multi-class incremental learning without forgetting. 2020 IEEE/CVF Confer-
+ence on Computer Vision and Pattern Recognition (CVPR), 2020b.
+Yun Liu, Ming-Ming Cheng, Xiaowei Hu, Jia-Wang Bian, Le Zhang, Xiang Bai, and
+Jinhui Tang. Richer convolutional features for edge detection. IEEE Transactions
+on Pattern Analysis and Machine Intelligence, 2019.
+Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,
+and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted
+windows. Proc. ICCV, 2021.
+Vincenzo Lomonaco and Davide Maltoni. Core50: a new dataset and benchmark
+for continuous object recognition. In Sergey Levine, Vincent Vanhoucke, and Ken
+Goldberg, editors, Proceedings of the 1st Annual Conference on Robot Learning,
+Proceedings of Machine Learning Research. PMLR, 2017.
+Vincenzo Lomonaco, Karan Desai, Eugenio Culurciello, and Davide Maltoni. Con-
+tinual reinforcement learning in 3d non-stationary environments. In Conference on
+Computer Vision and Pattern Recognition, (CVPR). IEEE, 2020.
+Vincenzo Lomonaco, Lorenzo Pellegrini, Pau Rodr´ıguez L´opez, Massimo Caccia,
+Qi She, Yu Chen, Quentin Jodelet, Ruiping Wang, Zheda Mai, David V´azquez,
+110
+Bibliography
+
+BIBLIOGRAPHY
+German Ignacio Parisi, Nikhil Churamani, Marc Pickett, Issam H. Laradji, and
+Davide Maltoni.
+Cvpr 2020 continual learning in computer vision competition:
+Approaches, results, current challenges and future directions. Artif. Intell., 2022.
+David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual
+learning. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach,
+Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in
+Neural Information Processing Systems 30: Annual Conference on Neural Infor-
+mation Processing Systems (NeurIPS), 2017.
+Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with warm
+restarts. In International Conference on Learning Representations, (ICLR), 2017.
+Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng.
+Rectifier nonlinearities
+improve neural network acoustic models. In in ICML Workshop on Deep Learning
+for Audio, Speech and Language Processing, 2013.
+Zheda Mai, Ruiwen Li, Jihwan Jeong, David Quispe, Hyunwoo J. Kim, and Scott
+Sanner.
+Online continual learning in image classification: An empirical survey.
+Neurocomputing, 2022.
+Arun Mallya and Svetlana Lazebnik.
+Packnet: Adding multiple tasks to a single
+network by iterative pruning. In 2018 IEEE Conference on Computer Vision and
+Pattern Recognition, CVPR. Computer Vision Foundation / IEEE Computer So-
+ciety, 2018.
+David McCaffary. Towards continual task learning in artificial neural networks: cur-
+rent approaches and insights from neuroscience. ArXiv, 2021.
+James L. McClelland, Bruce L. McNaughton, and Randall C. O’Reilly. Why there
+are complementary learning systems in the hippocampus and neocortex: insights
+from the successes and failures of connectionist models of learning and memory.
+Psychological review, 1995.
+Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist
+networks: The sequential learning problem. In Psychology of learning and moti-
+vation. Elsevier, 1989.
+Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in
+nervous activity. The bulletin of mathematical biophysics, 1943.
+Sanket Vaibhav Mehta, Darshan Patil, Sarath Chandar, and Emma Strubell.
+An
+empirical investigation of the role of pre-training in lifelong learning.
+ArXiv,
+abs/2112.09153, 2021.
+Bibliography
+111
+
+Dissecting continual learning: a structural and data analysis
+Umberto Michieli and Pietro Zanuttigh. Incremental learning techniques for seman-
+tic segmentation. In Proceedings of the IEEE/CVF International Conference on
+Computer Vision Workshops (ICCV-W), 2019.
+Seyed Iman Mirzadeh, Arslan Chaudhry, Dong Yin, Timothy Nguyen, Razvan Pas-
+canu, Dilan Gorur, and Mehrdad Farajtabar. Architecture matters in continual
+learning. arXiv preprint arXiv:2202.00275, 2022.
+Katelyn Morrison, Benjamin Gilby, Colton Lipchak, Adam Mattioli, and Adriana Ko-
+vashka. Exploring corruption robustness: Inductive biases in vision transformers
+and mlp-mixers. CoRR, abs/2106.13122, 2021.
+Martin Mundt, Yong Won Hong, Iuliia Pliushch, and Visvanathan Ramesh. A wholis-
+tic view of continual learning with deep neural networks: Forgotten lessons and
+the bridge to active and open world learning. ArXiv, abs/2009.01797, 2020.
+Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltz-
+mann machines. In ICML, 2010.
+Chris Olah, Alexander Mordvintsev, and Ludwig Schubert.
+Feature visualization.
+Distill, 2017.
+doi:
+10.23915/distill.00007.
+https://distill.pub/2017/feature-
+visualization.
+Yuki Ono, Eduard Trulls, Pascal Fua, and Kwang Moo Yi. Lf-net: Learning local
+features from images.
+In Samy Bengio, Hanna M. Wallach, Hugo Larochelle,
+Kristen Grauman, Nicol`o Cesa-Bianchi, and Roman Garnett, editors, Advances in
+Neural Information Processing Systems 31, NeurIPS, 2018.
+German Ignacio Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan
+Wermter.
+Continual lifelong learning with neural networks: A review.
+Neural
+Networks, 2019.
+Minwoo Park, Kyle Brocklehurst, Robert T. Collins, and Yanxi Liu. Deformed lattice
+detection in real-world images using mean-shift belief propagation. IEEE Trans.
+Pattern Anal. Mach. Intell., 2009.
+Sayak Paul and Pin-Yu Chen. Vision transformers are robust learners. arXiv preprint
+arXiv:2105.07581, 2021.
+Jary Pomponi, Simone Scardapane, Vincenzo Lomonaco, and Aurelio Uncini. Effi-
+cient continual learning in neural networks with embedding regularization. Neuro-
+computing, 2020.
+Mozhgan Pourkeshavarz and M. Sabokrou. Zs-il: Looking back on learned experi-
+ences for zero-shot incremental learning. ICLR, 2022.
+112
+Bibliography
+
+BIBLIOGRAPHY
+Ameya Prabhu, Philip H. S. Torr, and Puneet K. Dokania. Gdumb: A simple approach
+that questions our progress in continual learning. In Andrea Vedaldi, Horst Bischof,
+Thomas Brox, and Jan-Michael Frahm, editors, Computer Vision - (ECCV), Lec-
+ture Notes in Computer Science. Springer, 2020.
+James Pritts, Ondrej Chum, and Jiri Matas.
+Rectification, and segmentation of
+coplanar repeated patterns. In 2014 IEEE Conference on Computer Vision and
+Pattern Recognition, CVPR, 2014.
+Muhammad Naveed Iqbal Qureshi, Beomjun Min, Hang Joon Jo, and Boreom Lee.
+Multiclass classification for the differential diagnosis on the adhd subtypes using
+recursive feature elimination and hierarchical extreme learning machine: structural
+mri study. PloS one, 2016.
+Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and Alexey
+Dosovitskiy. Do vision transformers see like convolutional neural networks? ArXiv,
+2021.
+Jathushan Rajasegaran, Munawar Hayat, Salman H. Khan, Fahad Shahbaz Khan, and
+Ling Shao. Random path selection for continual learning. In Hanna M. Wallach,
+Hugo Larochelle, Alina Beygelzimer, Florence d’Alch´e-Buc, Emily B. Fox, and
+Roman Garnett, editors, Advances in Neural Information Processing Systems 32:
+Annual Conference on Neural Information Processing Systems 2019, NeurIPS,
+2019.
+Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H. Lam-
+pert. icarl: Incremental classifier and representation learning. In Conference on
+Computer Vision and Pattern Recognition, (CVPR). IEEE, 2017.
+Maximilian Riesenhuber and Tomaso A. Poggio. Hierarchical models of object recog-
+nition in cortex. Nature Neuroscience, 1999.
+Mark Bishop Ring et al. Continual learning in reinforcement environments. PhD
+thesis, 1994.
+Hippolyt Ritter, Aleksandar Botev, and David Barber.
+Online structured laplace
+approximations for overcoming catastrophic forgetting.
+In Advances in Neural
+Information Processing Systems, 2018.
+Carlos Rodr´ıguez-Pardo, Sergio Suja, David Pascual, Jorge Lopez-Moreno, and Elena
+Garces. Automatic extraction and synthesis of regular repeatable patterns. Com-
+put. Graph., 2019.
+Bibliography
+113
+
+Dissecting continual learning: a structural and data analysis
+David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P. Lillicrap, and Gregory
+Wayne. Experience replay for continual learning. In Hanna M. Wallach, Hugo
+Larochelle, Alina Beygelzimer, Florence d’Alch´e-Buc, Emily B. Fox, and Roman
+Garnett, editors, Advances in Neural Information Processing Systems 32: Annual
+Conference on Neural Information Processing Systems 2019, NeurIPS, 2019.
+Frank Rosenblatt. The perceptron: a probabilistic model for information storage and
+organization in the brain. Psychological review, 1958.
+Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier.
+Efficient
+content-based sparse attention with routing transformers. Trans. Assoc. Com-
+put. Linguistics, 2021.
+David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning represen-
+tations by back-propagating errors. Nature, 1986.
+Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
+Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein, Alexan-
+der C. Berg, and Li Fei-Fei. Imagenet large scale visual recognition challenge. Int.
+J. Comput. Vis., 2015.
+Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James
+Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive
+neural networks. ArXiv, 2016.
+Sara Sabour, Nicholas Frosst, and Geoffrey E. Hinton. Dynamic routing between
+capsules. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wal-
+lach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances
+in Neural Information Processing Systems 30: Annual Conference on Neural In-
+formation Processing Systems NIPS, 2017.
+Frederik Schaffalitzky and Andrew Zisserman. Geometric grouping of repeated ele-
+ments within images. In John N. Carter and Mark S. Nixon, editors, Proceedings
+of the British Machine Vision Conference 1998, BMVC.
+J¨urgen Schmidhuber.
+Deep learning in neural networks:
+An overview.
+CoRR,
+abs/1404.7828, 2014.
+Eli Shechtman and Michal Irani. Matching local self-similarities across images and
+videos.
+In 2007 IEEE Computer Society Conference on Computer Vision and
+Pattern Recognition (CVPR 2007). IEEE Computer Society, 2007.
+Dongsub Shim, Zheda Mai, Jihwan Jeong, Scott Sanner, Hyunwoo Kim, and
+Jongseong Jang. Online class-incremental continual learning with adversarial shap-
+ley value. AAAI, 2021.
+114
+Bibliography
+
+BIBLIOGRAPHY
+Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim.
+Continual learning
+with deep generative replay. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
+Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, ed-
+itors, Advances in Neural Information Processing Systems 30: Annual Conference
+on Neural Information Processing Systems NIPS, 2017.
+Shagun Sodhani, Sarath Chandar, and Yoshua Bengio. Toward training recurrent
+neural networks for lifelong learning. Neural Computation, 2020.
+David Stutz, Alexander Hermans, and Bastian Leibe. Superpixels: An evaluation of
+the state-of-the-art. Comput. Vis. Image Underst., 2018.
+Fan-Keng Sun, Cheng-Hao Ho, and Hung-Yi Lee. LAMOL: language modeling for
+lifelong language learning. In International Conference on Learning Representa-
+tions, (ICLR), 2020.
+Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir
+Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
+deeper with convolutions. In IEEE Conference on Computer Vision and Pattern
+Recognition, CVPR, 2015.
+Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chunfang
+Liu. A survey on deep transfer learning. In Vera Kurkov´a, Yannis Manolopoulos,
+Barbara Hammer, Lazaros S. Iliadis, and Ilias Maglogiannis, editors, International
+Conference on Artificial Neural Networks (ICANN), Lecture Notes in Computer
+Science. Springer, 2018.
+Bosiljka Tasic, Zizhen Yao, Lucas T. Graybuck, Kimberly A. Smith, Thuc Nghi
+Nguyen, Darren Bertagnolli, Jeff Goldy, Emma Garren, Michael N. Economo,
+Sarada Viswanathan, Osnat Penn, Trygve E Bakken, Vilas Menon, Jeremy A.
+Miller, Olivia Fong, Karla E. Hirokawa, Kanan Lathia, Christine Rimorin, Michael
+Tieu, Rachael Larsen, Tamara Casper, Eliza Barkan, Matthew Kroll, Sheana E.
+Parry, Nadiya Shapovalova, Daniel Hirschstein, Julie Pendergraft, Heather Anne
+Sullivan, Tae Kyung Kim, Aaron Szafer, Nick Dee, Peter A. Groblewski, Ian R.
+Wickersham, Ali H. Cetin, Julie A. Harris, Boaz P. Levi, Susan M. Sunkin, Linda J.
+Madisen, Tanya L. Daigle, Loren L. Looger, Amy Bernard, John W. Phillips, Ed S.
+Lein, Michael J. Hawrylycz, Karel Svoboda, Allan R. Jones, Christof Koch, and
+Hongkui Zeng. Shared and distinct transcriptomic cell types across neocortical
+areas. Nature, 2018.
+Sebastian Thrun. Explanation-based neural network learning a lifelong learning ap-
+proach. PhD thesis, University of Bonn, Germany, 1995a.
+Bibliography
+115
+
+Dissecting continual learning: a structural and data analysis
+Sebastian Thrun. Is learning the n-th thing any easier than learning the first?
+In
+David S. Touretzky, Michael Mozer, and Michael E. Hasselmo, editors, Advances
+in Neural Information Processing Systems, (NIPS). MIT Press, 1995b.
+Sebastian Thrun and Tom M. Mitchell. Lifelong robot learning. Robotics Auton.
+Syst., 15(1-2):25–46, 1995.
+Akihiko Torii, Josef Sivic, Masatoshi Okutomi, and Tom´as Pajdla.
+Visual place
+recognition with repetitive structures. IEEE Trans. Pattern Anal. Mach. Intell.,
+2015.
+Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablay-
+rolles, and Herv´e J´egou. Training data-efficient image transformers & distillation
+through attention. In Marina Meila and Tong Zhang, editors, ICML, 2021.
+Gido M. van de Ven and A. Tolias. Three scenarios for continual learning. ArXiv,
+2019.
+Gido M. van de Ven and Andreas Savas Tolias. Generative replay with feedback
+connections as a general strategy for continual learning. ArXiv, 2018.
+A¨aron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,
+Alex Graves, Nal Kalchbrenner, Andrew W. Senior, and Koray Kavukcuoglu.
+Wavenet: A generative model for raw audio. In The 9th ISCA Speech Synthesis
+Workshop. ISCA, 2016.
+Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
+Gomez, Lukasz Kaiser, and Illia Polosukhin.
+Attention is all you need.
+In Is-
+abelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus,
+S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in Neural Informa-
+tion Processing Systems 30: Annual Conference on Neural Information Processing
+Systems NIPS, 2017.
+Hongxing Wang, Gangqiang Zhao, and Junsong Yuan. Visual pattern discovery in
+image and video data: a brief survey. Wiley Interdiscip. Rev. Data Min. Knowl.
+Discov., 2014.
+Yuqing Wang, Zhaoliang Xu, Xinlong Wang, Chunhua Shen, Baoshan Cheng, Hao
+Shen, and Huaxia Xia. End-to-end video instance segmentation with transform-
+ers. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition
+(CVPR), 2021.
+Ross Wightman.
+Pytorch image models.
+https://github.com/rwightman/
+pytorch-image-models, 2019.
+116
+Bibliography
+
+BIBLIOGRAPHY
+Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo,
+Zhengyou Zhang, and Yun Raymond Fu. Incremental classifier learning with gen-
+erative adversarial networks. ArXiv, 2018.
+Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and
+Yun Raymond Fu. Large scale incremental learning. 2019 IEEE/CVF Conference
+on Computer Vision and Pattern Recognition (CVPR), 2019.
+Tete Xiao, Mannat Singh, Eric Mintun, Trevor Darrell, Piotr Doll´ar, and Ross B.
+Girshick. Early convolutions help transformers see better. CoRR, abs/2106.14881,
+2021.
+Ju Xu and Zhanxing Zhu. Reinforced continual learning. In Samy Bengio, Hanna M.
+Wallach, Hugo Larochelle, Kristen Grauman, Nicol`o Cesa-Bianchi, and Roman
+Garnett, editors, Advances in Neural Information Processing Systems 31: Annual
+Conference on Neural Information Processing Systems, (NeurIPS), 2018.
+Jianwei Yang, Chunyuan Li, Pengchuan Zhang, Xiyang Dai, Bin Xiao, Lu Yuan, and
+Jianfeng Gao. Focal self-attention for local-global interactions in vision transform-
+ers. ArXiv, abs/2107.00641, 2021.
+Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning
+with dynamically expandable networks. In 6th International Conference on Learning
+Representations, ICLR. OpenReview.net, 2018.
+Lu Yu, X. Liu, and J. Weijer. Self-training for class-incremental semantic segmenta-
+tion. ArXiv, 2020a.
+Lu Yu, Bartlomiej Twardowski, Xialei Liu, Luis Herranz, Kai Wang, Yongmei Cheng,
+Shangling Jui, and Joost van de Weijer. Semantic drift compensation for class-
+incremental learning. In Proceedings of the IEEE/CVF Conference on Computer
+Vision and Pattern Recognition CVPR, 2020b.
+Pei Yu, Yinpeng Chen, Ying Jin, and Zicheng Liu. Improving vision transformers for
+incremental learning. ArXiv, abs/2112.06103, 2021.
+Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo,
+and Junsuk Choe. Cutmix: Regularization strategy to train strong classifiers with
+localizable features. In IEEE/CVF International Conference on Computer Vision,
+(ICCV). IEEE, 2019.
+Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synap-
+tic intelligence. In Proceedings of the 34th International Conference on Machine
+Learning, Proceedings of Machine Learning Research. PMLR, 2017.
+Bibliography
+117
+
diff --git a/DtAzT4oBgHgl3EQfGvt3/content/tmp_files/load_file.txt b/DtAzT4oBgHgl3EQfGvt3/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..dc8fd8f7878fd64db215bb93624708360f7e0141
--- /dev/null
+++ b/DtAzT4oBgHgl3EQfGvt3/content/tmp_files/load_file.txt
@@ -0,0 +1,3374 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf,len=3373
+page_content='Ca’ Foscari University Department of Environmental Sciences, Informatics and Statistics Dissecting Continual Learning a Structural and Data Analysis Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Thesis - Computer Science XXXIV Cycle Submitted by: Pelosin Francesco Supervisor: Prof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Torsello Andrea Venice, Italy - March, 2022 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='01033v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='CV] 3 Jan 2023 G .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' E DOMODissecting continual learning: a structural and data analysis 2 Chapter 0 Abstract Deep Learning aims to discover how artificial neural networks learn the rich inter- nal representations required for difficult tasks such as recognizing objects or under- standing language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This hard question is still unanswered although we are constantly improving the performance of such systems spanning from computer vision problems to natural language processing tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Continual Learning (CL) is a field dedicated in devising algorithms able to achieve lifelong learning by overcoming the knowledge disruption of previously acquired concepts, a phenomenon that affects deep learn- ing architectures and that goes by the name of catastrophic forgetting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Currently, deep learning methods can achieve outstanding results when the data modeled does not undergo a considerable distribution shift in subsequent learning sessions, but as we expose the systems to such incremental setting, performance abruptly drops due to catastrophic forgetting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As the data generated in the world is continuously in- creasing, the demand to model such streams in a sequential fashion is increasing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As such, devising techniques to prevent knowledge corruption in neural networks is fundamental.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Overcoming such limitations would allow us to build truly intelli- gent systems showing adaptability and human-like quality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Secondly, it would allow us to overcome the limitation, and onerous aspect, of retraining the architectures from scratch with the updated data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Such drawback comes from how deep neural networks learn, that is, they require several parameter updates to learn any given concept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This is also the exact reason why catastrophic forgetting happens, as we learn new concepts we overwrite old ones, while a truly intelligent system would show a stability-plasticity optimal trade-off.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In this thesis, we first describe the background needed to understand continual learning in the computer vision realm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We do so with the introduction of a notation and a formal description of the problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Then, we will introduce several CL setting variants and main solution categories proposed in the literature, along with an analysis of the state-of-the-art.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We then first analyze one of the baseline approaches to continual learning and discover that in rehearsal-based techniques the quantity of data stored is a more important factor than the quality of memorized data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This trade-off surprisingly holds even for impressively high com- pression rates of the data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Secondly, this thesis proposes one of the early works on the study of incremental learning on vision transformer architectures (ViTs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In par- ticular, we will compare functional, weight, and attention regularization approaches for the challenging rehearsal-free CL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We then propose an asymmetric loss variant inspired by PODNet, achieving good capabilities in terms of plasticity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Among these contributions, we propose a simple, but effective baseline for off-the-shelf continual learning exploiting pretrained models and discuss its extension to unsupervised con- tinual learning, a topic that deserves further attention from the community.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As the final work, we introduce a novel algorithm able to explore the environment through unsupervised visual pattern discovery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We then provide a conclusion and discuss further developments and promising paths to be followed by the CL research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Chapter 0 3 Dissecting continual learning: a structural and data analysis 4 Chapter 0 Akwnowledgments First, I would like to express my gratitude to my supervisor Andrea Torsello, for all the deep insights and for welcoming me to pursue this research with him.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Secondly, I would like to thank all the people that I encountered throughout these years, especially colleagues and friends that I met, a personal acknowledgment to Alessandro, Seyum, Fatima, and also the friends I met in Spain Hect´or, Laura, and Albin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' I would also like to say thank everyone that loved me during this period, you gave me the strength to carry on this tough journey!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Lastly, I would say that I learned a lot during these years, and the force that moved me to pursue a Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', is the same force that allows us to expand and look for answers, to find meanings, and to unfold something beautiful.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' ‘‘You’re pretty good’’ Chapter 0 5 Dissecting continual learning: a structural and data analysis 6 Chapter 0 Contents 1 Introduction 9 2 Background and Motivation 13 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 Artificial vs Natural Intelligence .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 14 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 What is Continual Learning?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 17 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 Stability-Plasticity Dilemma .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 19 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 Catastrophic Forgetting .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 20 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3 A Visual Example .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 20 3 Continual Learning Framework 25 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 Definition and Settings .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 26 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 Online CL vs Offline CL .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 28 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 Task-Incremental vs Class-Incremental .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 29 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 Baselines .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 30 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 Cumulative .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 31 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 Finetuning .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 32 7 Dissecting continual learning: a structural and data analysis 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3 State-of-the-art .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 33 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 Structural-based .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 33 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 Regularization-based .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 34 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3 Rehearsal-based .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 35 4 Works 37 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 Smaller is Better: An Analysis of Instance Quantity/Quality Trade- off in Rehearsal-based Continual Learning .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 38 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 Towards Exemplar-Free Continual Learning in Vision Transformers: an Account of Attention, Functional and Weight Regularization .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 58 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3 Simpler is Better: off-the-shelf Continual Learning through Pretrained Backbones .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 76 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 Unsupervised Semantic Discovery through Visual Patterns detection 85 5 Conclusions 99 8 Chapter 0 Chapter 1 Introduction “The measure of intelligence is the ability to change” Albert Einstein 9 Dissecting continual learning: a structural and data analysis The interconnections among entities in our world are growing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Along with this fact, the ability to keep track and record such data has accordingly increased.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The need for systems that can cope with such phenomena is essential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Deep Learning (DL) revealed itself to be a powerful weapon to model such complex streams, es- pecially in Computer Vision and Natural Language Processing fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The advent of DL unlocked the ability to develop outstanding technologies that can directly impact our lives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Self-driving cars are one example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Unfortunately not always the impact is positive, if not properly controlled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Therefore, the need for systems that show gen- eralization abilities and can cope with unexpected scenarios, is nowadays essential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' To this end, we also need responsive machines, that can be trained to quickly learn new concepts with low resource consumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In fact, what happens if the stream of data encountered by a deep learning model changes its quality over time?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This particular question is tackled by Continual Learning (CL) whose aim is to develop lifelong learning machines, unlocking fast adaptability to new environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Modern deep learning methods for computer vision adapt themselves only to the manifold they are trained on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Instead, we need to devise models which are plastic enough to generalize to distributional shifts in the data and do not require complete retraining.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This challenge would be solved if training Deep Learning models would not be such a delicate process affected by unexpected drawbacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In fact, when we introduce the notion of learning through time and expose the system to face incremental tasks of different nature, things can get really complicated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' One of the drawbacks of incrementally learning is the so-called catastrophic for- getting, where the system is subject to an abrupt deterioration of past knowledge whenever asked to learn new concepts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This big limitation is broadly studied in con- tinual learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' To approach this delicate subject, in this thesis, we start by gently introducing some basic differences between artificial and natural intelligence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Here, we clarify some operative differences between artificial neural networks and some basic brain mechanisms arising from neuroscience.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Then, we informally introduce the notion of continual learning and discuss the stability-plasticity dilemma along with the phenomenon of catastrophic forgetting of artificial neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We proceed by introducing a more formal definition of incremental learning along with its fine-grained inclinations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Before moving to the contributions we introduce a brief overview of the state-of-the-art and define the main baselines which act as lower and upper bounds for continual learning methodologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We step into the major contributions by focusing on rehearsal systems, a family of methods that exploit cache memories to replay previous knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Here, we study how the compression of stored rehearsal data impacts the performance of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Tackling the memory side of CL, we provide a quality/quantity analysis through 10 Chapter 1 Introduction the usage of several compression schemes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We consider also extreme compression rates, providing some insights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' On top of that, we consider continual learning under low-resource constraints through the usage of random projections and, in particular, Extreme Learning Machines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' To follow, as a second major contribution, we are among the first to investigate Vision Transformers in continual learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In particular, we analyze several regular- ization schemes for ViTs, providing a first envision of rehearsal-free CL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We consider weight, functional and attentional regularizations, being the latter unexplored be- fore, we carefully study the application of regularizations to specific parts of the self-attention mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As a side contribution we introduce a new asymmetric loss variant inspired by a contemporary continual learning method (PODNet) prin- cipled by the observation that new attention should not penalize the acquisition of new knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We then further clarify the usage of pretrained models in continual learning through an experimental segment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We compare fully pretrained CNNs and Vision Transformers in several incremental benchmarks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We provide a clear simple baseline that requires few KBytes to operate and does not perform parameter updates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Being simple and effective, we discuss its extension to the unsupervised realm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Here we consider further extensions for future works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Along with these three contributions, we also study the ability of a system to autonomously discover new visual patterns, a notion embedded in an optimal incre- mental learner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We, therefore, provide a simple unsupervised pipeline able to discover semantic patterns on different visual scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Finally, we conclude by wrapping up our perspectives on the main aforementioned challenges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As a final note, we hope this thesis finds a meaningful purpose in the CL com- munity, contributing to the development of Continual Learning and Computer Vision research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Chapter 1 11 Dissecting continual learning: a structural and data analysis Contibution Prefaction In this thesis we included some papers developed while pursuing the Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='. The main contributions have been reported in Chapter 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The chapter holds the outcome of several collaborations and with the following list we report the names of the authors and the venues where the works have been submitted: The work reported in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1, has been accepted as oral poster to IJCNN 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The authors who contributed to the work are (in order): Francesco Pelosin and Andrea Torsello from Ca’ Foscari University of Venice The work reported in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 is the outcome of the collaboration of the re- search period abroad and has been accepted as poster to the Continual Lerning Workshop of CVPR 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The authors who contributed to the work are (in order): Francesco Pelosin, Ca’ Foscari University of Venice (Equal Contrib);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Saurav Jha, University of New South Wales, Australia (Equal Contrib);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Andrea Torsello, Ca’ Foscari University of Venice, Italy;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Bogdan Raducanu and Joost van de Weijer from Computer Vision Center, Spain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The work reported in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3 has been accepted as poster to the Transform- ers for Vision Workshop of CVPR 2022 and it is single authored by Francesco Pelosin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The work reported in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4, has been accepted to the S+SSPR 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The authors who contributed to the work are (in order): Francesco Pelosin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Andrea Gasparetto;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Andrea Albarelli and Andrea Torsello, Ca Foscari University of Venice, Italy 12 Chapter 1 Chapter 2 Background and Motivation 13 Dissecting continual learning: a structural and data analysis 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 Artificial vs Natural Intelligence Although the recent developments and great achievements of the field of Artificial Intelligence, the fundamental nature of Artificial Neural Networks (ANNs) might still be a coarse approximation of how our biological brains work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' With the mathematical introduction by [McCulloch and Pitts, 1943] and the introduction of the “Perceptron” by [Rosenblatt, 1958], which constitutes the smallest unit that form a ANN, we shaped our modeling of intelligence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' An artificial neuron can be described as a cumulative summation of multiplications over some weights followed by a non-linear function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Then, after the introduction of the famous Multy Layer Perceptrons (MLPs) the structure of ANNs has not changed much: we work in a connectionist paradigm where the learning happens through a distributed signal activity via connections among ar- tificial neurons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In particular, the learning occurs by modifying connection strengths based on experience, this modification procedure has a particular name and it is the so-called backpropagation algorithm whose discovery can be traced back to [Rumel- hart et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 1986] but with some earlier works by [Linnainmaa, 1976] (as an M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='Sc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Thesis) as pointed in [Schmidhuber, 2014].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The success of connectionists models span over different fields: Convolutional Neural Networks (CNN) for Computer Vision (CV) [He et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2016], Language Mod- els for Natural Language Processing (NLP) [Devlin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019], Deep Q-Learning Networks (DQN) for Reinforcement Learning [Agarwal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020], Generative Au- dio Models for Audio [van den Oord et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2016] and Graph Convolutional Networks (GCN) for graph data [Kipf and Welling, 2017].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Connectionist models are a composition of several layers of artificial neurons, followed by a non-linearity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' There are several types of layers each with its peculiar- ity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' For example with the introduction of Batch Normalization [Ioffe and Szegedy, 2015] we allowed the networks to achieve faster training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The introduction of some specialized units often allowed to excel in particular fields such as the convolutional operation [LeCun et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 1998] for Computer Vision tasks and the Self-Attention mechanism in Natural Language Processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [Vaswani et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2017], although the attention mechanism has achieved tremendous achievements in vision tasks thanks to [Dosovitskiy et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2021] and its introduction of Visual Transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Nowadays there is still no perfect mechanism/model for each scenario because we are still in the process of discovering how learning happens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' For sure in the future, we might see other methodologies working in fields where they are not born from.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 14 Chapter 2 Background and Motivation Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1: Feature visualization of GoogLeNet [Szegedy et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2015], trained on the ImageNet [Russakovsky et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2015] dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Concepts in early layers are reported on left while concepts of last layers are on the right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The image is taken from [Olah et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2017] While attention-based models spread the knowledge, and feature representations, uniformly across the layers [Raghu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2021], in classical convolution-based mod- els (such as ResNets [He et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2016]) the knowledge is constructed in a bottom-up fashion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This is a well-known fact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In particular, abstract concepts are always the result of the composition of simpler concepts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' For example in early layers of CNNs for CV tasks, each neuron specializes in the detection of low-level features, while, as we move towards the head, the network learns patterns with more semantic rele- vance for us humans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This can be seen thanks to the beautiful visualization of [Olah et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2017] captured in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This also reflects some neuroscientific discover- ies where hierarchies of more and more abstract concepts have been demonstrated repeatedly, especially in the visual brain areas [Riesenhuber and Poggio, 1999].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' While those resemblances are appealing to draw a connection between artificial and biological brains, the difference is still striking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' For example, quite often Deep Learning models are static, that is, they are not altering their architecture over time but, in our biological brains, new connections can appear, while others can also cease to exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This is also the so-called neuroplasticity of our brains, whose first scientific evidence has been reported by [Bennett et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 1964].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As we will see, continual learning and few other fields (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', dynamic routing, conditional computation, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=') are the only ones going in this direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' On another note, time seems to be a major factor in both artificial and natural learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Our current connectionist framework does not exploit the notion of time in learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' To accommodate such a factor we would need to redefine the current learning framework because so far the models process data but without being condi- tioned to when something is learned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' There have been some attempts towards this Chapter 2 15 Edges (layer conv2do) Textures (layer mixed3a) Parts (layers mixed4b & mixed4c)Dissecting continual learning: a structural and data analysis direction by defining the learning as a system of differential equations taking into consideration time as a fundamental variable and also some attempts to implement it by [Betti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020], although the majority of the works still operate in the classical scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Another clear distinction between artificial and biological neurons lies in how they decide to fire.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The artificial neuron receives inputs and multiplies them by some weights that are adapted during learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' To fire, it uses an activation function (such as ReLu [Agarap, 2018]), but the reality of biological neurons is different.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Each biological neuron has its threshold resultant from a complex chemical interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' A class of models that are trying to bridge this gap is Spiking Neural Networks [MAA, 1997] where the firing of the neuron is determined by a threshold on the signal received.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Note that also this simplified model mimics neither the creation nor the destruction of connections (dendrites or axons) between neurons, and ignores signal timing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' However, this restricted model alone is powerful enough to work with simple classification tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Another important difference is that biological circuits contain a myriad of addi- tional details and complexity not translated to DL models, including diverse neural cell types [Tasic et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2018] with some recent attempts by [Doty et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2021] to bridge this gap by changing the activation function for each artificial neuron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Another attempt to introduce more complex structures has been proposed by [Sabour et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2017] with the introduction of Capsule Net models, a family of networks where the neurons are structured in hierarchies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The most widely known neuroscientific framework for the brain is the Comple- mentary Learning Systems (CLS) [McClelland et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 1995].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This framework explains why the brain requires two deferentially specialized learning and memory systems, and it nicely specifies their central properties i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', the hippocampus as a sparse, pattern-separated system for rapidly learning episodic memories, and the neocortex as a distributed, overlapping system that gradually integrates experienced episodes and extracts latent semantic structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Instead, most of the proposed artificial models, are more of a well-engineered pipeline crafted to excel in a particular task such as Computer Vision, NLP, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' and do not draw inspiration from such theo- ries, although a very recent work prosed by [Arani et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2022] explored over this direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' With some recent developments in the CL field, rehearsal systems [Parisi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019] (systems that replay old data through a buffer) can be recast with such a point of view.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In fact, we can think of the rehearsal buffer (or the part of the CL system dedicated to storing “old” patterns used in replay) as a long-term memory while the other part of the architecture is the fast-paced learner of the intelligent agent i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' the hippocampus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Perhaps the key to continual learning will be in the 16 Chapter 2 Background and Motivation inspiration from neuroscientific models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Indeed recently [McCaffary, 2021] proposed a systematic review of the approaches in CL along with some insights into why we should pay more attention to neuroscientific theories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As we saw, the gap between artificial and biological models is still relevant and the two fields, nowadays, show big differences in their understanding of intelligence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' However, one striking fact is that the artificial community has achieved impressive results without directly mimicking the current neuroscientific theories, suggesting that, perhaps, several paradigms of intelligence exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 What is Continual Learning?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' “Every machine is built to make decisions, if it does not have the faculty to learn, it will act always in conformity to a mechanical scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We don’t have to let the machine decide about our conduct if we first have not studied the laws that rule its behavior, and made sure that such behavior will be based on principles that we can accept!”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Norbert Wiener Definition: The aforementioned quote is taken from “Introduction to Cybernet- ics”, and highlights the fact that the fundamental ability to continually learn is a very important skill that any intelligent system should possess.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Although we are now able to devise powerful artificial systems achieving superhuman performance in some tasks, we, as humans, still exhibit a core ability that would be fundamental to repli- cate intelligence as we know it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The ability to learn new concepts without erasing past knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' These two aspects are the main objectives of Continual Learn- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' First, exhibiting the ability to assimilate new concepts incrementally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Secondly, showing the capability of memorization i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' not forgetting what has been previously learned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In a nutshell Continual Learning studies how to develop systems that learn incrementally over time without forgetting previously acquired knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' History: Continual Learning has drawn a lot of interest from the research commu- nity only in the later years even though the question itself is very old.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' One of the early papers trying to tackle this phenomenon has been proposed by [Carpenter and Grossberg, 1988] where the authors proposed a short-term and long-term memory pattern detector through the Adaptive Resonance Theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In fact, to the best of our knowledge, this seems to be the earliest work proposed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Later, as connectionist Chapter 2 17 Dissecting continual learning: a structural and data analysis Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2: Continual learning spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The optimal algorithm should exhibit enough plasticity to learn new tasks while retaining enough stability to not forget the acquired knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' models pave the way for modern Artificial Intelligence, other attempts and several proposals have been made.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Later the work by [Ring et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 1994] coined the term “Continual Learning”, here the system proposed, aimed to construct hierarchies of knowledge within a neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Later, with the works by [Thrun, 1995a] and [Thrun and Mitchell, 1995] Continual Learning started to get attention especially in both the Robotic and Reinforcement Learning research community.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Terms: When we say Continual Learning we have two other equivalent terms: In- cremental Learning and Lifelong Learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' These terms can be used interchangeably and denote the same setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' There are no clear distinctions and probably the pref- erence of one over another is just a matter of the research field we are in.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' For example, in the computer science field, it seems that continual learning and incre- mental learning are more common.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Other terms are used but differ in the specific continual setting they study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' For example: Online Learning and Streaming Learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' These are very similar, and there is no clear distinction yet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' These terms are used to describe algorithms that learn by observing an example just one time and, sometimes, the latter can also refer to systems that can respond to queries in real-time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We will introduce a more formal definition in the next chapter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Subject of CL: As we previously discussed, the study of Continual Learning is strictly tight with the widespread usage of connectionist models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In fact, before the advent of Artificial Neural Networks (ANNs), intelligence was modeled, usually, by a mixture of expert systems and clever algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Posing the same “continual learning question” for these systems is still an interesting challenge, but the success of ANNs shifted the focus to connectionist models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 18 Chapter 2 Optimal Stability Plasticity Very good at solving Very good adaptation old tasks to new tasksBackground and Motivation 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 Stability-Plasticity Dilemma Learning incrementally (or continually) with connectionist models requires one core ability, that is, to adapt to a changing environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' If the environment would not change over time, and we expose a system to operate on it, we would just need to understand, model, and hard-code the environment’s rules to the system and we would achieve perfect functionality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Unfortunately, the real world does not seem to behave in such a predictable way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Instead, our reality constantly changes and we need to redefine our knowledge, reshape it in light of new facts, have room to constantly learn something new, and recombine previous knowledge to understand a novel concept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This is not the only necessary property for an intelligent system, the counterpart is also important.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In fact, some things do not change in the world, old challenges might propose again, and, therefore, fundamental knowledge should not be forgotten.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' A truly intelligent system would behave consistently on past lessons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' It would be able to detect and recognize past challenges, delivering correct solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The researchers gave a name to this trade-off and it is called the stability-plasticity dilemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The long-term goal of Continual Learning is to create a system able to achieve a perfect balance between these two abilities as depicted in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As we will see, it is termed a “dilemma” since achieving the optimal trade-off is a very hard task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' On top of these considerations dissecting new concepts and redefining them as a combination of old knowledge allows the forward transfer of intelligence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' That is when we learn we sometimes can abstract the knowledge to solve a related problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This is not uncommon it is the mechanism of analogy thinking where an “opera- tional pattern” can be used to solve problems in apparently different domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As an example, [Hill et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019] investigates such property of intelligence in artificial networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' On the other hand, continual learning should give the ability to better grasp the past knowledge improving the ability to past challenges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This is even more common and we can think of this kind of ability as the “experience” that an agent accumulates in a certain field or in solving a certain category of tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In a nutshell, the stability-plasticity dilemma can be considered the crux of intel- ligence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Showing adaptability to new environments while at the same time retaining knowledge of old environments seems to be the major qualities of an intelligent agent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Chapter 2 19 Dissecting continual learning: a structural and data analysis Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3: The original images for each task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This image shows the ground truth relative to Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 Catastrophic Forgetting One core aspect of deep neural networks lies in the fact that if we do not introduce any kind of mechanism to achieve the balance between stability and plasticity, the artificial network is naturally inclined to forget.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' That is, the neural networks put much more emphasis on plasticity rather than stability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' From a neuroscientific point of view, this fact does not make much sense unless we think about neural networks as systems without any form of memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The reality is that networks do have memory, but by the nature of the learning algorithms we overwrite such memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As the model incrementally learns, each parameter in the network is modified by the updates of the backpropagation algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The optimal continual learning method would be able to modify the parameters without altering the performances of old tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This seems not to happen and therefore neural networks are prone to the so-called catastrophic forgetting, the phenomenon where old knowledge is corrupted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3 A Visual Example To better grasp the phenomenon of catastrophic forgetting, we will provide a visual example in the following section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As we discussed, catastrophic forgetting happens because the parameters tuned to solve a task (usually experienced before in time), are not suited for the currently experienced task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We hope to provide a clear visual example of the effects of catastrophic forgetting in a shallow architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As the name suggests Deep Learning refers to architectures with many layers on top of each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Because of this huge depth, computer vision (but not only this community) was able to achieve impressive results in the domain of pattern recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Unfortunately, we still do not fully control how the knowledge is built inside a deep neural network and if we want to counter forgetting we would need such information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' To do so, we would need to keep track of each parameter variation 20 Chapter 2 8 8 8 8Background and Motivation as we learn new concepts in a continuous fashion, but doing so, especially in such models, is hard if not an impossible job.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Said that, on a small scale, we can still show what is going on inside a network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In the following toy example we try to track forgetting of an autoencoder by dissecting the learning process per task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We will use a simple one-layer autoencoder model and try to incrementally learn the famous MNIST [LeCun et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 1998] dataset, still used in the continual literature to validate the proposed methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We will divide the dataset into 5 tasks and learn to compress and reconstruct images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' By doing so we will show the corruption of old images as we learn new tasks and connect them to the network’s variation of the parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The MNIST dataset is a grayscale dataset of 28 × 28 images of handwritten digits going from the digit 0 to the digit 9, here some examples: .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The MNIST was constructed from NIST’s Special Database 3 and Special Database 1, the first has been collected among Census Bureau employees and the second one among high school students.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' It has a training set of 60,000 examples, and a test set of 10,000 examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We will divide the dataset in 5 tasks, the first 1 is composed of the digits , task 2 by , task 3 by , task 4 by and finally task 5 by Although the best practice to work with image data is to use CNNs, we will limit our toy example to a naive autoencoder model of linear layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This choice allows us to better unfold and analyze the variation of the parameters due to its simplicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The model is composed of a single layer encoder φ that encodes an image into a latent vector and a single layer decoder ψ that reconstructs the image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In particular, the single-layer encoder is a linear layer φ : R784 → R16 that will receive in input a flattened (28 × 28 = 784) representation of the image and compress into a latent vector of magnitude 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The decoder, then take care of the reconstruction of the image by doing the reverse process, that is ψ : R16 → R784 i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' given a latent vector of size 16 it decompresses it to a flattened image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' More formally an autoencoder can be represented in the following way: ˆx = ψ(φ(x)) Where x ∈ R784 is the flattened representation of an original image coming from a task t, φ is the encoder network and ψ is the decoder network, and ˆx ∈ R784 is the flattened representation of the reconstructed image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The objective is to optimize and, in particular, minimize the mean square error (MSE) between the original image and the encoder’s reconstruction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' More formally we can define the objective function as: min φΘ,ψΘ L (x, ˆx) = min φΘ,ψΘ ∥x − ˆx∥2 Chapter 2 21 Dissecting continual learning: a structural and data analysis Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4: Variation of the parameters grouped by task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Each bar plot shows the distribution of the weights, we can see that each task modifies internal parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Each weight is computed as the sum of all the connections of the particular latent neuron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Here φΘ represents the set of encoder’s parameters to be optimized while we use ψΘ for the decoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' By incrementally learning each task we want to show the corruption in the ability of reconstruction of previous tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The change in the parameters to accommodate the new task negatively impacts old tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In fact, if we try to retrieve old concepts we see catastrophic interference, that is, the network is confusing old concepts with newly learned ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' From now on let us refer to Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='5, where is depicted the complete incremental learning and its effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The grid reported encodes the performance of the autoencoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Each row i refers to the model trained solely on data of task i but tested on all the other tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' From the experiment, we can appreciate several effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' First, if we isolate the first column of the grid, we can visualize the performance of the original first task as time passes (we can think of it as the stability of the network as we will discuss in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Here, one can clearly see that feeding new concepts corrupts old ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' On the other hand, if we focus on the upper triangular section of the matrix, we see the ability of the model to generalize knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This stresses the fact that generalization is a key component in continual learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Intuitively more “general” models might experience less forgetting (further hints on this path can be found in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 and Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The connected change in the weights for each task is reported in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 (for both the encoder and decoder).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As we can see, even a small change in the parameters dramatically impacts the stability plasticity trade-off.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As reference in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3 we report the ground truths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 22 Chapter 2 Decoder Encoder Parameter Distribution Task1 Task2 Task3 Task4 Task5 40 50 30 100 Weight Weight 20 150 10 200 0 250 Task1 Task2 Task3 Task4 Task5 Parameter DistributionBackground and Motivation Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='5: Results of the incremental training and test of the autoencoder model in the MNIST dataset were split into 5 tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Each row i of the grid, reports the performance of the model when trained on task i (or time ti) and tested on both old (left) and future (right) tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Training on previous tasks might unlock the intrinsic possibility to solve future tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This latest phenomenon is highlighted with the blue boxes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Ground truth in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Chapter 2 23 3 6 5 Catastrophic Forgetting Generalization Ability Train and Test on the same task, optimal plasticityDissecting continual learning: a structural and data analysis 24 Chapter 2 Chapter 3 Continual Learning Framework 25 Dissecting continual learning: a structural and data analysis 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 Definition and Settings Being Continual Learning a relatively new discipline, the community unfortunately still does not fully agree on a formal setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This is also corroborated by the fact that incremental learning is under the research light of several communities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Among the most active communities, we have NLP, Computer Vision, Reinforcement Learn- ing, Neuroscience, and Robotics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Each of these communities has a well-established history and standard protocols, therefore, accommodating everyone in a common ground is still an ongoing process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' However, in the following, we will introduce the most common definitions and settings shared in the Computer Vision literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' There have been some attempts to formalize a setting for continual learning [van de Ven and Tolias, 2019, Lomonaco and Maltoni, 2017] through the definition of learning protocols and new terminologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We will see these different learning paradigms in the following sections, but the core feature underlying learning incre- mentally is that the data experiences some distributional shift, that is, the distribu- tion of the data changes over time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This is sufficient to abruptly cause forgetting in connectionist models, but we can define some settings which are more prone to cause such phenomenon, while others are more simple to overcome.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The typical continual learning setting in computer vision is composed of a split dataset, where each (usually non-overlapping) split is considered an incremental task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Therefore, each task contains data from several classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Although this is not the only way to define a continual learning scenario, this is the most prominent one as pointed out in these surveys [Mai et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2022, Delange et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2021, Parisi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Let us define a more formal definition: Formal Definition: Given a dataset D containing (in our case) images, we want to split D in a sequence of n disjoint tasks that can be learned sequentially by our model: T = [t1, t2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' , tn] (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1) where each task ti = (Ci, Di) is represented by a set of classes Ct = � ct 1, ct 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' , ct nt � and training data Dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We use Nt to represent the total number of classes in all tasks up to and including task t : Nt = �t i=1 ��Ci��.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As a side note, usually in literature one would use the notation t to point at the current task (the task at time t) and t − 1 to point to the task before the current one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' A continual learning algorithm aims to model each task sequentially as time passes exposing the model at training time to each task in a sequential fashion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Operatively: 26 Chapter 3 Continual Learning Framework first, the algorithm is trained with mini-batches of patterns coming from task 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Here we will record the system performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Then, the model is exposed to task 2 data and the process continues until task n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' One visual example can be seen in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1, here the MNIST dataset is split into 5 tasks with 2 classes each 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The previously defined learning scenario takes into consideration a distinct transi- tion among tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In this particular case, we implicitly assume a reset signal between two tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' When such signal is not present, and the transition between tasks is smooth, the complexity of the continual learning problem increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' If in this par- ticular setting we query the system for real-time response, we are talking about streaming learning [Hayes et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This setting is more challenging because the models are allowed much less time to consolidate previously seen knowledge and therefore are more prone to experience catastrophic forgetting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Since this the- sis focuses on computer vision problems, throughout the work we will stick to the introduced setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Fine-Grained So far we limited the notion of a task as a split of a dataset, but what happens if in a new task we experience new instances of previously seen classes?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' To this end, more complete settings for continual learning benchmarking have been proposed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' One example is constituted by [Lomonaco and Maltoni, 2017].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Here the authors, along with a new dedicate dataset, introduce three different settings by mixing the experience of old and new data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Specifically, here we report the different scenarios: New Instances (NI): new training patterns of the same classes become avail- able in subsequent tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Here the model can experience new instances of old, previously seen, classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' With the possibility of seeing the same objects in new poses and conditions (illumination, background, occlusion, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Here a good model is expected to incrementally consolidate its knowledge about the known classes without compromising what it has learned before.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' New Classes (NC) : new training patterns belonging to different, never seen, classes become available in subsequent tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This is the classic scenario (the one we formally introduced) and a model should be able to deal with the new classes without losing accuracy on the previous ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' New Instances and Classes (NIC): new training patterns belonging both to known and new classes become available in subsequent training tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' A good 1This particular setting takes the name of MNIST-split Chapter 3 27 Dissecting continual learning: a structural and data analysis model is expected to consolidate its knowledge about the known classes and learn the new ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This is the most complete and difficult scenario since the addition of new classes poses the challenge of having good plasticity while the introduction of new old patterns asks for stability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In our opinion, this categorization is preferable since it provides a more complete description of a continual learning benchmark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In fact, if we assume, as an example, that each task data is generated by an independent source, the task data will be continually augmented with new information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This scenario is captured by the NIC setting and cannot be handled by the standard definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Unfortunately, due to the recent development of the field, we usually assume the NC scenario independently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 Online CL vs Offline CL So far we introduced a basic notation, now we discuss how a model can be trained to face a continual learning stream of tasks and introduce the name of these scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The continual learning literature distinguishes two options: online training and offline training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Online In particular, in the online continual learning protocol, the algorithm is re- quired to have a single parameter update per pattern (or one forward-pass).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This is a very coercive setting and requires maximum performance in knowledge consoli- dation from the continual learner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In fact, this scenario is quite challenging because of the nature of Stochastic Gradient Descent i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' the learning algorithm at the core connectionists models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Here the system might not have enough time to assimilate a concept, therefore weakening its understanding and subsequent stability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Offline In the offline learning protocol, instead, we are free to perform several parameter updates per pattern i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' we are allowed to see an image more than once.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' For an incremental learner, this setting is a double edge sword, in one case it favors the consolidation of the concepts since setting a large number of epochs guarantees the correct training of a model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' On the other side, if we do not introduce any forgetting prevention mechanism, this corrupts the old informational content of the network i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' the system is more exposed to catastrophic forgetting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In the following paragraphs, we will introduce some of the settings that are now, 28 Chapter 3 Continual Learning Framework Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1: Schematic representation of split-MNIST task protocol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='Taken from [van de Ven and Tolias, 2019] de facto, shared among all the research communities researching continual learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 Task-Incremental vs Class-Incremental Assuming an NC-type of task flow, two sub-settings have been widely adopted by the research community and are well-defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The Task Incremental (TI) setting and the Class Incremental (CI) setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Task-Incremental In the Task Incremental scenario, which is sometimes also re- ferred to as multi-head scenario or task aware (TAw) the learning happens sequen- tially, but at test time, the learner has also access to the task label.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This scenario is also known as multi-head because a typical learning system can potentially dedicate a particular subsystem per task, that can be specifically queried at test time through the task label knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Typically the subsystem is a classifier head on top of a backbone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' More formally we consider task-incremental classification problems where at train- ing time the learner has access to: Dt = {(x1, y1, z1) , (x2, y2, z2) , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' , (xmt, ymt, zmt)} while at test time the learner has access to: Dt = {(x1, z1) , (x2, z2) , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' , (xmt, zmt)} where x are input features for a training sample, and y ∈ {0, 1}Nt is a one-hot class ground truth label vector corresponding to xi while z ∈ {0, 1}|T | is the is a one-hot task ground truth label vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In a nutshell, during training for task t, the learner only has complete access to Dt, then we assume a reset signal among tasks i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Chapter 3 29 Task 1 Task 2 Task 3 Task 4 Task 5 00 first second first second first second first second first second class class class class class class class class class classDissecting continual learning: a structural and data analysis Ci ∩ Cj = ∅ if i ̸= j, and at test time the learner has access to patterns and their task label.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Class-Incremental Instead, in class incremental scenario, also known as single- head or Task Agnostic (TAg) the system has both access to task and class label during training time, but at test time it only has raw data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This constitutes a harder problem, but also a more realistic scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' More formally we consider class-incremental classification problems where at training time the learner has access to: Dt = {(x1, y1, z1) , (x2, y2, z2) , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' , (xmt, ymt, zmt)} while at test time the learner has access only to: Dt = {x1, x2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' , xmt} where x are input features for a training sample, and y ∈ {0, 1}Nt is a one-hot class ground truth label vector corresponding to xi while z ∈ {0, 1}|T | is the is a one-hot task ground truth label vector, same as in TAW setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Although taw scenarios are more interesting from a pure machine learning per- spective, the tag setting is more realistic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' For example, let’s draw an analogy: let us consider a baby as our incremental algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We want to teach the baby to recognize elements coming from a particular environment, for example, kitchen ac- cessories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Here the task label would be ’kitchen’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' After the learning process has successfully terminated, whenever we ask the baby to recognize a fork, we do not need to provide a hint on the task (kitchen).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In fact, the information of where he learned the concept should be irrelevant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This is also important because several objects can appear, and could be part of, several environments (tasks).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' For example, scissors can be found in the kitchen, but also in a studio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Therefore knowledge itself should be independent of the context where it is learned and, we think that class incremental setting provides a more useful challenge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 Baselines In this chapter, we will see the principal naive approaches and introduce an overview of the state-of-the-art.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In particular, we will introduce the cumulative and the finetuning 30 Chapter 3 Continual Learning Framework Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2: Depiction of the Cumulative/Joint approach for continual learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The model is trained with all the data up to the current task ti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The updates flow in the backbone and in all the heads up to hi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' methods which constitute, respectively, the upper and the lower bound to evaluate continual learning strategies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Moreover, we consider our model to be composed of a backbone (or a feature extractor) and a dedicated classifier (head) for each task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We do so in light of the majority of the works in continual learning and computer vision, which are composed of this very structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 Cumulative To evaluate a continual learning algorithm we need an optimal method that acts as an upper bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The cumulative strategy (also known as joint-training) consti- tutes the optimal continual learning strategy since mimics a learner with perfect memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Indeed if we have perfect memory we can recall the past and not expe- rience forgetting, to this end a recent work from [Knoblauch et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020] proved theoretically that optimal continual learning has a perfect memory and is NP-hard.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' To have optimal memory of the past, an algorithm should be able to save all the data that has been seen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This is a very inconvenient requirement and it must be avoided when considering the development of real lifelong learning systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In fact, as the pace of real-world data generation is growing, such constraints would not be satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Training from scratch with all the dataset data could be an upper bound approach, but it does not break down each incremental step upper bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' To this end, the cumulative strategy accumulates all the data seen up to a certain task and trains the network from scratch, therefore, providing an incremental upper bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Chapter 3 31 to tN to t1 tN to t1 t1 tN .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='Dissecting continual learning: a structural and data analysis Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3: Depiction of the Finetuning approach for continual learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The model is trained exclusively with the data coming from the current task ti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The updates flow in the backbone and only in the hi head.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' More formally, for the cumulative approach, the data of task i is defined to be: ti = j=i � j=0 tj when i = 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' n to complete the incremental setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' At each time ti the model is trained on the cumulative data and therefore we are able to define the upper bound performance for each task i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' One observation is that the cumulative performance in the last task it is equivalent to the performance of the model trained with the whole data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 we depict a visual example of the cumulative approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Here for each task, the backbone is always updated along with the heads of competence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' However the updates of the heads can be also shared among all the tasks, that is, each task data alters all heads parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Of course, this design choice does not favor the prevention of forgetting, instead, it allows the disruption of consolidated knowledge and we won’t consider this case2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 Finetuning We previously saw the upper bound for CL, that is, the optimal continual learning approach for a benchmark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Now, we introduce the finetuning approach which consti- tutes the lower bound methodology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Although we can argue that a random classifier would be the true lower bound, in practice we consider finetuning in which it is ab- sent of any forgetting prevention mechanisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In fact, it is equal to the practice of 2this is valid for finetuning too 32 Chapter 3 to t1 tN to t1 tN to t1 tNContinual Learning Framework transfer learning among subsequent tasks and measures the base resilience of the model against incremental scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We also can consider it as a baseline to assess the generalization capabilities of a model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' A depiction of the method is given in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Here, the model is trained sequentially and each task head is updated with the data of its competence and, as in the cumulative approach, the backbone is always updated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3 State-of-the-art In the following sections, we will introduce the main categorizations of the approaches proposed by the community.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In particular, we will explain the core mechanism and show the pros and cons of each category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Although there is no absolute preferred solution, some approaches are more explored than others and show more promising results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 Structural-based Structural-based approaches, also known as architectural approaches or parameter- isolation methods, fight forgetting by altering the structural composition of the net- work itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In particular, structural approaches instantiate dedicated modules as they experience new tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The first work falling in this category is perhaps Progressive Neural Networks (PNN) [Rusu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2016] where the network is augmented with new connections spanning both height-wise and width-wise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In the task-aware setting, this approach constitutes a convenient and naive so- lution to fight catastrophic forgetting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In fact, having the task label at test time allows us to correctly determine a dedicated subnetwork.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Instead, in task agnostic setting, we would not be able to select such a submodule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We can see very few structural-based approaches tackling class incremental setting due to the aforemen- tioned limitation [Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020, Rajasegaran et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' That said, Structural approaches can be subdivided into Fixed Architecture (FA) and Dynamic Architec- ture (DA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' FA only activates relevant parameters for each task without modifying the architecture [Mallya and Lazebnik, 2018, Kirkpatrick et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2017], while DA adds new parameters for new tasks while keeping old parameters unchanged [Yoon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2018, Rusu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2016].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Although architectural methods are very intuitive, they are Chapter 3 33 Dissecting continual learning: a structural and data analysis Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4: Architectural approaches for Continual Learning alter the structural prop- erties of the network itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' bulky.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In fact, the major drawbacks are in the expansion of the parameters which can result in a memory-intensive method (DA), or in the architectural limitation of the number of parameters that can be saturated (FA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 Regularization-based In parameter based approaches also known as weight-regularization or data-regularization approaches, forgetting is handled with procedures that regularize the parameter up- dates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Among the most famous ones, there are Elastic Weight Consolidation (EWC) [Kirkpatrick et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2017] and Synaptic Intelligence (SI) [Zenke et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2017].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' EWC was the first regularization-based approach using second-order information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In par- ticular, the procedure regularizes the updates through the Fisher information which is computed at each parameter update.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='5: Regularization approaches for Continual Learning alter only the parame- ters properties of the network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In this category, we can also find Learning without Forgetting (LwF) [Li and Hoiem, 2017], which is one of the most influential methods in continual learning literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' LwF uses Knowledge Distillation [Hinton et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2015] in the logits of the 34 Chapter 3 Model 1 Task 1 Task i Model iTask iContinual Learning Framework network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The main strength of LwF lies in the fact that it does not use previously- stored examples while still being purely data-driven.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In particular by storing the old model at time (t − 1) the method can distillate old knowledge by forwarding to the old model the current data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Since the introduction LwF, KD has been widely adopted by the continual learning community as part of new methodologies among the works we report [Douillard et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020, Rebuffi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2017, Buzzega et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020, Pourkeshavarz and Sabokrou, 2022, Joseph et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2021, Wu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019, Banerjee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2021, Javed and Shafait, 2018, Ahn et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2021, Dhar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019], but we are aware of many others that we do not report for brevity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The main strength of regularization-based approaches lies in their data/architecture constraint- free nature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In fact, they usually work with an underlying mathematical justification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This property surely allows a more principled continual learning strategy, but it can make the learning procedure cumbersome: computing second-order or estimating gradients directions, might slow down the learning while hindering it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3 Rehearsal-based In rehearsal-based approaches (or data-replay approaches) the main mechanism ex- ploited to overcome forgetting, lies in the usage of a replay buffer for old exemplars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The methods falling under this category, dedicate a memory cache to store data examples encountered during the incremental training i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' the system samples and stores images experienced in previous tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We can think of the buffer as long-term memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In fact, what typically happens is that the memory is queried to augment the task at hand, that is, we retrieve and inject old examples to the current data batch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This mechanism prevents forgetting by allowing the network to directly recall past examples, a visual depiction can be seen in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Perhaps the most famous work among rehearsal-based approaches is Experience Replay (ER) [Rolnick et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019] inspired by the Reinforcement Learning community its strategy is replaying data by randomly selecting old examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In the evolution of ER, which is Maximally Interfered Retrieval (ER-MIR) [Aljundi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019a], proposed a controlled sampling of the replays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Specifically, they retrieve the samples which are most interfered with, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' whose prediction will be most negatively impacted by the foreseen parameters update.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Another famous method is Gradient Episodic Memory (GEM) [Lopez-Paz and Ranzato, 2017] in which the authors devised a system where the gradient update of the replay examples should follow the original direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' A closely related mechanism is generative replay (GEN) [Shin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2017, van de Chapter 3 35 Dissecting continual learning: a structural and data analysis Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='6: Rehearsal approaches for Continual Learning store old patterns to aug- ment the data of the current task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Ven and Tolias, 2018, Wu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2018].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In this approach, old data is recorded in a buffer and then compressed, after that, a generative model such as a GAN [Goodfel- low et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2014], generates a synthetic version of the old distribution and augments the data of the current task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The main disadvantages of generative replay are that it takes a long time to train and it does not constitute a viable option for more com- plex datasets given the current state of deep generative models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Another approach devised by [Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020a] tries to overcome such limitations by generating inter- mediate features instead of the original data, trying to decrease the computational complexity of the generation procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The pros of rehearsal-based approaches are their simplicity and effectiveness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In fact, the methods with best performances in continual learning exploit exemplars as shown in this challenge review [Lomonaco et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2022] where the best approaches used exemplars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The drawback of rehearsal continual learning is the usage of a mem- ory buffer, which can be saturated as the number of tasks to be learned grows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' To overcome such drawback some methods propose the usage of representative exem- plars [Hayes et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019] and herding [Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020b] techniques aimed to reduce the amount of memory required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Here, an interesting work (GDumb) proposed by [Prabhu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020] offers a simple baseline to rehearsal systems and questions the advancements of continual learning research itself due to its outstanding perfor- mance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Besides its performance, the system is very simple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In particular, the model samples data as experiences the stream of incoming task data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' It does so until it fills a rehearsal buffer, by taking care to balance the proportion among classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' When the task data stream ends the dumb learner (a simple MLP or CNN) is trained only on the buffer data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' GDumb achieves state-of-the-art performances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 36 Chapter 3 Old tasks + Task i MemoryChapter 4 Works 37 Dissecting continual learning: a structural and data analysis 6 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 Smaller is Better: An Analysis of Instance Quan- tity/Quality Trade-off in Rehearsal-based Contin- ual Learning We begin our dissection by focusing on rehearsal-based methods i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', solutions in where the learner exploits memory to revisit past data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Due to its prominet perfor- mance and the abrupt usage, rehearsal systems are nowadays one of the preferred countermeasures to fight catastrophic forgetting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' So far, the focus from the community has been put into finding smart method- ologies to improve the incremental performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Instead, we ask ourselves what happens if we boost the capacity of the memory buffer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' How much does impact al- tering the data storable in the memory?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Indeed, in this study, we propose an analysis of the memory quantity/quality trade-off adopting various data reduction approaches to increase the number of instances storable in memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' By apply complex instance compression techniques to the original data, such as deep encoders, but also trivial approaches such as image resizing and linear dimensionality reduction, we offer a simple study on the trade-off.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Then we introduce the usage of Random Projections as compression scheme and offer a simple pipeline through Extreme Learning Machines to resource-constrained continual learning, an appealing scenario where computational and memory resources are limited.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 38 Chapter 4 Works Continual Learning (CL) is increasingly at the center of attention of the research community due to its promise of adapting to the dynamically changing environment resulting from the huge increase in size and heterogeneity of data available to learning systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' It has found applications in several domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Its prime application, and still most active field, is computer vision, and in particular object detection [Gidaris and Komodakis, 2018, Thrun, 1995b, Parisi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' however it has since found applications in several other domains such as segmentation [Cermelli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020, Michieli and Zanuttigh, 2019, Yu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020a], where each segmented class has to be learned in an incremental fashion, as well as in other fields, among which we mention Reinforcement Learning (RL) [Xu and Zhu, 2018, Lomonaco et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020] and Natural Language Processing (NLP) [Gupta et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020, Sun et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020, de Masson d’Autume et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Ideally, the behaviour of CL systems should resemble human intelligence in its ability to incrementally learn in a dynamical environment [Hadsell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020], with minimal waste of resources, spatial or computational.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The main problem encountered by these systems resides in the famous stability-plasticity dilemma of neuroscience, resulting in the so called catastrophic forgetting [McCloskey and Cohen, 1989], a phenomenon where new information dislodges or corrupts previously learned knowl- edge, resulting in the deterioration of the ability to solve previously learned tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Solutions to this problem typically incur in a increase in resource requirements [Lomonaco et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2022] both for CL’s very nature (the more tasks arrive the more data the agent need to process), and for the nature of the systems that try to solve it, both in the increased complexity of the typically deep learning models, and in the time and space requirements of continuously learning multiple models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This problem become particularly evident in rehearsal-based methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Rehearsal-based methods, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', approaches that leverage a memory buffer to cope with catastrophic forgetting, are emerging as the most effective methodology to tackle CL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Their performance, backed by extensive empirical evidence [Lomonaco et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2022], finds also a theoretical justification in Knoblauch and co-workers’ finding that optimally solving CL would require perfect memory of the past [Knoblauch et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In fact, if we were able to completely re-train a new system with all previous data every time a new task arrives, Continual Learning would not appear to be any different from any other learning problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' However, this approach is both spatially and computationally infeasible for most real-world problems and we can argue it is precisely these memory and computational limitations that characterize CL and distinguish it from other learning problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Our investigation aims to analyze the trade-offs on limited-memory CL systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Chapter 4 39 Dissecting continual learning: a structural and data analysis Memory Data Train Rehearsal Method Reduction Time Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1: Our work analyzes the optimal instance quantity/quality trade-off in memory buffers of rehearsal-based Continual Learning systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We carry out our analysis by applying several dimensionality reduction schemes to increase the quantity of storable data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In particular, we focus on the quantity/quality trade-off for memory instances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We do so through the analysis of several dimensionality-reduction schemes applied to data instances that allows us to increase the number of examples storable in our fixed-capacity memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In particular we adopted deep learning encoders such as a variation of ResNet18 [He et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2016] and Variational Autoencoders (VAE) [Kingma and Welling, 2014], the simple yet surprisingly effective extreme resizing of image data, and, lastly, we explored Random Projections for dimensionality reduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The latter scheme turns out to be very effective in low memory scenarios also reducing the model’s parameter complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Indeed, we will show that a variation of Ex- treme Learning Machines (ELM) offers a simple yet effective solution for resources- constrained CL systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Our analysis will focus on computer vision tasks and use GDumb [Prabhu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020] as a rehearsal-baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' GDumb is a model that has been proposed to question the community’s progress in CL thanks to the fact that in lieu of its outstanding sim- plicity, it was still able to provide state-of-the-art performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Further, its simplicity also results in high versatility, as it proposes a general CL formulation comprising all task formulations in the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' GDumb is fully rehearsal-based, and it is com- posed by a greedy sampler and a dumb learner, that is, the system does not introduce any particular strategy in the selection of replay data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Therefore, it represents the ideal candidate method to carry out our analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The experimental findings highlighted in this study are multiple: first, we show that when the memory buffer is fixed and extreme values of resizing of instance data is applied, we can easily push the state-of-the-art of CL rehearsal systems by a minimum of +6% to a maximum of +67% in terms of final accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This surprising result suggests that the optimal trade-off between data quantity and quality is severely skewed toward the former and that in general the informational content required to 40 Chapter 4 Works (b) or (c) Resize (a) Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2: Depiction of the three main dimensionality reduction techniques analyzed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In (a) random projection (RP) each image is vectorized (vi) and then orthogonally- projected through a random matrix Q into v ′ i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In (b), the encoder φ outputs a latent vector v ′ i (such as in VAEs) or a noise-free / shrinked image x′ i (as in CutR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In (c), we adopt a simple image resizing strategy through standard biliniear interpolation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' correctly classify images in standard datasets is relatively low.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Then, we analyze the consumption of resources of rehearsal CL systems as we saturate the rehearsal buffer, and show that ELM offer a clear solution on CL systems constrained by very low resources environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Related Works Following some recent surveys [Parisi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019, Hadsell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020, Mundt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020], we divide CL approaches into three main categories: regularization-based approaches, data rehearsal-based approaches and architectural-based approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Although a few novel theoretical frameworks based on meta-learning have been in- troduced recently [Hadsell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020], the majority still fall within these categories (or in a mixture of them).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Regularization-based approaches address catastrophic forgetting by controlling each parameter’s importance through the subsequent tasks, by means of the ad- dition of a finely-tuned regularizing loss criterion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Elastic Weight Consolidation (EWC) [Kirkpatrick et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2017] was the first well established approach of this class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' It uses Fisher information to estimate each parameter’s importance while discouraging the update for parameters with greatest task specificity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Learn without Forgetting (LwF) [Li and Hoiem, 2017] exploits the concept of “knowledge distil- lation” to preserve and regularize the output for old tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' More recently, Learn- ing without Memorizing (LwM) [Dhar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019] adds in the loss an information preserving penalty exploiting attention maps, Continual Bayesian Neural Networks (UCB) [Ebrahimi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020] adapts the learning rate according to the uncertainty Chapter 4 41 Dissecting continual learning: a structural and data analysis defined in the probability distribution of the weights in the network, while Pomponi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [Pomponi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020] propose a regularization of network’s latent embeddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Rehearsal-based Rehearsal-based solutions allocate a memory buffer of a prede- fined size and devise some smart schemes to store previously used data to be replayed in the future, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', to be added to future training samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' One of the first method- ologies developed is Experience Replay (ER) [Rolnick et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019], which stores a small subset of previous samples and uses them to augment the incoming task-data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Aljundi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [Aljundi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019a] propose an evolution of ER which takes in consid- eration Maximal Interfered Retrieval (ER-MIR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Their proposal lies between rehearsal and regularization methods, its strategy is to retrieve the samples that are most in- terfered, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' whose prediction will be most negatively impacted by the foreseen parameters update.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Among other mixed approaches we have Rebuffi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [Rebuffi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2017] that proposes a method which simultaneously learns strong classifiers and data representation (iCaRL).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Gradient Episodic Memory (GEM) [Lopez-Paz and Ranzato, 2017] and its improved version Averaged-GEM (AGEM) [Chaudhry et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019a] exploits the memory buffer to constrain the parameter updates and stores the previous samples as trained points in the parameter space, while Gradient based Sample Selection (GSS) [Aljundi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019a] diversifies/prioritizes the gradient of the examples stored in the replay memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Finally, a recent method proposed by Shim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [Shim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2021] scores memory data samples according to their ability to preserve latent decision boundaries (ASER).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Architectural-based Architectural methods alter their parameter space for each task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The most influential architectural-based approach is arguably Progressive Net- works (PN) [Rusu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2016], where a dedicated network is instantiated for each task while Continual Learning with Adaptive Weights (CLAW) [Adel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020] grows a network that adaptively identifies which parts to share between tasks in a data-driven approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Note that, in general, the approaches that use incremental modules suffer the lack of task labels at test time, since there is no easy way to decide which module to adopt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Method Before introducing the dimensionality reduction approaches adopted in our quan- tity/quality analysis we have to introduce the CL scenario considered and its task composition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Unfortunately the community has not yet converged to a unique 42 Chapter 4 Works standard way to define a CL setting [van de Ven and Tolias, 2019].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Here we adopt GDumb’s formulation which is the most general one and specifically resembles Lomonaco and Maltoni’s formulation [Lomonaco and Maltoni, 2017].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In particu- lar, we focus on the new class (NC)-type scenario [Lomonaco and Maltoni, 2017] where each task Ti introduces data instances of CTi new, previously unseen, classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' More formally a dataset benchmark D, containing examples from CD classes, is divided into n tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Each task, Ti with i = 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' n, carries a set of examples Ti = {XTi, YTi} whose class is previously unseen i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' YTj ∩ YTi = ∅ with j = 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' i and YTi = {c1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' cTi}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In other words, the model experiences a shift in the distri- bution of data as we train on each new task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We also consider the more realistic class incremental scenario (CI), that is, we are not allowed to know task labels at test time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As incremental approach we use the recently proposed GDumb, which is com- posed of a simple learner and a greedy balancer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' That is, given a fixed amount of memory M, each instance of task data is randomly sampled in order to balance class instances in the memory, so that, at the end of the Ti task experience, the memory contains an equal number of instances of all previously encountered classes i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' each class has � M CD∗i � instances in memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Besides providing state-of-the-art performances, GDumb has been proposed as standard baseline to question our progresses in continual learning research, since after experiencing a task, the simple learner (such as a ResNet18 [He et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2016] or a MLP) is trained only with memory data, making GDumb a fully rehearsal based approach with random filtering of incoming data, and thus the ideal candidate to carry our study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In the following paragraphs, we briefly describe all the strategies adopted for dimensionality reduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Random Projections (RP) Extreme Learning Machines (ELM) [Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2006] are a set of algorithms that exploit random projections as dimensionality reduction technique to preserve compu- tational and spatial resources while learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' ELM have been introduced in 2006 and recently have found application in neuroscience [Qureshi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2016, Lama et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2017] and in other problems such as in molecular biology [Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The idea can be roughly described as a composition of two modules where the first one performs a random projection of the data, while the second one is a learning model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The appealing property of RP lies in the Johnson-Lindenstrauss lemma [Johnson, 1984] which states that given a set of points in a high dimensional plane, there is a Chapter 4 43 Dissecting continual learning: a structural and data analysis linear map to a subspace that roughly preserves the distances between data points by some approximation factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The Johnson-Lindenstrauss lemma guarantees that we can obtain a low-distortion to the dimensionality reduction by multiplying each instance vector by a semi-orthogonal random matrix Qm×n in the (m, n) Stiefel manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' More formally, let xi be an image of the current task of width, height and number of channels w, h, and c respectively, then the size of xi is n = hwc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We can consider its vectorization as vi ∈ Rn and its compressed representation v ′ i = Qvi s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' QTQ = Im (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1) with v ′ i ∈ Rm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The usage of ELM unsuspectedly unlocks two main advantages: First it allows us to exploit the dimensionality reduction by increasing the number data instances storable in the memory buffer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Secondly and, more importantly, allows us to use models with significantly fewer parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' On the other hand, the approach loses coordinate contiguity and, with that, shift co-variance, rendering convolutional ap- proaches inapplicable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' After the random projection, data instances will be forwarded to the greedy sam- pler of GDumb to fill the memory M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Then, we perform a rehearsal train with any MLP-like architecture, resulting in an order-of-magnitude reduction in the amount of parameters needed to process visual data allowing the usage of CL rehearsal based solutions in very low resource scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Deep Encoders Deep encoders are neural models φ that take as input an image xi and, depending from the structure of such model, can output either a latent vectorial representation v ′ i , or a squared feature map which we consider as a noise-free shrinked image x′ i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 (b) reports visually the two possible encoding scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In this work, we adopt a Variational AutoEncoder (VAE) [Kingma and Welling, 2014] for the first case and a pretrained ResNet18 [He et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2016] cut up to a predefined block (CutR) as a prototype for the second.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 44 Chapter 4 Works CIFAR10 Method Acc@600KiB Acc@1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='5MiB Acc@3MiB EWC [Kirkpatrick et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2017] 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='9 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='9 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='9 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3 GEM [Lopez-Paz and Ranzato, 2017] 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='8 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='0 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='5 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='6 AGEM [Chaudhry et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019a] 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='7 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='8 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='7 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='9 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='6 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='7 iCARL [Rebuffi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2017] 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='6 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='7 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='6 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 ER [Rolnick et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019] 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='5 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='7 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='9 ER-MIR [Aljundi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019a] 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='8 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='0 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='6 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 ER5 [Aljundi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019a] 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 ER-MIR5 [Aljundi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019a] 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 GSS [Aljundi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019c] 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='9 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='7 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 ASER [Shim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2021] 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='8 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='0 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 ASERµ [Shim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2021] 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='5 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='5 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 GDumb [Prabhu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020] 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='0 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='6 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='8 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='9 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='7 Resize (8 × 8) 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='5 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='5 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 ELM (128) 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='0 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='0 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 CutR (8 × 8) 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='9 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='6 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='6 Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1: CIFAR10 experiments (5 runs) VAE Variational Autoencoders [Kingma and Welling, 2014] have been introduced as an efficient approximation of the posterior for arbitrary probabilistic models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' A VAE is essentially an autoencoder that is trained with a reconstruction error between the input and decoded data, with a surplus loss that constitutes a variational objective term attempting to impose a normal latent space distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The variational loss is typically computed through a Kullback-Leibler divergence between the latent space distribution and the standard Gaussian, the total loss can be summarized as follows: L = Lr(xi, ˆxi) + LKL(q(zi|xi), p(zi)) (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2) given an input data image xi, the conditional distribution q(zi|xi) of the encoder, the standard Gaussian distribution p(zi), and the reconstructed data ˆxi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We use the encoding part of a VAE pretrained on a dataset by feeding each incoming image and retrieving the vectorial output representation v ′ i , then the data point is forwarded to GDumb’s greedy sampler to feed M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' CutR As our second encoding approach, we use a pretrained ResNet18 [He et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2016] cut up to a predefined block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' ResNets models are Convolutional Neural Net- works (CNNs) introducing skip connections between convolutional blocks to alleviate the so called vanishing gradient [Hochreiter, 1998] problem afflicting deep architec- tures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The idea behind it, is to use the cut ResNet18 as a filtering module that outputs a smaller feature map, giving us x′ i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In fact, we cut the network towards later blocks, since neurons in the last layers, encode more structured semantics with Chapter 4 45 Dissecting continual learning: a structural and data analysis ImageNet100 CIFAR100 Method Acc@12MiB Acc@24MiB Acc@3MiB Acc@6MiB AGEM [Chaudhry et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019a] 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='0 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='05 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 ER [Rolnick et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019] 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='7 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='8 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='9 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='02 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='6 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 EWC [Kirkpatrick et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2017] 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='8 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='8 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 GSS [Aljundi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019c] 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='5 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='7 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='8 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='9 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3 ER-MIR [Aljundi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019a] 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='7 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 ASER [Shim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2021] 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='7 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='7 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='7 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='7 ASERµ [Shim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2021] 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='8 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='8 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='0 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='5 GDumb [Prabhu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020] 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='0 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='6 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='7 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='7 Resize (8 × 8) 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='6 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='6 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='5 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 ELM (128) 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='7 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3 CutR (8 × 8) 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='25 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4* 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='27 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='5* 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='6 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='6 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2: ImageNet and CIFAR100 experiments (5 runs) respect to the early ones [Olah et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2017].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Therefore, we are able to extract se- mantic knowledge from unseen images leveraging transfer learning [Tan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2018], that is, we exploit the ability of a model to generalize over unseed data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We refer to this method with the name CutR(esnet18).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We use CutR instance encoding by feeding each image belonging to the current task and retrieving the shrinked out- put x′ i which is then forwarded to the greedy sampler module of GDumb to fill the memory M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In our analysis, we adopted the less resource-hungry VAE scheme for datasets where shift co-variance is not as important, such as the MNIST, in which the digits are centered in the image and thus most approaches at the state-of-the-art use a MLP as classifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In all other instances, we used the CutR scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Resizing We used also the simplest instance reduction approach one can think of i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', resizing the images to very low resolution through standard bilinear interpolation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The resized images are then fed to the sampler of GDumb to balance the classes in M and all training and prediction is performed on the lowered resolution images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Independently of the approach adopted, all data instances are reduced before storing them in memory M, then we use GDumb’s greedy sampler to select and balance class instances, and finally, we use a suitable learner to fit memory data and assess the performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In general, following GDumb, we adopt ResNet18 for large- scale image classification tasks for all approaches that maintain shift co-variance, reverting to a simple MLP for approaches without shift co-variance like RP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 46 Chapter 4 Works Experiments We performed our analysis on the following standard benchmarks: MNIST [LeCun et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 1998]: the dataset is composed by 70000 28 × 28 grayscale images of handwritten digits divided into 60000 training and 10000 test images belonging to 10 classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' CIFAR10 [Krizhevsky, 2009]: consists of 60000 RGB images of objects and animals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The size of each image is 32 × 32 divided in 10 classes, with 6000 images per class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The dataset is split into 50000 training images and 10000 test images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' CIFAR100 [Krizhevsky, 2009]: is composed by 60000, 32 × 32 RGB images subdivided in 100 classess with 600 images each.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The dataset is split into 60000 training images and 10000 test images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' ImageNet100 [Deng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2009]: the dataset is composed of 64 × 64 RGB images divided in 100 classes;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' it is composed of 60000 images split into 50000 training and 10000 test.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Core50 [Lomonaco and Maltoni, 2017]: the dataset is composed of 128 × 128 RGB images of domestic objects divided in 50 classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The set consists of 164866 images split into 115366 training and 49500 test.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Following [Prabhu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020], we use final accuracy as the evaluation metric throughout the work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The metric is computed at the end of all tasks against a test set of never seen before images composed of an equal number of instances per class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This allows us to directly compare against the largest number of competitors in the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' All the experiments has been conducted with an Intel i7-4790K CPU with 32GB RAM and a 4GB GeForce GTX 980 machine running PyTorch 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1+cu102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Parameter Sensitivity In the first experiment, we compared different dimensionality reduction strategies as we altered the parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The analysis was conducted on three different datasets: MNIST, CIFAR10 and ImageNet100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In this evaluation we fixed the amount of Chapter 4 47 Dissecting continual learning: a structural and data analysis memory buffer used for GDumb during rehearsal training, and we measured the final accuracy as the parameters varied for each dimensionality reduction method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In particular we subdivided both MNIST and CIFAR10 datasets into 5 tasks of 2 classes each, with 600 KiB dedicated memory buffer, while ImageNet100 was divided into 10 tasks of 10 classes each, with 12 MiB memory buffer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3 plots the performance of the various schemes as we reduce the dimen- sionality of the instances and and thus increase their number in the allocated memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The orange line represents the performance of the resize scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' For the MNIST dataset, we considered eight different target sizes1 x′ i ∈ {27 × 27, 24 × 24, 20 × 20, 16 × 16, 12 × 12, 8 × 8, 4 × 4, 2 × 2, 1 × 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We performed the same resizing for CIFAR10 data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We did not report CIFAR100 analysis since the data format is the same as CIFAR10 and the result would be analogous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' For ImageNet100, we resized each instance to x′ i ∈ {32 × 32, 24 × 24, 16 × 16, 6 × 6, 4 × 4, 2 × 2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The green line of Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3 represents the deep encoders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In particular, for MNIST we used a VAE [Kingma and Welling, 2014] pretrained on KMNIST [Clanuwat et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2018] and analyzed the performance of GDumb with compressed instances as we altered the size of the latent embedding vector to v ′ i ∈ {128, 64, 32, 16}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' On the other hand, for the CIFAR10 and ImageNet100 dataset we considered different parameters for CutR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In particular, we cut the ResNet18 up to the sixth layer to get a 4 × 4 output, to the fifth to have a 8 × 8 encoding, and lastly up to the third block to get a 16 × 16 feature map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The CutR Resnet18 has been pretrained on the complete ImageNet, thus the results in the ImageNet100 benchmark can be biased.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We denote these biased results with CutR*.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Lastly, the blue line of Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3 reports the accuracy of Random Projection followed by an MLP classifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We recall that this kind of architecture is a variation of an Extreme Learning Machine (ELM), therefore we will refer to it with the term ELM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We analyzed the final accuracy as the size of the random projection changes, in particular the embedding sizes considered are v ′ i ∈ {512, 256, 128, 64, 32, 16} for all the datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' For all the experiments in MNIST data, we used a 2-layer MLP with 400 hidden nodes as learning module, while we used a Resnet18 [He et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2016] for all the other analysis with exception of ELM scheme that maintains the 2-layer MLP model throughout.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We did not perform any hyperparameter tuning on the learning module 1throughout the work we omit to write the channel component for brevity 48 Chapter 4 Works MNIST Method Acc@382KiB GEN [Hsu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2018] 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='5 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3 GEN-MIR [Aljundi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019a] 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='6 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='9 ER [Rolnick et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019] 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='5 GEM [Lopez-Paz and Ranzato, 2017] 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 ER-MIR [Aljundi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019a] 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='6 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='7 GDumb [Prabhu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020] 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='9 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='5 Resize (8 × 8) 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 ELM (128) 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='0 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 VAE (32) 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='6 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3: MNIST final accuracy (5 runs) analysis as we vary the memory for all schemes considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' in accordance with the GDumb [Prabhu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020] experimental protocol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' For completeness we report the learning parameters: the system uses an SGD optimizer, a fixed batch size of 16, learning rates [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='05, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='0005], an SGDR [Loshchilov and Hutter, 2017] schedule with T0 = 1, Tmult = 2 and warm start of 1 epoch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Early stopping with patience of 1 cycle of SGDR, along with standard data augmentation is used (normalization of data).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' GDumb uses cutmix [Yun et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019] with p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='5 and α = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='0 for regularization on all datasets except MNIST.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As we can also see from Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3 all the strategies considered unlock perfor- mance greatly above GDumb , thus suggesting that the quantity/quality trade-off is severely skewed toward quantity since each dimensionality reduction technique greatly improves the amount of data instances that can be stored in the memory buffer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' It is also evident that the simple resizing strategy gives the best performance improving GDumb by +6% on MNIST and roughly by +20% on both CIFAR10 and ImageNet100 datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Moreover, we chose to consider extreme levels of encoding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We did so to find the level of compression that irreversibly corrupts spatial information and thus makes learning impossible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Surprisingly, it turns out that a 2 × 2 resizing still works on CIFAR10 data with perfomances above GDumb while a 1 × 1 resize is still better than a random classifier whose performance would be 20% of final accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This is a strong evidence that the amount of data storable in the memory buffer plays a central role, but also that CIFAR10 dataset constitutes an unrealistic benchmark and should not been considered to assess novel methodologies in the future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' After choosing and fixing the optimal parameters for each compression scheme, we study the performance of the rehearsal system as we alter the quantity of the memory allocated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Tables 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3,4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 we compute the final accuracy for all the Chapter 4 49 Dissecting continual learning: a structural and data analysis Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3: At top-left the accuracy analysis of the MNIST dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In top-right we have the analysis of CIFAR10 and at bottom we have ImageNet100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The state-of- the-art (SOTA) method is plain GDumb with an MLP as incremental learner in the MNIST experiment and Resnet18 in the others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The number of instances in memory (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' the x axis) is in log scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We report the results of (5 runs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' datasets previously considered, with the addition of CIFAR100 with an increase of 20% in performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The amount of dedicated memory for the rehearsal buffer, has been chosen in order to be consistent with several other methods at GDumb , al- lowing us to compare GDumb’s performance on optimized memory schemes against other methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As we can see, all memory optimizations still provide huge advan- tages as the memory buffer varies, suggesting again, that instance quantity plays a fundamental role in rehearsal systems even with extreme encoding settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Finally, we note that the deep models used for classification have a large number of degrees of freedom and require a large amount of instances to be properly trained to capture the complexity of the task at hand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Simpler, lower dimensionality instances allow both for more instances and simpler classifiers with fewer parameters without 50 Chapter 4 MNIST Fixed 382 KiB Memory CIFAR10 Fixed 600 KiB Memory 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='98 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='60 x12x12-8x8 RP+MLP (ELM) RP+MLP (ELM) 8x8 x16x16 ¥- Resize+MLP 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='55- 16x16 8x8 4x4 一样一 Resize+ResNet 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='96 - 20x20 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='. VAE+MLP x12x12 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' CutR+ResNet 128 SOTA 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='50 - SOTA 32 24x24 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='94 - 16x16 256 64 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4x4 racy 27x27 64 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4x4 128 Accur 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='92 64 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='40 24x24 256 32 2x2 128 28x28 512 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='35 16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='30 - 16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='88 - 1x1 32 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='86 103 104 105 103 104 105 Memory Slots Memory Slots ImageNet100 Fixed 12000 KiB Memory RP+MLP (ELM) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='5 - 样一 Resize+ResNet 16x16 CutR*+ResNet SOTA 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 - 8x8 8x8 2 16x16 24x24 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4x4 32x32 4x4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 256 128 512 64 32 x2x2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 - 16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='0 104 105 106 Memory SlotsWorks Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4: We show the total amount of KiB used by the whole CL system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We measure the consumption as we saturate the rehearsal memory plus the storage of model parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The x−axis is in log scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' losing lot of informational content.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Resource Consumption With the second experiment, we wanted to analyze the performance versus the total memory requirement for each approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Here, we increased the number of instances in the memory buffer and added to the total consumption the working memory used by the classifier to store (and train) the parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We considered three different scenarios: first we used the plain GDumb CL system without dimensionality reduction (representing GDumb ), then we used ELM (with fixed embedding size of (v ′ i = 128), and lastly the resizing scheme (images resized to x′ i = 8×8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We selected the best parameters resulting from the previous experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We then assessed the performance and resource usage using a new dataset, namely the Core50 [Lomonaco and Maltoni, 2017].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The reason behind the use of Core50 to validate our findings is twofold: first, we test again whether the quantity of extremely encoded data plays a central role on our rehearsal scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Secondly, we measure the performance and the resource usage of a CL system on a more complex Chapter 4 51 MNIST CIFAR10 CIFAR100 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='0 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='8 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='6 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='0 104 105 104 105 104 105 KiB KiB KiB ImageNet100 Core50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='8 ELM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='6 GDumb 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='6 Accuracy Resize 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='0 104 105 104 105 KiB KiBDissecting continual learning: a structural and data analysis set of tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We divided the dataset into 10 tasks of 5 classes each.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4, we report the results of this experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We can see that extreme levels of resizing still provide optimal results in all the datasets considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' One strik- ing finding is that in Core50 with extreme resizing, even if the size was not optimized for the dataset, the final accuracy is increased by +67% with respect to GDumb .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Second, we note that ELM constitute a viable solution in low resources scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Indeed, we can surpass the performance of GDumb for low memory scenarios where even just the classifier used in other approaches could not fit in the allocated memory, much less the rehearsal buffer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This is clearly observed from the Core50 results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We can appreciate that by randomly projecting image data and learning in a low resource scenario provides a boost of +34% in the final accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Finally, it is worth noting there is a striking dissonance in the literature of rehersal- based method when the narrative around buffer-memory sizes revolves around deci- sions among sizes of the order of 300KiB to 600KiB when then the same systems adopt complex classifiers using several megabytes of memory just for the learned parameters and in the order of gigabytes of working memory for learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In a real constrained-memory scenario a simpler classifier with more instances offers a clear advantage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Conclusion In this study, we analyzed the quantity/quality trade-off in rehearsal-based Continual Learning systems adopting several dimensionality reduction schemes to increase the number of instances in memory at the cost of possible loss in information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In par- ticular, we used deep encoders, random projections, and a simple resizing scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' What we found is that even simple, but extremely compressed encodings of instance data provide a notable boost in performance with respect to the state of the art, suggesting that in order to cope with catastrophic forgetting, the optimization of the memory buffer can play a central role.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Notably, the performance boost of extreme instance compression suggests that the quality/quantity trade-off is severely biased toward data quantity over data quality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We suspect that some fault might be in the overly simplistic datasets adopted by the community, but mostly the deep models used for classification are well known to be data-hungry and the instances stored are not sufficient to properly train them, but can suffice for simpler classifiers with fewer parameters working on simplified instances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' It is worth noting there is a striking dissonance in the literature of rehearsal-based 52 Chapter 4 Works method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The narrative on buffer-memory sizes revolves around decisions among sizes of the order of 300KiB to 600KiB when then the same systems adopt complex classifiers using several megabytes of memory just for the learned parameters and in the order of gigabytes of working memory for training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In a real constrained-memory scenario, a simpler classifier with more instances offers a clear advantage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In fact, in a real low-resources scenario deep convolutional systems using several megabytes of memory for the model parameters and gigabytes of working memory for learning are not a viable solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In this case, a variation of Extreme Learning Machines offer a simple and effective solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Other Experiments Fixed Data Instances With this experiment we aim to better show that instance quantity is preferable over instance quality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We fixed the number of data slots in the memory buffer, and we analyzed the performance as we alter the encoding size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In particular, we tested two datasets namely CIFAR10 and Core50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In CIFAR10 we fixed the buffer to 1000 data slots, while in the latter benchmark we fixed it to be 8000 slots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' What we can see from Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='5 is that the improvement of performance is not given by the encoding’s smoothing property, and, again, we confirm that rehearsal systems are skewed towards data quantity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Chapter 4 53 Dissecting continual learning: a structural and data analysis Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='5: Performance as we vary the parameters for each scheme on CIFAR10 and Core50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In the former benchmark, the memory buffer is of 1000 fixed instances, while in the latter is of 8000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' ELM Width Analysis As we specified in the work, we used a variation of an Extreme Learning Machine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In particular, the architecture is composed by a random projection module and a learning module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The first is implemented through an orthogonal random matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' While the second is a two layer MLP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Throughout the study we used 400 hidden units as last layer before the output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We choose to do so to be consistent with GDumb experimental settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' With this experiment we analyze the accuracy metric as we change the number of hidden units.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We fixed the encoded size of data to be v ′ i 128.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As memory buffer, we used a different number of data slots for different datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' That is, for MNIST and CIFAR10 we adopted 2400 slots (600 KiB), in ImageNet100 we used 48000 instances i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 12 MiB, while for Core50 we used 8000 slots (2 MiB).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='6 we can see that 100 hidden units are sufficient to achieve 54 Chapter 4 CIFAR10 ELM CIFAR10 Resize 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='38 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='36 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='50 racy 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='34 Accu 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='32 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='28 16 64 128 256 512 4x4 8x8 16x16 24x24 Encoding Size Encoding Size Core50 ELM Core50 Resize 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='36 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='50 Accuracy 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='34 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='32 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='30 16 64 128 256 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 512 4x4 8x8 16x16 24x24 Encoding Size Encoding SizeWorks the maximum performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This, again, shows that more deep classifiers which are common in CL rehearsal literature, might need more data to be trained properly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='6: Analysis of final accuracy as we alter the number of hidden units in ELM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Experiments with other Rehearsal Systems Throughout our study, we used GDumb to carry out our analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Although we ex- tensively motivated this choice, we also tested two different rehearsal systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In particular we studied ER Rolnick et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [2019] and ER-MIR Aljundi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [2019a] per- formance as we adapt them to work in a low resource scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We simply substitute the original learner with our ELM proposal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 we report the performance of CIFAR10 with 600 KiB buffer memory and v ′ i = 128 encoding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As validation metrics we used the final accuracy and the average forgetting Chaudhry et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [2018] (lower is better).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In order to train the systems, we used the official implementations found at https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='com/optimass/Maximally Interfered Retrieval without any alteration of training hyperparameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As we can see, the results suggest again that ELMs constitute a valid solution for low resource CL systems and that rehearsal solutions are biased toward data quantity over data quality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Chapter 4 55 ELM Width Analaysis 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='0 MNIST 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='8 CIFAR10 ImageNet100 Accuracy 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='6 Core50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='0 0 50 100 150 200 250 300 350 Hidden NodesDissecting continual learning: a structural and data analysis CIFAR10 Fixed Memory 600 KiB Method Accuracy (A) Forgetting (F) ELM (A) ELM (F) ER Rolnick et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [2019] 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='5 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='20 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='0 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='40 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='0 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='10 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='16 ER-MIR Aljundi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [2019a] 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='8 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='10 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='6 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='48 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='6 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='10 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='6 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='01 Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4: Experiments in CIFAR10 with two different rehearsal systems in low resource scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Other Specifications Resource Consumption In Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='5 we report some summary statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In particular, we report GDumb’s performance improvements for two encoding schemes i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Resize (8 × 8) and ELM (v ′ i = 128).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We reported only the accuracy according to optimal parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We also added the compression factor C, the requirements to store model’s parameters Θ and the memory buffer M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We also report the quantity of GPU memory usage to train GDumb for each encoding scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We can see that there is a big gap on the training requirements and memory buffers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' MNIST CIFAR10 CIFAR100 ImageNet100 Core50 Compression Params + M GPU Training Resize (8 × 8) (+6%) (+21%) (+20%) (+20%) (+67%) 253:1 60 MiB 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 GiB ELM (128) (+10%) (+10%) (+10%) (+10%) (+10%) 192:1 16 MiB 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='72 GiB Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='5: Performance summary and memory compression Datasets Specification For completeness, we report in Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='6 some specifications for the considered datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In particular, we provide the task subdivision for each dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As we can see MNIST and CIFAR10 have been split in 5 tasks of 2 classes each.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This splitting is also known in literature as Split-CIFAR10 and Split-MNIST.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' For CIFAR10 and ImageNet100 benchmarks we used 10 tasks of 10 classes each, meanwhile for Core50 we shuffled all scenarios and created 10 tasks of 5 classes each.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The majority of the works fix the memory slots to define the memory buffer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In our case we used memory requirements expressed in KiB or MiB so that we could alter each slot consumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 56 Chapter 4 Works We provide a correspondence between memory requirements and memory slots in the case we consider original image sizes, we do so to ease future comparisons against our work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Experimental Settings Dataset Image size Memory Size # Instances Task Composition MNIST 28x28x1 382 KiB 500 5 tasks, 2 classes CIFAR10 32x32x3 600 KiB 200 5 tasks, 2 classes 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='5 MiB 500 3 MiB 1000 6 MiB 2000 CIFAR100 10 tasks, 10 classes ImageNet100 64x64x3 12 MiB 1000 10 tasks, 10 classes 24 MiB 2000 Core50 128x128x3 15 MiB 312 10 tasks, 5 classes Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='6: Dataset and memory statistics, in CIFAR100 row we omit the 2nd, 3rd and 4th columns since are equal to CIFAR10 row.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Chapter 4 57 Dissecting continual learning: a structural and data analysis 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 Towards Exemplar-Free Continual Learning in Vi- sion Transformers: an Account of Attention, Func- tional and Weight Regularization While in the previous work we considered old data points as pivotal instrument to investigate catastrophic forgetting, now we focus on the structural properties of the model considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In particular, we ask ourselves how some parts of a network, when properly regularized, impact to the overall performance of an incremental scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We decided to investigate the continual learning of Vision Transformers (ViT) for the challenging exemplar-free scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We opted to study ViTs since there are several works tackling CNNs while virtually no one focused to ViTs yet although they are getting consistently better at vision tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This work takes an initial step towards a surgical investigation of the self atten- tion mechanism (SAM) for designing coherent continual learning methods in ViTs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We first carry out an evaluation of established continual learning regularization tech- niques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We then examine the effect of regularization when applied to two key enablers of SAM: (a) the contextualized embedding layers, for their ability to capture well- scaled representations with respect to the values, and (b) the prescaled attention maps, for carrying value-independent global contextual information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We depict the perks of each distilling strategy on two image recognition benchmarks (CIFAR100 and ImageNet-32) – while (a) leads to a better overall accuracy, (b) helps enhance the rigidity by maintaining competitive performances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Furthermore, we identify the limitation imposed by the symmetric nature of regularization losses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' To alleviate this, we propose an asymmetric variant and apply it to the pooled output distillation (POD) loss adapted for ViTs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As we will see through the section, our experiments confirm that introducing asymmetry to POD boosts its plasticity while retaining sta- bility across (a) and (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Moreover, we acknowledge low forgetting measures for all the compared methods, indicating that ViTs might be naturally inclined continual learners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 58 Chapter 4 Works Transformers have shown excellent results for a wide range of language tasks [Brown et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020, Roy et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2021] over the course of the last couple of years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Influenced by their initial results, Dosovitskiy et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [Dosovitskiy et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2021] pro- posed Vision Transformers (ViTs) as the first firm yet competitive application of transformers within the computer vision community.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 ViTs’ applications have since spanned a range of vision tasks, including, but not limited to image classification [Touvron et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2021], object recognition [Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2021], and image segmentation [Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2021].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The singlemost essential element of their architecture remains the self-attention mechanism (SAM) that allows the learning of long-range interde- pendence between the elements of a sequence (or patches of an image).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Another feature vital to their performance is the way they are pretrained in an often unsuper- vised or self-supervised manner over a large amount of data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This is then followed by the finetuning stage where they are adapted to a downstream task [Devlin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' For ViTs to be able to operate in real-world scenarios, they must exploit streaming data, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', sequential availability of training data for each task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3 Storage limitations or privacy constraints further imply the restrictions on the storage of data from previous tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Task-incremental continual learning (CL) seeks to find solutions to such constraints by alleviating the event of catastrophic forgetting - a phenomena where the network has a dramatic drop in performance on data from previous tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Several solutions have been proposed to address forgetting, including regularization [Kirkpatrick et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2017, Aljundi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2018, Zenke et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2017, Ritter et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2018], data replay [Chaudhry et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019b, Aljundi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019a, Lopez-Paz and Ranzato, 2017] and parameter isolation [Mallya and Lazebnik, 2018, Rusu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2016, Aljundi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2017, Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Most works on CL de nos jours study recurrent [Sodhani et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020, Chiaro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020] and convolutional neural networks (CNNs) [Kirkpatrick et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2017].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' However, little has been done to investigate different CL settings in the domain of ViTs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We, therefore, mark the first step for the domain by considering the further restrictive setting of exemplar-free CL with a zero overhead of storing any data from previous tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We consider this restriction for its real-world aptness to scenarios involving privacy regulations and/or data security considerations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Given that regularization-based methods form one of the main techniques for exemplar-free CL, we consider an in-depth analysis of these for ViTs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Regularization- based techniques are mainly organized along two branches: weight regularization methods (such as EWC [Kirkpatrick et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2017], SI [Zenke et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2017], MAS [Aljundi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2018]) and functional regularization methods ( such as LwF [Li and Hoiem, 2017], PODNET [Douillard et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As discussed above, the architectural 2By firmness, we refer to the non-reliance on convolutional operations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 3A task may encompass training data of one or more classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Chapter 4 59 Dissecting continual learning: a structural and data analysis Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='7: Self-attention mechanism comprising a vision transformer encoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We compare Attention-based approaches computed prior to the softmax operation and Functional-based approaches computed on the contextualized embeddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' novelty of transformers lies in the SAM building a representation of a sequence by exhaustively learning relations among query-key pairs of its elements [Vaswani et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2017].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We show that for ViTs (and subsequently, all other architectures leveraging SAM), this property allows for a third form of regularization, which we coin Atten- tion Regularization (see Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We ground our idea in the hypothesis that when learning new tasks, the attention of the new model should still remain in the neighborhood of the attention of the previous model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As another contribution, we question the temporal symmetry currently applied to regularization losses;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' referring to the fact that they penalize the forgetting of previous knowledge and the acquiring of new knowledge equally (see Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' With the aim of countering forgetting while mitigating the loss of plasticity, we then propose an asymmetric regulariza- 60 Chapter 4 Queries Keys A (A) Scalar Product (B) Softmax/Scaling (C) Linear Combination B Values Functional-based Attention-based Contextualized EmbeddingsWorks tion loss that penalizes the loss of previous knowledge but not the acquiring of new knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We index the major contributions of our work below: We are the first to investigate continual learning in vision transformers in the more challenging exemplar-free setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We perform a full analysis of regular- ization techniques to counter catastrophic forgetting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Given the distinct role of self-attention in modeling short and long-range depen- dencies [Yang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2021], we propose distilling the attention-level matrices of ViTs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Our findings show that such distillation offers accuracy scores on par with that of their more common functional counterpart while offering superior plasticity and forgetting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Motivated by the work of Douillard et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [Douillard et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020], we pool spatiality-induced attention distillation across our network layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We propose an asymmetric variant of functional and attention regularization which prevents forgetting while maintaining higher plasticity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Through our extensive experiments, we show that the proposed asymmetric loss surpasses its symmetric variant across a range of task incremental settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Related Works Continual learning has been gaining contributions from the deep learning research community during the last few years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In the following, we list the most prominent ones: Weight-based: these methods operate in the parameter space of the model through gradient updates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Elastic Weight Consolidation (EWC) [Kirkpatrick et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2017] and Synaptic Intelligence (SI) [Zenke et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2017] are two widely used methods in this family with the former being probably, the most well- known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' EWC uses fisher information to identify the parameters important to individual tasks and penalizes their updates to preserve knowledge from older tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' SI makes the neurons accumulate and exploit old task-specific knowledge to contrast forgetting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Functional-based: these methods rely upon trading the plasticity for stability by training either the current (new) model on older data or vice-versa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Learning Without Forgetting (LWF) [Li and Hoiem, 2017] remains among the most Chapter 4 61 Dissecting continual learning: a structural and data analysis widely known approaches in this family.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' It employs Knowledge Distillation [Hinton et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2015] upon the logits of the network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Parameter Isolation-based: also known as architectural approaches, these meth- ods tackle CF through a dynamic expansion of the network’s parameters as the number of tasks grow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Among the first widely known methods in this family remain Progressive Neural Network (PNN) [Rusu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2016] followed by Dynamically Expandable Network (DEN) [Yoon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2018] and Reinforced Continual Learing (RCL) [Xu and Zhu, 2018].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The majority of the aforementioned works target CL in CNNs mainly due to their inductive bias allowing them to solve almost all problems that involve visual data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This can also be seen in several reviews [Mai et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2022, Biesialska et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020, Delange et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2021, Parisi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019, Belouadah et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2021, Mai et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2022] reporting few approaches that consider architectures besides CNNs, despite the attempts to investigate CL in RNNs [Sodhani et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020, Chiaro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Only recently have some works analyzed catastrophic forgetting in transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Among the earliest to do so remains that of Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2022] proposing the continual learning with transformers (COLT) framework for object detection in autonomous driving scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Using the Swin Transformer [Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2021] as the backbone for a CascadeRCNN detector, the authors show that the extracted features generalize better to unseen domains hence achieving lesser forgetting rates compared to ResNet50 and ResNet101 [He et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2016] backbones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In case of ViTs, Yu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [Yu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2021] show that their vanilla counterparts are more prone to forgetting when trained from scratch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Alongside heavy augmentations, they employ a set of techniques to mitigate forgetting: (a) knowledge distillation, (b) balanced re-training of the head on exemplars (inspired by LUCIR [Hou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019]), and (c) prepending a convolutional stem to improve low-level feature extraction of ViTs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In their work studying the impact of model architectures in CL, Mirzadeh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [Mirzadeh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2022] also experiment with ViTs in brief (with the rest of the work focusing mainly on CNNs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' While they vary the number of attention heads of ViTs to show that this has little effect on the accuracy and forgetting scores, they further conclude that ViTs do offer more robustness to forgetting arising from distributional shifts when compared with their CNN-based counterparts with an equivalent num- ber of parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The conclusion remains in line with previous works [Paul and Chen, 2021].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Finally, [Douillard et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2021] attempt to overcome forgetting in ViTs through a parameter-isolation approach which dynamically expands the tokens pro- cessed by the last layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' For each task, they learn a new task-specific token per head.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' They then couple such approach through the usage of exemplars and knowledge dis- 62 Chapter 4 Works tillation on backbone features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' It is worth noting that these works rely either on pretrained feature extractors [Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2022] or rehearsal [Yu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2021, Douillard et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2021] to defy forgetting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Thus the challenging scenario of exemplar-free CL in ViTs remains unmarked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Methodology We start by shortly describing the two main existing regularization techniques for continual learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We then propose attention regularization as an alternative ap- proach tailored for ViTs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Lastly, we put forward an adaptation for functional and attention regularization which is designed to elevate plasticity while retaining stability levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Functional and Weight Regularization Functional Regularization: We include LwF [Li and Hoiem, 2017] in this compo- nent since it constitutes one of the most prominent, and perhaps the most widely used regularization method acting on data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The appealing property of LwF lies in the fact it is exemplar-free, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', it uses only the data of the current task and maintains only the model at task t − 1 to exploit Knowledge Distillation [Hinton et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2015].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Formally, LwF can be defined as: LLwF(θ) = λoLKD � Yo, ˆYo � + LCE � Yn, ˆYn � + R(θ) (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3) where LKD is the knowledge distillation loss incorporated to impose stability on the outputs, ˆYo the predictions on the current task data from the old model and ˆYo the ground truth of such data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' λo remains the temperature annealing factor for softmax logits while LCE is the standard cross entropy loss calculated upon the new task examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Weight Regularization: These methods encourage the network to adapt to the current task data mainly by using those parameters of the network that are not considered important for previous tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As representative method we select EWC [Kirkpatrick et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2017].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' EWC exploits second-order information to estimate the importance of parameters for the current task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The importance is approximated by Chapter 4 63 Dissecting continual learning: a structural and data analysis Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='8: Visual illustration of the asymmetric loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The image considers two generated attention maps (a) and (b) while training task 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In case (a), when previous knowledge is lost, both the symmetric and assymetric regularization work correctly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' However, in case (b), when new knowledge is acquired, this is penalized by the symmetric loss but not by the assymetric loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The idea is that the assymetric loss leads to higher plasticity without hurting stability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' the diagonal of the Fisher Information Matrix F: LEWC(θ) = LX(θ) + � j λ 2Fj � θj − θ∗ Y,j �2 (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4) where LX(θ) is the loss for task X, λ the regularization strength, and θ∗ Y,j the optimal value of jth parameter after having learned task Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Attention Regularization Self-Attention Mechanism: The self-attention mechanism (SAM) [Vaswani et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2017] forms the core of Transformer-based models and can be defined as: z = softmax �QKT √de � V (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='5) where Q, K, and V are respectively the projections of the Query, Key, and Values of the Rde input embeddings while z constitutes the new contextualized embed- dings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Our novel attention-based regularization intervenes prior to the computation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='64 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='Chapter 4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='Attention ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='Attention ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='Symmetric ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='Asymmetric ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='Previous Model ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='Current Model ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='Regularization ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='Regularization ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='OK ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='OK ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='Penalize ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='Penalize ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='forgetting previous ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='forgetting previous ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='knowledge ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='knowledge ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='(a) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='NOT OK ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='OK ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='Penalize new ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='New knowledge ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='Task 1 : Dogs ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='knowledge ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='is notpenalized ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='Task 2 : Deers ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='(b)Works ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='of the softmax operation of the standard self-attention mechanism as illustrated in ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In particular, given a ViT model at incremental step t and an SAM head k of layer l, we define the prescaled attention matrix At kl prior to the softmax operation as: At kl = QKT √de (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='6) We denote the attention matrix corresponding to the model at time step (t − 1) computed in a similar way as At−1 kl .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We employ this predecessor in the calculation of knowledge distillation in what follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Pooled Attention Distillation: Functional approaches leverage network’s submod- ules typically to apply knowledge distillation [Hinton et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2015].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' When the regular- ization takes place in intermediate layers, the model can experience excessive stability, therefore loosing in plasticity abilities [Douillard et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020, Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020a, Yu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020b].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Amongst these methods, PODNet [Douillard et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020] clearly identifies the problem of excessive stability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We devise a regularization approach which instead of regularizing functional submodules targets attention maps, the core mechanisms of SAMs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' More formally, given the attention maps at steps t and (t − 1), we define LPAD � At−1 kl , At kl � [Douillard et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020] to be: LPAD-width � At−1 kl , At kl � + LPAD-height � At−1 kl , At kl � (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='7) where LPAD-width � At−1 kl , At kl � = H � h=1 DW � At−1 kl , At kl � , LPAD-height � At−1 kl , At kl � = W � w=1 DH � At−1 kl , At kl � , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='8) DX � At−1 kl , At kl � = ����� X � x=1 At−1 kl,w,h − X � x=1 At kl,w,h ����� 2 (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='9) where, W and H indicate the width and height dimensions of the attention maps, and DX(a, b) is the sum total of the distance measure between maps a and b along X-th dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As shown in equation 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='9, the standard LPAD uses the difference Chapter 4 65 Dissecting continual learning: a structural and data analysis Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='9: Mean and standard deviation of task-aware accuracy and forgetting scores for CIFAR100/10 and ImageNet/6 settings (over 3 random runs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Asymmetric approaches depict higher accuracy with respect to their symmetric counterparts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The low forgetting scores across all methods suggest an intrinsic forgetting resilience in vision transformer architectures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' operator as the choice for D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We now point out the limitation of such symmetric D and introduce in the next section the notion of asymmetry into our distance measure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As previously mentioned, Douilllard el al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [Douillard et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2020] propose the pooled outputs distillation PODNet loss which leverages the symmetric Euclidean distance between the L2-normalized outputs of the convolutional layers of models at t and (t − 1) after pooling them along specific dimension(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' They achieve the best results upon combining the pooling along the spatial width and height axes which they term as the POD-spatial loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Given the generic correspondence among the various pooling variants in their paper, our work is particularly influenced by POD- spatial as we pool attention maps of ViTs along two dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In fact, throughout the experiments, we analyze this formulation when applied to the contextualized embeddings z resulting from a SAM operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We would like to highlight that PAD differs from PODNet in two important factors: its applied to the attention and not directly on the layer output, and secondly, its marginalization is not on the spatial dimensions due to the fact that z does not encode the spatial dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Asymmetric Regularization The proposed attention regularization prevents forgetting of previous task by en- suring that the old attention maps be retained while the model learns to attend to new regions over tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' However, the symmetric nature of DX (with respect to the two attention maps) means that any differences between the older and the newly learned attention maps lead to increased loss values (see Equation 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We agree that penalizing a loss in attention with respect to previous knowledge is crucial in 66 Chapter 4 Task Aware - avg 3 seeds .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='. FUNC(asym) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' finetuning LwF ATT(sym) FUNC(sym) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='58 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='28 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='100 0T/001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='55 ImageNet/6 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='075.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='26 curac CIFAR1( 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='24 For 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='22 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='00 2 3 4 5 6 89 10 5678910 6 1 2 3 2 5 6 1 4 5 Tasks Tasks Tasks TasksWorks addressing forgetting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' However, also penalizing a gain in attention for newly learned knowledge is undesirable and may actually hurt the performance over subsequently learned tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In other words, punishing additional attention can be counterproduc- tive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As a result, we propose using an asymmetric variant of DX that can better retain previous knowledge: DX � At−1 kl , At kl � = �����Fasym � X � x=1 At−1 kl,w,h − X � x=1 At kl,w,h ������ 2 (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='10) where, Fasym is as asymmetric function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We experimented with ReLU [Nair and Hinton, 2010], ELU [Clevert et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2016] and Leaky ReLU [Maas et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2013] as choices for Fasym and found that in general, ReLU performed the best across our settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' By introducing the ReLU function, new attention generated by the current model at task t is not penalized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Attention present at task t − 1 but missing in the current model t is penalized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' An illustration of the functioning of the new loss is provided in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Based on our choice for DX from equations 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='9 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='10, we classify our final PAD loss as symmetric LPAD-sym or asymmetric LPAD-asym, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Each of these losses are computed separately for each of the SAM head and model layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The final asymmetric variant can thus be stated as: LPAD-asym(At−1 kl , At kl) = 1 L L � 1 1 K K � 1 LPAD (At−1 kl , At kl) (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='11) where, K is the total number of heads per layer and L is the total number of layers of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Note that equation 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='11 can be adapted for LPAD-sym without loss of generality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Overall loss: We augment the asymmetric and symmetric PAD losses from equa- tion 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='11 with knowledge distillation loss LLwF [Li and Hoiem, 2017] and standard cross entropy loss LCE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The overall loss term takes the form: L = µLPAD-(a)sym + λLLwF + LCE (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='12) where µ, λ ∈ [0, 1] are two hyperparameters regulating the respective contributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Note that when µ = 0, L degenerates to baseline finetuning for λ = 0 and to LwF for λ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Chapter 4 67 Dissecting continual learning: a structural and data analysis Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='10: Mean and standard deviation of task-aware plasticity-stability scores for CIFAR100/10 and ImageNet/6 settings (over 3 random runs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Asymmetric ap- proaches are more plastic compared to their symmetric counterparts while retaining competitive stability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Stability-Plasticity Curves: Several measures have been proposed in the CL lit- erature to assess the performance of an incremental learner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Besides the standard incremental accuracy, Lopez-Paz et al [Lopez-Paz and Ranzato, 2017] introduce the notion of Backward Transfert (BWT) and Forward Transfert (FWT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' BWT mea- sures the ability of a system to propagate knowledge to past tasks, while FWT assesses the ability to generalize to future tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The CL community, however, still lacks consensus on a specific definition of the stability-plasticity dilemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' An ele- mental formulation for such quantification is thus desirable for allowing us to better grasp the balancing capabilities of an incremental learner at acquiring new knowledge without discarding previous concepts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' To this end, we introduce stability-plasticity curves computed using task accuracy matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' A task accuracy matrix M for an incremental learning setting composed of T tasks is defined to be a [0, 1]T ×T matrix, whose entries are the accuracies computed at each incremental step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 For instance, Mi,j would constitute the test accuracy of task j when the system is learning task i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Subsequently, the diagonal entries of Mi, i give us the accuracies at the respective current tasks while the entries below the diagonal, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', j < i, give the performance of the model on past tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' A visual depiction can be seen in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We define the stability to be the performance on the first experienced task at any given time and plasticity to be the ability of the model to adapt to the current task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Namely, these constitute the first column M:,0 and the diagonal of the matrix diag(M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We employ the curves dervied from these definitions to better dissect the stability-plasticity dilemma of the methods analyzed in our work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 4This calls for M to be lower trapezoidal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 68 Chapter 4 Task Aware - avg 3 seeds EWC --.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' ATT(asym) - .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='-.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='FUNC(asym).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='finetuning LwF ATT(sym) FUNC(sym) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='24 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='32 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='22 CIFAR100/10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='24 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='22 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='30 910 8 910 1 2 3 4 5 6 1 5 7 8 1 2 3 5 6 7 1 2 3 4 5 6 Tasks Tasks Tasks TasksWorks Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='11: Illustration of a task accuracy matrix: we fix stability to be the per- formance of the first task across time steps while we define plasticity to be the performance at the current step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Experiments In this section, we compare regularization-based methods for exemplar-free continual learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We evaluate the newly proposed attention regularization and compare it with the existing functional (LwF) and feature regularization methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We then ablate the usefulness of the newly proposed asymmetric loss as well as the importance of pooling before applying the regularization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Experimental Setup Setting: For our experiments, we adopt the variation of ViTs introduced by Xiao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [Xiao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2021].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Here, the standard linear embedder of a ViT model is replaced by a smaller convolutional stem which helps build more resilient low-level features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Convolutional stems have previously been shown to improve performance and convergence speed in incremental learning settings [Yu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2021].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We there- fore define our architecture to be a lightweight variation of a ViT-Base by setting L = 12 layers, K = 12 heads per layer and a de = 192 embedding size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The choice of a small embedding size has been made to speed up the training procedure and unlock the ability to handle larger batch sizes (1024 for our work).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We analyze our task-incremental setting on two widely used image recognition datasets - namely CIFAR100 and ImageNet-32 with 100, and 300 classes each.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Both datasets host 32×32 images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' On CIFAR100, we consider a split of 10 tasks (denoted as CIFAR100/10 setting) where each incremental task is composed of 10 disjoint set of classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' On ImageNet-32, we split 6 tasks with 50 disjoint set of classes each Chapter 4 69 Acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='Matrix Test Train Stability PlasticityDissecting continual learning: a structural and data analysis (denoted as ImageNet/6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='5 Our total training epochs remain 200 (per task) for CIFAR100 and 100 for Im- ageNet32 with an initial learning rate of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='01 and patience set of 20 epochs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We report our scores averaged over 3 random runs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We apply a constant padding of size 4 across all our datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The train images are augmented using random crops of sizes 32 × 32 and random horizontal flips with a flipping probability of 50%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' For test images, we only apply center crops of sizes 32 × 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We compare the attentional and functional symmetric and asymmetric versions of LPAD-(a)sym.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We use LwF [Li and Hoiem, 2017] and EWC [Kirkpatrick et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2017] as our basic functional and weight regularization approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' For all our experiments relying on PAD losses, we performed a hyperparemeter search (using equation 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='12) for µ and λ by varying each in the range [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='5, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='0] and found µ = λ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='0 to perform reasonably well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We thus stick to these values unless otherwise specified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' For the sake of brevity, we indicate LPAD-asym with Asym att and LPAD-sym with Sym att.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Note that these are both variations of equation 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The functional approaches are analogous to their attentional counterparts except for the fact that they rely on the regularization of the contextualized embeddings rather than the attention matrix (see Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The latter correspond to Asym func and Sym func accordingly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Results We report accuracy as well as forgetting [Chaudhry et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2018] scores in task aware (taw) setting6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We further report taw plasticity-stability curves (based on Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='11) to provide insights upon how well the different models handle the trade-off.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Accuracy and Forgetting: As seen in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='9, all asymmetric approaches show better performances with respect to their symmetric counterparts on CIFAR100/10 with Asym att offering the best accuracy of 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3% on the last task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The trend continues for ImageNet/6 with an exception of asymmetric functional approach with an accuracy of 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='55% falling behind its symmetric counterpart by 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='44%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In general, the asymmetric and symmetric losses lead to improved accuracy scores with respect to other methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Moreover, we observe that all the methods depict good forgetting resilience with their forgetting scores running around ≈0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='01%) except for EWC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This suggests us that vision transformers are better incremental learners but require more 5Refer to Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 for experiments on additional settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 6The corresponding task agnostic scores can be found in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='14, Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 70 Chapter 4 Works CIFAR100/10 (taw) Asym Func Spatial Sym Func Spatial Asym Func Intact Sym Func Intact LwF Average Incr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Accuracy 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='18% 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='67% 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='43% 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='12% 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='11% Last Task Accuracy 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='26% 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='92% 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='04% 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='59% 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='93% Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='7: Comparison of intact (no pooling), spatial (pooling along width and height), and LwF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' training and tuning efforts to achieve reasonable accuracies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This remark remains in accordance with prior studies [Mirzadeh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2022, Paul and Chen, 2021].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In the particular case of EWC, we observe poor compatibility in terms of accuracy as well as forgetting – with the scores falling behind finetuning at times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We suspect that the method might not be less suited for ViTs due to its reliance on exhaustive fisher information estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Plasticity-stability tradeoff: We compare the dilemma for various methods in Fig- ure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' With no distillation, finetuning is prone to the worst trading of plasticity for stability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Meanwhile, our asymmetric losses can be seen to be more plastic with respect to their symmetric counterparts while depicting comparable stability scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This confirms our hypothesis regarding the nature of the asymmetry keeping it from discarding older attention while favoring the integration of new attention at the same time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Although, LwF with a last task score of 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='74% on CIFAR100/10 and 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='0% on ImageNet/6, reports the best plasticity among our approaches, it clearly lags behind the pooling-based approaches at retaining stability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' On the contrary, the (a)symmetric attention losses and the symmetric functional loss perform similar with a last task stability score of ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='23% on ImageNet/6 and ≈ 53% on CIFAR100/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' EWC shows good plasticity but virtually zero stability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This trend is in line with our previous comment on the limitation of EWC in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Ablation study Towards the end goal of evaluating the effectiveness of PAD losses, we ablate the contribution of pooling on the CIFAR100/10 setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In particular, we con- sider distilling the attention maps when these are: (a) pooled along both dimen- sions, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=',(A)sym Func Spatial (see Equation 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='7), and (b) not pooled at all, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', Chapter 4 71 Dissecting continual learning: a structural and data analysis Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='12: Mean and standard deviation of task-aware accuracy and forgetting scores for the additional CIFAR100/20 and CIFAR100/50 settings (over 3 random runs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' (A)sym Func Intact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Distilling the intact maps of the latter setting imply enhanced stability over their pooled counterparts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Our standard accuracy and plasticity-stability measures across tasks can therefore be deemed redundant in this setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As a conse- quence, we choose to compare the task-aware average incremental accuracy [Rebuffi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2017] and the last task accuracy across (a) and (b) while contrasting these with LwF as a strong baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' For further crisper observations, we limit our com- parisons to the functional setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As shown in Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='7, we find that Asym Func Spatial consistently performs the best across both the metrics (with a gain of > 2% over Sym Func Intact in either metric).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In general, distilling the intact attention maps can be seen to be hurting the performance of the models as their accuracy drop below that of the baseline LwF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Conclusion In this work, we adapted and analyzed several continual learning methods to counter forgetting in Vision Transformers mainly with the help of regularization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We then 72 Chapter 4 Task Aware - avg 3 seeds EWC ATT(asym) --.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' FUNC(asym) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' finetuning LwF ATT(sym) FUNC(sym) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='15 CIFAR100/50 Base 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='50 Accuracy 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='00 5 6 1 2 3 4 5 1 2 3 4 6 Tasks Tasks 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='25 CIFAR100/20 Base 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='20 Accuracy 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='00 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 Tasks TasksWorks introduced a novel PODNet-inspired regularization, based on the attention maps of self-attention mechanisms which we termed as Pooled Attention Distillation (PAD).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Shedding light on its limitation at learning new attention, we devised its asymmetric version that avoids penalizing the addition of new knowledge in the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We validated the superior plasticity of the asymmetric loss on several benchmarks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Besides the meticulous comparison of a range of regularization approaches, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', functional (LwF), weight (EWC), and the proposed attention-based regularization, we extended the application of PAD to the functional submodules of ViTs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' To this end, we investigated regularization in the contextualized embeddings of ViTs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The latter exploration led us to discover that the regularization of functional submodules can help achieve the best overall performances while the regularization of their at- tentional counterparts endow CL models with superior stability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Finally, we remarked the low forgetting scores of vision transformers across the incremental tasks and concluded that their enhanced generalization capabilities may endow them with a natural inclination for incremental learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' By making our code open-source, we hope to open the doors for future research along the direction of efficient continual learning with transformer-based architectures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Additional Settings We experiment on two further CIFAR100 settings with distinct cardinality of base task classes: CIFAR100/20 Base, with 20 base task classes followed by 8 incremental tasks with 10 classes each, CIFAR100/50 Base, with 50 base task classes followed by 5 incremental tasks with 10 classes each.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The task aware accuracy and forgetting scores on these are shown in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We find the PAD-based losses to consistently outperform other regularization approaches with LwF being the closest tie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Along the direction of plasticity-stability tradeoff (see Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='13), we observe that: (a) the attentional PAD losses retain better rigidity than their functional counterparts, and (b) the asymmetric variants of PAD losses are more plastic than their symmetric counterparts across these settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' These trends further validate our hypotheses in sections 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Chapter 4 73 Dissecting continual learning: a structural and data analysis Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='13: Mean and standard deviation of task-aware plasticity-stability scores for the additional CIFAR100/20 and CIFAR100/50 settings (over 3 random runs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Task Agnostic Results Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='14 depicts the task-agnostic accuracy and forgetting scores for the settings mentioned in the main section as well as in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Given the contradictory terms of resource-scarce exemplar-free CL and data-hungry ViTs, task-agnostic eval- uations can be seen to be particularly challenging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The further avoidance of heavier data augmentations in our training settings can be seen to give rise to two major repercussions across the task-agnostic accuracies: (a) the scores remain consistently low, and (b) the models show smaller yet consistent variations in performances across all settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' That said, we find functional PAD losses to be performing the best on all but CIFAR100/50 setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The larger proportion of base task classes in the latter setting can be seen to be greatly benefiting the learning of LwF (the least parameterized loss term).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Further on the note of class proportions, we observe that an equal spread of classes across the tasks can be seen to have a smoothing effect on the variations of scores across different methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 74 Chapter 4 Task Aware- avg 3 seeds EWC ATT(asym)--.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' FUNC(asym).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' finetuning LwF ATT(sym)- FUNC(sym) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3501 CIFAR100/50 Base 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='325 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='300 Plasticity Stability 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='275 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='250 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='225 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='200 1 2 3 4 5 6 1 2 3 4 5 6 Tasks Tasks 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='701 Base 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='65 CIFAR100/20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='60 Plasticity Stability 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='25 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 Tasks TasksWorks On the contrary, the CIFAR100/50 setting leads to low variability of task-agnostic forgetting scores across the methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This can again be attributed to the fact that a very large first task better leverages the generalization capabilities of ViTs thus making them better at avoiding forgetting over the subsequent incremental steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This further adds to our reasoning regarding the natural resilience of ViTs to incremental learning settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' When compared across methods, the attentional variants of PAD losses can be seen to display the least amount of forgetting followed by their functional counterparts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='14: Mean and standard deviation of task-agnostic accuracy and forgetting scores for CIFAR100/10, CIFAR100/20, CIFAR100/50, and ImageNet/6 settings (over 3 random runs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The larger proportion of base task classes (for example, CIFAR100/50) gives rise to higher variations of accuracies and lower variation of forgetting scores across methods – with the latter indicating the inclination of ViTs towards better generalization and preservation of knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Chapter 4 75 Task Agnostic - avg 3 seeds EWC ATT(asym) FUNC(asym) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' finetuning LWF ATT(sym) FUNC(sym) CIFAR100/50 Base CIFAR100/20 Base CIFAR100/10 ImageNet/6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 i 2 3 4 5 6 5 1 8 1 2 3 4 6 1 2 4 6 7 8 ¥910 1 2 3 4 5 6 Tasks Tasks Tasks Tasks 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='251 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='20 Forgetting 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='0 : 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='00 1 2 3 4 5 6 3 4 5 6 7 2 9 1 2 3 4 5 6 7 1 2 3 1 5 6 Tasks Tasks Tasks TasksDissecting continual learning: a structural and data analysis 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3 Simpler is Better: off-the-shelf Continual Learn- ing through Pretrained Backbones In this section we propose a simple baseline for continual learning that leverages pretrained backbones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The approach devised is fast, since requires no parameters updates and has minimal memory requirements (order of KBytes).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' By providing such a simple baseline, and achieving strong performance on all the major benchmarks used in literature, we follow the concerns raised in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 on the simplicity of the benchmarks used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Secondly, we show that pretraining cause the network to generalize at a point where the incremental learning of new tasks is very simple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In particular, the ”training” phase reorders data and exploit the power of pre- trained models to compute a class prototype and fill a memory bank.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' At inference time we match the closest prototype through a knn-like approach, providing us the prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We will see how this naive solution can act as an off-the-shelf continual learning system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In order to better consolidate our results, and merge the above two works, we use the devised pipeline with CNN and Vision Transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We will discover that thew latter have the ability to produce features of higher quality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As a side note we discuss some extension to the unsupervised realm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In a nutshell, this simple pipeline raises the same questions raised by previous works such as Prabhu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [2020] on the effective progresses made by the CL community especially in the dataset considered and the usage of pretrained models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 76 Chapter 4 Works Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='15: Depiction of our simple baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Our pipeline does not perform param- eters updates and consumes few KBytes as memory bank.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Until now, the CL community mainly focused in the analysis of catastrophic forgetting in Convolutional Neural Networks (CNN) models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' But, as can be seen by some recent works, Vision Transformers (ViT) are asserting themselves as a valuable alternative to CNNs for computer vision tasks, sometimes, achieving better performances with respect to CNNs Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [2022].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The power of ViTs lies in their less inductive bias Morrison et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [2021] and in their subsequent better generalization ability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Thanks to this ability ViTs are naturally inclined continual learners, as pointed in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In transformer literature, the usage of pretrained backbones is becoming a must, in fact, training such systems requires extensive amount of data and careful hyper- parameters optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Using pretrained backbones is common also in Computer Chapter 4 77 Training 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Batch Reordering 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='FeatureExtraction 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Prototype Creation feats c1 C1 p1 H feats c2 Task 1 C2 p2 feats c3 C3 p3 Visual Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' feats_c4 C4 p4 feats c5 Task 2 C5 p5 feats c6 C6 p6 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' MemoryBank Test 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Feature extraction 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Match closest prototype p1 p2 Visual p3 feat x Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' p4 p5 p6 MemoryBankDissecting continual learning: a structural and data analysis Vision communities where CNNs are the main player.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In CL literature, the pretraining is frequent, but not constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' It is typically carried on half of the analyzed dataset or through a big initial task that has the objective of facilitating the learning of low level features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The very best results, however, have been achieved when we do not skip pretraining.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This can be confirmed by the CVPR 2020 Continual Learning Chal- lenge summary report Lomonaco et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [2022], where the authors noted that all the methods proposed solutions leveraging pretrained backbones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' On top of that, simple baselines sometimes provide better results with respect to overly engineered CL solutions, GDumb Prabhu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [2020] is such an example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In the work, the authors showed superior performance against several methods at the state-of-the-art through a system composed just by a memory random sampler and a simple learner (CNN or MLP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' From a practical point of view, these methods often constitute a simple, clear, fast, intuitive and efficient solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Following these lines, we explore a knn-like method to perform off-the-shelf online continual learning leveraging the power of pretrained vision transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Our sys- tem constitutes a simple and memory-friendly architecture requiring zero parameters updates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Being our work one of the first using ViTs in CL, we propose a robust baseline for future works and provide an extensive comparison against CNNs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In brevity, the contributions are the following: We devise a simple pipeline composed by a pretrained feature extractor and an incremental prototype bank.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The latter is updated as new data is experienced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The overall cost of the method is in the storage of a pretrained backbone and few Kbytes for the memory bank.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We devise a baseline for future CL methodologies that will exploit pretrained Vision Transformers or Resnets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The baseline is fast and does not require any parameter update, yet achieving robust results in 200 lines of Python, unlocking reproducibility too.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We provide a comparison for our pipeline between Resnets and Visual Trans- formers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We discover that Vision Transformers produce more discriminative features, appealing also for the CL setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In light of such results, we arise the same questions, as GDumb Prabhu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [2020] does, in the progresses made by the CL community so far specifically in the quality of the datasets and in the usage of pretrained backbones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 78 Chapter 4 Works Algorithm 1 Off-the-shelf CL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' “Training” Require: ti, φ, M for ti ∈ T do G = GroupByClass(ti) for g ∈ G do f = φ(g) Extract features p = µ(f ) Compute mean feature M ← p Store prototype in memory return M Related Works Only recently few works considered self-attention models in continual learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [2022] proposed a framework for object detection exploiting Swin Trans- former Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [2021] as pretrained backbone for a CascadeRCNN detector, the authors show that the extracted features generalize better to unseen domains hence achieving lesser forgetting rates compared to ResNet50 He et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [2016] backbones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This also follows the conclusions made by Paul and Chen Paul and Chen [2021] on the fact that vision transformers are more robust learners with respect to CNNs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Several methods in CL use pretrained backbones as feature extractors such as in Hayes et al Hayes and Kanan [2020] or Aljundi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [2019b], Hocquet et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [2020] and sometimes the pretraining is carried on half (or a big portion) the dataset considered, as in PODNet Douillard et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [2020] or in Yu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Yu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [2021].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' For a more complete review on CL methodologies we point out these recent surveys Parisi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [2019], Hadsell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [2020], Mundt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [2020].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' A similar study on pretraining for CL has been conducted by Mehta et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Mehta et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [2021].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In particular, they study the impact on catastrophic forgetting that a linear layer might accuse while using a pretrained backbone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Their study focuses only on Resnet18 for vision tasks, but they also include NLP tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Method Setting Continual Learning characterizes the learning by introducing the notion of subsequent tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In particular, the learning happens in an incremental fashion, that is, the model incrementally experiences different training sessions as time advances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Chapter 4 79 Dissecting continual learning: a structural and data analysis Practically, a learning dataset is split in chunks where each split is considered an incremental task containing data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' CL being a relatively new field, the community is still converging to a common setting notation, but we focus on an online, task- agnostic NC-type scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Tat is, the model forwards a pattern just once and does not have the task label at test time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As a more fine grained specific we follow Lomonaco and Maltoni [2017] categorization and use a NC-type scenario where each task contains a disjoint group of classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' More formally, given a dataset D and a set of n disjoint tasks T that will be experienced sequentially: T = [t1, t2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' , tn] (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='13) each task ti = (Ci, Di) represented by a set of classes Ct = ct 1, ct 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' , ct nt and training data Dt (images).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We assume that the classes of each task do not overlap i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Ci � Cj = ∅ if i ̸= j “Training” Phase In the training phase, given a task ti ∈ T , a feature extractor φ and a memory bank as a dictionary M, the procedure does the following: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' First it performs batch reordering, that is, it groups the images of a given task by their class 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' After grouping, it forwards each new subset to the feature extractor φ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Given the feature representations of a group, it computes the mean of the features to create a class prototype 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Updates the memory bank M by storing the each computed prototype At the end of the training procedure for a given task ti, we would have a repre- sentative prototype vector for each class contained in ti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As we said, the prototype vector is computed as the mean feature representation of the patterns of the same class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' A depiction of the “training” phase is reported in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='15, we also provide a pseudocode in Algorithm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We also point out that there is not formal “training” of the network, in fact we do not perform any parameter update, we simply exploit the pretrained models and construct a knn-like memory system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 80 Chapter 4 Works Memory KiB class Params Model CIFAR100 CIFAR10 Core50 Oxford Flowers102 Tiny ImgNet200 2 KiB 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='7M resnet18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='53 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='76 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='72 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='73 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='55 2 KiB 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='8M resnet34 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='81 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='74 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='67 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='62 8 KiB 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='5M resnet50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='59 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='71 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='63 8 KiB 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1M resnet152 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='67 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='89 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='72 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='66 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='76 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='75 KiB 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='6M ViT-T/16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='36 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='63 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='49 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='54 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='24 3 KiB 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4M ViT-B/16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='64 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='87 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='74 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='95 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='63 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='75 KiB 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='6M DeiT-T/16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='57 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='73 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='68 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='64 3 KiB 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4M DeiT-B/16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='68 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='74 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='79 Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='8: Off-the-shelf accuracy performance on different dataset benchmarks, we both analyzed a CNN model and a ViT pretrained models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Test Phase After completing the training phase for a task ti the memory bank M will be populated by the prototypes of the classes encoundered so far.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' During this test phase, we simply use a knn-like approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Given an image x, the updated memory bank M and the feature extractor φ we devise the test phase as follows: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Forward the test image x to the feature extractor φ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Compute a distance between the feature representation of the image and all prototypes contained in M 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We match the prototype with minimum distance and return its class In a nutshell, we perform k-nn with k=1 over the feature representation of an image, matching the class of the closes prototype in the bank.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' If the class selected is the same of the test example we would have a hit, a miss otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='15 reports a visual depiction of the test procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As distance we use a simple l2, but several tests have been made with cosine similarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Although the results with the cosine similarity are better, we opt for the l2 since provides the best speedup in the implementation through Pytorch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Experiments It is suspected that Visual Transformers generalize better with respect to CNN mod- els.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' To this end, we compare CNNs models and ViTs models as feature extractors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We selected four CNN models to compare against four attention-based models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Chapter 4 81 Dissecting continual learning: a structural and data analysis particular, we selected DeiT-Base/15, DeiT-Tiny/15 Touvron et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [2021], ViT- Base/16 and ViT-Tiny/16 Dosovitskiy et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [2021] as visual transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' While we opted for Resnet18/34/50/152 He et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [2016] as CNN models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We used the timm Wightman [2019] library to fetch the pretrained models where all the models have been trained on ImageNet Deng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [2009] and the continuum Douillard and Lesort [2021] library to create the incremental setting for 5 datasets, namely CIFAR10/100, Core50, OxfordFlowers102 and TinyImageNet200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In all dataset benchmarks, we upscaled the images to 224 × 224 pixels in order to accommodate visual transformers which needs such imput dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We apply such transformation to resnet data too for a fair comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In order to match the closes prototype at test time, we used l2 as preferred measure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The main results are reported in Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The pipeline is extremely simple, yet it achieves impressive performance as an off-the-shelf method, at cost of a very small overhead to store the prototype memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In fact, at the end of the training phase, the memory bank translates only into few KBytes of storage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Although this preliminary work only consider task-agnostic setting, we remind that if at test time we are given the task label of the data, we can recast the method to work in task-aware setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In this case, performing the test phase would be easier since the comparison of the test data will be carried only on a subset of the prototypes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' On the same line, one can see that in Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='8 we do not report each dataset task split.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In fact, our method works for any dataset split since it just need any partition of the datasets that respect a NC protocol i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' as long as tasks are formed by images that can be grouped in classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We can also appreciate that transformer architectures work best in all benchmarks, suggesting direct superior generalization capabilities with respect to CNNs or, at least, more discriminative features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Discussion In light of these results, we think that this work may be extended to be considered as a baseline to assess the performance continual learning methodologies using pretrained networks as feature extractors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In particular, a thorough investigation should be carried by substituting the k-nn approach with a linear classifier, this would allow also a better comparison between resnets and visual transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' However, we think that these preliminary results are of interest to the Vision Transformer and CL research community.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We then raise some concerns with respect to the procedure and the benchmarks 82 Chapter 4 Works Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='16: Direct off-the-shelf extension of the baseline proposed to tackle unsper- vised continual learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' used to assess new CL methodologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As we can see, through a pretrained model, we can achieve impressive results with respect to the current CL state-of-the-art Parisi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [2019], Hadsell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [2020], Mundt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [2020].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This point have been also raised by GDumb Prabhu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [2020] where the authors questioned the progresses by providing a very simple baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Moreover, we can further extend this simple pipeline to be used in unsupervised continual learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Actually, the extension is straightforward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In an unsupervised scenario the batch reordering step cannot be performed since we are not allowed to know each data class label.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' To cope with this lack of information one can substitute the step with any clustering algorithm such as K-means (we tried it but with no luck) or a more sophisticated approach such as autoencoders, self-organizing maps etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='. The test phase of the unsupervised extension would be analogous to the supervised counterpart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Conclusion In this short ex[erimental segment we proposed a baseline for continual learning methodologies that exploit pretrained Vision Transformers and Resnets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We tackle online NC-type class-incremental learning scenario, the most common one, even though, our pipeline can be extended to different scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Our off-the-shelf method Chapter 4 83 MemoryofPrototypes P feats c1 feats c2 p 2 T_1 feats c3 p3 pretr K-means model T_2 feats _c4 p4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' feats c5 p 5 T_n feats_c6 p6Dissecting continual learning: a structural and data analysis is conceptually simple yet gives strong results and can be implemented in 200 lines of Python therefore enhancing reproducibility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' To assess the performance of different backbones our pipeline we compared Resnets models against Vision Transformers feature extractors pretrained on the same dataset, and show that vision transformers provide more powerful features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This suggests that Vision Transformers ability to encode knowledge is is broader.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Then we raise some questions about CL research progress and note that with a pretrained model and a simple pipeline one can achieve strong results and, therefore, new methodologies should drop the usage of pretrained backbones when testing on such dataset benchmarks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 84 Chapter 4 Works 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 Unsupervised Semantic Discovery through Visual Patterns detection So far, we directly investigated the impact of performance by altering structural and data properties of object recognition frameworks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' If we step back a bit and consider a more broader vision about continual learning, we understand that, in order to adapt to a changing environment, an artificial agent should manifest also the ability to continuously discover new patterns, in our case visual patterns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We propose a smart pipeline that it is able to discover repetitive patterns in an image, by means of a threshold parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' That is, if we alter this specific parameter, we are able to discover new semantic levels in a scene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This work goes a bit in another direction from the dissection of current continual learning methodologies treated in this thesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Instead, it is a step towards the ability to build a system able to incrementally explore.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' To this end, we propose a new fast fully unsupervised method to discover se- mantic patterns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Our algorithm is able to hierarchically find visual categories and produce a segmentation mask.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Through the modeling of what is a visual pattern in an image, we introduce the notion of “semantic levels” and devise a conceptual framework along with measures and a dedicated benchmark dataset for future com- parisons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Our algorithm is composed by two phases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' A filtering phase, which selects semantical hotsposts by means of an accumulator space, then a clustering phase which propagates the semantic properties of the hotspots on a superpixels basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We provide both qualitative and quantitative experimental validation, achieving optimal results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Chapter 4 85 Dissecting continual learning: a structural and data analysis While the vast majority of supervised object detection and segmentation ap- proaches leverage rich datasets with semantically labelled categories, unsupervised methods cannot rely on such a luxury.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Indeed they are expected to infer from the image content itself what is a relevant object and which are its boundaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This is a daunting task, as relevance is totally domain-specific and also highly subjective, espe- cially when taking in account human judgement, which exploits a lot of out-of-band information that cannot be found in the sheer image data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As a matter of fact, little effort have been put to investigate unsupervised auto- matic approaches to detect and segment semantically relevant objects without any additional information than the image or any a priori knowledge of the context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This is due to the fact that a unique definition of what is a relevant object (or, how we prefer to call it, a visual category) does not actually exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This is especially true if we are seeking to set a formal definition that can be adopted across all the domains in a consistent manner with respect to human judge- ment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Within this section, we try to address this problem by considering a visual category each pattern which appearance is consistent enough across the image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In other words, we consider something to be a relevant object if it appears more than once, exhibiting consistent visual features in different parts of the scene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' From a cognitive and perceptual point of view this makes a lot of sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In fact, it is easy to observe that if a human is presented with images representing several different but recurring objects, even in a cluttered scene, he does not need to know what the objects actually are representing in order to be able to assign semantically- consistent labels to each of them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' He would even be able to label each pixel, defining the boundaries of the objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As an example, if someone takes a look at a large bin of different (but to some extent repeated) mechanical parts he never saw before, he is still able to tell one part from the other by exploiting their coherent visual and structural appearance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This ability is also preserved with slight changes in scale, orientation or partial occlusion of the objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Since this automatic assignment to a visual category of recurrent object is both well-defined and quite natural in humans, it is a very good candidate as a rule for automatically detecting relevant objects in an unsupervised manner that has good chances of being coherent with human judgement applied to the same image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 86 Chapter 4 Works Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='17: A real world example of unsupervised segmentation of a grocery shelf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Our method can automatically discover both low-level coherent patterns (brands, flavor images and logos) and high-level compound objects (multi-packs and bricks) by controlling the semantical level of the detection and segmentation process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' To be fair, we must also underline the fact that, in order to define the boundaries of a visual category and thus obtain a meaningful segmentation, also the level of detail must be taken into account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As an example, if we present to a human an image of a crowded road captured from a side, and we ask him to segment visual categories according to recurrent patterns, we could get slightly different results from different people depending on their attention to details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Some people will segment cars and trees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Other could consider the car body to be a different object from the wheels ad branches from the tree trunk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The most picky could even separate tires from wheel rims and segment out each single leaf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In practice semantic consistency can happen at different scale when dealing with compound objects presenting themselves internal self repetitions or made up of single parts that are also present in other objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' To address this aspect we also have to design a proper strategy to perform visual category detection and interpretation at a particular scale, according to the level of detail we want to express during the segmentation process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We define this level of detail as semantical level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Semantical levels, of course, do not map directly on specific high level concepts, such as whole objects, large parts or minute components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Rather the semantic level will act as a coarse degree of granularity of the segmentation process that will result in a hierarchical split of segments as it changes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' These two definitions of visual categories and semantical levels, that will be developed throughout the remainder of the work, are the two key concepts driving our novel segmentation method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Chapter 4 87 Yoga Yogo Optimum Optimun Optimum Optimum OptimumDissecting continual learning: a structural and data analysis The ability of our approach to leverage repetitions to capture the internal rep- resentation in the real world and then extrapolates visual categories at a specific semantical level is actually achieved through the combination of a couple of standard techniques,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' slightly modified for the specific task,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' and of a few key steps specifically crafted to make the process work in a consistent way with respect to the cognitive process adopted by humans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This happens, for instance, by seeking for highly rel- evant repetitive structural patterns, called semantical hotspots, characterized by a novel feature descriptor, called splash.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We do this through a scale-invariant method and with no continuous geometrical constraints on the visual pattern disposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We also do not constrain ourselves to find only one visual pattern, which is another very common assumption with other approaches in literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Rather our technique is designed from the start to be able to detect more patterns at once, being able to assign to each of them a different visual category label, corresponding to a different real world object or object part, according to the selected semantical level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Overall, with this study, we are offering to the community the following contri- butions: A new pipeline, including the definition of a specially crafted feature descriptor, to capture semantical categories with the ability to hierarchically span over semantical levels;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' A specially crafted conceptual framework to evaluate unsupervised semantic- driven segmentation methods through the introduction of the semantical levels notion along with a new metric;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' A new dataset consisting of a few hundredths labelled images that can be used as a benchmark for visual repetition detection in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The remainder of the section is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 describes the related works with respect to feature extraction and automatic visual patterns de- tection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 introduces our method, giving details on the overall pipeline and on the implementation details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 presents an experimental evaluation and comparison with similar approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Finally, the conclusions are found in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Code, dataset and notebooks used in this study will be made available for public use.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 88 Chapter 4 Works Related Works Several works have been proposed to tackle visual pattern discovery and detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' While the paper by Leung and Malik [Leung and Malik, 1996] could be consid- ered seminal, many other works build on their basic approach, working by detecting contiguous structures of similar patches by knowing the window size enclosing the distinctive pattern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' One common procedure in order to describe what a pattern is, consists to first extract descriptive features such as SIFT to perform a clustering in the feature space and then model the group disposition over the image by exploiting geometrical constraints, as in [Pritts et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2014] and [Chum and Matas, 2010], or by relying only on appearance, as in [Doubek et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2010, Liu and Liu, 2013, Torii et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2015].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The geometrical modeling of the repetitions usually is done by fitting a planar 2-D lattice, or a deformation of it [Park et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2009], through RANSAC procedures as in [Schaffalitzky and Zisserman] [Pritts et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2014] or even by exploiting the mathematical theory of crystallographic groups as in [Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2004].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Shechtman and Irani [Shechtman and Irani, 2007], also exploited an active learning environment to detect visual patterns in a semi-supervised fashion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' For example Cheng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [Cheng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2010] use input scribbles performed by a human to guide detection and extraction of such repeated elements, while Huberman and Fattal [Huberman and Fattal, 2016] ask the user to detect an object instance and then the detection is performed by exploiting correlation of patches near the input area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Recently, as a result of the new wave of AI-driven Computer Vision, a number of Deep Leaning based approaches emerged, in particular Lettry et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [Lettry et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2017] argued that filter activation in a model such as AlexNet can be exploited in order to find regions of repeated elements over the image, thanks to the fact that filters over different layers show regularity in the activations when convolved with the repeated elements of the image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' On top of the latter work, Rodr´ıguez-Pardo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [Rodr´ıguez-Pardo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019] proposed a modification to perform the texture synthesis step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' A brief survey of visual pattern discovery in both video and image data, up to 2013, is given by Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' [Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2014], unfortunately after that it seems that the computer vision community lost interest in this challenging problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We point out that all the aforementioned methods look for only one particular visual repetition except for [Liu and Liu, 2013] that can be considered the most direct competitor and the main benchmark against which to compare our results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Chapter 4 89 Dissecting continual learning: a structural and data analysis Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='18: (a) A splash in the image space with center in the keypoint ⃗cj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' (b) H, with the superimposed splash at the center, you can note the different levels of the vote ordered by endpoint importance i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' descriptor similarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' (c) 3D projec- tion showing the gaussian-like formations and the thresholding procedure of H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' (d) Backprojection through the set S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Method Description Features Localization and Extraction We observe that any visual pattern is delimited by its contours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The first step of our algorithm, in fact, consists in the extraction of a set C of contour keypoints indicating a position ⃗cj in the image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' To extract keypoints, we opted for the Canny algorithm, for its simplicity and efficiency, although more recent and better edge extractor could be used [Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019] to have a better overall procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' A descriptor dj is then computed for each selected ⃗cj ∈ C thus obtaining a descriptor set D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In particular, we adopted the DAISY algorithm because of its appealing dense matching properties that nicely fit our scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Again, here we can replace this module of the pipeline with something more advanced such as [Ono et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2018] at the cost of some computational time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Semantic Hot Spots Detection In order to detect self-similar patterns in the image we start by associating the k most similar descriptors for each descriptor ⃗dj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We can visualize this data structure as a star subgraph with k endpoints called splash “centered” on descriptor ⃗dj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='18 (a) shows one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 90 Chapter 4 2m Semantical Hotspots Tnxm Hw= Hw+g(w,h,(i)) (i) Reproject Splash Accum S to Accum Threshold h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='( (b) (a) (d)Works Splashes potentially encode repeated patterns in the image and similar patterns are then represented by similar splashes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The next step consists in separating these splashes from those that encode noise only, this is accomplished through an accu- mulator space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In particular, we consider a 2-D accumulator space H of size double the image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We then superimpose each splash on the space H and cast k votes as shown in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='18 (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In order to take into account the noise present in the splashes, we adopt a gaussian vote-casting procedure g(·).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Similar superimposed splashes contribute to similar locations on the accumulator space, resulting in peak formations (Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='18 (c)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We summarize the voting procedure as follows: H ⃗w = H ⃗w + g( ⃗w,⃗h(j) i ) (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='14) where ⃗h(j) i is the i-th splash endpoint of descriptor ⃗dj in accumulator coordinates and ⃗w is the size of the gaussian vote.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We filter all the regions in H which are above a certain threshold τ, to get a set S of the locations corresponding to the peaks in H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The τ parameter acts as a coarse filter and is not a critical parameter to the overall pipeline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' A sufficient value is to set it to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='05 · max(H).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Lastly, in order to visualize the semantic hotspots in the image plane we map splash locations between H and the image plane by means of a backtracking structure V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In summary, the key insight here is that similar visual regions share similar splashes, we discern noisy splashes from representative splashes through an auxiliary structure, namely an accumulator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We then identify and backtrack in the image plane the semantic hotspots that are candidate points part of a visual repetition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Semantic Categories Definition and Extraction While the first part previously described acts as a filter for noisy keypoints allowing to obtain a good pool of candidates, we now transform the problem of finding visual categories in a problem of dense subgraphs extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We enclose semantic hotspots in superpixels, this extends the semantic signifi- cance of such identified points to a broader, but coherent, area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' To do so we use the SLIC [Achanta et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2012] algorithm which is a simple and one of the fastest approaches to extract superpixels as pointed out in this recent survey [Stutz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2018].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Then we choose the cardinality of the superpixels P to extract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This is the Chapter 4 91 Dissecting continual learning: a structural and data analysis Algorithm 2 Semantic categories extraction algorithm Require: G weighted undirected graph i = 0 s∗ = − inf K∗ = ∅ while Gi is not fully disconnected do i = i + 1 Compute Gi by corroding each edge with the minimum edge weight Extract the set Ki of all connected components in Gi s(Gi,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Ki) = � k∈Ki µ(k) − α |Ki| if s(Gi,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Ki) > s∗ then s∗ = s(Gi,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Ki) K∗ = Ki return s∗,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' K∗ second and most fundamental parameter that will allow us to span over different semantic levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Once the superpixels have been extracted, let G be an undirected weighted graph where each node correspond to a superpixel p ∈ P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In order to put edges between graph nodes (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' two superpixels), we exploit the splashes origin and endpoints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In particular the strength of the connection between two vertices in G is calculated with the number of splashes endpoints falling between the two in a mutual coherent way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' So to put a weight of 1 between two nodes we need exactly 2 splashes endpoints falling with both origin and end point in the two candidate superpixels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' With this construction scheme, the graph has clear dense subraphs formations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Therefore, the last part simply computes a partition of G where each connected component correspond to a cluster of similar superpixels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In order to achieve such objective we optimize a function that is maximized when we partition the graph to represent so.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' To this end we define the following density score that given G and a set K of connected components captures the optimality of the clustering: s(G, K) = � k∈K µ(k) − α |K| (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='15) where µ(k) is a function that computes the average edge weight in a undirected weighted graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The first term, in the score function, assign a high vote if each connected compo- 92 Chapter 4 Works nent is dense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' While the second term acts as a regulator for the number of connected components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We also added a weighting factor α to better adjust the procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As a proxy to maximize this function we devised an iterative algorithm reported in Algo- rithm 2 based on graph corrosion and with temporal complexity of O(|E|2 +|E| |V |).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' At each step the procedure corrupts the graph edges by the minimum edge weight of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' For each corroded version of the graph that we call partition, we compute s to capture the density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Finally the algorithm selects the corroded graph partition which maximizes the s and subsequently extracts the node groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In brevity we first enclose semantic hotspots in superpixels and consider each one as a node of a weighted graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We then put edges with weight proportional to the number of splashes falling between two superpixels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This results in a graph with clear dense subgraphs formations that correspond to superpixels clusters i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' semantic categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The semantic categories detection translates in the extraction of dense subgraphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' To this end we devised an iterative algorithm based on graph corrosion where we let the procedure select the corroded graph partition that filters noisy edges and let dense subgraphs emerge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We do so by maximizing score that captures the density of each connected component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Experiments Dataset As we introduced in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 one of the aims of this work is to provide a better comparative framework for visual pattern detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' To do so we created a public dataset by taking 104 pictures of store shelves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Each picture has been took with a 5mpx camera with approximatively the same visual conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We also rectified the images to eliminate visual distortions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We manually segmented and labeled each repeating product in two different se- mantic levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In the first semantic level products made by the same company share the same label.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In the second semantic level visual repetitions consist in the exact identical products.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In total the dataset is composed by 208 ground truth images, half in the first level and the rest for the second one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Chapter 4 93 Dissecting continual learning: a structural and data analysis Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='19: (top) Analysis of measures as the number of superpixels |P| retrieved varies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The rightmost figure shows the running time of the algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We repeated the experiments with the noisy version of the dataset but report only the mean since variation is almost equal to the original one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' (bottom) Distributions of the measures for the two semantic levels, by varying the two main parameters r and |P|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' µ-consistency We devised a new measure that captures the semantic consistency of a detected pattern that is a proxy of the average precision of detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In fact, we want to be sure that all pattern instances fall on similar ground truth objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' First we introduce the concept of semantic consistency for a particular pattern ⃗p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Let ⃗P be the set of patterns discovered by the algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Each pattern ⃗p contains several instances ⃗pi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' ⃗L is the set of ground truth categories, each ground truth category ⃗l contain several objects instances ⃗li.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Let us define ⃗tp as the vector of ground truth labels touched by all instances of ⃗p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We say that ⃗p is consistent if all its instances ⃗pi, i = 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' |⃗p| fall on ground truth regions sharing the same label.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In this case ⃗tp would be uniform and we consider ⃗p a good detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The worst scenario is when given a pattern ⃗p every ⃗pi falls on objects with different label ⃗l i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' all the values in ⃗tp are different.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' To get an estimate of the overall consistency of the proposed detection, we average the consistency for each ⃗p ∈ ⃗P giving us: 94 Chapter 4 Superpixels Analysis 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='00 11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='95 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='80 recall Time (sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=') 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='85 cal total 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='60 First Level First Level First Level First Level + noise First Level + noise 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='55 Second Level Second Level Second Level Second Level + noise Second Level + noise Second Level + noise All Levels 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='55 mm mm 000 0 Superpixels Superpixels Superpixels Superpixels Measures Distributions 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 First Level 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='0 Second Level μ-consistency recall total recallWorks Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='20: Qualitative comparison between [Liu and Liu, 2013] [14], [Lettry et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2017] [10] and our algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Our method detects and segments more than one pattern and does not constrain itself to a particular geometrical disposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' µ-consistency = 1 ���⃗P ��� � ⃗p∈⃗P ��mode �⃗tp ��� ��⃗tp �� (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='16) Recall The second measure is the classical recall over the objects retrieved by the algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Since our object detector outputs more than one pattern we average the recall for each ground truth label by taking the best fitting pattern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 1 ���⃗L ��� � ⃗l∈⃗L max⃗p∈⃗P recall (⃗p,⃗l) (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='17) The last measure is the total recall, here we consider a hit if any of the pattern falls in a labeled region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In general we expect this to be higher than the recall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We report the summary performances in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As can be seen the algo- rithm achieves a very high µ-consistency while still able to retrieve the majority of the ground truth patterns in both levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' One can observe in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='19 an inverse behaviour between recall and con- sistency as the number of superpixels retrieved grows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This is expected since less superpixels means bigger patterns, therefore it is more likely to retrieve more ground truth patterns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Chapter 4 95 [14] 10 OursDissecting continual learning: a structural and data analysis In order to study the robustness we repeated the same experiments with an altered version of our dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In particular for each image we applied one of the following corruptions: Additive Gaussian Noise (scale = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 ∗ 255), Gaussian Blur (σ = 3), Spline Distortions (grid affine), Brightness (+100), and Linear Contrast (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Qualitative Validation Firstly we begin the comparison by commenting on [Liu and Liu, 2013].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' One can observe that our approach has a significant advantage in terms of how the visual pat- tern is modeled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' While the authors model visual repetitions as geometrical artifacts associating points, we output a higher order representation of the visual pattern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In- deed the capability to provide a segmentation mask of the repeated instance region together the ability to span over different levels unlocks a wider range of use cases and applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As qualitative comparison we also added the latest (and only) deep learning based methodology [Lettry et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2017] we found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This methodology is only able to find a single instance of visual pattern, namely the most frequent and most significant with respect to the filters weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This means that the detection strongly depends from the training set of the CNN backbone, while our algorithm is fully unsupervised and data agnostic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Quantitative Validation We compared quantitatively our method against [Liu and Liu, 2013] that constitutes, to the best of our knowledge, the only work developed able to detect more than one visual pattern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We recreated the experimental settings of the authors by using the Face dataset [Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2007] as benchmark achieving 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='00 precision vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='98 of [Liu and Liu, 2013] and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='77 in recall vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We considered a miss on the object retrieval task, if more than 20% of a pattern total area falls outside from the ground truth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The parameter used were |C| = 9000, k = 15, r = 30, τ = 5, |P| = 150.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We also fixed the window of the gaussian vote to be 11 × 11 pixels throughout all the experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 96 Chapter 4 Works Conclusions With this study we introduced a fast and unsupervised method addressing the prob- lem of finding semantic categories by detecting consistent visual pattern repetitions at a given scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The proposed pipeline hierarchically detects self-similar regions represented by a segmentation mask.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As we demonstrated in the experimental evaluation, our approach retrieves more than one pattern and achieves better performances with respect to competitors meth- ods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We also introduce the concept of semantic levels endowed with a dedicated dataset and a new metric to provide to other researchers tools to evaluate the con- sistency of their approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Acknowledgments We would like to express our gratitude to Alessandro Torcinovich and Filippo Berga- masco for their suggestions to improve the work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We also thank Mattia Mantoan for his work to produce the dataset labeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Chapter 4 97 Dissecting continual learning: a structural and data analysis 98 Chapter 4 Chapter 5 Conclusions 99 Dissecting continual learning: a structural and data analysis In this thesis, we contributed spanned the dissection of continual learning by providing several structural and data analyses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' First we provide a gentle introduction to the topic of continual learning starting by highlighting the difference between natural and artificial models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Among the differences we stress the importance of time, which is an essential component for developing lifelong learning machines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Then, we informally introduce the main challenges that continual learning systems must tackle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In particular, catastrophic forgetting and the stability plasticity dilemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' To better provide an intuition about these topics, we provided a visual example of catastrophic forgetting in an autoencoder model, showing how distributional shifts in the subsequent tasks result in the abrupt damage of past knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Later, we move on by giving a more formal definition of continual learning settings prominently adopted in literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We introduced the notions of class-incremental, task-incremental, online/offline learning along with a specification on other common settings in the field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Before moving on the contributions we provided a small literature review on the state-of-the-art by describing the main categories under which continual learning methods have been grouped.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Finally, we move on the main contributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' First, we introduced a study on the quality/quantity trade-off in rehearsal-based continual learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Here, we se- lected one of the most performant baselines, that is GDumb, and analyzed several compression techniques when applied to the replay buffer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We highlighted that the quantity of data is a far more important factor when storing examplars in the re- play buffer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We do so by considering different compression schemes with extreme rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Then, we moved into the second major contribution which considers Visual Transformers in an incremental setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Here, besides being one of the first works on visual transformers for continual learning, we provided a surgical investigation on regularization methods for ViTs in the challenging setting of rehearsal-free CL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We compared functional, weight and attentional regularizations, with the latter being a regularization in the matrix of the self-attention mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Attentional regu- larizations provide comparable performance with respect to the other methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' As second contribution we also introduced a loss inspired by a method nowadays in vogue (PODNet) and devised an asymmetric variant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We show that the introduction of the asymmetric variant allows achieving more plasticity to the model when applied to different part of the mechanism of self-attention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Then, we proposed a study on off-the-shelf continual learning exploiting fully pretrained networks and, in particular, we proposed a simple baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The baseline is composed by a feature extractor and a knn-like prototype memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The baseline is crafted to be performant in practical sce- narios achieving optimal results with a memory overhead of few KBytes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Moreover we discussed its possible extension to the realm of unsupervised continual learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We then linked this preliminary discussion with the exploration of visual categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 100 Chapter 5 Conclusions To do so we introduce another work tackling unsupervised pattern discovery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In fact, the notion of discovery is naturally included into the notion of lifelong learning: an agent capable of lifelong learning, surely should possess the ability to autonomously discover new knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We do so by introducing a new unsupervised algorithm to perform unsupervised semantic segmentation at different semantic scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Further Developings With the several studies proposed, we want to highlight the directions where it might be more fruitful to investigate further to build better Continual Learning agents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' A first warning we raised regards the dataset usage to assess the performance of CL algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In particular, with Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 we see that extreme levels of buffer data resize still provide good results in rehearsal systems, suggesting that, perhaps, more realistic datasets should be included to devise more useful solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This find- ing is also supported by Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='3 which shows that tackling these benchmarks with a pretrained backbone is sufficient to overcome quasi-optimally continual learn- ing scenarios on 5 different datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This also suggests that pretraining could be a great advantage, in the generalization ability of the model, when building new CL algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' To tackle the aforementioned point, the community can focus more on unsuper- vised continual learning which is a natural and more challenging problem extension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' While keeping the same datasets we can now also leverage pretrained backbones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' While being appealing on its own, following this line is also greatly encouraged by the fact that there are virtually no works on such a topic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' With the study proposed in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 we show that ViTs are naturally inclined continual learners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We suspect that the less inductive bias carried by such models might be the key that allows such models to perform better in incremental scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' On another side, we see that the results obtained without pretraining have difficulty achieving CNN performances so easily (we can compare the results of Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='1 and Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' This calls for the need to build less data-hungry models in line with the world’s fast-paced data generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Within Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='2 we also propose a new way to assess Continual Learning methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' We think that the community still lacks of a principled way to measure the stability-plasticity trade-off.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' With our introduction of the two curves, we proposed an initial tentative to monitor the performance of a system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Chapter 5 101 Dissecting continual learning: a structural and data analysis Last but not least, with the work of Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='4 we stress that autonomously discovering new patterns should be a core ability of an intelligent system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In fact, if an agent can explore the real world and find hierarchies of knowledge without help, all it has to do to incrementally learn is to store such knowledge in some kind of long-term memory repository which translates into a compression problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 102 Chapter 5 Bibliography Networks of spiking neurons: The third generation of neural network models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Neural Networks, 1997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aur´elien Lucchi, Pascal Fua, and Sabine S¨usstrunk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' SLIC superpixels compared to state-of-the-art superpixel meth- ods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Pattern Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Mach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Intell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Tameem Adel, Han Zhao, and Richard E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Turner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Continual learning with adap- tive weights (CLAW).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In International Conference on Learning Representations, (ICLR), 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Abien Fred Agarap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Deep learning using rectified linear units (relu).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' ArXiv, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' An optimistic per- spective on offline reinforcement learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In ICML, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Hongjoon Ahn, Jihwan Kwak, Su Fang Lim, Hyeonsu Bang, Hyojun Kim, and Tae- sup Moon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Ss-il: Separated softmax for incremental learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pages 824–833, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Expert gate: Lifelong learning with a network of experts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Memory aware synapses: Learning what (not) to forget.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Proceedings of the European Conference on Computer Vision (ECCV), 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Laurent Charlin, Massimo Cac- cia, Min Lin, and Lucas Page-Caccia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Online continual learning with maximal inter- fered retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Advances in Neural Information Processing Systems (NeurIPS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Curran Associates, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Task-free continual learn- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In CVPR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Computer Vision Foundation / IEEE, 2019b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 103 Dissecting continual learning: a structural and data analysis Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Gradient based sam- ple selection for online continual learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Hanna M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alch´e-Buc, Emily B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Fox, and Roman Garnett, edi- tors, Advances in Neural Information Processing Systems (NeurIPS), 2019c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Elahe Arani, Fahad Sarfraz, and Bahram Zonooz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Learning fast, learning slow: A general continual learning method based on complementary learning system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' ICLR, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Banerjee, Vinay Kumar Verma, Toufiq Parag, Maneesh Kumar Singh, and Vinay P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Namboodiri.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Class incremental online streaming learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' NeurIPS, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Eden Belouadah, Adrian Popescu, and Ioannis Kanellos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' A comprehensive study of class incremental learning algorithms for visual tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Neural Networks, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Edward L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Bennett, Marian Cleeves Diamond, David Krech, and Mark Richard Rosen- zweig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Chemical and anatomical plasticity of brain changes in brain through expe- rience, demanded by learning theories, are found in experiments with rats.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Science, 1964.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Alessandro Betti, Marco Gori, Simone Marullo, and Stefano Melacci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Developing constrained neural units over time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In International Joint Conference on Neural Networks, IJCNN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' IEEE, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Magdalena Biesialska, Katarzyna Biesialska, and Marta R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Costa-juss`a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Continual lifelong learning in natural language processing: A survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Proceedings of the 28th International Conference on Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' International Com- mittee on Computational Linguistics, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Tom B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra- fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Ziegler, Jeffrey Wu, Clemens Winter, Christo- pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Language models are few-shot learners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual Confer- ence on Neural Information Processing Systems 2020, NeurIPS, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calder- ara.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Dark experience for general continual learning: a strong, simple baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: 104 Bibliography BIBLIOGRAPHY Annual Conference on Neural Information Processing Systems 2020, NeurIPS, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Gail A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Carpenter and Stephen Grossberg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The art of adaptive pattern recognition by a self-organizing neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Computer, 1988.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Fabio Cermelli, Massimiliano Mancini, Samuel Rota Bulo, Elisa Ricci, and Barbara Caputo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Modeling the background for incremental learning in semantic segmenta- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Conference on Computer Vision and Pattern Recognition (CVPR), 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Riemannian walk for incremental learning: Understanding forgetting and intransi- gence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Proceedings of the European Conference on Computer Vision (ECCV), 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Efficient lifelong learning with A-GEM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In International Conference on Learning Representations, (ICLR), 2019a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Dokania, Philip H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Torr, and Marc’Aurelio Ranzato.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' On tiny episodic memories in continual learning, 2019b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Hui Chen, Chao Tan, and Zan Lin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Ensemble of extreme learning machines for multivariate calibration of near-infrared spectroscopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' When vision transformers out- perform resnets without pretraining or strong data augmentations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' ICLR, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Ming-Ming Cheng, Fang-Lue Zhang, Niloy J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Mitra, Xiaolei Huang, and Shi-Min Hu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Repfinder: finding approximately repeated scene elements for image editing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Riccardo Del Chiaro, Bartlomiej Twardowski, Andrew D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Bagdanov, and Joost van de Weijer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' RATT: recurrent attention to transient tasks for continual image cap- tioning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Ondrej Chum and Jiri Matas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Unsupervised discovery of co-occurrence in sparse high dimensional data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In The Twenty-Third IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2010, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Bibliography 105 Dissecting continual learning: a structural and data analysis Tarin Clanuwat, Mikel Bober-Irizar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Kitamoto, Alex Lamb, Kazuaki Yamamoto, and David Ha.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Deep learning for classical japanese literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' ArXiv, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Djork-Arn´e Clevert, Thomas Unterthiner, and Sepp Hochreiter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Fast and accurate deep network learning by exponential linear units (elus).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Yoshua Bengio and Yann LeCun, editors, 4th International Conference on Learning Representations, ICLR, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Cyprien de Masson d’Autume, Sebastian Ruder, Lingpeng Kong, and Dani Yogatama.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Episodic memory in lifelong language learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Hanna M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alch´e-Buc, Emily B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Fox, and Roman Garnett, editors, Advances in Neural Information Processing Systems (NeurIPS), 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Matthias Delange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales Leonardis, Greg Slabaugh, and Tinne Tuytelaars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' A continual learning survey: Defying forgetting in classification tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Imagenet: A large-scale hierarchical image database.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Society Conference on Computer Vision and Pattern Recognition (CVPR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' IEEE, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' BERT: pre- training of deep bidirectional transformers for language understanding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Jill Burstein, Christy Doran, and Thamar Solorio, editors, Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Association for Com- putational Linguistics, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Prithviraj Dhar, Rajat Vikram Singh, Kuan-Chuan Peng, Ziyan Wu, and Rama Chel- lappa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Learning without memorizing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Conference on Computer Vision and Pattern Recognition (CVPR), 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' An image is worth 16x16 words: Transformers for image recognition at scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In 9th International Conference on Learning Representations, ICLR, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Briar Doty, Stefan Mihalas, Anton Arkhipov, and Alex T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Piet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Heterogeneous ‘cell types’ can improve performance of deep neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' bioRxiv, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 106 Bibliography BIBLIOGRAPHY Petr Doubek, Jiri Matas, Michal Perdoch, and Ondrej Chum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Image matching and retrieval by repetitive patterns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In 20th International Conference on Pattern Recog- nition, ICPR 2010, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Arthur Douillard and Timoth´ee Lesort.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Continuum: Simple management of complex continual learning scenarios, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Arthur Douillard, Matthieu Cord, Charles Ollion, Thomas Robert, and Eduardo Valle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Podnet: Pooled outputs distillation for small-tasks incremental learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Pro- ceedings of the IEEE European Conference on Computer Vision (ECCV), 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Arthur Douillard, Alexandre Ram´e, Guillaume Couairon, and Matthieu Cord.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Dy- tox: Transformers for continual learning with dynamic token expansion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' CoRR, abs/2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='11326, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Sayna Ebrahimi, Mohamed Elhoseiny, Trevor Darrell, and Marcus Rohrbach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Uncertainty-guided continual learning with bayesian neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Inter- national Conference on Learning Representations, (ICLR), 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Spyros Gidaris and Nikos Komodakis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Dynamic few-shot visual learning without forgetting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Conference on Computer Vision and Pattern Recognition, (CVPR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' IEEE, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Ian J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Courville, and Yoshua Bengio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Generative adversarial nets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In NIPS, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Pankaj Gupta, Yatin Chaudhary, Thomas A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Runkler, and Hinrich Sch¨utze.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Neural topic modeling with continual lifelong learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In International Conference on Machine Learning, (ICML).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' PMLR, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Raia Hadsell, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Rao, Andrei A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Rusu, and Razvan Pascanu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Embracing change: Continual learning in deep neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Trends in Cognitive Sciences, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Tyler L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Hayes and Christopher Kanan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Lifelong machine learning with deep streaming linear discriminant analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In CVPR, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Tyler L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Hayes, Nathan D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Cahill, and Christopher Kanan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Memory efficient experi- ence replay for streaming learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In International Conference on Robotics and Automation, ICRA 2019, Montreal, QC, Canada, May 20-24, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' IEEE, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Deep residual learning for image recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Conference on Computer Vision and Pattern Recognition, (CVPR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' IEEE, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Bibliography 107 Dissecting continual learning: a structural and data analysis Felix Hill, Adam Santoro, David G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Barrett, Ari S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Morcos, and Timothy P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Lillicrap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Learning to make analogies by contrasting abstract relational structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In 7th International Conference on Learning Representations, ICLR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' OpenReview.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='net, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Geoffrey E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Hinton, Oriol Vinyals, and Jeffrey Dean.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Distilling the knowledge in a neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' ArXiv, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Sepp Hochreiter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The vanishing gradient problem during learning recurrent neural nets and problem solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Guillaume Hocquet, Olivier Bichler, and Damien Querlioz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Ova-inn: Continual learn- ing with invertible neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In 2020 International Joint Conference on Neural Networks (IJCNN), 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Learning a unified classifier incrementally via rebalancing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Yen-Chang Hsu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Liu, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Kira.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Re-evaluating continual learning scenarios: A categorization and case for strong baselines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' ArXiv, abs/1810.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='12488, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Guang-Bin Huang, Lei Chen, and Chee Kheong Siew.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Universal approximation using incremental constructive feedforward networks with random hidden nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Neural Networks, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Inbar Huberman and Raanan Fattal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Detecting repeating objects using patch corre- lation analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In 2016 IEEE Conference on Computer Vision and Pattern Recog- nition, CVPR, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Sergey Ioffe and Christian Szegedy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Batch normalization: Accelerating deep network training by reducing internal covariate shift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Francis R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Bach and David M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Blei, editors, Proceedings of the 32nd International Conference on Machine Learning, ICML, JMLR Workshop and Conference Proceedings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' JMLR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='org, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Khurram Javed and Faisal Shafait.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Revisiting distillation and incremental classifier learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In ACCV, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Johnson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Extensions of lipschitz mappings into hilbert space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Contemporary mathematics, 1984.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Joseph, Jathushan Rajasegaran, Salman Hameed Khan, Fahad Shahbaz Khan, Vineeth N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Balasubramanian, and Ling Shao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Incremental object detection via meta-learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' IEEE transactions on pattern analysis and machine intelligence TPAMI, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 108 Bibliography BIBLIOGRAPHY Diederik P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Kingma and Max Welling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Auto-encoding variational bayes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Yoshua Bengio and Yann LeCun, editors, 2nd International Conference on Learning Rep- resentations, (ICLR), 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Thomas N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Kipf and Max Welling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Semi-supervised classification with graph convo- lutional networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In 5th International Conference on Learning Representations, ICLR 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' OpenReview.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='net, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' James Kirkpatrick, Razvan Pascanu, Neil C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Overcoming catastrophic forgetting in neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Proceedings of the National Academy of Sciences, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Jeremias Knoblauch, Hisham Husain, and Tom Diethe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Optimal continual learning has perfect memory and is np-hard.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In ICML, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Alex Krizhevsky.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Learning multiple layers of features from tiny images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Technical report, University of Toronto, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Ramesh Kumar Lama, Jeonghwan Gwak, Jeong-Seon Park, and Sang-Woong Lee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Diagnosis of alzheimer’s disease based on structural mri images using a regularized extreme learning machine and pca features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Journal of healthcare engineering, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Yann LeCun, L´eon Bottou, Yoshua Bengio, and Patrick Haffner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Gradient-based learning applied to document recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Proceedings of the IEEE, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Soochan Lee, Junsoo Ha, Dongsu Zhang, and Gunhee Kim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' A neural dirichlet process mixture model for task-free continual learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In 8th International Conference on Learning Representations, ICLR, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Louis Lettry, Michal Perdoch, Kenneth Vanhoey, and Luc Van Gool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Repeated pat- tern detection using CNN activations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In 2017 IEEE Winter Conference on Appli- cations of Computer Vision, WACV 2017, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Thomas K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Leung and Jitendra Malik.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Detecting, localizing and grouping repeated scene elements from an image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Computer Vision - ECCV’96, 4th European Conference on Computer Vision, Proceedings, Volume I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Springer, 1996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Duo Li, Guimei Cao, Yunlu Xu, Zhanzhan Cheng, and Yi Niu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Technical report for iccv 2021 challenge sslad-track3b: Transformers are better continual learners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' arXiv preprint arXiv:2201.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='04924, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Bibliography 109 Dissecting continual learning: a structural and data analysis Fei-Fei Li, Robert Fergus, and Pietro Perona.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Vis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Image Underst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Zhizhong Li and Derek Hoiem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Learning without forgetting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' transactions on pattern analysis and machine intelligence (PAMI), 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Seppo Linnainmaa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Taylor expansion of the accumulated rounding error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' BIT Nu- merical Mathematics, 1976.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Jingchen Liu and Yanxi Liu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' GRASP recurring patterns from a single view.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In IEEE Conference on Computer Vision and Pattern Recognition, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Xialei Liu, Chenshen Wu, Mikel Menta, Luis Herranz, Bogdan Raducanu, Andrew D Bagdanov, Shangling Jui, and Joost van de Weijer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Generative feature replay for class-incremental learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Conference on Computer Vision and Pattern Recognition Workshops CVPRW, 2020a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Yanxi Liu, Robert T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Collins, and Yanghai Tsin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' A computational model for periodic pattern perception based on frieze and wallpaper groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Pattern Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Mach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Intell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Yaoyao Liu, Anan Liu, Yuting Su, Bernt Schiele, and Qianru Sun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Mnemonics train- ing: Multi-class incremental learning without forgetting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 2020 IEEE/CVF Confer- ence on Computer Vision and Pattern Recognition (CVPR), 2020b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Yun Liu, Ming-Ming Cheng, Xiaowei Hu, Jia-Wang Bian, Le Zhang, Xiang Bai, and Jinhui Tang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Richer convolutional features for edge detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Swin transformer: Hierarchical vision transformer using shifted windows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' ICCV, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Vincenzo Lomonaco and Davide Maltoni.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Core50: a new dataset and benchmark for continuous object recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Sergey Levine, Vincent Vanhoucke, and Ken Goldberg, editors, Proceedings of the 1st Annual Conference on Robot Learning, Proceedings of Machine Learning Research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' PMLR, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Vincenzo Lomonaco, Karan Desai, Eugenio Culurciello, and Davide Maltoni.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Con- tinual reinforcement learning in 3d non-stationary environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Conference on Computer Vision and Pattern Recognition, (CVPR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' IEEE, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Vincenzo Lomonaco, Lorenzo Pellegrini, Pau Rodr´ıguez L´opez, Massimo Caccia, Qi She, Yu Chen, Quentin Jodelet, Ruiping Wang, Zheda Mai, David V´azquez, 110 Bibliography BIBLIOGRAPHY German Ignacio Parisi, Nikhil Churamani, Marc Pickett, Issam H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Laradji, and Davide Maltoni.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Cvpr 2020 continual learning in computer vision competition: Approaches, results, current challenges and future directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Artif.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Intell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' David Lopez-Paz and Marc’Aurelio Ranzato.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Gradient episodic memory for continual learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Wallach, Rob Fergus, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Vishwanathan, and Roman Garnett, editors, Advances in Neural Information Processing Systems 30: Annual Conference on Neural Infor- mation Processing Systems (NeurIPS), 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Ilya Loshchilov and Frank Hutter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' SGDR: stochastic gradient descent with warm restarts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In International Conference on Learning Representations, (ICLR), 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Andrew L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Maas, Awni Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Hannun, and Andrew Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Ng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Rectifier nonlinearities improve neural network acoustic models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In in ICML Workshop on Deep Learning for Audio, Speech and Language Processing, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Zheda Mai, Ruiwen Li, Jihwan Jeong, David Quispe, Hyunwoo J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Kim, and Scott Sanner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Online continual learning in image classification: An empirical survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Neurocomputing, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Arun Mallya and Svetlana Lazebnik.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Packnet: Adding multiple tasks to a single network by iterative pruning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Computer Vision Foundation / IEEE Computer So- ciety, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' David McCaffary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Towards continual task learning in artificial neural networks: cur- rent approaches and insights from neuroscience.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' ArXiv, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' James L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' McClelland, Bruce L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' McNaughton, and Randall C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' O’Reilly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Psychological review, 1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Michael McCloskey and Neal J Cohen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Catastrophic interference in connectionist networks: The sequential learning problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Psychology of learning and moti- vation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Elsevier, 1989.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Warren S McCulloch and Walter Pitts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' A logical calculus of the ideas immanent in nervous activity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The bulletin of mathematical biophysics, 1943.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Sanket Vaibhav Mehta, Darshan Patil, Sarath Chandar, and Emma Strubell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' An empirical investigation of the role of pre-training in lifelong learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' ArXiv, abs/2112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='09153, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Bibliography 111 Dissecting continual learning: a structural and data analysis Umberto Michieli and Pietro Zanuttigh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Incremental learning techniques for seman- tic segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (ICCV-W), 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Seyed Iman Mirzadeh, Arslan Chaudhry, Dong Yin, Timothy Nguyen, Razvan Pas- canu, Dilan Gorur, and Mehrdad Farajtabar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Architecture matters in continual learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' arXiv preprint arXiv:2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='00275, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Katelyn Morrison, Benjamin Gilby, Colton Lipchak, Adam Mattioli, and Adriana Ko- vashka.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Exploring corruption robustness: Inductive biases in vision transformers and mlp-mixers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' CoRR, abs/2106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='13122, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Martin Mundt, Yong Won Hong, Iuliia Pliushch, and Visvanathan Ramesh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' A wholis- tic view of continual learning with deep neural networks: Forgotten lessons and the bridge to active and open world learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' ArXiv, abs/2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='01797, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Vinod Nair and Geoffrey E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Hinton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Rectified linear units improve restricted boltz- mann machines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In ICML, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Chris Olah, Alexander Mordvintsev, and Ludwig Schubert.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Feature visualization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Distill, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='23915/distill.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='00007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' https://distill.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='pub/2017/feature- visualization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Yuki Ono, Eduard Trulls, Pascal Fua, and Kwang Moo Yi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Lf-net: Learning local features from images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Samy Bengio, Hanna M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Wallach, Hugo Larochelle, Kristen Grauman, Nicol`o Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural Information Processing Systems 31, NeurIPS, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' German Ignacio Parisi, Ronald Kemker, Jose L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Part, Christopher Kanan, and Stefan Wermter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Continual lifelong learning with neural networks: A review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Neural Networks, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Minwoo Park, Kyle Brocklehurst, Robert T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Collins, and Yanxi Liu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Deformed lattice detection in real-world images using mean-shift belief propagation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Pattern Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Mach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Intell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Sayak Paul and Pin-Yu Chen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Vision transformers are robust learners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' arXiv preprint arXiv:2105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='07581, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Jary Pomponi, Simone Scardapane, Vincenzo Lomonaco, and Aurelio Uncini.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Effi- cient continual learning in neural networks with embedding regularization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Neuro- computing, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Mozhgan Pourkeshavarz and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Sabokrou.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Zs-il: Looking back on learned experi- ences for zero-shot incremental learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' ICLR, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 112 Bibliography BIBLIOGRAPHY Ameya Prabhu, Philip H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Torr, and Puneet K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Dokania.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Gdumb: A simple approach that questions our progress in continual learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Computer Vision - (ECCV), Lec- ture Notes in Computer Science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Springer, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' James Pritts, Ondrej Chum, and Jiri Matas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Rectification, and segmentation of coplanar repeated patterns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Muhammad Naveed Iqbal Qureshi, Beomjun Min, Hang Joon Jo, and Boreom Lee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Multiclass classification for the differential diagnosis on the adhd subtypes using recursive feature elimination and hierarchical extreme learning machine: structural mri study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' PloS one, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and Alexey Dosovitskiy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Do vision transformers see like convolutional neural networks?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' ArXiv, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Jathushan Rajasegaran, Munawar Hayat, Salman H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Khan, Fahad Shahbaz Khan, and Ling Shao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Random path selection for continual learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Hanna M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alch´e-Buc, Emily B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Fox, and Roman Garnett, editors, Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Lam- pert.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' icarl: Incremental classifier and representation learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Conference on Computer Vision and Pattern Recognition, (CVPR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' IEEE, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Maximilian Riesenhuber and Tomaso A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Poggio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Hierarchical models of object recog- nition in cortex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Nature Neuroscience, 1999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Mark Bishop Ring et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Continual learning in reinforcement environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' PhD thesis, 1994.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Hippolyt Ritter, Aleksandar Botev, and David Barber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Online structured laplace approximations for overcoming catastrophic forgetting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Advances in Neural Information Processing Systems, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Carlos Rodr´ıguez-Pardo, Sergio Suja, David Pascual, Jorge Lopez-Moreno, and Elena Garces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Automatic extraction and synthesis of regular repeatable patterns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Com- put.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Bibliography 113 Dissecting continual learning: a structural and data analysis David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Lillicrap, and Gregory Wayne.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Experience replay for continual learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Hanna M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alch´e-Buc, Emily B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Fox, and Roman Garnett, editors, Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Frank Rosenblatt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' The perceptron: a probabilistic model for information storage and organization in the brain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Psychological review, 1958.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Efficient content-based sparse attention with routing transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Assoc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Com- put.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Linguistics, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' David E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Rumelhart, Geoffrey E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Hinton, and Ronald J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Williams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Learning represen- tations by back-propagating errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Nature, 1986.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Bernstein, Alexan- der C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Berg, and Li Fei-Fei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Imagenet large scale visual recognition challenge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Vis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Andrei A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Rusu, Neil C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Progressive neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' ArXiv, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Sara Sabour, Nicholas Frosst, and Geoffrey E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Hinton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Dynamic routing between capsules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Wal- lach, Rob Fergus, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Vishwanathan, and Roman Garnett, editors, Advances in Neural Information Processing Systems 30: Annual Conference on Neural In- formation Processing Systems NIPS, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Frederik Schaffalitzky and Andrew Zisserman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Geometric grouping of repeated ele- ments within images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In John N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Carter and Mark S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Nixon, editors, Proceedings of the British Machine Vision Conference 1998, BMVC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' J¨urgen Schmidhuber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Deep learning in neural networks: An overview.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' CoRR, abs/1404.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='7828, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Eli Shechtman and Michal Irani.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Matching local self-similarities across images and videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In 2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' IEEE Computer Society, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Dongsub Shim, Zheda Mai, Jihwan Jeong, Scott Sanner, Hyunwoo Kim, and Jongseong Jang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Online class-incremental continual learning with adversarial shap- ley value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' AAAI, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 114 Bibliography BIBLIOGRAPHY Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Continual learning with deep generative replay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Wallach, Rob Fergus, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Vishwanathan, and Roman Garnett, ed- itors, Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems NIPS, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Shagun Sodhani, Sarath Chandar, and Yoshua Bengio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Toward training recurrent neural networks for lifelong learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Neural Computation, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' David Stutz, Alexander Hermans, and Bastian Leibe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Superpixels: An evaluation of the state-of-the-art.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Vis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Image Underst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Fan-Keng Sun, Cheng-Hao Ho, and Hung-Yi Lee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' LAMOL: language modeling for lifelong language learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In International Conference on Learning Representa- tions, (ICLR), 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Going deeper with convolutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chunfang Liu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' A survey on deep transfer learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Vera Kurkov´a, Yannis Manolopoulos, Barbara Hammer, Lazaros S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Iliadis, and Ilias Maglogiannis, editors, International Conference on Artificial Neural Networks (ICANN), Lecture Notes in Computer Science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Springer, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Bosiljka Tasic, Zizhen Yao, Lucas T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Graybuck, Kimberly A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Smith, Thuc Nghi Nguyen, Darren Bertagnolli, Jeff Goldy, Emma Garren, Michael N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Economo, Sarada Viswanathan, Osnat Penn, Trygve E Bakken, Vilas Menon, Jeremy A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Miller, Olivia Fong, Karla E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Hirokawa, Kanan Lathia, Christine Rimorin, Michael Tieu, Rachael Larsen, Tamara Casper, Eliza Barkan, Matthew Kroll, Sheana E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Parry, Nadiya Shapovalova, Daniel Hirschstein, Julie Pendergraft, Heather Anne Sullivan, Tae Kyung Kim, Aaron Szafer, Nick Dee, Peter A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Groblewski, Ian R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Wickersham, Ali H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Cetin, Julie A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Harris, Boaz P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Levi, Susan M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Sunkin, Linda J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Madisen, Tanya L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Daigle, Loren L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Looger, Amy Bernard, John W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Phillips, Ed S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Lein, Michael J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Hawrylycz, Karel Svoboda, Allan R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Jones, Christof Koch, and Hongkui Zeng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Shared and distinct transcriptomic cell types across neocortical areas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Nature, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Sebastian Thrun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Explanation-based neural network learning a lifelong learning ap- proach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' PhD thesis, University of Bonn, Germany, 1995a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Bibliography 115 Dissecting continual learning: a structural and data analysis Sebastian Thrun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Is learning the n-th thing any easier than learning the first?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In David S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Touretzky, Michael Mozer, and Michael E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Hasselmo, editors, Advances in Neural Information Processing Systems, (NIPS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' MIT Press, 1995b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Sebastian Thrun and Tom M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Mitchell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Lifelong robot learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Robotics Auton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 15(1-2):25–46, 1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Akihiko Torii, Josef Sivic, Masatoshi Okutomi, and Tom´as Pajdla.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Visual place recognition with repetitive structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Pattern Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Mach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Intell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablay- rolles, and Herv´e J´egou.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Training data-efficient image transformers & distillation through attention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Marina Meila and Tong Zhang, editors, ICML, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Gido M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' van de Ven and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Tolias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Three scenarios for continual learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' ArXiv, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Gido M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' van de Ven and Andreas Savas Tolias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Generative replay with feedback connections as a general strategy for continual learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' ArXiv, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' A¨aron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Senior, and Koray Kavukcuoglu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Wavenet: A generative model for raw audio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In The 9th ISCA Speech Synthesis Workshop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' ISCA, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Gomez, Lukasz Kaiser, and Illia Polosukhin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Attention is all you need.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Is- abelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Wallach, Rob Fergus, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Vishwanathan, and Roman Garnett, editors, Advances in Neural Informa- tion Processing Systems 30: Annual Conference on Neural Information Processing Systems NIPS, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Hongxing Wang, Gangqiang Zhao, and Junsong Yuan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Visual pattern discovery in image and video data: a brief survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Wiley Interdiscip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Data Min.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Knowl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Discov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=', 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Yuqing Wang, Zhaoliang Xu, Xinlong Wang, Chunhua Shen, Baoshan Cheng, Hao Shen, and Huaxia Xia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' End-to-end video instance segmentation with transform- ers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Ross Wightman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Pytorch image models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='com/rwightman/ pytorch-image-models, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 116 Bibliography BIBLIOGRAPHY Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, Zhengyou Zhang, and Yun Raymond Fu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Incremental classifier learning with gen- erative adversarial networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' ArXiv, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Raymond Fu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Large scale incremental learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Tete Xiao, Mannat Singh, Eric Mintun, Trevor Darrell, Piotr Doll´ar, and Ross B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Girshick.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Early convolutions help transformers see better.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' CoRR, abs/2106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='14881, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Ju Xu and Zhanxing Zhu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Reinforced continual learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Samy Bengio, Hanna M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Wallach, Hugo Larochelle, Kristen Grauman, Nicol`o Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems, (NeurIPS), 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Jianwei Yang, Chunyuan Li, Pengchuan Zhang, Xiyang Dai, Bin Xiao, Lu Yuan, and Jianfeng Gao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Focal self-attention for local-global interactions in vision transform- ers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' ArXiv, abs/2107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='00641, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Lifelong learning with dynamically expandable networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In 6th International Conference on Learning Representations, ICLR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' OpenReview.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='net, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Lu Yu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Liu, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Weijer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Self-training for class-incremental semantic segmenta- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' ArXiv, 2020a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Lu Yu, Bartlomiej Twardowski, Xialei Liu, Luis Herranz, Kai Wang, Yongmei Cheng, Shangling Jui, and Joost van de Weijer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Semantic drift compensation for class- incremental learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition CVPR, 2020b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Pei Yu, Yinpeng Chen, Ying Jin, and Zicheng Liu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Improving vision transformers for incremental learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' ArXiv, abs/2112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content='06103, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Cutmix: Regularization strategy to train strong classifiers with localizable features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In IEEE/CVF International Conference on Computer Vision, (ICCV).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' IEEE, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Friedemann Zenke, Ben Poole, and Surya Ganguli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Continual learning through synap- tic intelligence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' In Proceedings of the 34th International Conference on Machine Learning, Proceedings of Machine Learning Research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' PMLR, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
+page_content=' Bibliography 117' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfGvt3/content/2301.01033v1.pdf'}
diff --git a/FNAyT4oBgHgl3EQfSffh/content/tmp_files/2301.00089v1.pdf.txt b/FNAyT4oBgHgl3EQfSffh/content/tmp_files/2301.00089v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..84d28870ae4f442cc058431472bd727f3547d233
--- /dev/null
+++ b/FNAyT4oBgHgl3EQfSffh/content/tmp_files/2301.00089v1.pdf.txt
@@ -0,0 +1,1676 @@
+Chair of Robotics, Artificial Intelligence and Real-Time Systems
+TUM School of Computation, Information and Technology
+Technical University of Munich
+1
+Autonomous Driving Simulator based on Neurorobotics Platform
+Wei Cao, Liguo Zhou �, Yuhong Huang, and Alois Knoll
+Chair of Robotics, Artificial Intelligence and Real-Time Systems, Technical University of Munich
+� liguo.zhou@tum.de
+Abstract — There are many artificial intelligence algorithms for autonomous driving in the present market,
+but directly installing these algorithms on vehicles is unrealistic and expensive. At the same time, many of these
+algorithms need an environment to train and optimize. Simulation is a valuable and meaningful solution with
+training and testing functions, and it can say that simulation is a critical link in the autonomous driving world.
+There are also many different applications or systems of simulation from companies or academies such as SVL
+and Carla. These simulators flaunt that they have the closest real-world simulation, but their environment objects,
+such as pedestrians and other vehicles around the agent-vehicle, are already fixed programmed. They can only
+move along the pre-setting trajectory, or random numbers determine their movements. What is the situation
+when all environmental objects are also installed by Artificial Intelligence, or their behaviors are like real people
+or natural reactions of other drivers? This problem is a blind spot for most of the simulation applications, or
+these applications cannot be easy to solve this problem. The Neurorobotics Platform from the TUM team of
+Prof. Alois Knoll has the idea about "Engines" and "Transceiver Functions" to solve the multi-agents problem.
+This report will start with a little research on the Neurorobotics Platform and analyze the potential and possibility
+of developing a new simulator to achieve the true real-world simulation goal. Then based on the NRP-Core
+Platform, this initial development aims to construct an initial demo experiment. The consist of this report
+starts with the basic knowledge of NRP-Core and its installation, then focus on the explanation of the necessary
+components for a simulation experiment, at last, about the details of constructions for the autonomous driving
+system, which is integrated object detection function and autonomous driving control function. At the end will
+discuss the existing disadvantages and improvements of this autonomous driving system.
+Keywords— Simulation, Neurorobotics Platform, NRP-Core, Engines, Transceiver Functions, Autonomous Driving,
+Object Detection, PID Trajectory Control
+1 Introduction
+1.1 Motivation
+At present, there are many different Artificial Intelligence (AI) algorithms used for autonomous driving. Some algorithms
+are used to perceive the environment, such as object detection and semantic/instance segmentation. Some algorithms are
+dedicated to making the best trajectory strategy and control decisions based on the road environment. Others contribute
+to many different applications, e.g. path planning and parking. Simulation is the best cost-performance way to develop
+these algorithms before they are truly deployed to actual vehicles or robots. So, the performance of a simulation platform
+is influencing the performance of the AI algorithms. In the present market or business world, there are already a lot of
+different “real-world” simulation applications such as CARLA [1] for simulating the algorithm for autonomous driving,
+AirSim [2] from Microsoft for autonomous vehicle and quadrotor and PTV Vissim [3] from Germany PTV Group for
+flexible traffic simulation.
+Although these simulators are dedicated to the “real world” simulation, they have more or less “unreal” problems on
+some sides in the process of simulation. For example, besides the problem about the unreal 3-D models and environment,
+these simulators have an obvious feature, these AI algorithms are only deployed to target experimental subjects, vehicles, or
+robots, and the environment such as other vehicles, motorbikes, and pedestrian looks very close to the “real” environment
+but actually these environmental subjects are already in advance pre-programmed and have a fix motion trail. The core
+problem of most of them focuses on basic information transmission. They only transfer the essential or necessary traffic
+information to the agent subject in the simulation. This transmission is one-way direction. Considering this situation, can
+let other subjects in this simulation have their own different AI algorithms at the same time that they can react to the agent’s
+behavior? In the future world, there would be not only one vehicle owning one algorithm from one company, but they
+must also have much interaction with other agents. The interaction between different algorithms can take which influence
+back on these algorithms, and this problem is also a blind point for many simulators.
+This large range of interaction between lots of agents is the main problem that these applications should pay attention
+to and these existing applications do not have an efficient way to solve this problem. A simulation platform that is truly
+arXiv:2301.00089v1 [cs.RO] 31 Dec 2022
+
+2
+like the real world, whose environment is not only a fixed pre-definition program, the objects in the environment can make
+a relative objective interaction with vehicles with the testing autonomous driving algorithms and they can influence each
+other, the goal and concept is an intractable problem for the construction of a simulation platform. There is a platform
+called The Neurorobotics Platform (NRP) from the TUM team of Prof. Alois Knoll that provides a potential idea to solve
+this interaction problem. This research project focuses on preliminary implementation and searches for the possibility of
+solving the previously mentioned interaction problem.
+1.2 Neurorobotics Platform (NRP)
+Figure 1.1 The base model of Neurorobotics Platform (NRP)
+Neurorobotics Platform [4] is an open-source integrative simulation framework platform developed by the group of the
+chair of Robotics, Artificial Intelligence and Real-Time Systems of the Technical University of Munich in the context of
+the Human Brain Project - a FET Flagship funded by the European Commission. The basic starting point of this platform
+enables to choose and test of different brain models (ranging from spiking neural networks to deep networks) for robots.
+This platform builds an efficient information transmission framework to let simulated agents interact with their virtual
+environment.
+The new Version of NRP called NRP Core provides a new idea, which regards all the Participator in the Simulation-
+system as "Engines", just like the object in the programming language C++/python, the properties of the simulation
+participator such as the robot, autonomous-driving car, weather, or pedestrian and their "behaviors" would be completely
+constructed in their own "Engine"-object and let all the participates become a "real" object and can each other influence in
+the simulation world and they would not be a fix definite "Program". And the NRP-Platform is the most important transport
+median between these engines and they are called the Transceiver Function. It transmits the "Information" such as the
+image from the camera and sends the image to an autonomous-driving car and the same time would send other information
+to other engines by different transfer protocols such as JSON or ROS system. That means the transmission of information
+is highly real-time and lets the simulation world very close to the real world and it has high simulation potency, e.g. the
+platform sends the image information to the autonomous-driving car and lets the car computes the situation and makes
+the right strategy and rational decision, and at the same moment the environment-cars or "drivers" also get the location
+information from the autonomous-driving car and make their own decisions such like drive further or change velocity and
+lanes, and the same time these cars are influenced by the situation of the weather, e.g. in raining days the brake time of the
+car would be longer and let the decision making and object detection more significant.
+NRP-core is mostly written in C++, with the Transceiver Function framework relying on Python for better usability.
+It guarantees a fully deterministic execution of the simulation, provided every simulator used is itself deterministic and
+works on the basis of controlled progression through time steps. Users should thus take note that event-based simulators
+may not be suitable for integration in NRP-core (to be analyzed on a case-by-case basis). Communications to and from
+NRP-core are indeed synchronous, and function calls are blocking; as such, the actual execution time of a simulation
+based on NRP-core will critically depend on the slowest simulator integrated therein. The aforementioned feature of the
+NRP-Core platform is significant to build multi-object which interact with other agencies in the simulation progress and
+lets the simulation be close to the real world.
+2 NRP-Core configurations for simulation progress
+NRP-Core has many application scenarios for different demands of simulation situations. For a specific purpose, the
+model of NRP-Core can be widely different. This development for the Autonomous-driving benchmark focuses on the
+actual suggested development progress. It concentrates on the construction of the simulation application, the details of
+
+Close
+Transceiver Functions
+Loop
+Engine3
+the operation mechanism of NRP-Core would not be discussed, and deep research in this development documentation, the
+principle of the operation mechanism can be found on the homepage of NRP-Core.
+2.1 Installation of NRP-Core and setting environment
+For the complete installation, refer to the homepage of the NRP-Core Platform by "Getting Started" under the page
+"Installation Instructions." This section lists only all the requirements for applying the autonomous driving simulator and
+benchmark.
+WARNING: Previous versions of the NRP install forked versions of several libraries, notably NEST and Gazebo.
+Installing NRP-core in a system where a previous version of NRP is installed is known to cause conflicts. That will be
+strongly recommended not to install the last version at the same time.
+Operating System: recommend on Ubuntu 20.04
+Setting the Installation Environment: To properly set the environment to run experiments with NRP-core, please make
+sure that it is added the lines below to your /.bashrc file.
+1 # Start
+setting
+environment
+2 export
+NRP_INSTALL_DIR ="/home/${USER }/. local/nrp" # The
+installation
+directory ,
+which was given
+before
+3 export
+NRP_DEPS_INSTALL_DIR ="/home/${USER }/. local/nrp_deps"
+4 export
+PYTHONPATH="${ NRP_INSTALL_DIR }"/lib/python3 .8/site -packages:"${
+NRP_DEPS_INSTALL_DIR }"/lib/python3 .8/site -packages:$PYTHONPATH
+5 export
+LD_LIBRARY_PATH ="${ NRP_INSTALL_DIR }"/lib:"${ NRP_DEPS_INSTALL_DIR }"/lib:${
+NRP_INSTALL_DIR }/lib/ nrp_gazebo_plugins : $LD_LIBRARY_PATH
+6 export
+PATH=$PATH:"${ NRP_INSTALL_DIR }"/bin:"${ NRP_DEPS_INSTALL_DIR }"/bin
+7 export
+GAZEBO_PLUGIN_PATH =${ NRP_INSTALL_DIR }/lib/ nrp_gazebo_plugins :${
+GAZEBO_PLUGIN_PATH }
+8 . /usr/share/gazebo -11/ setup.sh
+9 . /opt/ros/noetic/setup.bash
+10 . ${CATKIN_WS }/ devel/setup.bash
+11 # End of setting
+environment
+Dependency installation:
+1 # Start of dependencies
+installation
+2 # Pistache
+REST
+Server
+3 sudo add -apt -repository
+ppa:pistache+team/unstable
+4
+5 # Gazebo
+repository
+6 sudo sh -c ’echo "deb http :// packages. osrfoundation .org/gazebo/ubuntu -stable ‘
+lsb_release -cs ‘ main"> /etc/apt/sources.list.d/gazebo -stable.list ’
+7 wget
+https :// packages.osrfoundation .org/gazebo.key -O - | sudo apt -key add -
+8
+9 sudo apt update
+10 sudo apt
+install
+git cmake
+libpistache -dev libboost -python -dev libboost -
+filesystem -dev libboost -numpy -dev libcurl4 -openssl -dev nlohmann -json3 -dev
+libzip -dev cython3
+python3 -numpy
+libgrpc ++-dev protobuf -compiler -grpc
+libprotobuf -dev
+doxygen
+libgsl -dev libopencv -dev python3 -opencv
+python3 -pil
+python3 -pip libgmock -dev
+11
+12 # required by gazebo
+engine
+13 sudo apt
+install
+libgazebo11 -dev
+gazebo11
+gazebo11 -plugin -base
+14
+15 # Remove the flask if it was
+installed to ensure it is installed
+from pip
+16 sudo apt remove
+python3 -flask python3 -flask -cors
+17 # required by Python
+engine
+18 # If you are
+planning to use The
+Virtual
+Brain
+framework , you will most
+likely
+have to use flask
+version
+1.1.4.
+19 # By installing
+flask
+version
+1.1.4
+markupsafe
+library (included
+with
+flask) has
+to be downgraded to version
+2.0.1 to run
+properly
+with
+gunicorn
+20 # You can
+install
+that
+version
+with
+21 # pip install
+flask ==1.1.4
+gunicorn
+markupsafe ==2.0.1
+22 pip install
+flask
+gunicorn
+23
+24 # required by nest -server (which is built and
+installed
+along
+with nrp -core)
+
+4
+25 sudo apt
+install
+python3 - restrictedpython
+uwsgi -core uwsgi -plugin -python3
+26 pip install
+flask_cors
+mpi4py
+docopt
+27
+28 # required by nrp -server , which
+uses gRPC
+python
+bindings
+29 pip install
+grpcio -tools
+pytest
+psutil
+docker
+30
+31 # Required
+for using
+docker
+with ssh
+32 pip install
+paramiko
+33
+34 # ROS , when not needed , can jump to the next step
+35
+36 # Install ROS: follow the
+installation
+instructions: http :// wiki.ros.org/noetic
+Installation/Ubuntu. To enable ros
+support in nrp on ‘ros -noetic -ros -base ‘ is
+required.
+37
+38 #Tell
+nrpcore
+where
+your
+catkin
+workspace is located: export a variable
+CATKIN_WS
+pointing to an existing
+catkin
+workspace
+root
+folder. If the
+variable
+does not exist , a new catkin
+workspace
+will be created at ‘${HOME }/
+catkin_ws ‘.
+39
+40 # MQTT , if needed , see the
+homepage of NRP -Core
+41
+42 # End of dependencies
+installation
+NRP installation:
+1 # Start of installation
+2 git clone
+https :// bitbucket.org/ hbpneurorobotics /nrp -core.git
+3 cd nrp -core
+4 mkdir
+build
+5 cd build
+6 # See the
+section "Common NRP -core
+CMake
+options" in the
+documentation
+for the
+additional
+ways to configure
+the
+project
+with
+CMake
+7 cmake .. -DCMAKE_INSTALL_PREFIX ="${ NRP_INSTALL_DIR }" -
+DNRP_DEP_CMAKE_INSTALL_PREFIX ="${ NRP_DEPS_INSTALL_DIR }"
+8 mkdir -p "${ NRP_INSTALL_DIR }"
+9 # the
+installation
+process
+might
+take some time , as it downloads
+and
+compiles
+Nest as well.
+10 # If you haven ’t installed
+MQTT libraries , add
+ENABLE_MQTT=OFF
+definition to
+cmake (-DENABLE_MQTT=OFF).
+11 make
+12 make
+install
+13 # Just in case of wanting to build the
+documentation . Documentation
+can then be
+found in a new doxygen
+folder
+14 make
+nrp_doxygen
+15 # End of installation
+Common NRP-core CMake options: Here is the list of the CMake options that can help modify the project configu-
+ration (turn on and off the support of some components and features).
+• Developers options:
+– COVERAGE enables the generation of the code coverage reports during the testing
+– BUILD_RST enables the generation of the reStructuredText source files from the Doxygen documentation
+• Communication protocols options:
+– ENABLE_ROS enables compilation with ROS support;
+– ENABLE_MQTT enables compilation with the MQTT support.
+• ENABLE_SIMULATOR and BUILD_SIMULATOR_ENGINE_SERVER options:
+– ENABLE_NEST and BUILD_NEST_ENGINE_SERVER;
+– ENABLE_GAZEBO and BUILD_GAZEBO_ENGINE_SERVER.
+The ENABLE_SIMULATOR and BUILD_SIMULATOR_ENGINE_SERVER flags allow disabling the compilation
+of those parts of nrp-core that depend on or install a specific simulator (eg. gazebo, nest).
+The expected behavior for each of these pairs of flags is as follows:
+
+5
+• the NRPCoreSim is always built regardless of any of the flags values.
+• if ENABLE_SIMULATOR is set to OFF:
+– the related simulator won’t be assumed to be installed in the system, ie. make won’t fail if it isn’t. Also it
+won’t be installed in the compilation process if this possibility is available (as in the case of nest)
+– The engines connected with this simulator won’t be built (nor client nor server components)
+– tests that would fail if the related simulator is not available won’t be built
+• if the ENABLE_SIMULATOR is set to ON and BUILD_SIMULATOR_ENGINE_SERVER is set to OFF: Same
+as above, but:
+– the engine clients connected to this simulator will be built. This means that they should not depend on or link
+to any specific simulator
+– the engine server-side components might or might not be built, depending on if the related simulator is
+required at compilation time
+• if both flags are set to ON the simulator is assumed to be installed or it will be installed from the source if this
+option is available. All targets connected with this simulator will be built.
+This flag system allows configuring the resulting NRP-Core depending on which simulators are available on the system,
+both for avoiding potential dependency conflicts between simulators and enforcing modularity, opening the possibility of
+having specific engine servers running on a different machine or inside containers.
+2.2 Introduction of basic components of simulation by NRP
+Some important elements for constructing a simulation example by the NRP platform are: Engines, Transceiver Function
+(TF) + Preprocessing Function (PF), Simulation Configuration JSON file, Simulation model file and DataPack, which are
+basic components of simulation progress. In this section, list and declare their definition, content and implementation.
+2.2.1 Engine
+Engines are a core aspect of the NRP-core framework. They run the actual simulation software (which can be comprised
+of any number of heterogeneous modules), with the Simulation Loop and TransceiverFunctions merely being a way to
+synchronize and exchange data between them. The data exchange is carried out through an engine client (see paragraph
+below). An Engine can run any type of software, from physics engines to brain simulators. The only requirement is that
+they should be able to manage progressing through time with fixed-duration time steps.
+There are different engines already implemented in NRP-Core:
+• Nest: two different implementations that integrate the NEST Simulator into NRP-core.
+• Gazebo: engine implementation for the Gazebo physics simulator.
+• PySim: engine implementation based on the Python JSON Engine wrapping different simulators (Mujoco, Opensim,
+and OpenAI) with a python API.
+• The Virtual Brain: engine implementation based on the Python JSON Engine and TVB Python API.
+and so on are provided by NRP and as the first user-interested engines for research Spiking neural Networks and the
+like. These applications are distributed to the specific simulator. This platform provides also Python JSON Engine, this
+versatile engine enables users to execute a user-defined python script as an engine server, thus ensuring synchronization
+and enabling DataPack data transfer with the Simulation Loop process. It can be used to integrate any simulator with a
+Python API in an NRP-core experiment. This feature allows users to modular develop experiment agents in constructed
+simulation world and is flexible to manage plural objects with different behaviors and characters.
+2.2.2 DataPack and Construction format
+The carrier of Information which is transported between engines and lets engines with each other communicate is DataPack.
+By NRP are there three types of supported DataPack, all of them are simple objects which wrap around arbitrary data
+structures, one is JSON DataPack, second is Protobuf DataPack and another is ROS msg DataPack. They provide the
+necessary abstract interface, which is understood by all components of NRP-Core, while still allowing the passing of data
+in various formats. DataPack is also an important feature or property of a specific Engine, meaning the parameters and
+form of data of a specific DataPack be declared in the Engine (Example see section 3.4.2).
+A DataPack consists of two parts:
+
+6
+• DataPack ID: which allows unique identify the object.
+• DataPack data: this is the data stored by the DataPack, which can be in the principle of any type.
+DataPacks are mainly used by Transceiver functions to relay data between engines. Each engine type is designed to
+accept only datapacks of a certain type and structure.
+Every DataPack contains a DataPackIdentifier, which uniquely identifies the datapack object and allows for the routing
+of the data between transceiver functions, engine clients and engine servers. A datapack identifier consists of three fields:
+• name - the name of the DataPack. It must be unique.
+• type - string representation of the DataPack data type. This field will most probably be of no concern for the users.
+It is set and used internally and is not in human-readable form.
+• engine name - the name of the engine to which the DataPack is bound.
+DataPack is a template class with a single template parameter, which specifies the type of data contained by the DataPack.
+This DataPack data can be in the principle of any type. In practice, there are some limitations though, since DataPacks,
+which are C++ objects, must be accessible from TransceiverFunctions, which are written in Python. Therefore the only
+DataPack data types which can be actually used in NRP-core are those for which Python bindings are provided. It is
+possible for a DataPack to contain no data. This is useful, for example, when an Engine is asked for a certain DataPack
+but it is not able to provide it. In this case, an Engine can return an empty DataPack. This type of Datapack contains only
+a Datapack identifier and no data. Attempting to retrieve the data from an empty DataPack will result in an exception. A
+method "isEmpty" is provided to check whether a DataPack is empty or not before attempting to access its data:
+1 if(not
+datapack.isEmpty ()):
+2
+# It’s safe to get the data
+3
+print(datapack.data)
+4 else:
+5
+# This will
+raise an exception
+6
+print(datapack.data)
+• The Format of getting DataPack from a particular Engine:
+1 # Declare
+datapack
+with "datapack_name " name from
+engine "engine_name" as
+input
+using the
+@EngineDataPack
+decorator
+2 # The
+transceiver
+function
+must
+accept an argument
+with the same name as "
+keyword" in the
+datapack
+decorator
+3
+4 @EngineDataPack (keyword="datapack", id= DataPackIdentifier (" datapack_name ",
+"engine_name"))
+5 @TransceiverFunction ("engine_name")
+6 def
+transceiver_function (datapack):
+7
+print(datapack.data)
+8
+9 # Multiple
+input
+datapacks
+from
+different
+engines
+can be declared
+10 @EngineDataPack (keyword="datapack1", id= DataPackIdentifier (" datapack_name1 "
+, "engine_name1"))
+11 @EngineDataPack (keyword="datapack2", id= DataPackIdentifier (" datapack_name2 "
+, "engine_name2"))
+12 @TransceiverFunction ("engine_name1 ")
+13 def
+transceiver_function (datapack1 , datapack2):
+14
+print(datapack1.data)
+15
+print(datapack2.data)
+PS: The details of two Decorators of TransceiverFunction see below in section 2.2.3.
+• The Format of setting information in DataPack and sending to particular Engine:
+1 # NRP -Core
+expects
+transceiver
+functions to always
+return a list of
+datapacks
+2 @TransceiverFunction ("engine_name")
+3 def
+transceiver_function ():
+4
+datapack = JsonDataPack(" datapack_name ", "engine_name")
+5
+return [ datapack ]
+6
+
+7
+7 # Multiple
+datapacks
+can be returned
+8
+9 @TransceiverFunction ("engine_name")
+10 def
+transceiver_function ():
+11
+datapack1 = JsonDataPack(" datapack_name1 ", "engine_name")
+12
+datapack2 = JsonDataPack(" datapack_name2 ", "engine_name")
+13
+14
+return [ datapack1 , datapack2 ]
+2.2.3 Transceiver Function and Preprocessing Function
+1. Transceiver Function
+Transceiver Functions are user-defined Python functions that take the role of transmitting DataPacks between engines.
+They are used in the architecture to convert, transform or combine data from one or multiple engines and relay it to another.
+The definition of a Transceiver Function must use Decorator before the user-defined “def” transceiver function, which
+means: Sending the DataPack to the target Engine:
+1 @TransceiverFunction ("engine_name")
+To request datapacks from engines, additional decorators can be prepended to the Transceiver Function, with the form
+(Attention: Receive-Decorator must be in the front of TransceiverFunction):
+1 @EngineDataPack (keyword_datapack , id_datapack)
+• keyword_datapack: user-defined new data name of DataPacks, this keyword is used as Input to Transceiver Function.
+• id_datapack: the id of from particular Engine received DataPack, “DataPack ID” = “DataPack Name” + “Engine
+Name” (Examples see 2.2.2)
+2. Preprocessing Function
+Preprocessing Function is very similar to Transceiver Function but has different usage. Preprocessing Functions are
+introduced to optimize expensive computations on DataPacks attached to a single engine. In some cases, there might be
+necessary to apply the same operations on a particular DataPack in multiple Transceiver Functions. An example of this
+might be applying a filter to a DataPack containing an image from a physics simulator. In order to allow to execute this
+operation just once and let other TFs access the processed DataPack data, PreprocessingFunctions (PFs) are introduced.
+They show two main differences with respect to Transceiver Functions:
+• Their output datapacks are not sent to the corresponding Engines, they are kept in a local datapack cache and can
+be used as input in TransceiverFunctions
+• PFs just can take input DataPacks from the Engine they are linked to
+The format of Preprocessing Function is similar to Transceiver Function:
+1 @PreprocessingFunction ("engine_name")
+2 @PreprocessedDataPack (keyword_datapack , id_datapack)
+These Decorators “@PreprocessingFunction” and “@PreprocessedDataPack” must be used in Preprocessing Functions.
+Since the output of Preprocessing Function is stored in the local cache and does not need to process on the Engine Server
+side, Preprocessing Function can return any type of DataPack without restrictions.
+2.2.4 Simulation Configuration Json file
+The details of configuration information for any simulation with Engines and Transceiver Functions are stored in a single
+JSON file, this file contains the objects of engines, Transceiver functions, and also their important necessary parameters
+to initialize and execute a simulation. This file is usually written in the “example_simlation.json” file.
+The JSON format is here a JSON schema, which is highly readable and offers similar capabilities as XML Schema.
+The advantage of composability and inheritance allows the simulation to use reference keywords to definite the agent and
+to validate inheritance by referring to other schemas. That means that the same basement of an engine can at the same
+time create plural agents or objects with only different identify IDs.
+1. Simulation Parameters
+For details, see appendix Table A.1: Simulation configuration parameter.
+2. Example form
+
+8
+1 {
+2
+" SimulationName": " example_simulation ",
+3
+" SimulationDescription ": "Launch two python
+engines. "
+4
+" SimulationTimeout ": 1,
+5
+" EngineConfigs":
+6
+[
+7
+{
+8
+"EngineType": "python_json",
+9
+"EngineName": "python_1",
+10
+" PythonFileName": "engine_1.py"
+11
+},
+12
+{
+13
+"EngineType": "python_json",
+14
+"EngineName": "python_2",
+15
+" PythonFileName": "engine_2.py"
+16
+}
+17
+],
+18
+" DataPackProcessingFunctions ":
+19
+[
+20
+{
+21
+"Name": "tf_1",
+22
+"FileName": "tf_1.py"
+23
+}
+24
+]
+25 }
+• EngineConfigs: this section list all the engines are participating in the simulation progress.
+There are some
+important parameters should be declared:
+– EngineType: which type of engine is used for this validated engine, e.g., gazebo engine, python JSON engine
+– EngineName: user-defined unit identification name for the validated engine
+– Other Parameters: These Parameters should be declared according to the type of engines (details see appendix
+Table A.2: Engine Base Parameter)
+∗ Python Json engine: “PythonFileName” – reference base python script for validated engine
+∗ Gazebo engine: see in section
+• DataPackProcessingFunctions: this section lists all the Transceiver functions validated in simulation progress.
+Mostly are there two parameters that should be declared:
+– Name: user-defined identification name for validated Transceiver Function
+– FileName: which file as reference base python script to validate Transceiver Function
+• Other Simulation Parameters: see section 2.2.4 – 1. Simulation Parameters
+• Launch a simulation: This simulation configuration JSON file is also the launch file and uses the NRP command to
+start a simulation experiment with the following command:
+1 NRPCoreSim -c user_defined_simulation_config .json
+Tip: In a user-defined simulation, the folder can simultaneously exist many different named configuration JSON files. It
+is very useful to config the target engine or Transceiver Functions that which user wants to launch and test with. To start
+and launch the target simulation experiment, just choose the corresponding configuration file.
+2.2.5 Simulation model file
+In this experiment for Autonomous driving on the NRP platform Gazebo physics simulator [5] is the world description
+simulator. For the construction of the simulation, the world can use the “SDF” file based on XML format to describe all
+the necessary information about 3D models in a file, e.g. sunlight, environment, friction, wind, landform, robots, vehicles,
+and other physics objects. This file can in detail describe the static or dynamic information of the robot, the relative
+position and motion information, the declaration of sensor or control plugins, and so on. And Gazebo is a simulator that
+has a close correlation to the ROS system and provides simulation components for ROS, so the ROS system describes
+many similar details about the construction of SDF file [6].
+According to XML format label to describe components of the simulation world and construct the dependence relation-
+ship of these components:
+
+9
+• World Label
+1
+2
+
+3
+........
+4
+
+5
+All the components and their labels should be under label.
+• Model Labels
+1
+2
+0 0 0 0 -0 0
+3
+
+4
+.........
+5
+
+6
+
+7
+
+8
+The Description is under label , and importantly if user will use a plugin such as the control-plugin or
+sensor-plugin (camera or lidar), this label must be set under the corresponding label. Under
+ label describes the model physics features like , , , and so on.
+• 3-D models – mesh files
+Gazebo requires that mesh files be formatted as STL, Collada, or OBJ, with Collada and OBJ being the preferred
+formats. Blow lists the file suffixes to the corresponding mesh file format.
+Collada - .dae
+OBJ - .obj
+STL - .stl
+Tip: Collada and OBJ file formats allow users to attach materials to the meshes. Use this mechanism to improve
+the visual appearance of meshes.
+Mesh file should be declared under a needed label like or with layer structure with
+- - (Uri can be absolute or relative file path):
+1
+2
+
+3
+xxxx/xxxx.dae
+4
+
+5
+3 Simulation Construction on NRP-Core
+Based on the steps for configuring a simulation on the NRP-Core platform, the autonomous driving benchmark can now be
+implemented with the components mentioned above, from 3D models to communicating mechanisms. This section will
+introduce the requirements of the autonomous driving application, and second will analyze the corresponding components
+and their functions. The third is the concrete implementation of these requirements.
+Second, this project will also research the possibility of achieving modular development for multi-agents on the NRP
+platform, comparing it with other existing and widely used systems, and analyzing the simulation performance according
+to the progress result.
+3.1 Analysis of requirements for autonomous driving application
+An application to achieve the goal of testing the performance of autonomous driving algorithms can refer to different
+aspects. The reason is that autonomous driving can integrate different algorithms such as computer vision, object detection,
+decision-making and trajectory planning, vehicle control, or Simultaneous localization and mapping. The concept and
+final goal of the application are to build a real-world simulation that integrates multi-agents, different algorithms, and
+corresponding evaluation systems to the performance of the autonomous driving vehicle.
+But that first needs many
+available, mature, and feasible algorithms. Second, the construction of world 3D models is a big project. And last, the
+evaluation system is based on the successful operation of the simulation. So the initial construction of the application will
+focus on the base model of the communication mechanism to first achieve the communication between the single agent
+
+10
+and object-detection algorithm under the progress of NRP-Core. And for vehicle control algorithm reacts logically based
+on the object detection and generates feasible control commands, in this project will skip this step and give a specific
+trajectory, that let the vehicle along this trajectory move.
+Requirements of implementation:
+• Construction of the base model frame for communication between the Gazebo simulator, object-detection algorithm,
+and control unit.
+• Selection of feasible object-detection algorithm
+• Simple control system for autonomous movement of high accuracy physical vehicle model
+3.2 Object detection algorithm and YOLO v5 Detector Python Class
+According to the above analysis, the requirements of the application should choose an appropriate existing object detection
+algorithm as the example to verify the communication mechanism of the NRP platform and at the same time to optimize
+performance.
+On the research of existing object detection algorithms from base Alex-Net for image classification [7] and CNN-
+Convolution neural network for image recognition [8], the optimized neural network ResNet [9] and SSD neural network
+for multi-box Detector [10] and in the end the YOLOv5 neural network [11], YOLOv5 has high performance on the object
+detection and its advantage by efficient handling of frame image on real-time let this algorithm also be meaningful as a
+reference to test other object-detection algorithms. Considering the requirements of autonomous driving is YOLOv5 also
+a suitable choice as the experimental object-detection algorithm to integrate into the NRP platform.
+Table Notes:
+• All checkpoints are trained to 300 epochs with default settings and hyperparameters.
+• mAPval values are for single-model single-scale on COCO val2017 dataset. Reproduced by python val.py –data
+coco.yaml –img 640 –conf 0.001 –iou 0.65
+• Speed averaged over COCO val images using a AWS p3.2xlarge instance.
+NMS times ( 1 ms/img) not in-
+cluded.Reproduce by python val.py –data coco.yaml –img 640 –conf 0.25 –iou 0.45
+• TTA Test Time Augmentation includes reflection and scale augmentations.Reproduce by python val.py –data
+coco.yaml –img 1536 –iou 0.7 –augment
+Requirements and Environment for YOLOv5:
+• Quick link for YOLOv5 documentation : YOLOv5 Docs [12]
+• Environment requirements: Python >= 3.7.0 version and PyTorch [13] >= 1.7
+• Integration of original initial trained YOLOv5 neural network parameters, the main backbone has no changes
+compared to the initial version
+Based on the original execute-python file “detect.py” has another python file “Yolov5Detector.py” with a self-defined
+Yolov5Detector class interface written in the “YOLOv5” package. To use YOLO v5 should in main progress validate the
+YOLO v5 class, second use warm-up function “detectorWarmUp()” to initiate the neural network. And “detectImage()”
+is the function that sends the image frame to the main predict detection function and will finally return the detected image
+with bounding boxes in NumPy format.
+3.3 3D-Models for Gazebo simulation world
+According to the performance of the Gazebo is the scope of the base environment world not suitable to use a large map.
+On the basic test of different sizes of the map of Garching-area is the environment world model recommends encircling
+the area of Parkring in Garching-Hochbrück. This map model is based on the high-accuracy satellite generated and is very
+similar to the origin location. And by the simulation progress, the experimental vehicle moves around the main road of
+Parkring.
+The experimental vehicle is also a high detail modeling vehicle model with independently controllable steerings for
+diversion control of two front wheels, free front, and rear wheels, and a high-definition camera. For the rebuilding of
+these models, the belonging relationship for each mode should be declared in the SDF file. In the SDF file are these
+models including base-chassis, steerings, wheels, and camera as “Link” of the car “model” under the label with a
+user-defined unique name. Attention, the name of models or links must be specific and has no same name as other objects.
+The below shows the base architecture frame to describe the physical relationship of the whole vehicle in the SDF file:
+
+11
+(a) Parkring Garching Hochbrueck high accuracy map model
+(b) Experiment vehicle for simulation
+Figure 3.1
+1
+2
+
+3
+.......
+4
+
+5
+
+6
+.......
+7
+
+8
+
+9
+base_link
+10
+eye_vision_camera
+11
+......
+12
+
+13
+
+14
+.......
+15
+
+16
+
+17
+base_link
+18
+front_left_steering_link
+19
+.......
+20
+
+21
+......
+22
+1. Description of Labels [6]:
+• — The corresponding model as a component from the entirety model
+• — Description of relationship between link-components
+• — Type of the joint:
+– revolute — a hinge joint that rotates along the axis and has a limited range specified by the upper and lower
+limits.
+– continuous — a continuous hinge joint that rotates around the axis and has no upper and lower limits.
+– prismatic — a sliding joint that slides along the axis, and has a limited range specified by the upper and lower
+limits.
+– fixed — this is not a joint because it cannot move. All degrees of freedom are locked. This type of joint does
+not require the , , , or .
+– floating — this joint allows a motion for all 6 degrees of freedom.
+– planar — this joint allows motion in a plane perpendicular to the axis.
+• / — the secondary label as element of label
+— declaration for the belonging relationship of referring “links”
+
+12
+The mesh file “vehicle_body.dae” (shown in Fig. 3.1b the blue car body) is used for the base-chassis of the experiment
+vehicle under label. And the mesh file “wheel.dae” is used for the rotatable vehicle wheels
+under and the other three similar link labels. And for steering models,
+labels are used to simply generate length – 0.01m + height radius 0.1m cylinder as the joint elements between wheels and
+chassis.
+2. Sensor Label:
+In the Gazebo simulator to activate the camera function, the camera model should under the “camera link” label declare
+a new secondary “sensor label” - with “name” and “type=camera” elements. And the detailed construction for
+the camera sensor seeing blow scripts:
+1
+2
+0 0 0.132 0
+-0.174 0
+3
+/smart/camera
+4
+
+5
+1.57
+6
+
+7
+736
+8
+480
+9
+
+10
+
+11
+0.1
+12
+100
+13
+
+14
+
+15
+gaussian
+16
+0
+17
+0.007
+18
+
+19
+
+20
+1
+21
+30
+22
+1
+23
+• — this label defines the camera resolution ratio and this is regarded as the size of the frame-image that
+sends to the Yolo detector engine. According to the requirement of the YOLO detection algorithm, the width and
+height of the camera should be set as integral multiples by 32.
+3.4 Construction of Engines and Transceiver Functions
+Figure 3.2 the system of autonomous driving on NRP
+The construction of the whole project regards as an experiment on the NRP platform, and as an experiment, the
+whole package of the autonomous driving benchmark is under the “nrp-core” path in the examples folder. According
+to bevor announced NRP components for a simulation experiment is the application also modular developed referring
+
+YoloDetectorEngine
+Gazebo Engine
+camera Transeiver
+imageprocess
+function
+Camera frame-image
+Yolo detector class
+OpenCv
+location coordination
+state Transeiver function
+Detected
+camera
+Vehicle control Engine
+motorsettingTranseiver
+coordination transform
+joint control
+function
+trajectorycompute
+controlcommand13
+to requirements of autonomous driving benchmark application. And the whole system frame is shown in Fig. 3.2. The
+construction of simulation would according to primary embrace two branches extend:
+• A close loop from the Gazebo engine to get the location information of the vehicle and sent to the Vehicle control
+engine depending on Gazebo DataPacks (Protobuf DataPack), then send the joint control command back to the
+Gazebo engine.
+• An open loop from Gazebo engine to get camera information and sent to Yolo Detector Engine, final using OpenCV
+to show the detected frame-image as monitor window.
+3.4.1 Gazebo plugins
+Before the steps to acquire the different information must the corresponding plugins in SDF be declared. These plugins label
+are such as recognition-label to let Gazebo know what information and parameters should be sent or received and assigned.
+A set of plugins is provided to integrate the Gazebo in NRP-Core simulation. NRPGazeboCommunicationPlugin registers
+the engine with the SimulationManager and handles control requests for advancing the gazebo simulation or shutting it
+down. Its use is mandatory in order to run the engine. And there are two implementations of the Gazebo engine are
+provided. One is based on JSON over REST and another on Protobuf over gRPC. The latter performs much better and it is
+recommended. The gRPC implementation uses protobuf objects to encapsulate data exchanged between the Engine and
+TFs, whereas the JSON implementation uses nlohmann::json objects. Besides this fact, both engines are very similar in
+their configuration and behavior. The rest of the documentation below is implicitly referred to the gRPC implementation
+even though in most cases the JSON implementation shows no differences. The corresponding plugins are also based on
+Protobuf over the gRPC protocol. There are four plugins that would be applied in the SDF model world file:
+• World communication plugin – NRPGazeboGrpcCommunicationPlugin
+This plugin is the main communication plugin to set up a gRPC server and waits for NRP commands. It must be
+declared under the label in the SDF file.
+1
+2 ...
+3
+
+4 ...
+5
+• Activation of Camera sensor plugin – NRPGazeboGrpcCameraPlugin
+This plugin is used to add a GazeboCameraDataPack datapack. In the SDF file, the plugin would be named
+“smart_camera” (user-defined). This name can be accessed by TransceiverFunctions and get the corresponding
+information. This plugin must be declared under label in the application under the camera sensor label:
+1
+2
+...
+3
+
+4
+...
+5
+• Joint control and message – NRPGazeboGrpcJointPlugin
+This plugin is used to register GazeboJointDataPack DataPack and in this case, only those joints that are explicitly
+named in the plugin will be registered and made available to control under NRP. The joint’s name must be unique
+and once again in the plugin declared. In contrast to the other plugins described above or below, when using
+NRPGazeboGrpcJointPlugin DataPacks can be used to set a target state for the referenced joint, the plugin is
+integrated with the PID controller and can for each of the joint-specific set a better control performance.
+This plugin must be declared under the corresponding label and have the parallel level in contrast to the
+ label, and there are four joints that would be chosen to control: rear left and right wheel joint, front left
+and right steering joint, and according to small tests of the physical model of experiment-vehicle in Gazebo are the
+parameters of PID controller listed in below block:
+1
+2
+...
+3
+...
+
+14
+4
+...
+5
+...
+6
+...
+7
+...
+8
+
+9
+
+10
+
+11
+
+12
+
+13
+
+14
+...
+15
+Attention: There are two target types that can be influenced and supported in Gazebo: Position and Velocity. And
+for the rear left and right wheels of the vehicle are recommended for setting type with “Velocity” and for the front
+left and right steering are recommended setting type with “Position”. Because the actual control of the rear wheels
+is better with velocity and front steering uses angle to describe the turning control.
+• Gazebo link information – NRPGazeboGrpcLinkPlugin
+This plugin is used to register GazebolinkDataPack DataPacks for each link of the experiment vehicle. Similar to
+the sensor plugin, this plugin must be declared under label and has the parallel level of label, and
+only be declared once:
+1
+2
+...
+3
+
+4
+...
+5
+...
+6
+...
+7
+...
+8
+...
+9
+...
+10
+...
+11
+...
+12
+...
+13
+...
+14
+3.4.2 State Transceiver Function “state_tf.py”
+State Transceiver Function acquires the location information from the Gazebo engine and transmits it to Vehicle Control
+Engine to compute the next control commands. The receiving of location coordinates of the vehicle is based on the
+DataPack from Gazebo, and this DataPack is already encapsulated in NRP, it only needs to in the Decoder indicate which
+link information should be loaded in DataPack.
+1 @EngineDataPack (keyword=’state_gazebo ’, id= DataPackIdentifier (’
+smart_car_link_plugin :: base_link ’, ’gazebo ’))
+2 @TransceiverFunction ("car_ctl_engine ")
+3 def
+car_control(state_gazebo):
+The location coordinates in the experiment would be the coordinate of base-chassis “base_link” chosen and use C++
+inheritance declaration with the name of the plugin that is declared in the SDF file. And the received DataPack with the
+user-defined keyword “state_gazebo” would be sent in Transceiver Function “car_control()”.
+Attention: Guarantee to get link-information from Gazebo it is recommended new declaring on the top of the script
+with the below sentence:
+1 from
+nrp_core.data.nrp_protobuf
+import
+GazeboLinkDataPack
+
+15
+that could let NRP accurately communicate with Gazebo.
+The link-information DataPack in NRP would be called GazeboLinkDataPack. And its Attributes are listed in next
+Table 3.1. In Project are “position” and “rotation” information chosen and set to the “car_ctl_engine” engine defining Json
+DataPack, in the last “return” back to “car_ctl_engine”. Use the “JsonDataPack” function to get in other engine-defined
+DataPack and itself form and assign the corresponding parameter with received information from Gazebo.
+1 car_state = JsonDataPack(" state_location ", " car_ctl_engine ")
+2
+3 car_state.data[’location_x ’] = state_gazebo.data.position [0]
+4 car_state.data[’location_y ’] = state_gazebo.data.position [1]
+5 car_state.data[’qtn_x ’] = state_gazebo.data.rotation [0]
+6 car_state.data[’qtn_y ’] = state_gazebo.data.rotation [1]
+7 car_state.data[’qtn_z ’] = state_gazebo.data.rotation [2]
+8 car_state.data[’qtn_w ’] = state_gazebo.data.rotation [3]
+Tip: The z-direction coordinate is not necessary. So only x- and y-direction coordinates are included in DataPack to
+make the size of JSON DataPack smaller and let the transmission more efficient.
+Attribute
+Description
+Python Type
+C Type
+pos
+Link Position
+numpy.array(3, numpy.float32)
+std::array<float,3>
+rot
+Link Rotation as quaternion
+numpy.array(4, numpy.float32)
+std::array<float,4>
+lin_vel
+Link Linear Velocity
+numpy.array(3, numpy.float32)
+std::array<float,3>
+ang_vel
+Link Angular Velocity
+numpy.array(3, numpy.float32)
+std::array<float,3>
+Table 3.1 GazeboLinkDataPack Attributes.
+Tip: the rotation information from Gazebo is quaternion and its four
+parameters sort sequence is “x, y, z, w”.
+3.4.3 Vehicle Control Engine “car_ctl_engine.py”
+The Vehicle Control Engine would be written according to the form of Python Json Engine. The construction of a Python
+Json Engine is similar to the definition of a python class file that includes the attributes such as parameters or initialization
+and its functions. And a class file should declare that this Python Json Engine inherits the class “EngineScript” to let NRP
+recognize this file as a Python Json Engine to compute and execute. So a Python Json Engine can mostly be divided into
+three main blocks with def functions: def initialize(self), def runLoop(self, timestep_ns), and def shutdown(self).
+• In initialize block is the initial parameters and functions defined for the next simulation. And in this block, should the
+correspondingDataPacksthatbelongtothespecificEngineatthesametimebedefinedwith“self._registerDataPack()”
+and “self._setDataPack()” functions:
+1 self. _registerDataPack ("actors")
+2 self._setDataPack("actors", {"angular_L": 0, "angular_R": 0, "linear_L": 0,
+"linear_R": 0})
+3 self. _registerDataPack ("state_location ")
+4 self._setDataPack("state_location ", { "location_x": 0, "location_y": 0, "
+qtn_x": 0, "qtn_y": 0,"qtn_z": 0,"qtn_w": 0})
+– _registerDataPack(): - given the user-defined DataPack in the corresponding Engine.
+– _setDataPack(): - given the corresponding name of DataPack and set parameters, form, and value of the
+DataPack.
+The generated actors-control-commands and location-coordinate of the vehicle in this project would be as properties
+of the DataPack belonging to the “car_ctl_engine” Engine.
+• runLoop block is the main block that would always be looped during the simulation progress, which means the
+computation that relies on time and always need to update would be written in this block. In the “car_ctl_engine”
+Engine should always get the information from Gazebo Engine with the function “self._getDataPack()”:
+1 state = self._getDataPack(" state_location ")
+– _getDataPack(): - given the user_defined name of the DataPack
+Attention: the name must be same as the name in the Transceiver function that user-chosen DataPack which
+is sent back to Engine.
+
+16
+After the computation of the corresponding command to control the vehicle is the function “_setDataPack()” once
+again called to set the commands information in corresponding “actors” DataPack and waiting for other Transceiver
+Function to call this DataPack:
+1 self._setDataPack("actors", {"angular_L": steerL_angle , "angular_R":
+steerR_angle , "linear_L": rearL_omiga , "linear_R": rearR_omiga })
+• shutdown block is only called when the simulation is shutting down or the Engine arises errors and would run
+under progress.
+3.4.4 Package of Euler-angle-quaternion Transform and Trajectory
+• Euler-angle and quaternion transform
+The received information of rotation from Gazebo is quaternion. That should be converted into Euler-angle to
+conveniently compute the desired steering angle value according to the beforehand setting trajectory. And this
+package is called “euler_from_quaternion.py” and should be in the “car_ctl_engine” Engine imported.
+• Trajectory and Computation of target relative steering angle
+The beforehand setting trajectory consists of many equal proportional divided points-coordinate. And through
+the comparison of the present location coordinate and the target coordinate, the package would get the desired
+distance and steering angle to adjust whether the vehicle arrives at the target. If the vehicle arrives in the radius
+0.8m of the target location points will be decided that the vehicle will reach the present destination, and the
+index will jump to the next destination location coordinate until the final destination.
+This package is called
+“relateAngle_computation.py”.
+3.4.5 Actors “Motor” Setting Transceiver Function “motor_set_tf.py”
+This Transceiver Function is the communication medium similar to the state-Transceiver Function. The direction of data
+is now from the “car_ctl_engine” Engine to the Gazebo engine. The acquired data from the “car_ctl_engine” Engine is
+the DataPack “actors” with the keyword “actors”:
+1 @EngineDataPack (keyword=’actors ’, id= DataPackIdentifier (’actors ’, ’
+car_ctl_engine ’))
+2 @TransceiverFunction ("gazebo")
+3 def
+car_control(actors):
+And the DataPack from the Gazebo joint must be validated in this Transceiver Function with the “GazeboJointDat-
+aPack()” function. This function is specifically provided by Gazebo to control the joint, the given parameters are the
+corresponding joint name (declared with NRPGazeboGrpcJointPlugin plugin name in the SDF file) and target Gazebo
+engine (gazebo) (Attention: each joint should be registered as a new joint DataPack):
+1 rear_left_wheel_joint = GazeboJointDataPack (" smart_car_joint_plugin ::
+rear_left_wheel_joint ", "gazebo")
+2 rear_right_wheel_joint = GazeboJointDataPack (" smart_car_joint_plugin ::
+rear_right_wheel_joint ", "gazebo")
+3 front_left_steering_joint = GazeboJointDataPack (" smart_car_joint_plugin ::
+front_left_steering_joint ", "gazebo")
+4 front_right_steering_joint = GazeboJointDataPack (" smart_car_joint_plugin ::
+front_right_steering_joint ", "gazebo")
+The joint control DataPack is GazeboJointDataPack and its attributes are listed in Table 3.2:
+Attribute
+Description
+Python Type
+C Type
+position
+Joint angle position (in rad)
+float
+float
+velocity
+Joint angle velocity (in rad/s)
+float
+float
+effort
+Joint angle effort (in N)
+float
+float
+Table 3.2 GazeboJointDataPack Attributes.
+Attention: Guarantee to send Joint-information to Gazebo it is recommended new declaring on the top of the script
+with the below sentence:
+1 from
+nrp_core.data.nrp_protobuf
+import
+GazeboJointDataPack
+
+17
+3.4.6 Camera Frame-Image Transceiver Function “camera_tf.py”
+Camera frame-image Transceiver Function acquires the single frame image gathered by Gazebo internally installed camera
+plugin and sends this frame image to YOLO v5 Engine “yolo_detector”. The receiving of the image of the camera is based
+on the camera DataPack from Gazebo called “GazeboCameraDataPack”. To get the data, should the Decorator declare
+the corresponding sensor name with Validation through C++ and indicate the “gazebo” engine and assign a new keyword
+for the next Transceiver Function:
+1 @EngineDataPack (keyword=’camera ’, id= DataPackIdentifier (’smart_camera :: camera ’,
+’gazebo ’))
+2 @TransceiverFunction ("yolo_detector ")
+3 def
+detect_img(camera):
+Attention: Guarantee to acquire camera information from Gazebo it is recommended new declaring on the top of the
+script with the below sentence that confirms import GazeboCameraDataPack:
+1 from
+nrp_core.data.nrp_protobuf
+import
+GazeboCameraDataPack
+And received image Json-information is four parameters: height, width, depth, and image data. The Attributes of the
+GazeboCameraDataPack are listed in Table 3.3:
+Attribute
+Description
+Python Type
+C Type
+image_height
+Camera Image height
+uint32
+uint32
+image_width
+Camera Image width
+uint32
+uint32
+image_depth
+Camera Image depth.
+Number of bytes per pixel
+uint8
+uint32
+image_data
+Camera Image data.
+1-D array of pixel data
+numpy.array(image_height
+* image_width * image_depth,
+numpy.uint8)
+std::vector
+Table 3.3 GazeboCameraDataPack Attributes.
+The received image data from the gazebo is a 1-D array of pixels with unsigned-int-8 form in a sequence of 3 channels.
+So this Transceiver Function should be pre-processed with NumPy “frombuffer()” function that transforms the 1-D array
+in NumPy form:
+1 imgData = np.frombuffer(trans_imgData_bytes , np.uint8)
+And in the end, validate the Json-DataPack from YOLO v5 Engine and set all information in DataPack, and return to
+YOLO v5 Engine:
+1 processed_image = JsonDataPack("camera_img", " yolo_detector ")
+2
+3 processed_image .data[’c_imageHeight ’] = trans_imgHeight
+4 processed_image .data[’c_imageWidth ’] = trans_imgWidth
+5 processed_image .data[’current_image_frame ’] = imgData
+3.4.7 YOLO v5 Engine for Detection of the Objects “yolo_detector_engine.py”
+YOLO v5 Engine acquires the camera frame image from Gazebo during the camera Transceiver Function and detects
+objects in the current frame image. In the end, through the OpenCV package, the result is shown in another window. And
+the Yolo v5 Engine is also based on the Python Json Engine model and is similar to the vehicle control Engine in section
+3.4.2. The whole structure is divided into three main blocks with another step to import Yolo v5 package.
+• Initialization of Engine with establishing “camera_img” DataPack and validation Yolo v5 object with specific
+pre-preparation by “detectorWarmUp()”:
+1 self. _registerDataPack ("camera_img")
+2 self._setDataPack("camera_img", {" c_imageHeight ": 0, "c_imageWidth": 0, "
+current_image_frame ": [240 , 320 , 3]})
+3 self.image_np = 0
+4
+5 self.detector = Yolov5.Yolov5Detector ()
+
+18
+6 stride , names , pt , jit , onnx , engine , imgsz , device = self.detector.
+detectorInit ()
+7 self.detector.detectorWarmUp ()
+• In the main loop function first step is to acquire the camera image with the “_getDataPack()” function. And the
+extracted image data from Json DataPack during the camera Transceiver Function became already again in 1-D
+“list” data form. There is a necessary step to reform the structure of the image data to fit the form for OpenCV. The
+first is to convert the 1-D array into NumPy ndarray form and, according to acquired height and width information,
+reshape this np-array. And image form for OpenCV is the default in “BGR” form, and the image from Gazebo is
+“RGB”. There is also an extra step to convert the “RGB” shaped NumPy ndarray [14]. In the last, it sends the
+original NumPy array-shaped image and OpenCV-shaped image together into detect-function and finally returns an
+OpenCV-shaped image with an object-bonding box, and this OpenCV-shaped ndarray can directly use the function
+of OpenCV showed in the window:
+1 # Image
+conversion
+2 img_frame = np.array(img_list , dtype=np.uint8)
+3 cv_image = img_frame.reshape (( img_height , img_width , 3))
+4 cv_image = cv_image [:, :, ::-1] - np.zeros_like(cv_image)
+5 np_image = cv_image.transpose (2,0,1)
+6
+7 # Image
+detection by Yolo v5
+8 cv_ImgRet ,detect ,_ = self.detector.detectImage(np_image , cv_image ,
+needProcess=True)
+9
+10 # Show of Detected
+image
+through
+OpenCV
+11 cv2.imshow(’detected
+image ’, cv_ImgRet)
+12 cv2.waitKey (1)
+4 Simulation Result and Analysis of Performance
+(a)
+(b)
+Figure 4.1 Object-detection by Yolo v5 on NRP platform (right: another frame)
+The final goal of the Autonomous driving Benchmark Platform is to build a real-world simulation platform that can
+train, do research, test or validate different AI algorithms integrated into vehicles, and next, according to the performance
+to give benchmark and evaluation to adjust algorithms, in the end to real installed these algorithms on the real vehicle.
+This project “Autonomous Driving Simulator and Benchmark on Neurorobotics Platform” is a basic and tentative concept
+and foundation to research the possibility of the simulator with multi-agents on the NRP-Core platform. And according to
+the above construction of a single vehicle agent, the autonomous driving simulation experiment has been finished. This
+section will discuss the results and suggestions based on the performance of the simulation on the NRP-Core Platform and
+the Gazebo simulator.
+
+detected Image
+traffic light 0.27
+umbrella0.69
+suitcase 0.47 plant 0.25
+truck 0.68person0.93
+person 0.89
+car0.55
+firehydrint 0.87
+x=1273.v=107)
+R:18G-13B:11detectedimage
+suitcase 0.57
+umbrella 0.69
+truck0.72
+person0.81
+firehydrant 0.8719
+4.1 Simulation Result of Object-detection and Autonomous Driving
+4.1.1 Object Detection through YOLOv5 on NRP
+The object detection is based on the visual camera from the Gazebo simulator through the Yolo v5 algorithm. NRP-Core
+is the behind transmit medium between the Gazebo and Yolo v5 detector. The simulation result is shown in Fig. 4.1.
+On the point of objects-detection, the result reaches the standard and performances well, most of the objects in the
+camera frame image has been detected, but in some different frame, the detected objects are not stable and come to
+“undetected.” And in the other hand, although most objects are correctly detected with a high confidence coefficient, e.g.,
+the person is between 80%
+93%, at the same time, there are few detected errors, such as when the flowering shrubs are
+detected as a car or a potted plant, the bush plant is detected as an umbrella and the but in front of the vehicle is detected
+as a suitcase. And last, even though the Yolo works well on the NRP platform, the performance is actually not smooth,
+and in the Gazebo simulator, the running frame rate is very low, perhaps only around 10-13 frames per second, in a more
+complex situation, the frame rate came to only 5 frames per second. That makes the simulation in Gazebo very slow and
+felled the sense of stumble. And when the size and resolution ratio of the camera became bigger, that made the stumble
+situation worse.
+4.1.2 Autonomous Driving along pre-defined Trajectory
+Autonomous driving along a pre-defined trajectory works well, the performance of simulation also runs smoothly and the
+FPS (frame pro second) holds between 20-40 fps. This FPS ratio is also in the tolerance of real-world simulation. The
+part trajectory of the experiment vehicle is shown in Fig. 4.2, and the vehicle could run around Parkring and finish one
+circle. As the first image of the experiment, the vehicle would, according to the detection result, make the corresponding
+decision to control the vehicle to accelerate or to brake down and turn to evade other obstacles. But for this project, there
+is no appropriate autonomous driving algorithm to support presently, so here only use a pre-defined trajectory consisting
+of plenty of point coordinates. The speed of the vehicle is also fixed, and using PID controller to achieve simulated
+autonomous driving.
+And on the other hand, all the 3-D models are equal in proportion to the real size of objects. After many tests of
+different sizes of the world maps, the size of Parkring is almost the limit of the Gazebo, even though the complexity of the
+map is not high. For a bigger scenario of the map, the FPS is obviously reduced, and finally, the simulation would become
+stumble and generate a sense of separation.
+(a)
+(b)
+Figure 4.2 Simulation trajectory of autonomous driving
+4.1.3 Multi-Engines united Simulation
+The final experiment is to start the Yolo v5 Engine and the autonomous driving control Engine. The above experiments
+are loaded with only one Engine, and they actually reacted well and had a relatively good performance. And the goal of
+this project is also to research the possibility of multi-agent simulation.
+The result of multi-Engines simulation actually works in that the Yolo v5 Engine can detect the image and show it
+in a window and at the same time, the vehicle can move along the trajectory automatically drive. But the simulation
+performance is not good, and the FPS can only hold between 9 -11 fps. The driving vehicle in Gazebo moves very slowly
+and not smoothly, and the simulation time has an enormous error compared to the real-time situation.
+
+20
+4.2 Analysis of Simulation Performance and Discussion
+4.2.1 YOLOv5 Detection ratio and Accuracy
+Most of the objects near the vehicle in the field of view of the camera have been detected and have high confidence, but
+there are also some errors appearing during the detection that some objects in as wrong objects are detected, some far
+objects are detected bus some obvious close objects are not detected. The reason can conclude in two aspects:
+1. The employment of the integrated Yolo v5 algorithm is the original version that is not aimed at the specific purpose
+of this autonomous driving project and has not been trained according to the specific usage. Its network parameters and
+arts of objects are original and did not use the specific self-own data set, which makes the result actually have a big error
+between the detected result and expected performance. So that makes the result described in section 4.1.1 that appears
+some detection error.
+2. The accuracy and reality of 3-D models and environment. The object detection algorithm is actually deeply dependent
+on the quality of the sent image. Here the quality is not about the resolution size but refers to the “reality” of the objects in
+the image. The original Yolo v5 algorithm was trained based on real-world images, but the camera images from Gazebo
+actually have enormous distances from real-world images. But the 3-D models and the environment in Gazebo Simulator
+are relatively very rough, and like cartoon style, they have a giant distance to the real-world objects on the side of the light,
+material texture of surface and reflection, the accuracy of objects. For example, in Gazebo, the bus has terrible texture
+and reflection that lets the bus be seen as a black box and not easy to recognize, and Yolo Engine actually detected as a
+suitcase. And the Environment in Gazebo is also not well exquisitely built. For example, the shrub and bushes on the
+roadside have a rough appearance with coarse triangles and obvious polygon shapes. That would make huge mistakes and
+influence the accuracy of desired algorithms.
+(a)
+(b)
+Figure 4.3 Distance between real-world and visual camera image
+3. The property of the Gazebo simulator. The Gazebo simulator is perhaps suitable for small scene simulations like in
+a room, a tank station, or in a factory. Comparing to other simulators on the market like Unity or Unreal, the advantage
+of Gazebo is quickly start-up to the reproduction of a situation and environment. But the upper limit of Gazebo and its
+rendering quality is actually not very close to the real world and can let people at the first time recognize this is a virtual
+simulation, which also has a huge influence on training object-detection algorithms. And the construction of the virtual
+world in Gazebo is very difficult and has to use other supported applications like Blender [15] to help the construction.
+Even in Blender, the world has a very high reality, but after the transfer to Gazebo, the rendering quality becomes terrible
+and awful.
+In fact, although detection has some mistakes and errors, the total result and performance are in line with the forecast
+that the Yolo v5 algorithm has excellent performance.
+4.2.2 Multi-Engines Situation and Non-smooth Simulation Phenomenon
+The simulation of single loaded Yolo Engine and the multi-engine meanwhile operation appear terrible performance by
+the movement of the vehicle and inferior progress FPS of the whole simulation. But simulation for single loaded vehicle
+control engine is actually working well and has smooth performance. After the comparison experiment, the main reason
+for the terrible performance is because of the backstage transmission mechanism of information between Python Json
+
+21
+Engine on the NRP Platform. In the simulation of a single loaded vehicle control Engine, the transmission from Gazebo
+is based on Protobuf-gRPC protocol, and transmission back to Gazebo is JSON protocol, but the size of transmitted
+information is actually very small because the transmitted data consists of only the control commands like “line-velocity”
+and “angular-velocity” that don’t take much transmission capacity and for JSON Protocol is actually has a negligible error
+to Protobuf Protocol. And the image transmission from Gazebo to Transceiver Function is also based on the Protobuf-
+gRPC method. But the transmission of an image from the Transceiver Function to Yolo Engine through JSON Protocol is
+very slow because the information of an image is hundreds of commands, and the according to the simulation loop in NRP,
+would make a block during the process of simulation and let the system “be forced” wait for the finish of transmission
+of the image. The transfer efficiency of JSON Protocol is actually compared to real-time slowness and tardiness, which
+takes the choke point to the transmission and, according to the test, only reduces the resolution rate of the camera to fit the
+simulation speed requirements.
+4.3 Improvement Advice and Prospect
+The autonomous driving simulator and application on NRP-Core achieve the first goal of building a concept and foundation
+for multi-agents, and at the same time, this model is still imperfect and has many disadvantages that would be improved.
+On the NRP-Core platform is also the possibility for a real-world simulator discussed, and the NRP-Core has large potential
+to achieve the complete simulation and online cooperation with other platforms. There are also some directions and advice
+for the improvement of this application presently on NRP for further development.
+4.3.1 Unhindered simulation with other communication protocol
+As mentioned before, the problem that communication with JSON protocol is the simulation at present is not smooth and
+has terrible simulation performance with Yolo Engine. Actually, the transmission of information through the Protobuf
+protocol based on the transmission between Gazebo and Transceiver Functions has an exceeding expectation performance
+than JSON protocol.
+The development Group of NRP-Core has also been developing and integrating the Protobuf-
+gRPC [16] communication backstage mechanism on the NRP-Core platform to solve the big data transmission problem.
+And in order to use Yolo or other object-detection Engines, it is recommended to change the existing communication
+protocol in the Protobuf-gRPC protocol. And the Protobuf protocol is a free and open-source cross-platform data format
+used to serialize structured data and developed by google, and details see on the official website [16].
+4.3.2 Selection of Basic Simulator with better performance
+Because of the limitation of performance and functions of the Gazebo, there are many applications that can not in Gazebo
+easy to realize, such as the weather and itself change, and the accuracy and reality of 3-D models also have limitations.
+The usage of high-accuracy models would make the load became heavier on the Gazebo because of the fall behind the
+optimization of the Gazebo simulator. In fact, there are many excellent simulators, and they also provide many application
+development packages that can shorten the development period, such as Unity3D [17] or Unreal engine simulator [18]. In
+the team of an autonomous driving simulator and the benchmark there is an application demo on Unity3D simulator and
+figure Fig. 4.4 shows the difference between Gazebo and Unity3D.
+The construction and simulation in Unity3D have much better rendering quality close to the real world than Gazebo, and
+the simulation FPS can maintain above 30 or even 60 fps. And for the YoloV5 detection result, according to the analysis
+in section 4.2.1, the result by Unity3D is better than the performance by Gazebo simulator because of more precision
+3-D models and better rendering quality of models (Example see Fig. 4.5). The better choice for the development as
+the basic simulator and world expresser is recommended to develop on Unity3D or other game engines. And actually,
+NRP-Core will push a new version that integrates the interfaces with Unity3D and could use Protobuf protocol to ensure
+better performance for a real-world simulation.
+4.3.3 Comparing to other Communication Systems and frameworks
+There are also many communication transmission frameworks and systems that are widely used in academia or business
+for robot development, especially ROS (Robot Operating System) system already has many applications and development.
+Actually, ROS has already been widely and mainly used for Robot-development with different algorithms: detection
+algorithm and computer vision, SLAM (Simultaneous Localization and Mapping) and Motion-control, and so on. ROS
+has already provided relatively mature and stable methods and schemes to undertake the role of transmitting these necessary
+data from sensors to the robot’s algorithms and sending the corresponding control command codes to the robot body or
+actors. But the reason chosen NRP-Core to be the communication system is based on the concepts of Engines and
+Transceiver Functions. Compared to ROS or other framework NRP platform has many advantages: This platform is very
+easy to build multi-agents in simulation and conveniently load in or delete from the configuration of simulation; The
+
+22
+(a) Sunny
+(b) Foggy
+(c) Raining
+(d) Snowy
+Figure 4.4 Construction of simulation world in Unity3D with weather application
+(a) Detection by YOLOv5 on Gazebo
+(b) Detection by YOLOv5 on Unity3D
+Figure 4.5 Comparing of the detection result by different platforms
+management of information is easier to identify than ROS-topics-system; The transmission of information is theoretically
+more efficient, and modularization and this platform can also let ROS at the same time as parallel transmission method to
+match and adapt to another systems or simulations. From this viewpoint, the NRP platform generalizes the transmission of
+data and extends the boundary of the development of the robot, which makes the development more modular and efficient.
+ROS system can also realize the multi-agents union simulation but is not convenient to manage based on the "topic" system.
+ROS system is now more suitable for a single agent simulation and the simulation environment. As mentioned before,
+the real interacting environment is not easy to realize. But NRP-Core has the potential because that NRP-Core can at the
+same time run the ROS system and let the agent developed based on the ROS system easily join in the simulation. That is
+meaningful to develop further on the NRP-Core platform.
+5 Conclusion and Epilogue
+This project focuses on the first construction of the basic framework on the Neurorobotics Platform for applying the
+Autonomous Driving Simulator and Benchmark. Most of the functions including the template of the autonomous driving
+function and object-detection functions are realized. The part of the benchmark because there are no suitable standards
+and further development is a huge project regarded as further complete development for the application.
+
+umbre
+umbrella 0.69
+suitcase0.57
+truck 0.72
+person 0.85
+00tedpldnt0.4truck0.49
+person 0.81
+fire hydrant 0.87OGGY1
+Burger:Queen
+KSC23
+This project started with researching the basic characters to build a simulation experiment on the NRP-Core Platform.
+Then the requirements of the construction of the simulation are listed and each necessary component and object of the
+NRP-Core is given the basic and key understanding and attention. The next step according to the frame of the NRP-Core
+is the construction of the application of the autonomous driving simulator. Started with establishing the physic model of
+the vehicle and the corresponding environment in the SDF file, then building the “close loop” - autonomous driving based
+on PID control along the pre-defined trajectory and finally the “open loop” – objects-detection based on YoloV5 algorithm
+and successfully achieve the goal to demonstrate the detected current frame image in a window and operated as camera
+monitor. And at last, the current problems and the points of improvement are listed and discussed in this development
+document.
+And at the same time there are also many problems that should be optimized and solved. At present the simulation
+application can only regard as research for the probability of the multi-agent simulation. The performance of the scripts
+has a lot of space to improve, and it is recommended to select a high-performance simulator as the carrier of the real-world
+simulation. In fact the NRP-Core platform has shown enormous potential for the construction of a simulation world with
+each object interacting function and the high efficiency to control and manage the whole simulation project. In conclusion
+the NRP-Core platform has great potential to achieve the multi-agents simulation world.
+References
+[1] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. CARLA: An open urban
+driving simulator. In Proceedings of the 1st Annual Conference on Robot Learning, pages 1–16, 2017.
+[2] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim: High-fidelity visual and physical simulation
+for autonomous vehicles. In Field and Service Robotics, 2017.
+[3] PTV Group. Ptv vissim. https://www.ptvgroup.com/en/solutionsproducts/ptv-vissim/.
+[4] Human Brain Project. Neurorobotics platform. https://neurorobotics.net/.
+[5] Nathan Koenig and Andrew Howard. Design and use paradigms for gazebo, an open-source multi-robot simulator.
+In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566),
+volume 3, pages 2149–2154. IEEE, 2004.
+[6] ROS Wiki. urdf/xml. https://wiki.ros.org/urdf/XML.
+[7] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural
+networks. Communications of the ACM, 60(6):84–90, 2017.
+[8] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv
+preprint arXiv:1409.1556, 2014.
+[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
+Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.
+[10] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
+Berg. Ssd: Single shot multibox detector. In European conference on computer vision, pages 21–37. Springer, 2016.
+[11] G Jocher, K Nishimura, T Mineeva, and R Vilarino. Yolov5 by ultralytics. Disponıvel em: https://github. com/ultr-
+alytics/yolov5, 2020.
+[12] Yolov5 documentation. https://docs.ultralytics.com/.
+[13] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
+Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep learning library.
+Advances in neural information processing systems, 32, 2019.
+[14] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.
+[15] Blender Online Community. Blender - a 3D modelling and rendering package. Blender Foundation, Stichting
+Blender Foundation, Amsterdam, 2018.
+[16] Kenton Varda. Protocol buffers: Google’s data interchange format. Technical report, Google, 6 2008.
+[17] Unity Technologies. Real-time 3d tools and more. https://unity.com/.
+[18] Epic Games. Unreal engine. https://www.unrealengine.com/.
+A Appendix
+
+24
+Name
+Description
+Type
+Default
+Array
+Values
+SimulationLoop
+Type of simulation loop used in
+the experiment
+enum
+"FTILoop"
+"FTILoop"
+"EventLoop"
+SimulationTimeout
+Experiment Timeout (in
+seconds). It refers to simulation
+time
+integer
+0
+SimulationTimestep
+Time in seconds the simulation
+advances in each Simulation
+Loop. It refers to simulation
+time.
+number
+0.01
+ProcessLauncherType ProcessLauncher type to be used
+for launching engine processes
+string
+Basic
+EngineConfigs
+Engines that will be started in
+the experiment
+EngineBase
+X
+DataPackProcessor
+Framework used to process and
+rely datapack data between
+engines. Available options are
+the TF framework (tf) and
+Computation Graph (cg)
+enum
+"tf"
+"tf", "cg"
+DataPackProcessing-
+Functions
+Transceiver and Preprocessing
+functions that will be used in the
+experiment
+TransceiverFunction
+X
+StatusFunction
+Status Function that can be used
+to exchange data between NRP
+Python Client and Engines
+StatusFunction
+ComputationalGraph
+List of filenames defining
+the ComputationalGraph that
+will be used in the experiment
+string
+X
+EventLoopTimeout
+Event loop timeout (in seconds).
+0 means no timeout. If not
+specified ’SimulationTimeout’
+is used instead
+integer
+0
+EventLoopTimestep
+Time in seconds the event loop
+advances in each loop. If not
+specified ’SimulationTimestep’
+is used instead
+number
+0.01
+ExternalProcesses
+Additional processes that will
+be started in the experiment
+ProcessLauncher
+X
+ConnectROS
+If this parameter is present a
+ROS node is started by
+NRPCoreSim
+ROSNode
+ConnectMQTT
+If this parameter is present an
+MQTT client is instantiated and
+connected
+MQTTClient
+Table A.1 Simulation configuration
+
+25
+Name
+Description
+Type
+Default
+Required Array
+EngineName
+Name of the engine
+string
+X
+EngineType
+Engine type. Used
+by EngineLauncherManager to
+select the correct engine launcher
+string
+X
+EngineProcCmd
+Engine Process Launch command
+string
+EngineProcStartParams
+Engine Process Start Parameters
+string
+[ ]
+X
+EngineEnvParams
+Engine Process Environment
+Parameters
+string
+[ ]
+X
+EngineLaunchCommand
+LaunchCommand with parameters
+that will be used to launch the
+engine process
+object
+"LaunchType":
+"BasicFork"
+EngineTimestep
+Engine Timestep in seconds
+number
+0.01
+EngineCommandTimeout
+Engine Timeout (in seconds). It
+tells how long to wait for the
+completion of the engine runStep.
+0 or negative values are interpreted
+as no timeout
+number
+0.0
+Table A.2 Engine Base Parameter
+
diff --git a/FNAyT4oBgHgl3EQfSffh/content/tmp_files/load_file.txt b/FNAyT4oBgHgl3EQfSffh/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..6e4bd7fa300f6cd61c84e8e99a641b448b48e0ed
--- /dev/null
+++ b/FNAyT4oBgHgl3EQfSffh/content/tmp_files/load_file.txt
@@ -0,0 +1,934 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf,len=933
+page_content='Chair of Robotics, Artificial Intelligence and Real-Time Systems TUM School of Computation, Information and Technology Technical University of Munich 1 Autonomous Driving Simulator based on Neurorobotics Platform Wei Cao, Liguo Zhou �, Yuhong Huang, and Alois Knoll Chair of Robotics, Artificial Intelligence and Real-Time Systems, Technical University of Munich � liguo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='zhou@tum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='de Abstract — There are many artificial intelligence algorithms for autonomous driving in the present market, but directly installing these algorithms on vehicles is unrealistic and expensive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' At the same time, many of these algorithms need an environment to train and optimize.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Simulation is a valuable and meaningful solution with training and testing functions, and it can say that simulation is a critical link in the autonomous driving world.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' There are also many different applications or systems of simulation from companies or academies such as SVL and Carla.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' These simulators flaunt that they have the closest real-world simulation, but their environment objects, such as pedestrians and other vehicles around the agent-vehicle, are already fixed programmed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' They can only move along the pre-setting trajectory, or random numbers determine their movements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' What is the situation when all environmental objects are also installed by Artificial Intelligence, or their behaviors are like real people or natural reactions of other drivers?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' This problem is a blind spot for most of the simulation applications, or these applications cannot be easy to solve this problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The Neurorobotics Platform from the TUM team of Prof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Alois Knoll has the idea about "Engines" and "Transceiver Functions" to solve the multi-agents problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' This report will start with a little research on the Neurorobotics Platform and analyze the potential and possibility of developing a new simulator to achieve the true real-world simulation goal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Then based on the NRP-Core Platform, this initial development aims to construct an initial demo experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The consist of this report starts with the basic knowledge of NRP-Core and its installation, then focus on the explanation of the necessary components for a simulation experiment, at last, about the details of constructions for the autonomous driving system, which is integrated object detection function and autonomous driving control function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' At the end will discuss the existing disadvantages and improvements of this autonomous driving system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Keywords— Simulation, Neurorobotics Platform, NRP-Core, Engines, Transceiver Functions, Autonomous Driving, Object Detection, PID Trajectory Control 1 Introduction 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='1 Motivation At present, there are many different Artificial Intelligence (AI) algorithms used for autonomous driving.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Some algorithms are used to perceive the environment, such as object detection and semantic/instance segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Some algorithms are dedicated to making the best trajectory strategy and control decisions based on the road environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Others contribute to many different applications, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' path planning and parking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Simulation is the best cost-performance way to develop these algorithms before they are truly deployed to actual vehicles or robots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' So, the performance of a simulation platform is influencing the performance of the AI algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' In the present market or business world, there are already a lot of different “real-world” simulation applications such as CARLA [1] for simulating the algorithm for autonomous driving, AirSim [2] from Microsoft for autonomous vehicle and quadrotor and PTV Vissim [3] from Germany PTV Group for flexible traffic simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Although these simulators are dedicated to the “real world” simulation, they have more or less “unreal” problems on some sides in the process of simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' For example, besides the problem about the unreal 3-D models and environment, these simulators have an obvious feature, these AI algorithms are only deployed to target experimental subjects, vehicles, or robots, and the environment such as other vehicles, motorbikes, and pedestrian looks very close to the “real” environment but actually these environmental subjects are already in advance pre-programmed and have a fix motion trail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The core problem of most of them focuses on basic information transmission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' They only transfer the essential or necessary traffic information to the agent subject in the simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' This transmission is one-way direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Considering this situation, can let other subjects in this simulation have their own different AI algorithms at the same time that they can react to the agent’s behavior?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' In the future world, there would be not only one vehicle owning one algorithm from one company, but they must also have much interaction with other agents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The interaction between different algorithms can take which influence back on these algorithms, and this problem is also a blind point for many simulators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' This large range of interaction between lots of agents is the main problem that these applications should pay attention to and these existing applications do not have an efficient way to solve this problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' A simulation platform that is truly arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='00089v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='RO] 31 Dec 2022 2 like the real world, whose environment is not only a fixed pre-definition program, the objects in the environment can make a relative objective interaction with vehicles with the testing autonomous driving algorithms and they can influence each other, the goal and concept is an intractable problem for the construction of a simulation platform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' There is a platform called The Neurorobotics Platform (NRP) from the TUM team of Prof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Alois Knoll that provides a potential idea to solve this interaction problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' This research project focuses on preliminary implementation and searches for the possibility of solving the previously mentioned interaction problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='2 Neurorobotics Platform (NRP) Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='1 The base model of Neurorobotics Platform (NRP) Neurorobotics Platform [4] is an open-source integrative simulation framework platform developed by the group of the chair of Robotics, Artificial Intelligence and Real-Time Systems of the Technical University of Munich in the context of the Human Brain Project - a FET Flagship funded by the European Commission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The basic starting point of this platform enables to choose and test of different brain models (ranging from spiking neural networks to deep networks) for robots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' This platform builds an efficient information transmission framework to let simulated agents interact with their virtual environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The new Version of NRP called NRP Core provides a new idea,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' which regards all the Participator in the Simulation- system as "Engines",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' just like the object in the programming language C++/python,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' the properties of the simulation participator such as the robot,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' autonomous-driving car,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' weather,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' or pedestrian and their "behaviors" would be completely constructed in their own "Engine"-object and let all the participates become a "real" object and can each other influence in the simulation world and they would not be a fix definite "Program".' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' And the NRP-Platform is the most important transport median between these engines and they are called the Transceiver Function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' It transmits the "Information" such as the image from the camera and sends the image to an autonomous-driving car and the same time would send other information to other engines by different transfer protocols such as JSON or ROS system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' That means the transmission of information is highly real-time and lets the simulation world very close to the real world and it has high simulation potency, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' the platform sends the image information to the autonomous-driving car and lets the car computes the situation and makes the right strategy and rational decision, and at the same moment the environment-cars or "drivers" also get the location information from the autonomous-driving car and make their own decisions such like drive further or change velocity and lanes, and the same time these cars are influenced by the situation of the weather, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' in raining days the brake time of the car would be longer and let the decision making and object detection more significant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' NRP-core is mostly written in C++, with the Transceiver Function framework relying on Python for better usability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' It guarantees a fully deterministic execution of the simulation, provided every simulator used is itself deterministic and works on the basis of controlled progression through time steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Users should thus take note that event-based simulators may not be suitable for integration in NRP-core (to be analyzed on a case-by-case basis).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Communications to and from NRP-core are indeed synchronous, and function calls are blocking;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' as such, the actual execution time of a simulation based on NRP-core will critically depend on the slowest simulator integrated therein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The aforementioned feature of the NRP-Core platform is significant to build multi-object which interact with other agencies in the simulation progress and lets the simulation be close to the real world.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 2 NRP-Core configurations for simulation progress NRP-Core has many application scenarios for different demands of simulation situations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' For a specific purpose, the model of NRP-Core can be widely different.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' This development for the Autonomous-driving benchmark focuses on the actual suggested development progress.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' It concentrates on the construction of the simulation application, the details of Close Transceiver Functions Loop Engine3 the operation mechanism of NRP-Core would not be discussed, and deep research in this development documentation, the principle of the operation mechanism can be found on the homepage of NRP-Core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='1 Installation of NRP-Core and setting environment For the complete installation, refer to the homepage of the NRP-Core Platform by "Getting Started" under the page "Installation Instructions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='" This section lists only all the requirements for applying the autonomous driving simulator and benchmark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' WARNING: Previous versions of the NRP install forked versions of several libraries, notably NEST and Gazebo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Installing NRP-core in a system where a previous version of NRP is installed is known to cause conflicts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' That will be strongly recommended not to install the last version at the same time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Operating System: recommend on Ubuntu 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='04 Setting the Installation Environment: To properly set the environment to run experiments with NRP-core, please make sure that it is added the lines below to your /.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='bashrc file.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 1 # Start setting environment 2 export NRP_INSTALL_DIR ="/home/${USER }/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' local/nrp" # The installation directory , which was given before 3 export NRP_DEPS_INSTALL_DIR ="/home/${USER }/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' local/nrp_deps" 4 export PYTHONPATH="${ NRP_INSTALL_DIR }"/lib/python3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='8/site -packages:"${ NRP_DEPS_INSTALL_DIR }"/lib/python3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='8/site -packages:$PYTHONPATH 5 export LD_LIBRARY_PATH ="${ NRP_INSTALL_DIR }"/lib:"${ NRP_DEPS_INSTALL_DIR }"/lib:${ NRP_INSTALL_DIR }/lib/ nrp_gazebo_plugins : $LD_LIBRARY_PATH 6 export PATH=$PATH:"${ NRP_INSTALL_DIR }"/bin:"${ NRP_DEPS_INSTALL_DIR }"/bin 7 export GAZEBO_PLUGIN_PATH =${ NRP_INSTALL_DIR }/lib/ nrp_gazebo_plugins :${ GAZEBO_PLUGIN_PATH } 8 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' /usr/share/gazebo -11/ setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='sh 9 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' /opt/ros/noetic/setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='bash 10 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' ${CATKIN_WS }/ devel/setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='bash 11 # End of setting environment Dependency installation: 1 # Start of dependencies installation 2 # Pistache REST Server 3 sudo add -apt -repository ppa:pistache+team/unstable 4 5 # Gazebo repository 6 sudo sh -c ’echo "deb http :// packages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' osrfoundation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='org/gazebo/ubuntu -stable ‘ lsb_release -cs ‘ main"> /etc/apt/sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='list.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='d/gazebo -stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='list ’ 7 wget https :// packages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='osrfoundation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='org/gazebo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='key -O - | sudo apt -key add - ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='9 sudo apt update ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='10 sudo apt ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='install ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='git cmake ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='libpistache -dev libboost -python -dev libboost - ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='filesystem -dev libboost -numpy -dev libcurl4 -openssl -dev nlohmann -json3 -dev ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='libzip -dev cython3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='python3 -numpy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='libgrpc ++-dev protobuf -compiler -grpc ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='libprotobuf -dev ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='doxygen ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='libgsl -dev libopencv -dev python3 -opencv ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='python3 -pil ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='python3 -pip libgmock -dev ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='12 # required by gazebo ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='engine ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='13 sudo apt ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='install ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='libgazebo11 -dev ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='gazebo11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='gazebo11 -plugin -base ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='15 # Remove the flask if it was ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='installed to ensure it is installed ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='from pip ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='16 sudo apt remove ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='python3 -flask python3 -flask -cors ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='17 # required by Python ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='engine ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='18 # If you are ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='planning to use The ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='Virtual ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='Brain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='framework ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' you will most likely have to use flask version 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 19 # By installing flask version 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='4 markupsafe library (included with flask) has to be downgraded to version 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='1 to run properly with gunicorn 20 # You can install that version with 21 # pip install flask ==1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='4 gunicorn markupsafe ==2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='1 22 pip install flask gunicorn 23 24 # required by nest -server (which is built and installed along with nrp -core) 4 25 sudo apt install python3 - restrictedpython uwsgi -core uwsgi -plugin -python3 26 pip install flask_cors mpi4py docopt 27 28 # required by nrp -server ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' which uses gRPC python bindings 29 pip install grpcio -tools pytest psutil docker 30 31 # Required for using docker with ssh 32 pip install paramiko 33 34 # ROS ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' when not needed ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' can jump to the next step 35 36 # Install ROS: follow the installation instructions: http :// wiki.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='ros.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='org/noetic Installation/Ubuntu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' To enable ros support in nrp on ‘ros -noetic -ros -base ‘ is required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 37 38 #Tell nrpcore where your catkin workspace is located: export a variable CATKIN_WS pointing to an existing catkin workspace root folder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' If the variable does not exist , a new catkin workspace will be created at ‘${HOME }/ catkin_ws ‘.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 39 40 # MQTT , if needed , see the homepage of NRP -Core 41 42 # End of dependencies installation NRP installation: 1 # Start of installation 2 git clone https :// bitbucket.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='org/ hbpneurorobotics /nrp -core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='git 3 cd nrp -core 4 mkdir build 5 cd build 6 # See the section "Common NRP -core CMake options" in the documentation for the additional ways to configure the project with CMake 7 cmake .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='. -DCMAKE_INSTALL_PREFIX ="${ NRP_INSTALL_DIR }" - DNRP_DEP_CMAKE_INSTALL_PREFIX ="${ NRP_DEPS_INSTALL_DIR }" 8 mkdir -p "${ NRP_INSTALL_DIR }" 9 # the installation process might take some time , as it downloads and compiles Nest as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 10 # If you haven ’t installed MQTT libraries , add ENABLE_MQTT=OFF definition to cmake (-DENABLE_MQTT=OFF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 11 make 12 make install 13 # Just in case of wanting to build the documentation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Documentation can then be found in a new doxygen folder 14 make nrp_doxygen 15 # End of installation Common NRP-core CMake options: Here is the list of the CMake options that can help modify the project configu- ration (turn on and off the support of some components and features).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Developers options: – COVERAGE enables the generation of the code coverage reports during the testing – BUILD_RST enables the generation of the reStructuredText source files from the Doxygen documentation Communication protocols options: – ENABLE_ROS enables compilation with ROS support;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' – ENABLE_MQTT enables compilation with the MQTT support.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' ENABLE_SIMULATOR and BUILD_SIMULATOR_ENGINE_SERVER options: – ENABLE_NEST and BUILD_NEST_ENGINE_SERVER;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' – ENABLE_GAZEBO and BUILD_GAZEBO_ENGINE_SERVER.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The ENABLE_SIMULATOR and BUILD_SIMULATOR_ENGINE_SERVER flags allow disabling the compilation of those parts of nrp-core that depend on or install a specific simulator (eg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' gazebo, nest).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The expected behavior for each of these pairs of flags is as follows: 5 the NRPCoreSim is always built regardless of any of the flags values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' if ENABLE_SIMULATOR is set to OFF: – the related simulator won’t be assumed to be installed in the system, ie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' make won’t fail if it isn’t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Also it won’t be installed in the compilation process if this possibility is available (as in the case of nest) – The engines connected with this simulator won’t be built (nor client nor server components) – tests that would fail if the related simulator is not available won’t be built if the ENABLE_SIMULATOR is set to ON and BUILD_SIMULATOR_ENGINE_SERVER is set to OFF: Same as above, but: – the engine clients connected to this simulator will be built.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' This means that they should not depend on or link to any specific simulator – the engine server-side components might or might not be built, depending on if the related simulator is required at compilation time if both flags are set to ON the simulator is assumed to be installed or it will be installed from the source if this option is available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' All targets connected with this simulator will be built.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' This flag system allows configuring the resulting NRP-Core depending on which simulators are available on the system, both for avoiding potential dependency conflicts between simulators and enforcing modularity, opening the possibility of having specific engine servers running on a different machine or inside containers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='2 Introduction of basic components of simulation by NRP Some important elements for constructing a simulation example by the NRP platform are: Engines, Transceiver Function (TF) + Preprocessing Function (PF), Simulation Configuration JSON file, Simulation model file and DataPack, which are basic components of simulation progress.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' In this section, list and declare their definition, content and implementation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='1 Engine Engines are a core aspect of the NRP-core framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' They run the actual simulation software (which can be comprised of any number of heterogeneous modules), with the Simulation Loop and TransceiverFunctions merely being a way to synchronize and exchange data between them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The data exchange is carried out through an engine client (see paragraph below).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' An Engine can run any type of software, from physics engines to brain simulators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The only requirement is that they should be able to manage progressing through time with fixed-duration time steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' There are different engines already implemented in NRP-Core: Nest: two different implementations that integrate the NEST Simulator into NRP-core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Gazebo: engine implementation for the Gazebo physics simulator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' PySim: engine implementation based on the Python JSON Engine wrapping different simulators (Mujoco, Opensim, and OpenAI) with a python API.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The Virtual Brain: engine implementation based on the Python JSON Engine and TVB Python API.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' and so on are provided by NRP and as the first user-interested engines for research Spiking neural Networks and the like.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' These applications are distributed to the specific simulator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' This platform provides also Python JSON Engine, this versatile engine enables users to execute a user-defined python script as an engine server, thus ensuring synchronization and enabling DataPack data transfer with the Simulation Loop process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' It can be used to integrate any simulator with a Python API in an NRP-core experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' This feature allows users to modular develop experiment agents in constructed simulation world and is flexible to manage plural objects with different behaviors and characters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='2 DataPack and Construction format The carrier of Information which is transported between engines and lets engines with each other communicate is DataPack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' By NRP are there three types of supported DataPack, all of them are simple objects which wrap around arbitrary data structures, one is JSON DataPack, second is Protobuf DataPack and another is ROS msg DataPack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' They provide the necessary abstract interface, which is understood by all components of NRP-Core, while still allowing the passing of data in various formats.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' DataPack is also an important feature or property of a specific Engine, meaning the parameters and form of data of a specific DataPack be declared in the Engine (Example see section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' A DataPack consists of two parts: 6 DataPack ID: which allows unique identify the object.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' DataPack data: this is the data stored by the DataPack, which can be in the principle of any type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' DataPacks are mainly used by Transceiver functions to relay data between engines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Each engine type is designed to accept only datapacks of a certain type and structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Every DataPack contains a DataPackIdentifier, which uniquely identifies the datapack object and allows for the routing of the data between transceiver functions, engine clients and engine servers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' A datapack identifier consists of three fields: name - the name of the DataPack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' It must be unique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' type - string representation of the DataPack data type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' This field will most probably be of no concern for the users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' It is set and used internally and is not in human-readable form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' engine name - the name of the engine to which the DataPack is bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' DataPack is a template class with a single template parameter, which specifies the type of data contained by the DataPack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' This DataPack data can be in the principle of any type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' In practice, there are some limitations though, since DataPacks, which are C++ objects, must be accessible from TransceiverFunctions, which are written in Python.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Therefore the only DataPack data types which can be actually used in NRP-core are those for which Python bindings are provided.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' It is possible for a DataPack to contain no data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' This is useful, for example, when an Engine is asked for a certain DataPack but it is not able to provide it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' In this case, an Engine can return an empty DataPack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' This type of Datapack contains only a Datapack identifier and no data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Attempting to retrieve the data from an empty DataPack will result in an exception.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' A method "isEmpty" is provided to check whether a DataPack is empty or not before attempting to access its data: 1 if(not datapack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='isEmpty ()): 2 # It’s safe to get the data 3 print(datapack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='data) 4 else: 5 # This will raise an exception 6 print(datapack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='data) The Format of getting DataPack from a particular Engine: 1 # Declare datapack with "datapack_name " name from engine "engine_name" as input using the @EngineDataPack decorator 2 # The transceiver function must accept an argument with the same name as " keyword" in the datapack decorator 3 4 @EngineDataPack (keyword="datapack",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' id= DataPackIdentifier (" datapack_name ",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' "engine_name")) 5 @TransceiverFunction ("engine_name") 6 def transceiver_function (datapack): 7 print(datapack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='data) 8 9 # Multiple input datapacks from different engines can be declared 10 @EngineDataPack (keyword="datapack1", id= DataPackIdentifier (" datapack_name1 " , "engine_name1")) 11 @EngineDataPack (keyword="datapack2", id= DataPackIdentifier (" datapack_name2 " , "engine_name2")) 12 @TransceiverFunction ("engine_name1 ") 13 def transceiver_function (datapack1 , datapack2): 14 print(datapack1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='data) 15 print(datapack2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='data) PS: The details of two Decorators of TransceiverFunction see below in section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The Format of setting information in DataPack and sending to particular Engine: 1 # NRP -Core expects transceiver functions to always return a list of datapacks 2 @TransceiverFunction ("engine_name") 3 def transceiver_function (): 4 datapack = JsonDataPack(" datapack_name ",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' "engine_name") 5 return [ datapack ] 6 7 7 # Multiple datapacks can be returned 8 9 @TransceiverFunction ("engine_name") 10 def transceiver_function (): 11 datapack1 = JsonDataPack(" datapack_name1 ",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' "engine_name") 12 datapack2 = JsonDataPack(" datapack_name2 ",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' "engine_name") 13 14 return [ datapack1 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' datapack2 ] 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='3 Transceiver Function and Preprocessing Function 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Transceiver Function Transceiver Functions are user-defined Python functions that take the role of transmitting DataPacks between engines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' They are used in the architecture to convert, transform or combine data from one or multiple engines and relay it to another.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The definition of a Transceiver Function must use Decorator before the user-defined “def” transceiver function,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' which means: Sending the DataPack to the target Engine: 1 @TransceiverFunction ("engine_name") To request datapacks from engines,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' additional decorators can be prepended to the Transceiver Function,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' with the form (Attention: Receive-Decorator must be in the front of TransceiverFunction): 1 @EngineDataPack (keyword_datapack ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' id_datapack) keyword_datapack: user-defined new data name of DataPacks,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' this keyword is used as Input to Transceiver Function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' id_datapack: the id of from particular Engine received DataPack, “DataPack ID” = “DataPack Name” + “Engine Name” (Examples see 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='2) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Preprocessing Function Preprocessing Function is very similar to Transceiver Function but has different usage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Preprocessing Functions are introduced to optimize expensive computations on DataPacks attached to a single engine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' In some cases, there might be necessary to apply the same operations on a particular DataPack in multiple Transceiver Functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' An example of this might be applying a filter to a DataPack containing an image from a physics simulator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' In order to allow to execute this operation just once and let other TFs access the processed DataPack data, PreprocessingFunctions (PFs) are introduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' They show two main differences with respect to Transceiver Functions: Their output datapacks are not sent to the corresponding Engines,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' they are kept in a local datapack cache and can be used as input in TransceiverFunctions PFs just can take input DataPacks from the Engine they are linked to The format of Preprocessing Function is similar to Transceiver Function: 1 @PreprocessingFunction ("engine_name") 2 @PreprocessedDataPack (keyword_datapack ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' id_datapack) These Decorators “@PreprocessingFunction” and “@PreprocessedDataPack” must be used in Preprocessing Functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Since the output of Preprocessing Function is stored in the local cache and does not need to process on the Engine Server side, Preprocessing Function can return any type of DataPack without restrictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='4 Simulation Configuration Json file The details of configuration information for any simulation with Engines and Transceiver Functions are stored in a single JSON file, this file contains the objects of engines, Transceiver functions, and also their important necessary parameters to initialize and execute a simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' This file is usually written in the “example_simlation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='json” file.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The JSON format is here a JSON schema, which is highly readable and offers similar capabilities as XML Schema.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The advantage of composability and inheritance allows the simulation to use reference keywords to definite the agent and to validate inheritance by referring to other schemas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' That means that the same basement of an engine can at the same time create plural agents or objects with only different identify IDs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Simulation Parameters For details, see appendix Table A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='1: Simulation configuration parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Example form 8 1 { 2 " SimulationName": " example_simulation ", 3 " SimulationDescription ": "Launch two python engines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' " 4 " SimulationTimeout ": 1, 5 " EngineConfigs": 6 [ 7 { 8 "EngineType": "python_json", 9 "EngineName": "python_1", 10 " PythonFileName": "engine_1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='py" 11 }, 12 { 13 "EngineType": "python_json", 14 "EngineName": "python_2", 15 " PythonFileName": "engine_2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='py" 16 } 17 ], 18 " DataPackProcessingFunctions ": 19 [ 20 { 21 "Name": "tf_1", 22 "FileName": "tf_1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='py" 23 } 24 ] 25 } EngineConfigs: this section list all the engines are participating in the simulation progress.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' There are some important parameters should be declared: – EngineType: which type of engine is used for this validated engine, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=', gazebo engine, python JSON engine – EngineName: user-defined unit identification name for the validated engine – Other Parameters: These Parameters should be declared according to the type of engines (details see appendix Table A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='2: Engine Base Parameter) ∗ Python Json engine: “PythonFileName” – reference base python script for validated engine ∗ Gazebo engine: see in section DataPackProcessingFunctions: this section lists all the Transceiver functions validated in simulation progress.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Mostly are there two parameters that should be declared: – Name: user-defined identification name for validated Transceiver Function – FileName: which file as reference base python script to validate Transceiver Function Other Simulation Parameters: see section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='4 – 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Simulation Parameters Launch a simulation: This simulation configuration JSON file is also the launch file and uses the NRP command to start a simulation experiment with the following command: 1 NRPCoreSim -c user_defined_simulation_config .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='json Tip: In a user-defined simulation, the folder can simultaneously exist many different named configuration JSON files.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' It is very useful to config the target engine or Transceiver Functions that which user wants to launch and test with.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' To start and launch the target simulation experiment, just choose the corresponding configuration file.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='5 Simulation model file In this experiment for Autonomous driving on the NRP platform Gazebo physics simulator [5] is the world description simulator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' For the construction of the simulation, the world can use the “SDF” file based on XML format to describe all the necessary information about 3D models in a file, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' sunlight, environment, friction, wind, landform, robots, vehicles, and other physics objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' This file can in detail describe the static or dynamic information of the robot, the relative position and motion information, the declaration of sensor or control plugins, and so on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' And Gazebo is a simulator that has a close correlation to the ROS system and provides simulation components for ROS, so the ROS system describes many similar details about the construction of SDF file [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' According to XML format label to describe components of the simulation world and construct the dependence relation- ship of these components: 9 World Label 1 2 3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='. 4 5 All the components and their labels should be under label.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Model Labels 1 2 0 0 0 0 -0 0 3 4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 5 6 7 8 The Description is under label , and importantly if user will use a plugin such as the control-plugin or sensor-plugin (camera or lidar), this label must be set under the corresponding label.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Under label describes the model physics features like , , , and so on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 3-D models – mesh files Gazebo requires that mesh files be formatted as STL, Collada, or OBJ, with Collada and OBJ being the preferred formats.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Blow lists the file suffixes to the corresponding mesh file format.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Collada - .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='dae OBJ - .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='obj STL - .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='stl Tip: Collada and OBJ file formats allow users to attach materials to the meshes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Use this mechanism to improve the visual appearance of meshes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Mesh file should be declared under a needed label like or with layer structure with - (Uri can be absolute or relative file path): 1 2 3 xxxx/xxxx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='dae 4 5 3 Simulation Construction on NRP-Core Based on the steps for configuring a simulation on the NRP-Core platform, the autonomous driving benchmark can now be implemented with the components mentioned above, from 3D models to communicating mechanisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' This section will introduce the requirements of the autonomous driving application, and second will analyze the corresponding components and their functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The third is the concrete implementation of these requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Second, this project will also research the possibility of achieving modular development for multi-agents on the NRP platform, comparing it with other existing and widely used systems, and analyzing the simulation performance according to the progress result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='1 Analysis of requirements for autonomous driving application An application to achieve the goal of testing the performance of autonomous driving algorithms can refer to different aspects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The reason is that autonomous driving can integrate different algorithms such as computer vision, object detection, decision-making and trajectory planning, vehicle control, or Simultaneous localization and mapping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The concept and final goal of the application are to build a real-world simulation that integrates multi-agents, different algorithms, and corresponding evaluation systems to the performance of the autonomous driving vehicle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' But that first needs many available, mature, and feasible algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Second, the construction of world 3D models is a big project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' And last, the evaluation system is based on the successful operation of the simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' So the initial construction of the application will focus on the base model of the communication mechanism to first achieve the communication between the single agent 10 and object-detection algorithm under the progress of NRP-Core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' And for vehicle control algorithm reacts logically based on the object detection and generates feasible control commands, in this project will skip this step and give a specific trajectory, that let the vehicle along this trajectory move.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Requirements of implementation: Construction of the base model frame for communication between the Gazebo simulator, object-detection algorithm, and control unit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Selection of feasible object-detection algorithm Simple control system for autonomous movement of high accuracy physical vehicle model 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='2 Object detection algorithm and YOLO v5 Detector Python Class According to the above analysis, the requirements of the application should choose an appropriate existing object detection algorithm as the example to verify the communication mechanism of the NRP platform and at the same time to optimize performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' On the research of existing object detection algorithms from base Alex-Net for image classification [7] and CNN- Convolution neural network for image recognition [8],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' the optimized neural network ResNet [9] and SSD neural network for multi-box Detector [10] and in the end the YOLOv5 neural network [11],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' YOLOv5 has high performance on the object detection and its advantage by efficient handling of frame image on real-time let this algorithm also be meaningful as a reference to test other object-detection algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Considering the requirements of autonomous driving is YOLOv5 also a suitable choice as the experimental object-detection algorithm to integrate into the NRP platform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Table Notes: All checkpoints are trained to 300 epochs with default settings and hyperparameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' mAPval values are for single-model single-scale on COCO val2017 dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Reproduced by python val.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='py –data coco.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='yaml –img 640 –conf 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='001 –iou 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='65 Speed averaged over COCO val images using a AWS p3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='2xlarge instance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' NMS times ( 1 ms/img) not in- cluded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='Reproduce by python val.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='py –data coco.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='yaml –img 640 –conf 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='25 –iou 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='45 TTA Test Time Augmentation includes reflection and scale augmentations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='Reproduce by python val.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='py –data coco.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='yaml –img 1536 –iou 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='7 –augment Requirements and Environment for YOLOv5: Quick link for YOLOv5 documentation : YOLOv5 Docs [12] Environment requirements: Python >= 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='0 version and PyTorch [13] >= 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='7 Integration of original initial trained YOLOv5 neural network parameters, the main backbone has no changes compared to the initial version Based on the original execute-python file “detect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='py” has another python file “Yolov5Detector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='py” with a self-defined Yolov5Detector class interface written in the “YOLOv5” package.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' To use YOLO v5 should in main progress validate the YOLO v5 class, second use warm-up function “detectorWarmUp()” to initiate the neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' And “detectImage()” is the function that sends the image frame to the main predict detection function and will finally return the detected image with bounding boxes in NumPy format.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='3 3D-Models for Gazebo simulation world According to the performance of the Gazebo is the scope of the base environment world not suitable to use a large map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' On the basic test of different sizes of the map of Garching-area is the environment world model recommends encircling the area of Parkring in Garching-Hochbrück.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' This map model is based on the high-accuracy satellite generated and is very similar to the origin location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' And by the simulation progress, the experimental vehicle moves around the main road of Parkring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The experimental vehicle is also a high detail modeling vehicle model with independently controllable steerings for diversion control of two front wheels, free front, and rear wheels, and a high-definition camera.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' For the rebuilding of these models, the belonging relationship for each mode should be declared in the SDF file.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' In the SDF file are these models including base-chassis, steerings, wheels, and camera as “Link” of the car “model” under the label with a user-defined unique name.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Attention, the name of models or links must be specific and has no same name as other objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The below shows the base architecture frame to describe the physical relationship of the whole vehicle in the SDF file: 11 (a) Parkring Garching Hochbrueck high accuracy map model (b) Experiment vehicle for simulation Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='1 1 2 3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 4 5 6 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 7 8 9 base_link 10 eye_vision_camera 11 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='. 12 13 14 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 15 16 17 base_link 18 front_left_steering_link 19 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 20 21 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='. 22 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Description of Labels [6]: — The corresponding model as a component from the entirety model — Description of relationship between link-components — Type of the joint: – revolute — a hinge joint that rotates along the axis and has a limited range specified by the upper and lower limits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' – continuous — a continuous hinge joint that rotates around the axis and has no upper and lower limits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' – prismatic — a sliding joint that slides along the axis, and has a limited range specified by the upper and lower limits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' – fixed — this is not a joint because it cannot move.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' All degrees of freedom are locked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' This type of joint does not require the , , , or .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' – floating — this joint allows a motion for all 6 degrees of freedom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' – planar — this joint allows motion in a plane perpendicular to the axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' / — the secondary label as element of label — declaration for the belonging relationship of referring “links” 12 The mesh file “vehicle_body.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='dae” (shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='1b the blue car body) is used for the base-chassis of the experiment vehicle under label.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' And the mesh file “wheel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='dae” is used for the rotatable vehicle wheels under and the other three similar link labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' And for steering models, labels are used to simply generate length – 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='01m + height radius 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='1m cylinder as the joint elements between wheels and chassis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Sensor Label: In the Gazebo simulator to activate the camera function, the camera model should under the “camera link” label declare a new secondary “sensor label” - with “name” and “type=camera” elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' And the detailed construction for the camera sensor seeing blow scripts: 1 2 0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='132 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='174 0 3 /smart/camera 4 5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='57 6 7 736 8 480 9 10 11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='1 12 100 13 14 15 gaussian 16 0 17 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='007 18 19 20 1 21 30 22 1 23 — this label defines the camera resolution ratio and this is regarded as the size of the frame-image that sends to the Yolo detector engine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' According to the requirement of the YOLO detection algorithm, the width and height of the camera should be set as integral multiples by 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='4 Construction of Engines and Transceiver Functions Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='2 the system of autonomous driving on NRP The construction of the whole project regards as an experiment on the NRP platform, and as an experiment, the whole package of the autonomous driving benchmark is under the “nrp-core” path in the examples folder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' According ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='to bevor announced NRP components for a simulation experiment is the application also modular developed referring ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='YoloDetectorEngine ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='Gazebo Engine ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='camera Transeiver ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='imageprocess ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='function ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='Camera frame-image ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='Yolo detector class ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='OpenCv ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='location coordination ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='state Transeiver function ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='Detected ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='camera ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='Vehicle control Engine ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='motorsettingTranseiver ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='coordination transform ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='joint control ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='function ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='trajectorycompute ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='controlcommand13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='to requirements of autonomous driving benchmark application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' And the whole system frame is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The construction of simulation would according to primary embrace two branches extend: A close loop from the Gazebo engine to get the location information of the vehicle and sent to the Vehicle control engine depending on Gazebo DataPacks (Protobuf DataPack), then send the joint control command back to the Gazebo engine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' An open loop from Gazebo engine to get camera information and sent to Yolo Detector Engine, final using OpenCV to show the detected frame-image as monitor window.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='1 Gazebo plugins Before the steps to acquire the different information must the corresponding plugins in SDF be declared.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' These plugins label are such as recognition-label to let Gazebo know what information and parameters should be sent or received and assigned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' A set of plugins is provided to integrate the Gazebo in NRP-Core simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' NRPGazeboCommunicationPlugin registers the engine with the SimulationManager and handles control requests for advancing the gazebo simulation or shutting it down.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Its use is mandatory in order to run the engine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' And there are two implementations of the Gazebo engine are provided.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' One is based on JSON over REST and another on Protobuf over gRPC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The latter performs much better and it is recommended.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The gRPC implementation uses protobuf objects to encapsulate data exchanged between the Engine and TFs, whereas the JSON implementation uses nlohmann::json objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Besides this fact, both engines are very similar in their configuration and behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The rest of the documentation below is implicitly referred to the gRPC implementation even though in most cases the JSON implementation shows no differences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The corresponding plugins are also based on Protobuf over the gRPC protocol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' There are four plugins that would be applied in the SDF model world file: World communication plugin – NRPGazeboGrpcCommunicationPlugin This plugin is the main communication plugin to set up a gRPC server and waits for NRP commands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' It must be declared under the label in the SDF file.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 3 4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 5 Activation of Camera sensor plugin – NRPGazeboGrpcCameraPlugin This plugin is used to add a GazeboCameraDataPack datapack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' In the SDF file, the plugin would be named “smart_camera” (user-defined).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' This name can be accessed by TransceiverFunctions and get the corresponding information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' This plugin must be declared under label in the application under the camera sensor label: 1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 3 4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 5 Joint control and message – NRPGazeboGrpcJointPlugin This plugin is used to register GazeboJointDataPack DataPack and in this case, only those joints that are explicitly named in the plugin will be registered and made available to control under NRP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The joint’s name must be unique and once again in the plugin declared.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' In contrast to the other plugins described above or below, when using NRPGazeboGrpcJointPlugin DataPacks can be used to set a target state for the referenced joint, the plugin is integrated with the PID controller and can for each of the joint-specific set a better control performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' This plugin must be declared under the corresponding label and have the parallel level in contrast to the label, and there are four joints that would be chosen to control: rear left and right wheel joint, front left and right steering joint, and according to small tests of the physical model of experiment-vehicle in Gazebo are the parameters of PID controller listed in below block: 1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 14 4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 5 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 6 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 7 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 8 9 10 11 12 13 14 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 15 Attention: There are two target types that can be influenced and supported in Gazebo: Position and Velocity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' And for the rear left and right wheels of the vehicle are recommended for setting type with “Velocity” and for the front left and right steering are recommended setting type with “Position”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Because the actual control of the rear wheels is better with velocity and front steering uses angle to describe the turning control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Gazebo link information – NRPGazeboGrpcLinkPlugin This plugin is used to register GazebolinkDataPack DataPacks for each link of the experiment vehicle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Similar to the sensor plugin, this plugin must be declared under label and has the parallel level of label, and only be declared once: 1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 3 4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 5 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 6 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 7 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 8 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 9 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 10 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 11 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 12 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 13 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 14 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='2 State Transceiver Function “state_tf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='py” State Transceiver Function acquires the location information from the Gazebo engine and transmits it to Vehicle Control Engine to compute the next control commands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The receiving of location coordinates of the vehicle is based on the DataPack from Gazebo, and this DataPack is already encapsulated in NRP, it only needs to in the Decoder indicate which link information should be loaded in DataPack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 1 @EngineDataPack (keyword=’state_gazebo ’, id= DataPackIdentifier (’ smart_car_link_plugin :: base_link ’, ’gazebo ’)) 2 @TransceiverFunction ("car_ctl_engine ") 3 def car_control(state_gazebo): The location coordinates in the experiment would be the coordinate of base-chassis “base_link” chosen and use C++ inheritance declaration with the name of the plugin that is declared in the SDF file.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' And the received DataPack with the user-defined keyword “state_gazebo” would be sent in Transceiver Function “car_control()”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Attention: Guarantee to get link-information from Gazebo it is recommended new declaring on the top of the script with the below sentence: 1 from nrp_core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='nrp_protobuf import GazeboLinkDataPack 15 that could let NRP accurately communicate with Gazebo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The link-information DataPack in NRP would be called GazeboLinkDataPack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' And its Attributes are listed in next Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' In Project are “position” and “rotation” information chosen and set to the “car_ctl_engine” engine defining Json DataPack, in the last “return” back to “car_ctl_engine”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Use the “JsonDataPack” function to get in other engine-defined DataPack and itself form and assign the corresponding parameter with received information from Gazebo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 1 car_state = JsonDataPack(" state_location ", " car_ctl_engine ") 2 3 car_state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='data[’location_x ’] = state_gazebo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='position [0] 4 car_state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='data[’location_y ’] = state_gazebo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='position [1] 5 car_state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='data[’qtn_x ’] = state_gazebo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='rotation [0] 6 car_state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='data[’qtn_y ’] = state_gazebo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='rotation [1] 7 car_state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='data[’qtn_z ’] = state_gazebo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='rotation [2] 8 car_state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='data[’qtn_w ’] = state_gazebo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='rotation [3] Tip: The z-direction coordinate is not necessary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' So only x- and y-direction coordinates are included in DataPack to make the size of JSON DataPack smaller and let the transmission more efficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Attribute Description Python Type C Type pos Link Position numpy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='array(3, numpy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='float32) std::array<float,3> rot Link Rotation as quaternion numpy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='array(4, numpy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='float32) std::array<float,4> lin_vel Link Linear Velocity numpy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='array(3, numpy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='float32) std::array<float,3> ang_vel Link Angular Velocity numpy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='array(3, numpy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='float32) std::array<float,3> Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='1 GazeboLinkDataPack Attributes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Tip: the rotation information from Gazebo is quaternion and its four parameters sort sequence is “x, y, z, w”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='3 Vehicle Control Engine “car_ctl_engine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='py” The Vehicle Control Engine would be written according to the form of Python Json Engine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The construction of a Python Json Engine is similar to the definition of a python class file that includes the attributes such as parameters or initialization and its functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' And a class file should declare that this Python Json Engine inherits the class “EngineScript” to let NRP recognize this file as a Python Json Engine to compute and execute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' So a Python Json Engine can mostly be divided into three main blocks with def functions: def initialize(self), def runLoop(self, timestep_ns), and def shutdown(self).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' In initialize block is the initial parameters and functions defined for the next simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' And in this block, should the correspondingDataPacksthatbelongtothespecificEngineatthesametimebedefinedwith“self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='_registerDataPack()” and “self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='_setDataPack()” functions: 1 self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' _registerDataPack ("actors") 2 self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='_setDataPack("actors", {"angular_L": 0, "angular_R": 0, "linear_L": 0, "linear_R": 0}) 3 self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' _registerDataPack ("state_location ") 4 self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='_setDataPack("state_location ", { "location_x": 0, "location_y": 0, " qtn_x": 0, "qtn_y": 0,"qtn_z": 0,"qtn_w": 0}) – _registerDataPack(): - given the user-defined DataPack in the corresponding Engine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' – _setDataPack(): - given the corresponding name of DataPack and set parameters, form, and value of the DataPack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The generated actors-control-commands and location-coordinate of the vehicle in this project would be as properties of the DataPack belonging to the “car_ctl_engine” Engine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' runLoop block is the main block that would always be looped during the simulation progress, which means the computation that relies on time and always need to update would be written in this block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' In the “car_ctl_engine” Engine should always get the information from Gazebo Engine with the function “self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='_getDataPack()”: 1 state = self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='_getDataPack(" state_location ") – _getDataPack(): - given the user_defined name of the DataPack Attention: the name must be same as the name in the Transceiver function that user-chosen DataPack which is sent back to Engine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 16 After the computation of the corresponding command to control the vehicle is the function “_setDataPack()” once again called to set the commands information in corresponding “actors” DataPack and waiting for other Transceiver Function to call this DataPack: 1 self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='_setDataPack("actors", {"angular_L": steerL_angle , "angular_R": steerR_angle , "linear_L": rearL_omiga , "linear_R": rearR_omiga }) shutdown block is only called when the simulation is shutting down or the Engine arises errors and would run under progress.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='4 Package of Euler-angle-quaternion Transform and Trajectory Euler-angle and quaternion transform The received information of rotation from Gazebo is quaternion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' That should be converted into Euler-angle to conveniently compute the desired steering angle value according to the beforehand setting trajectory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' And this package is called “euler_from_quaternion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='py” and should be in the “car_ctl_engine” Engine imported.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Trajectory and Computation of target relative steering angle The beforehand setting trajectory consists of many equal proportional divided points-coordinate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' And through the comparison of the present location coordinate and the target coordinate, the package would get the desired distance and steering angle to adjust whether the vehicle arrives at the target.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' If the vehicle arrives in the radius 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='8m of the target location points will be decided that the vehicle will reach the present destination, and the index will jump to the next destination location coordinate until the final destination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' This package is called “relateAngle_computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='py”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='5 Actors “Motor” Setting Transceiver Function “motor_set_tf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='py” This Transceiver Function is the communication medium similar to the state-Transceiver Function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The direction of data is now from the “car_ctl_engine” Engine to the Gazebo engine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The acquired data from the “car_ctl_engine” Engine is the DataPack “actors” with the keyword “actors”: 1 @EngineDataPack (keyword=’actors ’, id= DataPackIdentifier (’actors ’, ’ car_ctl_engine ’)) 2 @TransceiverFunction ("gazebo") 3 def car_control(actors): And the DataPack from the Gazebo joint must be validated in this Transceiver Function with the “GazeboJointDat- aPack()” function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' This function is specifically provided by Gazebo to control the joint,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' the given parameters are the corresponding joint name (declared with NRPGazeboGrpcJointPlugin plugin name in the SDF file) and target Gazebo engine (gazebo) (Attention: each joint should be registered as a new joint DataPack): 1 rear_left_wheel_joint = GazeboJointDataPack (" smart_car_joint_plugin :: rear_left_wheel_joint ",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' "gazebo") 2 rear_right_wheel_joint = GazeboJointDataPack (" smart_car_joint_plugin :: rear_right_wheel_joint ",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' "gazebo") 3 front_left_steering_joint = GazeboJointDataPack (" smart_car_joint_plugin :: front_left_steering_joint ",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' "gazebo") 4 front_right_steering_joint = GazeboJointDataPack (" smart_car_joint_plugin :: front_right_steering_joint ",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' "gazebo") The joint control DataPack is GazeboJointDataPack and its attributes are listed in Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='2: Attribute Description Python Type C Type position Joint angle position (in rad) float float velocity Joint angle velocity (in rad/s) float float effort Joint angle effort (in N) float float Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='2 GazeboJointDataPack Attributes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Attention: Guarantee to send Joint-information to Gazebo it is recommended new declaring on the top of the script with the below sentence: 1 from nrp_core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='nrp_protobuf import GazeboJointDataPack 17 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='6 Camera Frame-Image Transceiver Function “camera_tf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='py” Camera frame-image Transceiver Function acquires the single frame image gathered by Gazebo internally installed camera plugin and sends this frame image to YOLO v5 Engine “yolo_detector”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The receiving of the image of the camera is based on the camera DataPack from Gazebo called “GazeboCameraDataPack”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' To get the data,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' should the Decorator declare the corresponding sensor name with Validation through C++ and indicate the “gazebo” engine and assign a new keyword for the next Transceiver Function: 1 @EngineDataPack (keyword=’camera ’,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' id= DataPackIdentifier (’smart_camera :: camera ’,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' ’gazebo ’)) 2 @TransceiverFunction ("yolo_detector ") 3 def detect_img(camera): Attention: Guarantee to acquire camera information from Gazebo it is recommended new declaring on the top of the script with the below sentence that confirms import GazeboCameraDataPack: 1 from nrp_core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='nrp_protobuf import GazeboCameraDataPack And received image Json-information is four parameters: height, width, depth, and image data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The Attributes of the GazeboCameraDataPack are listed in Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='3: Attribute Description Python Type C Type image_height Camera Image height uint32 uint32 image_width Camera Image width uint32 uint32 image_depth Camera Image depth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Number of bytes per pixel uint8 uint32 image_data Camera Image data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 1-D array of pixel data numpy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='array(image_height image_width * image_depth, numpy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='uint8) std::vector Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='3 GazeboCameraDataPack Attributes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The received image data from the gazebo is a 1-D array of pixels with unsigned-int-8 form in a sequence of 3 channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' So this Transceiver Function should be pre-processed with NumPy “frombuffer()” function that transforms the 1-D array in NumPy form: 1 imgData = np.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='frombuffer(trans_imgData_bytes , np.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='uint8) And in the end, validate the Json-DataPack from YOLO v5 Engine and set all information in DataPack, and return to YOLO v5 Engine: 1 processed_image = JsonDataPack("camera_img", " yolo_detector ") 2 3 processed_image .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='data[’c_imageHeight ’] = trans_imgHeight 4 processed_image .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='data[’c_imageWidth ’] = trans_imgWidth 5 processed_image .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='data[’current_image_frame ’] = imgData 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='7 YOLO v5 Engine for Detection of the Objects “yolo_detector_engine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='py” YOLO v5 Engine acquires the camera frame image from Gazebo during the camera Transceiver Function and detects objects in the current frame image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' In the end, through the OpenCV package, the result is shown in another window.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' And the Yolo v5 Engine is also based on the Python Json Engine model and is similar to the vehicle control Engine in section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The whole structure is divided into three main blocks with another step to import Yolo v5 package.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Initialization of Engine with establishing “camera_img” DataPack and validation Yolo v5 object with specific pre-preparation by “detectorWarmUp()”: 1 self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' _registerDataPack ("camera_img") 2 self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='_setDataPack("camera_img", {" c_imageHeight ": 0, "c_imageWidth": 0, " current_image_frame ": [240 , 320 , 3]}) 3 self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='image_np = 0 4 5 self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='detector = Yolov5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='Yolov5Detector () 18 6 stride , names , pt , jit , onnx , engine , imgsz , device = self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='detector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' detectorInit () 7 self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='detector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='detectorWarmUp () In the main loop function first step is to acquire the camera image with the “_getDataPack()” function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' And the extracted image data from Json DataPack during the camera Transceiver Function became already again in 1-D “list” data form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' There is a necessary step to reform the structure of the image data to fit the form for OpenCV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The first is to convert the 1-D array into NumPy ndarray form and, according to acquired height and width information, reshape this np-array.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' And image form for OpenCV is the default in “BGR” form, and the image from Gazebo is “RGB”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' There is also an extra step to convert the “RGB” shaped NumPy ndarray [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' In the last, it sends the original NumPy array-shaped image and OpenCV-shaped image together into detect-function and finally returns an OpenCV-shaped image with an object-bonding box, and this OpenCV-shaped ndarray can directly use the function of OpenCV showed in the window: 1 # Image conversion 2 img_frame = np.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='array(img_list , dtype=np.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='uint8) 3 cv_image = img_frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='reshape (( img_height , img_width , 3)) 4 cv_image = cv_image [:, :, ::-1] - np.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='zeros_like(cv_image) 5 np_image = cv_image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='transpose (2,0,1) 6 7 # Image detection by Yolo v5 8 cv_ImgRet ,detect ,_ = self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='detector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='detectImage(np_image , cv_image , needProcess=True) 9 10 # Show of Detected image through OpenCV 11 cv2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='imshow(’detected image ’, cv_ImgRet) 12 cv2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='waitKey (1) 4 Simulation Result and Analysis of Performance (a) (b) Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='1 Object-detection by Yolo v5 on NRP platform (right: another frame) The final goal of the Autonomous driving Benchmark Platform is to build a real-world simulation platform that can train, do research, test or validate different AI algorithms integrated into vehicles, and next, according to the performance to give benchmark and evaluation to adjust algorithms, in the end to real installed these algorithms on the real vehicle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' This project “Autonomous Driving Simulator and Benchmark on Neurorobotics Platform” is a basic and tentative concept and foundation to research the possibility of the simulator with multi-agents on the NRP-Core platform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' And according to the above construction of a single vehicle agent, the autonomous driving simulation experiment has been finished.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' This section will discuss the results and suggestions based on the performance of the simulation on the NRP-Core Platform and the Gazebo simulator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' detected Image traffic light 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='27 umbrella0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='69 suitcase 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='47 plant 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='25 truck 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='68person0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='93 person 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='89 car0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='55 firehydrint 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='87 x=1273.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='v=107) R:18G-13B:11detectedimage suitcase 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='57 umbrella 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='69 truck0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='72 person0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='81 firehydrant 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='8719 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='1 Simulation Result of Object-detection and Autonomous Driving 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='1 Object Detection through YOLOv5 on NRP The object detection is based on the visual camera from the Gazebo simulator through the Yolo v5 algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' NRP-Core is the behind transmit medium between the Gazebo and Yolo v5 detector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The simulation result is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' On the point of objects-detection, the result reaches the standard and performances well, most of the objects in the camera frame image has been detected, but in some different frame, the detected objects are not stable and come to “undetected.” And in the other hand, although most objects are correctly detected with a high confidence coefficient, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=', the person is between 80% 93%, at the same time, there are few detected errors, such as when the flowering shrubs are detected as a car or a potted plant, the bush plant is detected as an umbrella and the but in front of the vehicle is detected as a suitcase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' And last, even though the Yolo works well on the NRP platform, the performance is actually not smooth, and in the Gazebo simulator, the running frame rate is very low, perhaps only around 10-13 frames per second, in a more complex situation, the frame rate came to only 5 frames per second.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' That makes the simulation in Gazebo very slow and felled the sense of stumble.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' And when the size and resolution ratio of the camera became bigger, that made the stumble situation worse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='2 Autonomous Driving along pre-defined Trajectory Autonomous driving along a pre-defined trajectory works well, the performance of simulation also runs smoothly and the FPS (frame pro second) holds between 20-40 fps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' This FPS ratio is also in the tolerance of real-world simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The part trajectory of the experiment vehicle is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='2, and the vehicle could run around Parkring and finish one circle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' As the first image of the experiment, the vehicle would, according to the detection result, make the corresponding decision to control the vehicle to accelerate or to brake down and turn to evade other obstacles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' But for this project, there is no appropriate autonomous driving algorithm to support presently, so here only use a pre-defined trajectory consisting of plenty of point coordinates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The speed of the vehicle is also fixed, and using PID controller to achieve simulated autonomous driving.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' And on the other hand, all the 3-D models are equal in proportion to the real size of objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' After many tests of different sizes of the world maps, the size of Parkring is almost the limit of the Gazebo, even though the complexity of the map is not high.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' For a bigger scenario of the map, the FPS is obviously reduced, and finally, the simulation would become stumble and generate a sense of separation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' (a) (b) Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='2 Simulation trajectory of autonomous driving 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='3 Multi-Engines united Simulation The final experiment is to start the Yolo v5 Engine and the autonomous driving control Engine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The above experiments are loaded with only one Engine, and they actually reacted well and had a relatively good performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' And the goal of this project is also to research the possibility of multi-agent simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The result of multi-Engines simulation actually works in that the Yolo v5 Engine can detect the image and show it in a window and at the same time, the vehicle can move along the trajectory automatically drive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' But the simulation performance is not good, and the FPS can only hold between 9 -11 fps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The driving vehicle in Gazebo moves very slowly and not smoothly, and the simulation time has an enormous error compared to the real-time situation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 20 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='2 Analysis of Simulation Performance and Discussion 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='1 YOLOv5 Detection ratio and Accuracy Most of the objects near the vehicle in the field of view of the camera have been detected and have high confidence, but there are also some errors appearing during the detection that some objects in as wrong objects are detected, some far objects are detected bus some obvious close objects are not detected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The reason can conclude in two aspects: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The employment of the integrated Yolo v5 algorithm is the original version that is not aimed at the specific purpose of this autonomous driving project and has not been trained according to the specific usage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Its network parameters and arts of objects are original and did not use the specific self-own data set, which makes the result actually have a big error between the detected result and expected performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' So that makes the result described in section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='1 that appears some detection error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The accuracy and reality of 3-D models and environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The object detection algorithm is actually deeply dependent on the quality of the sent image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Here the quality is not about the resolution size but refers to the “reality” of the objects in the image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The original Yolo v5 algorithm was trained based on real-world images, but the camera images from Gazebo actually have enormous distances from real-world images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' But the 3-D models and the environment in Gazebo Simulator are relatively very rough, and like cartoon style, they have a giant distance to the real-world objects on the side of the light, material texture of surface and reflection, the accuracy of objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' For example, in Gazebo, the bus has terrible texture and reflection that lets the bus be seen as a black box and not easy to recognize, and Yolo Engine actually detected as a suitcase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' And the Environment in Gazebo is also not well exquisitely built.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' For example, the shrub and bushes on the roadside have a rough appearance with coarse triangles and obvious polygon shapes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' That would make huge mistakes and influence the accuracy of desired algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' (a) (b) Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='3 Distance between real-world and visual camera image 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The property of the Gazebo simulator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The Gazebo simulator is perhaps suitable for small scene simulations like in a room, a tank station, or in a factory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Comparing to other simulators on the market like Unity or Unreal, the advantage of Gazebo is quickly start-up to the reproduction of a situation and environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' But the upper limit of Gazebo and its rendering quality is actually not very close to the real world and can let people at the first time recognize this is a virtual simulation, which also has a huge influence on training object-detection algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' And the construction of the virtual world in Gazebo is very difficult and has to use other supported applications like Blender [15] to help the construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Even in Blender, the world has a very high reality, but after the transfer to Gazebo, the rendering quality becomes terrible and awful.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' In fact, although detection has some mistakes and errors, the total result and performance are in line with the forecast that the Yolo v5 algorithm has excellent performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='2 Multi-Engines Situation and Non-smooth Simulation Phenomenon The simulation of single loaded Yolo Engine and the multi-engine meanwhile operation appear terrible performance by the movement of the vehicle and inferior progress FPS of the whole simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' But simulation for single loaded vehicle control engine is actually working well and has smooth performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' After the comparison experiment, the main reason for the terrible performance is because of the backstage transmission mechanism of information between Python Json 21 Engine on the NRP Platform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' In the simulation of a single loaded vehicle control Engine, the transmission from Gazebo is based on Protobuf-gRPC protocol, and transmission back to Gazebo is JSON protocol, but the size of transmitted information is actually very small because the transmitted data consists of only the control commands like “line-velocity” and “angular-velocity” that don’t take much transmission capacity and for JSON Protocol is actually has a negligible error to Protobuf Protocol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' And the image transmission from Gazebo to Transceiver Function is also based on the Protobuf- gRPC method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' But the transmission of an image from the Transceiver Function to Yolo Engine through JSON Protocol is very slow because the information of an image is hundreds of commands, and the according to the simulation loop in NRP, would make a block during the process of simulation and let the system “be forced” wait for the finish of transmission of the image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The transfer efficiency of JSON Protocol is actually compared to real-time slowness and tardiness, which takes the choke point to the transmission and, according to the test, only reduces the resolution rate of the camera to fit the simulation speed requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='3 Improvement Advice and Prospect The autonomous driving simulator and application on NRP-Core achieve the first goal of building a concept and foundation for multi-agents, and at the same time, this model is still imperfect and has many disadvantages that would be improved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' On the NRP-Core platform is also the possibility for a real-world simulator discussed, and the NRP-Core has large potential to achieve the complete simulation and online cooperation with other platforms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' There are also some directions and advice for the improvement of this application presently on NRP for further development.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='1 Unhindered simulation with other communication protocol As mentioned before, the problem that communication with JSON protocol is the simulation at present is not smooth and has terrible simulation performance with Yolo Engine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Actually, the transmission of information through the Protobuf protocol based on the transmission between Gazebo and Transceiver Functions has an exceeding expectation performance than JSON protocol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The development Group of NRP-Core has also been developing and integrating the Protobuf- gRPC [16] communication backstage mechanism on the NRP-Core platform to solve the big data transmission problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' And in order to use Yolo or other object-detection Engines, it is recommended to change the existing communication protocol in the Protobuf-gRPC protocol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' And the Protobuf protocol is a free and open-source cross-platform data format used to serialize structured data and developed by google, and details see on the official website [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='2 Selection of Basic Simulator with better performance Because of the limitation of performance and functions of the Gazebo, there are many applications that can not in Gazebo easy to realize, such as the weather and itself change, and the accuracy and reality of 3-D models also have limitations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The usage of high-accuracy models would make the load became heavier on the Gazebo because of the fall behind the optimization of the Gazebo simulator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' In fact, there are many excellent simulators, and they also provide many application development packages that can shorten the development period, such as Unity3D [17] or Unreal engine simulator [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' In the team of an autonomous driving simulator and the benchmark there is an application demo on Unity3D simulator and figure Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='4 shows the difference between Gazebo and Unity3D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The construction and simulation in Unity3D have much better rendering quality close to the real world than Gazebo, and the simulation FPS can maintain above 30 or even 60 fps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' And for the YoloV5 detection result, according to the analysis in section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='1, the result by Unity3D is better than the performance by Gazebo simulator because of more precision 3-D models and better rendering quality of models (Example see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The better choice for the development as the basic simulator and world expresser is recommended to develop on Unity3D or other game engines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' And actually, NRP-Core will push a new version that integrates the interfaces with Unity3D and could use Protobuf protocol to ensure better performance for a real-world simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='3 Comparing to other Communication Systems and frameworks There are also many communication transmission frameworks and systems that are widely used in academia or business for robot development, especially ROS (Robot Operating System) system already has many applications and development.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Actually, ROS has already been widely and mainly used for Robot-development with different algorithms: detection algorithm and computer vision, SLAM (Simultaneous Localization and Mapping) and Motion-control, and so on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' ROS has already provided relatively mature and stable methods and schemes to undertake the role of transmitting these necessary data from sensors to the robot’s algorithms and sending the corresponding control command codes to the robot body or actors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' But the reason chosen NRP-Core to be the communication system is based on the concepts of Engines and Transceiver Functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Compared to ROS or other framework NRP platform has many advantages: This platform is very easy to build multi-agents in simulation and conveniently load in or delete from the configuration of simulation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The 22 (a) Sunny (b) Foggy (c) Raining (d) Snowy Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='4 Construction of simulation world in Unity3D with weather application (a) Detection by YOLOv5 on Gazebo (b) Detection by YOLOv5 on Unity3D Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='5 Comparing of the detection result by different platforms management of information is easier to identify than ROS-topics-system;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The transmission of information is theoretically more efficient, and modularization and this platform can also let ROS at the same time as parallel transmission method to match and adapt to another systems or simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' From this viewpoint, the NRP platform generalizes the transmission of data and extends the boundary of the development of the robot, which makes the development more modular and efficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' ROS system can also realize the multi-agents union simulation but is not convenient to manage based on the "topic" system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' ROS system is now more suitable for a single agent simulation and the simulation environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' As mentioned before, the real interacting environment is not easy to realize.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' But NRP-Core has the potential because that NRP-Core can at the same time run the ROS system and let the agent developed based on the ROS system easily join in the simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' That is meaningful to develop further on the NRP-Core platform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 5 Conclusion and Epilogue This project focuses on the first construction of the basic framework on the Neurorobotics Platform for applying the Autonomous Driving Simulator and Benchmark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Most of the functions including the template of the autonomous driving function and object-detection functions are realized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The part of the benchmark because there are no suitable standards and further development is a huge project regarded as further complete development for the application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' umbre umbrella 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='69 suitcase0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='57 truck 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='72 person 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='85 00tedpldnt0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='4truck0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='49 person 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='81 fire hydrant 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='87OGGY1 Burger:Queen KSC23 This project started with researching the basic characters to build a simulation experiment on the NRP-Core Platform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Then the requirements of the construction of the simulation are listed and each necessary component and object of the NRP-Core is given the basic and key understanding and attention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The next step according to the frame of the NRP-Core is the construction of the application of the autonomous driving simulator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Started with establishing the physic model of the vehicle and the corresponding environment in the SDF file, then building the “close loop” - autonomous driving based on PID control along the pre-defined trajectory and finally the “open loop” – objects-detection based on YoloV5 algorithm and successfully achieve the goal to demonstrate the detected current frame image in a window and operated as camera monitor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' And at last, the current problems and the points of improvement are listed and discussed in this development document.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' And at the same time there are also many problems that should be optimized and solved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' At present the simulation application can only regard as research for the probability of the multi-agent simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The performance of the scripts has a lot of space to improve, and it is recommended to select a high-performance simulator as the carrier of the real-world simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' In fact the NRP-Core platform has shown enormous potential for the construction of a simulation world with each object interacting function and the high efficiency to control and manage the whole simulation project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' In conclusion the NRP-Core platform has great potential to achieve the multi-agents simulation world.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' References [1] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' CARLA: An open urban driving simulator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' In Proceedings of the 1st Annual Conference on Robot Learning, pages 1–16, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' [2] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Airsim: High-fidelity visual and physical simulation for autonomous vehicles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' In Field and Service Robotics, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' [3] PTV Group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Ptv vissim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='ptvgroup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='com/en/solutionsproducts/ptv-vissim/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' [4] Human Brain Project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Neurorobotics platform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' https://neurorobotics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='net/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' [5] Nathan Koenig and Andrew Howard.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Design and use paradigms for gazebo, an open-source multi-robot simulator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 04CH37566), volume 3, pages 2149–2154.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' IEEE, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' [6] ROS Wiki.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' urdf/xml.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' https://wiki.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='ros.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='org/urdf/XML.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' [7] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Imagenet classification with deep convolutional neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Communications of the ACM, 60(6):84–90, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' [8] Karen Simonyan and Andrew Zisserman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Very deep convolutional networks for large-scale image recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' arXiv preprint arXiv:1409.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='1556, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' [9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Deep residual learning for image recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' [10] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C Berg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Ssd: Single shot multibox detector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' In European conference on computer vision, pages 21–37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Springer, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' [11] G Jocher, K Nishimura, T Mineeva, and R Vilarino.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Yolov5 by ultralytics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Disponıvel em: https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' com/ultr- alytics/yolov5, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' [12] Yolov5 documentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' https://docs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='ultralytics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='com/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' [13] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Pytorch: An imperative style, high-performance deep learning library.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Advances in neural information processing systems, 32, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' [14] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Bradski.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' The OpenCV Library.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Dobb’s Journal of Software Tools, 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' [15] Blender Online Community.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Blender - a 3D modelling and rendering package.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Blender Foundation, Stichting Blender Foundation, Amsterdam, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' [16] Kenton Varda.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Protocol buffers: Google’s data interchange format.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Technical report, Google, 6 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' [17] Unity Technologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Real-time 3d tools and more.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' https://unity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='com/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' [18] Epic Games.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Unreal engine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='unrealengine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='com/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' A Appendix 24 Name Description Type Default Array Values SimulationLoop Type of simulation loop used in the experiment enum "FTILoop" "FTILoop" "EventLoop" SimulationTimeout Experiment Timeout (in seconds).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' It refers to simulation time integer 0 SimulationTimestep Time in seconds the simulation advances in each Simulation Loop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' It refers to simulation time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' number 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='01 ProcessLauncherType ProcessLauncher type to be used for launching engine processes string Basic EngineConfigs Engines that will be started in the experiment EngineBase X DataPackProcessor Framework used to process and rely datapack data between engines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Available options are the TF framework (tf) and Computation Graph (cg) enum "tf" "tf",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' "cg" DataPackProcessing- Functions Transceiver and Preprocessing functions that will be used in the experiment TransceiverFunction X StatusFunction Status Function that can be used to exchange data between NRP Python Client and Engines StatusFunction ComputationalGraph List of filenames defining the ComputationalGraph that will be used in the experiment string X EventLoopTimeout Event loop timeout (in seconds).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 0 means no timeout.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' If not specified ’SimulationTimeout’ is used instead integer 0 EventLoopTimestep Time in seconds the event loop advances in each loop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' If not specified ’SimulationTimestep’ is used instead number 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='01 ExternalProcesses Additional processes that will be started in the experiment ProcessLauncher X ConnectROS If this parameter is present a ROS node is started by NRPCoreSim ROSNode ConnectMQTT If this parameter is present an MQTT client is instantiated and connected MQTTClient Table A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='1 Simulation configuration 25 Name Description Type Default Required Array EngineName Name of the engine string X EngineType Engine type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' Used by EngineLauncherManager to select the correct engine launcher string X EngineProcCmd Engine Process Launch command string EngineProcStartParams Engine Process Start Parameters string [ ] X EngineEnvParams Engine Process Environment Parameters string [ ] X EngineLaunchCommand LaunchCommand with parameters that will be used to launch the engine process object "LaunchType": "BasicFork" EngineTimestep Engine Timestep in seconds number 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='01 EngineCommandTimeout Engine Timeout (in seconds).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' It tells how long to wait for the completion of the engine runStep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content=' 0 or negative values are interpreted as no timeout number 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='0 Table A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
+page_content='2 Engine Base Parameter' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNAyT4oBgHgl3EQfSffh/content/2301.00089v1.pdf'}
diff --git a/FtAzT4oBgHgl3EQfUfxu/vector_store/index.faiss b/FtAzT4oBgHgl3EQfUfxu/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..5863c33054f674ced11e172a44153bfb6df63b71
--- /dev/null
+++ b/FtAzT4oBgHgl3EQfUfxu/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:0f9e096eca6c84b6d171286dd78bfbd11810401bbcdce04840abc5483aa8888b
+size 5767213
diff --git a/FtFJT4oBgHgl3EQfDSx3/content/2301.11433v1.pdf b/FtFJT4oBgHgl3EQfDSx3/content/2301.11433v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..c9ecf9ea52be06381ea663d0600e98afaee75676
--- /dev/null
+++ b/FtFJT4oBgHgl3EQfDSx3/content/2301.11433v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:ebd87e49195cb2fcdf017cd79847d91ab63d1012e89c747bf72f2f0b7f21b7d8
+size 6388485
diff --git a/FtFJT4oBgHgl3EQfDSx3/vector_store/index.faiss b/FtFJT4oBgHgl3EQfDSx3/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..230ed51ddd286d9b2ee96f9c1ce2c7587f6719bb
--- /dev/null
+++ b/FtFJT4oBgHgl3EQfDSx3/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:22c1b5d2697b658d39b05273f74bec5ea2eaeefb754f99df4a1a64c79110b559
+size 7077933
diff --git a/FtFLT4oBgHgl3EQfGS-3/vector_store/index.pkl b/FtFLT4oBgHgl3EQfGS-3/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..178c85429ee1ca8af5afc49ae69d2a2670420ff1
--- /dev/null
+++ b/FtFLT4oBgHgl3EQfGS-3/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:8e2c3860bed31e2fd7993d450f7b2b824f83a43ad399e56528258688c304be24
+size 73819
diff --git a/G9E1T4oBgHgl3EQf_QZd/vector_store/index.faiss b/G9E1T4oBgHgl3EQf_QZd/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..93508caebbfba54d2d9c62134b7c2cc5adef37f5
--- /dev/null
+++ b/G9E1T4oBgHgl3EQf_QZd/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e5cac600d23ceb40ee22fd850b148121e5991d9cfdad9bba47c398534470dc92
+size 11141165
diff --git a/IdFIT4oBgHgl3EQfYSv6/vector_store/index.pkl b/IdFIT4oBgHgl3EQfYSv6/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..626fb5cba3120dd2d6807f753eec934761c2747e
--- /dev/null
+++ b/IdFIT4oBgHgl3EQfYSv6/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:a2546f2639cbe756254b86c145f38c6ffb69ed47f3a127f60774f1b2f5f32119
+size 137689
diff --git a/JtAyT4oBgHgl3EQff_gI/content/tmp_files/2301.00348v1.pdf.txt b/JtAyT4oBgHgl3EQff_gI/content/tmp_files/2301.00348v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..8373dd60d83c2e6bea87fce9f34d748300c16813
--- /dev/null
+++ b/JtAyT4oBgHgl3EQff_gI/content/tmp_files/2301.00348v1.pdf.txt
@@ -0,0 +1,870 @@
+Fibrous thermoresponsive Janus membranes for directional
+vapor transport
+Anupama Sargur Ranganatha, Avinash Bajia,b, Giuseppino
+Fortunatoc, René M. Rossic
+aPillar of Engineering Product Development, Singapore University of Technology and
+Design, Singapore 487372
+bManufacturing Engineering, LA TROBE University, Melbourne Victoria 3086, Australia
+c Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for
+Biomimetic Membranes and Textiles, CH-9014 St. Gallen, Switzerland
+Abstract
+Wearing comfort of apparel is highly dependent on moisture management and the
+respective transport properties of the textiles. In today’s used textiles, water vapor
+transmission (WVT) depends primarily on the porosity and the wettability of the clothing
+layer next to the skin and is not adapting or responsive to environmental conditions. The
+WVT is inevitably the same from both sides of the membrane. We propose a novel
+approach in this study by developing a thermoresponsive Janus membrane using
+electrospinning procedures. We targeted a membrane as a bilayer composite structure using
+polyvinylidene fluoride (PVDF) as one layer and a blend of PVDF and thermoresponsive
+poly-n-isopropyl acrylamide (PNIPAM) as the second layer changing wettability
+properties in the range of physiological temperatures. Tailored electrospinning conditions
+led to a self-standing membrane incorporating fiber diameters of 400nm and porosities of
+50% for both layers within the Janus membrane. The WVT studies revealed that the
+combined effects of the Janus membrane’s directional wettability and the temperature-
+responsive property results in temperature-dependent vapor transport. The results show
+that the membrane offers minimum resistance to WVT when the PVDF side faces the skin,
+which depicts the side with high humidity over a range of temperatures. However, the same
+membrane shows a temperature-dependent WVT behavior when the blend side faces the
+skin. From a room temperature of 25 °C to an elevated temperature of 35 °C, there is a
+significant increase in the membrane’s resistance to WVT. This behavior is attributed to
+the combined effect of the Janus construct and the thermoresponsive property.
+This temperature-controlled differential vapor transport offers ways to adapt vapor
+transport independence of environmental conditions leading to enhanced wearing comfort
+and performance to be applied in fields such as apparel or the packaging industry.
+Introduction
+Tailored protective clothing is one of the oldest but actively researched fields for improving
+textiles' performance and comfort of textiles.1, 2 The practical end-use include firefighter
+protection clothing, diver’s, and space suit as well as raincoats, etc., drive the research in
+protective clothing. Typically, a wearer expects the garment to be functional and
+comfortable for the required end-use.
+
+Sweat and heat transport of apparel describe the thermal comfort aspect,3 which is a
+tradeoff between the performance and comfort properties of the clothing4. For example,
+rain ponchos have one of the best waterproof abilities as they are impermeable to water but
+uncomfortable to wear as the sweat cannot diffuse. Modern apparels employ a combination
+of novel chemistry and material structure to attain performance and comfort.5-9 Even
+though the performance levels have improved from what it was decades ago, the comfort
+aspect still depends on the surrounding environment. Other than the touch, which is a
+qualitative factor, sweat transport, measured by water vapor transmission (WVT) across
+the fabric, is considered a quantitative measure of comfort in apparel. In a practical
+scenario, sweat transmission combines water and vapor transport, depending on the
+person’s activity level. Liquid sweat transmission is required during a person’s high
+activity level. In contrast, vapor transmission is needed during all activity levels of a person
+and is considered a measure of the fabric’s comfort. It is often reported as a measure of
+comfort for the new material systems.10-12
+WVT is primarily driven by the partial vapor pressure difference across the membrane and
+usually follows Fick’s law of diffusion when a system is in a steady state. The temperature
+and humidity of the local environment govern the partial vapor pressure as expressed in
+Eq. 1. Therefore, WVT is achieved much better in arid 13 compared to humid regions.
+������������������������ =
+������������∗6.11∗ ������������(17.67∗
+������������
+������������+243.6)
+100
+
+
+
+
+
+
+
+(1)
+Free water vapor diffusion is often insufficient to increase comfort in humid regions, and
+forced ventilation is required to pump out the sweat. Attaching devices to circulate the air
+to remove sweat is cumbersome and practically inconvenient. Therefore, research on a
+material that can steer, adapt, and respond to environmental changes and pump out liquid
+sweat without external support is essential.
+Electrospun fibrous membranes exhibit good water vapor permeability and wind
+resistance. Gibson et al. reported that the water vapor quickly diffuses out through the
+electrospun membrane due to the large porosity of the electrospun membrane. On the other
+side, the large surface area of the nanofibrous layer resists convective wind flow.14
+Furthermore, to improve the performance, electrospun membranes from selected polymers
+such as polyacrylonitrile (PAN) and polyurethane (PU) were modified to enhance their
+tensile stress and breaking elongation %, waterproof ability with tailored vapor
+permeability.15-17 Selected studies evaluated the vapor permeability of multilayered
+membranes18, a combination of electrospun and woven textiles19, and electrospinning of
+hydrophilic/hydrophobic layers.20 Multilayered membrane samples investigated by
+Mukhopadhyay et al.18 showed that the water vapor transmittance is dependent on the
+porosity and pore size of the middle layer of polyester fleece/polyester spacer, even when
+the porosity of the innermost and outermost layers is constant in all the tested samples.
+Therefore, the multilayer system, which had a highly porous middle layer, exhibited larger
+WVT due to increased overall porosity. Investigation of the woven fabric coated with an
+electrospun fibrous mat by Bagherzadeh et al. 19 showed that the electrospun layer did not
+impede the water vapor permeability of the woven fabric. In another investigation of the
+multilayer electrospun membrane by Gorji et al.20 they revealed the effect of incorporating
+graphene oxide in the hydrophilic matrix, which is layered adjacent to a polyurethane
+
+fibrous membrane. The water vapor permeability reduced with higher hydrophilic layer’s
+weight. Increasing graphene oxide content from 0.1 to 0.4% in the acrylamide-based
+hydrophilic polymer, reduced the water solubility of the polymer and consequently
+increasing the water vapor permeability. However, studies on multi-layer systems did not
+investigate the direction of the vapor transmission across the thickness of the membranes.
+As previous studies revealed that the vapor diffusion through the microporous membrane
+is porosity dependent, the vapor transmission from either side of the membrane along its
+thickness is assumed to be constant.
+Introducing heterogeneity in the membrane chemistry across the thickness, without altering
+the porosity, exhibits directionality in the membrane’s properties. E.g., combining
+hydrophobic and hydrophilic material in layers within a single membrane exhibits
+directional water flow. Such membranes, with faces of different chemistry, are termed
+Janus membranes21, 22. These membranes have attracted high attention from researchers. In
+one such system, the water drops flow from the hydrophobic side to the hydrophilic side
+but not from the hydrophilic to the hydrophobic side. The flow from the hydrophobic side
+is due to the hydrophilic layer underneath the hydrophobic, which pulls the droplet across
+the membrane. The Laplace pressure difference, along with the thickness of the membrane,
+explains this mechanism.23
+Another class of materials, i.e., environmentally responsive polymers, such as poly N-
+(isopropylacrylamide), are termed ‘smart’ due to their switchable properties in response to
+environmental cues.24 Figure 1 shows the change in molecular conformation of PNIPAM
+concerning the environmental temperature. At room temperature, the carbonyl and amide
+groups of PNIPAM are exposed to form a hydrogen bond with the surrounding water vapor.
+However, at elevated temperatures, the hydrogen bonds break and cause intramolecular
+bonding between carbonyl and amide groups from adjacent monomer units. This coil
+conformation is relatively hydrophobic compared to the extended conformation at room
+temperature, being hydrophilic.25-27
+The PNIPAM-based hydrogel can be coated on textiles like cotton or nylon 6 fabrics and
+exhibit thermoresponsive behavior. The WVT studies by Stular et al., and Verbič et al.
+show less vapor transmission at ambient temperature in comparison with WVT at an
+elevated temperature of 40 °C. The swelling of PNIPAM reduces the porosity and, in turn,
+reduces the vapor transmission at ambient temperature
+Independent research on responsive materials,24, 28, 29 and Janus constructs30-32 shows high
+potential for smart and self-sustaining systems with directional liquid transport. Our current
+study shows the result of combining responsive material such as PNIPAM in a Janus
+construct. PNIPAM is blended with PVDF in a 25:75 wt% ratio to minimize the effect of
+swelling and retain the thermoresponsive behavior. The blend and pristine PVDF are
+electrospun in layers to obtain a Janus construct. Consequently, the electrospun Janus
+membrane has PVDF on one face and a blend on the other. We use two independent
+experimental approaches to assess and confirm the WVT performance of the membrane.
+For the first time in literature, we show that WVT is preferentially more in one direction
+within a given membrane. The directionality is plausibly due to the ‘passive pumping’
+action of the Janus membrane, combined with the thermoresponsive property of the
+hydrophilic layer.
+
+
+
+Figure 1: Shows the change in the molecular conformation of poly N-(isopropyl acrylamide)
+in response to the change in the environmental temperature.
+Materials and methods
+Materials
+PVDF pellets with a molecular weight of 180000 g/mol and 530000 g/mol powder were
+procured from Sigma-Aldrich, Switzerland. PNIPAM powder with a molecular weight of
+300000 g/mol was purchased from Scientific Polymer Products Inc. N, N-
+dimethylformamide (DMF, 99.5 %) from Sigma-Aldrich Switzerland.
+
+Methods
+Membrane fabrication
+The PVDF solutions were prepared by dissolving 33 wt% of PVDF (180000 g/mol) pellets
+in DMF at 60 ºC overnight. The blend solutions were prepared by dissolving 18 wt% of
+the polymer mixture, i.e., PVDF (530000 g/mol) and PNIPAM (300000 g/mol) in 75/25
+w/w ratio in DMF, and magnetically stirred at 60 ºC on a hot plate overnight and
+subsequently cooled to room temperature before electrospinning.
+
+Needle-based electrospinning
+PVDF solution or the blend solution was loaded in a plastic syringe with a 21G blunt needle
+(0.8 mm inner diameter). The flow rate of the polymer solution was set to 0.5ml*h-1 using
+a flow pump. The needle tip was connected to a voltage of 10kV and the collector plate to
+a voltage of -5kV. The working distance between the needle and the flat plate aluminum
+collector was 12 cm. The aluminum collector was covered with silicone paper for easy
+peeling off the electrospun membranes.
+
+TA2C
+ConLcooo aboe TcsNeedle-less electrospinning (NanospiderTM)
+NanospiderTM (Elmarco, Czech Republic) is a needle-less electrospinning technology with
+upscaling capability. Figure 1 shows a schematic of the procedure. The following spinning
+parameters were used for homogenous spinning: The vertical gap between the two wires
+was 25 cm, wherein the top wire was applied with a voltage of +60 kV and the bottom wire
+with -10 kV. The traversing carriage, with a speed of 270 mm/s on the bottom wire, housed
+a pinhole of 0.5 mm, which controls the volume of polymer solution trailed on the bottom
+wire. The collector paper moving at a speed of 18 mm/min, is placed right below the top
+wire
+After 20 minutes of electrospinning, the paper position is unrolled to the starting point to
+electrospin in the same area. Five such repetitions build a thick and wide membrane with
+a surface area of 500 mm2. The fabrication of the blend and PVDF layer followed the same
+procedure. Four Janus membranes were prepared and tested for water-vapor resistances
+using the sweating guarded hotplate, elaborated in the following sections.
+
+Figure 2: Needle-less electrospinning setup used to develop sub-micron-sized fibers at
+the pilot-scale level.
+A carriage with polymer solution traverses the bottom metallic wire (+60 kV) and leaves
+a trail of the solution droplets on this wire. The potential difference between the wires
+draws the fibers from these droplets. The silicone paper collects the fibers placed right
+below the top metallic wire (-10 kV).
+
+ Material characterization
+
+The viscosity of the polymer solutions was evaluated using a Physica MCR301 Rheometer
+(Anton P, Graz, Austria) with a plate-cone geometry. The shear viscosity of the polymer
+solutions was assessed as a function of the shear rate. The spinning solution's electrical
+
+conductivity was measured using Metrohm 660, Switzerland. The electrospun membranes
+were visually examined using scanning electron microscopy (SEM) by a Hitachi S-4800,
+Hitachi High-Technologies, USA & Canada) using 2 kV accelerating voltage and 10 mA
+current flow. Before the SEM measurements, the samples were sputtered with 8nm of Au-
+Pd to increase the conductivity using a sputter coater, Leica EM ACE600, Leica
+Microsystems, Germany.
+
+Sweating guarded hotplate
+
+The sweating guarded-hotplate to determine the resistance of the membrane to WVT
+follows ISO 1109233. It is often referred to as the “skin model” as it simulates the heat and
+vapor transfer processes next to the skin. Primarily, it consists of an electrically heated
+porous plate to simulate the thermoregulation model of the skin (Figure 2). Heat loss is
+avoided by using the guard underneath and on both sides of the hot plate. At the same time,
+the guards are heated to the same temperature as the porous plate. The water-circulating
+system feeds the heated plate to produce the vapor by evaporation. The system underneath
+the plate measures the heating power required to maintain the temperature of the plate. The
+measurement is carried out in a controlled environment as it involves temperature, relative
+humidity, and wind speed combinations.
+
+Figure 3: Schematic of the sweating hot plate instrument. a) is the photographic image
+of the device. b) shows the airflow tangential to the mounted test sample. c) shows the
+parts in layers. The circulation pump supplies the water to the electrically heated and
+porous plate for evaporation. Cellophane is a waterproof but vapor permeable layer to
+transmit the evaporating vapor from the plate. The test membrane lays flat on the
+cellophane covered heated plate and is held in place by a frame on all sides.
+The membrane is placed on an electrically heated plate, covered with a saturated
+cellophane sheet permeable to vapor but impermeable to water. Air is tangentially blown
+across the membrane surface to maintain a constant vapor pressure gradient. This setup
+permits only the vapor from the plate to pass through the fibrous membrane and prevents
+the water from wetting the fibrous membrane. The heat flux required to maintain the
+saturated vapor pressure is a measure of the membrane’s resistance to vapor permeability.
+The expression for the resistance to vapor permeability is as follows:
+������������������������������������ =
+[������������������������−������������������������]
+������������−∆������������������������
+(2)
+������������������������������������: Water-vapor resistance in ������������2������������������������ ������������
+⁄
+
+
+a)������������������������: The saturation water-vapor partial pressure in Pascal (Pa), at the surface of the heated
+plate at a temperature in ºC
+������������������������: The water-vapor partial pressure in Pa of the air in the test enclosure with air
+temperature in ºC
+������������: Heating power supplied to the measuring unit in W
+∆������������������������: Baseline error correction term for heating power for the measurement of water-vapor
+resistance ������������������������������������, used as a reference value for ambient conditions.
+The boundary layer resistance of the cellophane layers is the baseline measurement of the
+system. The software deducts the resistance of the boundary layer from the experiment
+results for subsequent measurements. Thus, the instrument directly calculates the resistance
+offered by the fibrous membranes.
+OptiCal double-chamber method
+OptiCal from Michell Instruments is a relative humidity (RH) and temperature calibrator
+that uses an optical sensor for high-precision measurements. It is used to design a setup
+that determines the WVT of the membrane. Figure 4 shows the setup schematic, which
+consists of a temperature-controlled chamber with a sealed container for the test membrane.
+A reservoir draws water from a tube placed on the weighing scale to maintain its level to
+ensure a controlled RH. A climatic chamber with controlled temperature and RH houses
+the entire setup. A computer-connected software controls the environmental conditions. In
+parallel, another software records the weighing scale measurements, i.e., the weight
+reduction due to water flow into the OptiCal chamber is directly associated with vapor
+diffusion through the membrane
+
+Figure 4: Schematic of the double chamber setup.
+Measurement of water vapor permeability started after the stabilization of the
+environmental conditions. The water vapor passes through the membrane (∅ = 0.06 m)
+
+Test conditions:
+1. Below LCST
+Climatic chamber
+a.
+Inside: 30 °C & 80% RH
+Outside
+Outside: 30 °C & 40% RH
+b.
+Inside: 20 °C & 80% RH
+Outside: 30 °C & 40% RH
+Inside
+Membrane
+Above LCST
+Inside: 40 °C & 60% RH
+Outside: 30 °C & 40% RH
+Membrane orientation:
+OptiCal calibrator
+ET: External sensor for temperature and RH
+IT: Internal sensor for temperature and RHfrom the OptiCal chamber. As the RH in the OptiCal chamber drops, water from the
+reservoir is evaporated to maintain the desired RH. The water from the tube on the scale
+flows to the reservoir to maintain the water level in the reservoir. The reduced amount of
+water from the tube is weighed by scale, and the weight loss is recorded in real-time. Water
+vapor permeance is the weight loss over a defined period for a unit partial vapor pressure
+difference across the membrane. The environmental conditions between the inside and
+outside instruments govern this partial vapor pressure difference. An external RH and
+temperature sensor from MSR® with a built-in data logger measured the test conditions
+outside the membrane surface. 0.05” thermocouple wires were embedded into the fibrous
+membranes to record the actual temperature at the surface and the interface of two layers
+of the Janus membrane. The expression for the partial vapor pressure as a function of
+temperature and humidity is given by following equations34, 35.
+������������������������ =
+������������∗6.11∗ ������������(17.67∗
+������������
+������������+243.6)
+100
+
+(3)
+������������������������ is the partial pressure, H is the humidity in %, and T is the temperature in °C.
+������������������������������������ =
+������������
+������������ ∗ (������������������������������������− ������������������������������������������������)∗������������
+(4)
+WVP is the water vapor permeability in g/(ℎ ∗ ������������2*mbar), W is the water loss in grams, t
+is the time in hours, ������������������������������������������������ − ������������������������������������������������������������ is the water vapor partial pressure difference in mbar
+between inside and outside conditions, A is the membrane area in ������������2.
+Figure 4 lists the testing condition of the experiments. It was possible to maintain
+isothermal conditions in the system below the lower critical solution temperature (LCST).
+As the recommended operating temperature of the OptiCal was less than 30 °C, it was
+not possible to maintain isothermal conditions above LCST. However, to ensure that the
+membrane is above LCST and to minimize the thermal gradients, the constant
+temperature condition of 30 °C and 40 °C are maintained outside and inside the chamber,
+respectively.
+
+Results and discussion
+The electrospun membrane with Janus construct was fabricated using a needle-less and
+needle-based electrospinning setup (see Table 1). The needle-based electrospinning setup
+allowed us to incorporate the thermocouples between the layers and just below the surface.
+Therefore, the precise measurement of surface temperature and that between the layers was
+precisely measured for the double-chamber method. These measured temperatures were
+used to calculate the vapor pressure gradient across the membrane.
+The PVDF solution was electrospun on top of the electrospun blend membrane to produce
+a two-layered Janus construct. The blend solution with a concentration of 16 wt% had a
+shear viscosity of 2.38 Pa.s under a shear of 1/10 s and a conductivity of 5.16 μs/cm.
+Similarly, the shear viscosity of the PVDF solution is 1.2 Pa.s and a conductivity of 32
+μs/cm. The SEM examination shows a smooth fiber morphology with a diameter of 0.2-
+
+0.4 μm for needle-less electrospun fibers and 0.2-0.6 μm for needle based electrospun
+fibers. These values indicate no dimensional difference between the fibrous web produced
+by needle based or needle-less electrospinning methods. The specific weight of the Janus
+membranes is 30-40 GSM, a lightweight fabric category. However, in electrospun or thin-
+film membranes, this weight range indicates a heavyweight membrane suitable for
+practical applications36.
+ Table 1: Polymeric solution parameters and their corresponding electrospun membrane
+properties.
+
+Polymer (MW, Da)
+Wt% (w/w)
+Shear
+viscosity
+Pa.s, (at
+1/10 s)
+Conductivity,
+μs/cm
+Duration,
+no of cycles
+of 20min
+each
+Fiber
+diameter,
+nm
+Thickness,
+μm
+Porosity, %
+PVDF(530K)/PNIPAM
+(330K)(75/25)
+18
+2.4
+5.16
+5
+502 ± 193.8
+103.3 ± 5.4
+49.7 ± 1.8
+PVDF (180K)
+30
+1.2
+32
+3
+139.2 ± 76.2
+67.7 ± 4.7
+49.6 ± 3.3
+
+
+
+um
+5
+um
+5μm
+5μm
+5μm
+5μm
+nS
+5μmFigure 5: SEM micrographs of the four Janus membranes prepared using needle-less
+electrospinning. Blend fibers are relatively more uniform in comparison to PVDF fibers, which
+have a bimodal distribution of fiber diameter. GSM refers to the membrane weight in grams
+per square meter. I to IV are the Janus samples electrospun for measuring WVT
+Figure 6 shows the surface elemental composition by X-ray photoelectron spectroscopy
+(XPS) for PNIPAM, PVDF, and their blend. Comparing the blend with respective pristine
+counterparts reveals that the blend surface is enriched with Nitrogen and Oxygen, which is
+like PNIPAM fibers. The XPS results confirm the observations from our previous study on
+the thermoresponsive wettability of PNIPAM/PVDF blends fabricated using needle-based
+electrospinning29. The Thermal characterization using DSC and TGA suggested the phase
+separation of PNIPAM and PVDF during electrospinning. At the same time, the wettability
+switch observed by contact angle measurement at room temperature and elevated
+temperature suggested PNIPAM enriching the fiber surface29.
+A comparison of density and solubility parameters in Table 2 favors the dissolution of
+PNIPAM in DMF over PVDF. Therefore, the evaporation of DMF during the
+electrospinning process supports the migration of PNIPAM to the fiber surface, lasting
+longer in solution. Our previous study on this blend suggests miscibility when the PNIPAM
+content is 50 wt% or above29. However, when the PNIPAM content is 25 wt% or below,
+PVDF and PNIPAM phases separate, enhancing the migration of PNIPAM to the fiber
+surface during the electrospinning process.
+
+
+
+Elements/transitio
+ns
+XPS surface composition, at.%
+PVDF
+PNIPAM
+BLEND
+BLEND after
+three months
+in water
+Carbon C1s
+51.1
+75.9
+71.8
+71.8
+Nitrogen N1s
+-
+10.9
+8.7
+9.4
+Oxygen O1s
+3.0
+13.2
+11.8
+9.6
+Fluorine F1s
+45.9
+-
+7.8
+9.3
+
+Figure 6: XPS graphs of PNIPAM, PVDF, and the blend of PVDF/PNIPAM (75/25, w/w)
+
+
+Table 2: Polymer properties
+Polymer
+Density
+Solubility
+parameter
+δ2
+Solubility
+parameter
+DMF δ1
+Δδ (1-2)
+
+a) PNIPAM
+b) PVDF
+C-F3
+Measured
+Measured
+Envelope
+C-F4
+Envelope
+C-H3
+C-H2
+C-C, C-H
+C-F2
+N-C=O
+292.5
+290
+287.5
+285
+280
+292.5
+290
+287.5
+285
+282.5 280
+c) Blend
+C-F2
+Measured
+Envelope
+C-H2
+C-C: C-H
+N-C=O
+295
+292.5
+290
+287.5
+285
+282.5
+280
+Binding Energy (ev)PNIPAM
+1.05
+23.5
+24.9
+1.4
+PVDF
+1.68
+17.5
+24.9
+7.4
+
+Before water-vapor transmission experiments were performed, the fabricated membranes
+were conditioned for a day in an environment-controlled chamber (at test conditions).
+The skin model (mimicked by the porous hot plate) measures the membrane’s resistance
+to vapor permeability as a function of temperature, as shown in Figure 7. When the
+membrane is placed on the hot plate, the water vapor diffuses from the bottom to the top
+side of the Janus membrane (see Figure 7). The membrane’s resistance to vapor diffusion
+is measured from both sides of the Janus membrane in a separate set of experiments to
+assess the influence of the wettability gradient within the membrane. This set of
+measurements is performed at five different temperatures to plot the membrane’s resistance
+as a function of temperature. The water vapor resistance measurement removes the
+temperature bias on the WVT and is expected to be constant for the same fabric at different
+isothermal conditions.
+When the membrane is placed on the hot plate with the blend side facing down, i.e., when
+vapor transmits from the blend to the PVDF side of the Janus membrane, there is an
+increased water vapor resistance at higher temperatures (see Figure 7). As the blend is
+thermoresponsive, it is hydrophilic (CA=10⁰) at a lower temperature range (<32 ⁰C) and
+hydrophobic (CA=120⁰) at a temperature higher than 32 ⁰C. As a result, the lower resistance
+is attributed to the blend’s affinity to water vapor at a lower temperature. Similarly, the
+reduced affinity at elevated temperatures causes more significant resistance to vapor
+transmission. As the vapor transmits from the blend to the PVDF side, the hydrophobicity
+increases the membrane’s thickness and consequently increases the membrane’s resistance
+to vapor transmission.
+The hydrophilic layer next to the PVDF layer supports the vapor transmission when the
+PVDF side faces the hot plate. At elevated temperatures, the resistance increases but is
+significantly lower than the resistance the membrane offers, with the blend facing the hot
+plate (Figure 7). Even though the blend is hydrophobic at elevated temperatures, it is less
+hydrophobic than PVDF. Therefore, when the vapor transmits from the PVDF to the blend
+side, the hydrophobicity reduces along with the thickness of the membrane, which favors
+the vapor transmission.
+Based on the examination of the results, the Janus construct with PVDF facing the hot plate
+favors the vapor transmission at all investigated temperatures. This behavior is due to
+unchanging hygroscopic properties of the PVDF with temperature. Therefore, the
+thermoresponsive Janus membrane makes it possible to maintain active vapor transport
+irrespective of the outside temperature.
+
+
+Figure 7: Effect of Janus directionality on the resistance to water-vapor permeability
+through the membranes. The thermoresponsive property of the blend combined with
+the Janus structure offers higher resistance to WVT. The behavior is attributed to the
+moisture released by the blend layer at a higher temperature. As a result, when the
+blend faces the hot plate, it increases the boundary layer gap and consequently
+increases the resistance to water-vapor permeability.
+
+We measured the water vapor permeability using a double chamber method to verify the
+observed behavior. Needle-based electrospinning was used to fabricate the Janus
+membrane to incorporate the thermocouples between the layers and almost at the surface
+of the Blend layer (approximately 5sec of electrospinning). Figure 8 shows the Janus
+membrane with thermocouples on the sample holder to fit the mouth of the OptiCal
+chamber. The figure also shows the SEM micrographs of the blend and PVDF side of the
+Janus membrane incorporating a fiber diameter of 0.2-0.6 μm.
+The sample holder plugs the mouth of the chamber such that one of the sides of the
+membrane faces outside the chamber and the other faces the inside chamber of the OptiCal
+chamber. The entire system and the membranes were conditioned at 20°C and 40% RH
+before carrying out below LCST. Before measurements above LCST, membranes were
+conditioned at 30°C and 40% RH, as mentioned in Figure 4.
+
+3.5
+PVDFtoBlend
+Blend to PVDF
+3
+2.5
+, m’Pa/W
+PVDF
+2
+RET,
+H
+Blend
+1.5
+0.5
+20
+25
+30
+35
+40
+Temperature, °C
+Figure 8: The top part shows the membrane with the thermocouples mounted (red arrow)
+on the sample holder that fits the mouth of the OptiCal instrument. The bottom section
+shows the SEM micrographs of the fibers from the PVDF and the blend side, respectively
+
+
+Figure 9 shows the membranes' water vapor permeability as a temperature function. At a
+lower temperature of 20 °C, the permeabilities are comparable for both samples. However,
+the increasing vapor permeability with increasing temperature is predominantly due to
+increasing partial vapor pressure difference across the membrane37. Figure 10 plots the
+vapor permeability as a function of partial vapor pressure across the membrane.
+PVDF being hydrophobic is expected to adsorb less moisture and transmit less than the
+unswelling hydrophilic membrane (Blend). However, interestingly, the vapor permeability
+from the PVDF to the blend side is significantly higher than from the blend to the PVDF
+side. Further, to isolate the membrane effects from the vapor pressure, Figure 10B shows
+the water vapor permeability per unit of partial pressure across the membrane. When the
+vapor transmits from the blend side, the permeability is constant, suggesting the vapor
+pressure difference is the primary driving force. However, vapor permeates significantly
+more (P-value =0.003, n=4) from the PVDF side, suggesting that the membrane’s influence
+on vapor transmission increases with temperature. Therefore, the combined effect of the
+Janus constructs and the temperature-responsive property drives more vapor through the
+membrane from one direction over the other.
+
+
+Sum
+10um
+Figure 9: a) shows the Janus membrane's water vapor permeability as a temperature
+function and compares the effect of the membrane’s directionality. b) shows the partial
+vapor pressure difference across the membrane as a function of temperature. The water
+vapor permeability for PVDF to blend direction is significantly higher due to the
+additional partial pressure drop caused by the wettability gradient in the membrane.
+
+
+
+
+300
+250
+Blend to PVDF
+PVDF to Blend
+200
+150
+100
+b)
+30
+Blend to PVDF
+25
+PVDF to Blend
+20
+10
+20
+25
+30
+35
+40
+Temperature, 'C
+a)
+
+b)
+
+Figure 10: a) Water vapor permeability as a function of the partial vapor pressure
+difference across the Janus membrane. Vapor permeability from the PVDF side is
+significantly higher than from the blend side due to the Janus structure favoring the
+vapor transmission from the PVDF to the blend side.
+b) Water vapor permeability per unit of the partial vapor pressure difference across the
+Janus membrane as a function of temperature. The differences in the vapor permeability
+from the blend side to PVDF are statistically insignificant at all tested temperatures. The
+partial vapor pressure difference across the membrane is the primary driving force for
+transmitting the water vapor from the blend side. However, this permeability per unit of
+the pressure from the PVDF side increases significantly with temperature due to the
+Janus construct's combined effect and the blend's thermoresponsive property.
+
+Figure 10 shows the possible mechanism based on the obtained experimental results. Based
+on the prior hygroscopic measurements, pristine PNIPAM adsorbs 19 wt% of vapor at a
+temperature of 40 °C38. As the blend contains 25 wt% of PNIPAM and adsorbs water vapor
+in proportion to the PNIPAM content29, which is at least 4 wt% of vapor at 40 °C. However,
+PVDF being hydrophobic, adsorbs less than 1% of vapor via Van der Waal’s forces29.
+Therefore, at any given time during the experiment, the blend surface layer will hold more
+moisture (vapor molecules) (C������������), when compared with the PVDF surface layer (C������������).
+When the PVDF side faces outside, the vapor transmits from the blend to the PVDF side
+of the membrane. The amount of vapor molecules available for evaporation is C������������ on the
+PVDF surface. Therefore, the vapor pressure gradient drives C������������ molecules through the
+membrane. As this concentration of vapor C������������ does not change with temperature, we have
+almost the same vapor permeability when transmitting from the blend to the PVDF side.
+In the other scenario, with the blend side facing outside, the vapor transmits from the PVDF
+side to the blend side of the membrane. At equilibrium, the blend surface holds more vapor
+
+PVDFtoBlend
+250
+BlendtoPVDF
+200
+Water vapor
+100
+50
+5
+10
+15
+20
+25
+30
+Partialvaporpressuredifference,mbar12
+PVDFtoBlend
+BlendtoPVDF
+"mbar
+HHHH
+Blend
+PVDF
+10
+9
+PVDF
+Blend
+8
+20
+25
+30
+35
+40
+Temperature,Cthan the PVDF side. However, at 20 °C, most vapor molecules form hydrogen bonds with
+the amide (-N-H) and carbonyl (-C=O-) groups from PNIPAM. As a result, the
+concentration of vapor molecules (C������������) is a combination of bound vapor (T) and free vapor
+molecules (F). The vapor pressure gradient drives the free vapor molecules (F) through the
+membrane, which is comparable with C������������. Therefore, vapor permeability at temperatures
+below LCST is similar irrespective of the transmission direction.
+Above LCST, due to the coil conformation of PNIPAM, all the bound vapor molecules are
+released and become free vapor molecules. When the vapor molecule C������������ evaporates, the
+vapor pressure gradient drives C������������ through the membrane. As C������������≫C������������, the vapor
+permeability from PVDF to the blend side is higher than that from the flipped direction.
+
+
+Figure 11: Illustrates the mechanism of water vapor permeability from the blend side to
+the PVDF side and vice-versa when driven by the partial vapor pressure difference.
+Conclusion
+Electrospun thermoresponsive Janus membranes exhibit directional WVT. Herein, the
+vapor transmitted from the hydrophobic (PVDF) side to the hydrophilic (blend) is faster
+than in the opposite direction (hydrophilic to hydrophobic). The results from the indirect
+approach, i.e., via the sweating hot plate method, and from the direct approach, i.e., via a
+double-chamber method, complement each other. Based on the physical reasoning, we
+postulate that this mechanism is due to the combined effect of the temperature-responsive
+behavior of the Janus construct on vapor transmission. By complementing the experiment,
+numerical modeling can shed further insight into the physical processes, which results in
+directional vapor permeability.
+
+:8:8:8:
+Cp is exposed
+CB is all FreeThese new results open pathways in membrane research and development, which is unique
+for liquid and gas transmission. The novelty not only contributes to the field of textiles,
+packaging, or filter systems.
+
+References
+1.
+Gugliuzza A and Drioli E. A review on membrane engineering for innovation in
+wearable fabrics and protective textiles. Journal of Membrane Science 2013; 446: 350-
+375.
+2.
+Waterproof Breathable Textiles (WBT) Market Analysis By Textile (Densely
+Woven, Membrane, Coated), By Product (Garments, Footwear, Gloves), By Application
+(Active Sportswear) And Segment Forecasts To 2020,
+http://www.grandviewresearch.com/industry-analysis/waterproof-breathable-textiles-
+industry (2015).
+3.
+Tanner JC. Breathability, comfort and Gore-Tex laminates. Journal of Industrial
+Textiles 1979; 8: 312-322.
+4.
+Rossi R. Interaction between protection and thermal comfort. Cambridge, UK,
+Woodhead Publishing Limited, 2005, p. 233-253.
+5.
+Mukhopadhyay A and Midha VK. A review on designing the waterproof
+breathable fabrics part I: fundamental principles and designing aspects of breathable
+fabrics. Journal of industrial textiles 2008; 37: 225-262.
+6.
+Gun AD and Bodur A. Thermo-physiological comfort properties of double-face
+knitted fabrics made from different types of polyester yarns and cotton yarn. J Text Inst
+2017; 108: 1518-1527. Article. DOI: 10.1080/00405000.2016.1259953.
+7.
+Rouhani ST and Fashandi H. Breathable dual-layer textile composed of cellulose
+dense membrane and plasma-treated fabric with enhanced comfort. Cellulose 2018; 25:
+5427-5442. Article. DOI: 10.1007/s10570-018-1950-9.
+8.
+Suganthi T and Senthilkumar P. Development of tri-layer knitted fabrics for
+shuttle badminton players. Journal of Industrial Textiles 2018; 48: 738-760. Article. DOI:
+10.1177/1528083717740766.
+9.
+Zhou L, Wang HB, Du JM, et al. Eco-friendly and Durable Antibacterial Cotton
+Fabrics Prepared with Polysulfopropylbetaine. Fibers and Polymers 2018; 19: 1228-
+1236. Article. DOI: 10.1007/s12221-018-8053-y.
+10.
+Gu XY, Li N, Cao J, et al. Preparation of electrospun polyurethane/hydrophobic
+silica gel nanofibrous membranes for waterproof and breathable application. Polym Eng
+Sci 2018; 58: 1381-1390. Article. DOI: 10.1002/pen.24726.
+11.
+Gu XY, Li N, Gu HH, et al. Polydimethylsiloxane-modified polyurethane-poly(-
+caprolactone) nanofibrous membranes for waterproof, breathable applications. Journal of
+Applied Polymer Science 2018; 135: 10. Article. DOI: 10.1002/app.46360.
+12.
+Gu XY, Li N, Luo JJ, et al. Electrospun polyurethane microporous membranes for
+waterproof and breathable application: the effects of solvent properties on membrane
+performance. Polym Bull 2018; 75: 3539-3553. Article. DOI: 10.1007/s00289-017-2223-
+8.
+
+13.
+Gretton J, Brook D, Dyson H, et al. Moisture vapor transport through waterproof
+breathable fabrics and clothing systems under a temperature gradient. Textile Research
+Journal 1998; 68: 936-941.
+14.
+Gibson P, Schreuder-Gibson H and Rivin D. Transport properties of porous
+membranes based on electrospun nanofibers. Colloids and Surfaces A: Physicochemical
+and Engineering Aspects 2001; 187: 469-481.
+15.
+Sheng J, Li Y, Wang X, et al. Thermal inter-fiber adhesion of the
+polyacrylonitrile/fluorinated polyurethane nanofibrous membranes with enhanced
+waterproof-breathable performance. Separation and Purification Technology 2016; 158:
+53-61.
+16.
+Sheng J, Zhang M, Luo W, et al. Thermally induced chemical cross-linking
+reinforced fluorinated polyurethane/polyacrylonitrile/polyvinyl butyral nanofibers for
+waterproof-breathable application. RSC Advances 2016; 6: 29629-29637.
+17.
+Sheng J, Zhang M, Xu Y, et al. Tailoring Water-Resistant and Breathable
+Performance of Polyacrylonitrile Nanofibrous Membranes Modified by
+Polydimethylsiloxane. ACS applied materials & interfaces 2016; 8: 27218-27226.
+18.
+Mukhopadhyay A, Preet A and Midha V. Moisture transmission behaviour of
+individual component and multilayered fabric with sweat and pure water. J Text Inst
+2018; 109: 383-392. Article. DOI: 10.1080/00405000.2017.1348435.
+19.
+Bagherzadeh R, Latifi M, Najar SS, et al. Transport properties of multi-layer
+fabric based on electrospun nanofiber mats as a breathable barrier textile material. Textile
+research journal 2012; 82: 70-76.
+20.
+Gorji M, Karimi M and Nasheroahkam S. Electrospun PU/P (AMPS-GO)
+nanofibrous membrane with dual-mode hydrophobic–hydrophilic properties for
+protective clothing applications. Journal of Industrial Textiles 2018; 47: 1166-1184.
+21.
+Wu J, Wang N, Wang L, et al. Unidirectional water-penetration composite fibrous
+film via electrospinning. Soft Matter 2012; 8: 5996-5999.
+22.
+Wang H, Wang X and Lin T. Unidirectional water transfer effect from fabrics
+having a superhydrophobic-to-hydrophilic gradient. Journal of nanoscience and
+nanotechnology 2013; 13: 839-842.
+23.
+Tian X, Li J and Wang X. Anisotropic liquid penetration arising from a cross-
+sectional wettability gradient. Soft Matter 2012; 8: 2633-2637.
+24.
+Guo F and Guo Z. Inspired smart materials with external stimuli responsive
+wettability: a review. RSC Advances 2016; 6: 36623-36641. 10.1039/C6RA04079A.
+DOI: 10.1039/C6RA04079A.
+25.
+Tanaka T. Collapse of gels and the critical endpoint. Physical Review Letters
+1978; 40: 820.
+26.
+Tanaka T and Fillmore DJ. Kinetics of swelling of gels. The Journal of Chemical
+Physics 1979; 70: 1214-1218.
+27.
+Schild HG. Poly (N-isopropylacrylamide): experiment, theory and application.
+Progress in polymer science 1992; 17: 163-249.
+28.
+Liu X, Li Y, Hu J, et al. Smart moisture management and thermoregulation
+properties of stimuli-responsive cotton modified with polymer brushes. RSC Advances
+2014; 4: 63691-63695. 10.1039/C4RA11080C. DOI: 10.1039/C4RA11080C.
+29.
+Ranganath AS, Ganesh VA, Sopiha K, et al. Thermoresponsive electrospun
+membrane with enhanced wettability. RSC Advances 2017; 7: 19982-19989.
+
+30.
+Airoudj A, Bally-Le Gall F and Roucoules V. Textile with Durable Janus Wetting
+Properties Produced by Plasma Polymerization. The Journal of Physical Chemistry C
+2016; 120: 29162-29172.
+31.
+Li H, Cao M, Ma X, et al. “Plug‐and‐Go”‐Type Liquid Diode: Integrated Mesh
+with Janus Superwetting Properties. Advanced Materials Interfaces 2016; 3.
+32.
+Ranganath AS and Baji A. Electrospun Janus Membrane for Efficient and
+Switchable Oil–Water Separation. Macromolecular Materials and Engineering 2018;
+303: 1800272.
+33.
+11092 I. Textiles‐Determination of physiological properties–measurement of
+thermal and water‐vapor resistance under steady‐state conditions (sweating guarded‐
+hotplate test). 1993.
+34.
+Wagnera W and Prußb A. The IAPWS formulation 1995 for the thermodynamic
+properties of ordinary water substance for general and scientific use. J Phys Chem Ref
+Data 2002; 31: 387.
+35.
+Oyj V. Humidity Conversion Formulas. 2013: 3-16.
+36.
+Brown P and Cox CL. Fibrous filter media. Woodhead Publishing, 2017.
+37.
+Gibson P. Effect of temperature on water vapor transport through polymer
+membrane laminates. 1999. ARMY SOLDIER AND BIOLOGICAL CHEMICAL
+COMMAND NATICK MA.
+38.
+Thakur N, Sargur Ranganath A, Sopiha K, et al. Thermoresponsive Cellulose
+Acetate–Poly (N-isopropylacrylamide) Core–Shell Fibers for Controlled Capture and
+Release of Moisture. ACS Applied Materials & Interfaces 2017; 9: 29224-29233.
+
+
diff --git a/JtAyT4oBgHgl3EQff_gI/content/tmp_files/load_file.txt b/JtAyT4oBgHgl3EQff_gI/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..927fb4241511f2aec1bb37160ae763094d9ce53f
--- /dev/null
+++ b/JtAyT4oBgHgl3EQff_gI/content/tmp_files/load_file.txt
@@ -0,0 +1,572 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf,len=571
+page_content='Fibrous thermoresponsive Janus membranes for directional vapor transport Anupama Sargur Ranganatha, Avinash Bajia,b, Giuseppino Fortunatoc, René M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Rossic aPillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372 bManufacturing Engineering, LA TROBE University, Melbourne Victoria 3086, Australia c Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, CH-9014 St.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Gallen, Switzerland Abstract Wearing comfort of apparel is highly dependent on moisture management and the respective transport properties of the textiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' In today’s used textiles, water vapor transmission (WVT) depends primarily on the porosity and the wettability of the clothing layer next to the skin and is not adapting or responsive to environmental conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The WVT is inevitably the same from both sides of the membrane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' We propose a novel approach in this study by developing a thermoresponsive Janus membrane using electrospinning procedures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' We targeted a membrane as a bilayer composite structure using polyvinylidene fluoride (PVDF) as one layer and a blend of PVDF and thermoresponsive poly-n-isopropyl acrylamide (PNIPAM) as the second layer changing wettability properties in the range of physiological temperatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Tailored electrospinning conditions led to a self-standing membrane incorporating fiber diameters of 400nm and porosities of 50% for both layers within the Janus membrane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The WVT studies revealed that the combined effects of the Janus membrane’s directional wettability and the temperature- responsive property results in temperature-dependent vapor transport.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The results show that the membrane offers minimum resistance to WVT when the PVDF side faces the skin, which depicts the side with high humidity over a range of temperatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' However, the same membrane shows a temperature-dependent WVT behavior when the blend side faces the skin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' From a room temperature of 25 °C to an elevated temperature of 35 °C, there is a significant increase in the membrane’s resistance to WVT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' This behavior is attributed to the combined effect of the Janus construct and the thermoresponsive property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' This temperature-controlled differential vapor transport offers ways to adapt vapor transport independence of environmental conditions leading to enhanced wearing comfort and performance to be applied in fields such as apparel or the packaging industry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=" Introduction Tailored protective clothing is one of the oldest but actively researched fields for improving textiles' performance and comfort of textiles." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='1, 2 The practical end-use include firefighter protection clothing, diver’s, and space suit as well as raincoats, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=', drive the research in protective clothing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Typically, a wearer expects the garment to be functional and comfortable for the required end-use.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Sweat and heat transport of apparel describe the thermal comfort aspect,3 which is a tradeoff between the performance and comfort properties of the clothing4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' For example, rain ponchos have one of the best waterproof abilities as they are impermeable to water but uncomfortable to wear as the sweat cannot diffuse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Modern apparels employ a combination of novel chemistry and material structure to attain performance and comfort.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='5-9 Even though the performance levels have improved from what it was decades ago, the comfort aspect still depends on the surrounding environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Other than the touch, which is a qualitative factor, sweat transport, measured by water vapor transmission (WVT) across the fabric, is considered a quantitative measure of comfort in apparel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' In a practical scenario, sweat transmission combines water and vapor transport, depending on the person’s activity level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Liquid sweat transmission is required during a person’s high activity level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' In contrast, vapor transmission is needed during all activity levels of a person and is considered a measure of the fabric’s comfort.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' It is often reported as a measure of comfort for the new material systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='10-12 WVT is primarily driven by the partial vapor pressure difference across the membrane and usually follows Fick’s law of diffusion when a system is in a steady state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The temperature and humidity of the local environment govern the partial vapor pressure as expressed in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Therefore, WVT is achieved much better in arid 13 compared to humid regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' ������������������������ = ������������∗6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='11∗ ������������(17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='67∗ ������������ ������������+243.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='6) 100 (1) Free water vapor diffusion is often insufficient to increase comfort in humid regions, and forced ventilation is required to pump out the sweat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Attaching devices to circulate the air to remove sweat is cumbersome and practically inconvenient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Therefore, research on a material that can steer, adapt, and respond to environmental changes and pump out liquid sweat without external support is essential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Electrospun fibrous membranes exhibit good water vapor permeability and wind resistance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Gibson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' reported that the water vapor quickly diffuses out through the electrospun membrane due to the large porosity of the electrospun membrane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' On the other side, the large surface area of the nanofibrous layer resists convective wind flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='14 Furthermore, to improve the performance, electrospun membranes from selected polymers such as polyacrylonitrile (PAN) and polyurethane (PU) were modified to enhance their tensile stress and breaking elongation %, waterproof ability with tailored vapor permeability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='15-17 Selected studies evaluated the vapor permeability of multilayered membranes18, a combination of electrospun and woven textiles19, and electrospinning of hydrophilic/hydrophobic layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='20 Multilayered membrane samples investigated by Mukhopadhyay et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='18 showed that the water vapor transmittance is dependent on the porosity and pore size of the middle layer of polyester fleece/polyester spacer, even when the porosity of the innermost and outermost layers is constant in all the tested samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Therefore, the multilayer system, which had a highly porous middle layer, exhibited larger WVT due to increased overall porosity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Investigation of the woven fabric coated with an electrospun fibrous mat by Bagherzadeh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 19 showed that the electrospun layer did not impede the water vapor permeability of the woven fabric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' In another investigation of the multilayer electrospun membrane by Gorji et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='20 they revealed the effect of incorporating graphene oxide in the hydrophilic matrix, which is layered adjacent to a polyurethane fibrous membrane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The water vapor permeability reduced with higher hydrophilic layer’s weight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Increasing graphene oxide content from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='1 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='4% in the acrylamide-based hydrophilic polymer, reduced the water solubility of the polymer and consequently increasing the water vapor permeability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' However, studies on multi-layer systems did not investigate the direction of the vapor transmission across the thickness of the membranes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' As previous studies revealed that the vapor diffusion through the microporous membrane is porosity dependent, the vapor transmission from either side of the membrane along its thickness is assumed to be constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Introducing heterogeneity in the membrane chemistry across the thickness, without altering the porosity, exhibits directionality in the membrane’s properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=', combining hydrophobic and hydrophilic material in layers within a single membrane exhibits directional water flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Such membranes, with faces of different chemistry, are termed Janus membranes21, 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' These membranes have attracted high attention from researchers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' In one such system, the water drops flow from the hydrophobic side to the hydrophilic side but not from the hydrophilic to the hydrophobic side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The flow from the hydrophobic side is due to the hydrophilic layer underneath the hydrophobic, which pulls the droplet across the membrane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The Laplace pressure difference, along with the thickness of the membrane, explains this mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='23 Another class of materials, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=', environmentally responsive polymers, such as poly N- (isopropylacrylamide), are termed ‘smart’ due to their switchable properties in response to environmental cues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='24 Figure 1 shows the change in molecular conformation of PNIPAM concerning the environmental temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' At room temperature, the carbonyl and amide groups of PNIPAM are exposed to form a hydrogen bond with the surrounding water vapor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' However, at elevated temperatures, the hydrogen bonds break and cause intramolecular bonding between carbonyl and amide groups from adjacent monomer units.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' This coil conformation is relatively hydrophobic compared to the extended conformation at room temperature, being hydrophilic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='25-27 The PNIPAM-based hydrogel can be coated on textiles like cotton or nylon 6 fabrics and exhibit thermoresponsive behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The WVT studies by Stular et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=', and Verbič et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' show less vapor transmission at ambient temperature in comparison with WVT at an elevated temperature of 40 °C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The swelling of PNIPAM reduces the porosity and, in turn, reduces the vapor transmission at ambient temperature Independent research on responsive materials,24, 28, 29 and Janus constructs30-32 shows high potential for smart and self-sustaining systems with directional liquid transport.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Our current study shows the result of combining responsive material such as PNIPAM in a Janus construct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' PNIPAM is blended with PVDF in a 25:75 wt% ratio to minimize the effect of swelling and retain the thermoresponsive behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The blend and pristine PVDF are electrospun in layers to obtain a Janus construct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Consequently, the electrospun Janus membrane has PVDF on one face and a blend on the other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' We use two independent experimental approaches to assess and confirm the WVT performance of the membrane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' For the first time in literature, we show that WVT is preferentially more in one direction within a given membrane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The directionality is plausibly due to the ‘passive pumping’ action of the Janus membrane, combined with the thermoresponsive property of the hydrophilic layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Figure 1: Shows the change in the molecular conformation of poly N-(isopropyl acrylamide) in response to the change in the environmental temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Materials and methods Materials PVDF pellets with a molecular weight of 180000 g/mol and 530000 g/mol powder were procured from Sigma-Aldrich, Switzerland.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' PNIPAM powder with a molecular weight of 300000 g/mol was purchased from Scientific Polymer Products Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' N, N- dimethylformamide (DMF, 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='5 %) from Sigma-Aldrich Switzerland.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Methods Membrane fabrication The PVDF solutions were prepared by dissolving 33 wt% of PVDF (180000 g/mol) pellets in DMF at 60 ºC overnight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The blend solutions were prepared by dissolving 18 wt% of the polymer mixture, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=', PVDF (530000 g/mol) and PNIPAM (300000 g/mol) in 75/25 w/w ratio in DMF, and magnetically stirred at 60 ºC on a hot plate overnight and subsequently cooled to room temperature before electrospinning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Needle-based electrospinning PVDF solution or the blend solution was loaded in a plastic syringe with a 21G blunt needle (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='8 mm inner diameter).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The flow rate of the polymer solution was set to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='5ml*h-1 using a flow pump.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The needle tip was connected to a voltage of 10kV and the collector plate to a voltage of -5kV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The working distance between the needle and the flat plate aluminum collector was 12 cm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The aluminum collector was covered with silicone paper for easy peeling off the electrospun membranes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' TA2C ConLcooo aboe TcsNeedle-less electrospinning (NanospiderTM) NanospiderTM (Elmarco, Czech Republic) is a needle-less electrospinning technology with upscaling capability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Figure 1 shows a schematic of the procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The following spinning parameters were used for homogenous spinning: The vertical gap between the two wires was 25 cm, wherein the top wire was applied with a voltage of +60 kV and the bottom wire with -10 kV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The traversing carriage, with a speed of 270 mm/s on the bottom wire, housed a pinhole of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='5 mm, which controls the volume of polymer solution trailed on the bottom wire.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The collector paper moving at a speed of 18 mm/min, is placed right below the top wire After 20 minutes of electrospinning, the paper position is unrolled to the starting point to electrospin in the same area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Five such repetitions build a thick and wide membrane with a surface area of 500 mm2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The fabrication of the blend and PVDF layer followed the same procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Four Janus membranes were prepared and tested for water-vapor resistances using the sweating guarded hotplate, elaborated in the following sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Figure 2: Needle-less electrospinning setup used to develop sub-micron-sized fibers at the pilot-scale level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' A carriage with polymer solution traverses the bottom metallic wire (+60 kV) and leaves a trail of the solution droplets on this wire.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The potential difference between the wires draws the fibers from these droplets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The silicone paper collects the fibers placed right below the top metallic wire (-10 kV).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Material characterization The viscosity of the polymer solutions was evaluated using a Physica MCR301 Rheometer (Anton P, Graz, Austria) with a plate-cone geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The shear viscosity of the polymer solutions was assessed as a function of the shear rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=" The spinning solution's electrical conductivity was measured using Metrohm 660, Switzerland." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The electrospun membranes were visually examined using scanning electron microscopy (SEM) by a Hitachi S-4800, Hitachi High-Technologies, USA & Canada) using 2 kV accelerating voltage and 10 mA current flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Before the SEM measurements, the samples were sputtered with 8nm of Au- Pd to increase the conductivity using a sputter coater, Leica EM ACE600, Leica Microsystems, Germany.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Sweating guarded hotplate The sweating guarded-hotplate to determine the resistance of the membrane to WVT follows ISO 1109233.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' It is often referred to as the “skin model” as it simulates the heat and vapor transfer processes next to the skin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Primarily, it consists of an electrically heated porous plate to simulate the thermoregulation model of the skin (Figure 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Heat loss is avoided by using the guard underneath and on both sides of the hot plate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' At the same time, the guards are heated to the same temperature as the porous plate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The water-circulating system feeds the heated plate to produce the vapor by evaporation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The system underneath the plate measures the heating power required to maintain the temperature of the plate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The measurement is carried out in a controlled environment as it involves temperature, relative humidity, and wind speed combinations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Figure 3: Schematic of the sweating hot plate instrument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' a) is the photographic image of the device.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' b) shows the airflow tangential to the mounted test sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' c) shows the parts in layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The circulation pump supplies the water to the electrically heated and porous plate for evaporation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Cellophane is a waterproof but vapor permeable layer to transmit the evaporating vapor from the plate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The test membrane lays flat on the cellophane covered heated plate and is held in place by a frame on all sides.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The membrane is placed on an electrically heated plate, covered with a saturated cellophane sheet permeable to vapor but impermeable to water.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Air is tangentially blown across the membrane surface to maintain a constant vapor pressure gradient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' This setup permits only the vapor from the plate to pass through the fibrous membrane and prevents the water from wetting the fibrous membrane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The heat flux required to maintain the saturated vapor pressure is a measure of the membrane’s resistance to vapor permeability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The expression for the resistance to vapor permeability is as follows: ������������������������������������ = [������������������������−������������������������] ������������−∆������������������������ (2) ������������������������������������: Water-vapor resistance in ������������2������������������������ ������������ ⁄ a)������������������������: The saturation water-vapor partial pressure in Pascal (Pa),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' at the surface of the heated plate at a temperature in ºC ������������������������: The water-vapor partial pressure in Pa of the air in the test enclosure with air temperature in ºC ������������: Heating power supplied to the measuring unit in W ∆������������������������: Baseline error correction term for heating power for the measurement of water-vapor resistance ������������������������������������,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' used as a reference value for ambient conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The boundary layer resistance of the cellophane layers is the baseline measurement of the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The software deducts the resistance of the boundary layer from the experiment results for subsequent measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Thus, the instrument directly calculates the resistance offered by the fibrous membranes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' OptiCal double-chamber method OptiCal from Michell Instruments is a relative humidity (RH) and temperature calibrator that uses an optical sensor for high-precision measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' It is used to design a setup that determines the WVT of the membrane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Figure 4 shows the setup schematic, which consists of a temperature-controlled chamber with a sealed container for the test membrane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' A reservoir draws water from a tube placed on the weighing scale to maintain its level to ensure a controlled RH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' A climatic chamber with controlled temperature and RH houses the entire setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' A computer-connected software controls the environmental conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' In parallel, another software records the weighing scale measurements, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=', the weight reduction due to water flow into the OptiCal chamber is directly associated with vapor diffusion through the membrane Figure 4: Schematic of the double chamber setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Measurement of water vapor permeability started after the stabilization of the environmental conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The water vapor passes through the membrane (∅ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='06 m) Test conditions: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Below LCST Climatic chamber a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Inside: 30 °C & 80% RH Outside Outside: 30 °C & 40% RH b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Inside: 20 °C & 80% RH Outside: 30 °C & 40% RH Inside Membrane Above LCST Inside: 40 °C & 60% RH Outside: 30 °C & 40% RH Membrane orientation: OptiCal calibrator ET: External sensor for temperature and RH IT: Internal sensor for temperature and RHfrom the OptiCal chamber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' As the RH in the OptiCal chamber drops, water from the reservoir is evaporated to maintain the desired RH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The water from the tube on the scale flows to the reservoir to maintain the water level in the reservoir.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The reduced amount of water from the tube is weighed by scale, and the weight loss is recorded in real-time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Water vapor permeance is the weight loss over a defined period for a unit partial vapor pressure difference across the membrane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The environmental conditions between the inside and outside instruments govern this partial vapor pressure difference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' An external RH and temperature sensor from MSR® with a built-in data logger measured the test conditions outside the membrane surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='05” thermocouple wires were embedded into the fibrous membranes to record the actual temperature at the surface and the interface of two layers of the Janus membrane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The expression for the partial vapor pressure as a function of temperature and humidity is given by following equations34, 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' ������������������������ = ������������∗6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='11∗ ������������(17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='67∗ ������������ ������������+243.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='6) 100 (3) ������������������������ is the partial pressure, H is the humidity in %, and T is the temperature in °C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' ������������������������������������ = ������������ ������������ ∗ (������������������������������������− ������������������������������������������������)∗������������ (4) WVP is the water vapor permeability in g/(ℎ ∗ ������������2*mbar),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' W is the water loss in grams,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' t is the time in hours,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' ������������������������������������������������ − ������������������������������������������������������������ is the water vapor partial pressure difference in mbar between inside and outside conditions,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' A is the membrane area in ������������2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Figure 4 lists the testing condition of the experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' It was possible to maintain isothermal conditions in the system below the lower critical solution temperature (LCST).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' As the recommended operating temperature of the OptiCal was less than 30 °C, it was not possible to maintain isothermal conditions above LCST.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' However, to ensure that the membrane is above LCST and to minimize the thermal gradients, the constant temperature condition of 30 °C and 40 °C are maintained outside and inside the chamber, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Results and discussion The electrospun membrane with Janus construct was fabricated using a needle-less and needle-based electrospinning setup (see Table 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The needle-based electrospinning setup allowed us to incorporate the thermocouples between the layers and just below the surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Therefore, the precise measurement of surface temperature and that between the layers was precisely measured for the double-chamber method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' These measured temperatures were used to calculate the vapor pressure gradient across the membrane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The PVDF solution was electrospun on top of the electrospun blend membrane to produce a two-layered Janus construct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The blend solution with a concentration of 16 wt% had a shear viscosity of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='38 Pa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='s under a shear of 1/10 s and a conductivity of 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='16 μs/cm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Similarly, the shear viscosity of the PVDF solution is 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='2 Pa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='s and a conductivity of 32 μs/cm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The SEM examination shows a smooth fiber morphology with a diameter of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='2- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='4 μm for needle-less electrospun fibers and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='2-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='6 μm for needle based electrospun fibers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' These values indicate no dimensional difference between the fibrous web produced by needle based or needle-less electrospinning methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The specific weight of the Janus membranes is 30-40 GSM, a lightweight fabric category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' However, in electrospun or thin- film membranes, this weight range indicates a heavyweight membrane suitable for practical applications36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Table 1: Polymeric solution parameters and their corresponding electrospun membrane properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Polymer (MW, Da) Wt% (w/w) Shear viscosity Pa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='s, (at 1/10 s) Conductivity, μs/cm Duration, no of cycles of 20min each Fiber diameter, nm Thickness, μm Porosity, % PVDF(530K)/PNIPAM (330K)(75/25) 18 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='4 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='16 5 502 ± 193.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='8 103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='3 ± 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='4 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='7 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='8 PVDF (180K) 30 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='2 32 3 139.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='2 ± 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='2 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='7 ± 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='7 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='6 ± 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='3 um 5 um 5μm 5μm 5μm 5μm nS 5μmFigure 5: SEM micrographs of the four Janus membranes prepared using needle-less electrospinning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Blend fibers are relatively more uniform in comparison to PVDF fibers, which have a bimodal distribution of fiber diameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' GSM refers to the membrane weight in grams per square meter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' I to IV are the Janus samples electrospun for measuring WVT Figure 6 shows the surface elemental composition by X-ray photoelectron spectroscopy (XPS) for PNIPAM, PVDF, and their blend.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Comparing the blend with respective pristine counterparts reveals that the blend surface is enriched with Nitrogen and Oxygen, which is like PNIPAM fibers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The XPS results confirm the observations from our previous study on the thermoresponsive wettability of PNIPAM/PVDF blends fabricated using needle-based electrospinning29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The Thermal characterization using DSC and TGA suggested the phase separation of PNIPAM and PVDF during electrospinning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' At the same time, the wettability switch observed by contact angle measurement at room temperature and elevated temperature suggested PNIPAM enriching the fiber surface29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' A comparison of density and solubility parameters in Table 2 favors the dissolution of PNIPAM in DMF over PVDF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Therefore, the evaporation of DMF during the electrospinning process supports the migration of PNIPAM to the fiber surface, lasting longer in solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Our previous study on this blend suggests miscibility when the PNIPAM content is 50 wt% or above29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' However, when the PNIPAM content is 25 wt% or below, PVDF and PNIPAM phases separate, enhancing the migration of PNIPAM to the fiber surface during the electrospinning process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Elements/transitio ns XPS surface composition, at.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='% PVDF PNIPAM BLEND BLEND after three months in water Carbon C1s 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='1 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='9 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='8 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='8 Nitrogen N1s 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='9 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='7 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='4 Oxygen O1s 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='0 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='2 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='8 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='6 Fluorine F1s 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='9 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='8 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='3 Figure 6: XPS graphs of PNIPAM, PVDF, and the blend of PVDF/PNIPAM (75/25, w/w) Table 2: Polymer properties Polymer Density Solubility parameter δ2 Solubility parameter DMF δ1 Δδ (1-2) a) PNIPAM b) PVDF C-F3 Measured Measured Envelope C-F4 Envelope C-H3 C-H2 C-C, C-H C-F2 N-C=O 292.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='5 290 287.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='5 285 280 292.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='5 290 287.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='5 285 282.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='5 280 c) Blend C-F2 Measured Envelope C-H2 C-C: C-H N-C=O 295 292.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='5 290 287.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='5 285 282.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='5 280 Binding Energy (ev)PNIPAM 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='05 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='5 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='4 PVDF 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='68 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='5 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='9 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='4 Before water-vapor transmission experiments were performed, the fabricated membranes were conditioned for a day in an environment-controlled chamber (at test conditions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The skin model (mimicked by the porous hot plate) measures the membrane’s resistance to vapor permeability as a function of temperature, as shown in Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' When the membrane is placed on the hot plate, the water vapor diffuses from the bottom to the top side of the Janus membrane (see Figure 7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The membrane’s resistance to vapor diffusion is measured from both sides of the Janus membrane in a separate set of experiments to assess the influence of the wettability gradient within the membrane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' This set of measurements is performed at five different temperatures to plot the membrane’s resistance as a function of temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The water vapor resistance measurement removes the temperature bias on the WVT and is expected to be constant for the same fabric at different isothermal conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' When the membrane is placed on the hot plate with the blend side facing down, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=', when vapor transmits from the blend to the PVDF side of the Janus membrane, there is an increased water vapor resistance at higher temperatures (see Figure 7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' As the blend is thermoresponsive, it is hydrophilic (CA=10⁰) at a lower temperature range (<32 ⁰C) and hydrophobic (CA=120⁰) at a temperature higher than 32 ⁰C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' As a result, the lower resistance is attributed to the blend’s affinity to water vapor at a lower temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Similarly, the reduced affinity at elevated temperatures causes more significant resistance to vapor transmission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' As the vapor transmits from the blend to the PVDF side, the hydrophobicity increases the membrane’s thickness and consequently increases the membrane’s resistance to vapor transmission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The hydrophilic layer next to the PVDF layer supports the vapor transmission when the PVDF side faces the hot plate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' At elevated temperatures, the resistance increases but is significantly lower than the resistance the membrane offers, with the blend facing the hot plate (Figure 7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Even though the blend is hydrophobic at elevated temperatures, it is less hydrophobic than PVDF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Therefore, when the vapor transmits from the PVDF to the blend side, the hydrophobicity reduces along with the thickness of the membrane, which favors the vapor transmission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Based on the examination of the results, the Janus construct with PVDF facing the hot plate favors the vapor transmission at all investigated temperatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' This behavior is due to unchanging hygroscopic properties of the PVDF with temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Therefore, the thermoresponsive Janus membrane makes it possible to maintain active vapor transport irrespective of the outside temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Figure 7: Effect of Janus directionality on the resistance to water-vapor permeability through the membranes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The thermoresponsive property of the blend combined with the Janus structure offers higher resistance to WVT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The behavior is attributed to the moisture released by the blend layer at a higher temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' As a result, when the blend faces the hot plate, it increases the boundary layer gap and consequently increases the resistance to water-vapor permeability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' We measured the water vapor permeability using a double chamber method to verify the observed behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Needle-based electrospinning was used to fabricate the Janus membrane to incorporate the thermocouples between the layers and almost at the surface of the Blend layer (approximately 5sec of electrospinning).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Figure 8 shows the Janus membrane with thermocouples on the sample holder to fit the mouth of the OptiCal chamber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The figure also shows the SEM micrographs of the blend and PVDF side of the Janus membrane incorporating a fiber diameter of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='2-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='6 μm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The sample holder plugs the mouth of the chamber such that one of the sides of the membrane faces outside the chamber and the other faces the inside chamber of the OptiCal chamber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The entire system and the membranes were conditioned at 20°C and 40% RH before carrying out below LCST.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Before measurements above LCST, membranes were conditioned at 30°C and 40% RH, as mentioned in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='5 PVDFtoBlend Blend to PVDF 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='5 , m’Pa/W PVDF 2 RET, H Blend 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='5 20 25 30 35 40 Temperature, °C Figure 8: The top part shows the membrane with the thermocouples mounted (red arrow) on the sample holder that fits the mouth of the OptiCal instrument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=" The bottom section shows the SEM micrographs of the fibers from the PVDF and the blend side, respectively Figure 9 shows the membranes' water vapor permeability as a temperature function." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' At a lower temperature of 20 °C, the permeabilities are comparable for both samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' However, the increasing vapor permeability with increasing temperature is predominantly due to increasing partial vapor pressure difference across the membrane37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Figure 10 plots the vapor permeability as a function of partial vapor pressure across the membrane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' PVDF being hydrophobic is expected to adsorb less moisture and transmit less than the unswelling hydrophilic membrane (Blend).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' However, interestingly, the vapor permeability from the PVDF to the blend side is significantly higher than from the blend to the PVDF side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Further, to isolate the membrane effects from the vapor pressure, Figure 10B shows the water vapor permeability per unit of partial pressure across the membrane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' When the vapor transmits from the blend side, the permeability is constant, suggesting the vapor pressure difference is the primary driving force.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' However, vapor permeates significantly more (P-value =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='003, n=4) from the PVDF side, suggesting that the membrane’s influence on vapor transmission increases with temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Therefore, the combined effect of the Janus constructs and the temperature-responsive property drives more vapor through the membrane from one direction over the other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=" Sum 10um Figure 9: a) shows the Janus membrane's water vapor permeability as a temperature function and compares the effect of the membrane’s directionality." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' b) shows the partial vapor pressure difference across the membrane as a function of temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The water vapor permeability for PVDF to blend direction is significantly higher due to the additional partial pressure drop caused by the wettability gradient in the membrane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=" 300 250 Blend to PVDF PVDF to Blend 200 150 100 b) 30 Blend to PVDF 25 PVDF to Blend 20 10 20 25 30 35 40 Temperature, 'C a) b) Figure 10: a) Water vapor permeability as a function of the partial vapor pressure difference across the Janus membrane." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Vapor permeability from the PVDF side is significantly higher than from the blend side due to the Janus structure favoring the vapor transmission from the PVDF to the blend side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' b) Water vapor permeability per unit of the partial vapor pressure difference across the Janus membrane as a function of temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The differences in the vapor permeability from the blend side to PVDF are statistically insignificant at all tested temperatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The partial vapor pressure difference across the membrane is the primary driving force for transmitting the water vapor from the blend side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=" However, this permeability per unit of the pressure from the PVDF side increases significantly with temperature due to the Janus construct's combined effect and the blend's thermoresponsive property." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Figure 10 shows the possible mechanism based on the obtained experimental results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Based on the prior hygroscopic measurements, pristine PNIPAM adsorbs 19 wt% of vapor at a temperature of 40 °C38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' As the blend contains 25 wt% of PNIPAM and adsorbs water vapor in proportion to the PNIPAM content29, which is at least 4 wt% of vapor at 40 °C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' However, PVDF being hydrophobic, adsorbs less than 1% of vapor via Van der Waal’s forces29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Therefore, at any given time during the experiment, the blend surface layer will hold more moisture (vapor molecules) (C������������), when compared with the PVDF surface layer (C������������).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' When the PVDF side faces outside, the vapor transmits from the blend to the PVDF side of the membrane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The amount of vapor molecules available for evaporation is C������������ on the PVDF surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Therefore, the vapor pressure gradient drives C������������ molecules through the membrane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' As this concentration of vapor C������������ does not change with temperature, we have almost the same vapor permeability when transmitting from the blend to the PVDF side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' In the other scenario, with the blend side facing outside, the vapor transmits from the PVDF side to the blend side of the membrane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' At equilibrium, the blend surface holds more vapor PVDFtoBlend 250 BlendtoPVDF 200 Water vapor 100 50 5 10 15 20 25 30 Partialvaporpressuredifference,mbar12 PVDFtoBlend BlendtoPVDF "mbar HHHH Blend PVDF 10 9 PVDF Blend 8 20 25 30 35 40 Temperature,Cthan the PVDF side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' However, at 20 °C, most vapor molecules form hydrogen bonds with the amide (-N-H) and carbonyl (-C=O-) groups from PNIPAM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' As a result, the concentration of vapor molecules (C������������) is a combination of bound vapor (T) and free vapor molecules (F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The vapor pressure gradient drives the free vapor molecules (F) through the membrane, which is comparable with C������������.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Therefore, vapor permeability at temperatures below LCST is similar irrespective of the transmission direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Above LCST, due to the coil conformation of PNIPAM, all the bound vapor molecules are released and become free vapor molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' When the vapor molecule C������������ evaporates, the vapor pressure gradient drives C������������ through the membrane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' As C������������≫C������������, the vapor permeability from PVDF to the blend side is higher than that from the flipped direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Figure 11: Illustrates the mechanism of water vapor permeability from the blend side to the PVDF side and vice-versa when driven by the partial vapor pressure difference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Conclusion Electrospun thermoresponsive Janus membranes exhibit directional WVT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Herein, the vapor transmitted from the hydrophobic (PVDF) side to the hydrophilic (blend) is faster than in the opposite direction (hydrophilic to hydrophobic).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The results from the indirect approach, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=', via the sweating hot plate method, and from the direct approach, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=', via a double-chamber method, complement each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Based on the physical reasoning, we postulate that this mechanism is due to the combined effect of the temperature-responsive behavior of the Janus construct on vapor transmission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' By complementing the experiment, numerical modeling can shed further insight into the physical processes, which results in directional vapor permeability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' :8:8:8: Cp is exposed CB is all FreeThese new results open pathways in membrane research and development, which is unique for liquid and gas transmission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The novelty not only contributes to the field of textiles, packaging, or filter systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' References 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Gugliuzza A and Drioli E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' A review on membrane engineering for innovation in wearable fabrics and protective textiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Journal of Membrane Science 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 446: 350- 375.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Waterproof Breathable Textiles (WBT) Market Analysis By Textile (Densely Woven, Membrane, Coated), By Product (Garments, Footwear, Gloves), By Application (Active Sportswear) And Segment Forecasts To 2020, http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='grandviewresearch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='com/industry-analysis/waterproof-breathable-textiles- industry (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Tanner JC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Breathability, comfort and Gore-Tex laminates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Journal of Industrial Textiles 1979;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 8: 312-322.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Rossi R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Interaction between protection and thermal comfort.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Cambridge, UK, Woodhead Publishing Limited, 2005, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 233-253.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Mukhopadhyay A and Midha VK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' A review on designing the waterproof breathable fabrics part I: fundamental principles and designing aspects of breathable fabrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Journal of industrial textiles 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 37: 225-262.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Gun AD and Bodur A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Thermo-physiological comfort properties of double-face knitted fabrics made from different types of polyester yarns and cotton yarn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' J Text Inst 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 108: 1518-1527.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='1080/00405000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='1259953.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Rouhani ST and Fashandi H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Breathable dual-layer textile composed of cellulose dense membrane and plasma-treated fabric with enhanced comfort.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Cellulose 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 25: 5427-5442.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='1007/s10570-018-1950-9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Suganthi T and Senthilkumar P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Development of tri-layer knitted fabrics for shuttle badminton players.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Journal of Industrial Textiles 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 48: 738-760.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='1177/1528083717740766.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Zhou L, Wang HB, Du JM, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Eco-friendly and Durable Antibacterial Cotton Fabrics Prepared with Polysulfopropylbetaine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Fibers and Polymers 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 19: 1228- 1236.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='1007/s12221-018-8053-y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Gu XY, Li N, Cao J, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Preparation of electrospun polyurethane/hydrophobic silica gel nanofibrous membranes for waterproof and breathable application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Polym Eng Sci 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 58: 1381-1390.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='1002/pen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='24726.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Gu XY, Li N, Gu HH, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Polydimethylsiloxane-modified polyurethane-poly(- caprolactone) nanofibrous membranes for waterproof, breathable applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Journal of Applied Polymer Science 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 135: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='1002/app.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='46360.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Gu XY, Li N, Luo JJ, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Electrospun polyurethane microporous membranes for waterproof and breathable application: the effects of solvent properties on membrane performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Polym Bull 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 75: 3539-3553.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='1007/s00289-017-2223- 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Gretton J, Brook D, Dyson H, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Moisture vapor transport through waterproof breathable fabrics and clothing systems under a temperature gradient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Textile Research Journal 1998;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 68: 936-941.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Gibson P, Schreuder-Gibson H and Rivin D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Transport properties of porous membranes based on electrospun nanofibers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Colloids and Surfaces A: Physicochemical and Engineering Aspects 2001;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 187: 469-481.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Sheng J, Li Y, Wang X, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Thermal inter-fiber adhesion of the polyacrylonitrile/fluorinated polyurethane nanofibrous membranes with enhanced waterproof-breathable performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Separation and Purification Technology 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 158: 53-61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Sheng J, Zhang M, Luo W, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Thermally induced chemical cross-linking reinforced fluorinated polyurethane/polyacrylonitrile/polyvinyl butyral nanofibers for waterproof-breathable application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' RSC Advances 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 6: 29629-29637.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Sheng J, Zhang M, Xu Y, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Tailoring Water-Resistant and Breathable Performance of Polyacrylonitrile Nanofibrous Membranes Modified by Polydimethylsiloxane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' ACS applied materials & interfaces 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 8: 27218-27226.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Mukhopadhyay A, Preet A and Midha V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Moisture transmission behaviour of individual component and multilayered fabric with sweat and pure water.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' J Text Inst 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 109: 383-392.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='1080/00405000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='1348435.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Bagherzadeh R, Latifi M, Najar SS, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Transport properties of multi-layer fabric based on electrospun nanofiber mats as a breathable barrier textile material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Textile research journal 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 82: 70-76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Gorji M, Karimi M and Nasheroahkam S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Electrospun PU/P (AMPS-GO) nanofibrous membrane with dual-mode hydrophobic–hydrophilic properties for protective clothing applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Journal of Industrial Textiles 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 47: 1166-1184.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Wu J, Wang N, Wang L, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Unidirectional water-penetration composite fibrous film via electrospinning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Soft Matter 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 8: 5996-5999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Wang H, Wang X and Lin T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Unidirectional water transfer effect from fabrics having a superhydrophobic-to-hydrophilic gradient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Journal of nanoscience and nanotechnology 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 13: 839-842.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Tian X, Li J and Wang X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Anisotropic liquid penetration arising from a cross- sectional wettability gradient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Soft Matter 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 8: 2633-2637.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Guo F and Guo Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Inspired smart materials with external stimuli responsive wettability: a review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' RSC Advances 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 6: 36623-36641.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='1039/C6RA04079A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='1039/C6RA04079A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Tanaka T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Collapse of gels and the critical endpoint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Physical Review Letters 1978;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 40: 820.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Tanaka T and Fillmore DJ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Kinetics of swelling of gels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The Journal of Chemical Physics 1979;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 70: 1214-1218.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Schild HG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Poly (N-isopropylacrylamide): experiment, theory and application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Progress in polymer science 1992;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 17: 163-249.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Liu X, Li Y, Hu J, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Smart moisture management and thermoregulation properties of stimuli-responsive cotton modified with polymer brushes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' RSC Advances 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 4: 63691-63695.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='1039/C4RA11080C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content='1039/C4RA11080C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Ranganath AS, Ganesh VA, Sopiha K, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Thermoresponsive electrospun membrane with enhanced wettability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' RSC Advances 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 7: 19982-19989.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Airoudj A, Bally-Le Gall F and Roucoules V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Textile with Durable Janus Wetting Properties Produced by Plasma Polymerization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The Journal of Physical Chemistry C 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 120: 29162-29172.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Li H, Cao M, Ma X, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' “Plug‐and‐Go”‐Type Liquid Diode: Integrated Mesh with Janus Superwetting Properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Advanced Materials Interfaces 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Ranganath AS and Baji A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Electrospun Janus Membrane for Efficient and Switchable Oil–Water Separation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Macromolecular Materials and Engineering 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 303: 1800272.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 11092 I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Textiles‐Determination of physiological properties–measurement of thermal and water‐vapor resistance under steady‐state conditions (sweating guarded‐ hotplate test).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Wagnera W and Prußb A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' J Phys Chem Ref Data 2002;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 31: 387.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Oyj V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Humidity Conversion Formulas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 2013: 3-16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Brown P and Cox CL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Fibrous filter media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Woodhead Publishing, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Gibson P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Effect of temperature on water vapor transport through polymer membrane laminates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 1999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' ARMY SOLDIER AND BIOLOGICAL CHEMICAL COMMAND NATICK MA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Thakur N, Sargur Ranganath A, Sopiha K, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' Thermoresponsive Cellulose Acetate–Poly (N-isopropylacrylamide) Core–Shell Fibers for Controlled Capture and Release of Moisture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' ACS Applied Materials & Interfaces 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
+page_content=' 9: 29224-29233.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtAyT4oBgHgl3EQff_gI/content/2301.00348v1.pdf'}
diff --git a/KNE0T4oBgHgl3EQfigEg/content/2301.02445v1.pdf b/KNE0T4oBgHgl3EQfigEg/content/2301.02445v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..f7dcaae7d0c019569eb8e448416285fd217e51e9
--- /dev/null
+++ b/KNE0T4oBgHgl3EQfigEg/content/2301.02445v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c3d1f5a012b5a4c476c20b916334ad68787844a5614af8d2fe2a19ef4003a457
+size 724830
diff --git a/KNE0T4oBgHgl3EQfigEg/vector_store/index.pkl b/KNE0T4oBgHgl3EQfigEg/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..921cb42489d9e7056e8cbb96e79724fb1899e279
--- /dev/null
+++ b/KNE0T4oBgHgl3EQfigEg/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:194f1ec3ee1fd66fb857c67e1a1e54bb57ccf8e7c0c9044baeef4fc46003ccfa
+size 186078
diff --git a/LdAyT4oBgHgl3EQfTvfu/content/tmp_files/2301.00114v1.pdf.txt b/LdAyT4oBgHgl3EQfTvfu/content/tmp_files/2301.00114v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..e2caf8ec68ada35c0a863cf19fb9d10bced22032
--- /dev/null
+++ b/LdAyT4oBgHgl3EQfTvfu/content/tmp_files/2301.00114v1.pdf.txt
@@ -0,0 +1,1521 @@
+1
+Skeletal Video Anomaly Detection using Deep
+Learning: Survey, Challenges and Future Directions
+Pratik K. Mishra, Alex Mihailidis, Shehroz S. Khan
+Abstract—The existing methods for video anomaly detec-
+tion mostly utilize videos containing identifiable facial and
+appearance-based features. The use of videos with identifiable
+faces raises privacy concerns, especially when used in a hospital
+or community-based setting. Appearance-based features can also
+be sensitive to pixel-based noise, straining the anomaly detection
+methods to model the changes in the background and making
+it difficult to focus on the actions of humans in the foreground.
+Structural information in the form of skeletons describing the
+human motion in the videos is privacy-protecting and can over-
+come some of the problems posed by appearance-based features.
+In this paper, we present a survey of privacy-protecting deep
+learning anomaly detection methods using skeletons extracted
+from videos. We present a novel taxonomy of algorithms based on
+the various learning approaches. We conclude that skeleton-based
+approaches for anomaly detection can be a plausible privacy-
+protecting alternative for video anomaly detection. Lastly, we
+identify major open research questions and provide guidelines to
+address them.
+Index Terms—skeleton, body joint, human pose, anomaly
+detection, video.
+I. INTRODUCTION
+Anomalous events pertain to unusual or abnormal actions,
+behaviours or situations that can lead to health, safety and
+economical risks [1]. Anomalous events, by definition, are
+largely unseen and not much is known about them in advance
+[2]. Due to their rarity, diversity and infrequency, collecting
+labeled data for anomalous events can be very difficult or
+costly [1], [3]. With the lack of predetermined classes and
+a few labelled data for anomalous events, it can be very hard
+to train supervised machine learning models [1]. Therefore, a
+general approach in majority of anomaly detection algorithms
+is to train a model that can best represent the ’normal’ events
+or actions, and any deviations from it can be flagged as an
+unseen anomaly [4]. Anomalous behaviours among humans
+can be attributed at an individual level (e.g., falls [5]) or
+multiple people in a scene (e.g., pedestrian crossing [6],
+violence in a crowded mall [7]). In the context of video-
+based anomaly detection, the general approach is to train
+a model to learn the patterns of actions or behaviours of
+individual(s), background and other semantic information in
+the normal activities videos, and identify significant deviations
+in the test videos as anomalies. However, anomaly detection
+is a challenging task due to the lack of labels and often times
+the unclear definition of an anomaly [2].
+Pratik K. Mishra, Alex Mihailidis, and Shehroz S. Khan are with the
+Institute of Biomedical Engineering, University of Toronto, Toronto, Canada,
+and also with the KITE – Toronto Rehabilitation Institute, University
+Health Network, Toronto, Canada (e-mail: pratik.mishra@mail.utoronto.ca;
+alex.mihailidis@utoronto.ca; shehroz.khan@uhn.ca).
+The majority of video-based anomaly detection approaches
+use RGB videos where the people in the scene are identifiable.
+While using RGB camera-based systems in public places (e.g.,
+malls, airports) is generally acceptable, the situation can be
+very different in personal dwelling, community, residential or
+clinical settings [8]. In a home or residential setting (e.g.,
+nursing homes), individuals or patients can be monitored in
+their personal space that may breach their privacy. The lack
+of measures to deal with the privacy of individuals can be
+a bottleneck in the adoption and deployment of the anomaly
+detection-based systems [9]. However, monitoring of people
+with physical, cognitive or aging issues is also important to
+improve their quality of life and care. Therefore, as a trade-
+off, privacy-protecting video modalities can fill that gap and
+be used in these settings to save lives and improve patient
+care. Wearable devices face compliance issues among certain
+populations, where people may forget or in some cases refuse
+to wear them [10]. Some of the privacy-protecting camera
+modalities that has been used in the past for anomaly detection
+involving humans include depth cameras [5], [11], thermal
+cameras [12], and infrared cameras [13], [14]. While these
+modalities can partially or fully obfuscate an individual’s
+identity, they require specialized hardware or cameras and
+can be expensive to be used by general population. Skeletons
+extracted from RGB camera streams using pose estimation al-
+gorithms [15] provide a suitable solution of privacy protection
+over RGB and other types of cameras. Skeleton tracking only
+focuses on body joints and ignores facial identity, full body
+scan or background information. The pixel-based features in
+RGB videos that mask important information about the scene
+are sensitive to noise resulting from illumination, viewing
+direction and background clutter, resulting in false positives
+when detecting anomalies [16]. Furthermore, due to redundant
+information present in these features (e.g., background), there
+is an increased burden on methods to model the change in
+those areas of the scene rather than focus on the actions of
+humans in the foreground. Extracting information specific to
+human actions can not only provide a privacy-protecting solu-
+tion, but can also help to filter out the background-related noise
+in the videos and aid the model to focus on key information
+for detecting abnormal events related to human behaviour.
+The skeletons represent an efficient way to model the human
+body joint positions over time and are robust to the complex
+background, illumination changes, and dynamic camera scenes
+[17]. In addition to being privacy-protecting, skeleton features
+are compact, well-structured, semantically rich, and highly
+descriptive about human actions and motion [17]. Anomaly
+detection using skeleton tracking is an emerging area of
+research as awareness around privacy of individuals and their
+arXiv:2301.00114v1 [cs.CV] 31 Dec 2022
+
+2
+data grows. However, skeleton-based approaches may not be
+sufficient for situations that explicitly need facial information
+for analysis, including emotion recognition [18], [19], pain
+detection [20] or remote heart monitoring [21], to name a few.
+In recent years, deep learning methods have been developed
+to use skeletons for different applications, such as action
+recognition [40], medical diagnosis [24], and sports analytics
+[41]. The use of skeletons for anomaly detection in videos
+is an under-explored area, and concerted research is needed
+[24]. The human skeletons can help in developing privacy-
+preserving solutions for private dwellings, crowded/public
+areas, medical settings, rehabilitation centers and long-term
+care homes to detect anomalous events that impacts health
+and safety of individuals. Use of this type of approach could
+improve the adoption of video-based monitoring systems in
+the homes and residential settings. However, there is a paucity
+of literature on understanding the existing techniques that use
+skeleton-based anomaly detection approaches. We identify this
+gap in the literature and present one of the first survey on the
+recent advancements in using skeletons for anomaly detection
+in videos. We identified the major themes in existing work
+and present a novel taxonomy that is based on how these
+methods learn to detect anomalous events. We also discuss the
+applications where these approaches were used to understand
+their potential in bringing these algorithms in a personal
+dwelling, or long-term care scenario.
+II. LITERATURE SURVEY
+We adopted a narrative literature review for this work.
+The following keywords (and their combinations) were used
+to search for relevant papers – skeleton, human pose, body
+pose, body joint, trajectory, anomaly detection, abnormal and
+video. These keywords were searched on scholarly databases,
+including Google Scholar, IEEE Xplore, Elsevier and Springer.
+We mostly reviewed papers between year 2016 to year 2022;
+therefore, the list may not be comprehensive. In this review,
+we only focus on the recent deep learning-based algorithms
+for skeletal video anomaly detection and did not include
+traditional machine learning based approaches. We did not
+adopt the systematic or scoping review search protocol for this
+work; therefore, our literature review may not be exhaustive.
+However, we tried our best to include the latest development
+in the field to be able to summarize their potential and identify
+challenges. In this section, we provide a survey of skeletal deep
+learning video anomaly detection methods. We present a novel
+taxonomy to study the skeletal video anomaly approaches
+based on learning approaches into four broad categories,
+i.e., reconstruction, prediction, their combinations and other
+specific approaches. Table I provides a summary of 21 relevant
+papers, based on the taxonomy, found in our literature search.
+Unless otherwise specified, the values in the last column of
+the table refer to AUC(ROC) values corresponding to each
+dataset in the reviewed paper. Five papers use reconstruction
+approach, five papers use prediction approach, five papers use
+a combination of reconstruction and prediction approaches,
+three papers use a combination of reconstruction and clustering
+approaches, and three papers use other specific approaches.
+A. Reconstruction Approaches
+In the reconstruction approaches, generally, an autoencoder
+(AE) or its variant model is trained on the skeleton information
+of only normal human activities. During training, the model
+learns to reconstruct the samples representing normal activ-
+ities with low reconstruction error. Hence, when the model
+encounters an anomalous sample at test time, it is expected to
+give high reconstruction error.
+Gatt et al. [22] used Long Short-Term Memory (LSTM)
+and 1-Dimensional Convolution (1DConv)-based AE models
+to detect abnormal human activities, including, but not limited
+to falls, using skeletons estimated from videos of a publicly
+available dataset. Temuroglu et al. [23] proposed a skeleton
+trajectory representation that handled occlusions and an AE
+framework for pedestrian abnormal behaviour detection. The
+pedestrian video dataset used in this work was collected by the
+authors, where the training dataset was composed of normal
+walking, and the test dataset was composed of normal and
+drunk walking. The pose skeletons were treated to handle
+occlusions using the proposed representation and combined
+into a sequence to train an AE. They compared the results
+of occlusion-aware skeleton keypoints input with keypoints
+without occlusion flags, keypoint image heatmaps and raw
+pedestrian image inputs. The authors used average of recall
+and specificity to evaluate the models due to the unbalanced
+dataset and found that occlusion-aware input achieved the
+highest results. Suzuki et al. [24] trained a Convolutional
+AE (CAE) on good gross motor movements in children and
+detected poor limb motion as an anomaly. Motion time-series
+images [42] were obtained from skeletons estimated from
+the videos of kindergarten children participants. The motion
+time-series images were fed as input to a CAE, which was
+trained on only the normal data. The difference between
+the input and reconstructed pixels was used to localize the
+poor body movements in anomalous frames. Jiang et al. [25]
+presented a message passing Gated Recurrent Unit (GRU)
+encoder-decoder network to detect and localize the anomalous
+pedestrian behaviours in videos captured at the grade crossing.
+The field-collected dataset consisted of over 50 hours of
+video recordings at two selected grade crossings with different
+camera angles. The skeletons were estimated and decomposed
+into global and local components before being fed as input to
+the encoder-decoder network. The localization of the anoma-
+lous pedestrians within a frame was done by identifying the
+skeletons with reconstruction error higher than the empirical
+threshold. They manually removed wrongly detected false
+skeletons as they claim that the wrong detection issue was
+observed at only one grade crossing. However, an approach
+of manual removal of false skeletons is impractical in many
+real world applications where the data is very large, making
+the need of an automated false skeleton identification and
+removal step imperative. Fan et al. [26] proposed an anomaly
+detection framework which consisted of two pairs of generator
+and discriminator. The generators were trained to reconstruct
+the normal video frames and the corresponding skeletons,
+respectively. The discriminators were trained to distinguish
+the original and reconstructed video frames and the original
+
+3
+TABLE I
+SUMMARY OF REVIEWED PAPERS.
+Learning
+approach
+Paper
+Datasets used
+Experimental
+Setting
+Number of
+people in
+scene
+Type of anomalies
+Pose
+estimation
+algorithm
+Model input
+Model type
+Anomaly score
+Eval. metric
+AUC(ROC)
+(or other)
+Reconstruction
+Gatt et al. [22]
+UTD-MHAD
+Indoor
+Single
+Irregular body
+postures
+Openpose,
+Posenet
+Skeleton
+keypoints
+1DConv-AE,
+LSTM-AE
+Reconstruction
+error
+AUC(PR)=0.91,
+F score=0.98
+Temuroglu et al. [23]
+Custom
+Outdoor
+Multiple
+Drunk walking
+Openpose
+Skeleton
+keypoints
+AE
+Reconstruction
+error
+Average of
+recall and
+specificity=0.91
+Suzuki et al. [24]
+Custom
+—
+Single
+Poor body
+movements in
+children
+Openpose
+Motion time-
+series images
+CAE
+Reconstruction
+error
+Accuracy=99.3,
+F score=0.99
+Jiang et al. [25]
+Custom
+Outdoor
+Multiple
+Abnormal pedestrian
+behaviours at
+grade crossings
+Alphapose
+Skeleton
+keypoints
+GRU Encoder-
+Decoder
+Reconstruction
+error
+0.82
+Fan et al. [26]
+CUHK Avenue,
+UMN
+Indoor and
+Outdoor
+Multiple
+Anomalous human
+behaviours
+Alphapose
+Video frame,
+Skeleton
+keypoints
+Generative
+adversarial network
+Reconstruction
+error of
+video frame
+0.88
+0.99
+Prediction
+Rodrigues et al. [27]
+IITB-Corridor,
+ShanghaiTech,
+CUHK Avenue
+Outdoor
+Multiple
+Abnormal human
+activities
+Openpose
+Skeleton
+keypoints
+Multi-timescale
+1DConv
+encoder-decoder
+Prediction error
+from different
+timescales
+0.67
+0.76
+0.83
+Luo et al. [16]
+ShanghaiTech,
+CUHK Avenue
+Outdoor
+Multiple
+Irregular body
+postures
+Alphapose
+Skeleton
+joints graph
+Spatio-Temporal
+GCN
+Prediction error
+0.74
+0.87
+Zeng et al. [28]
+UCSD Pedestrian,
+ShanghaiTech,
+CUHK Avenue,
+IITB-Corridor
+Outdoor
+Multiple
+Anomalous human
+behaviours
+HRNet
+Skeleton
+joints graph
+Hierarchical
+Spatio-Temporal
+GCN
+Weighted sum of
+prediction errors
+from different
+levels
+0.98
+0.82
+0.87
+0.7
+Fan et al. [29]
+ShanghaiTech,
+CUHK Avenue
+Outdoor
+Multiple
+Anomalous human
+actions
+Alphapose
+Skeleton
+keypoints
+GRU feed forward
+network
+Prediction error
+0.83
+0.92
+Pang et al. [30]
+ShanghaiTech,
+CUHK Avenue
+Outdoor
+Multiple
+Anomalous human
+actions
+Alphapose
+Skeleton
+keypoints
+Transformer
+Prediction error
+0.77
+0.87
+Reconstruction+
+Prediction
+Morais et al. [17]
+ShanghaiTech,
+CUHK Avenue
+Outdoor
+Multiple
+Anomalous human
+actions
+Alphapose
+Skeleton
+keypoints
+GRU Encoder-
+Decoder
+Weighted sum of
+reconstruction and
+prediction errors
+0.73
+0.86
+Boekhoudt et al. [7]
+ShanghaiTech,
+HR Crime
+Indoor and
+Outdoor
+Multiple
+Human and Crime
+related anomalies
+Alphapose
+Skeleton
+keypoints
+GRU Encoder-
+Decoder
+Weighted sum of
+reconstruction and
+prediction errors
+0.73
+0.6
+Li and Zhang [31]
+ShanghaiTech
+Outdoor
+Multiple
+Abnormal pedestrian
+behaviours
+Alphapose
+Skeleton
+keypoints
+GRU Encoder-
+Decoder
+Weighted sum of
+reconstruction and
+prediction errors
+0.75
+Li et al. [32]
+ShanghaiTech,
+CUHK Avenue
+Outdoor
+Multiple
+Human-related
+anomalous events
+Alphapose
+Skeleton
+joints graph
+GCAE with
+embedded LSTM
+Sum of max
+reconstruction and
+prediction errors
+0.76, EER=30.7
+0.84, EER=20.7
+Wu et al. [33]
+ShanghaiTech,
+CUHK Avenue
+Outdoor
+Multiple
+Abnormal human
+actions
+Alphapose
+Skeleton
+joints graph,
+Confidence
+scores
+GCN
+Confidence score
+weighted sum of
+reconstruction,
+prediction and
+SVDD errors
+0.77
+0.85
+Reconstruction+
+Clustering
+Markovitz et al. [34]
+ShanghaiTech,
+NTU-RGB+D,
+Kinetics-250
+Indoor and
+Outdoor
+Multiple
+Anomalous human
+actions
+Alphapose,
+Openpose
+Skeleton
+joints graph
+GCAE,
+Deep clustering
+Dirichlet process
+mixture model
+score
+0.75
+0.85
+0.74
+Cui et al. [35]
+ShanghaiTech
+Outdoor
+Multiple
+Human pose
+anomalies
+—
+Skeleton
+joints graph
+GCAE,
+Deep clustering
+Dirichlet process
+mixture model
+score
+0.77
+Liu et al. [36]
+ShanghaiTech,
+CUHK Avenue
+Outdoor
+Multiple
+Anomalous human
+behaviours
+Alphapose
+Skeleton
+joints graph
+GCAE,
+Deep clustering
+Dirichlet process
+mixture model
+score
+0.79
+0.88
+Clustering
+Yang et al. [37]
+UCSD Pedestrian 2,
+ShanghaiTech
+Outdoor
+Multiple
+Anomalous human
+behaviours and
+objects
+Alphapose
+Skeleton
+joints graph,
+Numerical
+features
+GCN
+Skeleton cluster +
+Object anomaly
+score
+0.93
+0.82
+Iterative self-
+training
+Nanjun et al. [38]
+ShanghaiTech,
+CUHK Avenue
+Outdoor
+Multiple
+Human-related
+anomalous events
+Alphapose
+Skeleton
+joints graph,
+Numerical
+features
+GCN
+Self-trained fully
+connected layers
+output
+0.72, EER=34.1
+0.82, EER=23.9
+Multivariate
+gaussian
+distribution
+Tani and Shibata [39]
+ShanghaiTech
+Outdoor
+Multiple
+Anomalous human
+behaviours
+Openpose
+Skeleton
+joints graph
+GCN, Multivariate
+gaussian distribution
+Mahalanobis
+distance
+0.77
+
+4
+and reconstructed skeletons, respectively. The video frames
+and corresponding extracted skeletons served as input to the
+framework during training; however, at test time, decision was
+made based on only reconstruction error of video frames.
+Challenges: AEs or their variants are widely used in
+many video-based anomaly detection methods [5]. The choice
+of the right architecture to model the skeletons is very
+important. Further, being trained on the normal data, they
+are expected to produce higher reconstruction error for the
+abnormal inputs than the normal inputs, which has been
+adopted as a criterion for identifying anomalies. However, this
+assumption does not always hold in practice, that is, the AEs
+can generalize well that it can also reconstruct anomalies well,
+leading to false negatives [43].
+B. Prediction Approaches
+In prediction approaches, a network is generally trained to
+learn the normal human behaviour by predicting the skeletons
+at the next time step(s) using the skeletons representing normal
+human actions at past time steps. During testing, the test sam-
+ples with high prediction errors are flagged as anomalies as the
+network is trained to predict only the skeletons representing
+normal actions.
+Rodrigues et al. [27] suggested that abnormal human activ-
+ities can take place at different timescales, and the methods
+that operate at a fixed timescale (frame-based or video-clip-
+based) are not enough to capture the wide range of anomalies
+occurring with different time duration. They proposed a multi-
+timescale 1DConv encoder-decoder network where the inter-
+mediate layers were responsible to generate future and past
+predictions corresponding to different timescales. The network
+was trained to make predictions on normal activity skeletons
+input. The prediction errors from all timescales were combined
+to get an anomaly score to detect abnormal activities. Luo
+et al. [16] proposed a spatio-temporal Graph Convolutional
+Network (GCN)-based prediction method for skeleton-based
+video anomaly detection. The body joints were estimated and
+built into skeleton graphs, where the body joints formed the
+nodes of the graph. The spatial edges connected different joints
+of a skeleton, and temporal edges connected the same joints
+across time. A fully connected layer was used at the end
+of the network to predict future skeletons. Zeng et al. [28]
+proposed a hierarchical spatio-temporal GCN, where high-
+level representations encoded the trajectories of people and the
+interactions among multiple identities while low-level skeleton
+graph representations encoded the local body posture of each
+person. The method was proposed to detect anomalous human
+behaviours in both sparse and dense scenes. The inputs were
+organized into spatio-temporal skeleton graphs whose nodes
+were human body joints from multiple frames and fed to
+the network. The network was trained on the input skeleton
+graph representations of normal activities. Optical flow fields
+and size of skeleton bounding boxes were used to determine
+sparse and dense scenes. For dense scenes with crowds, higher
+weights were assigned to high-level representations while for
+sparse scenes, the weights of low-level graph representations
+were increased. During testing, the prediction errors from
+different branches were weighted and combined to obtain the
+final anomaly score. Fan et al. [29] proposed a GRU feed-
+forward network that was trained to predict the next skeleton
+using past skeleton sequences and a loss function that incorpo-
+rated the range and speed of the predicted skeletons. Pang et
+al. [30] proposed a skeleton transformer to predict future pose
+components in video frames and considered error between
+predicted pose components and corresponding expected values
+as anomaly score. They applied a multi-head self-attention
+module to capture long-range dependencies between arbitrary
+pairwise pose components and the temporal convolutional
+layer to concentrate on local temporal information.
+Challenges: In these methods, it is difficult to choose
+how far in future (or past) the prediction should be made to
+achieve optimum results. This could potentially be determined
+empirically; however, in the absence of a validation set such
+solutions remain elusive. The future prediction-based methods
+can be sensitive to noise in the past data [44]. Any small
+changes in the past can result in significant variation in
+prediction, and not all of these changes signify anomalous
+situations.
+C. Combinations of learning approaches
+In this section, we discuss the existing methods that uti-
+lize a combination of different learning approaches, namely,
+reconstruction and prediction approaches, and reconstruction
+and clustering approaches.
+1) Combination
+of
+reconstruction
+and
+prediction
+ap-
+proaches: Some skeletal video anomaly detection methods
+utilize a multi-objective loss function consisting of both recon-
+struction and prediction errors to learn the characteristics of
+skeletons signifying normal behaviour and identify skeletons
+with large errors as anomalies. Morais et al. [17] proposed a
+method to model the normal human movements in surveillance
+videos using human skeletons and their relative positions
+in the scene. The human skeletons were decomposed into
+two sub-components: global body movement and local body
+posture. The global movement tracked the dynamics of the
+whole body in the scene, while the local posture described the
+skeleton configuration. The two components were passed as
+input to different branches of a message passing GRU single-
+encoder-dual-decoder-based network. The branches processed
+their data separately and interacted via cross-branch message
+passing at each time step. Each branch had an encoder, a
+reconstruction-based decoder and a prediction-based decoder.
+The network was trained using normal data, and during testing,
+a frame-level anomaly score was generated by aggregating
+the anomaly scores of all the skeletons in a frame to identify
+anomalous frames. In order to avoid the inaccuracy caused by
+incorrect detection of skeletons in video frames, the authors
+leave out video frames where the skeletons cannot be estimated
+by the pose estimation algorithm. Hence, the results in this
+work was not a good representation of a real-world scenario,
+which often consists of complex-scenes with occluding objects
+and overlapping movement of people. Boekhoudt et al. [7]
+utilized the network proposed by Morais et al. [17] for de-
+tecting human crime-based anomalies in videos using a newly
+
+5
+proposed crime-based video surveillance dataset. Similar to
+the work by Morais et al. [17], Li and Zhang [31] proposed
+a dual branch single-encoder-dual-decoder GRU network that
+was trained on normal behaviour skeletons estimated from
+pedestrian videos. The two decoders were responsible for
+reconstructing the input skeletons and predicting future skele-
+tons, respectively. However, unlike the work by Morais et al.
+[17], there was no provision of message passing between the
+branches. Li et al. [32] proposed a single-encoder-dual-decoder
+architecture established on a spatio-temporal Graph CAE
+(GCAE) embedded with a LSTM network in hidden layers.
+The two decoders were used to reconstruct the input skeleton
+sequences and predict the unseen future sequences, respec-
+tively, from the latent vectors projected via the encoder. The
+sum of maximum reconstruction and prediction errors among
+all the skeletons within a frame was used as anomaly score for
+detecting anomalous frames. Wu et al. [33] proposed a GCN-
+based encoder-decoder architecture that was trained using
+normal action skeleton graphs and keypoint confidence scores
+as input to detect anomalous human actions in surveillance
+videos. The skeleton graph input was decomposed into global
+and local components. The network consisted of three encoder-
+decoder pipelines: the global pipeline, the local pipeline and
+the confidence score pipeline. The global and local encoder-
+decoder-based pipelines learned to reconstruct and predict the
+global and local components, respectively. The confidence
+score pipeline learned to reconstruct the confidence scores.
+Further, a Support Vector Data Description (SVDD)-based loss
+was employed to learn the boundary of the normal action
+global and local pipeline encoder output in latent feature space.
+The network was trained using a multi-objective loss function,
+composed of a weighted sum of skeleton graph reconstruction
+and prediction losses, confidence score reconstruction loss and
+multi-center SVDD loss.
+2) Combination
+of
+reconstruction
+and
+clustering
+ap-
+proaches: Some skeletal video anomaly detection methods
+utilize a two-stage approach to identify anomalous human
+actions using spatio-temporal skeleton graphs. In the first
+pre-training stage, a GCAE-based model is trained to min-
+imize the reconstruction loss on input skeleton graphs. In
+the second fine-tuning stage, the latent features generated by
+the pre-trained GCAE encoder is fed to a clustering layer
+and a Dirichlet Process Mixture model is used to estimate
+the distribution of the soft assignment of feature vectors
+to clusters. Finally at the test time, the Dirichlet normality
+score is used to identify the anomalous samples. Markovitz
+et al. [34] identified that anomalous actions can be broadly
+classified in two categories, fine and coarse-grained anomalies.
+Fine-grained anomaly detection refers to detecting abnormal
+variations of an action, e.g., abnormal type of walking. Coarse-
+grained anomaly detection refers to defining particular normal
+actions and regarding other actions as abnormal, such as
+determining dancing as normal and gymnastics as abnormal.
+They utilized a spatio-temporal GCAE to map the skeleton
+graphs representing normal actions to a latent space, which
+was soft assigned to clusters using a deep clustering layer. The
+soft-assignment representation abstracted the type of data (fine
+or coarse-grained) from the Dirichlet model. After pre-training
+of GCAE, the latent feature output of the encoder and clusters
+were fine-tuned by minimizing a multi-objective loss function
+consisting of both the reconstruction loss and clustering loss.
+They leveraged ShanghaiTech [45] dataset to test the perfor-
+mance of their proposed method on fine-grained anomalies,
+and NTU-RGB+D [46] and Kinetics-250 [47] datasets for
+coarse-grained anomaly detection performance evaluation. Cui
+et al. [35] proposed a semi-supervised prototype generation-
+based method for video anomaly detection to reduce the
+computational cost associated with graph-embedded networks.
+Skeleton graphs for normal actions were estimated from the
+videos and fed as input to a shift spatio-temporal GCAE to
+generate features. It was not clear which pose estimation algo-
+rithm was used to estimate the skeletons from video frames.
+The generated features were fed to the proposed prototype gen-
+eration module designed to map the features to prototypes and
+update them during the training phase. In the pre-training step,
+the GCAE and prototype generation module were optimized
+using a loss function composed of reconstruction loss and
+generation loss of prototypes. In the fine-tuning step, the entire
+network was fine-tuned using a multi-objective loss function,
+composed of reconstruction loss, prototype generation loss and
+cluster loss. Later, Liu et al. [36] used self-attention augmented
+graph convolutions for detecting abnormal human behaviours
+based on skeleton graphs. Skeleton graphs were fed as input to
+a spatio-temporal self-attention augmented GCAE and latent
+features were extracted from the encoder part of the trained
+GCAE. After pre-training of GCAE, the entire network was
+fine-tuned using a multi-objective loss function consisting of
+both the reconstruction loss and clustering loss.
+Challenges: The combination-based methods can carry
+the limitations of the individual learning approaches, as de-
+scribed in Section II-A and II-B. Further, in the absence of a
+validation set, it is difficult to determine the optimum value
+of combination coefficients in a multi-objective loss function.
+D. Other Approaches
+This section discusses the methods that leveraged a pre-
+trained deep learning model to encode latent features from the
+input skeletons and used approaches such as, clustering and
+multivariate gaussian distribution, in conjunction for detecting
+human action-based anomalies in videos.
+Yang et al. [37] proposed a two-stream fusion method to
+detect anomalies pertaining to body movement and object
+positions. YOLOv3 [48] was used to detect people and objects
+in the video frames. Subsequently, skeletons were estimated
+from the video frames and passed as input to a spatio-temporal
+GCN, followed by a clustering-based fully connected layer to
+generate anomaly scores for skeletons. The information per-
+taining to the bounding box coordinates and confidence score
+of the detected objects was used to generate object anomaly
+scores. Finally, the skeleton and object normality scores were
+combined to generate the final anomaly score for a frame.
+Nanjun et al. [38] used the skeleton features estimated from
+the videos for pedestrian anomaly detection using an iterative
+self-training strategy. The training set consisted of unlabelled
+normal and anomalous video sequences. The skeletons were
+
+6
+decomposed into global and local components, which were fed
+as input to an unsupervised anomaly detector, iForest [49], to
+yield the pseudo anomalous and normal skeleton sets. The
+pseudo sets were used to train an anomaly scoring module,
+consisting of a spatial GCN and fully connected layers with
+a single output unit. As part of the self-training strategy,
+new anomaly scores were generated using previously trained
+anomaly scoring module to update the membership of skeleton
+samples in the skeleton sets. The scoring module was then
+retrained using updated skeleton sets, until the best scoring
+model was obtained. However, the paper doesn’t discuss the
+criteria to decide the best scoring model. Tani and Shibata
+[39] proposed a framework for training a frame-wise Adap-
+tive GCN (AGCN) for action recognition using single frame
+skeletons and used the features extracted from the AGCN to
+train an anomaly detection model. As part of the proposed
+framework, a pretrained action recognition model [50] was
+used to identify the frames with large temporal attention in
+the Kinetics-skeleton dataset [51] as the action frames to train
+the AGCN. Further, the trained AGCN was used to extract
+features from the normal behaviour skeletons identified in the
+ShanghaiTech Campus dataset [17] to model a multivariate
+gaussian distribution. During testing, the Mahalanobis distance
+was used to calculate the anomaly score under the multivariate
+gaussian distribution.
+Challenges: The performance of these methods rely on
+the pre-training strategy of the deep learning models used to
+learn the latent features and the choice of training parameters
+for the subsequent machine learning models.
+III. DISCUSSION
+This section leverages Table I and synthesizes the informa-
+tion and trends that can be inferred from the existing work on
+skeletal video anomaly detection.
+• ShanghaiTech [45] and CUHK Avenue [52] were the
+most frequently used video datasets to evaluate the perfor-
+mance of the skeletal video anomaly detection methods.
+The ShanghaiTech dataset has videos of people walking
+along a sidewalk of the ShanghaiTech university. Anoma-
+lous activities include bikers, skateboarders and people
+fighting. It has 330 training videos and 107 test videos.
+However, not all the anomalous activities are related
+to humans. A subset of the ShanghaiTech dataset that
+contained anomalous activities only related to humans
+was termed as HR ShanghaiTech and was used in many
+papers. The CUHK Avenue dataset consists of short video
+clips looking at the side of a building with pedestrian
+walking by it. Concrete columns that are part of the
+building cause some occlusion. The dataset contains 16
+training videos and 21 testing videos. The anomalous
+events comprise of actions such as “throwing papers”,
+“throwing bag”, “child skipping”, “wrong direction” and
+“bag on grass”. Similarly, a subset of the CUHK Avenue
+dataset containing anomalous activities only related to
+humans, called HR Avenue, has been used to evaluate
+the methods. Other video datasets that have been used
+include UTD-MHAD [53], UMN [54], UCSD Pedestrian
+[6], IITB-Corridor [27], HR Crime [7], NTU-RGB+D
+[46], and Kinetics-250 [47]. From the type of anomalies
+present in these datasets, it can be inferred that the
+existing skeletal video anomaly detection methods have
+been evaluated mostly on individual human action-based
+anomalies. Hence, it is not clear how well can they
+detect anomalies that involve interactions among multiple
+individuals or interaction among people and objects.
+• Most of the papers (19 out of 21), detected anomalous
+human actions for multiple people in the video scene.
+The usual approach was to estimate the skeletons for the
+people in the scene using a pose estimation algorithm,
+and calculate anomaly scores for each of the skeletons.
+The maximum anomaly score among all the skeletons
+within a frame was used to identify the anomalous
+frames. A single video frame could contain multiple
+people, among which not all of them were performing
+anomalous actions. Hence, taking the maximum anomaly
+score of all the skeletons helped to nullify the effect of
+people with normal actions on the final decision for the
+frame. Further, calculating anomaly scores for individual
+skeletons helped to localize the source of anomaly within
+a frame.
+• The definition of anomalous human behaviours can differ
+across applications. While most of the existing papers
+focused on detecting anomalous human behaviours in
+general, four papers focused on detecting anomalous be-
+haviours for specific applications, that is, drunk walking
+[23], poor body movements in children [24], abnormal
+pedestrian behaviours at grade crossings [25] and crime-
+based anomalies [7]. Further, the nature of anomalous
+behaviours can vary depending upon various factors,
+like span of time, crowded scenes, and specific action-
+based anomalies. Some papers identified and addressed
+the need to detect specific types of anomalies, namely,
+multi-timescale anomalies occurring over different time
+duration [27], anomalies in both sparse and crowded
+scenes [28], fine and coarse-grained anomalies [34] and
+body movement and object position anomalies [37].
+• Alphapose [15] and Openpose [55] were the most com-
+mon choice of pose estimation algorithm for extraction
+of skeletons for the people in the scene. Other pose
+estimation methods that have been used were Posenet
+[56] and HRNet [57]. However, in general, the papers
+did not provide any rationale behind their choice of the
+pose estimation algorithm.
+• The type of models used in the papers can broadly
+be divided into two types, sequence-based and graph-
+based models. The sequence-based models that have
+been used include 1DConv-AE, LSTM-AE, GRU, and
+Transformer. These models treated skeleton keypoints for
+individual people across multiple frames as time series
+input. The graph-based models that have been used in-
+volve GCAE and GCN. The graph-based models received
+spatio-temporal skeleton graphs for individual people as
+input. The spatio-temporal graphs were constructed by
+considering body joints as the nodes of the graph. The
+spatial edges connected different joints of a skeleton, and
+
+7
+temporal edges connected the same joints across time.
+• Area Under Curve (AUC) of Receiver Operating Charac-
+teristic (ROC) curve was the most common metric used
+to evaluate the performance among the existing skeletal
+video anomaly detection methods. Other performance
+evaluation metrics include F score, accuracy, Equal Error
+Rate (EER) and AUC of Precision-Recall (PR) Curve.
+EER signifies the percentage of misclassified frames
+when the false positive rate equals to the miss rate on
+the ROC curve. While AUC(ROC) can provide a good
+estimate of the classifier’s performance over different
+thresholds, it can be misleading in case the data is
+imbalanced [58]. In anomaly detection scenario, it is
+common to have imbalance in the test data, as the anoma-
+lous behaviours occur infrequently, particularly in many
+medical applications [59], [60]. The AUC(PR) value
+provides a good estimate of the classifier’s performance
+on imbalanced datasets [58]; however, only one of the
+papers used AUC(PR) as an evaluation metric.
+• The highest AUC(ROC) values reported for the Shang-
+haiTech [45] and CUHK Avenue [52] datasets across
+different methods in Table I were 0.83 and 0.92, re-
+spectively. A direct comparison may not be possible due
+to the difference in the experimental setup and train-
+test splits across the reviewed methods; however, it gives
+some confidence on the viability of these approaches for
+skeletal video anomaly detection.
+IV. CHALLENGES AND FUTURE DIRECTIONS
+In general, the efficiency of the skeletal video anomaly
+detection algorithms depends upon the accuracy of the skele-
+tons estimated by the pose-estimation algorithm. If the pose
+estimation algorithm misses certain joints or produces ar-
+tifacts in the scene, then it can increase the number of
+false alarms. There are various challenges associated with
+estimating skeletons from video frames [61]: (i) complex
+body configuration causing self-occlusions and complex poses,
+(ii) diverse appearance, including clothing, and (iii) complex
+environment with occlusion from other people in the scene,
+various viewing angles, distance from camera and trunca-
+tion of parts in the camera view. This can lead to a poor
+approximation of skeletons and can negatively impact the
+performance of the anomaly detection algorithms. Methods
+have been proposed to address some of these challenges [62],
+[63]; however, extracting skeletons in complex environments
+remains a difficult problem. Some of the existing methods
+manually remove inaccurate and false skeletons [17], [25]
+to train the model, which is impractical in many real-world
+applications where the amount of available data is very large.
+There is a need of an automated false skeleton identification
+and removal step, when estimating skeletons from videos.
+The skeletons collected using Microsoft Kinect (depth)
+camera has been used in the past studies [64], [65]. However,
+the defunct production of the Microsoft Kinect camera [66]
+has lead to hardware constraints in the further development
+of skeletal anomaly detection approaches. Other commer-
+cial products include Vicon [67] with optical sensors and
+TheCaptury [68] with multiple cameras. But they function
+in very constrained environments or require special markers
+on the human body. New cameras, such as ‘Sentinare 2’
+from AltumView [69], circumvent such hardware requirements
+by directly processing videos on regular RGB cameras and
+transmitting skeletons information in real-time. The exist-
+ing approaches for skeletal video anomaly detection involve
+spatio-temporal skeleton graphs [16] or temporal sequences
+[17], which are constructed by tracking an individual across
+multiple frames. However, this is challenging in scenarios
+where there are multiple people within a scene. The entry
+and exit of people in the scene, overlapping of people during
+movement and presence of occluding objects make tracking
+people across frames a very challenging task. There can be
+deployment issues in these methods because the choice of
+threshold is not clear. In the absence of any validation set
+(containing both normal and unseen anomalies) in an anomaly
+detection setting, it is very hard to fine-tune an operating
+threshold using just the training data (comprising of normal
+activities only). To handle these situations, outliers within the
+normal activities can be used as a proxy for unseen anomalies
+[70]; however, inappropriate choices can lead to increased false
+alarms or missed alarms. Domain expertise can be utilized to
+adjust a threshold, which may not be available in many cases.
+The anomalous human behaviours of interest and their
+difficulty of detection can vary depending upon the definition
+of anomaly, application, time span of the anomalous actions,
+and presence of single/multiple people in the scenes. For
+example, in the case of driver anomaly detection application,
+the anomalous behaviours can include talking on the phone,
+dozing off or drinking [14]. The anomalous actions can span
+over different time lengths, ranging from few seconds to hours
+or days, e.g., jumping and falls [70] are short-term anomalies,
+while loitering and social isolation [71] are long-term events.
+More focus is needed on developing methods that can identify
+both short and long-term anomalies.
+Sparse scene anomalies can be described as anomalies
+in scenes with less number of humans, while dense scene
+anomalies can be described as anomalies in crowded scenes
+with large number of humans [28]. It is comparatively difficult
+to identify anomalous behaviours in dense scenes than sparse
+scenes due to tracking multiple people and finding their
+individual anomaly scores [17]. Thus, there is a need to
+develop methods that can effectively identify both sparse and
+dense scene anomalies. Further, there is a need to address the
+challenges associated with the granularity and the decision
+making time of the skeletal video anomaly detection methods
+for real time applications. The existing methods mostly output
+decision on a frame level, which becomes an issue when the
+input to the method is a real-time continuous video stream
+at multiple frames per second. This can lead to alarms going
+off multiple times a second, which can be counter-productive.
+One solution is for the methods to make decisions on a time-
+window basis, each window of length of a specified duration.
+However, this brings in the question about the optimal length
+of each decision window. A short window is impractical as
+it can lead to frequent and repetitive alarms, while a long
+window can lead to missed alarms, and delayed response
+
+8
+and intervention. Domain knowledge can be used to make a
+decision about the length of decision windows.
+Skeletons can be used in conjunction with optical flow
+[72] to develop privacy-protecting approaches to jointly learn
+from temporal and structural modalities. Approaches based
+on federated learning (that do not combine individual data,
+but only the models) can further improve the privacy of these
+methods [73]. Segmentation masks [74] can be leveraged in
+conjunction with skeletons to occlude humans while capturing
+the information pertaining to scene and human motion to
+develop privacy-protecting anomaly detection approaches.
+The skeletons signify motion and posture information for
+the individual humans in the video; however, they lack in-
+formation regarding human-human and human-object interac-
+tions. Information pertaining to interaction of the people with
+each other and the objects in the environment is important for
+applications such as, violence detection [7], theft detection [7]
+and agitation detection [60] in care home settings. Skeletons
+can be used to replace the bodies of the participants, while
+keeping the background information in video frames [75]
+to analyze both human-human and human-object interaction
+anomalies. Further, object bounding boxes can be used in
+conjunction with human skeletons to model human-object in-
+teraction while preserving the privacy of humans in the scene.
+The information from other modalities (e.g. wearable devices)
+along with skeleton features can be used to develop multi-
+modal anomaly detection methods to improve the detection
+performance.
+As can be seen in Table I, the existing skeletal video
+anomaly detection methods and available datasets focus to-
+wards detecting irregular body postures [16], and anomalous
+human actions [30] in mostly outdoor settings, and not in
+proper healthcare settings, such as personal homes and long-
+term care homes. This a gap towards real world deployment,
+as there is a need to extend the scope of detecting anomalous
+behaviours using skeletons to in-home and care home settings,
+where privacy is a very important concern. This can be utilized
+to address important applications, such as fall detection [76],
+agitation detection [60], [75], and independent assistive living.
+This will help to develop supportive homes and communi-
+ties and encourage autonomy and independence among the
+increasing older population and dementia residents in care
+homes. While leveraging skeletons helps to get rid of facial
+identity and appearance-based information, it is important to
+ask the question if skeletons can be considered private enough
+[77], [78] and what steps can be taken to further anonymize
+the skeletons.
+V. CONCLUSION
+In this paper, we provided a survey of recent works that
+leverage the skeletons or body joints estimated from videos
+for the anomaly detection task. The skeletons hide the facial
+identity and overall appearance of people and can provide
+vital information about joint angles [79], speed of walking
+[80], and interaction with other people in the scene [17].
+Our literature review showed that many deep learning-based
+approaches leverage reconstruction, prediction error and their
+other combinations to successfully detect anomalies in a
+privacy protecting manner. This review suggests the first
+steps towards increasing adoption of devices (and algorithms)
+focused on improving privacy in a residential or communal
+setting. It will further improve the deployment of anomaly
+detection systems to improve the safety and care of people.
+The skeleton-based anomaly detection methods can be used to
+design privacy-preserving technologies for the assisted living
+of older adults in a care environment [81] or enable older
+adults to live independently in their own homes to cope with
+the increasing cost of long-term care demands [82]. Privacy-
+preserving methods using skeleton features can be employed
+to assist with skeleton-based rehab exercise monitoring [83]
+or in social robots for robot-human interaction [84] that assist
+older people in their activities of daily living.
+VI. ACKNOWLEDGEMENTS
+This work was supported by AGE-WELL NCE Inc,
+Alzheimer’s Association, Natural Sciences and Engineering
+Research Council and UAE Strategic Research Grant.
+REFERENCES
+[1] S. S. Khan and M. G. Madden, “One-class classification: taxonomy of
+study and review of techniques,” The Knowledge Engineering Review,
+vol. 29, no. 3, pp. 345–374, 2014.
+[2] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
+ACM computing surveys (CSUR), vol. 41, no. 3, pp. 1–58, 2009.
+[3] C. Gautam, P. K. Mishra, A. Tiwari, B. Richhariya, H. M. Pandey,
+S. Wang, M. Tanveer, A. D. N. Initiative et al., “Minimum variance-
+embedded deep kernel regularized least squares method for one-class
+classification and its applications to biomedical data,” Neural Networks,
+vol. 123, pp. 191–216, 2020.
+[4] P. K. Mishra, C. Gautam, and A. Tiwari, “Minimum variance embedded
+auto-associative kernel extreme learning machine for one-class classifi-
+cation,” Neural Computing and Applications, vol. 33, no. 19, pp. 12 973–
+12 987, 2021.
+[5] J. Nogas, S. S. Khan, and A. Mihailidis, “Deepfall: Non-invasive
+fall detection with deep spatio-temporal convolutional autoencoders,”
+Journal of Healthcare Informatics Research, vol. 4, no. 1, pp. 50–70,
+2020.
+[6] W. Li, V. Mahadevan, and N. Vasconcelos, “Anomaly detection and
+localization in crowded scenes,” IEEE transactions on pattern analysis
+and machine intelligence, vol. 36, no. 1, pp. 18–32, 2013.
+[7] K. Boekhoudt, A. Matei, M. Aghaei, and E. Talavera, “Hr-crime:
+Human-related anomaly detection in surveillance videos,” in Inter-
+national Conference on Computer Analysis of Images and Patterns.
+Springer, 2021, pp. 164–174.
+[8] A. Senior, Protecting privacy in video surveillance.
+Springer, 2009,
+vol. 1.
+[9] P. Climent-P´erez and F. Florez-Revuelta, “Protection of visual privacy
+in videos acquired with rgb cameras for active and assisted living
+applications,” Multimedia Tools and Applications, vol. 80, no. 15, pp.
+23 649–23 664, 2021.
+[10] B. Ye, S. S. Khan, B. Chikhaoui, A. Iaboni, L. S. Martin, K. Newman,
+A. Wang, and A. Mihailidis, “Challenges in collecting big data in a
+clinical environment with vulnerable population: Lessons learned from
+a study using a multi-modal sensors platform,” Science and engineering
+ethics, vol. 25, no. 5, pp. 1447–1466, 2019.
+[11] P. Schneider, J. Rambach, B. Mirbach, and D. Stricker, “Unsupervised
+anomaly detection from time-of-flight depth images,” in Proceedings of
+the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
+2022, pp. 231–240.
+[12] V. Mehta, A. Dhall, S. Pal, and S. S. Khan, “Motion and region aware
+adversarial learning for fall detection with thermal imaging,” in 2020
+25th International Conference on Pattern Recognition (ICPR).
+IEEE,
+2021, pp. 6321–6328.
+[13] S. Denkovski, S. S. Khan, B. Malamis, S. Y. Moon, B. Ye, and
+A. Mihailidis, “Multi visual modality fall detection dataset,” IEEE
+Access, vol. 10, pp. 106 422–106 435, 2022.
+
+9
+[14] O. Kopuklu, J. Zheng, H. Xu, and G. Rigoll, “Driver anomaly detection:
+A dataset and contrastive learning approach,” in Proceedings of the
+IEEE/CVF Winter Conference on Applications of Computer Vision,
+2021, pp. 91–100.
+[15] H.-S. Fang, S. Xie, Y.-W. Tai, and C. Lu, “Rmpe: Regional multi-person
+pose estimation,” in Proceedings of the IEEE international conference
+on computer vision, 2017, pp. 2334–2343.
+[16] W. Luo, W. Liu, and S. Gao, “Normal graph: Spatial temporal graph
+convolutional networks based prediction network for skeleton based
+video anomaly detection,” Neurocomputing, vol. 444, pp. 332–337,
+2021.
+[17] R. Morais, V. Le, T. Tran, B. Saha, M. Mansour, and S. Venkatesh,
+“Learning regularity in skeleton trajectories for anomaly detection in
+videos,” in Proceedings of the IEEE/CVF conference on computer vision
+and pattern recognition, 2019, pp. 11 996–12 004.
+[18] A. Dhall, O. Ramana Murthy, R. Goecke, J. Joshi, and T. Gedeon, “Video
+and image based emotion recognition challenges in the wild: Emotiw
+2015,” in Proceedings of the 2015 ACM on international conference on
+multimodal interaction, 2015, pp. 423–426.
+[19] B. Taati, S. Zhao, A. B. Ashraf, A. Asgarian, M. E. Browne, K. M.
+Prkachin, A. Mihailidis, and T. Hadjistavropoulos, “Algorithmic bias in
+clinical populations—evaluating and improving facial analysis technol-
+ogy in older adults with dementia,” IEEE Access, vol. 7, pp. 25 527–
+25 534, 2019.
+[20] G. Menchetti, Z. Chen, D. J. Wilkie, R. Ansari, Y. Yardimci, and A. E.
+C¸ etin, “Pain detection from facial videos using two-stage deep learning,”
+in 2019 IEEE Global Conference on Signal and Information Processing
+(GlobalSIP).
+IEEE, 2019, pp. 1–5.
+[21] X. Chen, J. Cheng, R. Song, Y. Liu, R. Ward, and Z. J. Wang, “Video-
+based heart rate measurement: Recent advances and future prospects,”
+IEEE Transactions on Instrumentation and Measurement, vol. 68, no. 10,
+pp. 3600–3615, 2018.
+[22] T. Gatt, D. Seychell, and A. Dingli, “Detecting human abnormal
+behaviour through a video generated model,” in 2019 11th International
+Symposium on Image and Signal Processing and Analysis (ISPA). IEEE,
+2019, pp. 264–270.
+[23] O. Temuroglu, Y. Kawanishi, D. Deguchi, T. Hirayama, I. Ide,
+H. Murase, M. Iwasaki, and A. Tsukada, “Occlusion-aware skeleton
+trajectory representation for abnormal behavior detection,” in Interna-
+tional Workshop on Frontiers of Computer Vision.
+Springer, 2020, pp.
+108–121.
+[24] S. Suzuki, Y. Amemiya, and M. Sato, “Skeleton-based visualization
+of poor body movements in a child’s gross-motor assessment using
+convolutional auto-encoder,” in 2021 IEEE International Conference on
+Mechatronics (ICM).
+IEEE, 2021, pp. 1–6.
+[25] Z. Jiang, G. Song, Y. Qian, and Y. Wang, “A deep learning framework
+for detecting and localizing abnormal pedestrian behaviors at grade
+crossings,” Neural Computing and Applications, pp. 1–15, 2022.
+[26] Z. Fan, S. Yi, D. Wu, Y. Song, M. Cui, and Z. Liu, “Video anomaly
+detection using cyclegan based on skeleton features,” Journal of Visual
+Communication and Image Representation, vol. 85, p. 103508, 2022.
+[27] R. Rodrigues, N. Bhargava, R. Velmurugan, and S. Chaudhuri, “Multi-
+timescale trajectory prediction for abnormal human activity detection,”
+in Proceedings of the IEEE/CVF Winter Conference on Applications of
+Computer Vision, 2020, pp. 2626–2634.
+[28] X. Zeng, Y. Jiang, W. Ding, H. Li, Y. Hao, and Z. Qiu, “A hierarchical
+spatio-temporal graph convolutional neural network for anomaly detec-
+tion in videos,” IEEE Transactions on Circuits and Systems for Video
+Technology, pp. 1–1, 2021.
+[29] B. Fan, P. Li, S. Jin, and Z. Wang, “Anomaly detection based on pose
+estimation and gru-ffn,” in 2021 IEEE Sustainable Power and Energy
+Conference (iSPEC).
+IEEE, 2021, pp. 3821–3825.
+[30] W. Pang, Q. He, and Y. Li, “Predicting skeleton trajectories using a
+skeleton-transformer for video anomaly detection,” Multimedia Systems,
+pp. 1–14, 2022.
+[31] Y. Li and Z. Zhang, “Video abnormal behavior detection based on human
+skeletal information and gru,” in International Conference on Intelligent
+Robotics and Applications.
+Springer, 2022, pp. 450–458.
+[32] N. Li, F. Chang, and C. Liu, “Human-related anomalous event detection
+via spatial-temporal graph convolutional autoencoder with embedded
+long short-term memory network,” Neurocomputing, 2021.
+[33] T.-H. Wu, C.-L. Yang, L.-L. Chiu, T.-W. Wang, G. J. Faure, and S.-H.
+Lai, “Confidence-aware anomaly detection in human actions,” in Asian
+Conference on Pattern Recognition.
+Springer, 2022, pp. 240–254.
+[34] A. Markovitz, G. Sharir, I. Friedman, L. Zelnik-Manor, and S. Avidan,
+“Graph embedded pose clustering for anomaly detection,” in Proceed-
+ings of the IEEE/CVF Conference on Computer Vision and Pattern
+Recognition, 2020, pp. 10 539–10 547.
+[35] T. Cui, W. Song, G. An, and Q. Ruan, “Prototype generation based shift
+graph convolutional network for semi-supervised anomaly detection,” in
+Chinese Conference on Image and Graphics Technologies.
+Springer,
+2021, pp. 159–169.
+[36] C. Liu, R. Fu, Y. Li, Y. Gao, L. Shi, and W. Li, “A self-attention
+augmented graph convolutional clustering networks for skeleton-based
+video anomaly behavior detection,” Applied Sciences, vol. 12, no. 1,
+p. 4, 2022.
+[37] Y. Yang, Z. Fu, and S. M. Naqvi, “A two-stream information fusion
+approach to abnormal event detection in video,” in ICASSP 2022-
+2022 IEEE International Conference on Acoustics, Speech and Signal
+Processing (ICASSP).
+IEEE, 2022, pp. 5787–5791.
+[38] N. Li, F. Chang, and C. Liu, “A self-trained spatial graph convolutional
+network for unsupervised human-related anomalous event detection in
+complex scenes,” IEEE Transactions on Cognitive and Developmental
+Systems, 2022.
+[39] H. Tani and T. Shibata, “Frame-wise action recognition training frame-
+work for skeleton-based anomaly behavior detection,” in International
+Conference on Image Analysis and Processing.
+Springer, 2022, pp.
+312–323.
+[40] L. Song, G. Yu, J. Yuan, and Z. Liu, “Human pose estimation and
+its application to action recognition: A survey,” Journal of Visual
+Communication and Image Representation, vol. 76, p. 103055, 2021.
+[41] A. Badiola-Bengoa and A. Mendez-Zorrilla, “A systematic review of the
+application of camera-based human pose estimation in the field of sport
+and physical exercise,” Sensors, vol. 21, no. 18, p. 5996, 2021.
+[42] S. Suzuki, Y. Amemiya, and M. Sato, “Enhancement of child gross-
+motor action recognition by motional time-series images conversion,” in
+2020 IEEE/SICE International Symposium on System Integration (SII).
+IEEE, 2020, pp. 225–230.
+[43] D. Gong, L. Liu, V. Le, B. Saha, M. R. Mansour, S. Venkatesh, and
+A. v. d. Hengel, “Memorizing normality to detect anomaly: Memory-
+augmented deep autoencoder for unsupervised anomaly detection,” in
+Proceedings of the IEEE/CVF International Conference on Computer
+Vision, 2019, pp. 1705–1714.
+[44] Y. Tang, L. Zhao, S. Zhang, C. Gong, G. Li, and J. Yang, “Integrating
+prediction and reconstruction for anomaly detection,” Pattern Recogni-
+tion Letters, vol. 129, pp. 123–130, 2020.
+[45] W. Luo, W. Liu, and S. Gao, “A revisit of sparse coding based anomaly
+detection in stacked rnn framework,” in Proceedings of the IEEE
+international conference on computer vision, 2017, pp. 341–349.
+[46] A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang, “Ntu rgb+ d: A large
+scale dataset for 3d human activity analysis,” in Proceedings of the
+IEEE conference on computer vision and pattern recognition, 2016, pp.
+1010–1019.
+[47] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijaya-
+narasimhan, F. Viola, T. Green, T. Back, P. Natsev et al., “The kinetics
+human action video dataset,” arXiv preprint arXiv:1705.06950, 2017.
+[48] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
+arXiv preprint arXiv:1804.02767, 2018.
+[49] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation-based anomaly
+detection,” ACM Transactions on Knowledge Discovery from Data
+(TKDD), vol. 6, no. 1, pp. 1–39, 2012.
+[50] L. Shi, Y. Zhang, J. Cheng, and H. Lu, “Two-stream adaptive graph
+convolutional networks for skeleton-based action recognition,” in Pro-
+ceedings of the IEEE/CVF conference on computer vision and pattern
+recognition, 2019, pp. 12 026–12 035.
+[51] S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolutional
+networks for skeleton-based action recognition,” in Thirty-second AAAI
+conference on artificial intelligence, 2018.
+[52] C. Lu, J. Shi, and J. Jia, “Abnormal event detection at 150 fps in matlab,”
+in Proceedings of the IEEE international conference on computer vision,
+2013, pp. 2720–2727.
+[53] C. Chen, R. Jafari, and N. Kehtarnavaz, “Utd-mhad: A multimodal
+dataset for human action recognition utilizing a depth camera and a
+wearable inertial sensor,” in 2015 IEEE International conference on
+image processing (ICIP).
+IEEE, 2015, pp. 168–172.
+[54] “Umn,” http://mha.cs.umn.edu/proj events.shtml.
+[55] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person 2d
+pose estimation using part affinity fields,” in Proceedings of the IEEE
+conference on computer vision and pattern recognition, 2017, pp. 7291–
+7299.
+[56] G. Papandreou, T. Zhu, N. Kanazawa, A. Toshev, J. Tompson, C. Bregler,
+and K. Murphy, “Towards accurate multi-person pose estimation in the
+
+10
+wild,” in Proceedings of the IEEE conference on computer vision and
+pattern recognition, 2017, pp. 4903–4911.
+[57] K. Sun, B. Xiao, D. Liu, and J. Wang, “Deep high-resolution repre-
+sentation learning for human pose estimation,” in Proceedings of the
+IEEE/CVF conference on computer vision and pattern recognition, 2019,
+pp. 5693–5703.
+[58] T. Saito and M. Rehmsmeier, “The precision-recall plot is more informa-
+tive than the roc plot when evaluating binary classifiers on imbalanced
+datasets,” PloS one, vol. 10, no. 3, p. e0118432, 2015.
+[59] Y. M. Galv˜ao, L. Portela, J. Ferreira, P. Barros, O. A. D. A. Fagundes,
+and B. J. Fernandes, “A framework for anomaly identification applied
+on fall detection,” IEEE Access, vol. 9, pp. 77 264–77 274, 2021.
+[60] S. S. Khan, P. K. Mishra, N. Javed, B. Ye, K. Newman, A. Mihailidis,
+and A. Iaboni, “Unsupervised deep learning to detect agitation from
+videos in people with dementia,” IEEE Access, vol. 10, pp. 10 349–
+10 358, 2022.
+[61] Y. Chen, Y. Tian, and M. He, “Monocular human pose estimation: A
+survey of deep learning-based methods,” Computer Vision and Image
+Understanding, vol. 192, p. 102897, 2020.
+[62] Y. Cheng, B. Yang, B. Wang, W. Yan, and R. T. Tan, “Occlusion-aware
+networks for 3d human pose estimation in video,” in Proceedings of
+the IEEE/CVF International Conference on Computer Vision, 2019, pp.
+723–732.
+[63] S. Gong, T. Xiang, and S. Hongeng, “Learning human pose in crowd,”
+in Proceedings of the 1st ACM international workshop on Multimodal
+pervasive video analysis, 2010, pp. 47–52.
+[64] T.-N. Nguyen, H.-H. Huynh, and J. Meunier, “Skeleton-based abnormal
+gait detection,” Sensors, vol. 16, no. 11, p. 1792, 2016.
+[65] R. Baptista, G. Demisse, D. Aouada, and B. Ottersten, “Deformation-
+based abnormal motion detection using 3d skeletons,” in 2018 Eighth
+International Conference on Image Processing Theory, Tools and Ap-
+plications (IPTA).
+IEEE, 2018, pp. 1–6.
+[66] T. Warren, “Microsoft kills off Kinect, stops manufacturing it,”
+https://www.theverge.com/2017/10/25/16542870/microsoft-kinect-dead-
+stop-manufacturing, 2017, [Online; accessed 23-February-2022].
+[67] “Vicon,” https://www.vicon.com/, 2019.
+[68] “Thecaptury,” https://thecaptury.com/, 2019.
+[69] AltumView, “Sentinare 2,” https://altumview.ca/, 2022, [Online; accessed
+24-February-2022].
+[70] S. S. Khan, M. E. Karg, D. Kuli´c, and J. Hoey, “Detecting falls with
+x-factor hidden markov models,” Applied Soft Computing, vol. 55, pp.
+168–177, 2017.
+[71] S. A. Boamah, R. Weldrick, T.-S. J. Lee, and N. Taylor, “Social isolation
+among older adults in long-term care: A scoping review,” Journal of
+Aging and Health, vol. 33, no. 7-8, pp. 618–632, 2021.
+[72] E. Duman and O. A. Erdem, “Anomaly detection in videos using optical
+flow and convolutional autoencoder,” IEEE Access, vol. 7, pp. 183 914–
+183 923, 2019.
+[73] A. Abedi and S. S. Khan, “Fedsl: Federated split learning on dis-
+tributed sequential data in recurrent neural networks,” arXiv preprint
+arXiv:2011.03180, 2020.
+[74] J. Yan, F. Angelini, and S. M. Naqvi, “Image segmentation based
+privacy-preserving human action recognition for anomaly detection,” in
+ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech
+and Signal Processing (ICASSP).
+IEEE, 2020, pp. 8931–8935.
+[75] P. K. Mishra, A. Iaboni, B. Ye, K. Newman, A. Mihailidis, and S. S.
+Khan, “Privacy-protecting behaviours of risk detection in people with
+dementia using videos,” arXiv preprint arXiv:2212.10682, 2022.
+[76] W. Feng, R. Liu, and M. Zhu, “Fall detection for elderly person care in a
+vision-based home surveillance environment using a monocular camera,”
+signal, image and video processing, vol. 8, no. 6, pp. 1129–1138, 2014.
+[77] H. Wang and L. Wang, “Learning content and style: Joint action
+recognition and person identification from human skeletons,” Pattern
+Recognition, vol. 81, pp. 23–35, 2018.
+[78] R. Liao, S. Yu, W. An, and Y. Huang, “A model-based gait recognition
+method with body pose and human prior knowledge,” Pattern Recogni-
+tion, vol. 98, p. 107069, 2020.
+[79] Q. Guo and S. S. Khan, “Exercise-specific feature extraction approach
+for assessing physical rehabilitation,” in 4th IJCAI Workshop on AI for
+Aging, Rehabilitation and Intelligent Assisted Living.
+IJCAI, 2021.
+[80] J. Kovaˇc and P. Peer, “Human skeleton model based dynamic features
+for walking speed invariant gait recognition,” Mathematical Problems in
+Engineering, vol. 2014, 2014.
+[81] A. A. Chaaraoui, P. Climent-P´erez, and F. Fl´orez-Revuelta, “A review
+on vision techniques applied to human behaviour analysis for ambient-
+assisted living,” Expert Systems with Applications, vol. 39, no. 12, pp.
+10 873–10 888, 2012.
+[82] Y. Hbali, S. Hbali, L. Ballihi, and M. Sadgal, “Skeleton-based human
+activity recognition for elderly monitoring systems,” IET Computer
+Vision, vol. 12, no. 1, pp. 16–26, 2018.
+[83] ˇS. Obdrˇz´alek, G. Kurillo, F. Ofli, R. Bajcsy, E. Seto, H. Jimison, and
+M. Pavel, “Accuracy and robustness of kinect pose estimation in the
+context of coaching of elderly population,” in 2012 Annual International
+Conference of the IEEE Engineering in Medicine and Biology Society.
+IEEE, 2012, pp. 1188–1193.
+[84] M. Garcia-Salguero, J. Gonzalez-Jimenez, and F.-A. Moreno, “Human
+3d pose estimation with a tilting camera for social mobile robot
+interaction,” Sensors, vol. 19, no. 22, p. 4943, 2019.
+Pratik K. Mishra obtained his Masters in Computer
+Science and Engineering from the Indian Institute
+of Technology (IIT) Indore, India, in 2020. He
+is currently pursuing his Ph.D. from the Institute
+of Biomedical Engineering, University of Toronto
+(UofT). He is currently working towards the appli-
+cation of computer vision for detecting behaviours of
+risk in people with dementia. Previously, he worked
+as a research volunteer at the Toronto Rehabilitation
+Institute, Canada and as a Data Management Support
+Specialist at IBM India Private Limited.
+Alex Mihailidis , PhD, PEng, is the Barbara G.
+Stymiest Research Chair in Rehabilitation Technol-
+ogy at KITE Research Institute at University Health
+Network/University of Toronto. He is the Scientific
+Director of the AGE-WELL Network of Centres of
+Excellence, which focuses on the development of
+new technologies and services for older adults. He
+is a Professor in the Department of Occupational
+Science and Occupational Therapy and in the In-
+stitute of Biomedical Engineering at the University
+of Toronto (U of T), as well as holds a cross
+appointment in the Department of Computer Science at the U of T.
+Mihailidis is very active in the rehabilitation engineering profession and
+is the Immediate Past President for the Rehabilitation Engineering and
+Assistive Technology Society for North America (RESNA) and was named a
+Fellow of RESNA in 2014, which is one of the highest honours within this
+field of research and practice. His research disciplines include biomedical
+and biochemical engineering, computer science, geriatrics and occupational
+therapy. Alex is an internationally recognized researcher in the field of
+technology and aging. He has published over 150 journal and conference
+papers in this field and co-edited two books: Pervasive computing in healthcare
+and Technology and Aging.
+Shehroz S. Khan obtained his B.Sc Engineering,
+Masters and Phd degrees in computer science in
+1997, 2010 and 2016. He is currently working as a
+Scientist at KITE – Toronto Rehabilitation Institute
+(TRI), University Health Network, Canada. He is
+also cross appointed as an Assistant Professor at the
+Institute of Biomedical Engineering, University of
+Toronto (UofT). Previously, he worked as a post-
+doctoral researcher at the UofT and TRI. Prior to
+joining academics, he worked in various scientific
+and researcher roles in the industry and government
+jobs. He is an associate editor of the Journal of Rehabilitation and Assistive
+Technologies. He has organized four editions of the peer-reviewed workshop
+on AI in Aging, Rehabilitation and Intelligent Assisted Living held with
+top AI conferences (ICDM and IJCAI) from 2017-2021. His research is
+funded through several granting agencies in Canada and abroad, including
+NSERC, CIHR, AGEWELL, SSHRC, CABHI, AMS Healthcare, JP Bickell
+Foundation, United Arab Emirates University and LG Electronics. He has
+published 49 peer-reviewed research papers and his research focus is the
+development of AI algorithms for solving aging related health problems.
+
diff --git a/LdAyT4oBgHgl3EQfTvfu/content/tmp_files/load_file.txt b/LdAyT4oBgHgl3EQfTvfu/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..03153d53a2184cccf45d530f715ea608affb75bc
--- /dev/null
+++ b/LdAyT4oBgHgl3EQfTvfu/content/tmp_files/load_file.txt
@@ -0,0 +1,1064 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf,len=1063
+page_content='1 Skeletal Video Anomaly Detection using Deep Learning: Survey, Challenges and Future Directions Pratik K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Mishra, Alex Mihailidis, Shehroz S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Khan Abstract—The existing methods for video anomaly detec- tion mostly utilize videos containing identifiable facial and appearance-based features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The use of videos with identifiable faces raises privacy concerns, especially when used in a hospital or community-based setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Appearance-based features can also be sensitive to pixel-based noise, straining the anomaly detection methods to model the changes in the background and making it difficult to focus on the actions of humans in the foreground.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Structural information in the form of skeletons describing the human motion in the videos is privacy-protecting and can over- come some of the problems posed by appearance-based features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' In this paper, we present a survey of privacy-protecting deep learning anomaly detection methods using skeletons extracted from videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' We present a novel taxonomy of algorithms based on the various learning approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' We conclude that skeleton-based approaches for anomaly detection can be a plausible privacy- protecting alternative for video anomaly detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Lastly, we identify major open research questions and provide guidelines to address them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Index Terms—skeleton, body joint, human pose, anomaly detection, video.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' INTRODUCTION Anomalous events pertain to unusual or abnormal actions, behaviours or situations that can lead to health, safety and economical risks [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Anomalous events, by definition, are largely unseen and not much is known about them in advance [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Due to their rarity, diversity and infrequency, collecting labeled data for anomalous events can be very difficult or costly [1], [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' With the lack of predetermined classes and a few labelled data for anomalous events, it can be very hard to train supervised machine learning models [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Therefore, a general approach in majority of anomaly detection algorithms is to train a model that can best represent the ’normal’ events or actions, and any deviations from it can be flagged as an unseen anomaly [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Anomalous behaviours among humans can be attributed at an individual level (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=', falls [5]) or multiple people in a scene (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=', pedestrian crossing [6], violence in a crowded mall [7]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' In the context of video- based anomaly detection, the general approach is to train a model to learn the patterns of actions or behaviours of individual(s), background and other semantic information in the normal activities videos, and identify significant deviations in the test videos as anomalies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' However, anomaly detection is a challenging task due to the lack of labels and often times the unclear definition of an anomaly [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Pratik K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Mishra, Alex Mihailidis, and Shehroz S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Khan are with the Institute of Biomedical Engineering, University of Toronto, Toronto, Canada, and also with the KITE – Toronto Rehabilitation Institute, University Health Network, Toronto, Canada (e-mail: pratik.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='mishra@mail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='utoronto.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='ca;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' alex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='mihailidis@utoronto.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='ca;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' shehroz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='khan@uhn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='ca).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The majority of video-based anomaly detection approaches use RGB videos where the people in the scene are identifiable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' While using RGB camera-based systems in public places (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=', malls, airports) is generally acceptable, the situation can be very different in personal dwelling, community, residential or clinical settings [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' In a home or residential setting (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=', nursing homes), individuals or patients can be monitored in their personal space that may breach their privacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The lack of measures to deal with the privacy of individuals can be a bottleneck in the adoption and deployment of the anomaly detection-based systems [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' However, monitoring of people with physical, cognitive or aging issues is also important to improve their quality of life and care.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Therefore, as a trade- off, privacy-protecting video modalities can fill that gap and be used in these settings to save lives and improve patient care.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Wearable devices face compliance issues among certain populations, where people may forget or in some cases refuse to wear them [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Some of the privacy-protecting camera modalities that has been used in the past for anomaly detection involving humans include depth cameras [5], [11], thermal cameras [12], and infrared cameras [13], [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' While these modalities can partially or fully obfuscate an individual’s identity, they require specialized hardware or cameras and can be expensive to be used by general population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Skeletons extracted from RGB camera streams using pose estimation al- gorithms [15] provide a suitable solution of privacy protection over RGB and other types of cameras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Skeleton tracking only focuses on body joints and ignores facial identity, full body scan or background information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The pixel-based features in RGB videos that mask important information about the scene are sensitive to noise resulting from illumination, viewing direction and background clutter, resulting in false positives when detecting anomalies [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Furthermore, due to redundant information present in these features (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=', background), there is an increased burden on methods to model the change in those areas of the scene rather than focus on the actions of humans in the foreground.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Extracting information specific to human actions can not only provide a privacy-protecting solu- tion, but can also help to filter out the background-related noise in the videos and aid the model to focus on key information for detecting abnormal events related to human behaviour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The skeletons represent an efficient way to model the human body joint positions over time and are robust to the complex background, illumination changes, and dynamic camera scenes [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' In addition to being privacy-protecting, skeleton features are compact, well-structured, semantically rich, and highly descriptive about human actions and motion [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Anomaly detection using skeleton tracking is an emerging area of research as awareness around privacy of individuals and their arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='00114v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='CV] 31 Dec 2022 2 data grows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' However, skeleton-based approaches may not be sufficient for situations that explicitly need facial information for analysis, including emotion recognition [18], [19], pain detection [20] or remote heart monitoring [21], to name a few.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' In recent years, deep learning methods have been developed to use skeletons for different applications, such as action recognition [40], medical diagnosis [24], and sports analytics [41].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The use of skeletons for anomaly detection in videos is an under-explored area, and concerted research is needed [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The human skeletons can help in developing privacy- preserving solutions for private dwellings, crowded/public areas, medical settings, rehabilitation centers and long-term care homes to detect anomalous events that impacts health and safety of individuals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Use of this type of approach could improve the adoption of video-based monitoring systems in the homes and residential settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' However, there is a paucity of literature on understanding the existing techniques that use skeleton-based anomaly detection approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' We identify this gap in the literature and present one of the first survey on the recent advancements in using skeletons for anomaly detection in videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' We identified the major themes in existing work and present a novel taxonomy that is based on how these methods learn to detect anomalous events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' We also discuss the applications where these approaches were used to understand their potential in bringing these algorithms in a personal dwelling, or long-term care scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' LITERATURE SURVEY We adopted a narrative literature review for this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The following keywords (and their combinations) were used to search for relevant papers – skeleton, human pose, body pose, body joint, trajectory, anomaly detection, abnormal and video.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' These keywords were searched on scholarly databases, including Google Scholar, IEEE Xplore, Elsevier and Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' We mostly reviewed papers between year 2016 to year 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' therefore, the list may not be comprehensive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' In this review, we only focus on the recent deep learning-based algorithms for skeletal video anomaly detection and did not include traditional machine learning based approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' We did not adopt the systematic or scoping review search protocol for this work;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' therefore, our literature review may not be exhaustive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' However, we tried our best to include the latest development in the field to be able to summarize their potential and identify challenges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' In this section, we provide a survey of skeletal deep learning video anomaly detection methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' We present a novel taxonomy to study the skeletal video anomaly approaches based on learning approaches into four broad categories, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=', reconstruction, prediction, their combinations and other specific approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Table I provides a summary of 21 relevant papers, based on the taxonomy, found in our literature search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Unless otherwise specified, the values in the last column of the table refer to AUC(ROC) values corresponding to each dataset in the reviewed paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Five papers use reconstruction approach, five papers use prediction approach, five papers use a combination of reconstruction and prediction approaches, three papers use a combination of reconstruction and clustering approaches, and three papers use other specific approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Reconstruction Approaches In the reconstruction approaches, generally, an autoencoder (AE) or its variant model is trained on the skeleton information of only normal human activities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' During training, the model learns to reconstruct the samples representing normal activ- ities with low reconstruction error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Hence, when the model encounters an anomalous sample at test time, it is expected to give high reconstruction error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Gatt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [22] used Long Short-Term Memory (LSTM) and 1-Dimensional Convolution (1DConv)-based AE models to detect abnormal human activities, including, but not limited to falls, using skeletons estimated from videos of a publicly available dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Temuroglu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [23] proposed a skeleton trajectory representation that handled occlusions and an AE framework for pedestrian abnormal behaviour detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The pedestrian video dataset used in this work was collected by the authors, where the training dataset was composed of normal walking, and the test dataset was composed of normal and drunk walking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The pose skeletons were treated to handle occlusions using the proposed representation and combined into a sequence to train an AE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' They compared the results of occlusion-aware skeleton keypoints input with keypoints without occlusion flags, keypoint image heatmaps and raw pedestrian image inputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The authors used average of recall and specificity to evaluate the models due to the unbalanced dataset and found that occlusion-aware input achieved the highest results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Suzuki et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [24] trained a Convolutional AE (CAE) on good gross motor movements in children and detected poor limb motion as an anomaly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Motion time-series images [42] were obtained from skeletons estimated from the videos of kindergarten children participants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The motion time-series images were fed as input to a CAE, which was trained on only the normal data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The difference between the input and reconstructed pixels was used to localize the poor body movements in anomalous frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Jiang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [25] presented a message passing Gated Recurrent Unit (GRU) encoder-decoder network to detect and localize the anomalous pedestrian behaviours in videos captured at the grade crossing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The field-collected dataset consisted of over 50 hours of video recordings at two selected grade crossings with different camera angles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The skeletons were estimated and decomposed into global and local components before being fed as input to the encoder-decoder network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The localization of the anoma- lous pedestrians within a frame was done by identifying the skeletons with reconstruction error higher than the empirical threshold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' They manually removed wrongly detected false skeletons as they claim that the wrong detection issue was observed at only one grade crossing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' However, an approach of manual removal of false skeletons is impractical in many real world applications where the data is very large, making the need of an automated false skeleton identification and removal step imperative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Fan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [26] proposed an anomaly detection framework which consisted of two pairs of generator and discriminator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The generators were trained to reconstruct the normal video frames and the corresponding skeletons, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The discriminators were trained to distinguish the original and reconstructed video frames and the original 3 TABLE I SUMMARY OF REVIEWED PAPERS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Learning approach Paper Datasets used Experimental Setting Number of people in scene Type of anomalies Pose estimation algorithm Model input Model type Anomaly score Eval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' metric AUC(ROC) (or other) Reconstruction Gatt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [22] UTD-MHAD Indoor Single Irregular body postures Openpose, Posenet Skeleton keypoints 1DConv-AE, LSTM-AE Reconstruction error AUC(PR)=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='91, F score=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='98 Temuroglu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [23] Custom Outdoor Multiple Drunk walking Openpose Skeleton keypoints AE Reconstruction error Average of recall and specificity=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='91 Suzuki et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [24] Custom — Single Poor body movements in children Openpose Motion time- series images CAE Reconstruction error Accuracy=99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='3, F score=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='99 Jiang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [25] Custom Outdoor Multiple Abnormal pedestrian behaviours at grade crossings Alphapose Skeleton keypoints GRU Encoder- Decoder Reconstruction error 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='82 Fan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [26] CUHK Avenue, UMN Indoor and Outdoor Multiple Anomalous human behaviours Alphapose Video frame, Skeleton keypoints Generative adversarial network Reconstruction error of video frame 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='88 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='99 Prediction Rodrigues et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [27] IITB-Corridor, ShanghaiTech, CUHK Avenue Outdoor Multiple Abnormal human activities Openpose Skeleton keypoints Multi-timescale 1DConv encoder-decoder Prediction error from different timescales 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='67 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='76 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='83 Luo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [16] ShanghaiTech, CUHK Avenue Outdoor Multiple Irregular body postures Alphapose Skeleton joints graph Spatio-Temporal GCN Prediction error 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='74 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='87 Zeng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [28] UCSD Pedestrian, ShanghaiTech, CUHK Avenue, IITB-Corridor Outdoor Multiple Anomalous human behaviours HRNet Skeleton joints graph Hierarchical Spatio-Temporal GCN Weighted sum of prediction errors from different levels 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='98 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='82 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='87 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='7 Fan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [29] ShanghaiTech, CUHK Avenue Outdoor Multiple Anomalous human actions Alphapose Skeleton keypoints GRU feed forward network Prediction error 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='83 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='92 Pang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [30] ShanghaiTech, CUHK Avenue Outdoor Multiple Anomalous human actions Alphapose Skeleton keypoints Transformer Prediction error 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='77 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='87 Reconstruction+ Prediction Morais et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [17] ShanghaiTech, CUHK Avenue Outdoor Multiple Anomalous human actions Alphapose Skeleton keypoints GRU Encoder- Decoder Weighted sum of reconstruction and prediction errors 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='73 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='86 Boekhoudt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [7] ShanghaiTech, HR Crime Indoor and Outdoor Multiple Human and Crime related anomalies Alphapose Skeleton keypoints GRU Encoder- Decoder Weighted sum of reconstruction and prediction errors 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='73 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='6 Li and Zhang [31] ShanghaiTech Outdoor Multiple Abnormal pedestrian behaviours Alphapose Skeleton keypoints GRU Encoder- Decoder Weighted sum of reconstruction and prediction errors 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='75 Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [32] ShanghaiTech, CUHK Avenue Outdoor Multiple Human-related anomalous events Alphapose Skeleton joints graph GCAE with embedded LSTM Sum of max reconstruction and prediction errors 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='76, EER=30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='84, EER=20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='7 Wu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [33] ShanghaiTech, CUHK Avenue Outdoor Multiple Abnormal human actions Alphapose Skeleton joints graph, Confidence scores GCN Confidence score weighted sum of reconstruction, prediction and SVDD errors 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='77 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='85 Reconstruction+ Clustering Markovitz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [34] ShanghaiTech, NTU-RGB+D, Kinetics-250 Indoor and Outdoor Multiple Anomalous human actions Alphapose, Openpose Skeleton joints graph GCAE, Deep clustering Dirichlet process mixture model score 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='74 Cui et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [35] ShanghaiTech Outdoor Multiple Human pose anomalies — Skeleton joints graph GCAE, Deep clustering Dirichlet process mixture model score 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='77 Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [36] ShanghaiTech, CUHK Avenue Outdoor Multiple Anomalous human behaviours Alphapose Skeleton joints graph GCAE, Deep clustering Dirichlet process mixture model score 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='79 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='88 Clustering Yang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [37] UCSD Pedestrian 2, ShanghaiTech Outdoor Multiple Anomalous human behaviours and objects Alphapose Skeleton joints graph, Numerical features GCN Skeleton cluster + Object anomaly score 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='93 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='82 Iterative self- training Nanjun et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [38] ShanghaiTech, CUHK Avenue Outdoor Multiple Human-related anomalous events Alphapose Skeleton joints graph, Numerical features GCN Self-trained fully connected layers output 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='72, EER=34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='82, EER=23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='9 Multivariate gaussian distribution Tani and Shibata [39] ShanghaiTech Outdoor Multiple Anomalous human behaviours Openpose Skeleton joints graph GCN, Multivariate gaussian distribution Mahalanobis distance 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='77 4 and reconstructed skeletons, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The video frames and corresponding extracted skeletons served as input to the framework during training;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' however, at test time, decision was made based on only reconstruction error of video frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Challenges: AEs or their variants are widely used in many video-based anomaly detection methods [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The choice of the right architecture to model the skeletons is very important.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Further, being trained on the normal data, they are expected to produce higher reconstruction error for the abnormal inputs than the normal inputs, which has been adopted as a criterion for identifying anomalies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' However, this assumption does not always hold in practice, that is, the AEs can generalize well that it can also reconstruct anomalies well, leading to false negatives [43].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Prediction Approaches In prediction approaches, a network is generally trained to learn the normal human behaviour by predicting the skeletons at the next time step(s) using the skeletons representing normal human actions at past time steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' During testing, the test sam- ples with high prediction errors are flagged as anomalies as the network is trained to predict only the skeletons representing normal actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Rodrigues et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [27] suggested that abnormal human activ- ities can take place at different timescales, and the methods that operate at a fixed timescale (frame-based or video-clip- based) are not enough to capture the wide range of anomalies occurring with different time duration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' They proposed a multi- timescale 1DConv encoder-decoder network where the inter- mediate layers were responsible to generate future and past predictions corresponding to different timescales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The network was trained to make predictions on normal activity skeletons input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The prediction errors from all timescales were combined to get an anomaly score to detect abnormal activities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Luo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [16] proposed a spatio-temporal Graph Convolutional Network (GCN)-based prediction method for skeleton-based video anomaly detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The body joints were estimated and built into skeleton graphs, where the body joints formed the nodes of the graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The spatial edges connected different joints of a skeleton, and temporal edges connected the same joints across time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' A fully connected layer was used at the end of the network to predict future skeletons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Zeng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [28] proposed a hierarchical spatio-temporal GCN, where high- level representations encoded the trajectories of people and the interactions among multiple identities while low-level skeleton graph representations encoded the local body posture of each person.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The method was proposed to detect anomalous human behaviours in both sparse and dense scenes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The inputs were organized into spatio-temporal skeleton graphs whose nodes were human body joints from multiple frames and fed to the network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The network was trained on the input skeleton graph representations of normal activities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Optical flow fields and size of skeleton bounding boxes were used to determine sparse and dense scenes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' For dense scenes with crowds, higher weights were assigned to high-level representations while for sparse scenes, the weights of low-level graph representations were increased.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' During testing, the prediction errors from different branches were weighted and combined to obtain the final anomaly score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Fan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [29] proposed a GRU feed- forward network that was trained to predict the next skeleton using past skeleton sequences and a loss function that incorpo- rated the range and speed of the predicted skeletons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Pang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [30] proposed a skeleton transformer to predict future pose components in video frames and considered error between predicted pose components and corresponding expected values as anomaly score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' They applied a multi-head self-attention module to capture long-range dependencies between arbitrary pairwise pose components and the temporal convolutional layer to concentrate on local temporal information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Challenges: In these methods, it is difficult to choose how far in future (or past) the prediction should be made to achieve optimum results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' This could potentially be determined empirically;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' however, in the absence of a validation set such solutions remain elusive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The future prediction-based methods can be sensitive to noise in the past data [44].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Any small changes in the past can result in significant variation in prediction, and not all of these changes signify anomalous situations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Combinations of learning approaches In this section, we discuss the existing methods that uti- lize a combination of different learning approaches, namely, reconstruction and prediction approaches, and reconstruction and clustering approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 1) Combination of reconstruction and prediction ap- proaches: Some skeletal video anomaly detection methods utilize a multi-objective loss function consisting of both recon- struction and prediction errors to learn the characteristics of skeletons signifying normal behaviour and identify skeletons with large errors as anomalies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Morais et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [17] proposed a method to model the normal human movements in surveillance videos using human skeletons and their relative positions in the scene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The human skeletons were decomposed into two sub-components: global body movement and local body posture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The global movement tracked the dynamics of the whole body in the scene, while the local posture described the skeleton configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The two components were passed as input to different branches of a message passing GRU single- encoder-dual-decoder-based network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The branches processed their data separately and interacted via cross-branch message passing at each time step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Each branch had an encoder, a reconstruction-based decoder and a prediction-based decoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The network was trained using normal data, and during testing, a frame-level anomaly score was generated by aggregating the anomaly scores of all the skeletons in a frame to identify anomalous frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' In order to avoid the inaccuracy caused by incorrect detection of skeletons in video frames, the authors leave out video frames where the skeletons cannot be estimated by the pose estimation algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Hence, the results in this work was not a good representation of a real-world scenario, which often consists of complex-scenes with occluding objects and overlapping movement of people.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Boekhoudt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [7] utilized the network proposed by Morais et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [17] for de- tecting human crime-based anomalies in videos using a newly 5 proposed crime-based video surveillance dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Similar to the work by Morais et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [17], Li and Zhang [31] proposed a dual branch single-encoder-dual-decoder GRU network that was trained on normal behaviour skeletons estimated from pedestrian videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The two decoders were responsible for reconstructing the input skeletons and predicting future skele- tons, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' However, unlike the work by Morais et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [17], there was no provision of message passing between the branches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [32] proposed a single-encoder-dual-decoder architecture established on a spatio-temporal Graph CAE (GCAE) embedded with a LSTM network in hidden layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The two decoders were used to reconstruct the input skeleton sequences and predict the unseen future sequences, respec- tively, from the latent vectors projected via the encoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The sum of maximum reconstruction and prediction errors among all the skeletons within a frame was used as anomaly score for detecting anomalous frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Wu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [33] proposed a GCN- based encoder-decoder architecture that was trained using normal action skeleton graphs and keypoint confidence scores as input to detect anomalous human actions in surveillance videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The skeleton graph input was decomposed into global and local components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The network consisted of three encoder- decoder pipelines: the global pipeline, the local pipeline and the confidence score pipeline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The global and local encoder- decoder-based pipelines learned to reconstruct and predict the global and local components, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The confidence score pipeline learned to reconstruct the confidence scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Further, a Support Vector Data Description (SVDD)-based loss was employed to learn the boundary of the normal action global and local pipeline encoder output in latent feature space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The network was trained using a multi-objective loss function, composed of a weighted sum of skeleton graph reconstruction and prediction losses, confidence score reconstruction loss and multi-center SVDD loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 2) Combination of reconstruction and clustering ap- proaches: Some skeletal video anomaly detection methods utilize a two-stage approach to identify anomalous human actions using spatio-temporal skeleton graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' In the first pre-training stage, a GCAE-based model is trained to min- imize the reconstruction loss on input skeleton graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' In the second fine-tuning stage, the latent features generated by the pre-trained GCAE encoder is fed to a clustering layer and a Dirichlet Process Mixture model is used to estimate the distribution of the soft assignment of feature vectors to clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Finally at the test time, the Dirichlet normality score is used to identify the anomalous samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Markovitz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [34] identified that anomalous actions can be broadly classified in two categories, fine and coarse-grained anomalies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Fine-grained anomaly detection refers to detecting abnormal variations of an action, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=', abnormal type of walking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Coarse- grained anomaly detection refers to defining particular normal actions and regarding other actions as abnormal, such as determining dancing as normal and gymnastics as abnormal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' They utilized a spatio-temporal GCAE to map the skeleton graphs representing normal actions to a latent space, which was soft assigned to clusters using a deep clustering layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The soft-assignment representation abstracted the type of data (fine or coarse-grained) from the Dirichlet model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' After pre-training of GCAE, the latent feature output of the encoder and clusters were fine-tuned by minimizing a multi-objective loss function consisting of both the reconstruction loss and clustering loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' They leveraged ShanghaiTech [45] dataset to test the perfor- mance of their proposed method on fine-grained anomalies, and NTU-RGB+D [46] and Kinetics-250 [47] datasets for coarse-grained anomaly detection performance evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Cui et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [35] proposed a semi-supervised prototype generation- based method for video anomaly detection to reduce the computational cost associated with graph-embedded networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Skeleton graphs for normal actions were estimated from the videos and fed as input to a shift spatio-temporal GCAE to generate features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' It was not clear which pose estimation algo- rithm was used to estimate the skeletons from video frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The generated features were fed to the proposed prototype gen- eration module designed to map the features to prototypes and update them during the training phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' In the pre-training step, the GCAE and prototype generation module were optimized using a loss function composed of reconstruction loss and generation loss of prototypes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' In the fine-tuning step, the entire network was fine-tuned using a multi-objective loss function, composed of reconstruction loss, prototype generation loss and cluster loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Later, Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [36] used self-attention augmented graph convolutions for detecting abnormal human behaviours based on skeleton graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Skeleton graphs were fed as input to a spatio-temporal self-attention augmented GCAE and latent features were extracted from the encoder part of the trained GCAE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' After pre-training of GCAE, the entire network was fine-tuned using a multi-objective loss function consisting of both the reconstruction loss and clustering loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Challenges: The combination-based methods can carry the limitations of the individual learning approaches, as de- scribed in Section II-A and II-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Further, in the absence of a validation set, it is difficult to determine the optimum value of combination coefficients in a multi-objective loss function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Other Approaches This section discusses the methods that leveraged a pre- trained deep learning model to encode latent features from the input skeletons and used approaches such as, clustering and multivariate gaussian distribution, in conjunction for detecting human action-based anomalies in videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Yang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [37] proposed a two-stream fusion method to detect anomalies pertaining to body movement and object positions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' YOLOv3 [48] was used to detect people and objects in the video frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Subsequently, skeletons were estimated from the video frames and passed as input to a spatio-temporal GCN, followed by a clustering-based fully connected layer to generate anomaly scores for skeletons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The information per- taining to the bounding box coordinates and confidence score of the detected objects was used to generate object anomaly scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Finally, the skeleton and object normality scores were combined to generate the final anomaly score for a frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Nanjun et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [38] used the skeleton features estimated from the videos for pedestrian anomaly detection using an iterative self-training strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The training set consisted of unlabelled normal and anomalous video sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The skeletons were 6 decomposed into global and local components, which were fed as input to an unsupervised anomaly detector, iForest [49], to yield the pseudo anomalous and normal skeleton sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The pseudo sets were used to train an anomaly scoring module, consisting of a spatial GCN and fully connected layers with a single output unit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' As part of the self-training strategy, new anomaly scores were generated using previously trained anomaly scoring module to update the membership of skeleton samples in the skeleton sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The scoring module was then retrained using updated skeleton sets, until the best scoring model was obtained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' However, the paper doesn’t discuss the criteria to decide the best scoring model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Tani and Shibata [39] proposed a framework for training a frame-wise Adap- tive GCN (AGCN) for action recognition using single frame skeletons and used the features extracted from the AGCN to train an anomaly detection model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' As part of the proposed framework, a pretrained action recognition model [50] was used to identify the frames with large temporal attention in the Kinetics-skeleton dataset [51] as the action frames to train the AGCN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Further, the trained AGCN was used to extract features from the normal behaviour skeletons identified in the ShanghaiTech Campus dataset [17] to model a multivariate gaussian distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' During testing, the Mahalanobis distance was used to calculate the anomaly score under the multivariate gaussian distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Challenges: The performance of these methods rely on the pre-training strategy of the deep learning models used to learn the latent features and the choice of training parameters for the subsequent machine learning models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' DISCUSSION This section leverages Table I and synthesizes the informa- tion and trends that can be inferred from the existing work on skeletal video anomaly detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' ShanghaiTech [45] and CUHK Avenue [52] were the most frequently used video datasets to evaluate the perfor- mance of the skeletal video anomaly detection methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The ShanghaiTech dataset has videos of people walking along a sidewalk of the ShanghaiTech university.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Anoma- lous activities include bikers, skateboarders and people fighting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' It has 330 training videos and 107 test videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' However, not all the anomalous activities are related to humans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' A subset of the ShanghaiTech dataset that contained anomalous activities only related to humans was termed as HR ShanghaiTech and was used in many papers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The CUHK Avenue dataset consists of short video clips looking at the side of a building with pedestrian walking by it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Concrete columns that are part of the building cause some occlusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The dataset contains 16 training videos and 21 testing videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The anomalous events comprise of actions such as “throwing papers”, “throwing bag”, “child skipping”, “wrong direction” and “bag on grass”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Similarly, a subset of the CUHK Avenue dataset containing anomalous activities only related to humans, called HR Avenue, has been used to evaluate the methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Other video datasets that have been used include UTD-MHAD [53], UMN [54], UCSD Pedestrian [6], IITB-Corridor [27], HR Crime [7], NTU-RGB+D [46], and Kinetics-250 [47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' From the type of anomalies present in these datasets, it can be inferred that the existing skeletal video anomaly detection methods have been evaluated mostly on individual human action-based anomalies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Hence, it is not clear how well can they detect anomalies that involve interactions among multiple individuals or interaction among people and objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Most of the papers (19 out of 21), detected anomalous human actions for multiple people in the video scene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The usual approach was to estimate the skeletons for the people in the scene using a pose estimation algorithm, and calculate anomaly scores for each of the skeletons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The maximum anomaly score among all the skeletons within a frame was used to identify the anomalous frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' A single video frame could contain multiple people, among which not all of them were performing anomalous actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Hence, taking the maximum anomaly score of all the skeletons helped to nullify the effect of people with normal actions on the final decision for the frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Further, calculating anomaly scores for individual skeletons helped to localize the source of anomaly within a frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The definition of anomalous human behaviours can differ across applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' While most of the existing papers focused on detecting anomalous human behaviours in general, four papers focused on detecting anomalous be- haviours for specific applications, that is, drunk walking [23], poor body movements in children [24], abnormal pedestrian behaviours at grade crossings [25] and crime- based anomalies [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Further, the nature of anomalous behaviours can vary depending upon various factors, like span of time, crowded scenes, and specific action- based anomalies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Some papers identified and addressed the need to detect specific types of anomalies, namely, multi-timescale anomalies occurring over different time duration [27], anomalies in both sparse and crowded scenes [28], fine and coarse-grained anomalies [34] and body movement and object position anomalies [37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Alphapose [15] and Openpose [55] were the most com- mon choice of pose estimation algorithm for extraction of skeletons for the people in the scene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Other pose estimation methods that have been used were Posenet [56] and HRNet [57].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' However, in general, the papers did not provide any rationale behind their choice of the pose estimation algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The type of models used in the papers can broadly be divided into two types, sequence-based and graph- based models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The sequence-based models that have been used include 1DConv-AE, LSTM-AE, GRU, and Transformer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' These models treated skeleton keypoints for individual people across multiple frames as time series input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The graph-based models that have been used in- volve GCAE and GCN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The graph-based models received spatio-temporal skeleton graphs for individual people as input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The spatio-temporal graphs were constructed by considering body joints as the nodes of the graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The spatial edges connected different joints of a skeleton, and 7 temporal edges connected the same joints across time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Area Under Curve (AUC) of Receiver Operating Charac- teristic (ROC) curve was the most common metric used to evaluate the performance among the existing skeletal video anomaly detection methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Other performance evaluation metrics include F score, accuracy, Equal Error Rate (EER) and AUC of Precision-Recall (PR) Curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' EER signifies the percentage of misclassified frames when the false positive rate equals to the miss rate on the ROC curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' While AUC(ROC) can provide a good estimate of the classifier’s performance over different thresholds, it can be misleading in case the data is imbalanced [58].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' In anomaly detection scenario, it is common to have imbalance in the test data, as the anoma- lous behaviours occur infrequently, particularly in many medical applications [59], [60].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The AUC(PR) value provides a good estimate of the classifier’s performance on imbalanced datasets [58];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' however, only one of the papers used AUC(PR) as an evaluation metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The highest AUC(ROC) values reported for the Shang- haiTech [45] and CUHK Avenue [52] datasets across different methods in Table I were 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='83 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='92, re- spectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' A direct comparison may not be possible due to the difference in the experimental setup and train- test splits across the reviewed methods;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' however, it gives some confidence on the viability of these approaches for skeletal video anomaly detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' CHALLENGES AND FUTURE DIRECTIONS In general, the efficiency of the skeletal video anomaly detection algorithms depends upon the accuracy of the skele- tons estimated by the pose-estimation algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' If the pose estimation algorithm misses certain joints or produces ar- tifacts in the scene, then it can increase the number of false alarms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' There are various challenges associated with estimating skeletons from video frames [61]: (i) complex body configuration causing self-occlusions and complex poses, (ii) diverse appearance, including clothing, and (iii) complex environment with occlusion from other people in the scene, various viewing angles, distance from camera and trunca- tion of parts in the camera view.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' This can lead to a poor approximation of skeletons and can negatively impact the performance of the anomaly detection algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Methods have been proposed to address some of these challenges [62], [63];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' however, extracting skeletons in complex environments remains a difficult problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Some of the existing methods manually remove inaccurate and false skeletons [17], [25] to train the model, which is impractical in many real-world applications where the amount of available data is very large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' There is a need of an automated false skeleton identification and removal step, when estimating skeletons from videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The skeletons collected using Microsoft Kinect (depth) camera has been used in the past studies [64], [65].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' However, the defunct production of the Microsoft Kinect camera [66] has lead to hardware constraints in the further development of skeletal anomaly detection approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Other commer- cial products include Vicon [67] with optical sensors and TheCaptury [68] with multiple cameras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' But they function in very constrained environments or require special markers on the human body.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' New cameras, such as ‘Sentinare 2’ from AltumView [69], circumvent such hardware requirements by directly processing videos on regular RGB cameras and transmitting skeletons information in real-time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The exist- ing approaches for skeletal video anomaly detection involve spatio-temporal skeleton graphs [16] or temporal sequences [17], which are constructed by tracking an individual across multiple frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' However, this is challenging in scenarios where there are multiple people within a scene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The entry and exit of people in the scene, overlapping of people during movement and presence of occluding objects make tracking people across frames a very challenging task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' There can be deployment issues in these methods because the choice of threshold is not clear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' In the absence of any validation set (containing both normal and unseen anomalies) in an anomaly detection setting, it is very hard to fine-tune an operating threshold using just the training data (comprising of normal activities only).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' To handle these situations, outliers within the normal activities can be used as a proxy for unseen anomalies [70];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' however, inappropriate choices can lead to increased false alarms or missed alarms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Domain expertise can be utilized to adjust a threshold, which may not be available in many cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The anomalous human behaviours of interest and their difficulty of detection can vary depending upon the definition of anomaly, application, time span of the anomalous actions, and presence of single/multiple people in the scenes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' For example, in the case of driver anomaly detection application, the anomalous behaviours can include talking on the phone, dozing off or drinking [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The anomalous actions can span over different time lengths, ranging from few seconds to hours or days, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=', jumping and falls [70] are short-term anomalies, while loitering and social isolation [71] are long-term events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' More focus is needed on developing methods that can identify both short and long-term anomalies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Sparse scene anomalies can be described as anomalies in scenes with less number of humans, while dense scene anomalies can be described as anomalies in crowded scenes with large number of humans [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' It is comparatively difficult to identify anomalous behaviours in dense scenes than sparse scenes due to tracking multiple people and finding their individual anomaly scores [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Thus, there is a need to develop methods that can effectively identify both sparse and dense scene anomalies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Further, there is a need to address the challenges associated with the granularity and the decision making time of the skeletal video anomaly detection methods for real time applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The existing methods mostly output decision on a frame level, which becomes an issue when the input to the method is a real-time continuous video stream at multiple frames per second.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' This can lead to alarms going off multiple times a second, which can be counter-productive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' One solution is for the methods to make decisions on a time- window basis, each window of length of a specified duration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' However, this brings in the question about the optimal length of each decision window.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' A short window is impractical as it can lead to frequent and repetitive alarms, while a long window can lead to missed alarms, and delayed response 8 and intervention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Domain knowledge can be used to make a decision about the length of decision windows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Skeletons can be used in conjunction with optical flow [72] to develop privacy-protecting approaches to jointly learn from temporal and structural modalities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Approaches based on federated learning (that do not combine individual data, but only the models) can further improve the privacy of these methods [73].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Segmentation masks [74] can be leveraged in conjunction with skeletons to occlude humans while capturing the information pertaining to scene and human motion to develop privacy-protecting anomaly detection approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The skeletons signify motion and posture information for the individual humans in the video;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' however, they lack in- formation regarding human-human and human-object interac- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Information pertaining to interaction of the people with each other and the objects in the environment is important for applications such as, violence detection [7], theft detection [7] and agitation detection [60] in care home settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Skeletons can be used to replace the bodies of the participants, while keeping the background information in video frames [75] to analyze both human-human and human-object interaction anomalies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Further, object bounding boxes can be used in conjunction with human skeletons to model human-object in- teraction while preserving the privacy of humans in the scene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The information from other modalities (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' wearable devices) along with skeleton features can be used to develop multi- modal anomaly detection methods to improve the detection performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' As can be seen in Table I, the existing skeletal video anomaly detection methods and available datasets focus to- wards detecting irregular body postures [16], and anomalous human actions [30] in mostly outdoor settings, and not in proper healthcare settings, such as personal homes and long- term care homes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' This a gap towards real world deployment, as there is a need to extend the scope of detecting anomalous behaviours using skeletons to in-home and care home settings, where privacy is a very important concern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' This can be utilized to address important applications, such as fall detection [76], agitation detection [60], [75], and independent assistive living.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' This will help to develop supportive homes and communi- ties and encourage autonomy and independence among the increasing older population and dementia residents in care homes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' While leveraging skeletons helps to get rid of facial identity and appearance-based information, it is important to ask the question if skeletons can be considered private enough [77], [78] and what steps can be taken to further anonymize the skeletons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' CONCLUSION In this paper, we provided a survey of recent works that leverage the skeletons or body joints estimated from videos for the anomaly detection task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The skeletons hide the facial identity and overall appearance of people and can provide vital information about joint angles [79], speed of walking [80], and interaction with other people in the scene [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Our literature review showed that many deep learning-based approaches leverage reconstruction, prediction error and their other combinations to successfully detect anomalies in a privacy protecting manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' This review suggests the first steps towards increasing adoption of devices (and algorithms) focused on improving privacy in a residential or communal setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' It will further improve the deployment of anomaly detection systems to improve the safety and care of people.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' The skeleton-based anomaly detection methods can be used to design privacy-preserving technologies for the assisted living of older adults in a care environment [81] or enable older adults to live independently in their own homes to cope with the increasing cost of long-term care demands [82].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Privacy- preserving methods using skeleton features can be employed to assist with skeleton-based rehab exercise monitoring [83] or in social robots for robot-human interaction [84] that assist older people in their activities of daily living.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' ACKNOWLEDGEMENTS This work was supported by AGE-WELL NCE Inc, Alzheimer’s Association, Natural Sciences and Engineering Research Council and UAE Strategic Research Grant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' REFERENCES [1] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Khan and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Madden, “One-class classification: taxonomy of study and review of techniques,” The Knowledge Engineering Review, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 29, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 345–374, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [2] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Chandola, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Banerjee, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Kumar, “Anomaly detection: A survey,” ACM computing surveys (CSUR), vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 41, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 1–58, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [3] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Gautam, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Mishra, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Tiwari, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Richhariya, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Pandey, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Wang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Tanveer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Initiative et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=', “Minimum variance- embedded deep kernel regularized least squares method for one-class classification and its applications to biomedical data,” Neural Networks, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 123, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 191–216, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [4] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Mishra, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Gautam, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Tiwari, “Minimum variance embedded auto-associative kernel extreme learning machine for one-class classifi- cation,” Neural Computing and Applications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 33, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 19, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 12 973– 12 987, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [5] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Nogas, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Khan, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Mihailidis, “Deepfall: Non-invasive fall detection with deep spatio-temporal convolutional autoencoders,” Journal of Healthcare Informatics Research, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 4, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 50–70, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [6] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Li, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Mahadevan, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Vasconcelos, “Anomaly detection and localization in crowded scenes,” IEEE transactions on pattern analysis and machine intelligence, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 36, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 18–32, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [7] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Boekhoudt, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Matei, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Aghaei, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Talavera, “Hr-crime: Human-related anomaly detection in surveillance videos,” in Inter- national Conference on Computer Analysis of Images and Patterns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Springer, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 164–174.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [8] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Senior, Protecting privacy in video surveillance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Springer, 2009, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [9] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Climent-P´erez and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Florez-Revuelta, “Protection of visual privacy in videos acquired with rgb cameras for active and assisted living applications,” Multimedia Tools and Applications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 80, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 15, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 23 649–23 664, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [10] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Ye, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Khan, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Chikhaoui, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Iaboni, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Martin, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Newman, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Wang, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Mihailidis, “Challenges in collecting big data in a clinical environment with vulnerable population: Lessons learned from a study using a multi-modal sensors platform,” Science and engineering ethics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 25, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 1447–1466, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [11] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Schneider, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Rambach, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Mirbach, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Stricker, “Unsupervised anomaly detection from time-of-flight depth images,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 231–240.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [12] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Mehta, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Dhall, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Pal, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Khan, “Motion and region aware adversarial learning for fall detection with thermal imaging,” in 2020 25th International Conference on Pattern Recognition (ICPR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' IEEE, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 6321–6328.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [13] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Denkovski, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Khan, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Malamis, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Moon, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Ye, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Mihailidis, “Multi visual modality fall detection dataset,” IEEE Access, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 106 422–106 435, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 9 [14] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Kopuklu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Zheng, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Xu, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Rigoll, “Driver anomaly detection: A dataset and contrastive learning approach,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 91–100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [15] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Fang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Xie, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Tai, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Lu, “Rmpe: Regional multi-person pose estimation,” in Proceedings of the IEEE international conference on computer vision, 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 2334–2343.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [16] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Luo, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Liu, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Gao, “Normal graph: Spatial temporal graph convolutional networks based prediction network for skeleton based video anomaly detection,” Neurocomputing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 444, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 332–337, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [17] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Morais, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Le, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Tran, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Saha, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Mansour, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Venkatesh, “Learning regularity in skeleton trajectories for anomaly detection in videos,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 11 996–12 004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [18] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Dhall, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Ramana Murthy, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Goecke, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Joshi, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Gedeon, “Video and image based emotion recognition challenges in the wild: Emotiw 2015,” in Proceedings of the 2015 ACM on international conference on multimodal interaction, 2015, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 423–426.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [19] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Taati, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Zhao, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Ashraf, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Asgarian, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Browne, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Prkachin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Mihailidis, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Hadjistavropoulos, “Algorithmic bias in clinical populations—evaluating and improving facial analysis technol- ogy in older adults with dementia,” IEEE Access, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 7, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 25 527– 25 534, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [20] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Menchetti, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Chen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Wilkie, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Ansari, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Yardimci, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' C¸ etin, “Pain detection from facial videos using two-stage deep learning,” in 2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' IEEE, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 1–5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [21] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Chen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Cheng, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Song, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Liu, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Ward, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Wang, “Video- based heart rate measurement: Recent advances and future prospects,” IEEE Transactions on Instrumentation and Measurement, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 68, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 3600–3615, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [22] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Gatt, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Seychell, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Dingli, “Detecting human abnormal behaviour through a video generated model,” in 2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' IEEE, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 264–270.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [23] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Temuroglu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Kawanishi, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Deguchi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Hirayama, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Ide, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Murase, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Iwasaki, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Tsukada, “Occlusion-aware skeleton trajectory representation for abnormal behavior detection,” in Interna- tional Workshop on Frontiers of Computer Vision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Springer, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 108–121.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [24] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Suzuki, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Amemiya, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Sato, “Skeleton-based visualization of poor body movements in a child’s gross-motor assessment using convolutional auto-encoder,” in 2021 IEEE International Conference on Mechatronics (ICM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' IEEE, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [25] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Jiang, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Song, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Qian, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Wang, “A deep learning framework for detecting and localizing abnormal pedestrian behaviors at grade crossings,” Neural Computing and Applications, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 1–15, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [26] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Fan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Yi, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Wu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Song, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Cui, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Liu, “Video anomaly detection using cyclegan based on skeleton features,” Journal of Visual Communication and Image Representation, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 85, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 103508, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [27] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Rodrigues, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Bhargava, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Velmurugan, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Chaudhuri, “Multi- timescale trajectory prediction for abnormal human activity detection,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 2626–2634.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [28] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Zeng, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Jiang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Ding, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Li, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Hao, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Qiu, “A hierarchical spatio-temporal graph convolutional neural network for anomaly detec- tion in videos,” IEEE Transactions on Circuits and Systems for Video Technology, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 1–1, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [29] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Fan, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Li, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Jin, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Wang, “Anomaly detection based on pose estimation and gru-ffn,” in 2021 IEEE Sustainable Power and Energy Conference (iSPEC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' IEEE, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 3821–3825.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [30] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Pang, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' He, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Li, “Predicting skeleton trajectories using a skeleton-transformer for video anomaly detection,” Multimedia Systems, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 1–14, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [31] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Li and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Zhang, “Video abnormal behavior detection based on human skeletal information and gru,” in International Conference on Intelligent Robotics and Applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Springer, 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 450–458.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [32] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Li, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Chang, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Liu, “Human-related anomalous event detection via spatial-temporal graph convolutional autoencoder with embedded long short-term memory network,” Neurocomputing, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [33] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Wu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Yang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Chiu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Wang, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Faure, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Lai, “Confidence-aware anomaly detection in human actions,” in Asian Conference on Pattern Recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Springer, 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 240–254.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [34] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Markovitz, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Sharir, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Friedman, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Zelnik-Manor, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Avidan, “Graph embedded pose clustering for anomaly detection,” in Proceed- ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 10 539–10 547.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [35] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Cui, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Song, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' An, and Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Ruan, “Prototype generation based shift graph convolutional network for semi-supervised anomaly detection,” in Chinese Conference on Image and Graphics Technologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Springer, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 159–169.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [36] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Liu, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Fu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Li, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Gao, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Shi, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Li, “A self-attention augmented graph convolutional clustering networks for skeleton-based video anomaly behavior detection,” Applied Sciences, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 12, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 1, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 4, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [37] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Yang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Fu, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Naqvi, “A two-stream information fusion approach to abnormal event detection in video,” in ICASSP 2022- 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' IEEE, 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 5787–5791.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [38] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Li, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Chang, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Liu, “A self-trained spatial graph convolutional network for unsupervised human-related anomalous event detection in complex scenes,” IEEE Transactions on Cognitive and Developmental Systems, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [39] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Tani and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Shibata, “Frame-wise action recognition training frame- work for skeleton-based anomaly behavior detection,” in International Conference on Image Analysis and Processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Springer, 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 312–323.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [40] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Song, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Yu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Yuan, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Liu, “Human pose estimation and its application to action recognition: A survey,” Journal of Visual Communication and Image Representation, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 76, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 103055, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [41] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Badiola-Bengoa and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Mendez-Zorrilla, “A systematic review of the application of camera-based human pose estimation in the field of sport and physical exercise,” Sensors, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 21, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 18, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 5996, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [42] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Suzuki, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Amemiya, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Sato, “Enhancement of child gross- motor action recognition by motional time-series images conversion,” in 2020 IEEE/SICE International Symposium on System Integration (SII).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' IEEE, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 225–230.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [43] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Gong, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Liu, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Le, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Saha, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Mansour, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Venkatesh, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Hengel, “Memorizing normality to detect anomaly: Memory- augmented deep autoencoder for unsupervised anomaly detection,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 1705–1714.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [44] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Tang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Zhao, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Zhang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Gong, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Li, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Yang, “Integrating prediction and reconstruction for anomaly detection,” Pattern Recogni- tion Letters, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 129, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 123–130, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [45] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Luo, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Liu, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Gao, “A revisit of sparse coding based anomaly detection in stacked rnn framework,” in Proceedings of the IEEE international conference on computer vision, 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 341–349.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [46] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Shahroudy, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Liu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='-T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Ng, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Wang, “Ntu rgb+ d: A large scale dataset for 3d human activity analysis,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 1010–1019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [47] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Kay, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Carreira, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Simonyan, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Zhang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Hillier, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Vijaya- narasimhan, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Viola, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Green, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Back, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Natsev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=', “The kinetics human action video dataset,” arXiv preprint arXiv:1705.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='06950, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [48] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Redmon and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Farhadi, “Yolov3: An incremental improvement,” arXiv preprint arXiv:1804.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='02767, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [49] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Liu, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Ting, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Zhou, “Isolation-based anomaly detection,” ACM Transactions on Knowledge Discovery from Data (TKDD), vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 6, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 1–39, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [50] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Shi, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Zhang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Cheng, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Lu, “Two-stream adaptive graph convolutional networks for skeleton-based action recognition,” in Pro- ceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 12 026–12 035.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [51] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Yan, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Xiong, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Lin, “Spatial temporal graph convolutional networks for skeleton-based action recognition,” in Thirty-second AAAI conference on artificial intelligence, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [52] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Lu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Shi, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Jia, “Abnormal event detection at 150 fps in matlab,” in Proceedings of the IEEE international conference on computer vision, 2013, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 2720–2727.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [53] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Chen, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Jafari, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Kehtarnavaz, “Utd-mhad: A multimodal dataset for human action recognition utilizing a depth camera and a wearable inertial sensor,” in 2015 IEEE International conference on image processing (ICIP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' IEEE, 2015, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 168–172.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [54] “Umn,” http://mha.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='umn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='edu/proj events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='shtml.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [55] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Cao, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Simon, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='-E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Wei, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Sheikh, “Realtime multi-person 2d pose estimation using part affinity fields,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 7291– 7299.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [56] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Papandreou, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Zhu, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Kanazawa, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Toshev, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Tompson, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Bregler, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Murphy, “Towards accurate multi-person pose estimation in the 10 wild,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 4903–4911.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [57] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Sun, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Xiao, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Liu, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Wang, “Deep high-resolution repre- sentation learning for human pose estimation,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 5693–5703.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [58] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Saito and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Rehmsmeier, “The precision-recall plot is more informa- tive than the roc plot when evaluating binary classifiers on imbalanced datasets,” PloS one, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 10, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 3, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' e0118432, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [59] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Galv˜ao, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Portela, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Ferreira, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Barros, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Fagundes, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Fernandes, “A framework for anomaly identification applied on fall detection,” IEEE Access, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 9, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 77 264–77 274, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [60] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Khan, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Mishra, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Javed, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Ye, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Newman, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Mihailidis, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Iaboni, “Unsupervised deep learning to detect agitation from videos in people with dementia,” IEEE Access, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 10 349– 10 358, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [61] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Chen, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Tian, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' He, “Monocular human pose estimation: A survey of deep learning-based methods,” Computer Vision and Image Understanding, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 192, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 102897, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [62] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Cheng, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Yang, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Wang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Yan, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Tan, “Occlusion-aware networks for 3d human pose estimation in video,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 723–732.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [63] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Gong, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Xiang, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Hongeng, “Learning human pose in crowd,” in Proceedings of the 1st ACM international workshop on Multimodal pervasive video analysis, 2010, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 47–52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [64] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='-N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Nguyen, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Huynh, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Meunier, “Skeleton-based abnormal gait detection,” Sensors, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 16, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 11, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 1792, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [65] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Baptista, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Demisse, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Aouada, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Ottersten, “Deformation- based abnormal motion detection using 3d skeletons,” in 2018 Eighth International Conference on Image Processing Theory, Tools and Ap- plications (IPTA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' IEEE, 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [66] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Warren, “Microsoft kills off Kinect, stops manufacturing it,” https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='theverge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='com/2017/10/25/16542870/microsoft-kinect-dead- stop-manufacturing, 2017, [Online;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' accessed 23-February-2022].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [67] “Vicon,” https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='vicon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='com/, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [68] “Thecaptury,” https://thecaptury.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='com/, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [69] AltumView, “Sentinare 2,” https://altumview.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='ca/, 2022, [Online;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' accessed 24-February-2022].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [70] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Khan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Karg, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Kuli´c, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Hoey, “Detecting falls with x-factor hidden markov models,” Applied Soft Computing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 55, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 168–177, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [71] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Boamah, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Weldrick, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Lee, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Taylor, “Social isolation among older adults in long-term care: A scoping review,” Journal of Aging and Health, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 33, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 7-8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 618–632, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [72] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Duman and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Erdem, “Anomaly detection in videos using optical flow and convolutional autoencoder,” IEEE Access, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 7, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 183 914– 183 923, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [73] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Abedi and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Khan, “Fedsl: Federated split learning on dis- tributed sequential data in recurrent neural networks,” arXiv preprint arXiv:2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='03180, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [74] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Yan, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Angelini, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Naqvi, “Image segmentation based privacy-preserving human action recognition for anomaly detection,” in ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' IEEE, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 8931–8935.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [75] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Mishra, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Iaboni, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Ye, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Newman, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Mihailidis, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Khan, “Privacy-protecting behaviours of risk detection in people with dementia using videos,” arXiv preprint arXiv:2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='10682, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [76] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Feng, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Liu, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Zhu, “Fall detection for elderly person care in a vision-based home surveillance environment using a monocular camera,” signal, image and video processing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 8, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 1129–1138, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [77] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Wang and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Wang, “Learning content and style: Joint action recognition and person identification from human skeletons,” Pattern Recognition, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 81, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 23–35, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [78] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Liao, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Yu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' An, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Huang, “A model-based gait recognition method with body pose and human prior knowledge,” Pattern Recogni- tion, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 98, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 107069, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [79] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Guo and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Khan, “Exercise-specific feature extraction approach for assessing physical rehabilitation,” in 4th IJCAI Workshop on AI for Aging, Rehabilitation and Intelligent Assisted Living.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' IJCAI, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [80] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Kovaˇc and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Peer, “Human skeleton model based dynamic features for walking speed invariant gait recognition,” Mathematical Problems in Engineering, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 2014, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [81] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Chaaraoui, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Climent-P´erez, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Fl´orez-Revuelta, “A review on vision techniques applied to human behaviour analysis for ambient- assisted living,” Expert Systems with Applications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 39, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 12, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 10 873–10 888, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [82] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Hbali, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Hbali, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Ballihi, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Sadgal, “Skeleton-based human activity recognition for elderly monitoring systems,” IET Computer Vision, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 12, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 16–26, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [83] ˇS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Obdrˇz´alek, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Kurillo, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Ofli, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Bajcsy, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Seto, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Jimison, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Pavel, “Accuracy and robustness of kinect pose estimation in the context of coaching of elderly population,” in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' IEEE, 2012, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 1188–1193.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' [84] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Garcia-Salguero, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Gonzalez-Jimenez, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Moreno, “Human 3d pose estimation with a tilting camera for social mobile robot interaction,” Sensors, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 19, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 22, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' 4943, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Pratik K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Mishra obtained his Masters in Computer Science and Engineering from the Indian Institute of Technology (IIT) Indore, India, in 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' He is currently pursuing his Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' from the Institute of Biomedical Engineering, University of Toronto (UofT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' He is currently working towards the appli- cation of computer vision for detecting behaviours of risk in people with dementia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Previously, he worked as a research volunteer at the Toronto Rehabilitation Institute, Canada and as a Data Management Support Specialist at IBM India Private Limited.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Alex Mihailidis , PhD, PEng, is the Barbara G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Stymiest Research Chair in Rehabilitation Technol- ogy at KITE Research Institute at University Health Network/University of Toronto.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' He is the Scientific Director of the AGE-WELL Network of Centres of Excellence, which focuses on the development of new technologies and services for older adults.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' He is a Professor in the Department of Occupational Science and Occupational Therapy and in the In- stitute of Biomedical Engineering at the University of Toronto (U of T), as well as holds a cross appointment in the Department of Computer Science at the U of T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Mihailidis is very active in the rehabilitation engineering profession and is the Immediate Past President for the Rehabilitation Engineering and Assistive Technology Society for North America (RESNA) and was named a Fellow of RESNA in 2014, which is one of the highest honours within this field of research and practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' His research disciplines include biomedical and biochemical engineering, computer science, geriatrics and occupational therapy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Alex is an internationally recognized researcher in the field of technology and aging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' He has published over 150 journal and conference papers in this field and co-edited two books: Pervasive computing in healthcare and Technology and Aging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Shehroz S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Khan obtained his B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content='Sc Engineering, Masters and Phd degrees in computer science in 1997, 2010 and 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' He is currently working as a Scientist at KITE – Toronto Rehabilitation Institute (TRI), University Health Network, Canada.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' He is also cross appointed as an Assistant Professor at the Institute of Biomedical Engineering, University of Toronto (UofT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Previously, he worked as a post- doctoral researcher at the UofT and TRI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' Prior to joining academics, he worked in various scientific and researcher roles in the industry and government jobs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' He is an associate editor of the Journal of Rehabilitation and Assistive Technologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' He has organized four editions of the peer-reviewed workshop on AI in Aging, Rehabilitation and Intelligent Assisted Living held with top AI conferences (ICDM and IJCAI) from 2017-2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' His research is funded through several granting agencies in Canada and abroad, including NSERC, CIHR, AGEWELL, SSHRC, CABHI, AMS Healthcare, JP Bickell Foundation, United Arab Emirates University and LG Electronics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
+page_content=' He has published 49 peer-reviewed research papers and his research focus is the development of AI algorithms for solving aging related health problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdAyT4oBgHgl3EQfTvfu/content/2301.00114v1.pdf'}
diff --git a/LdE5T4oBgHgl3EQfYg9W/vector_store/index.pkl b/LdE5T4oBgHgl3EQfYg9W/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..5332d184ca5ef7049cfbbc05ae67a86ca266aeb2
--- /dev/null
+++ b/LdE5T4oBgHgl3EQfYg9W/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:92a8d4bab699101ef2aa9c9d96c71fce1c173957c41c64ae78914c669b6bb550
+size 318930
diff --git a/M9FRT4oBgHgl3EQfGDeg/content/tmp_files/2301.13483v1.pdf.txt b/M9FRT4oBgHgl3EQfGDeg/content/tmp_files/2301.13483v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..ae0529e08bebbf987a5ec02b7b5343deafb0a43c
--- /dev/null
+++ b/M9FRT4oBgHgl3EQfGDeg/content/tmp_files/2301.13483v1.pdf.txt
@@ -0,0 +1,2362 @@
+An interface formulation for the Poisson equation
+in the presence of a semiconducting single-layer material
+C. Jourdana1 and P. Pietra2
+1 Univ. Grenoble Alpes, CNRS, Grenoble INP†, LJK, 38000 Grenoble, France
+† Institute of Engineering Univ. Grenoble Alpes
+2 Istituto di Matematica Applicata e Tecnologie Informatiche “E. Magenes” - CNR
+Via Ferrata 1, 27100 Pavia, Italy
+clement.jourdana@univ-grenoble-alpes.fr ; pietra@imati.cnr.it
+Abstract
+In this paper, we consider a semiconducting device with an active zone made of a
+single-layer material. The associated Poisson equation for the electrostatic potential (to
+be solved in order to perform self-consistent computations) is characterized by a surface
+particle density and an out-of-plane dielectric permittivity in the region surrounding
+the single-layer. To avoid mesh refinements in such a region, we propose an interface
+problem based on the natural domain decomposition suggested by the physical device.
+Two different interface continuity conditions are discussed. Then, we write the cor-
+responding variational formulations adapting the so called three-fields formulation for
+domain decomposition and we approximate them using a proper finite element method.
+Finally, numerical experiments are performed to illustrate some specific features of this
+interface approach.
+Keywords: Poisson equation, interface model, domain decomposition, saddle-point problem,
+finite element method, single-layer material, graphene Field-Effect Transistor.
+AMS Subject Classification: 35J20, 65N30, 65N55, 65Z05.
+1
+Introduction
+Two-dimensional (2D) materials such as the most well-known graphene are crystal structures
+made of a single layer of atoms. With the recent progress to isolate, stack and characterize
+them, they are promising for a wide range of applications (see e.g. the reviews [30, 10]). In
+particular they become an option to design post-silicon nanoelectronic devices. Field-Effect
+Transistors (FETs) based on graphene (GFETs) or, more generally, on semiconducting 2D
+materials (2D-FETs) give the possibility to have a channel thickness on the atomic scale which
+1
+arXiv:2301.13483v1 [math.NA] 31 Jan 2023
+
+ideally should reduced short-channel effects while maintaining high carrier mobility. However,
+the performance of various 2D-FETs is still difficult to predict and accurate numerical simu-
+lations can take part in a better understanding.
+A first focus is on transport properties in such a device. For instance, graphene is charac-
+terized by a zero bandgap and chiral massless carriers. It leads to unusual transport properties
+such as integer quantum Hall effect or Klein tunneling [11]. Different transport models have
+been recently derived or investigated ranging from the two dimensional Dirac equation [11, 16]
+to sophisticated drift-diffusion and hydrodynamical systems such that e.g. [31, 32, 23, 26].
+Another focus is on the Poisson equation for the electrostatic potential that has to be solved
+to perform self-consistent computations. In particular, the dielectric response of 2D layered
+structures has to be properly taken into account. It is this aspect that we tackle in this work
+proposing to model the single-layer as an interface and leading to a Poisson problem that can
+be solved numerically in an efficient way.
+More precisely, we consider a device with an active zone made of a single-layer material
+sandwiched between two thick insulator regions (oxide). The associated Poisson equation is
+characterized by a surface particle density and an out-of-plane dielectric permittivity exhibited
+in a region of effective dielectric thickness surrounding the single-layer material, as discussed
+in [15]. Both these characteristics require an extremely fine mesh around the 2D material in
+order to provide an accurate approximate solution of this equation. To avoid it, we propose,
+averaging the potential across the dielectric effective region, an interface problem based on
+the natural domain decomposition suggested by the physical device. It is made of two Laplace
+equations in the oxide subdomains coupled with an effective Poisson equation on the interface
+with an extra source term that represents the contribution of the surrounding environment
+to the channel material. This approach is inspired by [1] where it is used to model fractures
+in porous media. It is worth mentioning that, contrary to compact models of GFETs (e.g.
+[20, 29]), it leads to a full multidimensional Poisson problem.
+For the treatment of the Poisson equation in self-consistent models for graphene based
+devices, we recall also [26], where authors assume that the carrier charge is uniformly dis-
+tributed in the volume between the two oxide regions and [19], where authors prove existence
+and uniqueness results for a Dirac-Poisson problem and consider the self-consistent potential
+as the trace in the plane of the graphene of the 3D Poisson potential and thus as the solution
+of a fractional Laplacian equation. Finally, we mention [27] where the Poisson equation is
+written in an integral form and the method of moments is used.
+In order to match the interface potential to the oxide potentials, we first consider a simple
+continuity condition, obtaining an interface model that indeed takes into account the effective
+dielectric thickness, but it does not retain the information of the out-of-plane permittivity
+when a channel dielectric diagonal tensor is considered. That is why we also introduce a
+Robin type continuity condition, following a work on fractured porous media [24] again.
+A discrete fracture-matrix model for flow in porous media is considered in [21], where the
+2
+
+exchange between the fracture and the matrix is imposed using a Lagrange multiplier, in the
+spirit of a fictitious domain approach. Here, to analyze and discretize our interface model, we
+write the corresponding variational formulations adapting the so called three-fields formula-
+tion for domain decomposition in the form introduced and analyzed in [4] (see also [8, 5]).
+It is a non conforming formulation of non-overlapping domain decomposition that introduces
+the space of traces of functions in H1(Ω) on the interface. The weak continuity between the
+2D subdomains and the interface is then imposed by means of Lagrange multipliers. This
+variational formulation enters in the framework of saddle point problems [7] which gives ex-
+istence and uniqueness results as well as error estimates when the problem is approximated
+using a proper finite element method. Interestingly, the interface discretization does not need
+to match with the one of the subdomains and we take advantage of this flexibility in the
+numerical experiments we are performing to illustrate the approach.
+The paper is organized as follows. The interface model with the two continuity conditions
+are introduced in Section 2.
+The variational formulation of the problem with the simple
+continuity condition adapted from the so called three-fields formulation is presented and
+analyzed in Section 3 and then discretized in Section 4. Section 5 is dedicated of the Robin
+type continuity condition that can be used to tackle an anisotropic permittivity. Finally, some
+numerical experiments are performed in Section 6.
+2
+Interface model presentation
+As we said, we consider a device with an active zone made of a single-layer material sandwiched
+between two oxide regions. We assume the single-layer is large enough to be just considered
+as a one dimensional (1D) line along the direction x, the transport along the other direction
+being free and boundary effects being neglected. We denote by y the direction perpendicular
+to the single-layer plane made of oxide/single layer/oxide slices. It gives a 2D domain Ω =
+]0, L[×] − l
+2, l
+2[ where L is the longitudinal device length and l the transversal one.
+The electrostatic potential u created by such a device is solution to the 2D Poisson equation
+− ∇ ·
+�
+ϵ(x, y)∇u(x, y)
+�
+= ρ(x)δ(y),
+in Ω,
+(1)
+where ρ is the surface particle density, δ the Dirac distribution imposing that the particles are
+confined to the single-layer plane and ϵ the dielectric permittivity. This equation is completed
+by boundary conditions. We assume that the boundary ∂Ω splits into two parts: the Ohmic
+contacts ΓD and the insulating parts ΓN, with ∂Ω = ΓD ∪ΓN and ΓD ∩ΓN = ∅. The potential
+is prescribed on ΓD while there are no-flux boundary conditions on ΓN:
+u = uD,
+on ΓD,
+(2)
+∇u · ν = 0,
+on ΓN,
+(3)
+3
+
+where ν is the outward unit normal on ΓN and uD represents Source, Drain and Gate poten-
+tials. Since Source and Drain contacts touch the single-layer material, we assume that ΓD
+contains the single-layer boundary points.
+Due to single-layer/oxide interactions, the permittivity in the oxide is affected in a region
+surrounding the single-layer material.
+The choice of the permittivity ϵ(x, y) is a delicate
+modeling issue. Here, we introduce an effective dielectric thickness d and we assume one
+dielectric constant for the channel and another one for the oxide:
+ϵ(x, y) =
+�
+�
+�
+ϵch for |y| < d
+2
+ϵox otherwise
+.
+Such an approach has been used in [28, 17], e.g, and it is often referred to as “box assumption”.
+The somehow arbitrariness in the choice of the discontinuity lines in [28, 17] is mitigated by
+using the results in [15], where studies of the atomic-scale Poisson equation provide values for
+the dielectric thickness, validating somehow the “box assumption”.
+Our objective is not to deal directly with the computationally demanding transmission
+problem that consists in imposing, along γ± = {(x, ± d
+2), x ∈]0, L[}, continuity of the potential
+and of the transversal electric displacement, as summarized in the following equations:
+− ∇ · (ϵox∇u±) = 0,
+in ]0, L[×
+�
+±] d
+2, l
+2[
+�
+,
+(4)
+− ∇ · (ϵch∇uch) = ρ(x)δ(y),
+in ]0, L[×]− d
+2, d
+2[,
+(5)
+u± = uch,
+ϵox∂yu± = ϵch∂yuch
+on γ±
+(6)
+where δ is the Dirac delta function.
+Instead, inspired by [1] to model fractures in porous media, we propose to consider an
+interface problem obtained by averaging the potential across the dielectric effective region
+and considering d small enough to assume a matching between γ+ and γ−. Introducing
+uγ(x) = 1
+d
+�
+d
+2
+− d
+2
+uch(x, y) dy,
+performing integration in the transversal direction of equation (5) and using the flux continuity
+in (6), we obtain the 1D effective equation
+−d(ϵchu′
+γ)′ = ρ − ϵox
+�
+∇u1(x, 0) · n1 + ∇u2(x, 0) · n2
+�
+,
+in γ,
+where γ =]0, L[ represents the single-layer line, ui, i = 1, 2, are the potentials associated
+to each oxide subdomain Ωi (Ω1 =]0, L[×]0, l
+2[ and Ω2 =]0, L[×] − l
+2, 0[) and ni are the two
+outward unit normals on ∂Ωi ∩ γ. One should notice in this 1D equation the presence of
+the dielectric thickness d. Indeed, −dϵchu′
+γ represents the electric displacement through the
+cross section of the dielectric effective region. Also, we emphasize that the extra source term
+4
+
+appearing in the right-hand side (in addition to the 1D charge density ρ) represents the
+contribution to the interface of the transversal electric displacement from the surrounding
+environment.
+Consequently, the interface model that we analyze and discretize in the next sections
+consists in two Laplace equations in the oxide subdomains
+− ∇ · (ϵox∇ui) = 0,
+in Ωi,
+i = 1, 2,
+(7)
+and the effective Poisson equation in the single-layer line
+− d(ϵchu′
+γ)′ = ρ − ϵox(∇u1 · n1 + ∇u2 · n2),
+in γ,
+(8)
+the potentials associated to the three domains being connected by the continuity conditions
+ui = uγ,
+on γ,
+i = 1, 2.
+(9)
+This system is completed by the following mixed boundary conditions for the oxide potentials
+ui = uD,
+on Γi
+D = ∂Ωi ∩ ΓD,
+i = 1, 2,
+(10)
+∇ui · νi = 0,
+on Γi
+N = ∂Ωi ∩ ΓN,
+i = 1, 2,
+(11)
+νi being the outward unit normal on ∂Ω ∩ ∂Ωi, and by the following Dirichlet boundary
+condition for the interface potential
+uγ(0) = uD(0, 0),
+uγ(L) = uD(L, 0).
+(12)
+In a more physically relevant setting the channel dielectric permittivity is given by a
+diagonal tensor
+ϵch =
+�
+ϵ//
+0
+0
+ϵ⊥
+�
+(13)
+rather than by a dielectric constant, introducing an in-plane permittivity ϵ// and an out-of-
+plane permittivity ϵ⊥. In that case, in the effective equation (8) only ϵ// appears. To retain
+the information about ϵ⊥, we replace the continuity conditions (9) by a Robin type condition
+as done in [24] to model fractures in porous media. Formally, we say that
+uγ(x) ≈ uch(x, ±d
+2) ∓ d
+2∂yuch(x, ±d
+2)
+and we use this approximation into the continuity of the transversal electric displacement
+along γ± (6). It gives
+ϵox∂yu± = ϵ⊥∂yuch ≈ ±ϵ⊥
+u± − uγ
+d/2
+.
+Assuming a matching between γ+ and γ−, we obtain the Robin type condition
+(ui − uγ) + α ϵox∇ui · ni = 0,
+on γ,
+i = 1, 2,
+(14)
+with α =
+d
+2ϵ⊥. As we will see in Section 5, this Robin condition at interface changes only
+slightly the mathematical analysis. Moreover, a numerical comparison of the two continuity
+conditions (9) and (14) will be performed in Section 6.
+5
+
+3
+Variational formulation
+Let us first introduce some notation needed in the rest of the paper. For any domain �Ω and
+m ≥ 0, we denote by ∥ · ∥m,�Ω the Hm(�Ω) norm. For a convex Lipschitz Ω ⊂ R2, we denote by
+Γ0 and Γ1 two subsets of the boundary, with ∂Ω = Γ0 ∪ Γ1 and Γ0 ∩ Γ1 = ∅. We shall employ
+the notation H1
+0,Γ1(Ω) = {v ∈ H1(Ω), v = 0 on Γ1} and define H1/2
+00 (Γ0) as the trace space of
+H1
+0,Γ1(Ω) equipped with the norm
+∥σ∥1/2,Γ0 =
+inf
+v∈H1
+0,Γ1, v|Γ0=σ ∥v∥1,Ω,
+(15)
+and we shall denote by (., .)1/2,Γ0 the corresponding inner product.
+Finally, duality between H1/2
+00 (Γ0) and its dual space
+�
+H1/2
+00 (Γ0)
+�′
+is written < ., . >Γ0 and
+we shall use as norm in the dual space the equivalent norm ∥.∥−1/2,Γ0 defined as:
+∥µ∥−1/2,Γ0 =
+sup
+v∈H1
+0,Γ1(Ω)
+< µ, v >Γ0
+∥v∥1,Ω
+.
+(16)
+Also, we denote by C > 0 a generic constant with values that may change from line to line.
+Remark 3.1. Notice that the norm (16) is equivalent to the dual norm defined by
+sup
+σ∈H1/2
+00 (Γ0)
+< µ, σ >Γ0
+∥σ∥1/2,Γ0
+.
+Indeed, on one hand, given v ∈ H1
+0,Γ1, its trace on Γ0 (still denoted v) is in H1/2
+00 (Γ0) and
+verifies
+∥v∥1/2,Γ0 ≤ C∥v∥1,Ω.
+Therefore, for all v ∈ H1
+0,Γ1(Ω),
+< µ, v >Γ0
+∥v∥1,Ω
+≤ C
+sup
+σ∈H1/2
+00 (Γ0)
+< µ, σ >Γ0
+∥σ∥1/2,Γ0
+.
+On the other hand, given σ ∈ H1/2
+00 (Γ0), we can construct a lifting function in H1
+0,Γ1, denoted
+vσ, such that vσ|Γ0 = σ and −∆vσ + vσ = 0 in Ω. Then, we have
+< µ, σ >Γ0=< µ, vσ|Γ0 >Γ0
+and
+∥σ∥1/2,Γ0 = ∥vσ∥1,Ω.
+Therefore, for all σ ∈ H1/2
+00 (Γ0),
+< µ, σ >Γ0
+∥σ∥1/2,Γ0
+≤
+sup
+v∈H1
+0,Γ1(Ω)
+< µ, v >Γ0
+∥v∥1,Ω
+.
+6
+
+For simplicity of the presentation, we consider the problem (7)-(12) with homogeneous Dirich-
+let conditions on ΓD. It writes
+Find (u1, u2, uγ) s.t.
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+−∇ · (ϵox∇ui)
+=
+0
+in Ωi,
+i = 1, 2,
+−d(ϵchu′
+γ)′
+=
+ρ − ϵox(∇u1 · n1 + ∇u2 · n2)
+on γ,
+ui
+=
+uγ
+on γ,
+ui
+=
+0
+on Γi
+D,
+ϵox∇ui · ni
+=
+0
+on Γi
+N,
+uγ(0) = uγ(L)
+=
+0.
+(17)
+The functional setting we choose in order to write a variational formulation of the interface
+problem (17) is the following. We define the spaces:
+- V = V 1 × V 2 × V γ, with V i = H1
+0,Γi
+D(Ωi), i = 1, 2 and V γ = H1
+0(γ), equipped with the norm
+||u||V =
+�
+2
+�
+i=1
+||ui||2
+1,Ωi + ||uγ||2
+1,γ
+�1/2
+,
+- Λ = Λ1 × Λ2, with Λi =
+�
+H1/2
+00 (γ)
+�′ equipped with the norm
+||λ||Λ =
+�
+2
+�
+i=1
+||λi||2
+−1/2,γ
+�1/2
+,
+where ∥λi∥−1/2,γ =
+sup
+v∈H1
+0,∂Ωi\γ(Ωi)
+< λi, v >γ
+∥v∥1,Ωi
+.
+For u = (u1, u2, uγ) ∈ V, v = (v1, v2, vγ) ∈ V and µ = (µ1, µ2) ∈ Λ, we define the bilinear
+forms
+a(u, v) =
+2
+�
+i=1
+�
+Ωi
+ϵox∇ui · ∇vi dxdy + d
+�
+γ
+ϵchu′
+γv′
+γ dx,
+b(µ, u) =
+2
+�
+i=1
+< µi, ui|γ − uγ >γ .
+Notice that ui ∈ V i implies ui|γ ∈ H1/2
+00 (γ) (see [22, 14]). Therefore, with uγ ∈ V γ, the duality
+pairing is meaningful. In the following, we will use ui instead of ui|γ in the duality pairing
+unless it might create some confusion.
+We consider the following variational problem:
+Variational formulation:
+Find (u, λ) ∈ V × Λ s.t.
+�
+a(u, v) − b(λ, v)
+=
+�
+γ ρ vγ dx,
+∀v ∈ V,
+b(µ, u)
+=
+0,
+∀µ ∈ Λ.
+(18)
+7
+
+In this formulation, the continuity ui = uγ on γ is imposed as a constraint through the
+Lagrange multipliers λ. The first equation is associated to the two Laplace equations in the
+oxide subdomains as well as the effective Poisson equation on the interface. Indeed, a regular
+solution (u, λ) to (18) is linked to a solution to (17) in the following sense. Taking vγ = 0 in
+the first equation of (18) gives
+�
+Ωi
+ϵox∇ui · ∇vi dxdy− < λi, vi >γ= 0
+∀vi ∈ V i,
+i = 1, 2.
+Since Γ
+i
+N ∩ γ is empty, a Green formula gives for vi ∈ V i
+�
+Ωi
+ϵox∇ui·∇vi dxdy = −
+�
+Ωi
+∇·(ϵox∇ui)vi dxdy+ < ϵox∇ui·ni, vi >γ + < ϵox∇ui·ni, vi >Γi
+N .
+Choosing first vi ∈ H1
+0(Ωi) ⊂ V i, we obtain −∇ · (ϵox∇ui) = 0, a.e. in Ωi.
+Then, for
+vi ∈ H1
+0,γ∪Γi
+D(Ωi) ⊂ V i, we have vi|Γi
+N ∈ H1/2
+00 (Γi
+N) and consequently
+< ϵox∇ui · ni, vi >Γi
+N= 0,
+for all vi ∈ H1/2
+00 (Γi
+N).
+Next, for vi ∈ V i, we obtain
+< λi, vi >γ=< ϵox∇ui · ni, vi >γ,
+for all vi ∈ H1/2
+00 (γ).
+(19)
+It links λi to ϵox∇ui · ni. Finally, taking vi = 0 for i = 1, 2 in the first equation of (18) and
+using (19), we obtain
+d
+�
+γ
+ϵl
+gru′
+γv′
+γ dx +
+2
+�
+i=1
+< ϵox∇ui · ni, vγ >γ=
+�
+γ
+ρvγ dx
+which is a weak form for the second equation of (17). The second equation of (18) imposes
+the continuity ui = uγ on γ in a weak form.
+Remark 3.2. Formulation (18) is an adaptation to the interface problem of the so called
+three-fields-formulation in the form introduced and analyzed in [4] (see also [8, 5]). We notice
+however, that, for the peculiarity of our setting that provides directly coercivity of the bilinear
+form a(u, v) on the whole space V, we don’t really introduce three fields, but rather work with
+two spaces only: V (space for the potentials on Ωi’s and on γ) and Λ (Lagrange multipliers
+for the Dirichlet BC’s on γ, to be interpreted as conormal derivative of ui as seen in (19)).
+Existence and uniqueness results follow from the theory for saddle point problems [7] as stated
+by Theorem 3.5, thanks to the properties of the bilinear forms a(u, v) and b(µ, v) collected
+in the next Lemma.
+8
+
+Lemma 3.3. The bilinear form a(u, v) is continuous on V × V and coercive, that is
+∃α1 > 0 : a(u, v) ≤ α1||u||V||v||V,
+for all u ∈ V,
+for all v ∈ V,
+(20)
+∃α2 > 0 : a(u, u) ≥ α2||u||2
+V,
+for all u ∈ V.
+(21)
+The bilinear form b(µ, v) is continuous on Λ × V, that is
+∃M > 0 : b(µ, v) ≤ M||µ||Λ||v||V,
+for all µ ∈ Λ,
+for all v ∈ V
+(22)
+and it satisfies the inf-sup condition
+∃β > 0 : inf
+λ∈Λ sup
+v∈V
+b(λ, v)
+||λ||Λ||v||V
+≥ β.
+(23)
+Proof. Properties (20)-(22) follow easily. It is also the case for the inf-sup condition (23)
+since, choosing successively v = (v1, 0, 0) and v = (0, v2, 0), we obtain
+sup
+v∈V
+b(λ, v)
+||v||V
+=
+sup
+v∈V
+�
+i < λi, vi − vγ >γ
+||v||V
+≥ 1
+2
+�
+sup
+v1∈V 1
+< λ1, v1 >γ
+||v1||1,Ω1
++ sup
+v2∈V 2
+< λ2, v2 >γ
+||v2||1,Ω2
+�
+≥
+1
+2
+�
+sup
+v1∈H1
+0,∂Ω1\γ(Ω1)
+< λ1, v1 >γ
+||v1||1,Ω1
++
+sup
+v2∈H1
+0,∂Ω2\γ(Ω2)
+< λ2, v2 >γ
+||v2||1,Ω2
+�
+=
+1
+2
+�
+∥λ1∥−1/2,γ + ∥λ2∥−1/2,γ
+�
+≥ 1
+2∥λ∥Λ.
+Remark 3.4. A constant β = 1 could be obtained following [5] where a constant independent
+of the number of subdomains is needed. It relies on the definition of a lifting function for
+functions in H1/2
+00 (γ) as introduced in Remark 3.1. Since for our application this constant
+does not play any role, we do not present this computation.
+Theorem 3.5. For ρ ∈ L2(γ), there exists a unique solution (u, λ) ∈ V ×Λ to problem (18).
+Moreover, the following bounds hold
+||u||V
+≤
+1
+α2
+||ρ||0,γ,
+(24)
+||λ||Λ
+≤
+1
+β (1 + α1
+α2
+)||ρ||0,γ.
+(25)
+Proof. Existence and bounds (24)-(25) follow simply from the general theory [7] thanks to
+Lemma 3.3.
+Remark 3.6. Notice that Theorem 3.5 needs only an inf-sup condition relating the Lagrange
+multipliers space Λi to V i, space of functions on Ωi. This fact, together with the coercivity
+of a(u, v) on the whole V, will allow us to choose the finite dimensional subspace of V γ
+independently of the other spaces.
+9
+
+4
+Finite element approximation
+We introduce here a Galerkin discretization of problem (18), with care in the need of compat-
+ibility between the discrete approximations of V i and Λi. Let {Thi(Ωi)}hi be a shape regular
+family of decompositions of Ωi into triangles and {Ehγ(γ)}hγ be a regular family of decompo-
+sitions of γ into intervals. Moreover, we denote by {Thi(γ)}hi the family of decompositions of
+γ induced by {Thi(Ωi)}hi.
+The discrete spaces for the potential in the domains Ωi’s and on γ are chosen as follows:
+V i
+hi = {v ∈ C0(Ωi), v|T ∈ P1(T) for all T ∈ Thi(Ωi), v = 0 on Γi
+D},
+V γ
+hγ = {v ∈ C0(γ), v|e ∈ P1(e), for all e ∈ Ehγ(γ), v(0) = v(L) = 0},
+Vh = V 1
+h1 × V 2
+h2 × V γ
+hγ ⊂ V.
+On the interface γ the discrete spaces for the Lagrange multipliers are made of linear functions
+on the intervals e ∈ Thi(γ), modified to be constant in the limit intervals. Therefore, denoting
+by ei
+0 and ei
+L the first and the last interval of Thi(γ), we introduce
+Λi
+hi = {λ ∈ C0(γ), λ|e ∈ P0(e) for all e ∈ {ei
+0, ei
+L}, λ|e ∈ P1(e) for all e ∈ Thi(γ)\{ei
+0, ei
+L}},
+Λh = Λ1
+h1 × Λ2
+h2 ⊂ Λ.
+Since the elements of Λi
+hi are p.w. polynomials, the duality pairing is an integral and we can
+write, for λi
+hi ∈ Λi
+hi,
+< λi
+hi, vi >γ=
+�
+γ
+λi
+hivi dx,
+∀vi ∈ V i.
+(26)
+In the following, to simplify the presentation, we use the notation h instead of hi, unless it
+might create some confusion.
+4.1
+Discrete problems
+The discrete variational problem corresponding to (18) is
+Discrete variational formulation:
+Find (uh, λh) ∈ Vh × Λh s.t.
+�
+a(uh, vh) − b(λh, vh)
+=
+�
+γ ρ vγ
+hγ dx, ∀vh ∈ Vh,
+b(µh, uh)
+=
+0,
+∀µh ∈ Λh.
+(27)
+First of all we want to enlighten the interface structure of formulation (27), starting from its
+algebraic form. We introduce the following bilinear forms
+ai(ui
+h, vi
+h)
+=
+�
+Ωi ϵox∇ui
+h · ∇vi
+h dxdy,
+aγ(uγ
+hγ, vγ
+hγ)
+=
+d
+�
+γ ϵch(uγ
+hγ)′(vγ
+hγ)′ dx,
+bi(µi
+h, ui
+h)
+=
+�
+γ µi
+hui
+h dx,
+bi
+γ(µi
+h, uγ
+hγ)
+=
+�
+γ µi
+huγ
+hγ dx,
+10
+
+with i = 1, 2. Then, problem (27) can be written in matrix form as follows
+�
+�������
+A1
+0
+−BT
+1
+0
+0
+0
+A2
+0
+−BT
+2
+0
+B1
+0
+0
+0
+−B1
+γ
+0
+0
+B2
+0
+−B2
+γ
+0
+0
+(B1
+γ)T
+(B2
+γ)T
+Aγ
+�
+�������
+�
+�������
+u1
+u2
+λ1
+λ2
+uγ
+�
+�������
+=
+�
+�������
+0
+0
+0
+0
+r
+�
+�������
+,
+(28)
+where ui, λi, uγ denote the unknown coefficient vectors of ui
+h, λi
+h, uγ
+hγ, respectively, Ai, Aγ, Bi,
+Bi
+γ correspond to the different bilinear forms defined above, and r is the vector corresponding
+to the right hand side.
+Since Ai’s are obviously positive definite, we can first eliminate the unknown vectors ui’s.
+Then, we can eliminate the unknown vectors λi’s since it is easy to check that Ker BT
+i = 0.
+It leads to the following linear system acting only on the unknown vector uγ
+�
+Aγ +
+2
+�
+i=1
+(Bi
+γ)T(BiA−1
+i BT
+i )−1Bi
+γ
+�
+uγ = r.
+(29)
+We can reinterpret (29) in terms of a bilinear form acting on V γ
+hγ × V γ
+hγ. It is not difficult to
+see that, starting from the first equation of (27), with vh = (0, 0, vγ
+hγ), we obtain the following
+problem:
+Find uγ
+hγ ∈ V γ
+hγ s.t.
+aγ(uγ
+hγ, vγ
+hγ) +
+2
+�
+i=1
+bi
+γ(λi
+h(uγ
+hγ), vγ
+hγ) =
+�
+γ
+ρvγ
+hγ dx
+∀vγ
+hγ ∈ V γ
+hγ.
+(30)
+For a given uγ
+hγ, λi
+h(uγ
+hγ) in (30) is the second component of the solution to the following 2D
+problem :
+Find (ui
+h(uγ
+hγ), λi
+h(uγ
+hγ)) ∈ V i
+h × Λi
+h s.t.
+�
+ai(ui
+h(uγ
+hγ), vi
+h) − bi(λi
+h(uγ
+hγ), vi
+h)
+=
+0
+∀vi
+h ∈ V i
+h,
+bi(µi
+h, ui
+h(uγ
+hγ))
+=
+bi
+γ(µi
+h, uγ
+hγ)
+∀µi
+h ∈ Λi
+h.
+(31)
+The matrix form of (30) (with (31)) is indeed (29).
+We see that in order to solve the interface problem (30) (which is a well posed problem for
+a given λi
+h), we need to solve the saddle point problems (31) for i = 1, 2, for which an inf-sup
+condition linking only V i
+h and Λi
+h is required (without connection with Vγ). It was already
+anticipated in Remark 3.6 and it will be explicit in the next subsection, where the analysis of
+formulation (27) is done.
+Remark 4.1. Notice that the 1D interface problem (30) includes (through λi
+h(uγ
+hγ) ) a discrete
+Poincar´e-Steklov operator that maps the Dirichlet datum uγ
+hγ on γ into λi
+h which, as explained
+11
+
+in (19) at the continuous level, is linked to the conormal derivative of ui
+h on γ. Observing
+that the Poincar´e-Steklov operator is an operator of order 1, with a strict analogy to the 1/2-
+Laplacian, it is related to [19], where the specificity of the surface particle density leads to
+construct the self-consistent potential for a graphene sheet as the solution on the plane of a
+fractional Laplacian.
+4.2
+Well-posedness and error estimates
+To prove existence and uniqueness of a solution to (27) as stated by Theorem 4.4, we resort to
+Fortin’s argument. More precisely, in order to obtain the discrete inf-sup condition (written
+later on in (44)) as well as some error estimates, we introduce in the following Lemma a
+projector πi
+h : L2(γ) −→ W i
+h for the interface functions, where
+W i
+h = V i
+h|γ
+is the trace space of V i
+h on γ. Notice that, due to the homogeneous conditions on Γi
+D in the
+definition of V i
+h, a function wi
+h ∈ W i
+h satisfies wi
+h(0) = wi
+h(L) = 0. So the dimension of W i
+h is
+equal to the number of intervals of Thi(γ) minus 1, matching the dimension of Λi
+h.
+Lemma 4.2. There exists πi
+h : L2(γ) −→ W i
+h defined by
+�
+γ
+λi
+h(πi
+hη − η) dx = 0,
+∀λi
+h ∈ Λi
+h,
+(32)
+such that, for all η ∈ H1/2
+00 (γ),
+||πi
+hη||1/2,γ ≤ C||η||1/2,γ.
+(33)
+Proof. For any wi
+h ∈ W i
+h, there exists λi
+h(wi
+h) ∈ Λi
+h, such that
+�
+γ
+λi
+h(wi
+h)wi
+h dx ≥ ||wi
+h||2
+0,γ,
+(34)
+which implies uniqueness (and consequently existence) of the linear operator πi
+h. Indeed, by
+choosing λi
+h(wi
+h)|e = wi
+h|e for e ∈ Thi(γ)\{ei
+0, ei
+L}, noting that the constant value λi
+h(wi
+h)|ei
+0
+coincides with wi
+h evaluated in the end point of ei
+0 (and analogously for λi
+h(wi
+h)|ei
+L), we can
+easily obtain (34) and the following bound
+||λi
+h(wi
+h)||0,γ ≤ C||wi
+h||0,γ.
+(35)
+Then, (34) and (35) give
+sup
+λi
+h∈Λi
+h
+�
+γ λi
+hwi
+h dx
+||λi
+h||0,γ
+≥ 1
+C ||wi
+h||0,γ.
+(36)
+12
+
+Moreover, by using (32), for each ηh ∈ W i
+h, (36) gives
+||ηh − πi
+hη||0,γ ≤ C sup
+λi
+h∈Λi
+h
+�
+γ λi
+h(ηh − πi
+hη) dx
+||λi
+h||0,γ
+= C sup
+λi
+h∈Λi
+h
+�
+γ λi
+h(ηh − η) dx
+||λi
+h||0,γ
+≤ C||η − ηh||0,γ.
+Consequently, using a triangular inequality and classical approximation results, see [12] e.g.,
+we obtain
+||η − πi
+hη||0,γ ≤ C inf
+ηh∈W i
+h
+||η − ηh||0,γ ≤ Ch1/2
+i
+||η||1/2,γ.
+(37)
+Next, we can obtain the uniform bound (33) with the same argument as in [4, Lemma 2].
+For completeness, we give a sketch of the proof. We introduce �πi
+h : H1/2
+00 (γ) −→ W i
+h as the
+projection induced by the H1/2
+00 (γ) norm, defined by
+||�πi
+hη − η||1/2,γ =
+inf
+ηh∈W i
+h
+||η − ηh||1/2,γ,
+η ∈ H1/2
+00 (γ).
+Since trivially ||�πi
+hη||1/2,γ ≤ C||η||1/2,γ, by applying triangular inequalities and a classical
+inverse inequality, we obtain
+||πi
+hη||1/2,γ
+≤
+C||η||1/2,γ + h−1/2
+i
+(||πi
+hη − η||0,γ + ||η − �πi
+hη||0,γ).
+(38)
+Using classical duality arguments, it is possible to prove that
+||η − �πi
+hη||0,γ ≤ Ch1/2
+i
+||η||1/2,γ.
+(39)
+Indeed, let χ(f) ∈ H1/2
+00 (γ) be the solution of the problem
+(χ(f), ξ)1/2,γ =
+�
+γ
+fξdx
+∀ξ ∈ H1/2
+00 (γ).
+(40)
+If f ∈ L2(γ) then χ(f) ∈ H1
+0(γ) and the following bound holds
+||χ(f)||1,γ ≤ ||f||0,γ.
+(41)
+Since (χh, η − �πi
+hη)1/2,γ = 0 for all χh ∈ W i
+h, starting from (40) with f = ξ = η − �πi
+hη, we
+obtain
+||η − �πi
+hη||2
+0,γ = (χ(η − �πi
+hη), η − �πi
+hη)1/2,γ
+=
+inf
+χh∈W i
+h
+(χ(η − �πi
+hη) − χh, η − �πi
+hη)1/2,γ.
+Then, using a classical approximation result, it gives the following estimate
+||η − �πi
+hη||2
+0,γ
+≤
+inf
+χh∈W i
+h
+||χ(η − �πi
+hη) − χh||1/2,γ||η − �πi
+hη||1/2,γ
+≤
+Ch1/2
+i
+||χ(η − �πi
+hη)||1,γ||η − �πi
+hη||1/2,γ.
+Thus (39) follows, thanks to (41) and to the boundedness of ||�πi
+hη||1/2,γ.
+Finally, using (37) and (39) in (38), we obtain the bound (33) and conclude the proof.
+13
+
+Remark 4.3. A projector with similar properties could be also obtained for a more general
+definition of Λi
+h (and of W i
+h). For instance, Λi
+h could be defined on a decomposition Ehλ(γ)
+different from Thi(γ), with the only requirement that all nodes of Ehλ(γ) are also nodes of
+Thi(γ) and W i
+h could be a subspace of the trace space V i
+hi|γ defined on the same decomposition
+Ehλ(γ). Since, for our application, λi
+h plays only the role of a working quantity, we do not
+discuss this issue further.
+Theorem 4.4. For ρ ∈ L2(γ), there exists a unique solution (uh, λh) ∈ Vh × Λh to problem
+(27). Moreover, the following error estimate holds
+||u − uh||V + ||λ − λh||Λ ≤ C
+�
+inf
+vh∈Vh ||u − vh||V +
+inf
+µh∈Λh ||λ − µh||Λ
+�
+.
+(42)
+Proof. Since the embedding Vh ⊂ V implies immediately the coerciveness
+a(uh, uh) ≥ α2||uh||2
+V
+∀uh ∈ Vh,
+(43)
+we only have to prove the discrete inf-sup condition
+∃δ > 0,
+inf
+λh∈Λh sup
+vh∈Vh
+b(λh, vh)
+∥vh∥V∥λh∥Λ
+≥ δ.
+(44)
+As for the continuous case, it is enough to show that it exists δ > 0 such that, for all λi
+h ∈ Λi
+h,
+||λi
+h||−1/2,γ ≤ δ sup
+vi
+h∈V i
+h
+�
+γ λi
+hvi
+hdx
+||vi
+h||1,Ωi
+,
+(45)
+where we used (26).
+This inequality relies on the existence of a bounded projector Πi
+h :
+V i −→ V i
+h such that, for all vi ∈ V i,
+�
+γ
+λi
+h(Πi
+hvi − vi)dx
+=
+0
+∀λi
+h ∈ Λi
+h,
+(46)
+||Πi
+hvi||1,Ωi
+≤
+κ||vi||1,Ωi,
+(47)
+with κ > 0 constant independent of h. Given vi ∈ V i, let us define Πi
+hvi in V i
+h as the discrete
+lifting of πi
+hvi, that is
+ai(Πi
+hvi, vi
+h)
+=
+0
+∀vi
+h ∈ V i
+h,
+(Πi
+hvi)|γ
+=
+πi
+h(vi|γ).
+We emphasize that, due to the homogeneous boundary condition on Γi
+D, such a lifting exists
+thanks to the null value of πi
+hvi at the end points of γ. (46) is trivially satisfied because of
+(32). The bound (47) is obtain combining the classical result ||Πi
+hvi||1,Ωi ≤ C||πi
+hvi||1/2,γ (that
+can be found e.g. in [6, Lemma 3.2.]), the bound (33) that holds since vi|γ ∈ H1/2
+00 (γ) and the
+trace theorem.
+14
+
+Now, since Λi
+h ⊂ Λi, we have
+||λi
+h||−1/2,γ ≤ sup
+vi∈V i
+�
+γ λi
+hvidx
+||vi||1,Ωi
+.
+Using (46) and (47) , we obtain that, for all vi ∈ V i,
+�
+γ λi
+hvidx
+||vi||1,Ωi
+≤ κ
+�
+γ λi
+hΠi
+hvidx
+||Πi
+hvi||1,Ωi
+≤ κ sup
+vi
+h∈V i
+h
+�
+γ λi
+hvi
+hdx
+||vi
+h||1,Ωi
+.
+Thus, (45) follows with δ = κ. The discrete inf-sup condition (44) and the coerciviness (43)
+imply existence and uniqueness of the discrete solution as well as the error bound (42).
+Remark 4.5. As for the continuous case and as suggested by the formulation (30)-(31), the
+discrete inf-sup condition (44) relates only the Lagrange multipliers space Λi
+h to the space
+V i
+h. It allows us to choose V γ
+hγ independently of the other spaces. This point is particularly
+interesting when the density ρ appearing in the second member of (27) requires a refinement
+of the interface discretization.
+An optimal order of convergence is obtained for a regular ui as in the next theorem.
+Theorem 4.6. Assume ui ∈ H2(Ωi), i = 1, 2. Then,
+||u − uh||V + ||λ − λh||Λ ≤ C
+� �
+i
+h2
+i ||ui||2
+2,Ωi + h2
+γ||uγ||2
+2,γ
+�1/2
+.
+Proof. If ui ∈ H2(Ωi) then ϵox∇ui · ni ∈ H1/2(γ) and uγ ∈ H2(γ). Let us introduce the
+Lagrange interpolation operators Ii
+hi : V i −→ V i
+hi and Iγ
+hγ : V γ −→ V γ
+hγ, and the L2-projector
+Pi
+hi : L2(γ) −→ Λi
+hi, for which the following bounds are classical
+∥ui − Ii
+hiui∥1,Ωi ≤ Chi||ui||2,Ωi,
+∥uγ − Iγ
+hγuγ∥1,γ ≤ Chγ||uγ||2,γ,
+∥λi − Pi
+hiλi∥0,γ ≤ Ch1/2
+i
+∥λi∥1/2,γ.
+For completing the bound for the λ component of the error we again follow [4]. Due to the
+regularity of ϵox∇ui · ni, equation (19) becomes, for vi ∈ V i,
+< λi, vi >γ=
+�
+γ
+ϵox∇ui · ni vi dx.
+Thus, we can write
+∥λi∥−1/2,γ ≤ sup
+vi∈V i
+�
+γ ϵox∇ui · ni vi dx
+||vi||1,Ωi
+.
+15
+
+It gives
+inf
+µi
+hi∈Λi
+hi
+∥λi − µi
+hi∥−1/2,γ
+≤
+sup
+vi∈V i
+�
+γ
+�
+ϵox∇ui · ni − Pi
+hi(ϵox∇ui · ni)
+�
+vi dx
+||vi||1,Ωi
+=
+sup
+vi∈V i
+�
+γ
+�
+ϵox∇ui · ni − Pi
+hi(ϵox∇ui · ni)
+�
+(vi − Pi
+hi(vi)) dx
+||vi||1,Ωi
+≤
+hi∥ϵox∇ui · ni∥1/2,γ sup
+vi∈V i
+∥vi∥1/2,γ
+||vi||1,Ωi
+≤ Chi∥ui∥2,Ωi.
+Recalling then (42), the desired estimate easily follows.
+5
+Robin type condition at interface
+We now consider the Robin type condition introduced in (14) rather than the condition (9).
+It is especially interesting to tackle an anisotropic channel permittivity given by the diagonal
+tensor (13). With homogeneous Dirichlet conditions on ΓD, the problem writes
+Find (u1, u2, uγ) s.t.
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+−∇ · (ϵox∇ui)
+=
+0
+in Ωi,
+i = 1, 2,
+−d(ϵ//u′
+γ)′
+=
+ρ − ϵox(∇u1 · n1 + ∇u2 · n2)
+on γ,
+(ui − uγ) + α ϵox∇ui · ni
+=
+0,
+on γ,
+ui
+=
+0
+on Γi
+D,
+ϵox∇ui · ni
+=
+0
+on Γi
+N,
+uγ(0) = uγ(L)
+=
+0.
+(48)
+We introduce the space Q =
+�
+L2(γ)
+�2 ⊂ Λ and we consider the following variational problem:
+Variational formulation - Robin type condition:
+Find (u, λ) ∈ V × Q s.t.
+�
+a(u, v)
+−
+b(λ, v)
+=
+�
+γ ρ vγ dx,
+∀v ∈ V,
+b(µ, u)
++
+α c(λ, µ)
+=
+0,
+∀µ ∈ Q,
+(49)
+where c is the bilinear form defined by
+c(λ, µ) =
+2
+�
+i=1
+�
+γ
+λiµi dx.
+Notice that due to the bilinear form c, this formulation requires more regularity on the
+Lagrange multipliers λ, compared to (18).
+The problem is coercive on V × Q, so we easily have existence and uniqueness of the
+solution by Lax-Milgram theorem, with the following bound
+∥u∥2
+V + α∥λ∥2
+Q ≤ C∥ρ∥2
+0,γ.
+16
+
+In order to retrieve a control on λ independent on α (and thus on the effective dielectric
+thickness d), following [7], we can use the inf-sup condition on the largest space Λ introduced
+in (23). Indeed,
+β∥λ∥Λ
+≤
+sup
+v∈V
+b(λ, v)
+||v||V
+= sup
+v∈V
+a(u, v) −
+�
+γ ρ vγ dx
+||v||V
+≤ C(||u||V + ∥ρ∥0,γ).
+Putting the two estimates together, we obtain the result summarized in the following theorem:
+Theorem 5.1. For ρ ∈ L2(γ), there exists a unique solution (u, λ) ∈ V×Q to problem (49).
+Moreover, the following bound holds
+∥u∥2
+V + ∥λ∥2
+Λ + α∥λ∥2
+Q ≤ C∥ρ∥2
+0,γ.
+(50)
+At the discrete level, we notice that Λh defined in Section 4 is contained in Q. Conse-
+quently, a discrete variational problem associated to (49) is
+Discrete variational formulation - Robin type condition:
+Find (uh, λh) ∈ Vh × Λh s.t.
+�
+a(uh, vh)
+−
+b(λh, vh)
+=
+�
+γ ρ vγ
+hγ dx, ∀vh ∈ Vh,
+b(µh, uh)
++
+α c(λh, µh)
+=
+0,
+∀µh ∈ Λh.
+(51)
+Using the coerciveness of a in V and c in Q and the continuity bounds of the three bilinear
+forms, we obtain after standard computations
+∥u − uh∥2
+V + α∥λ − λh∥2
+Q ≤ C( inf
+vh∈Vh ∥u − vh∥2
+V + α inf
+µh∈Λh ∥λ − µh∥2
+Q).
+Again, an error estimate independent on α can then be obtained using the discrete inf-sup
+condition (44). Indeed, for any µh ∈ Λh, we have
+β∥λh − µh∥Λ ≤ sup
+vh∈Vh
+b(λh − µh, vh)
+∥vh∥V
+≤
+sup
+vh∈Vh
+b(λ − µh, vh) + a(uh − u, vh)
+∥vh∥V
+≤
+M∥λ − µh∥Λ + α1∥u − uh∥V,
+where M and α1 are positive constants defined in Lemma 3.3. With these estimates, we easily
+obtain the result summarized in the following theorem:
+Theorem 5.2. For ρ ∈ L2(γ), there exists a unique solution (uh, λh) ∈ Vh × Λh to problem
+(51) and the following error estimate holds
+||u − uh||2
+V + ∥λ − λh∥2
+Λ + α||λ − λh||2
+Q
+≤ C
+�
+inf
+vh∈Vh ||u − vh||2
+V +
+inf
+µh∈Λh ∥λ − µh∥2
+Λ + α inf
+µh∈Λh ||λ − µh||2
+Q
+�
+.
+(52)
+17
+
+As for the case of the continuity condition (9) discussed in the previous section, we can
+write the algebraic form of (51), emphasizing the interface structure of the formulation. We
+introduce first the bilinear form
+ci(λi
+h, µi
+h) =
+�
+γ
+λi
+hµi
+h dx,
+as well as the associated matrix Ci, with i = 1, 2. Then, problem (51) can be written in
+matrix form as follows
+�
+�������
+A1
+0
+−BT
+1
+0
+0
+0
+A2
+0
+−BT
+2
+0
+B1
+0
+αC1
+0
+−B1
+γ
+0
+0
+B2
+αC2
+−B2
+γ
+0
+0
+(B1
+γ)T
+(B2
+γ)T
+Aγ
+�
+�������
+�
+�������
+u1
+u2
+λ1
+λ2
+uγ
+�
+�������
+=
+�
+�������
+0
+0
+0
+0
+r
+�
+�������
+.
+(53)
+Doing the same eliminations than the ones leading to (29) and using the fact that Ci’s are
+positive definite, we obtain the following linear system acting only on the unknown vector uγ
+�
+Aγ +
+2
+�
+i=1
+(Bi
+γ)T(BiA−1
+i BT
+i + αCi)−1Bi
+γ
+�
+uγ = r.
+(54)
+Again, we can reinterpret (54) in terms of a bilinear form acting on V γ
+hγ ×V γ
+hγ. More precisely,
+uγ
+hγ is still solution of (30) depending on λi
+h(uγ
+hγ) that is now the second component of the
+solution to the following 2D problem:
+Find uγ
+hγ ∈ V γ
+hγ s.t.
+�
+ai(ui
+h(uγ
+hγ), vi
+h) − bi(λi
+h(uγ
+hγ), vi
+h)
+=
+0
+∀vi
+h ∈ V i
+h,
+bi(µi
+h, ui
+h(uγ
+hγ)) + αci(λi
+h(uγ
+hγ), µi
+h)
+=
+bi
+γ(µi
+h, uγ
+hγ)
+∀µi
+h ∈ Λi
+h.
+(55)
+6
+Numerical experiments
+To illustrate the approach, we present some numerical tests for a Graphene Field-Effect Tran-
+sistor (GFET). Self-consistent simulations for such a structure are performed for instance in
+[27, 26]. Here, we consider a longitudinal length L = 60 nm and a transversal length l = 4
+nm. In the y direction, it contains a single layer of graphene, characterized by an effective
+dielectric thickness d = 0.2 nm and a graphene permittivity constant ϵch = 13.9 ϵ0 sandwiched
+between two layers of dielectric SiO2 (ϵox = 3.9 ϵ0) [15], ϵ0 being the permittivity in vacuum.
+Only in Subsection 6.4, where the condition (9) is replaced by the Robin condition (14) (as
+analyzed in Section 5), the permittivity constant ϵch is replaced by a diagonal tensor with an
+in-plane permittivity ϵ// = 13.9 ϵ0 and an out-of-plane permittivity ϵ⊥ = 6.9 ϵ0. As proposed
+in [27] and schematically represented in Fig.1, the transport direction x is composed of a 20
+18
+
+nm active zone, with a doping concentration N −
+dop = 1014 m−2, sandwiched between a 20 nm
+Source region and a 20 nm Drain region, both highly doped (N +
+dop = 1017 m−2). Source and
+Drain potentials are imposed on the entire vertical edges {0} × (− l
+2, l
+2) and {L} × (− l
+2, l
+2).
+Most of the results presented here correspond to thermal equilibrium (zero applied Drain-
+Source voltage VDS = VD − VS = 0.0 V). For out-of-equilibrium results, we use an iterative
+process, starting with VDS = 0 V and then incrementing VDS with an increment step of 0.01
+V. Finally, a Gate potential VG is imposed on {± l
+2}×]xG, L − xG[, with xG = 10 nm, to
+modulate the particle transport. Since the effect of changing the gate voltage is as expected
+for a double gate device and it does not infer on the interface approach, we only consider here
+the case VG = 0 V.
+Figure 1: Schematic representation of the GFET.
+In the experiments presented below, we use a regular uniform discretization. More pre-
+cisely, the triangulation {Thi(Ωi)}hi is obtained defining a cartesian grid with Nx and Ny
+edges respectively in the x and in the y direction. We define hi as the scaled triangle diam-
+eter
+�
+1
+N2x + l2
+L2
+1
+N2y . Moreover, the decomposition {Ehγ(γ)}hγ is a uniform decomposition of γ
+that use Nγ intervals and we define hγ as
+1
+Nγ .
+6.1
+Drift-Diffusion Poisson coupling
+In this paper, we consider that the surface particle density ρ is solution of the classical
+stationary drift-diffusion equation
+J′(x) = 0,
+with
+J(x) = qµ
+�
+UTρ′(x) − ρ(x)u′
+γ(x)
+�
+,
+(56)
+completed with the neutrality boundary conditions
+ρ(0) = ρ(L) = N +
+dop.
+(57)
+In the expression of the electron current density J, q is the elementary charge, kB the Boltz-
+mann constant, T the temperature taken equal to 77 K, UT = kBT
+q
+the thermal potential and
+19
+
+VG
+1
+2
+21
+人
+0
+N dop
+VD
+Vs
+22
+2
+2
+0
+CG
+L-G
+Lµ the (constant) electron mobility that we choose equal to 4.5 × 103 cm2.V−1.s−1 as proposed
+in [13].
+Different transport models, that have been recently derived or investigated, can be used to
+perform accurate self-consistent simulations of a GFET. For instance, a bipolar drift-diffusion
+model with peculiar mobility functions deduced from semiclassical Boltzmann equations have
+been considered in [26]. Quantum effects can be added to such a drift-diffusion model or
+to a hydrodynamical models (see e.g. [31, 32, 23]). At a microscopic level, a full quantum
+description can be done using a Dirac-like equation that describes the chiral character of
+massless fermions in graphene [11, 27]. A phase-space formulation can also be considered
+thanks to the Wigner formalism as proposed for instance in [25]. Finally, we mention that
+different description levels can be spatially coupled deriving quantum interface conditions
+as done in [3, 2] in the case of graphene. In this work, since our aim is to focus on the
+numerical resolution of the Poisson equation and to present the efficiency of the proposed
+interface approach, we have chosen not to enrich the transport description and to perform
+(non realistic) self-consistent computations using (56).
+Notice that, at thermal equilibrium, the solution of (56)-(57) is explicitly expressed with
+respect to uγ by
+ρ(x) = N +
+dope
+uγ(x)
+UT .
+(58)
+Out-of-equilibrium, we use the decomposition {Ehγ(γ)}hγ (same decomposition than the one
+used for uγ
+hγ) to discretize equation (56) by means of a Scharfetter-Gummel scheme (see e.g.
+[9] for details).
+To treat the nonlinearity of the Drift-Diffusion Poisson coupling, we use the linearized
+Gummel iterative process as in [18]. In this interface context, it amounts to solve, for a given
+ρk, the modified Poisson equation
+�
+a(uk+1, v) − b(λk+1, v) +
+1
+UT
+�
+γ ρkuk+1
+γ
+vγ dx
+=
+�
+γ ρkvγ dx +
+1
+UT
+�
+γ ρkuk
+γvγ dx
+b(µk+1, uk+1)
+=
+0
+,
+(59)
+iteratively followed by the resolution of the transport equation (56). We emphasize that,
+in (59), only the interface variable uγ appears in the additional terms (compared to (18)).
+Consequently, the costly assembling of the matrix can be done once at the beginning of the
+code and, at each Gummel iteration k, only few entries have to be updated for taking care of
+the non-linearity, as illustrated in Fig.2. The assembling cost is then comparable to the one
+for a linear problem, contributing to the computational efficiency of our interface approach.
+First, we present the potential and the density profiles obtained for our test case. Fig.3
+represents the self-consistent potential at thermal equilibrium, showing that its shape is clearly
+driven by the chosen doping profile. Different applied voltages are then considered in Fig.4
+revealing the particle transport from Source to Drain.
+20
+
+Figure 2: Non zeros entries for the case Nx = 60, Ny = 16 and Nγ = 240 (variable ordering:
+(u1
+h, u2
+h, λ1
+h, λ2
+h, uγ
+hγ)). Entries affected by the Gummel iterative process are indicated in red.
+Figure 3: 2D potential energy −u(x, y) (left) and interface potential energy −uγ(x) (right) at
+thermal equilibrium.
+Figure 4: Interface potential energy −uγ(x) (left) and surface density ρ(x) (right) for different
+applied voltages.
+21
+
+0
+.........................
+................................
+.............................
+200
+400
+...............................
+600
+.....................
+..........................
+800
+1000
+...
+1200
+1400
+0
+200
+400
+600
+800
+1000
+1200
+1400potential energy (ev)
+2
+0.02
+1
+0.015
+(wu)
+0
+0.01
+y
+-1
+0.005
+-2
+0
+0
+20
+40
+60
+x (nm)0.025
+0.02
+I energy (eV)
+0.015
+0.01
+potential
+0.005
+0
+-0.005
+0
+10
+20
+30
+40
+50
+60
+x (nm)0.05
+0
+(eV)
+6-0.05
+ener
+V
+:OV
+ potential
+-0.1
+V
+V
+=0.15V
+-0.15
+DS
+V
+=0.2 V
+DS
+-0.2
+0
+10
+20
+30
+40
+50
+60
+x (nm)×1016
+12
+10
+2
+ surface density (m
+8
+6
+4
+DS
+V
+:0.2 V
+2
+DS
+0
+0
+10
+20
+30
+40
+50
+60
+x (nm)6.2
+Convergence history
+We study the numerical convergence of our approach. At thermal equilibrium, the density
+depends non linearly on the potential as expressed in (58). It fulfills the properties of bound-
+edness and monotonicity in the sense that for uγ, vγ ∈ L∞(γ) there exist κ1, κ2 > 0 such
+that
+∥ρ(uγ) − ρ(vγ)∥0,γ ≤ κ1∥uγ − vγ∥0,γ,
+(60)
+�
+γ
+(ρ(uγ) − ρ(vγ))(uγ − vγ) dx ≥ κ2∥uγ − vγ∥2
+0,γ.
+(61)
+Thus, results obtained in Theorem 4.4 (and therefore in Theorem 4.6) can be easily extended
+to this case. In addition, we are also interested in studying numerically the behavior for
+non-zero applied voltages.
+We compute the solution for different meshes defined by Nx = Nγ = 60×2i and Ny = 2i+2,
+i = 0, . . . , 4 and we choose the one obtained for i = 4 (Nx = Nγ = 960 and Ny = 64) as
+reference solution. Relative errors corresponding to
+E1D =
+∥uγ
+hγ,ref − uγ
+hγ∥1,γ
+∥uγ
+hγ,ref∥1,γ
+and
+E2D =
+� �2
+i=1 ∥ui
+hi,ref − ui
+hi∥2
+1,Ωi
+�1/2
+� �2
+i=1 ∥ui
+hi,ref∥2
+1,Ωi
+�1/2
+,
+(62)
+are presented in Fig.5, looking respectively at the interface component uγ
+hγ (left) and at the
+oxide components ui
+hi (right). As expected, straight lines of slope 1 are obtained for thermal
+equilibrium, in both cases. For non-zero applied voltages, we observe however a slightly lower
+slope for the oxide components. This behavior can be explained by a deterioration of the
+regularity of the solution at the junctions between the Neumann and the Dirichlet boundary
+Figure 5: Relative H1 errors with respect to h in logarithmic scale for the interface component
+(left) and the oxide ones (right).
+22
+
+error on u?
+工
+s=0 V, slope=1.0453
+=0.01 V, slope=1.046
+=0.04 V, slope=1.0522
+=0.08 V, slope=1.058
+.
+10-2error on u,
+工
+=0 V, slope=1.0493
+=0.01 V, slope=0.87979
+=0.04 V, slope=0.71818
+=0.08 V, slope=0.707
+10-2
+hFigure 6: Relative L∞ errors with respect to h in logarithmic scale for the oxide components.
+conditions (and in particular at gate extremities). When considering the L∞ errors presented
+in Fig.6 the loss in the convergence rate for non-zero applied voltages is more evident. Indeed,
+the maximum error is located along y = 0 at the end of the channel for thermal equilibrium
+and at y = ± l
+2 around the gate extremity for non-zero applied voltages.
+In self-consistent computations it is also interesting to look at the error behavior for the
+density, as done in Fig.7. The rate of convergence for the H1 error is shown to be 1, both at
+thermal equilibrium (i.e. when ρ is explicitly expressed with respect to uγ by (58)) and with
+different applied voltages.
+Figure 7: Relative H1 errors with respect to h in logarithmic scale for the surface density ρ.
+23
+
+d
+error on
+10
+工
+=0 V, slope=1.0658
+=0.01 V, slope=1.066
+=0.04 V, slope=1.0677
+=0.08 V, slope=1.0789
+DS
+10~2
+h10°
+10
+=0 V, slope=1.7738
+=0.01 V, slope=0.67985
+10~3
+=0.04 V, slope=0.67996
+=0.08 V, slope=0.68001
+10
+10-26.3
+Number of discretization points
+Next, we discuss the effect of the number of discretization points Ny, Nx and Nγ on the
+error.
+We present results at thermal equilibrium and for VDS = 0.04 V. Similar results
+are obtained for other non-zero applied voltages. The reference solution is chosen as in the
+previous subsection.
+First, we fix Nx = Nγ and we look at the errors varying Ny. Results are presented in Table
+1 for Nx = Nγ = 60. The process bringing to the interface model reduces the importance of
+the transversal discretization around the single layer material and, indeed, we observe that
+the choice of Ny slightly affects the result. It is especially true when we do not consider the
+coarser mesh (Ny = 8). That is why, in the following, we fix Ny = 16 and focus on the
+discretization along the transport direction.
+VDS = 0 V
+VDS = 0.04 V
+Ny
+E1D
+E2D
+E1D
+E2D
+8
+1.9557e-01
+8.7731e-02
+1.6695e-01
+1.6448e-01
+16
+1.9567e-01
+8.1467e-02
+1.6707e-01
+1.5721e-01
+32
+1.9570e-01
+7.8688e-02
+1.6711e-01
+1.5496e-01
+64
+1.9571e-01
+7.7546e-02
+1.6713e-01
+1.5387e-01
+Table 1: Relative H1 errors varying Ny for Nx = Nγ = 60.
+As we mentioned, an interesting point of this approach is that the interface grid does not
+need to match with the one of the oxide subdomains. In other words, Nγ can be chosen
+different from Nx. In Tables 2 and 3, we present the H1 errors for the interface component
+uγ
+hγ as well as the density ρ for a fixed Ny = 16 either taking Nx = Nγ (Table 2) or fixing Nx
+and varying Nγ (Table 3).
+VDS = 0 V
+VDS = 0.04 V
+Nx = Nγ
+E1D
+∥ρ−ρref∥1,γ
+∥ρref∥1,γ
+E1D
+∥ρ−ρref∥1,γ
+∥ρref∥1,γ
+60
+1.9567e-01
+2.5930e-01
+1.6707e-01
+2.6920e-01
+120
+1.0079e-01
+1.2674e-01
+8.4934e-02
+1.3105e-01
+240
+4.9450e-02
+6.2400e-02
+4.1631e-02
+6.4557e-02
+480
+2.2167e-02
+2.7980e-02
+1.8681e-02
+2.8969e-02
+Table 2: Relative H1 errors of the interface potential uγ
+hγ and the density ρ in the case
+Nx = Nγ.
+24
+
+VDS = 0 V
+VDS = 0.04 V
+Nx
+Nγ
+E1D
+∥ρ−ρref∥1,γ
+∥ρref∥1,γ
+E1D
+∥ρ−ρref∥1,γ
+∥ρref∥1,γ
+30
+3.3376e-01
+5.4465e-01
+2.7736e-01
+5.5921e-01
+120
+1.0177e-01
+1.2709e-01
+8.7112e-02
+1.3215e-01
+60
+240
+5.3930e-02
+6.4590e-02
+4.8621e-02
+6.9023e-02
+480
+3.2494e-02
+3.3796e-02
+3.2738e-02
+3.9536e-02
+960
+2.4381e-02
+1.9597e-02
+2.7391e-02
+2.7634e-02
+Table 3: Relative H1 errors of the interface potential uγ
+hγ and the density ρ for a given Nx
+and different Nγ.
+We observe that the error for the 1D component decreases when increasing the grid points
+on the interface. In particular, the errors obtained for Nx = 60 and Nγ = 240 are smaller
+than the ones for Nx = Nγ = 60 and comparable to the ones for Nx = Nγ = 240. Since the
+cost of solving the linear system is driven by the number of degrees of freedom in the oxide
+region, it is therefore very appealing to use a relatively coarse mesh in the oxide region and
+a finer grid on the interface.
+6.4
+Anisotropic permittivity
+We now consider the case where the channel dielectric permittivity is given by the diagonal
+tensor (13). We have seen that the effective equation (8) contains only the in-plane permit-
+tivity ϵ// and that a possibility to retain the information of the out-of-plane permittivity ϵ⊥
+is to replace the Dirichlet type continuity conditions (9) by the Robin type condition (14).
+In this part, we perform a comparison between these two continuity conditions. To estimate
+the differences, we compare them with an approximate solution of the transmission problem
+(4)-(6) obtained with a very fine mesh. For that, the delta function in the second member
+of equation (5) is approximated by
+1
+a√πe−(y/a)2 with a = 0.008 nm (25 times smaller than
+d). Since the numerical convergence and the effect of the number of discretization points dis-
+cussed in the previous subsections are not affected by the choice of the continuity conditions,
+we do not present them again. Instead, we concentrate on the vertical potential slice u( L
+2 , y)
+at thermal equilibrium and on the current-voltage characteristics to analyze the effect of the
+continuity conditions.
+Obtained results are presented in Figs. 8 and 9 for the case Nx = Nγ = 240 and Ny = 16.
+Solid blue lines correspond to the transmission problem, dashed red lines to the interface ap-
+proach with the continuity condition (9) and dashdotted purple lines to the interface approach
+with (14). We observe only slightly changes between the three approaches, both at thermal
+equilibrium in Fig.8 and with applied voltages in Fig.9. In particular, for VDS = 0 V, we have
+|uch( 1
+2, 0) − uγ(0)| = 3.0 × 10−5 with (9) and |uch( 1
+2, 0) − uγ(0)| = 9.83 × 10−5 with (14).
+25
+
+Figure 8: Vertical potential slice u( L
+2 , y) at thermal equilibrium obtained for the transmission
+problem (4)-(6) (solid blue line) and for the interface approach with condition (9) (left) or
+condition (14) (right) for the case ϵ// = 13.9 ϵ0 and ϵ⊥ = 6.9 ϵ0.
+Figure 9: Current-voltage characteristics for the case ϵ// = 13.9 ϵ0 and ϵ⊥ = 6.9 ϵ0.
+However, to overemphasize the effect of the continuity condition, we then choose an artifi-
+cial extreme out-of-plane permittivity ϵ⊥ = 0.1 ϵ0. Obtained results are presented in Figs. 10
+and 11. They clearly show that the discontinuity allowed by the condition (14) between the
+interface component uγ and the oxide components ui is essential to capture the effects due to
+a strong anisotropy.
+26
+
+0.025
+ Transmission
+u.
+0.02
+u
+0.015
+ (ev)
+>
+0.01
+0.005
+0
+-2
+-1
+0
+1
+2
+y (nm)0.025
+. Transmission
+0.02
+n
+0.015
+(ev)
+>
+0.01
+0.005
+0
+-2
+-1
+0
+1
+2
+y (nm)4
+3
+2
+-Transmission
+ - Interface Dirichlet
+---- Interface Robin
+0
+0
+0.05
+0.1
+0.15
+0.2
+Drain-Source voltage M)Figure 10: Vertical potential slice u( L
+2 , y) at thermal equilibrium obtained for the transmission
+problem (4)-(6) (solid blue line) and for the interface approach with condition (9) (left) or
+condition (14) (right) for the case ϵ// = 13.9 ϵ0 and ϵ⊥ = 0.1 ϵ0.
+Figure 11: Current-voltage characteristics for the case ϵ// = 13.9 ϵ0 and ϵ⊥ = 0.1 ϵ0.
+7
+Conclusion
+We discussed on the numerical resolution of a Poisson equation describing the electrostatics
+of devices in the presence of a semiconducting single-layer material. The proposed interface
+approach provides a good framework for the mathematical analysis and for the approxima-
+tion of its variational formulation. A Robin type continuity condition along γ (with a Robin
+coefficient depending on the effective dielectric thickness d) can be imposed to consider out-
+of-plane/in-plane permittivities for a better description of the single-layer/oxide interactions.
+The presented numerical scheme has the advantage to avoid the need of a fine mesh in a 2D
+region around the single layer material. Moreover, the assembling of the associated matrix
+27
+
+0.03
+ Transmission
+0.025
+u.
+u
+0.02
+0.015
+>
+0.01
+0.005
+0
+-2
+-1
+0
+1
+2
+y (nm)0.03
+-Transmission
+0.025
+u
+0.02
+0.015
+>
+0.01
+0.005
+0
+-2
+-1
+0
+1
+2
+y (nm)3
+2
+-Transmission
+- Interface Dirichlet
+---- Interface Robin
+0
+0
+0.05
+0.1
+0.15
+0.2
+Drain-Source voltage M)is done at a cost comparable with the linear case, even when a coupled transport-Poisson
+model is considered. Finally, it is worth mentioning the possibility of using a relatively coarse
+mesh in the oxide region and a finer grid on the interface. As continuation of this work,
+we expect to take great advantage of these interesting features of the interface approach for
+the resolution of the Poisson equation in the context of a Dirac-Poisson coupling to perform
+self-consistent computations of a GFET with an enriched description of the particle transport.
+Acknowledgments: The first author acknowledges partial support of the IDEX-IRS project
+NUM-GRAPH “NUMerical simulation of the electron transport through GRAPHene nanos-
+tructures” funded by Univ. Grenoble Alpes and Grenoble INP. The second author acknowl-
+edges the financial support of Italian Ministry of University and Research (MUR) through
+the PRIN grant n. 201744KLJL.
+References
+[1] C. Alboin, J. Jaffr´e, J. E. Roberts, and C. Serres. Modeling fractures as interfaces for flow and transport
+in porous media. In Fluid flow and transport in porous media: mathematical and numerical treatment.,
+pages 13–24. Amer. Math. Soc. 295, 2002.
+[2] L. Barletti, G. Nastasi, C. Negulescu, and V. Romano. Mathematical modelling of charge transport in
+graphene heterojunctions. Kinet. Relat. Models, 14(3):407–427, 2021.
+[3] L. Barletti and C. Negulescu. Quantum transmission conditions for drift-diffusion equations describing
+charges in graphene with steep potentials. J. Stat. Phys., 171(4):696–726, 2018.
+[4] S. Bertoluzza. Analysis of a stabilized three-fields domain decomposition method. Numer. Math., 93:611–
+634, 2003.
+[5] S. Bertoluzza and A. Kunoth. Wavelet stabilization and preconditioning for domain decomposition. IMA
+Journal of Numerical Analysis, 20(4):533–559, 2000.
+[6] J. H. Bramble, J. E. Pasciak, and A. H. Schatz. The construction of preconditioners for elliptic problems
+by substructuring. Math. Comput., 47(175):103–134, 1986.
+[7] F. Brezzi and M. Fortin. Mixed and hybrid finite element methods, volume 15 of Springer Series in
+Computational Mathematics. Springer-Verlag, New York, 1991.
+[8] F. Brezzi and L. D. Marini. Error estimates for the Three-Field formulation with bubble stabilization.
+Math. Comput., 70(235):911–934, 2001.
+[9] F. Brezzi, L. D. Marini, and P. Pietra.
+M´ethodes d’´el´ements finis mixtes et sch´ema de Scharfetter-
+Gummel. C. R. Acad. Sci. Paris S´er. I Math., 305(13):599–604, 1987.
+[10] S. Z. Butler et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene.
+ACS Nano, 7:2898–2926, 2013.
+[11] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim. The electronic properties
+of graphene. Rev. Mod. Phys., 81:109–162, 2009.
+[12] P. G. Ciarlet. The Finite Element Method for Elliptic Problems. Society for Industrial and Applied
+Mathematics, 2002.
+28
+
+[13] V. E. Dorgan, M.-H. Bae, and E. Pop. Mobility and saturation velocity in graphene on SiO2. Appl.
+Phys. Lett., 97(8):082112, 2010.
+[14] B Faermann. Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary
+elements methods. Part I. The two-dimensional case. IMA J. of Numer. Anal., 20(2):203–234, 2000.
+[15] J. Fang, W. G. Vandenberghe, and M. V. Fischetti. Microscopic dielectric permittivities of graphene
+nanoribbons and graphene. Phys. Rev. B, 94:045318, 2016.
+[16] C.L. Fefferman and M.I. Weinstein. Wave packets in honeycomb structures and two-dimensional dirac
+equations. Commun. Math. Phys., 326:251–286, 2014.
+[17] G. Fiori and G. Iannaccone. Simulation of Graphene Nanoribbon Field-Effect Transistors. IEEE Electron
+Device Lett., 28(8):760–762, 2007.
+[18] H.K. Gummel. A self-consistent iterative scheme for one-dimensional steady state transistor calculations.
+IEEE Trans. Electron Devices, 11(10):455 – 465, 1964.
+[19] R. El Hajj and F. M´ehats. Analysis of models for quantum transport of electrons in graphene layers.
+Math. Models Methods Appl. Sci., 24(11):2287–2310, 2014.
+[20] D. Jimenez and O. Moldovan. Explicit drain-current model of graphene field-effect transistors targeting
+analog and radio-frequency applications. IEEE Trans. Electron Devices, 58(11):4049–4052, 2011.
+[21] M. K¨oppel, V. Martin, J. Jaffr´e, and J. E. Roberts. A Lagrange multiplier method for a discrete fracture
+model for flow in porous media. Comput. Geosci., 23(2):239–253, 2019.
+[22] J.L. Lions and E. Magenes. Probl`emes aux limites non homog`enes et applications, Volume 1. Dunod,
+Paris, 1968.
+[23] L. Luca and V. Romano. Quantum corrected hydrodynamic models for charge transport in graphene.
+Ann. Phys., 406:30–53, 2019.
+[24] V. Martin, J. Jaffr´e, and J. E. Roberts. Modeling fractures and barriers as interfaces for flow in porous
+media. SIAM J. Sci. Comput., 26(5):1667–1691, 2005.
+[25] O Morandi and F Sch¨urrer. Wigner model for quantum transport in graphene. J. Phys. A: Math. Theor.,
+44(26):265301, 2011.
+[26] G. Nastasi and V. Romano. An efficient GFET structure. IEEE Trans. Electron Devices, 68(9):4729–
+4734, 2021.
+[27] V. Hung Nguyen, A. Bournel, C. Chassat, and P. Dollfus.
+Quantum transport of dirac fermions in
+graphene field effect transistors.
+In 2010 International Conference on Simulation of Semiconductor
+Processes and Devices, pages 9–12, 2010.
+[28] Y. Ouyang, Y. Yoon, and J. Guo. Scaling behaviors of graphene nanoribbon FETs: A three-dimensional
+quantum simulation study. IEEE Trans. Electron Devices, 54(9):2223–2231, 2007.
+[29] A. K. Upadhyay, A. K. Kushwaha, and S. K. Vishvakarma. A unified scalable quasi-ballistic transport
+model of GFET for circuit simulations. IEEE Trans. Electron Devices, 65(2):739–746, 2018.
+[30] M. Xu, T. Lian, M. Shi, and H. Chen. Graphene-like two-dimensional materials. Chem. Rev., 113:3766–
+3798, 2013.
+[31] N. Zamponi and L. Barletti. Quantum electronic transport in graphene: A kinetic and fluid dynamical
+approach. Math. Methods Appl. Sci., 34:807–818, 2011.
+[32] N. Zamponi and A. J¨ungel.
+Two spinorial drift-diffusion models for quantum electron transport in
+graphene. Commun. Math. Sci., 11:927–950, 2013.
+29
+
diff --git a/M9FRT4oBgHgl3EQfGDeg/content/tmp_files/load_file.txt b/M9FRT4oBgHgl3EQfGDeg/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..256a2dcf4536f594d0a00ba9a16264a2699cbca6
--- /dev/null
+++ b/M9FRT4oBgHgl3EQfGDeg/content/tmp_files/load_file.txt
@@ -0,0 +1,980 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf,len=979
+page_content='An interface formulation for the Poisson equation in the presence of a semiconducting single-layer material C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Jourdana1 and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Pietra2 1 Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Grenoble Alpes, CNRS, Grenoble INP†, LJK, 38000 Grenoble, France † Institute of Engineering Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Grenoble Alpes 2 Istituto di Matematica Applicata e Tecnologie Informatiche “E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Magenes” - CNR Via Ferrata 1, 27100 Pavia, Italy clement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='jourdana@univ-grenoble-alpes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='fr ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' pietra@imati.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='cnr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='it Abstract In this paper, we consider a semiconducting device with an active zone made of a single-layer material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' The associated Poisson equation for the electrostatic potential (to be solved in order to perform self-consistent computations) is characterized by a surface particle density and an out-of-plane dielectric permittivity in the region surrounding the single-layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' To avoid mesh refinements in such a region, we propose an interface problem based on the natural domain decomposition suggested by the physical device.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Two different interface continuity conditions are discussed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Then, we write the cor- responding variational formulations adapting the so called three-fields formulation for domain decomposition and we approximate them using a proper finite element method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Finally, numerical experiments are performed to illustrate some specific features of this interface approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Keywords: Poisson equation, interface model, domain decomposition, saddle-point problem, finite element method, single-layer material, graphene Field-Effect Transistor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' AMS Subject Classification: 35J20, 65N30, 65N55, 65Z05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' 1 Introduction Two-dimensional (2D) materials such as the most well-known graphene are crystal structures made of a single layer of atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' With the recent progress to isolate, stack and characterize them, they are promising for a wide range of applications (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' the reviews [30, 10]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' In particular they become an option to design post-silicon nanoelectronic devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Field-Effect Transistors (FETs) based on graphene (GFETs) or, more generally, on semiconducting 2D materials (2D-FETs) give the possibility to have a channel thickness on the atomic scale which 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='13483v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='NA] 31 Jan 2023 ideally should reduced short-channel effects while maintaining high carrier mobility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' However, the performance of various 2D-FETs is still difficult to predict and accurate numerical simu- lations can take part in a better understanding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' A first focus is on transport properties in such a device.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' For instance, graphene is charac- terized by a zero bandgap and chiral massless carriers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' It leads to unusual transport properties such as integer quantum Hall effect or Klein tunneling [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Different transport models have been recently derived or investigated ranging from the two dimensional Dirac equation [11, 16] to sophisticated drift-diffusion and hydrodynamical systems such that e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' [31, 32, 23, 26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Another focus is on the Poisson equation for the electrostatic potential that has to be solved to perform self-consistent computations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' In particular, the dielectric response of 2D layered structures has to be properly taken into account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' It is this aspect that we tackle in this work proposing to model the single-layer as an interface and leading to a Poisson problem that can be solved numerically in an efficient way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' More precisely, we consider a device with an active zone made of a single-layer material sandwiched between two thick insulator regions (oxide).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' The associated Poisson equation is characterized by a surface particle density and an out-of-plane dielectric permittivity exhibited in a region of effective dielectric thickness surrounding the single-layer material, as discussed in [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Both these characteristics require an extremely fine mesh around the 2D material in order to provide an accurate approximate solution of this equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' To avoid it, we propose, averaging the potential across the dielectric effective region, an interface problem based on the natural domain decomposition suggested by the physical device.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' It is made of two Laplace equations in the oxide subdomains coupled with an effective Poisson equation on the interface with an extra source term that represents the contribution of the surrounding environment to the channel material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' This approach is inspired by [1] where it is used to model fractures in porous media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' It is worth mentioning that, contrary to compact models of GFETs (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' [20, 29]), it leads to a full multidimensional Poisson problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' For the treatment of the Poisson equation in self-consistent models for graphene based devices,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' we recall also [26],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' where authors assume that the carrier charge is uniformly dis- tributed in the volume between the two oxide regions and [19],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' where authors prove existence and uniqueness results for a Dirac-Poisson problem and consider the self-consistent potential as the trace in the plane of the graphene of the 3D Poisson potential and thus as the solution of a fractional Laplacian equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Finally, we mention [27] where the Poisson equation is written in an integral form and the method of moments is used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' In order to match the interface potential to the oxide potentials, we first consider a simple continuity condition, obtaining an interface model that indeed takes into account the effective dielectric thickness, but it does not retain the information of the out-of-plane permittivity when a channel dielectric diagonal tensor is considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' That is why we also introduce a Robin type continuity condition, following a work on fractured porous media [24] again.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' A discrete fracture-matrix model for flow in porous media is considered in [21], where the 2 exchange between the fracture and the matrix is imposed using a Lagrange multiplier, in the spirit of a fictitious domain approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Here, to analyze and discretize our interface model, we write the corresponding variational formulations adapting the so called three-fields formula- tion for domain decomposition in the form introduced and analyzed in [4] (see also [8, 5]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' It is a non conforming formulation of non-overlapping domain decomposition that introduces the space of traces of functions in H1(Ω) on the interface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' The weak continuity between the 2D subdomains and the interface is then imposed by means of Lagrange multipliers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' This variational formulation enters in the framework of saddle point problems [7] which gives ex- istence and uniqueness results as well as error estimates when the problem is approximated using a proper finite element method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Interestingly, the interface discretization does not need to match with the one of the subdomains and we take advantage of this flexibility in the numerical experiments we are performing to illustrate the approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' The paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' The interface model with the two continuity conditions are introduced in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' The variational formulation of the problem with the simple continuity condition adapted from the so called three-fields formulation is presented and analyzed in Section 3 and then discretized in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Section 5 is dedicated of the Robin type continuity condition that can be used to tackle an anisotropic permittivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Finally, some numerical experiments are performed in Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' 2 Interface model presentation As we said, we consider a device with an active zone made of a single-layer material sandwiched between two oxide regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' We assume the single-layer is large enough to be just considered as a one dimensional (1D) line along the direction x, the transport along the other direction being free and boundary effects being neglected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' We denote by y the direction perpendicular to the single-layer plane made of oxide/single layer/oxide slices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' It gives a 2D domain Ω = ]0, L[×] − l 2, l 2[ where L is the longitudinal device length and l the transversal one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' The electrostatic potential u created by such a device is solution to the 2D Poisson equation − ∇ · � ϵ(x, y)∇u(x, y) � = ρ(x)δ(y), in Ω, (1) where ρ is the surface particle density, δ the Dirac distribution imposing that the particles are confined to the single-layer plane and ϵ the dielectric permittivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' This equation is completed by boundary conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' We assume that the boundary ∂Ω splits into two parts: the Ohmic contacts ΓD and the insulating parts ΓN, with ∂Ω = ΓD ∪ΓN and ΓD ∩ΓN = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' The potential is prescribed on ΓD while there are no-flux boundary conditions on ΓN: u = uD, on ΓD, (2) ∇u · ν = 0, on ΓN, (3) 3 where ν is the outward unit normal on ΓN and uD represents Source, Drain and Gate poten- tials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Since Source and Drain contacts touch the single-layer material, we assume that ΓD contains the single-layer boundary points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Due to single-layer/oxide interactions, the permittivity in the oxide is affected in a region surrounding the single-layer material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' The choice of the permittivity ϵ(x, y) is a delicate modeling issue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Here, we introduce an effective dielectric thickness d and we assume one dielectric constant for the channel and another one for the oxide: ϵ(x, y) = � � � ϵch for |y| < d 2 ϵox otherwise .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Such an approach has been used in [28, 17], e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='g, and it is often referred to as “box assumption”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' The somehow arbitrariness in the choice of the discontinuity lines in [28, 17] is mitigated by using the results in [15], where studies of the atomic-scale Poisson equation provide values for the dielectric thickness, validating somehow the “box assumption”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Our objective is not to deal directly with the computationally demanding transmission problem that consists in imposing, along γ± = {(x, ± d 2), x ∈]0, L[}, continuity of the potential and of the transversal electric displacement, as summarized in the following equations: − ∇ · (ϵox∇u±) = 0, in ]0, L[× � ±] d 2, l 2[ � , (4) − ∇ · (ϵch∇uch) = ρ(x)δ(y), in ]0, L[×]− d 2, d 2[, (5) u± = uch, ϵox∂yu± = ϵch∂yuch on γ± (6) where δ is the Dirac delta function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Instead, inspired by [1] to model fractures in porous media, we propose to consider an interface problem obtained by averaging the potential across the dielectric effective region and considering d small enough to assume a matching between γ+ and γ−.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Introducing uγ(x) = 1 d � d 2 − d 2 uch(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' y) dy,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' performing integration in the transversal direction of equation (5) and using the flux continuity in (6),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' we obtain the 1D effective equation −d(ϵchu′ γ)′ = ρ − ϵox � ∇u1(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' 0) · n1 + ∇u2(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' 0) · n2 � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' in γ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' where γ =]0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' L[ represents the single-layer line,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' ui,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' i = 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' are the potentials associated to each oxide subdomain Ωi (Ω1 =]0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' L[×]0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' l 2[ and Ω2 =]0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' L[×] − l 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' 0[) and ni are the two outward unit normals on ∂Ωi ∩ γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' One should notice in this 1D equation the presence of the dielectric thickness d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Indeed, −dϵchu′ γ represents the electric displacement through the cross section of the dielectric effective region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Also, we emphasize that the extra source term 4 appearing in the right-hand side (in addition to the 1D charge density ρ) represents the contribution to the interface of the transversal electric displacement from the surrounding environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Consequently, the interface model that we analyze and discretize in the next sections consists in two Laplace equations in the oxide subdomains − ∇ · (ϵox∇ui) = 0, in Ωi, i = 1, 2, (7) and the effective Poisson equation in the single-layer line − d(ϵchu′ γ)′ = ρ − ϵox(∇u1 · n1 + ∇u2 · n2), in γ, (8) the potentials associated to the three domains being connected by the continuity conditions ui = uγ, on γ, i = 1, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' (9) This system is completed by the following mixed boundary conditions for the oxide potentials ui = uD, on Γi D = ∂Ωi ∩ ΓD, i = 1, 2, (10) ∇ui · νi = 0, on Γi N = ∂Ωi ∩ ΓN, i = 1, 2, (11) νi being the outward unit normal on ∂Ω ∩ ∂Ωi, and by the following Dirichlet boundary condition for the interface potential uγ(0) = uD(0, 0), uγ(L) = uD(L, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' (12) In a more physically relevant setting the channel dielectric permittivity is given by a diagonal tensor ϵch = � ϵ// 0 0 ϵ⊥ � (13) rather than by a dielectric constant, introducing an in-plane permittivity ϵ// and an out-of- plane permittivity ϵ⊥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' In that case, in the effective equation (8) only ϵ// appears.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' To retain the information about ϵ⊥, we replace the continuity conditions (9) by a Robin type condition as done in [24] to model fractures in porous media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Formally, we say that uγ(x) ≈ uch(x, ±d 2) ∓ d 2∂yuch(x, ±d 2) and we use this approximation into the continuity of the transversal electric displacement along γ± (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' It gives ϵox∂yu± = ϵ⊥∂yuch ≈ ±ϵ⊥ u± − uγ d/2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Assuming a matching between γ+ and γ−, we obtain the Robin type condition (ui − uγ) + α ϵox∇ui · ni = 0, on γ, i = 1, 2, (14) with α = d 2ϵ⊥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' As we will see in Section 5, this Robin condition at interface changes only slightly the mathematical analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Moreover, a numerical comparison of the two continuity conditions (9) and (14) will be performed in Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' 5 3 Variational formulation Let us first introduce some notation needed in the rest of the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' For any domain �Ω and m ≥ 0, we denote by ∥ · ∥m,�Ω the Hm(�Ω) norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' For a convex Lipschitz Ω ⊂ R2, we denote by Γ0 and Γ1 two subsets of the boundary, with ∂Ω = Γ0 ∪ Γ1 and Γ0 ∩ Γ1 = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' We shall employ the notation H1 0,Γ1(Ω) = {v ∈ H1(Ω), v = 0 on Γ1} and define H1/2 00 (Γ0) as the trace space of H1 0,Γ1(Ω) equipped with the norm ∥σ∥1/2,Γ0 = inf v∈H1 0,Γ1, v|Γ0=σ ∥v∥1,Ω, (15) and we shall denote by (.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=', .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' )1/2,Γ0 the corresponding inner product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Finally, duality between H1/2 00 (Γ0) and its dual space � H1/2 00 (Γ0) �′ is written < .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=', .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' >Γ0 and we shall use as norm in the dual space the equivalent norm ∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='∥−1/2,Γ0 defined as: ∥µ∥−1/2,Γ0 = sup v∈H1 0,Γ1(Ω) < µ, v >Γ0 ∥v∥1,Ω .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' (16) Also, we denote by C > 0 a generic constant with values that may change from line to line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Notice that the norm (16) is equivalent to the dual norm defined by sup σ∈H1/2 00 (Γ0) < µ, σ >Γ0 ∥σ∥1/2,Γ0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Indeed, on one hand, given v ∈ H1 0,Γ1, its trace on Γ0 (still denoted v) is in H1/2 00 (Γ0) and verifies ∥v∥1/2,Γ0 ≤ C∥v∥1,Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Therefore, for all v ∈ H1 0,Γ1(Ω), < µ, v >Γ0 ∥v∥1,Ω ≤ C sup σ∈H1/2 00 (Γ0) < µ, σ >Γ0 ∥σ∥1/2,Γ0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' On the other hand, given σ ∈ H1/2 00 (Γ0), we can construct a lifting function in H1 0,Γ1, denoted vσ, such that vσ|Γ0 = σ and −∆vσ + vσ = 0 in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Then, we have < µ, σ >Γ0=< µ, vσ|Γ0 >Γ0 and ∥σ∥1/2,Γ0 = ∥vσ∥1,Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Therefore, for all σ ∈ H1/2 00 (Γ0), < µ, σ >Γ0 ∥σ∥1/2,Γ0 ≤ sup v∈H1 0,Γ1(Ω) < µ, v >Γ0 ∥v∥1,Ω .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' 6 For simplicity of the presentation, we consider the problem (7)-(12) with homogeneous Dirich- let conditions on ΓD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' It writes Find (u1, u2, uγ) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' � � � � � � � � � � � � � � � � � � � −∇ · (ϵox∇ui) = 0 in Ωi, i = 1, 2, −d(ϵchu′ γ)′ = ρ − ϵox(∇u1 · n1 + ∇u2 · n2) on γ, ui = uγ on γ, ui = 0 on Γi D, ϵox∇ui · ni = 0 on Γi N, uγ(0) = uγ(L) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' (17) The functional setting we choose in order to write a variational formulation of the interface problem (17) is the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' We define the spaces: V = V 1 × V 2 × V γ, with V i = H1 0,Γi D(Ωi), i = 1, 2 and V γ = H1 0(γ), equipped with the norm ||u||V = � 2 � i=1 ||ui||2 1,Ωi + ||uγ||2 1,γ �1/2 , Λ = Λ1 × Λ2, with Λi = � H1/2 00 (γ) �′ equipped with the norm ||λ||Λ = � 2 � i=1 ||λi||2 −1/2,γ �1/2 , where ∥λi∥−1/2,γ = sup v∈H1 0,∂Ωi\\γ(Ωi) < λi, v >γ ∥v∥1,Ωi .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' For u = (u1, u2, uγ) ∈ V, v = (v1, v2, vγ) ∈ V and µ = (µ1, µ2) ∈ Λ, we define the bilinear forms a(u, v) = 2 � i=1 � Ωi ϵox∇ui · ∇vi dxdy + d � γ ϵchu′ γv′ γ dx, b(µ, u) = 2 � i=1 < µi, ui|γ − uγ >γ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Notice that ui ∈ V i implies ui|γ ∈ H1/2 00 (γ) (see [22, 14]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Therefore, with uγ ∈ V γ, the duality pairing is meaningful.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' In the following, we will use ui instead of ui|γ in the duality pairing unless it might create some confusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' We consider the following variational problem: Variational formulation: Find (u, λ) ∈ V × Λ s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' � a(u, v) − b(λ, v) = � γ ρ vγ dx, ∀v ∈ V, b(µ, u) = 0, ∀µ ∈ Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' (18) 7 In this formulation, the continuity ui = uγ on γ is imposed as a constraint through the Lagrange multipliers λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' The first equation is associated to the two Laplace equations in the oxide subdomains as well as the effective Poisson equation on the interface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Indeed, a regular solution (u, λ) to (18) is linked to a solution to (17) in the following sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Taking vγ = 0 in the first equation of (18) gives � Ωi ϵox∇ui · ∇vi dxdy− < λi, vi >γ= 0 ∀vi ∈ V i, i = 1, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Since Γ i N ∩ γ is empty, a Green formula gives for vi ∈ V i � Ωi ϵox∇ui·∇vi dxdy = − � Ωi ∇·(ϵox∇ui)vi dxdy+ < ϵox∇ui·ni, vi >γ + < ϵox∇ui·ni, vi >Γi N .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Choosing first vi ∈ H1 0(Ωi) ⊂ V i, we obtain −∇ · (ϵox∇ui) = 0, a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' in Ωi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Then, for vi ∈ H1 0,γ∪Γi D(Ωi) ⊂ V i, we have vi|Γi N ∈ H1/2 00 (Γi N) and consequently < ϵox∇ui · ni, vi >Γi N= 0, for all vi ∈ H1/2 00 (Γi N).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Next, for vi ∈ V i, we obtain < λi, vi >γ=< ϵox∇ui · ni, vi >γ, for all vi ∈ H1/2 00 (γ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' (19) It links λi to ϵox∇ui · ni.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Finally, taking vi = 0 for i = 1, 2 in the first equation of (18) and using (19), we obtain d � γ ϵl gru′ γv′ γ dx + 2 � i=1 < ϵox∇ui · ni, vγ >γ= � γ ρvγ dx which is a weak form for the second equation of (17).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' The second equation of (18) imposes the continuity ui = uγ on γ in a weak form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Formulation (18) is an adaptation to the interface problem of the so called three-fields-formulation in the form introduced and analyzed in [4] (see also [8, 5]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' We notice however, that, for the peculiarity of our setting that provides directly coercivity of the bilinear form a(u, v) on the whole space V, we don’t really introduce three fields, but rather work with two spaces only: V (space for the potentials on Ωi’s and on γ) and Λ (Lagrange multipliers for the Dirichlet BC’s on γ, to be interpreted as conormal derivative of ui as seen in (19)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Existence and uniqueness results follow from the theory for saddle point problems [7] as stated by Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='5, thanks to the properties of the bilinear forms a(u, v) and b(µ, v) collected in the next Lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' 8 Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' The bilinear form a(u, v) is continuous on V × V and coercive, that is ∃α1 > 0 : a(u, v) ≤ α1||u||V||v||V, for all u ∈ V, for all v ∈ V, (20) ∃α2 > 0 : a(u, u) ≥ α2||u||2 V, for all u ∈ V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' (21) The bilinear form b(µ, v) is continuous on Λ × V, that is ∃M > 0 : b(µ, v) ≤ M||µ||Λ||v||V, for all µ ∈ Λ, for all v ∈ V (22) and it satisfies the inf-sup condition ∃β > 0 : inf λ∈Λ sup v∈V b(λ, v) ||λ||Λ||v||V ≥ β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' (23) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Properties (20)-(22) follow easily.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' It is also the case for the inf-sup condition (23) since, choosing successively v = (v1, 0, 0) and v = (0, v2, 0), we obtain sup v∈V b(λ, v) ||v||V = sup v∈V � i < λi, vi − vγ >γ ||v||V ≥ 1 2 � sup v1∈V 1 < λ1, v1 >γ ||v1||1,Ω1 + sup v2∈V 2 < λ2, v2 >γ ||v2||1,Ω2 � ≥ 1 2 � sup v1∈H1 0,∂Ω1\\γ(Ω1) < λ1, v1 >γ ||v1||1,Ω1 + sup v2∈H1 0,∂Ω2\\γ(Ω2) < λ2, v2 >γ ||v2||1,Ω2 � = 1 2 � ∥λ1∥−1/2,γ + ∥λ2∥−1/2,γ � ≥ 1 2∥λ∥Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' A constant β = 1 could be obtained following [5] where a constant independent of the number of subdomains is needed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' It relies on the definition of a lifting function for functions in H1/2 00 (γ) as introduced in Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Since for our application this constant does not play any role, we do not present this computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' For ρ ∈ L2(γ), there exists a unique solution (u, λ) ∈ V ×Λ to problem (18).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Moreover, the following bounds hold ||u||V ≤ 1 α2 ||ρ||0,γ, (24) ||λ||Λ ≤ 1 β (1 + α1 α2 )||ρ||0,γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' (25) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Existence and bounds (24)-(25) follow simply from the general theory [7] thanks to Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Notice that Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='5 needs only an inf-sup condition relating the Lagrange multipliers space Λi to V i, space of functions on Ωi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' This fact, together with the coercivity of a(u, v) on the whole V, will allow us to choose the finite dimensional subspace of V γ independently of the other spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' 9 4 Finite element approximation We introduce here a Galerkin discretization of problem (18), with care in the need of compat- ibility between the discrete approximations of V i and Λi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Let {Thi(Ωi)}hi be a shape regular family of decompositions of Ωi into triangles and {Ehγ(γ)}hγ be a regular family of decompo- sitions of γ into intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Moreover, we denote by {Thi(γ)}hi the family of decompositions of γ induced by {Thi(Ωi)}hi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' The discrete spaces for the potential in the domains Ωi’s and on γ are chosen as follows: V i hi = {v ∈ C0(Ωi), v|T ∈ P1(T) for all T ∈ Thi(Ωi), v = 0 on Γi D}, V γ hγ = {v ∈ C0(γ), v|e ∈ P1(e), for all e ∈ Ehγ(γ), v(0) = v(L) = 0}, Vh = V 1 h1 × V 2 h2 × V γ hγ ⊂ V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' On the interface γ the discrete spaces for the Lagrange multipliers are made of linear functions on the intervals e ∈ Thi(γ), modified to be constant in the limit intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Therefore, denoting by ei 0 and ei L the first and the last interval of Thi(γ), we introduce Λi hi = {λ ∈ C0(γ), λ|e ∈ P0(e) for all e ∈ {ei 0, ei L}, λ|e ∈ P1(e) for all e ∈ Thi(γ)\\{ei 0, ei L}}, Λh = Λ1 h1 × Λ2 h2 ⊂ Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Since the elements of Λi hi are p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' polynomials, the duality pairing is an integral and we can write, for λi hi ∈ Λi hi, < λi hi, vi >γ= � γ λi hivi dx, ∀vi ∈ V i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' (26) In the following, to simplify the presentation, we use the notation h instead of hi, unless it might create some confusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='1 Discrete problems The discrete variational problem corresponding to (18) is Discrete variational formulation: Find (uh, λh) ∈ Vh × Λh s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' � a(uh, vh) − b(λh, vh) = � γ ρ vγ hγ dx, ∀vh ∈ Vh, b(µh, uh) = 0, ∀µh ∈ Λh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' (27) First of all we want to enlighten the interface structure of formulation (27), starting from its algebraic form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' We introduce the following bilinear forms ai(ui h, vi h) = � Ωi ϵox∇ui h · ∇vi h dxdy, aγ(uγ hγ, vγ hγ) = d � γ ϵch(uγ hγ)′(vγ hγ)′ dx, bi(µi h, ui h) = � γ µi hui h dx, bi γ(µi h, uγ hγ) = � γ µi huγ hγ dx, 10 with i = 1, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Then,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' problem (27) can be written in matrix form as follows � ������� A1 0 −BT 1 0 0 0 A2 0 −BT 2 0 B1 0 0 0 −B1 γ 0 0 B2 0 −B2 γ 0 0 (B1 γ)T (B2 γ)T Aγ � ������� � ������� u1 u2 λ1 λ2 uγ � ������� = � ������� 0 0 0 0 r � ������� ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' (28) where ui,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' λi,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' uγ denote the unknown coefficient vectors of ui h,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' λi h,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' uγ hγ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' respectively,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Ai,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Aγ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Bi,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Bi γ correspond to the different bilinear forms defined above,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' and r is the vector corresponding to the right hand side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Since Ai’s are obviously positive definite, we can first eliminate the unknown vectors ui’s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Then, we can eliminate the unknown vectors λi’s since it is easy to check that Ker BT i = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' It leads to the following linear system acting only on the unknown vector uγ � Aγ + 2 � i=1 (Bi γ)T(BiA−1 i BT i )−1Bi γ � uγ = r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' (29) We can reinterpret (29) in terms of a bilinear form acting on V γ hγ × V γ hγ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' It is not difficult to see that, starting from the first equation of (27), with vh = (0, 0, vγ hγ), we obtain the following problem: Find uγ hγ ∈ V γ hγ s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' aγ(uγ hγ, vγ hγ) + 2 � i=1 bi γ(λi h(uγ hγ), vγ hγ) = � γ ρvγ hγ dx ∀vγ hγ ∈ V γ hγ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' (30) For a given uγ hγ, λi h(uγ hγ) in (30) is the second component of the solution to the following 2D problem : Find (ui h(uγ hγ), λi h(uγ hγ)) ∈ V i h × Λi h s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' � ai(ui h(uγ hγ), vi h) − bi(λi h(uγ hγ), vi h) = 0 ∀vi h ∈ V i h, bi(µi h, ui h(uγ hγ)) = bi γ(µi h, uγ hγ) ∀µi h ∈ Λi h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' (31) The matrix form of (30) (with (31)) is indeed (29).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' We see that in order to solve the interface problem (30) (which is a well posed problem for a given λi h), we need to solve the saddle point problems (31) for i = 1, 2, for which an inf-sup condition linking only V i h and Λi h is required (without connection with Vγ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' It was already anticipated in Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='6 and it will be explicit in the next subsection, where the analysis of formulation (27) is done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Notice that the 1D interface problem (30) includes (through λi h(uγ hγ) ) a discrete Poincar´e-Steklov operator that maps the Dirichlet datum uγ hγ on γ into λi h which, as explained 11 in (19) at the continuous level, is linked to the conormal derivative of ui h on γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Observing that the Poincar´e-Steklov operator is an operator of order 1, with a strict analogy to the 1/2- Laplacian, it is related to [19], where the specificity of the surface particle density leads to construct the self-consistent potential for a graphene sheet as the solution on the plane of a fractional Laplacian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='2 Well-posedness and error estimates To prove existence and uniqueness of a solution to (27) as stated by Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='4, we resort to Fortin’s argument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' More precisely, in order to obtain the discrete inf-sup condition (written later on in (44)) as well as some error estimates, we introduce in the following Lemma a projector πi h : L2(γ) −→ W i h for the interface functions, where W i h = V i h|γ is the trace space of V i h on γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Notice that, due to the homogeneous conditions on Γi D in the definition of V i h, a function wi h ∈ W i h satisfies wi h(0) = wi h(L) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' So the dimension of W i h is equal to the number of intervals of Thi(γ) minus 1, matching the dimension of Λi h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' There exists πi h : L2(γ) −→ W i h defined by � γ λi h(πi hη − η) dx = 0, ∀λi h ∈ Λi h, (32) such that, for all η ∈ H1/2 00 (γ), ||πi hη||1/2,γ ≤ C||η||1/2,γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' (33) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' For any wi h ∈ W i h, there exists λi h(wi h) ∈ Λi h, such that � γ λi h(wi h)wi h dx ≥ ||wi h||2 0,γ, (34) which implies uniqueness (and consequently existence) of the linear operator πi h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Indeed, by choosing λi h(wi h)|e = wi h|e for e ∈ Thi(γ)\\{ei 0, ei L}, noting that the constant value λi h(wi h)|ei 0 coincides with wi h evaluated in the end point of ei 0 (and analogously for λi h(wi h)|ei L), we can easily obtain (34) and the following bound ||λi h(wi h)||0,γ ≤ C||wi h||0,γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' (35) Then, (34) and (35) give sup λi h∈Λi h � γ λi hwi h dx ||λi h||0,γ ≥ 1 C ||wi h||0,γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' (36) 12 Moreover, by using (32), for each ηh ∈ W i h, (36) gives ||ηh − πi hη||0,γ ≤ C sup λi h∈Λi h � γ λi h(ηh − πi hη) dx ||λi h||0,γ = C sup λi h∈Λi h � γ λi h(ηh − η) dx ||λi h||0,γ ≤ C||η − ηh||0,γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Consequently, using a triangular inequality and classical approximation results, see [12] e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=', we obtain ||η − πi hη||0,γ ≤ C inf ηh∈W i h ||η − ηh||0,γ ≤ Ch1/2 i ||η||1/2,γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' (37) Next, we can obtain the uniform bound (33) with the same argument as in [4, Lemma 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' For completeness, we give a sketch of the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' We introduce �πi h : H1/2 00 (γ) −→ W i h as the projection induced by the H1/2 00 (γ) norm, defined by ||�πi hη − η||1/2,γ = inf ηh∈W i h ||η − ηh||1/2,γ, η ∈ H1/2 00 (γ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Since trivially ||�πi hη||1/2,γ ≤ C||η||1/2,γ, by applying triangular inequalities and a classical inverse inequality, we obtain ||πi hη||1/2,γ ≤ C||η||1/2,γ + h−1/2 i (||πi hη − η||0,γ + ||η − �πi hη||0,γ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' (38) Using classical duality arguments, it is possible to prove that ||η − �πi hη||0,γ ≤ Ch1/2 i ||η||1/2,γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' (39) Indeed, let χ(f) ∈ H1/2 00 (γ) be the solution of the problem (χ(f), ξ)1/2,γ = � γ fξdx ∀ξ ∈ H1/2 00 (γ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' (40) If f ∈ L2(γ) then χ(f) ∈ H1 0(γ) and the following bound holds ||χ(f)||1,γ ≤ ||f||0,γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' (41) Since (χh, η − �πi hη)1/2,γ = 0 for all χh ∈ W i h, starting from (40) with f = ξ = η − �πi hη, we obtain ||η − �πi hη||2 0,γ = (χ(η − �πi hη), η − �πi hη)1/2,γ = inf χh∈W i h (χ(η − �πi hη) − χh, η − �πi hη)1/2,γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Then, using a classical approximation result, it gives the following estimate ||η − �πi hη||2 0,γ ≤ inf χh∈W i h ||χ(η − �πi hη) − χh||1/2,γ||η − �πi hη||1/2,γ ≤ Ch1/2 i ||χ(η − �πi hη)||1,γ||η − �πi hη||1/2,γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Thus (39) follows, thanks to (41) and to the boundedness of ||�πi hη||1/2,γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Finally, using (37) and (39) in (38), we obtain the bound (33) and conclude the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' 13 Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' A projector with similar properties could be also obtained for a more general definition of Λi h (and of W i h).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' For instance, Λi h could be defined on a decomposition Ehλ(γ) different from Thi(γ), with the only requirement that all nodes of Ehλ(γ) are also nodes of Thi(γ) and W i h could be a subspace of the trace space V i hi|γ defined on the same decomposition Ehλ(γ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Since, for our application, λi h plays only the role of a working quantity, we do not discuss this issue further.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' For ρ ∈ L2(γ), there exists a unique solution (uh, λh) ∈ Vh × Λh to problem (27).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Moreover, the following error estimate holds ||u − uh||V + ||λ − λh||Λ ≤ C � inf vh∈Vh ||u − vh||V + inf µh∈Λh ||λ − µh||Λ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' (42) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Since the embedding Vh ⊂ V implies immediately the coerciveness a(uh, uh) ≥ α2||uh||2 V ∀uh ∈ Vh, (43) we only have to prove the discrete inf-sup condition ∃δ > 0, inf λh∈Λh sup vh∈Vh b(λh, vh) ∥vh∥V∥λh∥Λ ≥ δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' (44) As for the continuous case, it is enough to show that it exists δ > 0 such that, for all λi h ∈ Λi h, ||λi h||−1/2,γ ≤ δ sup vi h∈V i h � γ λi hvi hdx ||vi h||1,Ωi , (45) where we used (26).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' This inequality relies on the existence of a bounded projector Πi h : V i −→ V i h such that, for all vi ∈ V i, � γ λi h(Πi hvi − vi)dx = 0 ∀λi h ∈ Λi h, (46) ||Πi hvi||1,Ωi ≤ κ||vi||1,Ωi, (47) with κ > 0 constant independent of h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Given vi ∈ V i, let us define Πi hvi in V i h as the discrete lifting of πi hvi, that is ai(Πi hvi, vi h) = 0 ∀vi h ∈ V i h, (Πi hvi)|γ = πi h(vi|γ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' We emphasize that, due to the homogeneous boundary condition on Γi D, such a lifting exists thanks to the null value of πi hvi at the end points of γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' (46) is trivially satisfied because of (32).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' The bound (47) is obtain combining the classical result ||Πi hvi||1,Ωi ≤ C||πi hvi||1/2,γ (that can be found e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' in [6, Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' ]), the bound (33) that holds since vi|γ ∈ H1/2 00 (γ) and the trace theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' 14 Now, since Λi h ⊂ Λi, we have ||λi h||−1/2,γ ≤ sup vi∈V i � γ λi hvidx ||vi||1,Ωi .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Using (46) and (47) , we obtain that, for all vi ∈ V i, � γ λi hvidx ||vi||1,Ωi ≤ κ � γ λi hΠi hvidx ||Πi hvi||1,Ωi ≤ κ sup vi h∈V i h � γ λi hvi hdx ||vi h||1,Ωi .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Thus, (45) follows with δ = κ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' The discrete inf-sup condition (44) and the coerciviness (43) imply existence and uniqueness of the discrete solution as well as the error bound (42).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' As for the continuous case and as suggested by the formulation (30)-(31), the discrete inf-sup condition (44) relates only the Lagrange multipliers space Λi h to the space V i h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' It allows us to choose V γ hγ independently of the other spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' This point is particularly interesting when the density ρ appearing in the second member of (27) requires a refinement of the interface discretization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' An optimal order of convergence is obtained for a regular ui as in the next theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Assume ui ∈ H2(Ωi), i = 1, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Then, ||u − uh||V + ||λ − λh||Λ ≤ C � � i h2 i ||ui||2 2,Ωi + h2 γ||uγ||2 2,γ �1/2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' If ui ∈ H2(Ωi) then ϵox∇ui · ni ∈ H1/2(γ) and uγ ∈ H2(γ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Let us introduce the Lagrange interpolation operators Ii hi : V i −→ V i hi and Iγ hγ : V γ −→ V γ hγ, and the L2-projector Pi hi : L2(γ) −→ Λi hi, for which the following bounds are classical ∥ui − Ii hiui∥1,Ωi ≤ Chi||ui||2,Ωi, ∥uγ − Iγ hγuγ∥1,γ ≤ Chγ||uγ||2,γ, ∥λi − Pi hiλi∥0,γ ≤ Ch1/2 i ∥λi∥1/2,γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' For completing the bound for the λ component of the error we again follow [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Due to the regularity of ϵox∇ui · ni, equation (19) becomes, for vi ∈ V i, < λi, vi >γ= � γ ϵox∇ui · ni vi dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Thus, we can write ∥λi∥−1/2,γ ≤ sup vi∈V i � γ ϵox∇ui · ni vi dx ||vi||1,Ωi .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' 15 It gives inf µi hi∈Λi hi ∥λi − µi hi∥−1/2,γ ≤ sup vi∈V i � γ � ϵox∇ui · ni − Pi hi(ϵox∇ui · ni) � vi dx ||vi||1,Ωi = sup vi∈V i � γ � ϵox∇ui · ni − Pi hi(ϵox∇ui · ni) � (vi − Pi hi(vi)) dx ||vi||1,Ωi ≤ hi∥ϵox∇ui · ni∥1/2,γ sup vi∈V i ∥vi∥1/2,γ ||vi||1,Ωi ≤ Chi∥ui∥2,Ωi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Recalling then (42), the desired estimate easily follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' 5 Robin type condition at interface We now consider the Robin type condition introduced in (14) rather than the condition (9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' It is especially interesting to tackle an anisotropic channel permittivity given by the diagonal tensor (13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' With homogeneous Dirichlet conditions on ΓD, the problem writes Find (u1, u2, uγ) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' � � � � � � � � � � � � � � � � � � � −∇ · (ϵox∇ui) = 0 in Ωi, i = 1, 2, −d(ϵ//u′ γ)′ = ρ − ϵox(∇u1 · n1 + ∇u2 · n2) on γ, (ui − uγ) + α ϵox∇ui · ni = 0, on γ, ui = 0 on Γi D, ϵox∇ui · ni = 0 on Γi N, uγ(0) = uγ(L) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' (48) We introduce the space Q = � L2(γ) �2 ⊂ Λ and we consider the following variational problem: Variational formulation - Robin type condition: Find (u, λ) ∈ V × Q s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' � a(u, v) − b(λ, v) = � γ ρ vγ dx, ∀v ∈ V, b(µ, u) + α c(λ, µ) = 0, ∀µ ∈ Q, (49) where c is the bilinear form defined by c(λ, µ) = 2 � i=1 � γ λiµi dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Notice that due to the bilinear form c, this formulation requires more regularity on the Lagrange multipliers λ, compared to (18).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' The problem is coercive on V × Q, so we easily have existence and uniqueness of the solution by Lax-Milgram theorem, with the following bound ∥u∥2 V + α∥λ∥2 Q ≤ C∥ρ∥2 0,γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' 16 In order to retrieve a control on λ independent on α (and thus on the effective dielectric thickness d), following [7], we can use the inf-sup condition on the largest space Λ introduced in (23).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Indeed, β∥λ∥Λ ≤ sup v∈V b(λ, v) ||v||V = sup v∈V a(u, v) − � γ ρ vγ dx ||v||V ≤ C(||u||V + ∥ρ∥0,γ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Putting the two estimates together, we obtain the result summarized in the following theorem: Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' For ρ ∈ L2(γ), there exists a unique solution (u, λ) ∈ V×Q to problem (49).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Moreover, the following bound holds ∥u∥2 V + ∥λ∥2 Λ + α∥λ∥2 Q ≤ C∥ρ∥2 0,γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' (50) At the discrete level, we notice that Λh defined in Section 4 is contained in Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Conse- quently, a discrete variational problem associated to (49) is Discrete variational formulation - Robin type condition: Find (uh, λh) ∈ Vh × Λh s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' � a(uh, vh) − b(λh, vh) = � γ ρ vγ hγ dx, ∀vh ∈ Vh, b(µh, uh) + α c(λh, µh) = 0, ∀µh ∈ Λh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' (51) Using the coerciveness of a in V and c in Q and the continuity bounds of the three bilinear forms, we obtain after standard computations ∥u − uh∥2 V + α∥λ − λh∥2 Q ≤ C( inf vh∈Vh ∥u − vh∥2 V + α inf µh∈Λh ∥λ − µh∥2 Q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Again, an error estimate independent on α can then be obtained using the discrete inf-sup condition (44).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Indeed, for any µh ∈ Λh, we have β∥λh − µh∥Λ ≤ sup vh∈Vh b(λh − µh, vh) ∥vh∥V ≤ sup vh∈Vh b(λ − µh, vh) + a(uh − u, vh) ∥vh∥V ≤ M∥λ − µh∥Λ + α1∥u − uh∥V, where M and α1 are positive constants defined in Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' With these estimates, we easily obtain the result summarized in the following theorem: Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' For ρ ∈ L2(γ), there exists a unique solution (uh, λh) ∈ Vh × Λh to problem (51) and the following error estimate holds ||u − uh||2 V + ∥λ − λh∥2 Λ + α||λ − λh||2 Q ≤ C � inf vh∈Vh ||u − vh||2 V + inf µh∈Λh ∥λ − µh∥2 Λ + α inf µh∈Λh ||λ − µh||2 Q � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' (52) 17 As for the case of the continuity condition (9) discussed in the previous section, we can write the algebraic form of (51), emphasizing the interface structure of the formulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' We introduce first the bilinear form ci(λi h, µi h) = � γ λi hµi h dx, as well as the associated matrix Ci, with i = 1, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Then, problem (51) can be written in matrix form as follows � ������� A1 0 −BT 1 0 0 0 A2 0 −BT 2 0 B1 0 αC1 0 −B1 γ 0 0 B2 αC2 −B2 γ 0 0 (B1 γ)T (B2 γ)T Aγ � ������� � ������� u1 u2 λ1 λ2 uγ � ������� = � ������� 0 0 0 0 r � ������� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' (53) Doing the same eliminations than the ones leading to (29) and using the fact that Ci’s are positive definite, we obtain the following linear system acting only on the unknown vector uγ � Aγ + 2 � i=1 (Bi γ)T(BiA−1 i BT i + αCi)−1Bi γ � uγ = r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' (54) Again, we can reinterpret (54) in terms of a bilinear form acting on V γ hγ ×V γ hγ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' More precisely, uγ hγ is still solution of (30) depending on λi h(uγ hγ) that is now the second component of the solution to the following 2D problem: Find uγ hγ ∈ V γ hγ s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' � ai(ui h(uγ hγ), vi h) − bi(λi h(uγ hγ), vi h) = 0 ∀vi h ∈ V i h, bi(µi h, ui h(uγ hγ)) + αci(λi h(uγ hγ), µi h) = bi γ(µi h, uγ hγ) ∀µi h ∈ Λi h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' (55) 6 Numerical experiments To illustrate the approach, we present some numerical tests for a Graphene Field-Effect Tran- sistor (GFET).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Self-consistent simulations for such a structure are performed for instance in [27, 26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Here, we consider a longitudinal length L = 60 nm and a transversal length l = 4 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' In the y direction, it contains a single layer of graphene, characterized by an effective dielectric thickness d = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='2 nm and a graphene permittivity constant ϵch = 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='9 ϵ0 sandwiched between two layers of dielectric SiO2 (ϵox = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='9 ϵ0) [15], ϵ0 being the permittivity in vacuum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Only in Subsection 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='4, where the condition (9) is replaced by the Robin condition (14) (as analyzed in Section 5), the permittivity constant ϵch is replaced by a diagonal tensor with an in-plane permittivity ϵ// = 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='9 ϵ0 and an out-of-plane permittivity ϵ⊥ = 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='9 ϵ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' As proposed in [27] and schematically represented in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='1, the transport direction x is composed of a 20 18 nm active zone, with a doping concentration N − dop = 1014 m−2, sandwiched between a 20 nm Source region and a 20 nm Drain region, both highly doped (N + dop = 1017 m−2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Source and Drain potentials are imposed on the entire vertical edges {0} × (− l 2, l 2) and {L} × (− l 2, l 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Most of the results presented here correspond to thermal equilibrium (zero applied Drain- Source voltage VDS = VD − VS = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='0 V).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' For out-of-equilibrium results, we use an iterative process, starting with VDS = 0 V and then incrementing VDS with an increment step of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='01 V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Finally, a Gate potential VG is imposed on {± l 2}×]xG, L − xG[, with xG = 10 nm, to modulate the particle transport.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Since the effect of changing the gate voltage is as expected for a double gate device and it does not infer on the interface approach, we only consider here the case VG = 0 V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Figure 1: Schematic representation of the GFET.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' In the experiments presented below, we use a regular uniform discretization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' More pre- cisely, the triangulation {Thi(Ωi)}hi is obtained defining a cartesian grid with Nx and Ny edges respectively in the x and in the y direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' We define hi as the scaled triangle diam- eter � 1 N2x + l2 L2 1 N2y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Moreover, the decomposition {Ehγ(γ)}hγ is a uniform decomposition of γ that use Nγ intervals and we define hγ as 1 Nγ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='1 Drift-Diffusion Poisson coupling In this paper, we consider that the surface particle density ρ is solution of the classical stationary drift-diffusion equation J′(x) = 0, with J(x) = qµ � UTρ′(x) − ρ(x)u′ γ(x) � , (56) completed with the neutrality boundary conditions ρ(0) = ρ(L) = N + dop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' (57) In the expression of the electron current density J, q is the elementary charge, kB the Boltz- mann constant, T the temperature taken equal to 77 K, UT = kBT q the thermal potential and 19 VG 1 2 21 人 0 N dop VD Vs 22 2 2 0 CG L-G Lµ the (constant) electron mobility that we choose equal to 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='5 × 103 cm2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='V−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='s−1 as proposed in [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Different transport models, that have been recently derived or investigated, can be used to perform accurate self-consistent simulations of a GFET.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' For instance, a bipolar drift-diffusion model with peculiar mobility functions deduced from semiclassical Boltzmann equations have been considered in [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Quantum effects can be added to such a drift-diffusion model or to a hydrodynamical models (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' [31, 32, 23]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' At a microscopic level, a full quantum description can be done using a Dirac-like equation that describes the chiral character of massless fermions in graphene [11, 27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' A phase-space formulation can also be considered thanks to the Wigner formalism as proposed for instance in [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Finally, we mention that different description levels can be spatially coupled deriving quantum interface conditions as done in [3, 2] in the case of graphene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' In this work, since our aim is to focus on the numerical resolution of the Poisson equation and to present the efficiency of the proposed interface approach, we have chosen not to enrich the transport description and to perform (non realistic) self-consistent computations using (56).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Notice that, at thermal equilibrium, the solution of (56)-(57) is explicitly expressed with respect to uγ by ρ(x) = N + dope uγ(x) UT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' (58) Out-of-equilibrium, we use the decomposition {Ehγ(γ)}hγ (same decomposition than the one used for uγ hγ) to discretize equation (56) by means of a Scharfetter-Gummel scheme (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' [9] for details).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' To treat the nonlinearity of the Drift-Diffusion Poisson coupling, we use the linearized Gummel iterative process as in [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' In this interface context, it amounts to solve, for a given ρk, the modified Poisson equation � a(uk+1, v) − b(λk+1, v) + 1 UT � γ ρkuk+1 γ vγ dx = � γ ρkvγ dx + 1 UT � γ ρkuk γvγ dx b(µk+1, uk+1) = 0 , (59) iteratively followed by the resolution of the transport equation (56).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' We emphasize that, in (59), only the interface variable uγ appears in the additional terms (compared to (18)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Consequently, the costly assembling of the matrix can be done once at the beginning of the code and, at each Gummel iteration k, only few entries have to be updated for taking care of the non-linearity, as illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' The assembling cost is then comparable to the one for a linear problem, contributing to the computational efficiency of our interface approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' First, we present the potential and the density profiles obtained for our test case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='3 represents the self-consistent potential at thermal equilibrium, showing that its shape is clearly driven by the chosen doping profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Different applied voltages are then considered in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='4 revealing the particle transport from Source to Drain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' 20 Figure 2: Non zeros entries for the case Nx = 60, Ny = 16 and Nγ = 240 (variable ordering: (u1 h, u2 h, λ1 h, λ2 h, uγ hγ)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Entries affected by the Gummel iterative process are indicated in red.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Figure 3: 2D potential energy −u(x, y) (left) and interface potential energy −uγ(x) (right) at thermal equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Figure 4: Interface potential energy −uγ(x) (left) and surface density ρ(x) (right) for different applied voltages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' 21 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='. .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' 200 400 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' 600 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='. 800 1000 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' 1200 1400 0 200 400 600 800 1000 1200 1400potential energy (ev) 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='02 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='015 (wu) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='01 y 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='005 2 0 0 20 40 60 x (nm)0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='02 I energy (eV) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='015 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='01 potential 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='005 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='005 0 10 20 30 40 50 60 x (nm)0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='05 0 (eV) 6-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='05 ener V :OV potential 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='1 V V =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='15V 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='15 DS V =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='2 V DS 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='2 0 10 20 30 40 50 60 x (nm)×1016 12 10 2 surface density (m 8 6 4 DS V :0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='2 V 2 DS 0 0 10 20 30 40 50 60 x (nm)6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='2 Convergence history We study the numerical convergence of our approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' At thermal equilibrium, the density depends non linearly on the potential as expressed in (58).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' It fulfills the properties of bound- edness and monotonicity in the sense that for uγ, vγ ∈ L∞(γ) there exist κ1, κ2 > 0 such that ∥ρ(uγ) − ρ(vγ)∥0,γ ≤ κ1∥uγ − vγ∥0,γ, (60) � γ (ρ(uγ) − ρ(vγ))(uγ − vγ) dx ≥ κ2∥uγ − vγ∥2 0,γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' (61) Thus, results obtained in Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='4 (and therefore in Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='6) can be easily extended to this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' In addition, we are also interested in studying numerically the behavior for non-zero applied voltages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' We compute the solution for different meshes defined by Nx = Nγ = 60×2i and Ny = 2i+2, i = 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' , 4 and we choose the one obtained for i = 4 (Nx = Nγ = 960 and Ny = 64) as reference solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Relative errors corresponding to E1D = ∥uγ hγ,ref − uγ hγ∥1,γ ∥uγ hγ,ref∥1,γ and E2D = � �2 i=1 ∥ui hi,ref − ui hi∥2 1,Ωi �1/2 � �2 i=1 ∥ui hi,ref∥2 1,Ωi �1/2 , (62) are presented in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='5, looking respectively at the interface component uγ hγ (left) and at the oxide components ui hi (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' As expected, straight lines of slope 1 are obtained for thermal equilibrium, in both cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' For non-zero applied voltages, we observe however a slightly lower slope for the oxide components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' This behavior can be explained by a deterioration of the regularity of the solution at the junctions between the Neumann and the Dirichlet boundary Figure 5: Relative H1 errors with respect to h in logarithmic scale for the interface component (left) and the oxide ones (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' 22 error on u?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' 工 s=0 V, slope=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='0453 =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='01 V, slope=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='046 =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='04 V, slope=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='0522 =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='08 V, slope=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='058 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' 10-2error on u, 工 =0 V, slope=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='0493 =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='01 V, slope=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='87979 =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='04 V, slope=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='71818 =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='08 V, slope=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='707 10-2 hFigure 6: Relative L∞ errors with respect to h in logarithmic scale for the oxide components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' conditions (and in particular at gate extremities).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' When considering the L∞ errors presented in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='6 the loss in the convergence rate for non-zero applied voltages is more evident.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Indeed, the maximum error is located along y = 0 at the end of the channel for thermal equilibrium and at y = ± l 2 around the gate extremity for non-zero applied voltages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' In self-consistent computations it is also interesting to look at the error behavior for the density, as done in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' The rate of convergence for the H1 error is shown to be 1, both at thermal equilibrium (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' when ρ is explicitly expressed with respect to uγ by (58)) and with different applied voltages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Figure 7: Relative H1 errors with respect to h in logarithmic scale for the surface density ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' 23 d error on 10 工 =0 V, slope=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='0658 =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='01 V, slope=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='066 =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='04 V, slope=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='0677 =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='08 V, slope=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='0789 DS 10~2 h10° 10 =0 V, slope=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='7738 =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='01 V, slope=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='67985 10~3 =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='04 V, slope=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='67996 =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='08 V, slope=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='68001 10 10-26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='3 Number of discretization points Next, we discuss the effect of the number of discretization points Ny, Nx and Nγ on the error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' We present results at thermal equilibrium and for VDS = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='04 V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Similar results are obtained for other non-zero applied voltages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' The reference solution is chosen as in the previous subsection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' First, we fix Nx = Nγ and we look at the errors varying Ny.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Results are presented in Table 1 for Nx = Nγ = 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' The process bringing to the interface model reduces the importance of the transversal discretization around the single layer material and, indeed, we observe that the choice of Ny slightly affects the result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' It is especially true when we do not consider the coarser mesh (Ny = 8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' That is why, in the following, we fix Ny = 16 and focus on the discretization along the transport direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' VDS = 0 V VDS = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='04 V Ny E1D E2D E1D E2D 8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='9557e-01 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='7731e-02 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='6695e-01 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='6448e-01 16 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='9567e-01 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='1467e-02 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='6707e-01 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='5721e-01 32 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='9570e-01 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='8688e-02 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='6711e-01 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='5496e-01 64 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='9571e-01 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='7546e-02 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='6713e-01 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='5387e-01 Table 1: Relative H1 errors varying Ny for Nx = Nγ = 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' As we mentioned, an interesting point of this approach is that the interface grid does not need to match with the one of the oxide subdomains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' In other words, Nγ can be chosen different from Nx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' In Tables 2 and 3, we present the H1 errors for the interface component uγ hγ as well as the density ρ for a fixed Ny = 16 either taking Nx = Nγ (Table 2) or fixing Nx and varying Nγ (Table 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' VDS = 0 V VDS = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='04 V Nx = Nγ E1D ∥ρ−ρref∥1,γ ∥ρref∥1,γ E1D ∥ρ−ρref∥1,γ ∥ρref∥1,γ 60 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='9567e-01 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='5930e-01 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='6707e-01 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='6920e-01 120 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='0079e-01 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='2674e-01 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='4934e-02 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='3105e-01 240 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='9450e-02 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='2400e-02 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='1631e-02 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='4557e-02 480 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='2167e-02 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='7980e-02 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='8681e-02 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='8969e-02 Table 2: Relative H1 errors of the interface potential uγ hγ and the density ρ in the case Nx = Nγ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' 24 VDS = 0 V VDS = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='04 V Nx Nγ E1D ∥ρ−ρref∥1,γ ∥ρref∥1,γ E1D ∥ρ−ρref∥1,γ ∥ρref∥1,γ 30 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='3376e-01 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='4465e-01 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='7736e-01 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='5921e-01 120 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='0177e-01 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='2709e-01 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='7112e-02 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='3215e-01 60 240 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='3930e-02 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='4590e-02 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='8621e-02 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='9023e-02 480 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='2494e-02 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='3796e-02 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='2738e-02 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='9536e-02 960 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='4381e-02 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='9597e-02 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='7391e-02 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='7634e-02 Table 3: Relative H1 errors of the interface potential uγ hγ and the density ρ for a given Nx and different Nγ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' We observe that the error for the 1D component decreases when increasing the grid points on the interface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' In particular, the errors obtained for Nx = 60 and Nγ = 240 are smaller than the ones for Nx = Nγ = 60 and comparable to the ones for Nx = Nγ = 240.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Since the cost of solving the linear system is driven by the number of degrees of freedom in the oxide region, it is therefore very appealing to use a relatively coarse mesh in the oxide region and a finer grid on the interface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='4 Anisotropic permittivity We now consider the case where the channel dielectric permittivity is given by the diagonal tensor (13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' We have seen that the effective equation (8) contains only the in-plane permit- tivity ϵ// and that a possibility to retain the information of the out-of-plane permittivity ϵ⊥ is to replace the Dirichlet type continuity conditions (9) by the Robin type condition (14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' In this part, we perform a comparison between these two continuity conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' To estimate the differences, we compare them with an approximate solution of the transmission problem (4)-(6) obtained with a very fine mesh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' For that, the delta function in the second member of equation (5) is approximated by 1 a√πe−(y/a)2 with a = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='008 nm (25 times smaller than d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Since the numerical convergence and the effect of the number of discretization points dis- cussed in the previous subsections are not affected by the choice of the continuity conditions, we do not present them again.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Instead, we concentrate on the vertical potential slice u( L 2 , y) at thermal equilibrium and on the current-voltage characteristics to analyze the effect of the continuity conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Obtained results are presented in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' 8 and 9 for the case Nx = Nγ = 240 and Ny = 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Solid blue lines correspond to the transmission problem, dashed red lines to the interface ap- proach with the continuity condition (9) and dashdotted purple lines to the interface approach with (14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' We observe only slightly changes between the three approaches, both at thermal equilibrium in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='8 and with applied voltages in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' In particular, for VDS = 0 V, we have |uch( 1 2, 0) − uγ(0)| = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='0 × 10−5 with (9) and |uch( 1 2, 0) − uγ(0)| = 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='83 × 10−5 with (14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' 25 Figure 8: Vertical potential slice u( L 2 , y) at thermal equilibrium obtained for the transmission problem (4)-(6) (solid blue line) and for the interface approach with condition (9) (left) or condition (14) (right) for the case ϵ// = 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='9 ϵ0 and ϵ⊥ = 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='9 ϵ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Figure 9: Current-voltage characteristics for the case ϵ// = 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='9 ϵ0 and ϵ⊥ = 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='9 ϵ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' However, to overemphasize the effect of the continuity condition, we then choose an artifi- cial extreme out-of-plane permittivity ϵ⊥ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='1 ϵ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Obtained results are presented in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' 10 and 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' They clearly show that the discontinuity allowed by the condition (14) between the interface component uγ and the oxide components ui is essential to capture the effects due to a strong anisotropy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' 26 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='025 Transmission u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='02 u 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='015 (ev) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='005 0 2 1 0 1 2 y (nm)0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='025 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Transmission 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='02 n 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='015 (ev) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='005 0 2 1 0 1 2 y (nm)4 3 2 Transmission Interface Dirichlet ---- Interface Robin 0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='2 Drain-Source voltage M)Figure 10: Vertical potential slice u( L 2 , y) at thermal equilibrium obtained for the transmission problem (4)-(6) (solid blue line) and for the interface approach with condition (9) (left) or condition (14) (right) for the case ϵ// = 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='9 ϵ0 and ϵ⊥ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='1 ϵ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Figure 11: Current-voltage characteristics for the case ϵ// = 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='9 ϵ0 and ϵ⊥ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='1 ϵ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' 7 Conclusion We discussed on the numerical resolution of a Poisson equation describing the electrostatics of devices in the presence of a semiconducting single-layer material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' The proposed interface approach provides a good framework for the mathematical analysis and for the approxima- tion of its variational formulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' A Robin type continuity condition along γ (with a Robin coefficient depending on the effective dielectric thickness d) can be imposed to consider out- of-plane/in-plane permittivities for a better description of the single-layer/oxide interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' The presented numerical scheme has the advantage to avoid the need of a fine mesh in a 2D region around the single layer material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Moreover, the assembling of the associated matrix 27 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='03 Transmission 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='025 u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' u 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='015 > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='005 0 2 1 0 1 2 y (nm)0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='03 Transmission 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='025 u 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='015 > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='005 0 2 1 0 1 2 y (nm)3 2 Transmission Interface Dirichlet ---- Interface Robin 0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='2 Drain-Source voltage M)is done at a cost comparable with the linear case, even when a coupled transport-Poisson model is considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Finally, it is worth mentioning the possibility of using a relatively coarse mesh in the oxide region and a finer grid on the interface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' As continuation of this work, we expect to take great advantage of these interesting features of the interface approach for the resolution of the Poisson equation in the context of a Dirac-Poisson coupling to perform self-consistent computations of a GFET with an enriched description of the particle transport.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Acknowledgments: The first author acknowledges partial support of the IDEX-IRS project NUM-GRAPH “NUMerical simulation of the electron transport through GRAPHene nanos- tructures” funded by Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Grenoble Alpes and Grenoble INP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' The second author acknowl- edges the financial support of Italian Ministry of University and Research (MUR) through the PRIN grant n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' 201744KLJL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' References [1] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Alboin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Jaffr´e, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Roberts, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Serres.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Modeling fractures as interfaces for flow and transport in porous media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' In Fluid flow and transport in porous media: mathematical and numerical treatment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=', pages 13–24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' 295, 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' [2] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Barletti, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Nastasi, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Negulescu, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Romano.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Mathematical modelling of charge transport in graphene heterojunctions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Kinet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Relat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Models, 14(3):407–427, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' [3] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Barletti and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Negulescu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Quantum transmission conditions for drift-diffusion equations describing charges in graphene with steep potentials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Stat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=', 171(4):696–726, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' [4] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Bertoluzza.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Analysis of a stabilized three-fields domain decomposition method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Numer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=', 93:611– 634, 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' [5] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Bertoluzza and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Kunoth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Wavelet stabilization and preconditioning for domain decomposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' IMA Journal of Numerical Analysis, 20(4):533–559, 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' [6] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Bramble, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Pasciak, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Schatz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' The construction of preconditioners for elliptic problems by substructuring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=', 47(175):103–134, 1986.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' [7] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Brezzi and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Fortin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Mixed and hybrid finite element methods, volume 15 of Springer Series in Computational Mathematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Springer-Verlag, New York, 1991.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' [8] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Brezzi and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Marini.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Error estimates for the Three-Field formulation with bubble stabilization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=', 70(235):911–934, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' [9] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Brezzi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Marini, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Pietra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' M´ethodes d’´el´ements finis mixtes et sch´ema de Scharfetter- Gummel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Paris S´er.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' I Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=', 305(13):599–604, 1987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' [10] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Butler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Progress, challenges, and opportunities in two-dimensional materials beyond graphene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' ACS Nano, 7:2898–2926, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' [11] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Castro Neto, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Guinea, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Peres, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Novoselov, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Geim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' The electronic properties of graphene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=', 81:109–162, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' [12] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Ciarlet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' The Finite Element Method for Elliptic Problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Society for Industrial and Applied Mathematics, 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' 28 [13] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Dorgan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Bae, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Pop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Mobility and saturation velocity in graphene on SiO2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=', 97(8):082112, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' [14] B Faermann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary elements methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Part I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' The two-dimensional case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' IMA J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' of Numer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=', 20(2):203–234, 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' [15] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Fang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Vandenberghe, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Fischetti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Microscopic dielectric permittivities of graphene nanoribbons and graphene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' B, 94:045318, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' [16] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Fefferman and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Weinstein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Wave packets in honeycomb structures and two-dimensional dirac equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=', 326:251–286, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' [17] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Fiori and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Iannaccone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Simulation of Graphene Nanoribbon Field-Effect Transistors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' IEEE Electron Device Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=', 28(8):760–762, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' [18] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Gummel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' A self-consistent iterative scheme for one-dimensional steady state transistor calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Electron Devices, 11(10):455 – 465, 1964.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' [19] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' El Hajj and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' M´ehats.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Analysis of models for quantum transport of electrons in graphene layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Models Methods Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=', 24(11):2287–2310, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' [20] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Jimenez and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Moldovan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Explicit drain-current model of graphene field-effect transistors targeting analog and radio-frequency applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Electron Devices, 58(11):4049–4052, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' [21] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' K¨oppel, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Martin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Jaffr´e, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Roberts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' A Lagrange multiplier method for a discrete fracture model for flow in porous media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Geosci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=', 23(2):239–253, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' [22] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Lions and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Magenes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Probl`emes aux limites non homog`enes et applications, Volume 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Dunod, Paris, 1968.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' [23] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Luca and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Romano.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Quantum corrected hydrodynamic models for charge transport in graphene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=', 406:30–53, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' [24] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Martin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Jaffr´e, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Roberts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Modeling fractures and barriers as interfaces for flow in porous media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' SIAM J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=', 26(5):1667–1691, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' [25] O Morandi and F Sch¨urrer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Wigner model for quantum transport in graphene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' A: Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=', 44(26):265301, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' [26] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Nastasi and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Romano.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' An efficient GFET structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Electron Devices, 68(9):4729– 4734, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' [27] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Hung Nguyen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Bournel, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Chassat, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Dollfus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Quantum transport of dirac fermions in graphene field effect transistors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' In 2010 International Conference on Simulation of Semiconductor Processes and Devices, pages 9–12, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' [28] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Ouyang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Yoon, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Guo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Scaling behaviors of graphene nanoribbon FETs: A three-dimensional quantum simulation study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Electron Devices, 54(9):2223–2231, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' [29] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Upadhyay, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Kushwaha, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Vishvakarma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' A unified scalable quasi-ballistic transport model of GFET for circuit simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Electron Devices, 65(2):739–746, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' [30] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Xu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Lian, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Shi, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Chen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Graphene-like two-dimensional materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=', 113:3766– 3798, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' [31] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Zamponi and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Barletti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Quantum electronic transport in graphene: A kinetic and fluid dynamical approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Methods Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=', 34:807–818, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' [32] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Zamponi and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' J¨ungel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Two spinorial drift-diffusion models for quantum electron transport in graphene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=', 11:927–950, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
+page_content=' 29' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FRT4oBgHgl3EQfGDeg/content/2301.13483v1.pdf'}
diff --git a/NdAzT4oBgHgl3EQfk_0W/content/tmp_files/2301.01539v1.pdf.txt b/NdAzT4oBgHgl3EQfk_0W/content/tmp_files/2301.01539v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..0fa5b0c60535a13b3e4ecfac80e23ccc77eab83a
--- /dev/null
+++ b/NdAzT4oBgHgl3EQfk_0W/content/tmp_files/2301.01539v1.pdf.txt
@@ -0,0 +1,4044 @@
+arXiv:2301.01539v1 [math.AP] 4 Jan 2023
+General Renewal Equations
+Motivated by Biology and Epidemiology
+R.M. Colombo1
+M. Garavello2
+F. Marcellini1
+E. Rossi3
+January 5, 2023
+Abstract
+We present a unified framework ensuring well posedness and providing stability estimates
+to a class of Initial – Boundary Value Problems for renewal equations comprising a vari-
+ety of biological or epidemiological models. This versatility is achieved considering fairly
+general – possibly non linear and/or non local – interaction terms, allowing both low reg-
+ularity assumptions and independent variables with or without a boundary. In particular,
+these results also apply, for instance, to a model for the spreading of a Covid like pandemic
+or other epidemics. Further applications are shown to be covered by the present setting.
+Keywords: IBVP for Renewal Equations; Well Posedness of Epidemiological Models;
+Differential Equations in Epidemic Modeling; Age and Space Structured SIR Models.
+1
+Introduction
+In a variety of biological models, different species are typically described through their den-
+sities u1, u2, . . . , uk and, in general, each uh depends on time t ∈ R+, on age a ∈ R+, on a
+spatial coordinate in R2 or R3 and possibly also on some structural variables. Thus, a unified
+treatment of these models finds its natural setting in the following general mixed Initial –
+Boundary Value Problem (IBVP) in X = Rm
++ × Rn
+
+
+
+
+
+
+
+∂tuh + divx
+�
+vh(t, x) uh�
+= gh �
+t, x, u(t, x), u(t)
+�
+(t, x) ∈ R+ × X
+uh(t, ξ) = uh
+b
+�
+t, ξ, u(t)
+�
+(t, ξ) ∈ R+ × ∂X
+uh(0, x) = uh
+o(x)
+x ∈ X ,
+(1.1)
+where h = 1, . . . , k. Aiming at a rather general setting while keeping sharp estimates, without
+any loss in generality, we write (1.1) in the form
+
+
+
+
+
+
+
+∂tuh + divx
+�
+vh(t, x) uh�
+= ph �
+t, x, u(t)
+�
+uh + qh �
+t, x, u, u(t)
+�
+(t, x) ∈ I×X
+uh(t, ξ) = uh
+b
+�
+t, ξ, u(t)
+�
+(t, ξ) ∈ I×∂X
+uh(0, x) = uh
+o(x)
+x ∈ X ,
+(1.2)
+1Universit`a degli Studi di Brescia, Unit`a INdAM & Dipartimento di Ingegneria dell’Informazione, via
+Branze, 38, 25123 Brescia, Italy.
+2Universit`a degli Studi di Milano Bicocca, Dipartimento di Matematica e Applicazioni, via R. Cozzi, 55,
+20125 Milano, Italy.
+3Universit`a degli Studi di Modena e Reggio Emilia, Dipartimento di Scienze e Metodi dell’Ingegneria, via
+Amendola, 2, 42122 Reggio Emilia, Italy.
+1
+
+where h = 1, . . . , k. Note that the decomposition of the source term gh in (1.1) into ph and
+qh is neither unique nor in any sense restrictive.
+We stress that both in (1.1) and in (1.2) the term u(t) appearing in the right hand sides is
+understood as a function, so that both the source and boundary terms in (1.1), besides being
+non linear, also comprise quite general non local, i.e., functional, dependencies.
+The current literature comprehends a multitude of well known models fitting into (1.1):
+we recall here for instance [1, 3, 4, 5, 8, 16, 20, 26, 30], leaving to Section 3 the highlighting of
+specific aspects of (1.1) in other recent or classical models. In particular, the well posedness
+and stability theorems below apply also to model (3.1) which, to our knowledge, does not
+fully fit into other well posedness results in the literature. At the same time, the literature
+covering particular instances of (1.1) dates back to classical milestones, such as [12, 17, 21, 25].
+Moreover, various textbooks introduce to the analytical study of models fitting into (1.1), see
+for instance [14, 15, 22, 27, 30, 34].
+A multitude of compartmental models share the key features of the chosen framework (1.1):
+they are the domain X of the x variable and the coexistence of rather general local and non
+local terms.
+Indeed, under the choice of X above, we comprise also bounded space/age
+domains [16], half lines [11], full vector spaces [20] as well as their combinations [4, 8, 29, 32].
+In all these cases, rather general conditions are assigned along the different types of boundaries
+that fit into (1.1), such as, for instance, natality terms [4, 29, 32]. The biological meaning
+imposes that these boundary terms, as well as the sources in (1.1), may contain both local
+and non local terms.
+The former ones comprehend, for instance, mortality terms [5, 8],
+while the latter can be motivated by natality [4, 29], predation [10] or interaction between
+populations [5], e.g., the propagation of an infection [8].
+We underline that the present framework does not rely on any regularizing effect of dif-
+fusion. The general non local terms here considered need not have any smoothing effect, and
+can also be absent. The lack of diffusion operators ensures that any movement or evolution
+described by (1.1) propagates with a finite speed. In particular, the present approach is con-
+sistent with deterministic modeling, while the Laplace operator may also serve to describe
+various sorts of random effects, see for instance [2, 19].
+Within this general framework, we first prove well posedness, i.e., local existence, unique-
+ness and continuous dependence of the solution to (1.1) on the initial datum. Then, we provide
+conditions ensuring the global in time existence and the stability with respect to functions and
+parameters defining (1.1). Throughout, the functional setting is provided by L1 and the dis-
+tance between solutions is always evaluated through the L1 norm. As a consequence, we can
+deal with non smooth solutions, a necessary feature in view of control problems. Moreover,
+the boundedness neither of the total variation nor of the L∞ norm of the data is required.
+Indeed, among the different notions of solutions to IBVPs for renewal equations, we choose
+to establish our framework on that introduced in [24, 33]. This definition not only is stated
+in terms of integral inequalities, more convenient in any limiting procedure, but remarkably
+it does not require any notion of trace, allowing us to deal with merely L1 solutions.
+Remark that in (1.1) both the source terms and the boundary terms are non linear. Thus,
+a key tool in the proofs is Banach Contraction Theorem, based on precise estimates on scalar
+equations.
+Merely requiring some sort of local Lipschitz regularity does not rule out the
+possibility of finite time blow ups (in any norm), as shown below by explicit examples. We
+thus resort to a Gronwall type argument to obtain global in time existence. As a byproduct,
+we also record a uniqueness result in the general setting of (1.1) based, as in the classical
+2
+
+Kruˇzkov case, on a carefully chosen definition of solution, see § 2.1.
+We also note that particular instances of equations falling within (1.1) can be studied
+through other techniques, such as, for instance, analytic semigroup theory, generalized entropy
+methods or Laplace transform. We refer, for instance, to [14, 15, 22, 30].
+The present results, besides unifying the treatment of various models, provide tools useful
+in tackling control/optimization problems based on (1.1).
+Indeed, the stability estimates
+proved in Theorem 2.5 ensure that general integral functional defined on the solutions are
+Lipschitz continuous functions of the data and parameters characterizing (1.1). A further
+direction that can be pursued using the present results is that of inverse problems, i.e.,
+exhibiting conditions ensuring that an optimal choice of data and parameters in (1.1) is
+possible, in order to best fit sets of given experimental data.
+This paper is organized as follows. In Section 2 we provide the basic well posedness and
+stability results. Then, Section 3 is devoted to specific applications that fit into (1.1). The
+technical analytic proofs are deferred to the final Section 4.
+2
+Assumptions, Definitions and Results
+Throughout, we set R+ = [0, +∞[,
+I = R+
+or
+I = [0, T]
+and
+X = Rm
++ × Rn
+(2.1)
+for a positive T.
+First, we state what we mean by solution to (1.1). To this aim, we extend to the present
+case the definitions in [24, 33], see in particular [31, Definition 3.5].
+Definition 2.1. A map u∗ ∈ C0(I; L1(X; Rk)) is a solution to (1.1) if setting for h =
+1, . . . , k, t ∈ I, x ∈ X and ξ ∈ ∂X
+Gh(t, x) = gh �
+t, x, u∗(t, x), u∗(t)
+�
+and
+Uh
+b (t, ξ) = uh
+b
+�
+t, ξ, u∗(t)
+�
+,
+for h = 1, . . . , k the map uh
+∗ is a semi–entropy solution to the IBVP
+
+
+
+
+
+
+
+∂tu + divx
+�
+vh(t, x) u
+�
+= Gh(t, x)
+(t, x) ∈ I × X
+u(t, ξ) = Uh
+b (t, ξ)
+(t, ξ) ∈ I × ∂X
+u(0, x) = uh
+o(x)
+x ∈ X .
+We recall in Definition 2.6 below the notion of semi-entropy solution.
+The main result of this paper concerns the well posedness of the Cauchy Problem (1.2).
+Theorem 2.2. Use the notation (2.1) and let the following assumptions hold:
+(V) v ∈ (C1 ∩ L∞)(I × X; Rk×(n+m)), divx vh ∈ L1
+loc(I; L∞(X; R)) for h = 1, . . . , k and
+there exists a positive V such that
+�
+vh(t, x)
+�
+i > V
+∀ (t, x) ∈ I × ∂X and for
+h = 1, . . . , k ;
+i = 1, . . . , m .
+3
+
+(P) For all w ∈ L1(X; Rk), the map (t, x) → p(t, x, w) is in C0(I × X; Rk) and there
+exist positive P1 and P2 such that for t ∈ I, x ∈ X, w, w′ ∈ L1(X; Rk)
+��p(t, x, w)
+��
+≤
+P1 + P2 ∥w∥L1(X;Rk) ;
+��p(t, x, w) − p(t, x, w′)
+��
+≤
+P2
+��w − w′��
+L1(X;Rk) .
+(Q) For all w ∈ L1(X; Rk), the map (t, x, u) → q(t, x, u, w) is in C0(I × X × Rk; Rk)
+and there exist positive Q1 and Q3 and a function Q2 ∈ (L1 ∩ L∞)(X; R+) such that
+for t ∈ I, x ∈ X, u, u′ ∈ Rk, w, w′ ∈ L1(X; Rk):
+��q(t, x, u, w)
+��
+≤
+Q1 ∥u∥ + Q2(x) ∥w∥L1(X;Rk) + Q3 ∥u∥ ∥w∥L1(X;Rk) ;
+��q(t, x, u, w) − q(t, x, u′, w′)
+��
+≤
+Q1
+��u − u′�� + Q3 ∥w∥L1(X;Rk)
+��u − u′��
++ Q3
+��u′�� ��w − w′��
+L1(X;Rk) .
+(BD) ub : R+ × ∂X × L1(X; Rk) → Rk is such that for any w ∈ L1(∂X; Rk), the
+map (t, ξ) → ub(t, ξ, w) is measurable. Moreover, there exists a function B ∈ (L1 ∩
+L∞)(∂X; R+) such that for every t ∈ I, ξ ∈ ∂X, w, w′ ∈ L1(X; Rk),
+��ub(t, ξ, w)
+��
+≤
+B(ξ)
+�
+1 + ∥w∥L1(X,Rk)
+�
+��ub(t, ξ, w) − ub(t, ξ, w′)
+��
+≤
+B(ξ)
+��w − w′��
+L1(X,Rk) .
+(ID) uo ∈ L1(X; Rk).
+Then,
+(WP.1) There exists a positive T∗ ∈ I such that, setting I∗ = [0, T∗], the IBVP (1.2)
+admits a solution in the sense of Definition 2.1 defined on I∗.
+(WP.2) Assume u1 and u2 solve (1.2) in the sense of Definition 2.1 with u1, u2 ∈
+L∞(I × X; Rk). Then, u1 = u2.
+(WP.3) Let ˆuo, ˇuo ∈ L1(X; Rk). If ˆu: ˆI → Rk, respectively ˇu: ˇI → Rk, solve (1.2) in
+the sense of Definition 2.1 with initial datum uo = ˆuo, respectively uo = ˇuo, then there
+exists a function L ∈ L∞
+loc(ˆI ∩ ˇI; R) such that for all t ∈ ˆI ∩ ˇI
+��ˆu(t) − ˇu(t)
+��
+L1(X;Rk) ≤ L(t) ∥ˆuo − ˇuo∥L1(X;Rk) .
+The proof is deferred to Section 4.
+In several applications it is of interest to guarantee that each component in the solution
+attains non negative values. To this aim, we state the following Corollary.
+Corollary 2.3. Let the same assumptions of Theorem 2.2 hold and assume moreover that
+for an index h ∈ {1, . . . , k}
+(Q+) For t ∈ I, a.e. x ∈ X, u ∈ Rk
++, w ∈ L1(X; Rk
++), qh(t, x, u, w) ≥ 0.
+(BD+) For t ∈ I, ξ ∈ ∂X and w ∈ L1(X; Rk), uh
+b (t, ξ, w) ≥ 0.
+4
+
+(ID+) For a.e. x ∈ X, uh
+o(x) ≥ 0.
+Then the unique solution u to (1.2) also satisfies for every t ∈ I∗ and for a.e. x ∈ X.
+uh(t, x) ≥ 0 .
+(2.2)
+The proof is deferred to Section 4.
+The above result is of a local nature and, without further assumptions, it can not be ex-
+tended to a global result, as the following examples show. Consider the Cauchy Problem (1.2)
+with k = 1, m = 0, n = 1, X = R, p(t, x, w) =
+� 1
+0 w(x) dx, q ≡ 0, which results in
+
+
+
+
+
+∂tu = u
+� 1
+0 u(t, x) dx
+u(0, x) = χ[0,1](x)
+solved by
+u(t, x) =
+1
+1 − t χ[0,1](x) .
+Note that (P) holds with P1 = 0 and P2 = 1. Clearly, u blows up in any norm at t = 1.
+Similarly, setting k = 1, m = 1, n = 0, X = R+, p(t, x, w) =
+�
+R+ w(x) dx, q ≡ 0 in (1.2),
+which satisfies (P) with P1 = 0 and P2 = 1, leads to the Cauchy Problem
+
+
+
+
+
+
+
+∂tu + ∂xu = u
+�
+R+ u(t, x) dx
+u(t, 0) = 0
+u(0, x) = χ[0,1](x) ,
+solved by
+u(t, x) =
+1
+1 − t χ[t,t+1](x) .
+Again, the solution blows up in any norm at t = 1.
+Typical biological/epidemiological models have further properties ensuring that solutions
+are defined globally in time. In particular, the model described in § 3.3 displays a quadratic
+right hand side similar to those in the examples above, differing in the sign. Nevertheless,
+in this example, well posedness holds globally in time. Indeed, in general, a lower bound
+on the solutions is available since Corollary 2.3 ensures that the components of the solution
+attain non negative values. An upper bound, preventing finite time blow up, is obtained
+through assumption (BD) on the boundary datum and a further condition, see (2.3) below,
+that bounds the overall growth.
+Corollary 2.4. Let I = R+. Let the assumptions of Corollary 2.3 hold for all h = 1, . . . , k.
+Assume moreover that for suitable C1 ∈ L∞
+loc(R+; L1(X; R)) and C2 ∈ L∞
+loc(R+; R),
+k
+�
+h=1
+ph(t, x, w) uh + qh(t, x, u, w) ≤ C1(t, x) + C2(t)
+k
+�
+h=1
+uh
+(2.3)
+for all t ∈ R+, a.e. x ∈ X, u, w ∈ Rk. Then, the solution to (1.2) is defined for all t ∈ R+.
+Finally, we provide the stability estimates essential to tackle, for instance, control prob-
+lems. To this aim, we need to slightly specialize the functional dependence of p, q and ub on
+u(t). We thus obtain sufficient conditions to apply Theorem 2.2 and get stability estimates.
+5
+
+Theorem 2.5. Let assumptions (V) and (ID) hold. Assume that in (1.2), for t ∈ I, x ∈ X,
+u ∈ Rk, w ∈ L1(X; Rk),
+ph(t, x, w)
+=
+P h �
+t, x,
+�
+X Kh
+p(t, x, x′) w(x′) dx′�
+qh(t, x, u, w)
+=
+Qh �
+t, x, u,
+�
+X Kh
+q (t, x, x′) w(x′) dx′�
+uh
+b (t, ξ, w)
+=
+U h
+b
+�
+t, ξ,
+�
+X Kh
+u(t, ξ, x′) w(x′) dx′�
+,
+(2.4)
+where the functions above satisfy:
+(P) There exist ¯P1 ≥ 0 and ¯P2 ≥ 0 such that, for every h = 1, . . . , k, the function
+P h : I × X × Rkp → R (kp ≥ 1) satisfies
+���P h (t, x, η)
+��� ≤ ¯P1 + ¯P2∥η∥
+and
+���P h (t, x, η1) − P h (t, x, η2)
+��� ≤ ¯P2∥η1 − η2∥
+for every t ∈ I, x ∈ X, η, η1, η2 ∈ Rkp; Kh
+p ∈ L∞(I × X 2; Rkpk).
+(Q) There exist ¯Q1, ¯Q3 ≥ 0 and ¯Q2 ∈
+�
+L1 ∩ L∞� �
+X; R+�
+such that, for every h =
+1, . . . , k, the function Qh : I × X × Rk × Rkp → R+ (kq ≥ 1) satisfies
+���Qh (t, x, u, η)
+���≤ ¯Q1∥u∥ + ¯Q2(x)∥η∥ + ¯Q3∥u∥∥η∥
+���Qh (t, x, u1, η1) −Qh (t, x, u2, η2)
+���≤ ¯Q1∥u1 − u2∥ + ¯Q3∥η1∥∥u1 − u2∥ + ¯Q3∥u2∥∥η1 − η2∥
+for every t ∈ I, x ∈ X, u, u1, u2 ∈ Rk, η, η1, η2 ∈ Rkq; Kh
+q ∈ L∞(I × X 2; Rkqk).
+(BD) There exists ¯B ∈ (L1∩L∞)(∂X; R+) such that for every h = 1, . . . , k, the function
+U h
+b : I × ∂X × Rku → R+ satisfies
+���U h
+b (t, ξ, η)
+��� ≤ ¯B(ξ)
+�
+1 + ∥η∥
+�
+and
+���U h
+b (t, ξ, η1) − U h
+b (t, ξ, η2)
+��� ≤ ¯B(ξ) ∥η1 − η2∥
+for every t ∈ I, ξ ∈ ∂X and η, η1, η2 ∈ Rku; Kh
+u ∈ L∞(I × ∂X × X; Rkuk).
+Then, Theorem 2.2 applies. Moreover, if both systems
+
+
+
+
+
+
+
+∂tuh + divx
+�
+vh(t, x) uh�
+= ˆph �
+t, x, u(t)
+�
+uh + ˆqh �
+t, x, u, u(t)
+�
+(t, x) ∈ I×X
+uh(t, ξ) = ˆuh
+b
+�
+t, ξ, u(t)
+�
+(t, ξ) ∈ I×∂X
+uh(0, x) = ˆuh
+o(x)
+x ∈ X ,
+(2.5)
+
+
+
+
+
+
+
+∂tuh + divx
+�
+vh(t, x) uh�
+= ˇph �
+t, x, u(t)
+�
+uh + ˇqh �
+t, x, u, u(t)
+�
+(t, x) ∈ I×X
+uh(t, ξ) = ˇuh
+b
+�
+t, ξ, u(t)
+�
+(t, ξ) ∈ I×∂X
+uh(0, x) = ˇuh
+o(x)
+x ∈ X ,
+(2.6)
+satisfy the assumptions above, then the following stability estimates hold:
+��ˆu(t) − ˇu(t)
+��
+L1(X;Rk)
+≤
+O(1)
+���� ˆP − ˇP
+���
+L∞([0,t]×X×Rkp;Rk) +
+��� ˆKp − ˇKp
+���
+L∞([0,t]×X 2;Rkpk2)
+6
+
++
+��� ˆQ − ˇQ
+���
+L1([0,t]×X;L∞(Rk×Rkq;Rk)) +
+��� ˆKq − ˇKq
+���
+L∞([0,t]×X 2;Rkqk2)
++
+��� ˆUb − ˇUb
+���
+L1([0,t]×∂X;L∞(Rku;Rk)) +
+��� ˆKu − ˇKu
+���
+L∞([0,t]×∂X×X;Rkuk2)
+�
+eO(1)t
+for every t such that ˆu and ˇu are defined on [0, t] and where the Landau symbol O(1) denotes
+a constant independent of the initial data.
+The proof is deferred to Section 4.
+Finally, we note that (V) and Definition 2.1 allow to immediately extend all results in
+the present section to the case X =
+��m
+i=1 Ii
+�
+× Rn, as soon as I1, . . . , Im are (non trivial)
+real intervals bounded below. In particular, any of the Ii may well be bounded also above.
+2.1
+The Definition of Semi–Entropy Solution Ensures Uniqueness
+This paragraph provides a definition of solution and the consequent uniqueness statement in
+a setting more general than the one usually found in the literature. In particular, it extends
+the results in [24, Section 3] to the slightly more general case of the unbounded domain X.
+Indeed, with the notation (2.1), consider the fully nonlinear IBVP
+
+
+
+
+
+∂tu + divx f(t, x, u) = g(t, x, u)
+(t, x) ∈ I × X
+u(t, ξ) = ub(t, ξ)
+(t, ξ) ∈ I × ∂X
+u(0, x) = uo(x)
+x ∈ X .
+(2.7)
+The following definition is the extension to (2.7) of [31, Definition 3.5], see also [24, 33].
+Definition 2.6. A semi-entropy solution to the IBVP (2.7) on the real interval I is a map
+u ∈ L∞
+loc(I; L1(X; R)) such that for any κ ∈ R and for any test function ϕ ∈ C1
+c(]−∞, sup I[×
+Rn+m; R+)
+�
+I
+�
+X
+�
+u(t, x) − κ
+�± ∂tϕ(t, x) dx dt
++
+�
+I
+�
+X
+sgn ±(u(t, x) − κ)
+�
+f(t, x, u) − f(t, x, κ)
+�
+· gradx ϕ(t, x) dx dt
++
+�
+I
+�
+X
+sgn ±(u(t, x) − κ)
+�
+g
+�
+t, x, u(t, x)
+�
+− divx f(t, x, κ)
+�
+ϕ(t, x) dx dt
+(2.8)
++
+�
+X
+�
+uo(x) − κ
+�± ϕ(0, x) dx
++ Lip(f)
+�
+I
+�
+∂X
+�
+ub(t, ξ) − κ
+�± ϕ(t, ξ) dξ dt ≥ 0
+where Lip(f) is a Lipschitz constant of the map u → f(t, x, u), uniform in (t, x) ∈ I × X.
+Above, we use the notation w+ = max{w, 0} and w− = max{−w, 0}.
+A key feature of (2.8) is its ensuring uniqueness, which we detail in the next Proposition
+to ease comparisons with the current literature.
+Proposition 2.7. Consider the general scalar IBVP (2.7) under the assumptions
+(f) f ∈ C0(I × X × R; Rn+m) admits continuous derivatives ∂uf, ∂u gradx f, D2
+xxf with
+∂uf and gradx f bounded in (t, x) ∈ I × R+ locally in u ∈ R; ∂u gradx f is bounded.
+7
+
+(g) g, ∂ug, ∂xig ∈ C0(I × X × R; R) and for all (t, x) ∈ I × X,
+��g(t, x, u)
+�� ≤ G(u) for a
+map G ∈ L∞
+loc(R; R+) and ∂ug is bounded.
+(bd) The boundary datum satisfies ub ∈ L∞(I × ∂X; R).
+(id) The initial datum satisfies uo ∈ L∞(X; R).
+If u1, u2 ∈ L∞(I × X; R) both satisfy (2.8), then they coincide.
+This Proposition slightly extends [24, Theorem 18]. However, its proof relies on merely
+technical modifications to [24, Lemma 16 and Lemma 17], due to the present unboundedness
+of the domain X. Very similar techniques are employed also in [23, § 2.6 and § 2.7], which is
+devoted to a hyperplane.
+3
+Sample Applications
+The structure of (1.1) is sufficiently flexible to comprise a variety of applications of mathe-
+matics to biology, in particular to epidemiology. The general results in the preceding section
+can be applied to well known models in the literature, see for instance [1, 5, 7, 30]. In the
+next paragraphs, we select sample applications based on analytic structure that differ in the
+number of equations, in the number of independent variables, in the presence of (partial)
+boundaries and in the role of non local terms.
+In particular, § 3.1 deals with a recently
+proposed model, see [8], while the subsequent ones refer to other classical models that fit
+into (1.1).
+3.1
+The Spreading of an Epidemic
+During the spreading of an epidemic, within a population we distinguish among individuals
+that are Susceptible, Infective, Hospitalized or Recovered, see [8]. Each of these populations
+is described through its time, age and space dependent density: S = S(t, a, y), I = I(t, a, y),
+H = H(t, a, y) and R = R(t, a, y), respectively. Remark that the distinction between I and
+H consists in the H individuals that, being hospitalized or quarantined, do not infect anyone
+although being ill. In its most general form, the model presented in [8, § 2] to describe the
+evolution of these populations, reads
+
+
+
+
+
+
+
+
+
+∂tS + ∂aS + divy (vS S) + µS S = −(ρ ⊗ I)S
+∂tI + ∂aI + divy (vI I) + µI I =
+(ρ ⊗ I)S − κ I − ϑ I
+∂tH + ∂aH
++ µH H =
++ κ I
+− η H
+∂tR + ∂aR + divy (vR R) + µR R =
++ ϑ I + η H
+t ∈ R+
+a ∈ R+
+y ∈ R2
+(3.1)
+where the propagation of the infection is described by
+�
+ρ ⊗ I(t)
+�
+(a, y) =
+�
+R+
+�
+R2 ρ(a, a′, y, y′) I(t, a′, y′) dy′ da′ .
+(3.2)
+Here, the function ρ plays the key role of describing how infective individuals infect others, at
+which distance and with which dependence on age or time, see [8] for more details. In (3.1),
+vS = vS(t, a, y), vI = vI(t, a, y) and vR = vR(t, a, y) describe the time, age and, possibly, space
+dependent movements of the S, I and R individuals, while µS = µS(t, a, y), µI = µI(t, a, y),
+8
+
+µH = µH(t, a, y) and µR = µR(t, a, y) are the mortalities. The term κ = κ(t, a, y) describes
+how quickly infected individuals are confined to quarantine; ϑ = ϑ(t, a, y), respectively η =
+η(t, a, y), quantifies the speed at which infected, respectively quarantined, individuals recover.
+System (3.1) needs to be supplemented by boundary and initial data:
+
+
+
+
+
+
+
+
+
+S(t, a = 0, y) = Sb(t, y)
+I(t, a = 0, y) = 0
+H(t, a = 0, y) = 0
+R(t, a = 0, y) = 0
+and
+
+
+
+
+
+
+
+
+
+S(t = 0, a, y) = So(a, y)
+I(t = 0, a, y) = Io(a, y)
+H(t = 0, a, y) = Ho(a, y)
+R(t = 0, a, y) = Ro(a, y) .
+(3.3)
+Note that a more precise boundary term, though not amenable to be used in the short term,
+might be a natality term of the form
+S(t, a = 0, y) =
+�
+R+
+b(t, a′, y) S(t, a′, y) da′
+which also fits in the framework of Theorem 2.2 and Theorem 2.5. Note that (3.1)–(3.2)–(3.3)
+is a system with independent variables (a, y) where a is bounded below while y is in R2 and
+no second order differential operator is present. The model (3.1)–(3.2)–(3.3) fits into (1.2) in
+the form (2.4) setting X = R+ × R2, x = (a, y), ξ = (0, y) and
+k = 4
+m = 1
+n = 2
+u1 = S
+u2 = I
+u3 = H
+u4 = R
+w1 = S(t)
+w2 = I(t)
+w3 = H(t)
+w4 = R(t)
+v1 =
+�
+1
+vS
+�
+v2 =
+�
+1
+vI
+�
+v3 =
+�
+1
+0
+�
+v4 =
+�
+1
+vR
+�
+u1
+b = Sb
+u2
+b = 0
+u3
+b = 0
+u4
+b = 0
+u1
+o = So
+u2
+o = Io
+u3
+o = Ho
+u4
+o = Ro
+p1(t, x, Λ)
+=
+−µS − Λ
+p2(t, x, Λ)
+=
+−µI − κ − ϑ
+p3(t, x, Λ)
+=
+−µH − η
+p4(t, x, Λ)
+=
+−µR
+q1(t, x, u, Λ)
+=
+0
+q2(t, x, u, Λ)
+=
+Λ u1
+q3(t, x, u, Λ)
+=
+κ u2
+q4(t, x, u, Λ)
+=
+ϑ u2 + η u3
+and the only 2 non zero entries in Kp and Kq are valued ρ, so that
+�
+X
+K1
+p
+�
+t, (a, y), (a′, y′)
+�
+w(a′, y′) da′ dy′
+=
+�
+ρ ⊗ I(t)
+�
+(a, y) ,
+�
+X
+K2
+q
+�
+t, (a, y), (a′, y′)
+�
+w(a′, y′) da′ dy′
+=
+�
+ρ ⊗ I(t)
+�
+(a, y) .
+Proposition 3.1. Set I = [0, T] or I = R+. Let vS, vI, vR ∈ (C1 ∩ L∞)(I × X; R2) with
+divergence in L1(I; L∞(X; R)); ρ ∈ L∞(R2
++ × R4; R) and Sb ∈ (L1 ∩ L∞)(I × R2; R). Let
+µS, µI, µH, µR, ϑ, η and κ be positive and in L∞. Fix an initial datum (So, Io, Ho, Ro) in
+L1(X; R4). Then:
+1. Problem (3.1)–(3.2)–(3.3) fits into Theorem 2.2 and Theorem 2.5 and hence admits a
+solution (S, I, H, R) ∈ C0 �
+[0, T∗]; L1(X; R4)
+�
+, for a T∗ > 0.
+9
+
+2. If the initial and boundary data (So, Io, Ho, Ro) and Sb are non negative, if ρ ≥ 0 and
+if the constants κ, η, θ are non negative, then Corollary 2.3 applies, ensuring that the
+solution is non negative: (S, I, H, R)(t) ∈ L1(X; R4
++), for all t ∈ [0, T∗].
+3. If, in addition to what required at 2., the mortalities µS, µI, µH, µR are non negative,
+then Corollary 2.4 applies, so that the solution is defined globally in time.
+4. If, in addition to what required at 3., (So, Io, Ho, Ro) in L∞(X; R4
++), then the solution is
+locally bounded: (S, I, H, R) ∈ L∞(J ×X; R4
++), for any bounded interval J ⊆ I. Hence,
+(S, I, H, R) is the unique solution to (3.1) in the sense of Definition 2.1.
+The proof is deferred to Section 4.
+As pointed out in (3.1), a natural control parameter is the coefficient κ = κ(t, a, y), which
+determines how quickly infective individuals are isolated in quarantine.
+A first natural choice for a cost to be minimized by a careful choice of κ is the total
+number of deaths on the time interval [0, T], namely
+D(κ) =
+� T
+0
+�
+R+
+�
+R2
+�
+µI(t, a, y) I(t, a, y) + µH(t, a, y) H(t, a, y)
+�
+dy da dt .
+Proposition 3.1 ensures that the cost D is a continuous function of κ.
+Hence, standard
+compactness arguments, for instance in the case of a constant κ, ensure the existence of an
+optimal control. Moreover, the Lipschitz continuity, again ensured by Proposition 3.1, allows
+to use standard optimization algorithms to actually find near–to–optimal controls.
+A second reasonable choice is to minimize the maximal number of infected individuals
+∥I∥L∞([0,T]×R+×R2), aiming at minimizing the maximal stress on the health care system.
+Again, the continuity proved in Proposition 3.1 allows to use Weierstrass type arguments to
+exhibit the existence of optimal controls, thanks to the lower semicontinuity of the L∞ norm
+with respect to the L1 distance.
+3.2
+Cell Growth and Division
+Consider the classical model [4, Formula (2)] devoted to the description of cell growth and
+cell division, as extended in [32, Formulæ (1.5)–(1.7)]:
+�
+∂tN + ∂aN + divy (V (a, y) N) = −λ(a, y) N
+N(t, 0, y) =
+�
+R+
+�
+Rn β
+�
+(a′, y′), y, N(t, a′, y′)
+�
+dy′ da′
+(3.4)
+where t ∈ R+ is time, a ∈ R+ is age, (y1, . . . , yn) ∈ Rn is an n–tuple of structure variables,
+λ = λ(a, y) is the age– and state–specific loss rate, N = N(t, a, y) is the population density
+and V = V (a, y) is the (time independent) individual cell’s growth rate. Therefore, (3.4) fits
+into (1.2) setting
+k = 1 ,
+n ∈ N ,
+m = 1 ,
+X = R+×Rn ,
+x = (a, y) ,
+ξ = (0, y) ,
+u = N ,
+w = N(t) ,
+v
+�
+t, (a, y)
+�
+= V (a, y) ,
+p
+�
+t, (a, y), N(t)
+�
+= −λ(a, y) ,
+q
+�
+t, (a, y), N, N(t)
+�
+= 0 ,
+ub(t, y, N, N(t)) =
+�
+Rn
+�
+R+
+β
+�
+(a′, y′), y, N(t, a′, y′)
+�
+da′ dy′ .
+10
+
+Concerning the assumptions of Theorem 2.2, we have that (V) is satisfied as soon as V ∈
+(C1 ∩ L∞)(X; Rn) and div V ∈ L1(I; L∞(X; R)). Condition (P) is met whenever λ ∈ C0 ∩
+L∞, with P1 = ∥λ∥L∞(R+×Rn;R) and P2 = 0. Assumption (Q) trivially holds. To comply
+with (BD), we need β to be Lipschitz continuous and sublinear in its fourth argument, i.e.,
+β((a′, y′), y, w) ≤ B(y)
+�
+1 + |w|
+�
+for a suitable B ∈ L1 ∩ L∞.
+Under these assumptions,
+Theorem 2.2 applies to (3.4).
+As soon as β ≥ 0 and the initial datum is non negative, also Corollary 2.3 applies, ensuring
+the solution is non negative. It is reasonable to assume from the biological point of view that
+λ ≥ 0, so that also Corollary 2.4 applies (with C1 = 0, C2 = 0), ensuring that the solution is
+globally defined in time. It is straightforward to see that, as soon as β is linear in its third
+argument, it is possible to apply also Theorem 2.5.
+3.3
+An Age and Phenotypically Structured Population Model
+Within the general form (1.1) we recover also the recent model [29, Formula (1)], namely
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ε ∂tMε + ∂a
+�
+A(a, y) Mε
+�
+= −
+��
+R+
+�
+RnMε(t, a′, y′) da′ dy′ + d(a, y)
+�
+Mε
+Mε(t, a = 0, y) =
+1
+A(a = 0, y) εn
+�
+R+
+�
+Rn M
+�y′ − y
+ε
+�
+b(a′, y′) Mε(t, a′, y′) da′ dy′
+Mε(t = 0, a, y) = M0
+ε (a, y) .
+(3.5)
+Here, the dependent variable Mε = Mε(t, a, y) describes the population density at time t, of
+age a ∈ R+ and trait x ∈ Rn, so that
+�
+R+
+�
+Rn Mε(t, a, y) da dx is the total population. The
+growth function A = A(a, y) describes the age and trait dependent aging. The mortality,
+on the right hand side of the first equation in (3.5), both depends on the crowding, due to
+intraspecies competition, and on a given mortality d = d(a, y).
+The function b = b(a, y)
+quantifies the natality and is modulated by the mutation probability kernel M, both defining
+the boundary term along a = 0, see also [28].
+Note that the IBVP (3.5) can be seen as a prototype equation for various other similar
+models, see for instance [26, Formula (2.8)].
+The above system (3.5) fits into (1.2) setting X = R+ × Rn and
+k = 1 ,
+m = 1 ,
+n ≥ 1 ,
+x = (a, y) ,
+ξ = (0, y) ,
+u = Mε ,
+w = Mε(t) ,
+v =
+�
+A(a, y)/ε
+0
+�
+,
+p(t, x, w) = −1
+ε
+�
+Rn w(x) dx − d(x)
+ε
+,
+q(t, x, u, w) = 0 ,
+ub(t, y, w) =
+1
+A(a = 0, y) εn
+�
+R+
+�
+Rn M
+�y′ − y
+ε
+�
+b(a′, y′) w(a′, y′) da′ dy′ .
+(3.6)
+Proposition 3.2. Let A ∈ (C1 ∩ L∞)(X; R) with inf A > 0 and diva,y A ∈ L∞(X; R). Let
+d ∈ L∞(Rn; R), M ∈ L∞(Rn; R) such that M(η) = 0 whenever ∥η∥ ≥ r, for a fixed r > 0.
+Moreover, b ∈ L∞(R+ × Rn; R) such that
+��b(a, y)
+�� ≤
+�
+1 + ∥y∥
+�−(n+1). Then, for any initial
+datum uo ∈ (L1∩L∞)(X; R), Theorem 2.2 applies to the Cauchy Problem for (3.5) with datum
+uo. If moreover uo ≥ 0, A(0, y) ≥ 0, M ≥ 0 and b ≥ 0, Corollary 2.3 and Corollary 2.4
+apply, ensuring that the solution is non negative and defined on all R+.
+The proof is deferred to Section 4. Thus, the above result ensures existence on [0, +∞[ as soon
+as all the assumptions are available therein, recovering the well posedness results in [28, 29].
+11
+
+3.4
+Further Applications
+We briefly recall here further models considered in the literature that fit within (1.1). In each
+of the cases below, we refer to the original sources for detailed descriptions of the modeling
+environments.
+The model presented in [20, Formula (5)], devoted to the modeling of leukemia develop-
+ment, reads (here, i = 2, . . . , M − 1 for a fixed M ∈ N, M ≥ 3):
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+∂tn1 =
+�
+2 a1(x)
+1 + K
+� 1
+0 nM(t, x′) dx′ − 1
+�
+p1(x) n1
+∂tni = 2
+�
+1−
+ai−1(x)
+1+K
+� 1
+0 nM(t, x′) dx′
+�
+pi−1(x) ni−1+
+�
+2ai(x)
+1+K
+� 1
+0 nM(t, x′) dx′ −1
+�
+pi(x) ni
+∂tnM = 2
+�
+1 −
+aM−1(x)
+1 + K
+� 1
+0 nM(t, x′) dx′
+�
+pM−1(x) nM−1 − d nM
+ni(0, x) = no
+i (x) .
+(3.7)
+Remark that (3.7) can be seen as a system of ordinary differential equations on functions
+defined on [0, 1] or, alternatively, as a system of ordinary differential equations coupled also
+through a non local dependence on the x variable. Nevertheless, it fits within (1.1): indeed,
+set k = M, m = 0, n = 1, X = R, u = (n1, . . . , nM), v ≡ 0, the other terms being obviously
+chosen.
+It is worth noting that the recent model [3, Formula (13)], though devoted to an entirely
+different scenario, is analytically analogous to (3.7) and also fits within the framework formal-
+ized in Section 2. The use of Theorem 2.2 and Theorem 2.5 thus extends the results in [3, 20]
+comprehending L1 solutions and providing a full set of stability estimates.
+Another example is the model recently presented in [16, Formula (1.1)], devoted to an age–
+structured population described by the time, age and space dependent density u = u(t, a, y):
+
+
+
+
+
+∂tu + ∂au = d(J ∗ u(t) − u) + G
+�
+u(t)
+�
+u(t, 0, y) = F
+�
+u(t)
+�
+u(0, a, y) = Φ(a, y)
+(3.8)
+considered in [16] for a ∈ [0, a+] and y ∈ Ω, where a+ ∈ ]0, +∞[ and Ω ⊆ RN are given.
+Above, J is a convolution kernel, while the functionals F and G are locally Lipschitz contin-
+uous with respect to the L1 norm. Model (3.8) fits into (1.1) setting k = 1, m = 1, n = N,
+X = R+ × RN, x = (a, y), v =
+�1
+0
+�
+, the choice of the other terms being immediate. The
+results in Section 2 immediately apply even if the age interval [0, a+] and the space domain
+are bounded, thanks to the generality of the assumptions required on v. This allows to have
+qualitative information on the dependence of the solutions exhibited in [16] on the various
+parameters and functions defining (3.8).
+We recall also the following competitive population model with age structure as an example
+of a system of equations. It was introduced and studied from the optimal management point
+12
+
+of view in [11, Formula (1.1)]:
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+∂tu1 + ∂au1 = −µ1(a, u1) u1 − f 1(t, a) u1 − u1
+� A
+0
+c1(a′, a) u2(t, a′) da′
+∂tu2 + ∂au2 = −µ2(a, u2) u2 − f 2(t, a) u2 − u2
+� A
+0
+c2(a′, a) u1(t, a′) da′
+u1(t, 0) =
+� A
+0
+β1(a′) u1(t, a′) da′
+u2(t, 0) =
+� A
+0
+β2(a′) u2(t, a′) da′
+u1(0, a) = u1
+o(a)
+u2(0, a) = u2
+o(a) .
+(3.9)
+Here, we have k = 2, m = 1, n = 0, X = R+, v = 1. Under the assumptions of Theorem 2.2
+and Theorem 2.5 we recover the continuity of the profit functional [11, Formula (1.2)]
+J(f) =
+� T
+0
+� A
+0
+�
+K1(a) f 1(t, a) u1(t, a) + K2(a) f 2(t, a) u2(t, a)
+�
+da dt ,
+now also in the setting of L1 solutions.
+4
+Analytic Proofs
+4.1
+The Scalar Case
+We now consider in detail the affine scalar case, namely (2.7) with f(t, x, u) = v(t, x) u and
+g(t, x, u) = p(t, x) u + q(t, x), i.e.,
+
+
+
+
+
+∂tu + divx
+�
+v(t, x)u
+�
+= p(t, x) u + q(t, x)
+(t, x) ∈ R+ × X
+u(t, ξ) = ub(t, ξ)
+(t, ξ) ∈ R+ × ∂X
+u(0, x) = uo(x)
+x ∈ X .
+(4.1)
+Recall the following standard notation. A characteristic of (4.1) is the solution t → X(t; to, xo)
+to the following Cauchy Problem for the system of ordinary differential equations
+�
+˙x = v(t, x)
+x(to) = xo .
+(t, x) ∈ I × X
+(to, xo) ∈ I × X .
+(4.2)
+For τ, t ∈ I and for x ∈ X, define
+E(τ, t, x) = exp
+�� t
+τ
+�
+p
+�
+s, X(s; t, x)
+�
+− divx v
+�
+s, X(s; t, x)
+��
+ds
+�
+(4.3)
+and for all (t, x) ∈ I × X, if x ∈ X(t; [0, t[, ∂X), we set
+T(t, x) = inf
+�
+s ∈ [0, t[: X(s; t, x) ∈ X
+�
+.
+(4.4)
+13
+
+With the notation introduced above, we recall the well known formula
+u(t, x) =
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+uo
+�
+X(0; t, x)
+�
+E(0, t, x)
++
+� t
+0
+q
+�
+τ, X(τ; t, x)
+�
+E(τ, t, x) dτ
+x ∈ X(t; 0, X)
+ub
+�
+T(t, x), X
+�
+T(t, x); t, x
+��
+E
+�
+T(t, x), t, x
+�
++
+� t
+T(t,x)
+q
+�
+τ, X(τ; t, x)
+�
+E(τ, t, x) dτ
+x ∈ X(t; [0, t[, ∂X)
+(4.5)
+obtained from the integration along characteristics, a standard tool at least since the classical
+paper [12]. The following relations are of use below, for a proof see for instance [6, Chapter 3],
+∂tX(t; to, xo) = v
+�
+t, X(t; to, xo)
+�
+(4.6)
+∂toX(t; to, xo) = −v(to, xo) exp
+� t
+to
+divx v
+�
+s; X(t, to, xo)
+�
+ds
+(4.7)
+DxoX(t; to, xo) = M(t), the matrix M solves
+�
+˙M = Dxv
+�
+t, X(t; to, xo)
+�
+M
+M(to) = Id .
+(4.8)
+In order to prove that (4.5) solves (4.1) in the sense of Definition 2.6 and to provide
+the basic well posedness estimates, a few technical lemmas are in order. First introduce the
+following notation: where misunderstandings might arise, we use the positional notation for
+derivatives. For instance, with reference to the map (t; to, xo) → X(t; to, xo), we denote
+∂2X(t; to, xo) = ∂toX(t; to, xo) = lim
+τ→0
+X(t; to + τ, xo) − X(t; to, xo)
+τ
+.
+We also set X = (X1, . . . , Xm+n), with Xi = X ·ei, where (e1, . . . , em+n) is the canonical base
+of Rm+n. Recall also that ∂lXi = ∂l(X · ei) = (∂lX) · ei, for l = 1, 2, 3 and i = 1, . . . , m + n.
+Lemma 4.1. Under assumption (V) with k = 1, the map in (4.4)
+T :
+�
+(t, x) ∈ R+ × X : x ∈ X(t; [0, t[ , ∂X)
+�
+→
+R+
+(t, x)
+�→
+inf
+�
+s ∈ [0, t[: X(s; t, x) ∈ X
+�
+(4.9)
+is well defined. Moreover, for all t ∈ R+ and a.e. x ∈ X such that x ∈ X(t; [0, t[, ∂X), there
+exists a unique i ∈ {1, . . . , m}, depending on t and x, such that
+Xi(T(t, x); t, x) = 0.
+(4.10)
+Given t ∈ R+, for i ∈ {1, . . . , m}, call Xt
+i the set of x ∈ X such that i is the unique index
+satisfying (4.10). Then, the map
+Mi :
+Xt
+i
+→
+R+ × Rn+m−1
+x
+�→
+�
+T(t, x),
+�
+Xj(T(t, x), t, x)
+�
+j̸=i
+�
+(4.11)
+is a local diffeomorphism. The derivatives of the function T are given by
+∂tT(t, x) = −
+∂2Xi(T(t, x); t, x)
+vi
+�
+T(t, x), X(T(t, x); t, x)
+�
+(4.12)
+14
+
+∂xℓT(t, x) = −
+∂3ℓXi
+�
+T(t, x); t, x
+�
+vi
+�
+T(t, x), X
+�
+T(t, x); t, x
+��
+ℓ = 1, . . . , n + m .
+(4.13)
+Finally the absolute value of the determinant of the Jacobian matrix DMi at x is
+1
+vi
+�
+T(t, x), X(T(t, x); t, x
+� exp
+� T(t,x)
+t
+m+n
+�
+j=1
+∂xjvj
+�
+s, X (s; t, x)
+�
+ds .
+(4.14)
+Proof. By (V), the usual Cauchy Theorem for systems of ordinary differential equations
+ensures that, for all (to, xo) ∈ R+ × X, the Cauchy Problem (4.2) admits a unique solution
+defined on a maximal interval [T(to,xo), +∞[, with T(to,xo) ∈ [0, to]. Then, the map T defined
+in (4.4) can be written T(t, x) = T(t,x) whenever T(t,x) > 0 and T(t, x) = 0 otherwise. Hence,
+the map (4.9) is well defined.
+Once x ∈ X(t; [0, t[, ∂X), it is clear that there exists at least one index i such that (4.10)
+holds. The uniqueness follows, since X(t; ·, ·) is a diffeomorphism.
+Fix t > 0, i ∈ {1, . . . , m}, and x ∈ Xt
+i. Locally around (t, x), the constraint (4.10) remains
+valid. To compute the derivatives of the map (t, x) → T(t, x), differentiating (4.10) with
+respect to t yields
+∂1Xi
+�
+T(t, x); t, x
+�
+∂tT(t, x) + ∂2Xi
+�
+T(t, x); t, x
+�
+= 0
+and so, using (4.6),
+vi
+�
+T(t, x), X
+�
+T(t, x); t, x
+��
+∂tT(t, x) + ∂2Xi
+�
+T(t, x); t, x
+�
+= 0
+which proves (4.12), while a differentiation with respect to xℓ (ℓ ∈ {1, . . . , m + n}) yields
+∂1Xi
+�
+T(t, x); t, x
+�
+∂xℓT(t, x) + ∂3ℓXi
+�
+T(t, x); t, x
+�
+= 0
+and so, using (4.6),
+vi
+�
+T(t, x), X
+�
+T(t, x); t, x
+��
+∂xℓT(t, x) + ∂3ℓXi
+�
+T(t, x); t, x
+�
+= 0,
+which proves (4.13).
+Consider the (n + m) × (n + m) Jacobian matrix DMi. By (4.13), the first row is
+�
+∂x1T(t, x), · · · , ∂xn+mT(t, x)
+�
+=
+�
+−∂31Xi
+vi
+, · · · , −∂3n+mXi
+vi
+�
+,
+where, for simplicity, we omitted the arguments of the functions Xi and vi. The remaining
+rows, indexed by j ∈ {1, . . . , n + m}, j ̸= i, of DMi are given by
+�
+∂x1Xj(T(t, x); t, x), · · · , ∂xn+mXj(T(t, x); t, x)
+�
+=
+�
+−vj
+∂31Xi
+vi
++ ∂31Xj, · · · , −vj
+∂3n+mXi
+vi
++ ∂3n+mXj
+�
+.
+We compute the determinant of DMi using Gauss method. We modify all the rows, except
+the first one, by adding to each row a multiple of the first one. In this way the determinant
+15
+
+of DMi equals the determinant of the matrix
+
+
+
+
+
+
+
+
+
+− ∂31Xi
+vi
+− ∂32Xi
+vi
+· · ·
+−
+∂3n+mXi
+vi
+∂31X1
+∂32X1
+· · ·
+∂3n+mX1
+...
+...
+...
+...
+∂31Xn+m
+∂32Xn+m
+· · ·
+∂3n+mXn+m
+
+
+
+
+
+
+
+
+
+in the case i ̸= 1, n + m, the other cases being entirely similar. Therefore
+��det (DMi)
+�� =
+1
+vi
+��det (D3X)
+��. Using (4.8) and Liouville Theorem [13, Theorem 1.2, Chapter IV], we deduce
+���det
+�
+DMi(x)
+���� =
+1
+vi
+�
+T(t, x); X(T(t, x); t, x)
+� exp
+� T(t,x)
+t
+tr
+�
+Dxv
+�
+s, X (s; t, x)
+��
+ds
+=
+1
+vi
+�
+T(t, x); X(T(t, x); t, x)
+� exp
+� T(t,x)
+t
+m+n
+�
+j=1
+∂xjvj
+�
+s, X (s; t, x)
+�
+ds
+which proves (4.14).
+The next two lemmas provide the basic a priori and stability estimates on (4.1).
+Lemma 4.2. Let (V) with k = 1 hold, let p ∈ L∞(I × X; R), q ∈ L1(I × X; R), ub ∈
+L1(I ×∂X; R) and uo ∈ L1(X; R). Then, for every t ∈ I the solution to problem (4.1) defined
+through formula (4.5) satisfies the following a priori estimates:
+��u(t)
+��
+L1(X;R)
+≤
+�
+∥q∥L1([0,t]×X;R) + ∥uo∥L1(X)
+�
+e∥p∥L∞([0,t]×X;R)t
++
+
+
+m
+�
+i=1
+��
+Γi
+��ub(τ, ξ)
+�� vi(τ, ξ) dτ dξ
+
+ e∥p∥L∞([0,t]×X;R)t,
+(4.15)
+where Γi = Mi(Xt
+i) with Mi as in (4.11) and Xi
+t is as in Lemma 4.1.
+If moreover q ∈
+L1 �
+I; L∞ (X; R)
+�
+, uo ∈ L∞ (X; R), and ub ∈ L∞(I × ∂X; R), then
+��u(t)
+��
+L∞(X;R)
+≤
+�
+∥uo∥L∞(X;R) + ∥ub∥L∞([0,t]×∂X;R)) + ∥q∥L1([0,t];L∞(X;R))
+�
+× exp
+�� t
+0
+���p(τ)
+��
+L∞(X;R) +
+��divx v(τ)
+��
+L∞(X;R)
+�
+dτ
+�
+.
+(4.16)
+Proof. The proof of the L∞ bound directly follows from
+E(τ, t, x) ≤ exp
+�
+∥p∥L1([τ,t];L∞(X;R)) + ∥divx v∥L1([τ,t];L∞(X;R))
+�
+,
+and (4.5). In order to get the L1 bound, observe that
+��u(t)
+��
+L1(X;R) =
+��u(t)
+��
+L1(X(t;0,X);R) +
+��u(t)
+��
+L1(X(t;[0,t[,∂X);R). We thus consider two cases and apply a suitable change of variable.
+By (4.5), for t ∈ I, we have that
+�
+X(t;0,X)
+��u(t, x)
+�� dx ≤
+�
+X(t;0,X)
+���uo
+�
+X(0; t, x)
+���� E (0, t, x) dx
++
+�
+X(t;0,X)
+� t
+0
+���q
+�
+τ, X (τ; t, x)
+���� E (τ, t, x) dτ dx .
+(4.17)
+16
+
+Consider the first term in the right hand side of (4.17). Using Liouville Theorem [13, Theo-
+rem 1.2, Chapter IV], the change of variables ξ = X(0; t, x) and the assumptions on p,
+�
+X(t;0,X)
+���uo
+�
+X(0; t, x)
+����E (0, t, x) dx =
+�
+X
+��uo(ξ)
+�� exp
+�� t
+0
+p
+�
+s, X (s; 0, ξ)
+�
+ds
+�
+dξ
+≤ ∥uo∥L1(X) e∥p∥L∞([0,t]×X;R)t.
+Consider the second term in the right hand side of (4.17).
+Using the change of variable
+ξ = X (τ; t, x),
+�
+X(t;0,X)
+� t
+0
+���q
+�
+τ, X (τ; t, x)
+����E (τ, t, x) dτ dx
+=
+� t
+0
+�
+X(τ;0,X)
+��q(τ, ξ)
+�� exp
+�� t
+τ
+p
+�
+s, X(s; τ, ξ)
+�
+ds
+�
+dξ dτ
+≤∥q∥L1(X([0,t];0,X);R)e∥p∥L∞([0,t]×X;R)t.
+Therefore, using (4.17), for t ∈ I, we deduce
+�
+X(t;0,X)
+��u(t, x)
+�� dx ≤
+�
+∥uo∥L1(X) + ∥q∥L1(X([0,t];0,X);R)
+�
+e∥p∥L∞([0,t]×X;R)t.
+(4.18)
+To estimate now the term depending on the boundary conditions, for t ∈ I, use (4.5):
+�
+X(t;[0,t[,∂X)
+��u(t, x)
+�� dx
+=
+m
+�
+i=1
+�
+Xt
+i
+��u(t, x)
+�� dx
+≤
+m
+�
+i=1
+�
+Xt
+i
+����ub
+�
+T(t, x), X
+�
+T(t, x); t, x
+������ E
+�
+T(t, x), t, x
+�
+dx
++
+m
+�
+i=1
+�
+Xt
+i
+� t
+T(t,x)
+���q
+�
+τ, X (τ; t, x)
+���� E (τ, t, x) dτ dx .
+(4.19)
+For i ∈ {1, . . . , m}, use the diffeomorphism Mi in (4.11) as change of variables, i.e., τ = T(t, x),
+ξ = X
+�
+T(t, x); t, x
+�
+and we set Γi = Mi(Xt
+i). Thus, we have
+�
+Xt
+i
+����ub
+�
+T(t, x), X
+�
+T(t, x); t, x
+������ E
+�
+T(t, x), t, x
+�
+dx
+=
+��
+Γi
+��ub(τ, ξ)
+�� exp
+�� t
+τ
+p
+�
+s, X(s; τ, ξ)
+�
+ds
+�
+vi(τ, ξ) dτ dξ
+≤e∥p∥L∞([0,t]×X;R)t
+��
+Γi
+��ub(τ, ξ)
+�� vi(τ, ξ) dτ dξ .
+For i ∈ {1, . . . , m}, using again the change of variables ξ = X (τ; t, x), define
+Ξi
+t =
+�
+(τ, ξ) ∈ R1+m+n : τ ∈ [t, T(t, x)] , x ∈ Xi
+t , ξ = X(τ; t, x)
+�
+(4.20)
+17
+
+and we have
+�
+Xi
+t
+� t
+T(t,x)
+���q
+�
+τ, X (τ; t, x)
+���� E (τ, t, x) dτ dx
+=
+��
+Ξi
+t
+��q(τ, ξ)
+�� exp
+�� t
+τ
+p
+�
+s, X(s; τ, ξ)
+�
+ds
+�
+dτ dξ
+≤
+∥q∥L1(Ξi
+t;R) e∥p∥L∞([0,t]×X;R)t.
+Therefore, using (4.19), for t ∈ I, we deduce
+�
+X(t;[0,t[,∂X)
+��u(t, x)
+�� dx ≤ e∥p∥L∞([0,t]×X;R)t
+m
+�
+i=1
+���
+Γi
+��ub(τ, ξ)
+��vi(τ, ξ) dτ dξ + ∥q∥L1(Ξi
+t;R)
+�
+.
+This concludes the proof.
+Lemma 4.3. Fix v satisfying (V) with k = 1. Let p1, p2 ∈ L∞(I×X; R), q1, q2 ∈ L1(I×X; R)
+with ub,1 and ub,2 as in Lemma 4.2 and let uo,1, uo,2 satisfy (ID). Define u1 and u2 respectively
+the solutions to
+
+
+
+
+
+∂tu1 + divx (v u1) = p1 u1 + q1
+u1(t, ξ) = ub,1(t, ξ)
+u1(0, x) = uo,1(x)
+and
+
+
+
+
+
+∂tu2 + divx (v u2) = p2 u2 + q2
+u2(t, ξ) = ub,2(t, ξ)
+u2(0, x) = uo,2(x).
+Then, for every t ∈ I, the following stability estimate holds
+��u1(t) − u2(t)
+��
+L1(X;R)
+≤
+P(t)
+��uo,1 − uo,2
+��
+L1(X;R)
++P(t) ∥v∥L∞([0,t]×X;Rn+m)
+��ub,1 − ub,2
+��
+L1(I×∂X;R)
++P(t) ∥q1 − q2∥L1([0,t]×X;R)
++P(t)
+���uo,1
+��
+L1(X;R)+∥v∥L∞([0,t]×X;Rn+m)
+��ub,2
+��
+L1([0,t]×∂X;R)
+�
+∥p1−p2∥L1([0,t];L∞(X;R))
++P(t) ∥q2∥L1([0,t]×X;R) ∥p1 − p2∥L1([0,t];L∞(X;R)) ,
+(4.21)
+where P(t) = exp
+�
+t max
+�
+∥p1∥L∞([0,t]×X;R), ∥p2∥L∞([0,t]×X;R)
+��
+.
+Proof. Consider u1 and u2 the solutions to the two systems and fix t ∈ I. Define for i = 1, 2
+Ei (τ, t, x) = exp
+�� t
+τ
+�
+pi
+�
+s, X(s; t, x)
+�
+− divx v
+�
+s, X(s; t, x)
+��
+ds
+�
+.
+We have the decomposition
+��u1(t) − u2(t)
+��
+L1(X;R) =
+�
+X(t;0,X)
+��u1(t) − u2(t)
+�� dx +
+�
+X(t;[0,t[,∂X)
+��u1(t) − u2(t)
+�� dx . (4.22)
+18
+
+We treat the two terms in the right hand side of (4.22) separately. The first one is dealt with
+the explicit formula (4.5):
+�
+X(t;0,X)
+��u1(t) − u2(t)
+�� dx
+≤
+�
+X(t;0,X)
+���uo,1
+�
+X (0; t, x)
+�
+E1 (0, t, x) − uo,2
+�
+X (0; t, x)
+�
+E2 (0, t, x)
+��� dx
++
+�
+X(t;0,X)
+� t
+0
+���q1
+�
+τ, X (τ; t, x)
+�
+E1 (τ, t, x) − q2
+�
+τ, X (τ; t, x)
+�
+E2 (τ, t, x)
+��� dτ dx
+≤
+�
+X(t;0,X)
+E1 (0, t, x)
+���uo,1
+�
+X (0; t, x)
+�
+− uo,2
+�
+X (0; t, x)
+���� dx
++
+�
+X(t;0,X)
+���uo,2
+�
+X (0; t, x)
+����
+��E1 (0, t, x) − E2 (0, t, x)
+�� dx
++
+�
+X(t;0,X)
+� t
+0
+E1 (τ, t, x)
+���q1
+�
+τ, X (τ; t, x)
+�
+− q2
+�
+τ, X (τ; t, x)
+���� dτ dx
++
+�
+X(t;0,X)
+� t
+0
+���q2
+�
+τ, X (τ; t, x)
+����
+��E1 (τ, t, x) − E2 (τ, t, x)
+�� dτ dx .
+Using the two changes of variable ξ = X (0; t, x) and ξ = X (τ; t, x), we obtain that
+�
+X(t;0,X)
+��u1(t) − u2(t)
+�� dx
+≤
+�
+X
+exp
+�� t
+0
+p1
+�
+s, X(s; 0, ξ)
+�
+ds
+�
+��uo,1 (ξ) − uo,2 (ξ)
+�� dξ
++
+�
+X
+��uo,2 (ξ)
+��
+������
+exp
+�� t
+0
+p1
+�
+s, X(s; 0, ξ)
+�
+ds
+�
+− exp
+�� t
+0
+p2
+�
+s, X(s; 0, ξ)
+�
+ds
+�������
+dξ
++
+� t
+0
+�
+X(τ;0,X)
+��q1 (τ, ξ) − q2 (τ, ξ)
+�� exp
+�� t
+τ
+p1
+�
+s, X(s; τ, ξ)
+�
+ds
+�
+dξ dτ
++
+� t
+0
+�
+X(τ;0,X)
+��q2 (τ, ξ)
+��
+×
+������
+exp
+�� t
+τ
+p1
+�
+s, X(s; τ, ξ)
+�
+ds
+�
+− exp
+�� t
+τ
+p2
+�
+s, X(s; τ, ξ)
+�
+ds
+�������
+dξ dτ
+≤ P(t)
+�
+��uo,1 − uo,2
+��
+L1(X;R) + ∥q1 − q2∥L1
+�
+X([0,t];0,X);R
+�
+�
++ P(t)
+��uo,2
+��
+L1(X;R)∥p1 − p2∥L1([0,t];L∞(X;R))
++ P(t)∥q2∥L1
+�
+X([0,t];0,X);R
+�∥p1 − p2∥L1([0,t];L∞(X;R)) ,
+where we set
+P(t) = exp
+�
+max
+�
+∥p1∥L∞([0,t]×X;R)t , ∥p2∥L∞([0,t]×X;R)t
+��
+.
+(4.23)
+19
+
+Pass now to the second term in the right hand side of (4.22), splitting among the different
+faces Xt
+i for i ∈ {1, . . . , m} as defined in (4.11):
+�
+X(t;[0,t[,∂X)
+��u1(t) − u2(t)
+�� dx =
+m
+�
+i=1
+�
+Xt
+i
+��u1(t) − u2(t)
+�� dx .
+Fix i ∈ {1, . . . , m}, i.e. consider each term in the sum separately:
+�
+Xt
+i
+��u1(t) − u2(t)
+�� dx
+≤
+�
+Xt
+i
+����ub,1
+�
+T(t, x), X
+�
+T(t, x); t, x
+��
+E1
+�
+T(t, x), t, x
+�
+−ub,2
+�
+T(t, x), X
+�
+T(t, x); t, x
+��
+E2
+�
+T(t, x), t, x
+����� dx
++
+�
+Xt
+i
+� t
+T(t,x)
+���q1
+�
+τ, X (τ; t, x)
+�
+E1 (τ, t, x) − q2
+�
+τ, X (τ; t, x)
+�
+E2 (τ, t, x)
+��� dτ dx
+≤
+�
+Xt
+i
+E1
+�
+T(t, x), t, x
+�
+×
+����ub,1
+�
+T(t, x), X
+�
+T(t, x); t, x
+��
+− ub,2
+�
+T(t, x), X
+�
+T(t, x); t, x
+������ dx
++
+�
+Xt
+i
+����ub,2
+�
+T(t, x), X
+�
+T(t, x); t, x
+������
+���E1
+�
+T(t, x), t, x
+�
+− E2
+�
+T(t, x), t, x
+���� dx
++
+�
+Xt
+i
+� t
+T(t,x)
+E1 (τ, t, x)
+���q1
+�
+τ, X (τ; t, x)
+�
+− q2
+�
+τ, X (τ; t, x)
+���� dτ dx
++
+�
+Xt
+i
+� t
+T(t,x)
+���q2
+�
+τ, X (τ; t, x)
+����
+��E1 (τ, t, x) − E2 (τ, t, x)
+�� dτ dx .
+We now use the diffeomorphism Mi as defined in (4.11), for i ∈ {1, . . . , m}, and we use the
+set Ξi
+t as in (4.20). We thus obtain, using (4.23), that
+�
+Xt
+i
+��u1(t, x) − u2(t, x)
+�� dx
+≤
+��
+Γi
+exp
+�� t
+τ
+p1
+�
+s, X(s; τ, ξ)
+�
+ds
+�
+��ub,1(τ, ξ) − ub,2(τ, ξ)
+�� vi(τ, ξ) dξ dτ
++
+��
+Γi
+��ub,2(τ, ξ)
+��
+×
+������
+exp
+�� t
+τ
+p1
+�
+s, X(s; τ, ξ)
+�
+ds
+�
+− exp
+�� t
+τ
+p2
+�
+s, X(s; τ, ξ)
+�
+ds
+�������
+vi(τ, ξ) dξ dτ
++
+��
+Ξi
+t
+exp
+�� t
+τ
+p1
+�
+s, X(s; τ, ξ)
+�
+ds
+�
+��q1(τ, ξ) − q2(τ, ξ)
+�� dτ dξ
++
+��
+Ξi
+t
+��q2(τ, ξ)
+��
+20
+
+×
+������
+exp
+�� t
+τ
+p1
+�
+s, X(s; τ, ξ)
+�
+ds
+�
+− exp
+�� t
+τ
+p2
+�
+s, X(s; τ, ξ)
+�
+ds
+�������
+dτ dξ
+≤ P(t) ∥v∥L∞([0,t]×X;Rn+m)
+��ub,1 − ub,2
+��
+L1(Γi;R)
++ P(t) ∥v∥L∞([0,t]×X;Rn+m)
+��ub,2
+��
+L1(Γi;R) ∥p1 − p2∥L1([0,t];L∞(X;R))
++ P(t) ∥q1 − q2∥L1(Ξi
+t;R)
++ P(t) ∥q2∥L1(Ξi
+t;R) ∥p1 − p2∥L1([0,t];L∞(X;R))
+≤ P(t)
+�
+∥v∥L∞([0,t]×X;Rn+m)
+��ub,1 − ub,2
+��
+L1(Γi;R) + ∥q1 − q2∥L1(Ξi
+t;R)
+�
++ P(t)∥v∥L∞([0,t]×X;Rn+m)
+��ub,2
+��
+L1(Γi;R) ∥p1 − p2∥L1([0,t];L∞(X;R))
++ P(t)∥q2∥L1(Ξi
+t;R) ∥p1 − p2∥L1([0,t];L∞(X;R)) .
+Therefore, using (4.22), we deduce that
+��u1(t) − u2(t)
+��
+L1(X;R)
+≤
+P(t)
+���uo,1 − uo,2
+��
+L1(X;R) + ∥q1 − q2∥L1(X;([0,t];0,X);R)
+�
++P(t)
+��uo,2
+��
+L1(X;R)∥p1 − p2∥L1([0,t];L∞(X;R))
++P(t)∥q2∥L1(X;([0,t];0,X);R) ∥p1 − p2∥L1([0,t];L∞(X;R))
++
+m
+�
+i=1
+P(t)
+�
+∥v∥L∞([0,t]×X;Rn+m)
+��ub,1 − ub,2
+��
+L1(Γi;R) + ∥q1 − q2∥L1(Ξi
+t;R)
+�
++
+m
+�
+i=1
+P(t)∥v∥L∞([0,t]×X;Rn+m)
+��ub,2
+��
+L1(Γi;R) ∥p1 − p2∥L1([0,t];L∞(X;R))
++
+m
+�
+i=1
+P(t)∥q2∥L1(Ξi
+t;R) ∥p1 − p2∥L1([0,t];L∞(X;R))
+≤
+P(t)
+��uo,1 − uo,2
+��
+L1(X;R)
++P(t)∥v∥L∞([0,t]×X;Rn+m)
+��ub,1 − ub,2
+��
+L1([0,t]×∂X;R)
++P(t)∥q1 − q2∥L1([0,t]×X;R)
++P(t)
+�
+∥uo∥L1(X;Rk) + ∥v∥L∞([0,t]×X;Rn+m)
+��ub,2
+��
+L1([0,t]×∂X;R)
+�
+∥p1 − p2∥L1([0,t];L∞(X;R))
++P(t)∥q2∥L1([0,t]×X;R) ∥p1 − p2∥L1([0,t];L∞(X;R)) ,
+proving (4.21).
+Proposition 4.4. Let v satisfy (V) with k = 1, p ∈ L∞(I × X; R), q ∈ L1(I × X; R),
+ub ∈ L1(I × ∂X; R) and uo satisfy (ID) with k = 1. Then, formula (4.5) defines a solution
+u = u(t, x) to (4.1) in the sense of Definition 2.6. Moreover, u ∈ C0(I; L1(X; R)).
+Proof. The first part of the proof amounts to a careful piecing together various proofs found
+in the literature. In particular, the part of the solution depending on the initial data is dealt
+with exactly as in [10, Lemma 2.7] and [9, Lemma 5.1]. The part depending on the boundary
+datum is treated in the same way, exploiting the change of variables detailed in Lemma 4.1.
+21
+
+To prove the C0 regularity of the solution with respect to time, fix a ¯t ∈ I and a sequence
+th, with th ∈ I, converging to ¯t. Then, assuming first that th > t, we have
+��u(th) − u(¯t)
+��
+L1(X;R)
+=
+�
+X(th;0,X)
+��u(th, x) − u(¯t, x)
+�� dx
++
+�
+X\(X(th;0,X)∪X(¯t;[0,¯t[,∂X))
+��u(th, x) − u(¯t, x)
+�� dx
++
+�
+X(¯t;[0,¯t[,∂X)
+��u(th, x) − u(¯t, x)
+�� dx .
+The second term vanishes as h → +∞, since it is the integral of a bounded quantity over a
+set of vanishing measure. Consider now the first term, the third one can be treated similarly.
+�
+X(th;0,X)
+��u(th, x) − u(¯t, x)
+�� dx
+=
+�
+X
+��u(th, x) − u(¯t, x)
+�� χX(th;0,X)(x) dx
+≤
+�
+X
+���uo
+�
+X(0; th, x)
+�
+E(τ, th, x) − uo
+�
+X(0; ¯t, x)
+�
+E(τ, ¯t, x)
+��� χX(th;0,X)(x) dx
++
+�
+X
+�����
+� th
+0
+q
+�
+τ, X(τ; th, x)
+�
+E (τ, th, x) dτ
+−
+� ¯t
+0
+q
+�
+τ, X(τ; ¯t, x)
+�
+E
+�
+τ, ¯t, x
+�
+dτ
+����� χX(th;0,X)(x) dx
+As h → +∞, we have that
+uo
+�
+X(0; th, x)
+�
+E(τ, th, x)
+→
+uo
+�
+X(0; ¯t, x)
+�
+E(τ, ¯t, x)
+� th
+0
+q
+�
+τ, X(τ; th, x)
+�
+E (τ, th, x) dτ
+→
+� ¯t
+0
+q
+�
+τ, X(τ; ¯t, x)
+�
+E
+�
+τ, ¯t, x
+�
+dτ
+for a.e. x ∈ X, so that the corresponding integrals vanish by Lebesgue Dominated Convergence
+Theorem, which we can apply thanks to the L1 a priori bound (4.15).
+4.2
+The General Case of a System
+Below, in the various estimates we use the following norms:
+∥u∥L1(X;Rk) = �k
+h=1
+�
+X
+���uh(x)
+��� dx
+∥u∥L∞(I×X;Rk) = �k
+h=1
+���uh���
+L∞(I×X;R)
+∥u∥L∞(I;L1(X;Rk)) = �k
+h=1
+���uh���
+L∞(I;L1(X;R)) .
+Proof of Theorem 2.2. The proof is divided in several steps. Let I = [0, T] for T > 0.
+Construction of the Operator T .
+In the Banach space C0(I; L1(X; Rk)), for
+M > ∥uo∥L1(X;Rk) + 1,
+(4.24)
+22
+
+introduce the closed subset X and the norm ∥·∥X:
+X =
+�
+w ∈ C0(I; L1(X; Rk)): ∥w∥L∞(I;L1(X;Rk)) ≤ M
+�
+,
+(4.25)
+∥w∥X =
+k
+�
+h=1
+���wh���
+L∞(I;L1(X;R)) .
+(4.26)
+Define the operator
+T :
+X
+−→
+X
+w
+�−→
+u ≡
+�
+u1, . . . , uk�
+(4.27)
+where, for every h ∈ {1, . . . , k}, uh solves
+
+
+
+
+
+
+
+
+
+
+
+∂tuh + divx
+�
+vh(t, x)uh�
+= ph �
+t, x, w(t)
+�
+uh
++qh �
+t, x, w(t, x), w(t)
+�
+(t, x) ∈ I × X
+uh(t, ξ) = uh
+b
+�
+t, ξ, w(t)
+�
+(t, ξ) ∈ I × ∂X
+uh(0, x) = uh
+o(x)
+x ∈ X .
+(4.28)
+T is Well Defined.
+We prove that, for w ∈ X and h ∈ {1, . . . , k}, the source term in (4.28)
+Gh(t, x, uh) = Ph(t, x) uh + Qh(t, x)
+where
+Ph(t, x) = ph �
+t, x, w(t)
+�
+Qh(t, x) = qh �
+t, x, w(t, x), w(t)
+�
+is such that Ph ∈ L∞(I × X; R) and Qh ∈ L1(I × X; R).
+By (P), for every t ∈ I and x ∈ X, using also (4.25), we have
+���Ph(t, x)
+���
+=
+���ph �
+t, x, w(t)
+���� ≤ P1 + P2
+��w(t)
+��
+L1(X;Rk) ;
+���Ph���
+L∞(I×X;R)
+≤
+P1 + P2 M,
+(4.29)
+proving that (t, x) �→ Ph(t, x) is in L∞(I × X; R). On the other hand, by (Q) we have
+���Qh���
+L1([0,T]×X;R)
+=
+� T
+0
+�
+X
+���Qh(t, x)
+��� dx dt
+=
+� T
+0
+�
+X
+���qh �
+t, x, w(t, x), w(t)
+���� dx dt
+≤
+Q1
+� T
+0
+�
+X
+��w(t, x)
+�� dx dt
++
+� T
+0
+�
+X
+Q2(x)
+��w(t)
+��
+L1(X;Rk) dx dt + Q3
+� T
+0
+�
+X
+��w(t, x)
+�� ��w(t)
+��
+L1(X;Rk) dx dt
+≤
+Q1T∥w∥X + ∥Q2∥L1(X;R)T∥w∥X + Q3T∥w∥2
+X,
+(4.30)
+proving that (t, x) �→ Qh(t, x) is in L1(I × X; R).
+23
+
+Now we prove that, for every w ∈ X and h ∈ {1, . . . , k}, the boundary term Uh
+b (t, ξ) =
+uh
+b
+�
+t, ξ, w(t)
+�
+in (4.28) satisfies Uh
+b ∈ L1(I × ∂X; R). By (BD) we have
+���Uh
+b
+���
+L1(I×∂X;R)
+=
+� T
+0
+�
+∂X
+���uh
+b
+�
+t, ξ, w(t)
+���� dξ dt
+≤
+� T
+0
+�
+∂X
+B(ξ)
+��w(t)
+��
+L1(X;Rk) dξ dt +
+� T
+0
+�
+∂X
+B(ξ) dξ dt
+≤
+∥B∥L1(∂X;R)
+�
+∥w∥X + 1
+�
+T .
+Hence Proposition 4.4 applies to (4.28). To conclude this step, we need to show that the
+solution u(t, x) ≡
+�
+u1(t, x), . . . , uk(t, x)
+�
+belongs to X in (4.25). By (4.15), (4.29), (4.30) and
+since w ∈ X, for t ∈ I,
+���uh(t)
+���
+L1(X;R)
+≤
+e(P1+P2M)t
+����Qh���
+L1([0,t]×X;R) +
+���uh
+o
+���
+L1(X;R)
+�
++e(P1+P2M)t
+m
+�
+i=1
+��
+Γi
+���uh
+b
+�
+τ, ξ, w(τ)
+���� vh
+i (τ, ξ) dτ dξ
+≤
+� �
+Q1 + ∥Q2∥L1(X;R) + Q3 ∥w∥X
+�
+T ∥w∥X +
+���uh
+o
+���
+L1(X;R)
++∥B∥L1(∂X;R) ∥v∥L∞(I×X;Rk×(n+m)) T
+�
+∥w∥X + 1
+� �
+e(P1+P2M)t
+≤
+� �
+Q1 + ∥Q2∥L1(X;R) + Q3 M
+�
+T M +
+���uh
+o
+���
+L1(X;R)
++∥B∥L1(∂X;R) ∥v∥L∞(I×X;Rk×(n+m)) T(M + 1)
+�
+e(P1+P2M)t
+≤
+����uh
+o
+���
+L1(X;R) + 1
+2k
+�
+e(P1+P2M)T ,
+whence
+��u(t)
+��
+L1(X;Rk) ≤ M, once T is sufficiently small, thanks to the choice (4.24) of M.
+T is a Contraction.
+Fix ˆw and ˇw in XM and call ˆu = T ˆw, ˇu = T ˇw. Use the notation
+ˆPh(t, x) = ph �
+t, x, ˆw(t)
+�
+,
+ˆQh(t, x) = qh �
+t, x, ˆw(t, x), ˆw(t)
+�
+,
+ˆUh
+b (t, ξ) = uh
+b
+�
+t, ξ, ˆw(t)
+�
+,
+ˇPh(t, x) = ph �
+t, x, ˇw(t)
+�
+,
+ˇQh(t, x) = qh �
+t, x, ˇw(t, x), ˇw(t)
+�
+,
+ˇUh
+b (t, ξ) = uh
+b
+�
+t, ξ, ˇw(t)
+�
+.
+Then, by Lemma 4.3 and by (4.29), we have:
+���ˆuh(t) − ˇuh(t)
+���
+L1(X;R)
+≤ e(P1+P2M)t ∥v∥L∞([0,t]×X;Rn+m)
+��� ˆUh
+b − ˇUh
+b
+���
+L1([0,t]×∂X;R)
++ e(P1+P2M)t��� ˆQh − ˇQh���
+L1([0,t]×X;R)
++
+�
+M + ∥v∥L∞(I×X;Rk×(n+m))
+��� ˇUh
+b
+���
+L1([0,t]×∂X;R) +
+��� ˇQh���
+L1([0,t]×X;R)
+�
+× e(P1+P2M)t��� ˆPh − ˇPh���
+L1([0,t];L∞(X;R)) .
+(4.31)
+24
+
+By (P) we have:
+��� ˆPh − ˇPh���
+L1([0,t];L∞(X;R)) ≤
+� t
+0
+��� ˆPh(s) − ˇPh(s)
+���
+L∞(X;R) ds
+≤ P2
+� t
+0
+�� ˆw(s) − ˇw(s)
+��
+L1(X;Rk) ds
+≤ P2 ∥ ˆw − ˇw∥X T .
+(4.32)
+By (Q) we have:
+��� ˆQh − ˇQh���
+L1([0,t]×X;R)
+≤
+Q1 ∥ ˆw − ˇw∥L1([0,t]×X;Rk) + Q3 ∥ ˆw∥L∞([0,t];L1(X;Rk)) ∥ ˆw − ˇw∥L1([0,t]×X;Rk)
++Q3 ∥ ˇw∥L∞([0,t];L1(X;Rk)) ∥ ˆw − ˇw∥L1([0,t]×X;Rk)
+≤
+(Q1 + 2 M Q3) ∥ ˆw − ˇw∥X T .
+(4.33)
+Similarly, by (BD), we have:
+��� ˆUh
+b − ˇUh
+b
+���
+L1([0,t]×∂X;R) ≤ ∥B∥L1(∂X;R) ∥ ˆw − ˇw∥X T .
+(4.34)
+Therefore T is a contraction as soon as T is sufficiently small.
+Existence of a Solution for Small Times.
+Proving that the unique fixed point of T
+solves (1.1) in the sense of Definition 2.1 amounts to pass to the limit in the integral inequal-
+ity (2.8). This is possible thanks to the strong convergence ensured by the choice (4.26) of
+the norm in X. The proof of (WP.1) is completed.
+Uniqueness.
+Assume that (1.2) admits the solutions ˆu and ˇu in the sense of Definition 2.1.
+Then, their difference δ = ˆu − ˇu solves
+
+
+
+
+
+
+
+∂tδh + div
+�
+vh(t, x) δh�
+= ˆGh(t, x) − ˇGh(t, x)
+δh(t, ξ) = ˆUh
+b (t, ξ) − ˇUh
+b (t, ξ)
+δh(0, x) = 0
+in the sense of Definition 2.1, where
+ˆGh(t, x) = ph �
+t, x, ˆu(t)
+�
+ˆuh + qh �
+t, x, ˆu, ˆu(t)
+�
+;
+ˆUh
+b (t, ξ) = ˆuh
+b
+�
+t, ξ, ˆu(t)
+�
+;
+ˇGh(t, x) = ph �
+t, x, ˇu(t)
+�
+ˇuh + qh �
+t, x, ˇu, ˇu(t)
+�
+;
+ˇUh
+b (t, ξ) = ˇuh
+b
+�
+t, ξ, ˇu(t)
+�
+.
+A straightforward application of the classical doubling of variable method [18], see [24,
+Lemma 16, Lemma 17], [23, Theorem 7.28], and also [10, Proposition 2.8], leads to the
+stability estimate
+���δh(t)
+���
+L1(X;R)
+≤
+� t
+0
+��� ˆGh(τ) − ˇGh(τ)
+���
+L1(X;R) dτ
++
+���vh���
+L∞(I×X;Rn+m)
+� t
+0
+��� ˆUh
+b (τ) − ˇUh
+b (τ)
+���
+L1(∂X;R) dτ .
+The assumptions (P) and (Q) allow now to use Gronwall Lemma, proving that δ ≡ 0.
+25
+
+Continuous Dependence on the Initial Datum.
+With the notation in (WP.3), define
+ˆPh(t, x) = ph �
+t, x, ˆu(t)
+�
+,
+ˆQh(t, x) = qh �
+t, x, ˆu(t, x), ˆu(t)
+�
+,
+ˆUh
+b (t, ξ) = uh
+b
+�
+t, ξ, ˆu(t)
+�
+,
+ˇPh(t, x) = ph �
+t, x, ˇu(t)
+�
+,
+ˇQh(t, x) = qh �
+t, x, ˇu(t, x), ˇu(t)
+�
+,
+ˇUh
+b (t, ξ) = uh
+b
+�
+t, ξ, ˇu(t)
+�
+,
+for t ∈ I and h ∈ {1, . . . , k}. A further application of Lemma 4.3 allows to estimate the
+difference between the solutions ˆu and ˇu.
+���ˆuh(t) − ˇuh(t)
+���
+L1(X;R)
+≤ e(P1+P2M)t
+���ˆuo,h − ˇuo,h
+��
+L1(X;R) + ∥v∥L∞([0,t]×X;Rn+m)
+��� ˆUh − ˇUh���
+L1([0,t]×∂X;R)
+�
++ e(P1+P2M)t
+���� ˆQh − ˇQh���
+L1([0,t]×X;R) + K
+��� ˆPh − ˇPh���
+L1([0,t];L∞(X;R))
+�
+,
+(4.35)
+where, by (Q) and (BD),
+K =
+��ˆuo,h
+��
+L1(X;R) + ∥v∥L∞([0,t]×X;Rn+m)
+��� ˇUh���
+L1([0,t]×∂X;R) +
+��� ˇQh���
+L1([0,t]×X;R)
+≤ M + ∥v∥L∞([0,t]×X;Rn+m)∥B∥L1(∂X;R) (M + 1) T + Q1TM + ∥Q2∥L1(X;R)TM + Q3TM2.
+Using (BD), (Q) and (P), we have:
+��� ˆUh − ˇUh���
+L1([0,t]×∂X;R)
+≤
+∥B∥L1(∂X;R) ∥ˆu − ˇu∥L1([0,t]×X;Rk),
+��� ˆQh − ˇQh���
+L1([0,t]×X;R)
+≤
+Q1
+���ˆuh − ˇuh���
+L1([0,t]×X;R)
++Q3
+�
+∥ˆu∥L∞([0,t];L1(X;Rk)) + ∥ˇu∥L∞([0,t];L1(X;Rk))
+�
+×∥ˆu − ˇu∥L1([0,t]×X;Rk)
+≤
+Q1
+���ˆuh − ˇuh���
+L1([0,t]×X;R) + 2MQ3 ∥ˆu − ˇu∥L1([0,t]×X;Rk),
+��� ˆPh − ˇPh���
+L1([0,t];L∞(X;R))
+≤
+� t
+0
+��� ˆPh(s) − ˇPh(s)
+���
+L∞(X;R) ds
+≤
+� t
+0
+���ph �
+s, ·, ˆu(s)
+�
+− ph �
+s, ·, ˇu(s)
+����
+L∞(X;R) ds
+≤
+P2
+� t
+0
+��ˆu(s) − ˇu(s)
+��
+L1(X;Rk) ds
+=
+P2 ∥ˆu − ˇu∥L1([0,t]×X;Rk).
+Inserting these estimates into (4.35) we deduce that
+���ˆuh(t) − ˇuh(t)
+���
+L1(X;R)
+≤ e(P1+P2M)t∥ˆuo − ˇuo∥L1(X;Rk)
++ e(P1+P2M)t�
+∥v∥L∞([0,t]×X;Rn+m)∥B∥L1(∂X;R) + Q1 + 2MQ3 + KP2
+�
+∥ˆu − ˇu∥L1([0,t]×X;Rk).
+Sum over h = 1, . . . , k and use Gronwall Lemma to prove (WP.3), completing the proof.
+□
+26
+
+Proof of Corollary 2.3.
+For every w ∈ X, with X as in (4.25), define u = T w as the
+image of w through the operator T , defined in (4.27). By (4.5), we deduce that uh(t, x) ≥ 0
+for a.e. x ∈ X. This implies that also the unique fixed point of the operator T has the same
+property, thus (2.2) holds.
+□
+Proof of Corollary 2.4.
+By Theorem 2.2, we know that there exists a solution u ∈
+C0([0, T]; L1(X; Rk)) and that this solution can be uniquely extended beyond time T as
+long as
+��u(T)
+��
+L1(X;Rk) is bounded. By Corollary 2.3,
+��u(t)
+��
+L1(X;Rk) = �k
+h=1
+�
+X uh(t, x) dx.
+Using (1.2), the Divergence Theorem and (BD), we have
+d
+dt
+��u(t)
+��
+L1(X;Rk)
+= d
+dt
+k
+�
+h=1
+�
+X
+uh(t, x) dx
+=
+k
+�
+h=1
+�
+X
+�
+ph �
+t, x, u(t)
+�
+u(t) + qh �
+t, x, u(t, x), u(t)
+��
+dx +
+k
+�
+h=1
+�
+∂X
+uh
+b
+�
+t, ξ, u(t)
+�
+dξ
+≤
+�
+X
+
+C1(t, x) + C2(t)
+k
+�
+h=1
+uh(t, x)
+
+ dx +
+�
+∂X
+B(ξ)
+�
+k +
+��u(t)
+��
+L1(X;Rk)
+�
+dξ
+=
+�
+∥C1∥L∞([0,t];L1(X;R))+k ∥B∥L1(∂X;R)
+�
++
+�
+∥C2∥L∞([0,t];R)+∥B∥L1(∂X;R)
+� ��u(t)
+��
+L1(X;Rk)
+and usual ODE estimates ensure that
+��u(t)
+��
+L1(X;Rk) is bounded on bounded intervals.
+□
+Proof of Theorem 2.5. We divide the proof in several steps.
+Theorem 2.2 Applies.
+We first check that the assumptions of Theorem 2.2 hold.
+(P) holds. Fix h ∈ {1, . . . , k}, t ∈ I and x ∈ X. If w ∈ L1(X; Rk), then
+���ph (t, x, w)
+��� ≤ ¯P1 + ¯P2
+����
+�
+X
+Kh
+p
+�
+t, x, x′�
+w(x′) dx′
+����
+≤ ¯P1 + ¯P2
+���Kh
+p
+���
+L∞([0,t]×X 2;Rkpk)∥w∥L1(X;Rk).
+If w1, w2 ∈ L1(X; Rk), then
+���ph (t, x, w1) − ph (t, x, w2)
+��� ≤ ¯P2
+����
+�
+X
+���Kh
+p
+�
+t, x, x′����
+��w1(x′) − w2(x′)
+�� dx′
+����
+≤ ¯P2
+���Kh
+p
+���
+L∞([0,t]×X 2;Rkpk) ∥w1 − w2∥L1(X;Rk).
+Therefore (P) holds with P1 = ¯P1 and P2 = ¯P2
+���Kh
+p
+���
+L∞([0,t]×X 2;Rkpk).
+(Q) holds. Fix h ∈ {1, . . . , k}, t ∈ I and x ∈ X. If u ∈ Rk and w ∈ L1(X; Rk), then
+���qh (t, x, u, w)
+��� =
+�����Qh
+�
+t, x, u,
+�
+X
+Kh
+q
+�
+t, x, x′�
+w(x′) dx′
+������
+27
+
+≤ ¯Q1∥u∥+ ¯Q2(x)
+����
+�
+X
+Kh
+q
+�
+t, x, x′�
+w(x′) dx′
+����+ ¯Q3∥u∥
+����
+�
+X
+Kh
+q
+�
+t, x, x′�
+w(x′) dx′
+����
+≤ ¯Q1∥u∥ +
+� ¯Q2(x) + ¯Q3∥u∥
+� ���Kh
+q
+���
+L∞([0,t]×X 2;Rkqk)∥w∥L1(X;Rk).
+If u1, u2 ∈ Rk and w1, w2 ∈ L1(X; Rk), then
+���qh (t, x, u1, w1) − qh (t, x, u2, w2)
+���
+≤ ¯Q1∥u1 − u2∥ + ¯Q3
+���Kh
+u
+���
+L∞([0,t]×X 2;Rkqk)∥w1∥L1(X;Rk)∥u1 − u2∥
++ ¯Q3∥u2∥
+���Kh
+u
+���
+L∞([0,t]×X 2;Rkqk)∥w1 − w2∥L1(X;Rk).
+Therefore, condition (Q) holds with Q1 = ¯Q1, Q2(x) = ¯Q2(x)
+���Kh
+q
+���
+L∞([0,t]×X 2;Rkqk), and
+Q3 = ¯Q3(x)
+���Kh
+q
+���
+L∞([0,t]×X 2;Rkqk). (Q+) is straightforward.
+(BD) holds:
+���uh
+b (t, ξ, w)
+��� ≤ ¯B(ξ)
+�
+1 +
+����
+�
+X
+Kh
+u(t, ξ, x′) w(x′) dx′
+����
+�
+≤ ¯B(ξ)
+�
+1 +
+���Kh
+u
+���
+L∞([0,t]×∂X×X;Rkuk) ∥w∥L1(X;Rk)
+�
+.
+���uh
+b (t, ξ, w) − uh
+b (t, ξ, w′)
+��� ≤ ¯B(ξ)
+���Kh
+u
+���
+L∞([0,t]×∂X×X;Rkuk)
+��w − w′��
+L1(X;Rk)
+so (BD) holds with B(ξ) = ¯B(ξ)
+�
+1 + ∥Ku∥L∞([0,t]×∂X×X;Rkuk2)
+�
+. Clearly, also (BD+) holds.
+Stability Estimates.
+We now pass to the stability estimates.
+In each of the following
+cases, we keep t ∈ I fixed and h ∈ {1, . . . , k}. Define
+ˆUh
+b (t, ξ) = ˆuh
+b
+�
+t, ξ, ˆu(t)
+�
+,
+ˆQh(t, x) = ˆqh �
+t, x, ˆu(t, x), ˆu(t)
+�
+,
+ˆPh(t, x) = ˆph �
+t, x, ˆu(t)
+�
+,
+ˇUh
+b (t, ξ) = ˇuh
+b
+�
+t, ξ, ˇu(t)
+�
+,
+ˇQh(t, x) = ˇqh �
+t, x, ˇu(t, x), ˇu(t)
+�
+,
+ˇPh(t, x) = ˇph �
+t, x, ˇu(t)
+�
+. (4.36)
+In order to use Lemma 4.3, compute preliminarily
+P(t) = exp
+�
+t max
+���� ˆPh���
+L∞([0,t]×X;R) ,
+��� ˇPh���
+L∞([0,t]×X;R)
+��
+≤ exp
+�
+t (P1 + P2M)
+�
+,
+where M is an upper bound for the L∞ in time and L1 in space norms of both solutions.
+Therefore, Lemma 4.3 implies that
+���ˆuh(t) − ˇuh(t)
+���
+L1(X;R)
+≤ P(t) ∥v∥L∞([0,t]×X;Rn+m)
+��� ˆUh
+b − ˇUh
+b
+���
+L1([0,t]×∂X;R) + P(t)
+��� ˆQh − ˇQh���
+L1([0,t]×X;R)
++ P(t)
+�
+∥uo∥L1(X;Rk) +
+��� ˇQh���
+L1([0,t]×X;R)
+� ��� ˆPh − ˇPh���
+L1([0,t];L∞(X;R))
++ P(t) ∥v∥L∞([0,t]×X;Rk×(n+m))
+��� ˇUb
+���
+L1([0,t]×∂X;Rk)
+��� ˆPh − ˇPh���
+L1([0,t];L∞(X;R)).
+(4.37)
+28
+
+Then, we estimate the terms in (4.37). Using (BD) and (4.36) we deduce that
+��� ˆUh
+b − ˇUh
+b
+���
+L1([0,t]×∂X;R)
+=
+� t
+0
+�
+∂X
+���ˆuh
+b
+�
+τ, ξ, ˆu(τ)
+�
+− ˇuh
+b
+�
+τ, ξ, ˇu(τ)
+���� dξ dτ
+≤
+� t
+0
+�
+∂X
+���ˆuh
+b
+�
+τ, ξ, ˆu(τ)
+�
+− ˆuh
+b
+�
+τ, ξ, ˇu(τ)
+���� dξ dτ
++
+� t
+0
+�
+∂X
+���ˆuh
+b
+�
+τ, ξ, ˇu(τ)
+�
+− ˇuh
+b
+�
+τ, ξ, ˇu(τ)
+���� dξ dτ
+≤
+∥B∥L1(∂X;R) ∥ˆu − ˇu∥L1([0,t]×X;Rk)
++
+� t
+0
+�
+∂X
+�����
+ˆU h
+b
+�
+τ, ξ,
+�
+X
+ˆKh
+u(τ, ξ, x′) ˇu(τ, x′) dx′
+�
+− ˆU h
+b
+�
+τ, ξ,
+�
+X
+ˇKh
+u(τ, ξ, x′) ˇu(τ, x′) dx′
+������ dξ dτ
++
+� t
+0
+�
+∂X
+�����
+ˆU h
+b
+�
+τ, ξ,
+�
+X
+ˇKh
+u(τ, ξ, x′) ˇu(τ, x′) dx′
+�
+− ˇU h
+b
+�
+τ, ξ,
+�
+X
+ˇKh
+u(τ, ξ, x′) ˇu(τ, x′) dx′
+������ dξ dτ
+≤
+∥B∥L1(∂X;R) ∥ˆu − ˇu∥L1([0,t]×X;Rk)
++
+� t
+0
+�
+∂X
+¯B(ξ)
+��� ˆKh
+u − ˇKh
+u
+���
+L∞([0,t]×∂X×X;Rkuk)
+��ˇu(τ)
+��
+L1(X;Rk) dξ dτ
++
+��� ˆU h
+b − ˇU h
+b
+���
+L1([0,t]×∂X;L∞(Rku;R))
+≤
+∥B∥L1(∂X;R) ∥ˆu − ˇu∥L1([0,t]×X;Rk) +
+�� ¯B
+��
+L1(∂X;R)
+��� ˆKh
+u − ˇKh
+u
+���
+L∞([0,t]×∂X×X;Rkuk)∥ˇu∥L1([0,t]×X;Rk)
++
+��� ˆU h
+b − ˇU h
+b
+���
+L1([0,t]×∂X;L∞(Rku;R)) .
+Using (Q) we deduce that
+��� ˆQh − ˇQh���
+L1([0,t]×X;R)
+≤
+� t
+0
+�
+X
+���ˆqh �
+τ, x, ˆu(τ, x), ˆu(τ)
+�
+− ˆqh �
+τ, x, ˇu(τ, x), ˇu(τ)
+���� dx dτ
++
+� t
+0
+�
+X
+���ˆqh �
+τ, x, ˇu(τ, x), ˇu(τ)
+�
+− ˇqh �
+τ, x, ˇu(τ, x), ˇu(τ)
+���� dx dτ
+≤
+Q1
+� t
+0
+��ˆu(τ) − ˇu(τ)
+��
+L1(X;Rk) dτ + Q3
+� t
+0
+��ˆu(τ)
+��
+L1(X;Rk)
+�
+X
+��ˆu(τ, x) − ˇu(τ, x)
+�� dx dτ
++Q3
+� t
+0
+��ˆu(τ) − ˇu(τ)
+��
+L1(X;Rk)
+�
+X
+��ˇu(τ, x)
+�� dx dτ
++
+� t
+0
+�
+X
+�����
+ˆQh
+�
+τ, x, ˇu(τ, x),
+�
+X
+ˆKh
+q
+�
+τ, x, x′�
+ˇu
+�
+τ, x′�
+dx′
+�
+− ˇQh
+�
+τ, x, ˇu(τ, x),
+�
+X
+ˇKh
+q
+�
+τ, x, x′�
+ˇu
+�
+τ, x′�
+dx′
+������ dx dτ
+≤
+�
+Q1 + Q3
+�
+∥ˆu∥L∞([0,t];L1(X;Rk)) + ∥ˇu∥L∞([0,t];L1(X;Rk))
+�� � t
+0
+��ˆu(τ) − ˇu(τ)
+��
+L1(X;Rk) dτ
+29
+
++
+� t
+0
+�
+X
+sup
+η∈Rkq
+��� ˆQh �
+τ, x, ˇu(τ, x), η
+�
+− ˇQh �
+τ, x, ˇu(τ, x), η
+���� dx dτ
++ ¯Q3
+� t
+0
+�
+X
+��ˇu(τ, x)
+��
+����
+�
+X
+�
+ˆKh
+q (τ, x, x′) − ˇKh
+q (τ, x, x′)
+�
+ˇu
+�
+τ, x′�
+dx′
+���� dx dτ
+≤
+�
+Q1 + Q3
+�
+∥ˆu∥L∞([0,t];L1(X;Rk)) + ∥ˇu∥L∞([0,t];L1(X;Rk))
+��
+∥ˆu − ˇu∥L1([0,t]×X;Rk)
++
+��� ˆQh − ˇQh���
+L1([0,t]×X;L∞(Rk×Rkq ;R)) +
+� t
+0
+��ˇu (τ)
+��2
+L1(X;Rk) dτ
+��� ˆKh
+q − ˇKh
+q
+���
+L∞([0,t]×X 2;Rkq).
+Using (P), we have
+��� ˆPh − ˇPh���
+L1([0,t];L∞(X;R))
+≤
+� t
+0
+sup
+x∈X
+���ˆph �
+τ, x, ˆu(τ)
+�
+− ˆph �
+τ, x, ˇu(τ)
+���� dτ +
+� t
+0
+sup
+x∈X
+���ˆph �
+τ, x, ˇu(τ)
+�
+− ˇph �
+τ, x, ˇu(τ)
+���� dτ
+≤
+P2
+� t
+0
+��ˆu(τ) − ˇu(τ)
+��
+L1(X;Rk) dτ
++
+� t
+0
+sup
+x∈X
+�����
+ˆP h
+�
+τ, x,
+�
+X
+ˆKh
+p(τ, x, x′)ˇu(τ, x′) dx′
+�
+− ˇP h
+�
+τ, x,
+�
+X
+ˆKh
+p(τ, x, x′)ˇu(τ, x′) dx′
+������ dτ
++
+� t
+0
+sup
+x∈X
+�����
+ˇP h
+�
+τ, x,
+�
+X
+ˆKh
+p(τ, x, x′)ˇu(τ, x′) dx′
+�
+− ˇP h
+�
+τ, x,
+�
+X
+ˇKh
+p(τ, x, x′)ˇu(τ, x′) dx′
+������ dτ
+≤
+P2
+� t
+0
+��ˆu(τ) − ˇu(τ)
+��
+L1(X;Rk) dτ + t
+��� ˆP h − ˇP h���
+L∞([0,t]×X×Rkp;R)
++ ¯P2
+� t
+0
+sup
+x∈X
+�
+X
+��� ˆKh
+p(τ, x, x′) − ˇKh
+p(τ, x, x′)
+���
+��ˇu(τ, x′)
+�� dx′ dτ
+≤
+P2
+� t
+0
+��ˆu(τ) − ˇu(τ)
+��
+L1(X;Rk) dτ + t
+��� ˆP h − ˇP h���
+L∞([0,t]×X×Rkp;R)
++ ¯P2
+� t
+0
+��ˇu(τ)
+��
+L1(X;Rk) dτ
+��� ˆKh
+p − ˇKh
+p
+���
+L∞([0,t]×X 2;Rkpk).
+The above estimate, duly inserted in (4.37) and followed by a standard application of Gronwall
+Lemma, completes the proof.
+□
+Proof of Proposition 3.1. Checking (V) and (ID) is immediate. It is sufficient to verify
+that the assumptions of Theorem 2.5 hold. It is immediate to check that (P) holds with
+¯P1 = max{∥µS∥, ∥µI∥+∥κ + θ∥, ∥µH∥+∥η∥, ∥µR∥} (all norms being in L∞(I × R+ × R2; R)),
+¯P2 = 1, thanks to ρ ∈ L∞. Concerning (Q), choose ¯Q1 = max{∥κ∥, ∥η + θ∥}, ¯Q2 = 0, ¯Q3 = 1
+and use ρ ∈ L∞. Finally, (BD) holds with ¯B(ξ) = supI
+��Sb(t)
+��
+L∞(X,R).
+Positivity is immediate. To apply Corollary 2.4, simply set C1 ≡ 0 and C2 ≡ 0.
+To obtain an L∞ bound, note first that since I ∈ C0 �
+I; L1(R+ × R2; R)
+�
+, the integral
+in (3.2) is bounded on any bounded time interval. Hence, a repeated application of (4.16) in
+Lemma 4.2 yields the boundedness of S, I, H and R on any bounded interval. Uniqueness
+then follows from (WP.2).
+□
+30
+
+Proof of Proposition 3.2.
+Assumptions (V) and (ID) trivially hold.
+Condition (P)
+holds with P1 = ∥d∥L∞(Rn;R)/ε and P2 = 1/ε. Verifying (Q) is straightforward. To prove
+that (BD) holds, compute for y ∈ Rn with ∥y∥ > r:
+��ub(t, y, w)
+��
+=
+�����
+1
+A(a = 0, y) εn
+�
+R+
+�
+Rn M
+�y′ − y
+ε
+�
+b(a′, y′) w(a′, y′) da′ dy′
+�����
+≤
+1
+εn inf A
+�����
+�
+R+
+�
+Rn M
+�y′ − y
+ε
+�
+b(a′, y′) w(a′, y′) da′ dy′
+�����
+≤
+1
+εn inf A
+�
+R+
+�
+Rn
+�����M
+�y′ − y
+ε
+������
+�
+sup
+|y′−y| V ∀ (t, x) ∈ I × ∂X and for h = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' , k ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' , m .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' 3 (P) For all w ∈ L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Rk), the map (t, x) → p(t, x, w) is in C0(I × X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Rk) and there exist positive P1 and P2 such that for t ∈ I, x ∈ X, w, w′ ∈ L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Rk) ��p(t, x, w) �� ≤ P1 + P2 ∥w∥L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' ��p(t, x, w) − p(t, x, w′) �� ≤ P2 ��w − w′�� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (Q) For all w ∈ L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Rk), the map (t, x, u) → q(t, x, u, w) is in C0(I × X × Rk;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Rk) and there exist positive Q1 and Q3 and a function Q2 ∈ (L1 ∩ L∞)(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R+) such that for t ∈ I, x ∈ X, u, u′ ∈ Rk, w, w′ ∈ L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Rk): ��q(t, x, u, w) �� ≤ Q1 ∥u∥ + Q2(x) ∥w∥L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) + Q3 ∥u∥ ∥w∥L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' ��q(t, x, u, w) − q(t, x, u′, w′) �� ≤ Q1 ��u − u′�� + Q3 ∥w∥L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) ��u − u′�� + Q3 ��u′�� ��w − w′�� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (BD) ub : R+ × ∂X × L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Rk) → Rk is such that for any w ∈ L1(∂X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Rk), the map (t, ξ) → ub(t, ξ, w) is measurable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Moreover, there exists a function B ∈ (L1 ∩ L∞)(∂X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R+) such that for every t ∈ I, ξ ∈ ∂X, w, w′ ∈ L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Rk), ��ub(t, ξ, w) �� ≤ B(ξ) � 1 + ∥w∥L1(X,Rk) � ��ub(t, ξ, w) − ub(t, ξ, w′) �� ≤ B(ξ) ��w − w′�� L1(X,Rk) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (ID) uo ∈ L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Rk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Then, (WP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1) There exists a positive T∗ ∈ I such that, setting I∗ = [0, T∗], the IBVP (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2) admits a solution in the sense of Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1 defined on I∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (WP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2) Assume u1 and u2 solve (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2) in the sense of Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1 with u1, u2 ∈ L∞(I × X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Rk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Then, u1 = u2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (WP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='3) Let ˆuo, ˇuo ∈ L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Rk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' If ˆu: ˆI → Rk, respectively ˇu: ˇI → Rk, solve (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2) in the sense of Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1 with initial datum uo = ˆuo, respectively uo = ˇuo, then there exists a function L ∈ L∞ loc(ˆI ∩ ˇI;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R) such that for all t ∈ ˆI ∩ ˇI ��ˆu(t) − ˇu(t) �� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) ≤ L(t) ∥ˆuo − ˇuo∥L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' The proof is deferred to Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' In several applications it is of interest to guarantee that each component in the solution attains non negative values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' To this aim, we state the following Corollary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Let the same assumptions of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2 hold and assume moreover that for an index h ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' , k} (Q+) For t ∈ I, a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' x ∈ X, u ∈ Rk +, w ∈ L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Rk +), qh(t, x, u, w) ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (BD+) For t ∈ I, ξ ∈ ∂X and w ∈ L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Rk), uh b (t, ξ, w) ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' 4 (ID+) For a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' x ∈ X, uh o(x) ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Then the unique solution u to (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2) also satisfies for every t ∈ I∗ and for a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' x ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' uh(t, x) ≥ 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2) The proof is deferred to Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' The above result is of a local nature and, without further assumptions, it can not be ex- tended to a global result, as the following examples show.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Consider the Cauchy Problem (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2) with k = 1, m = 0, n = 1, X = R, p(t, x, w) = � 1 0 w(x) dx, q ≡ 0, which results in \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 ∂tu = u � 1 0 u(t, x) dx u(0, x) = χ[0,1](x) solved by u(t, x) = 1 1 − t χ[0,1](x) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Note that (P) holds with P1 = 0 and P2 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Clearly, u blows up in any norm at t = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Similarly, setting k = 1, m = 1, n = 0, X = R+, p(t, x, w) = � R+ w(x) dx, q ≡ 0 in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2), which satisfies (P) with P1 = 0 and P2 = 1, leads to the Cauchy Problem \uf8f1 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f3 ∂tu + ∂xu = u � R+ u(t, x) dx u(t, 0) = 0 u(0, x) = χ[0,1](x) , solved by u(t, x) = 1 1 − t χ[t,t+1](x) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Again, the solution blows up in any norm at t = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Typical biological/epidemiological models have further properties ensuring that solutions are defined globally in time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' In particular, the model described in § 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='3 displays a quadratic right hand side similar to those in the examples above, differing in the sign.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Nevertheless, in this example, well posedness holds globally in time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Indeed, in general, a lower bound on the solutions is available since Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='3 ensures that the components of the solution attain non negative values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' An upper bound, preventing finite time blow up, is obtained through assumption (BD) on the boundary datum and a further condition, see (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='3) below, that bounds the overall growth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Let I = R+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Let the assumptions of Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='3 hold for all h = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' , k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Assume moreover that for suitable C1 ∈ L∞ loc(R+;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R)) and C2 ∈ L∞ loc(R+;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R), k � h=1 ph(t, x, w) uh + qh(t, x, u, w) ≤ C1(t, x) + C2(t) k � h=1 uh (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='3) for all t ∈ R+, a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' x ∈ X, u, w ∈ Rk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Then, the solution to (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2) is defined for all t ∈ R+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Finally, we provide the stability estimates essential to tackle, for instance, control prob- lems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' To this aim, we need to slightly specialize the functional dependence of p, q and ub on u(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' We thus obtain sufficient conditions to apply Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2 and get stability estimates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' 5 Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Let assumptions (V) and (ID) hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Assume that in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2), for t ∈ I, x ∈ X, u ∈ Rk, w ∈ L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Rk), ph(t, x, w) = P h � t, x, � X Kh p(t, x, x′) w(x′) dx′� qh(t, x, u, w) = Qh � t, x, u, � X Kh q (t, x, x′) w(x′) dx′� uh b (t, ξ, w) = U h b � t, ξ, � X Kh u(t, ξ, x′) w(x′) dx′� , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='4) where the functions above satisfy: (P) There exist ¯P1 ≥ 0 and ¯P2 ≥ 0 such that, for every h = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' , k, the function P h : I × X × Rkp → R (kp ≥ 1) satisfies ���P h (t, x, η) ��� ≤ ¯P1 + ¯P2∥η∥ and ���P h (t, x, η1) − P h (t, x, η2) ��� ≤ ¯P2∥η1 − η2∥ for every t ∈ I, x ∈ X, η, η1, η2 ∈ Rkp;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Kh p ∈ L∞(I × X 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Rkpk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (Q) There exist ¯Q1, ¯Q3 ≥ 0 and ¯Q2 ∈ � L1 ∩ L∞� � X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R+� such that, for every h = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' , k, the function Qh : I × X × Rk × Rkp → R+ (kq ≥ 1) satisfies ���Qh (t, x, u, η) ���≤ ¯Q1∥u∥ + ¯Q2(x)∥η∥ + ¯Q3∥u∥∥η∥ ���Qh (t, x, u1, η1) −Qh (t, x, u2, η2) ���≤ ¯Q1∥u1 − u2∥ + ¯Q3∥η1∥∥u1 − u2∥ + ¯Q3∥u2∥∥η1 − η2∥ for every t ∈ I, x ∈ X, u, u1, u2 ∈ Rk, η, η1, η2 ∈ Rkq;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Kh q ∈ L∞(I × X 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Rkqk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (BD) There exists ¯B ∈ (L1∩L∞)(∂X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R+) such that for every h = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' , k, the function U h b : I × ∂X × Rku → R+ satisfies ���U h b (t, ξ, η) ��� ≤ ¯B(ξ) � 1 + ∥η∥ � and ���U h b (t, ξ, η1) − U h b (t, ξ, η2) ��� ≤ ¯B(ξ) ∥η1 − η2∥ for every t ∈ I, ξ ∈ ∂X and η, η1, η2 ∈ Rku;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Kh u ∈ L∞(I × ∂X × X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Rkuk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Then, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2 applies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Moreover, if both systems \uf8f1 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f3 ∂tuh + divx � vh(t, x) uh� = ˆph � t, x, u(t) � uh + ˆqh � t, x, u, u(t) � (t, x) ∈ I×X uh(t, ξ) = ˆuh b � t, ξ, u(t) � (t, ξ) ∈ I×∂X uh(0, x) = ˆuh o(x) x ∈ X , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='5) \uf8f1 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f3 ∂tuh + divx � vh(t, x) uh� = ˇph � t, x, u(t) � uh + ˇqh � t, x, u, u(t) � (t, x) ∈ I×X uh(t, ξ) = ˇuh b � t, ξ, u(t) � (t, ξ) ∈ I×∂X uh(0, x) = ˇuh o(x) x ∈ X , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='6) satisfy the assumptions above, then the following stability estimates hold: ��ˆu(t) − ˇu(t) �� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) ≤ O(1) ���� ˆP − ˇP ��� L∞([0,t]×X×Rkp;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) + ��� ˆKp − ˇKp ��� L∞([0,t]×X 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rkpk2) 6 + ��� ˆQ − ˇQ ��� L1([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L∞(Rk×Rkq;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk)) + ��� ˆKq − ˇKq ��� L∞([0,t]×X 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rkqk2) + ��� ˆUb − ˇUb ��� L1([0,t]×∂X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L∞(Rku;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk)) + ��� ˆKu − ˇKu ��� L∞([0,t]×∂X×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rkuk2) � eO(1)t for every t such that ˆu and ˇu are defined on [0, t] and where the Landau symbol O(1) denotes a constant independent of the initial data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' The proof is deferred to Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Finally, we note that (V) and Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1 allow to immediately extend all results in the present section to the case X = ��m i=1 Ii � × Rn, as soon as I1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' , Im are (non trivial) real intervals bounded below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' In particular, any of the Ii may well be bounded also above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1 The Definition of Semi–Entropy Solution Ensures Uniqueness This paragraph provides a definition of solution and the consequent uniqueness statement in a setting more general than the one usually found in the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' In particular, it extends the results in [24, Section 3] to the slightly more general case of the unbounded domain X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Indeed, with the notation (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1), consider the fully nonlinear IBVP \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 ∂tu + divx f(t, x, u) = g(t, x, u) (t, x) ∈ I × X u(t, ξ) = ub(t, ξ) (t, ξ) ∈ I × ∂X u(0, x) = uo(x) x ∈ X .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='7) The following definition is the extension to (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='7) of [31, Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='5], see also [24, 33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' A semi-entropy solution to the IBVP (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='7) on the real interval I is a map u ∈ L∞ loc(I;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R)) such that for any κ ∈ R and for any test function ϕ ∈ C1 c(]−∞, sup I[× Rn+m;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R+) � I � X � u(t, x) − κ �± ∂tϕ(t, x) dx dt + � I � X sgn ±(u(t, x) − κ) � f(t, x, u) − f(t, x, κ) � gradx ϕ(t, x) dx dt + � I � X sgn ±(u(t, x) − κ) � g � t, x, u(t, x) � − divx f(t, x, κ) � ϕ(t, x) dx dt (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='8) + � X � uo(x) − κ �± ϕ(0, x) dx + Lip(f) � I � ∂X � ub(t, ξ) − κ �± ϕ(t, ξ) dξ dt ≥ 0 where Lip(f) is a Lipschitz constant of the map u → f(t, x, u), uniform in (t, x) ∈ I × X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Above, we use the notation w+ = max{w, 0} and w− = max{−w, 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' A key feature of (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='8) is its ensuring uniqueness, which we detail in the next Proposition to ease comparisons with the current literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Consider the general scalar IBVP (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='7) under the assumptions (f) f ∈ C0(I × X × R;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Rn+m) admits continuous derivatives ∂uf, ∂u gradx f, D2 xxf with ∂uf and gradx f bounded in (t, x) ∈ I × R+ locally in u ∈ R;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' ∂u gradx f is bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' 7 (g) g, ∂ug, ∂xig ∈ C0(I × X × R;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R) and for all (t, x) ∈ I × X, ��g(t, x, u) �� ≤ G(u) for a map G ∈ L∞ loc(R;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R+) and ∂ug is bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (bd) The boundary datum satisfies ub ∈ L∞(I × ∂X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (id) The initial datum satisfies uo ∈ L∞(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' If u1, u2 ∈ L∞(I × X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R) both satisfy (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='8), then they coincide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' This Proposition slightly extends [24, Theorem 18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' However, its proof relies on merely technical modifications to [24, Lemma 16 and Lemma 17], due to the present unboundedness of the domain X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Very similar techniques are employed also in [23, § 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='6 and § 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='7], which is devoted to a hyperplane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' 3 Sample Applications The structure of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1) is sufficiently flexible to comprise a variety of applications of mathe- matics to biology, in particular to epidemiology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' The general results in the preceding section can be applied to well known models in the literature, see for instance [1, 5, 7, 30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' In the next paragraphs, we select sample applications based on analytic structure that differ in the number of equations, in the number of independent variables, in the presence of (partial) boundaries and in the role of non local terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' In particular, § 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1 deals with a recently proposed model, see [8], while the subsequent ones refer to other classical models that fit into (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1 The Spreading of an Epidemic During the spreading of an epidemic, within a population we distinguish among individuals that are Susceptible, Infective, Hospitalized or Recovered, see [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Each of these populations is described through its time, age and space dependent density: S = S(t, a, y), I = I(t, a, y), H = H(t, a, y) and R = R(t, a, y), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Remark that the distinction between I and H consists in the H individuals that, being hospitalized or quarantined, do not infect anyone although being ill.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' In its most general form, the model presented in [8, § 2] to describe the evolution of these populations, reads \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f3 ∂tS + ∂aS + divy (vS S) + µS S = −(ρ ⊗ I)S ∂tI + ∂aI + divy (vI I) + µI I = (ρ ⊗ I)S − κ I − ϑ I ∂tH + ∂aH + µH H = + κ I − η H ∂tR + ∂aR + divy (vR R) + µR R = + ϑ I + η H t ∈ R+ a ∈ R+ y ∈ R2 (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1) where the propagation of the infection is described by � ρ ⊗ I(t) � (a, y) = � R+ � R2 ρ(a, a′, y, y′) I(t, a′, y′) dy′ da′ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2) Here, the function ρ plays the key role of describing how infective individuals infect others, at which distance and with which dependence on age or time, see [8] for more details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' In (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1), vS = vS(t, a, y), vI = vI(t, a, y) and vR = vR(t, a, y) describe the time, age and, possibly, space dependent movements of the S, I and R individuals, while µS = µS(t, a, y), µI = µI(t, a, y), 8 µH = µH(t, a, y) and µR = µR(t, a, y) are the mortalities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' The term κ = κ(t, a, y) describes how quickly infected individuals are confined to quarantine;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' ϑ = ϑ(t, a, y), respectively η = η(t, a, y), quantifies the speed at which infected, respectively quarantined, individuals recover.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' System (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1) needs to be supplemented by boundary and initial data: \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f3 S(t, a = 0, y) = Sb(t, y) I(t, a = 0, y) = 0 H(t, a = 0, y) = 0 R(t, a = 0, y) = 0 and \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f3 S(t = 0, a, y) = So(a, y) I(t = 0, a, y) = Io(a, y) H(t = 0, a, y) = Ho(a, y) R(t = 0, a, y) = Ro(a, y) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='3) Note that a more precise boundary term, though not amenable to be used in the short term, might be a natality term of the form S(t, a = 0, y) = � R+ b(t, a′, y) S(t, a′, y) da′ which also fits in the framework of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2 and Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Note that (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1)–(3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2)–(3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='3) is a system with independent variables (a, y) where a is bounded below while y is in R2 and no second order differential operator is present.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' The model (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1)–(3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2)–(3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='3) fits into (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2) in the form (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='4) setting X = R+ × R2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' x = (a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' y),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' ξ = (0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' y) and k = 4 m = 1 n = 2 u1 = S u2 = I u3 = H u4 = R w1 = S(t) w2 = I(t) w3 = H(t) w4 = R(t) v1 = � 1 vS � v2 = � 1 vI � v3 = � 1 0 � v4 = � 1 vR � u1 b = Sb u2 b = 0 u3 b = 0 u4 b = 0 u1 o = So u2 o = Io u3 o = Ho u4 o = Ro p1(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Λ) = −µS − Λ p2(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Λ) = −µI − κ − ϑ p3(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Λ) = −µH − η p4(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Λ) = −µR q1(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' u,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Λ) = 0 q2(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' u,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Λ) = Λ u1 q3(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' u,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Λ) = κ u2 q4(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' u,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Λ) = ϑ u2 + η u3 and the only 2 non zero entries in Kp and Kq are valued ρ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' so that � X K1 p � t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' y),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (a′,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' y′) � w(a′,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' y′) da′ dy′ = � ρ ⊗ I(t) � (a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' y) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' � X K2 q � t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' y),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (a′,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' y′) � w(a′,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' y′) da′ dy′ = � ρ ⊗ I(t) � (a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' y) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Set I = [0, T] or I = R+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Let vS, vI, vR ∈ (C1 ∩ L∞)(I × X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R2) with divergence in L1(I;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' L∞(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R));' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' ρ ∈ L∞(R2 + × R4;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R) and Sb ∈ (L1 ∩ L∞)(I × R2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Let µS, µI, µH, µR, ϑ, η and κ be positive and in L∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Fix an initial datum (So, Io, Ho, Ro) in L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Then: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Problem (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1)–(3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2)–(3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='3) fits into Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2 and Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='5 and hence admits a solution (S, I, H, R) ∈ C0 � [0, T∗];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R4) � , for a T∗ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' 9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' If the initial and boundary data (So, Io, Ho, Ro) and Sb are non negative, if ρ ≥ 0 and if the constants κ, η, θ are non negative, then Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='3 applies, ensuring that the solution is non negative: (S, I, H, R)(t) ∈ L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R4 +), for all t ∈ [0, T∗].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' If, in addition to what required at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=', the mortalities µS, µI, µH, µR are non negative, then Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='4 applies, so that the solution is defined globally in time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' If, in addition to what required at 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=', (So, Io, Ho, Ro) in L∞(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R4 +), then the solution is locally bounded: (S, I, H, R) ∈ L∞(J ×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R4 +), for any bounded interval J ⊆ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Hence, (S, I, H, R) is the unique solution to (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1) in the sense of Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' The proof is deferred to Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' As pointed out in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1), a natural control parameter is the coefficient κ = κ(t, a, y), which determines how quickly infective individuals are isolated in quarantine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' A first natural choice for a cost to be minimized by a careful choice of κ is the total number of deaths on the time interval [0, T], namely D(κ) = � T 0 � R+ � R2 � µI(t, a, y) I(t, a, y) + µH(t, a, y) H(t, a, y) � dy da dt .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1 ensures that the cost D is a continuous function of κ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Hence, standard compactness arguments, for instance in the case of a constant κ, ensure the existence of an optimal control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Moreover, the Lipschitz continuity, again ensured by Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1, allows to use standard optimization algorithms to actually find near–to–optimal controls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' A second reasonable choice is to minimize the maximal number of infected individuals ∥I∥L∞([0,T]×R+×R2), aiming at minimizing the maximal stress on the health care system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Again, the continuity proved in Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1 allows to use Weierstrass type arguments to exhibit the existence of optimal controls, thanks to the lower semicontinuity of the L∞ norm with respect to the L1 distance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2 Cell Growth and Division Consider the classical model [4, Formula (2)] devoted to the description of cell growth and cell division, as extended in [32, Formulæ (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='5)–(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='7)]: � ∂tN + ∂aN + divy (V (a, y) N) = −λ(a, y) N N(t, 0, y) = � R+ � Rn β � (a′, y′), y, N(t, a′, y′) � dy′ da′ (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='4) where t ∈ R+ is time, a ∈ R+ is age, (y1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' , yn) ∈ Rn is an n–tuple of structure variables, λ = λ(a, y) is the age– and state–specific loss rate, N = N(t, a, y) is the population density and V = V (a, y) is the (time independent) individual cell’s growth rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Therefore, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='4) fits into (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2) setting k = 1 , n ∈ N , m = 1 , X = R+×Rn , x = (a, y) , ξ = (0, y) , u = N , w = N(t) , v � t, (a, y) � = V (a, y) , p � t, (a, y), N(t) � = −λ(a, y) , q � t, (a, y), N, N(t) � = 0 , ub(t, y, N, N(t)) = � Rn � R+ β � (a′, y′), y, N(t, a′, y′) � da′ dy′ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' 10 Concerning the assumptions of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2, we have that (V) is satisfied as soon as V ∈ (C1 ∩ L∞)(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Rn) and div V ∈ L1(I;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' L∞(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Condition (P) is met whenever λ ∈ C0 ∩ L∞, with P1 = ∥λ∥L∞(R+×Rn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) and P2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Assumption (Q) trivially holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' To comply with (BD), we need β to be Lipschitz continuous and sublinear in its fourth argument, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=', β((a′, y′), y, w) ≤ B(y) � 1 + |w| � for a suitable B ∈ L1 ∩ L∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Under these assumptions, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2 applies to (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' As soon as β ≥ 0 and the initial datum is non negative, also Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='3 applies, ensuring the solution is non negative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' It is reasonable to assume from the biological point of view that λ ≥ 0, so that also Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='4 applies (with C1 = 0, C2 = 0), ensuring that the solution is globally defined in time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' It is straightforward to see that, as soon as β is linear in its third argument, it is possible to apply also Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='3 An Age and Phenotypically Structured Population Model Within the general form (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1) we recover also the recent model [29, Formula (1)], namely \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f3 ε ∂tMε + ∂a � A(a, y) Mε � = − �� R+ � RnMε(t, a′, y′) da′ dy′ + d(a, y) � Mε Mε(t, a = 0, y) = 1 A(a = 0, y) εn � R+ � Rn M �y′ − y ε � b(a′, y′) Mε(t, a′, y′) da′ dy′ Mε(t = 0, a, y) = M0 ε (a, y) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='5) Here, the dependent variable Mε = Mε(t, a, y) describes the population density at time t, of age a ∈ R+ and trait x ∈ Rn, so that � R+ � Rn Mε(t, a, y) da dx is the total population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' The growth function A = A(a, y) describes the age and trait dependent aging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' The mortality, on the right hand side of the first equation in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='5), both depends on the crowding, due to intraspecies competition, and on a given mortality d = d(a, y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' The function b = b(a, y) quantifies the natality and is modulated by the mutation probability kernel M, both defining the boundary term along a = 0, see also [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Note that the IBVP (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='5) can be seen as a prototype equation for various other similar models, see for instance [26, Formula (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='8)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' The above system (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='5) fits into (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2) setting X = R+ × Rn and k = 1 , m = 1 , n ≥ 1 , x = (a, y) , ξ = (0, y) , u = Mε , w = Mε(t) , v = � A(a, y)/ε 0 � , p(t, x, w) = −1 ε � Rn w(x) dx − d(x) ε , q(t, x, u, w) = 0 , ub(t, y, w) = 1 A(a = 0, y) εn � R+ � Rn M �y′ − y ε � b(a′, y′) w(a′, y′) da′ dy′ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='6) Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Let A ∈ (C1 ∩ L∞)(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R) with inf A > 0 and diva,y A ∈ L∞(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Let d ∈ L∞(Rn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R), M ∈ L∞(Rn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R) such that M(η) = 0 whenever ∥η∥ ≥ r, for a fixed r > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Moreover, b ∈ L∞(R+ × Rn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R) such that ��b(a, y) �� ≤ � 1 + ∥y∥ �−(n+1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Then, for any initial datum uo ∈ (L1∩L∞)(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R), Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2 applies to the Cauchy Problem for (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='5) with datum uo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' If moreover uo ≥ 0, A(0, y) ≥ 0, M ≥ 0 and b ≥ 0, Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='3 and Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='4 apply, ensuring that the solution is non negative and defined on all R+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' The proof is deferred to Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Thus, the above result ensures existence on [0, +∞[ as soon as all the assumptions are available therein, recovering the well posedness results in [28, 29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' 11 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='4 Further Applications We briefly recall here further models considered in the literature that fit within (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' In each of the cases below, we refer to the original sources for detailed descriptions of the modeling environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' The model presented in [20, Formula (5)], devoted to the modeling of leukemia develop- ment, reads (here, i = 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' , M − 1 for a fixed M ∈ N, M ≥ 3): \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f3 ∂tn1 = � 2 a1(x) 1 + K � 1 0 nM(t, x′) dx′ − 1 � p1(x) n1 ∂tni = 2 � 1− ai−1(x) 1+K � 1 0 nM(t, x′) dx′ � pi−1(x) ni−1+ � 2ai(x) 1+K � 1 0 nM(t, x′) dx′ −1 � pi(x) ni ∂tnM = 2 � 1 − aM−1(x) 1 + K � 1 0 nM(t, x′) dx′ � pM−1(x) nM−1 − d nM ni(0, x) = no i (x) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='7) Remark that (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='7) can be seen as a system of ordinary differential equations on functions defined on [0, 1] or, alternatively, as a system of ordinary differential equations coupled also through a non local dependence on the x variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Nevertheless, it fits within (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1): indeed, set k = M, m = 0, n = 1, X = R, u = (n1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' , nM), v ≡ 0, the other terms being obviously chosen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' It is worth noting that the recent model [3, Formula (13)], though devoted to an entirely different scenario, is analytically analogous to (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='7) and also fits within the framework formal- ized in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' The use of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2 and Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='5 thus extends the results in [3, 20] comprehending L1 solutions and providing a full set of stability estimates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Another example is the model recently presented in [16, Formula (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1)], devoted to an age– structured population described by the time, age and space dependent density u = u(t, a, y): \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 ∂tu + ∂au = d(J ∗ u(t) − u) + G � u(t) � u(t, 0, y) = F � u(t) � u(0, a, y) = Φ(a, y) (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='8) considered in [16] for a ∈ [0, a+] and y ∈ Ω, where a+ ∈ ]0, +∞[ and Ω ⊆ RN are given.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Above, J is a convolution kernel, while the functionals F and G are locally Lipschitz contin- uous with respect to the L1 norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Model (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='8) fits into (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1) setting k = 1, m = 1, n = N, X = R+ × RN, x = (a, y), v = �1 0 � , the choice of the other terms being immediate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' The results in Section 2 immediately apply even if the age interval [0, a+] and the space domain are bounded, thanks to the generality of the assumptions required on v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' This allows to have qualitative information on the dependence of the solutions exhibited in [16] on the various parameters and functions defining (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' We recall also the following competitive population model with age structure as an example of a system of equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' It was introduced and studied from the optimal management point 12 of view in [11, Formula (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1)]: \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f3 ∂tu1 + ∂au1 = −µ1(a, u1) u1 − f 1(t, a) u1 − u1 � A 0 c1(a′, a) u2(t, a′) da′ ∂tu2 + ∂au2 = −µ2(a, u2) u2 − f 2(t, a) u2 − u2 � A 0 c2(a′, a) u1(t, a′) da′ u1(t, 0) = � A 0 β1(a′) u1(t, a′) da′ u2(t, 0) = � A 0 β2(a′) u2(t, a′) da′ u1(0, a) = u1 o(a) u2(0, a) = u2 o(a) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='9) Here, we have k = 2, m = 1, n = 0, X = R+, v = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Under the assumptions of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2 and Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='5 we recover the continuity of the profit functional [11, Formula (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2)] J(f) = � T 0 � A 0 � K1(a) f 1(t, a) u1(t, a) + K2(a) f 2(t, a) u2(t, a) � da dt , now also in the setting of L1 solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' 4 Analytic Proofs 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1 The Scalar Case We now consider in detail the affine scalar case, namely (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='7) with f(t, x, u) = v(t, x) u and g(t, x, u) = p(t, x) u + q(t, x), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=', \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 ∂tu + divx � v(t, x)u � = p(t, x) u + q(t, x) (t, x) ∈ R+ × X u(t, ξ) = ub(t, ξ) (t, ξ) ∈ R+ × ∂X u(0, x) = uo(x) x ∈ X .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1) Recall the following standard notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' A characteristic of (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1) is the solution t → X(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' to, xo) to the following Cauchy Problem for the system of ordinary differential equations � ˙x = v(t, x) x(to) = xo .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (t, x) ∈ I × X (to, xo) ∈ I × X .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2) For τ, t ∈ I and for x ∈ X, define E(τ, t, x) = exp �� t τ � p � s, X(s;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) � − divx v � s, X(s;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) �� ds � (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='3) and for all (t, x) ∈ I × X, if x ∈ X(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' [0, t[, ∂X), we set T(t, x) = inf � s ∈ [0, t[: X(s;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) ∈ X � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='4) 13 With the notation introduced above, we recall the well known formula u(t, x) = \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f3 uo � X(0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) � E(0, t, x) + � t 0 q � τ, X(τ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) � E(τ, t, x) dτ x ∈ X(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' 0, X) ub � T(t, x), X � T(t, x);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x �� E � T(t, x), t, x � + � t T(t,x) q � τ, X(τ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) � E(τ, t, x) dτ x ∈ X(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' [0, t[, ∂X) (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='5) obtained from the integration along characteristics, a standard tool at least since the classical paper [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' The following relations are of use below, for a proof see for instance [6, Chapter 3], ∂tX(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' to, xo) = v � t, X(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' to, xo) � (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='6) ∂toX(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' to, xo) = −v(to, xo) exp � t to divx v � s;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' X(t, to, xo) � ds (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='7) DxoX(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' to, xo) = M(t), the matrix M solves � ˙M = Dxv � t, X(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' to, xo) � M M(to) = Id .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='8) In order to prove that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='5) solves (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1) in the sense of Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='6 and to provide the basic well posedness estimates, a few technical lemmas are in order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' First introduce the following notation: where misunderstandings might arise, we use the positional notation for derivatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' For instance, with reference to the map (t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' to, xo) → X(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' to, xo), we denote ∂2X(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' to, xo) = ∂toX(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' to, xo) = lim τ→0 X(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' to + τ, xo) − X(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' to, xo) τ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' We also set X = (X1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' , Xm+n), with Xi = X ·ei, where (e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' , em+n) is the canonical base of Rm+n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Recall also that ∂lXi = ∂l(X · ei) = (∂lX) · ei, for l = 1, 2, 3 and i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' , m + n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Under assumption (V) with k = 1, the map in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='4) T : � (t, x) ∈ R+ × X : x ∈ X(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' [0, t[ , ∂X) � → R+ (t, x) �→ inf � s ∈ [0, t[: X(s;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) ∈ X � (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='9) is well defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Moreover, for all t ∈ R+ and a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' x ∈ X such that x ∈ X(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' [0, t[, ∂X), there exists a unique i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' , m}, depending on t and x, such that Xi(T(t, x);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='10) Given t ∈ R+, for i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' , m}, call Xt i the set of x ∈ X such that i is the unique index satisfying (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Then, the map Mi : Xt i → R+ × Rn+m−1 x �→ � T(t, x), � Xj(T(t, x), t, x) � j̸=i � (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='11) is a local diffeomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' The derivatives of the function T are given by ∂tT(t, x) = − ∂2Xi(T(t, x);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) vi � T(t, x), X(T(t, x);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) � (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='12) 14 ∂xℓT(t, x) = − ∂3ℓXi � T(t, x);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x � vi � T(t, x), X � T(t, x);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x �� ℓ = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' , n + m .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='13) Finally the absolute value of the determinant of the Jacobian matrix DMi at x is 1 vi � T(t, x), X(T(t, x);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x � exp � T(t,x) t m+n � j=1 ∂xjvj � s, X (s;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) � ds .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='14) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' By (V), the usual Cauchy Theorem for systems of ordinary differential equations ensures that, for all (to, xo) ∈ R+ × X, the Cauchy Problem (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2) admits a unique solution defined on a maximal interval [T(to,xo), +∞[, with T(to,xo) ∈ [0, to].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Then, the map T defined in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='4) can be written T(t, x) = T(t,x) whenever T(t,x) > 0 and T(t, x) = 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Hence, the map (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='9) is well defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Once x ∈ X(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' [0, t[, ∂X), it is clear that there exists at least one index i such that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='10) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' The uniqueness follows, since X(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' ·, ·) is a diffeomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Fix t > 0, i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' , m}, and x ∈ Xt i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Locally around (t, x), the constraint (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='10) remains valid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' To compute the derivatives of the map (t, x) → T(t, x), differentiating (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='10) with respect to t yields ∂1Xi � T(t, x);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x � ∂tT(t, x) + ∂2Xi � T(t, x);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x � = 0 and so, using (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='6), vi � T(t, x), X � T(t, x);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x �� ∂tT(t, x) + ∂2Xi � T(t, x);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x � = 0 which proves (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='12), while a differentiation with respect to xℓ (ℓ ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' , m + n}) yields ∂1Xi � T(t, x);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x � ∂xℓT(t, x) + ∂3ℓXi � T(t, x);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x � = 0 and so, using (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='6), vi � T(t, x), X � T(t, x);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x �� ∂xℓT(t, x) + ∂3ℓXi � T(t, x);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x � = 0, which proves (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Consider the (n + m) × (n + m) Jacobian matrix DMi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' By (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='13), the first row is � ∂x1T(t, x), · · · , ∂xn+mT(t, x) � = � −∂31Xi vi , · · · , −∂3n+mXi vi � , where, for simplicity, we omitted the arguments of the functions Xi and vi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' The remaining rows, indexed by j ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' , n + m}, j ̸= i, of DMi are given by � ∂x1Xj(T(t, x);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x), · · · , ∂xn+mXj(T(t, x);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) � = � −vj ∂31Xi vi + ∂31Xj, · · · , −vj ∂3n+mXi vi + ∂3n+mXj � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' We compute the determinant of DMi using Gauss method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' We modify all the rows, except the first one, by adding to each row a multiple of the first one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' In this way the determinant 15 of DMi equals the determinant of the matrix \uf8eb \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ed − ∂31Xi vi − ∂32Xi vi · · − ∂3n+mXi vi ∂31X1 ∂32X1 · · ∂3n+mX1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' ∂31Xn+m ∂32Xn+m · · ∂3n+mXn+m \uf8f6 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f8 in the case i ̸= 1, n + m, the other cases being entirely similar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Therefore ��det (DMi) �� = 1 vi ��det (D3X) ��.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Using (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='8) and Liouville Theorem [13, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2, Chapter IV], we deduce ���det � DMi(x) ���� = 1 vi � T(t, x);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' X(T(t, x);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) � exp � T(t,x) t tr � Dxv � s, X (s;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) �� ds = 1 vi � T(t, x);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' X(T(t, x);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) � exp � T(t,x) t m+n � j=1 ∂xjvj � s, X (s;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) � ds which proves (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' The next two lemmas provide the basic a priori and stability estimates on (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Let (V) with k = 1 hold, let p ∈ L∞(I × X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R), q ∈ L1(I × X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R), ub ∈ L1(I ×∂X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R) and uo ∈ L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Then, for every t ∈ I the solution to problem (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1) defined through formula (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='5) satisfies the following a priori estimates: ��u(t) �� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) ≤ � ∥q∥L1([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) + ∥uo∥L1(X) � e∥p∥L∞([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)t + \uf8eb \uf8ed m � i=1 �� Γi ��ub(τ, ξ) �� vi(τ, ξ) dτ dξ \uf8f6 \uf8f8 e∥p∥L∞([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)t, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='15) where Γi = Mi(Xt i) with Mi as in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='11) and Xi t is as in Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' If moreover q ∈ L1 � I;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' L∞ (X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R) � , uo ∈ L∞ (X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R), and ub ∈ L∞(I × ∂X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R), then ��u(t) �� L∞(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) ≤ � ∥uo∥L∞(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) + ∥ub∥L∞([0,t]×∂X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)) + ∥q∥L1([0,t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L∞(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)) � × exp �� t 0 ���p(τ) �� L∞(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) + ��divx v(τ) �� L∞(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) � dτ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='16) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' The proof of the L∞ bound directly follows from E(τ, t, x) ≤ exp � ∥p∥L1([τ,t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L∞(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)) + ∥divx v∥L1([τ,t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L∞(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)) � , and (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' In order to get the L1 bound, observe that ��u(t) �� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) = ��u(t) �� L1(X(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='0,X);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) + ��u(t) �� L1(X(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='[0,t[,∂X);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' We thus consider two cases and apply a suitable change of variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' By (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='5), for t ∈ I, we have that � X(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='0,X) ��u(t, x) �� dx ≤ � X(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='0,X) ���uo � X(0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) ���� E (0, t, x) dx + � X(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='0,X) � t 0 ���q � τ, X (τ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) ���� E (τ, t, x) dτ dx .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='17) 16 Consider the first term in the right hand side of (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='17).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Using Liouville Theorem [13, Theo- rem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2, Chapter IV], the change of variables ξ = X(0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) and the assumptions on p, � X(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='0,X) ���uo � X(0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) ����E (0, t, x) dx = � X ��uo(ξ) �� exp �� t 0 p � s, X (s;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' 0, ξ) � ds � dξ ≤ ∥uo∥L1(X) e∥p∥L∞([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Consider the second term in the right hand side of (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='17).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Using the change of variable ξ = X (τ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x), � X(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='0,X) � t 0 ���q � τ, X (τ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) ����E (τ, t, x) dτ dx = � t 0 � X(τ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='0,X) ��q(τ, ξ) �� exp �� t τ p � s, X(s;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' τ, ξ) � ds � dξ dτ ≤∥q∥L1(X([0,t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='0,X);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)e∥p∥L∞([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Therefore, using (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='17), for t ∈ I, we deduce � X(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='0,X) ��u(t, x) �� dx ≤ � ∥uo∥L1(X) + ∥q∥L1(X([0,t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='0,X);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) � e∥p∥L∞([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='18) To estimate now the term depending on the boundary conditions, for t ∈ I, use (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='5): � X(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='[0,t[,∂X) ��u(t, x) �� dx = m � i=1 � Xt i ��u(t, x) �� dx ≤ m � i=1 � Xt i ����ub � T(t, x), X � T(t, x);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x ������ E � T(t, x), t, x � dx + m � i=1 � Xt i � t T(t,x) ���q � τ, X (τ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) ���� E (τ, t, x) dτ dx .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='19) For i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' , m}, use the diffeomorphism Mi in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='11) as change of variables, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=', τ = T(t, x), ξ = X � T(t, x);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x � and we set Γi = Mi(Xt i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Thus, we have � Xt i ����ub � T(t, x), X � T(t, x);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x ������ E � T(t, x), t, x � dx = �� Γi ��ub(τ, ξ) �� exp �� t τ p � s, X(s;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' τ, ξ) � ds � vi(τ, ξ) dτ dξ ≤e∥p∥L∞([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)t �� Γi ��ub(τ, ξ) �� vi(τ, ξ) dτ dξ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' For i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' , m}, using again the change of variables ξ = X (τ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x), define Ξi t = � (τ, ξ) ∈ R1+m+n : τ ∈ [t, T(t, x)] , x ∈ Xi t , ξ = X(τ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) � (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='20) 17 and we have � Xi t � t T(t,x) ���q � τ, X (τ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) ���� E (τ, t, x) dτ dx = �� Ξi t ��q(τ, ξ) �� exp �� t τ p � s, X(s;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' τ, ξ) � ds � dτ dξ ≤ ∥q∥L1(Ξi t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) e∥p∥L∞([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Therefore, using (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='19), for t ∈ I, we deduce � X(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='[0,t[,∂X) ��u(t, x) �� dx ≤ e∥p∥L∞([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)t m � i=1 ��� Γi ��ub(τ, ξ) ��vi(τ, ξ) dτ dξ + ∥q∥L1(Ξi t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' This concludes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Fix v satisfying (V) with k = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Let p1, p2 ∈ L∞(I×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R), q1, q2 ∈ L1(I×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R) with ub,1 and ub,2 as in Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2 and let uo,1, uo,2 satisfy (ID).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Define u1 and u2 respectively the solutions to \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 ∂tu1 + divx (v u1) = p1 u1 + q1 u1(t, ξ) = ub,1(t, ξ) u1(0, x) = uo,1(x) and \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 ∂tu2 + divx (v u2) = p2 u2 + q2 u2(t, ξ) = ub,2(t, ξ) u2(0, x) = uo,2(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Then, for every t ∈ I, the following stability estimate holds ��u1(t) − u2(t) �� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) ≤ P(t) ��uo,1 − uo,2 �� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) +P(t) ∥v∥L∞([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rn+m) ��ub,1 − ub,2 �� L1(I×∂X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) +P(t) ∥q1 − q2∥L1([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) +P(t) ���uo,1 �� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)+∥v∥L∞([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rn+m) ��ub,2 �� L1([0,t]×∂X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) � ∥p1−p2∥L1([0,t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L∞(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)) +P(t) ∥q2∥L1([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) ∥p1 − p2∥L1([0,t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L∞(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)) , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='21) where P(t) = exp � t max � ∥p1∥L∞([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R), ∥p2∥L∞([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Consider u1 and u2 the solutions to the two systems and fix t ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Define for i = 1, 2 Ei (τ, t, x) = exp �� t τ � pi � s, X(s;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) � − divx v � s, X(s;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) �� ds � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' We have the decomposition ��u1(t) − u2(t) �� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) = � X(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='0,X) ��u1(t) − u2(t) �� dx + � X(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='[0,t[,∂X) ��u1(t) − u2(t) �� dx .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='22) 18 We treat the two terms in the right hand side of (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='22) separately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' The first one is dealt with the explicit formula (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='5): � X(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='0,X) ��u1(t) − u2(t) �� dx ≤ � X(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='0,X) ���uo,1 � X (0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) � E1 (0, t, x) − uo,2 � X (0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) � E2 (0, t, x) ��� dx + � X(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='0,X) � t 0 ���q1 � τ, X (τ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) � E1 (τ, t, x) − q2 � τ, X (τ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) � E2 (τ, t, x) ��� dτ dx ≤ � X(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='0,X) E1 (0, t, x) ���uo,1 � X (0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) � − uo,2 � X (0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) ���� dx + � X(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='0,X) ���uo,2 � X (0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) ���� ��E1 (0, t, x) − E2 (0, t, x) �� dx + � X(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='0,X) � t 0 E1 (τ, t, x) ���q1 � τ, X (τ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) � − q2 � τ, X (τ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) ���� dτ dx + � X(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='0,X) � t 0 ���q2 � τ, X (τ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) ���� ��E1 (τ, t, x) − E2 (τ, t, x) �� dτ dx .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Using the two changes of variable ξ = X (0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) and ξ = X (τ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x), we obtain that � X(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='0,X) ��u1(t) − u2(t) �� dx ≤ � X exp �� t 0 p1 � s, X(s;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' 0, ξ) � ds � ��uo,1 (ξ) − uo,2 (ξ) �� dξ + � X ��uo,2 (ξ) �� ������ exp �� t 0 p1 � s, X(s;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' 0, ξ) � ds � − exp �� t 0 p2 � s, X(s;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' 0, ξ) � ds ������� dξ + � t 0 � X(τ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='0,X) ��q1 (τ, ξ) − q2 (τ, ξ) �� exp �� t τ p1 � s, X(s;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' τ, ξ) � ds � dξ dτ + � t 0 � X(τ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='0,X) ��q2 (τ, ξ) �� × ������ exp �� t τ p1 � s, X(s;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' τ, ξ) � ds � − exp �� t τ p2 � s, X(s;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' τ, ξ) � ds ������� dξ dτ ≤ P(t) � ��uo,1 − uo,2 �� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) + ∥q1 − q2∥L1 � X([0,t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='0,X);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R � � + P(t) ��uo,2 �� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)∥p1 − p2∥L1([0,t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L∞(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)) + P(t)∥q2∥L1 � X([0,t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='0,X);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R �∥p1 − p2∥L1([0,t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L∞(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)) , where we set P(t) = exp � max � ∥p1∥L∞([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)t , ∥p2∥L∞([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)t �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='23) 19 Pass now to the second term in the right hand side of (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='22), splitting among the different faces Xt i for i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' , m} as defined in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='11): � X(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='[0,t[,∂X) ��u1(t) − u2(t) �� dx = m � i=1 � Xt i ��u1(t) − u2(t) �� dx .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Fix i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' , m}, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' consider each term in the sum separately: � Xt i ��u1(t) − u2(t) �� dx ≤ � Xt i ����ub,1 � T(t, x), X � T(t, x);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x �� E1 � T(t, x), t, x � −ub,2 � T(t, x), X � T(t, x);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x �� E2 � T(t, x), t, x ����� dx + � Xt i � t T(t,x) ���q1 � τ, X (τ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) � E1 (τ, t, x) − q2 � τ, X (τ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) � E2 (τ, t, x) ��� dτ dx ≤ � Xt i E1 � T(t, x), t, x � × ����ub,1 � T(t, x), X � T(t, x);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x �� − ub,2 � T(t, x), X � T(t, x);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x ������ dx + � Xt i ����ub,2 � T(t, x), X � T(t, x);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x ������ ���E1 � T(t, x), t, x � − E2 � T(t, x), t, x ���� dx + � Xt i � t T(t,x) E1 (τ, t, x) ���q1 � τ, X (τ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) � − q2 � τ, X (τ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) ���� dτ dx + � Xt i � t T(t,x) ���q2 � τ, X (τ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' t, x) ���� ��E1 (τ, t, x) − E2 (τ, t, x) �� dτ dx .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' We now use the diffeomorphism Mi as defined in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='11), for i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' , m}, and we use the set Ξi t as in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='20).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' We thus obtain, using (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='23), that � Xt i ��u1(t, x) − u2(t, x) �� dx ≤ �� Γi exp �� t τ p1 � s, X(s;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' τ, ξ) � ds � ��ub,1(τ, ξ) − ub,2(τ, ξ) �� vi(τ, ξ) dξ dτ + �� Γi ��ub,2(τ, ξ) �� × ������ exp �� t τ p1 � s, X(s;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' τ, ξ) � ds � − exp �� t τ p2 � s, X(s;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' τ, ξ) � ds ������� vi(τ, ξ) dξ dτ + �� Ξi t exp �� t τ p1 � s, X(s;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' τ, ξ) � ds � ��q1(τ, ξ) − q2(τ, ξ) �� dτ dξ + �� Ξi t ��q2(τ, ξ) �� 20 × ������ exp �� t τ p1 � s, X(s;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' τ, ξ) � ds � − exp �� t τ p2 � s, X(s;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' τ, ξ) � ds ������� dτ dξ ≤ P(t) ∥v∥L∞([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rn+m) ��ub,1 − ub,2 �� L1(Γi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) + P(t) ∥v∥L∞([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rn+m) ��ub,2 �� L1(Γi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) ∥p1 − p2∥L1([0,t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L∞(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)) + P(t) ∥q1 − q2∥L1(Ξi t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) + P(t) ∥q2∥L1(Ξi t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) ∥p1 − p2∥L1([0,t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L∞(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)) ≤ P(t) � ∥v∥L∞([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rn+m) ��ub,1 − ub,2 �� L1(Γi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) + ∥q1 − q2∥L1(Ξi t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) � + P(t)∥v∥L∞([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rn+m) ��ub,2 �� L1(Γi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) ∥p1 − p2∥L1([0,t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L∞(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)) + P(t)∥q2∥L1(Ξi t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) ∥p1 − p2∥L1([0,t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L∞(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Therefore, using (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='22), we deduce that ��u1(t) − u2(t) �� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) ≤ P(t) ���uo,1 − uo,2 �� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) + ∥q1 − q2∥L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='([0,t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='0,X);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) � +P(t) ��uo,2 �� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)∥p1 − p2∥L1([0,t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L∞(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)) +P(t)∥q2∥L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='([0,t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='0,X);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) ∥p1 − p2∥L1([0,t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L∞(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)) + m � i=1 P(t) � ∥v∥L∞([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rn+m) ��ub,1 − ub,2 �� L1(Γi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) + ∥q1 − q2∥L1(Ξi t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) � + m � i=1 P(t)∥v∥L∞([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rn+m) ��ub,2 �� L1(Γi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) ∥p1 − p2∥L1([0,t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L∞(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)) + m � i=1 P(t)∥q2∥L1(Ξi t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) ∥p1 − p2∥L1([0,t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L∞(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)) ≤ P(t) ��uo,1 − uo,2 �� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) +P(t)∥v∥L∞([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rn+m) ��ub,1 − ub,2 �� L1([0,t]×∂X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) +P(t)∥q1 − q2∥L1([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) +P(t) � ∥uo∥L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) + ∥v∥L∞([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rn+m) ��ub,2 �� L1([0,t]×∂X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) � ∥p1 − p2∥L1([0,t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L∞(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)) +P(t)∥q2∥L1([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) ∥p1 − p2∥L1([0,t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L∞(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)) , proving (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Let v satisfy (V) with k = 1, p ∈ L∞(I × X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R), q ∈ L1(I × X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R), ub ∈ L1(I × ∂X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R) and uo satisfy (ID) with k = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Then, formula (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='5) defines a solution u = u(t, x) to (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1) in the sense of Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Moreover, u ∈ C0(I;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' The first part of the proof amounts to a careful piecing together various proofs found in the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' In particular, the part of the solution depending on the initial data is dealt with exactly as in [10, Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='7] and [9, Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' The part depending on the boundary datum is treated in the same way, exploiting the change of variables detailed in Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' 21 To prove the C0 regularity of the solution with respect to time, fix a ¯t ∈ I and a sequence th, with th ∈ I, converging to ¯t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Then, assuming first that th > t, we have ��u(th) − u(¯t) �� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) = � X(th;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='0,X) ��u(th, x) − u(¯t, x) �� dx + � X\\(X(th;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='0,X)∪X(¯t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='[0,¯t[,∂X)) ��u(th, x) − u(¯t, x) �� dx + � X(¯t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='[0,¯t[,∂X) ��u(th, x) − u(¯t, x) �� dx .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' The second term vanishes as h → +∞, since it is the integral of a bounded quantity over a set of vanishing measure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Consider now the first term, the third one can be treated similarly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' � X(th;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='0,X) ��u(th, x) − u(¯t, x) �� dx = � X ��u(th, x) − u(¯t, x) �� χX(th;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='0,X)(x) dx ≤ � X ���uo � X(0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' th, x) � E(τ, th, x) − uo � X(0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' ¯t, x) � E(τ, ¯t, x) ��� χX(th;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='0,X)(x) dx + � X ����� � th 0 q � τ, X(τ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' th, x) � E (τ, th, x) dτ − � ¯t 0 q � τ, X(τ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' ¯t, x) � E � τ, ¯t, x � dτ ����� χX(th;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='0,X)(x) dx As h → +∞, we have that uo � X(0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' th, x) � E(τ, th, x) → uo � X(0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' ¯t, x) � E(τ, ¯t, x) � th 0 q � τ, X(τ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' th, x) � E (τ, th, x) dτ → � ¯t 0 q � τ, X(τ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' ¯t, x) � E � τ, ¯t, x � dτ for a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' x ∈ X, so that the corresponding integrals vanish by Lebesgue Dominated Convergence Theorem, which we can apply thanks to the L1 a priori bound (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='15).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2 The General Case of a System Below, in the various estimates we use the following norms: ∥u∥L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) = �k h=1 � X ���uh(x) ��� dx ∥u∥L∞(I×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) = �k h=1 ���uh��� L∞(I×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) ∥u∥L∞(I;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk)) = �k h=1 ���uh��� L∞(I;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Proof of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' The proof is divided in several steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Let I = [0, T] for T > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Construction of the Operator T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' In the Banach space C0(I;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Rk)), for M > ∥uo∥L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) + 1, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='24) 22 introduce the closed subset X and the norm ∥·∥X: X = � w ∈ C0(I;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Rk)): ∥w∥L∞(I;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk)) ≤ M � , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='25) ∥w∥X = k � h=1 ���wh��� L∞(I;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='26) Define the operator T : X −→ X w �−→ u ≡ � u1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' , uk� (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='27) where, for every h ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' , k}, uh solves \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f3 ∂tuh + divx � vh(t, x)uh� = ph � t, x, w(t) � uh +qh � t, x, w(t, x), w(t) � (t, x) ∈ I × X uh(t, ξ) = uh b � t, ξ, w(t) � (t, ξ) ∈ I × ∂X uh(0, x) = uh o(x) x ∈ X .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='28) T is Well Defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' We prove that, for w ∈ X and h ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' , k}, the source term in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='28) Gh(t, x, uh) = Ph(t, x) uh + Qh(t, x) where Ph(t, x) = ph � t, x, w(t) � Qh(t, x) = qh � t, x, w(t, x), w(t) � is such that Ph ∈ L∞(I × X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R) and Qh ∈ L1(I × X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' By (P), for every t ∈ I and x ∈ X, using also (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='25), we have ���Ph(t, x) ��� = ���ph � t, x, w(t) ���� ≤ P1 + P2 ��w(t) �� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' ���Ph��� L∞(I×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) ≤ P1 + P2 M, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='29) proving that (t, x) �→ Ph(t, x) is in L∞(I × X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' On the other hand, by (Q) we have ���Qh��� L1([0,T]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) = � T 0 � X ���Qh(t, x) ��� dx dt = � T 0 � X ���qh � t, x, w(t, x), w(t) ���� dx dt ≤ Q1 � T 0 � X ��w(t, x) �� dx dt + � T 0 � X Q2(x) ��w(t) �� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) dx dt + Q3 � T 0 � X ��w(t, x) �� ��w(t) �� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) dx dt ≤ Q1T∥w∥X + ∥Q2∥L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)T∥w∥X + Q3T∥w∥2 X, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='30) proving that (t, x) �→ Qh(t, x) is in L1(I × X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' 23 Now we prove that, for every w ∈ X and h ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' , k}, the boundary term Uh b (t, ξ) = uh b � t, ξ, w(t) � in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='28) satisfies Uh b ∈ L1(I × ∂X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' By (BD) we have ���Uh b ��� L1(I×∂X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) = � T 0 � ∂X ���uh b � t, ξ, w(t) ���� dξ dt ≤ � T 0 � ∂X B(ξ) ��w(t) �� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) dξ dt + � T 0 � ∂X B(ξ) dξ dt ≤ ∥B∥L1(∂X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) � ∥w∥X + 1 � T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Hence Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='4 applies to (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='28).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' To conclude this step, we need to show that the solution u(t, x) ≡ � u1(t, x), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' , uk(t, x) � belongs to X in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='25).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' By (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='15), (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='29), (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='30) and since w ∈ X, for t ∈ I, ���uh(t) ��� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) ≤ e(P1+P2M)t ����Qh��� L1([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) + ���uh o ��� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) � +e(P1+P2M)t m � i=1 �� Γi ���uh b � τ, ξ, w(τ) ���� vh i (τ, ξ) dτ dξ ≤ � � Q1 + ∥Q2∥L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) + Q3 ∥w∥X � T ∥w∥X + ���uh o ��� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) +∥B∥L1(∂X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) ∥v∥L∞(I×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk×(n+m)) T � ∥w∥X + 1 � � e(P1+P2M)t ≤ � � Q1 + ∥Q2∥L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) + Q3 M � T M + ���uh o ��� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) +∥B∥L1(∂X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) ∥v∥L∞(I×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk×(n+m)) T(M + 1) � e(P1+P2M)t ≤ ����uh o ��� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) + 1 2k � e(P1+P2M)T , whence ��u(t) �� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) ≤ M, once T is sufficiently small, thanks to the choice (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='24) of M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' T is a Contraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Fix ˆw and ˇw in XM and call ˆu = T ˆw, ˇu = T ˇw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Use the notation ˆPh(t, x) = ph � t, x, ˆw(t) � , ˆQh(t, x) = qh � t, x, ˆw(t, x), ˆw(t) � , ˆUh b (t, ξ) = uh b � t, ξ, ˆw(t) � , ˇPh(t, x) = ph � t, x, ˇw(t) � , ˇQh(t, x) = qh � t, x, ˇw(t, x), ˇw(t) � , ˇUh b (t, ξ) = uh b � t, ξ, ˇw(t) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Then, by Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='3 and by (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='29), we have: ���ˆuh(t) − ˇuh(t) ��� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) ≤ e(P1+P2M)t ∥v∥L∞([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rn+m) ��� ˆUh b − ˇUh b ��� L1([0,t]×∂X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) + e(P1+P2M)t��� ˆQh − ˇQh��� L1([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) + � M + ∥v∥L∞(I×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk×(n+m)) ��� ˇUh b ��� L1([0,t]×∂X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) + ��� ˇQh��� L1([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) � × e(P1+P2M)t��� ˆPh − ˇPh��� L1([0,t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L∞(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='31) 24 By (P) we have: ��� ˆPh − ˇPh��� L1([0,t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L∞(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)) ≤ � t 0 ��� ˆPh(s) − ˇPh(s) ��� L∞(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) ds ≤ P2 � t 0 �� ˆw(s) − ˇw(s) �� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) ds ≤ P2 ∥ ˆw − ˇw∥X T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='32) By (Q) we have: ��� ˆQh − ˇQh��� L1([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) ≤ Q1 ∥ ˆw − ˇw∥L1([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) + Q3 ∥ ˆw∥L∞([0,t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk)) ∥ ˆw − ˇw∥L1([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) +Q3 ∥ ˇw∥L∞([0,t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk)) ∥ ˆw − ˇw∥L1([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) ≤ (Q1 + 2 M Q3) ∥ ˆw − ˇw∥X T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='33) Similarly, by (BD), we have: ��� ˆUh b − ˇUh b ��� L1([0,t]×∂X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) ≤ ∥B∥L1(∂X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) ∥ ˆw − ˇw∥X T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='34) Therefore T is a contraction as soon as T is sufficiently small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Existence of a Solution for Small Times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Proving that the unique fixed point of T solves (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1) in the sense of Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1 amounts to pass to the limit in the integral inequal- ity (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' This is possible thanks to the strong convergence ensured by the choice (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='26) of the norm in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' The proof of (WP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1) is completed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Uniqueness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Assume that (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2) admits the solutions ˆu and ˇu in the sense of Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Then, their difference δ = ˆu − ˇu solves \uf8f1 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f3 ∂tδh + div � vh(t, x) δh� = ˆGh(t, x) − ˇGh(t, x) δh(t, ξ) = ˆUh b (t, ξ) − ˇUh b (t, ξ) δh(0, x) = 0 in the sense of Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1, where ˆGh(t, x) = ph � t, x, ˆu(t) � ˆuh + qh � t, x, ˆu, ˆu(t) � ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' ˆUh b (t, ξ) = ˆuh b � t, ξ, ˆu(t) � ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' ˇGh(t, x) = ph � t, x, ˇu(t) � ˇuh + qh � t, x, ˇu, ˇu(t) � ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' ˇUh b (t, ξ) = ˇuh b � t, ξ, ˇu(t) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' A straightforward application of the classical doubling of variable method [18], see [24, Lemma 16, Lemma 17], [23, Theorem 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='28], and also [10, Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='8], leads to the stability estimate ���δh(t) ��� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) ≤ � t 0 ��� ˆGh(τ) − ˇGh(τ) ��� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) dτ + ���vh��� L∞(I×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rn+m) � t 0 ��� ˆUh b (τ) − ˇUh b (τ) ��� L1(∂X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) dτ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' The assumptions (P) and (Q) allow now to use Gronwall Lemma, proving that δ ≡ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' 25 Continuous Dependence on the Initial Datum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' With the notation in (WP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='3), define ˆPh(t, x) = ph � t, x, ˆu(t) � , ˆQh(t, x) = qh � t, x, ˆu(t, x), ˆu(t) � , ˆUh b (t, ξ) = uh b � t, ξ, ˆu(t) � , ˇPh(t, x) = ph � t, x, ˇu(t) � , ˇQh(t, x) = qh � t, x, ˇu(t, x), ˇu(t) � , ˇUh b (t, ξ) = uh b � t, ξ, ˇu(t) � , for t ∈ I and h ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' , k}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' A further application of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='3 allows to estimate the difference between the solutions ˆu and ˇu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' ���ˆuh(t) − ˇuh(t) ��� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) ≤ e(P1+P2M)t ���ˆuo,h − ˇuo,h �� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) + ∥v∥L∞([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rn+m) ��� ˆUh − ˇUh��� L1([0,t]×∂X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) � + e(P1+P2M)t ���� ˆQh − ˇQh��� L1([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) + K ��� ˆPh − ˇPh��� L1([0,t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L∞(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)) � , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='35) where, by (Q) and (BD), K = ��ˆuo,h �� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) + ∥v∥L∞([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rn+m) ��� ˇUh��� L1([0,t]×∂X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) + ��� ˇQh��� L1([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) ≤ M + ∥v∥L∞([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rn+m)∥B∥L1(∂X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) (M + 1) T + Q1TM + ∥Q2∥L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)TM + Q3TM2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Using (BD), (Q) and (P), we have: ��� ˆUh − ˇUh��� L1([0,t]×∂X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) ≤ ∥B∥L1(∂X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) ∥ˆu − ˇu∥L1([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk), ��� ˆQh − ˇQh��� L1([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) ≤ Q1 ���ˆuh − ˇuh��� L1([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) +Q3 � ∥ˆu∥L∞([0,t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk)) + ∥ˇu∥L∞([0,t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk)) � ×∥ˆu − ˇu∥L1([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) ≤ Q1 ���ˆuh − ˇuh��� L1([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) + 2MQ3 ∥ˆu − ˇu∥L1([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk), ��� ˆPh − ˇPh��� L1([0,t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L∞(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)) ≤ � t 0 ��� ˆPh(s) − ˇPh(s) ��� L∞(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) ds ≤ � t 0 ���ph � s, ·, ˆu(s) � − ph � s, ·, ˇu(s) ���� L∞(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) ds ≤ P2 � t 0 ��ˆu(s) − ˇu(s) �� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) ds = P2 ∥ˆu − ˇu∥L1([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Inserting these estimates into (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='35) we deduce that ���ˆuh(t) − ˇuh(t) ��� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) ≤ e(P1+P2M)t∥ˆuo − ˇuo∥L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) + e(P1+P2M)t� ∥v∥L∞([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rn+m)∥B∥L1(∂X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) + Q1 + 2MQ3 + KP2 � ∥ˆu − ˇu∥L1([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Sum over h = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' , k and use Gronwall Lemma to prove (WP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='3), completing the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' □ 26 Proof of Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' For every w ∈ X, with X as in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='25), define u = T w as the image of w through the operator T , defined in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='27).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' By (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='5), we deduce that uh(t, x) ≥ 0 for a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' x ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' This implies that also the unique fixed point of the operator T has the same property, thus (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' □ Proof of Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' By Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2, we know that there exists a solution u ∈ C0([0, T];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Rk)) and that this solution can be uniquely extended beyond time T as long as ��u(T) �� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) is bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' By Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='3, ��u(t) �� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) = �k h=1 � X uh(t, x) dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Using (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2), the Divergence Theorem and (BD), we have d dt ��u(t) �� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) = d dt k � h=1 � X uh(t, x) dx = k � h=1 � X � ph � t, x, u(t) � u(t) + qh � t, x, u(t, x), u(t) �� dx + k � h=1 � ∂X uh b � t, ξ, u(t) � dξ ≤ � X \uf8eb \uf8edC1(t, x) + C2(t) k � h=1 uh(t, x) \uf8f6 \uf8f8 dx + � ∂X B(ξ) � k + ��u(t) �� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) � dξ = � ∥C1∥L∞([0,t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R))+k ∥B∥L1(∂X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) � + � ∥C2∥L∞([0,t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)+∥B∥L1(∂X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) � ��u(t) �� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) and usual ODE estimates ensure that ��u(t) �� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) is bounded on bounded intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' □ Proof of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' We divide the proof in several steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2 Applies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' We first check that the assumptions of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2 hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (P) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Fix h ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' , k}, t ∈ I and x ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' If w ∈ L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Rk), then ���ph (t, x, w) ��� ≤ ¯P1 + ¯P2 ���� � X Kh p � t, x, x′� w(x′) dx′ ���� ≤ ¯P1 + ¯P2 ���Kh p ��� L∞([0,t]×X 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rkpk)∥w∥L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' If w1, w2 ∈ L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Rk), then ���ph (t, x, w1) − ph (t, x, w2) ��� ≤ ¯P2 ���� � X ���Kh p � t, x, x′���� ��w1(x′) − w2(x′) �� dx′ ���� ≤ ¯P2 ���Kh p ��� L∞([0,t]×X 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rkpk) ∥w1 − w2∥L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Therefore (P) holds with P1 = ¯P1 and P2 = ¯P2 ���Kh p ��� L∞([0,t]×X 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rkpk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (Q) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Fix h ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' , k}, t ∈ I and x ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' If u ∈ Rk and w ∈ L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Rk), then ���qh (t, x, u, w) ��� = �����Qh � t, x, u, � X Kh q � t, x, x′� w(x′) dx′ ������ 27 ≤ ¯Q1∥u∥+ ¯Q2(x) ���� � X Kh q � t, x, x′� w(x′) dx′ ����+ ¯Q3∥u∥ ���� � X Kh q � t, x, x′� w(x′) dx′ ���� ≤ ¯Q1∥u∥ + � ¯Q2(x) + ¯Q3∥u∥ � ���Kh q ��� L∞([0,t]×X 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rkqk)∥w∥L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' If u1, u2 ∈ Rk and w1, w2 ∈ L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Rk), then ���qh (t, x, u1, w1) − qh (t, x, u2, w2) ��� ≤ ¯Q1∥u1 − u2∥ + ¯Q3 ���Kh u ��� L∞([0,t]×X 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rkqk)∥w1∥L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk)∥u1 − u2∥ + ¯Q3∥u2∥ ���Kh u ��� L∞([0,t]×X 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rkqk)∥w1 − w2∥L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Therefore, condition (Q) holds with Q1 = ¯Q1, Q2(x) = ¯Q2(x) ���Kh q ��� L∞([0,t]×X 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rkqk), and Q3 = ¯Q3(x) ���Kh q ��� L∞([0,t]×X 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rkqk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (Q+) is straightforward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (BD) holds: ���uh b (t, ξ, w) ��� ≤ ¯B(ξ) � 1 + ���� � X Kh u(t, ξ, x′) w(x′) dx′ ���� � ≤ ¯B(ξ) � 1 + ���Kh u ��� L∞([0,t]×∂X×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rkuk) ∥w∥L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' ���uh b (t, ξ, w) − uh b (t, ξ, w′) ��� ≤ ¯B(ξ) ���Kh u ��� L∞([0,t]×∂X×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rkuk) ��w − w′�� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) so (BD) holds with B(ξ) = ¯B(ξ) � 1 + ∥Ku∥L∞([0,t]×∂X×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rkuk2) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Clearly, also (BD+) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Stability Estimates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' We now pass to the stability estimates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' In each of the following cases, we keep t ∈ I fixed and h ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' , k}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Define ˆUh b (t, ξ) = ˆuh b � t, ξ, ˆu(t) � , ˆQh(t, x) = ˆqh � t, x, ˆu(t, x), ˆu(t) � , ˆPh(t, x) = ˆph � t, x, ˆu(t) � , ˇUh b (t, ξ) = ˇuh b � t, ξ, ˇu(t) � , ˇQh(t, x) = ˇqh � t, x, ˇu(t, x), ˇu(t) � , ˇPh(t, x) = ˇph � t, x, ˇu(t) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='36) In order to use Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='3, compute preliminarily P(t) = exp � t max ���� ˆPh��� L∞([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) , ��� ˇPh��� L∞([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) �� ≤ exp � t (P1 + P2M) � , where M is an upper bound for the L∞ in time and L1 in space norms of both solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Therefore, Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='3 implies that ���ˆuh(t) − ˇuh(t) ��� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) ≤ P(t) ∥v∥L∞([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rn+m) ��� ˆUh b − ˇUh b ��� L1([0,t]×∂X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) + P(t) ��� ˆQh − ˇQh��� L1([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) + P(t) � ∥uo∥L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) + ��� ˇQh��� L1([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) � ��� ˆPh − ˇPh��� L1([0,t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L∞(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)) + P(t) ∥v∥L∞([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk×(n+m)) ��� ˇUb ��� L1([0,t]×∂X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) ��� ˆPh − ˇPh��� L1([0,t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L∞(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='37) 28 Then, we estimate the terms in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='37).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Using (BD) and (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='36) we deduce that ��� ˆUh b − ˇUh b ��� L1([0,t]×∂X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) = � t 0 � ∂X ���ˆuh b � τ, ξ, ˆu(τ) � − ˇuh b � τ, ξ, ˇu(τ) ���� dξ dτ ≤ � t 0 � ∂X ���ˆuh b � τ, ξ, ˆu(τ) � − ˆuh b � τ, ξ, ˇu(τ) ���� dξ dτ + � t 0 � ∂X ���ˆuh b � τ, ξ, ˇu(τ) � − ˇuh b � τ, ξ, ˇu(τ) ���� dξ dτ ≤ ∥B∥L1(∂X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) ∥ˆu − ˇu∥L1([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) + � t 0 � ∂X ����� ˆU h b � τ, ξ, � X ˆKh u(τ, ξ, x′) ˇu(τ, x′) dx′ � − ˆU h b � τ, ξ, � X ˇKh u(τ, ξ, x′) ˇu(τ, x′) dx′ ������ dξ dτ + � t 0 � ∂X ����� ˆU h b � τ, ξ, � X ˇKh u(τ, ξ, x′) ˇu(τ, x′) dx′ � − ˇU h b � τ, ξ, � X ˇKh u(τ, ξ, x′) ˇu(τ, x′) dx′ ������ dξ dτ ≤ ∥B∥L1(∂X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) ∥ˆu − ˇu∥L1([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) + � t 0 � ∂X ¯B(ξ) ��� ˆKh u − ˇKh u ��� L∞([0,t]×∂X×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rkuk) ��ˇu(τ) �� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) dξ dτ + ��� ˆU h b − ˇU h b ��� L1([0,t]×∂X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L∞(Rku;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)) ≤ ∥B∥L1(∂X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) ∥ˆu − ˇu∥L1([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) + �� ¯B �� L1(∂X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) ��� ˆKh u − ˇKh u ��� L∞([0,t]×∂X×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rkuk)∥ˇu∥L1([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) + ��� ˆU h b − ˇU h b ��� L1([0,t]×∂X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L∞(Rku;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Using (Q) we deduce that ��� ˆQh − ˇQh��� L1([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) ≤ � t 0 � X ���ˆqh � τ, x, ˆu(τ, x), ˆu(τ) � − ˆqh � τ, x, ˇu(τ, x), ˇu(τ) ���� dx dτ + � t 0 � X ���ˆqh � τ, x, ˇu(τ, x), ˇu(τ) � − ˇqh � τ, x, ˇu(τ, x), ˇu(τ) ���� dx dτ ≤ Q1 � t 0 ��ˆu(τ) − ˇu(τ) �� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) dτ + Q3 � t 0 ��ˆu(τ) �� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) � X ��ˆu(τ, x) − ˇu(τ, x) �� dx dτ +Q3 � t 0 ��ˆu(τ) − ˇu(τ) �� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) � X ��ˇu(τ, x) �� dx dτ + � t 0 � X ����� ˆQh � τ, x, ˇu(τ, x), � X ˆKh q � τ, x, x′� ˇu � τ, x′� dx′ � − ˇQh � τ, x, ˇu(τ, x), � X ˇKh q � τ, x, x′� ˇu � τ, x′� dx′ ������ dx dτ ≤ � Q1 + Q3 � ∥ˆu∥L∞([0,t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk)) + ∥ˇu∥L∞([0,t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk)) �� � t 0 ��ˆu(τ) − ˇu(τ) �� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) dτ 29 + � t 0 � X sup η∈Rkq ��� ˆQh � τ, x, ˇu(τ, x), η � − ˇQh � τ, x, ˇu(τ, x), η ���� dx dτ + ¯Q3 � t 0 � X ��ˇu(τ, x) �� ���� � X � ˆKh q (τ, x, x′) − ˇKh q (τ, x, x′) � ˇu � τ, x′� dx′ ���� dx dτ ≤ � Q1 + Q3 � ∥ˆu∥L∞([0,t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk)) + ∥ˇu∥L∞([0,t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk)) �� ∥ˆu − ˇu∥L1([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) + ��� ˆQh − ˇQh��� L1([0,t]×X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L∞(Rk×Rkq ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)) + � t 0 ��ˇu (τ) ��2 L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) dτ ��� ˆKh q − ˇKh q ��� L∞([0,t]×X 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rkq).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Using (P), we have ��� ˆPh − ˇPh��� L1([0,t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='L∞(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)) ≤ � t 0 sup x∈X ���ˆph � τ, x, ˆu(τ) � − ˆph � τ, x, ˇu(τ) ���� dτ + � t 0 sup x∈X ���ˆph � τ, x, ˇu(τ) � − ˇph � τ, x, ˇu(τ) ���� dτ ≤ P2 � t 0 ��ˆu(τ) − ˇu(τ) �� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) dτ + � t 0 sup x∈X ����� ˆP h � τ, x, � X ˆKh p(τ, x, x′)ˇu(τ, x′) dx′ � − ˇP h � τ, x, � X ˆKh p(τ, x, x′)ˇu(τ, x′) dx′ ������ dτ + � t 0 sup x∈X ����� ˇP h � τ, x, � X ˆKh p(τ, x, x′)ˇu(τ, x′) dx′ � − ˇP h � τ, x, � X ˇKh p(τ, x, x′)ˇu(τ, x′) dx′ ������ dτ ≤ P2 � t 0 ��ˆu(τ) − ˇu(τ) �� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) dτ + t ��� ˆP h − ˇP h��� L∞([0,t]×X×Rkp;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) + ¯P2 � t 0 sup x∈X � X ��� ˆKh p(τ, x, x′) − ˇKh p(τ, x, x′) ��� ��ˇu(τ, x′) �� dx′ dτ ≤ P2 � t 0 ��ˆu(τ) − ˇu(τ) �� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) dτ + t ��� ˆP h − ˇP h��� L∞([0,t]×X×Rkp;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R) + ¯P2 � t 0 ��ˇu(τ) �� L1(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rk) dτ ��� ˆKh p − ˇKh p ��� L∞([0,t]×X 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='Rkpk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' The above estimate, duly inserted in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='37) and followed by a standard application of Gronwall Lemma, completes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' □ Proof of Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Checking (V) and (ID) is immediate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' It is sufficient to verify that the assumptions of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='5 hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' It is immediate to check that (P) holds with ¯P1 = max{∥µS∥, ∥µI∥+∥κ + θ∥, ∥µH∥+∥η∥, ∥µR∥} (all norms being in L∞(I × R+ × R2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R)), ¯P2 = 1, thanks to ρ ∈ L∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Concerning (Q), choose ¯Q1 = max{∥κ∥, ∥η + θ∥}, ¯Q2 = 0, ¯Q3 = 1 and use ρ ∈ L∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Finally, (BD) holds with ¯B(ξ) = supI ��Sb(t) �� L∞(X,R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Positivity is immediate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' To apply Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='4, simply set C1 ≡ 0 and C2 ≡ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' To obtain an L∞ bound, note first that since I ∈ C0 � I;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' L1(R+ × R2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' R) � , the integral in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2) is bounded on any bounded time interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Hence, a repeated application of (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='16) in Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2 yields the boundedness of S, I, H and R on any bounded interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Uniqueness then follows from (WP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' □ 30 Proof of Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Assumptions (V) and (ID) trivially hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Condition (P) holds with P1 = ∥d∥L∞(Rn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content='R)/ε and P2 = 1/ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' Verifying (Q) is straightforward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAzT4oBgHgl3EQfk_0W/content/2301.01539v1.pdf'}
+page_content=' To prove that (BD) holds, compute for y ∈ Rn with ∥y∥ > r: ��ub(t, y, w) �� = ����� 1 A(a = 0, y) εn � R+ � Rn M �y′ − y ε � b(a′, y′) w(a′, y′) da′ dy′ ����� ≤ 1 εn inf A ����� � R+ � Rn M �y′ − y ε � b(a′, y′) w(a′, y′) da′ dy′ ����� ≤ 1 εn inf A � R+ � Rn �����M �y′ − y ε ������ � sup |y′−y| 1,
+and allow bidder tips to be conditioned not only on inclusion, but also on the number
+of proposers who include the bid within a slot. This allows bidders to set up a sort of
+“prisoner’s dilemma” among the proposers by proposing to pay a large tip T when only
+one proposer includes, and a small tip t ≪ T if multiple proposers include. Each proposer
+is incentivized to include since if they are alone in including the transaction, there is a
+high tip attached. All proposers therefore include the bid in equilibrium. This leads to a
+low expected tip of kt but an asymmetrically expensive censorship cost of kT ≫ kt. This
+asymmetry allows for a pooling equilibrium in which the probability of censorship is 0,
+tips no longer reveal bids, and expected total tips are low.
+We are not aware of any blockchains that currently allow multiple concurrent block
+proposers. Representatives from at least one major chain, however, mentioned concur-
+rency as a goal going forward, in order to scale throughput and decrease latency from
+the user to the nearest proposer within a given slot.7 The co-founder, and CEO of Solana
+even mentioned MEV resistance as a motivation for the desirability of multiple concur-
+rent block proposers.8 Our results suggest that progress in this direction could reduce
+MEV.
+2. RELATED LITERATURE
+Early scholars of auctions identified a fundamental tension between incentive compat-
+ibility for bidders and credibility for auctioneers Vickrey (1961); Rothkopf et al. (1990),
+more recently formalized in Akbarpour and Li (2018, 2020).
+A common method for
+7See, e.g., https://blog.chain.link/execution-and-parallelism-for-dag-based-bft-consensus/.
+8See https://twitter.com/aeyakovenko/status/1584676110948012032.
+3
+
+PAI, RESNICK, AND FOX
+resolving this tension is to use a trusted third party to oversee the auction.9 Using a
+blockchain as this third party is attractive, since the assumptions required to trust a
+blockchain are weaker than those required to trust an individual Galal and Youssef (2019);
+Blass and Kerschbaum (2018).10
+In online auctions, bids are seldom announced simultaneously, and maintaining the
+seal on bids transmitted through public channels requires cryptography. For example
+a simple cryptographic second-price sealed-bid auction involves bidders submitting the
+hash of their bids rather than the bids themselves and then revealing the hash after all
+bids have been submitted. Ferreira and Weinberg (2020) showed that, using a crypto-
+graphically secure commitment scheme, it is possible to design an auction that is optimal,
+strategy proof and credible, but only when the number of bidders is known in advance.
+More complicated cryptographic approaches can eliminate the need to reveal any infor-
+mation beyond the results of the auction and can accommodate combinatorial auctions
+as well Lee et al. (2001); Elkind and Lipmaa (2004); Suzuki and Yokoo (2003). However,
+these still require that the bidder set is known in advance and struggle to accommodate
+scenarios when bidders may drop and never submit a bid, where blockchains have an
+advantage.
+Auctions commonly cited as use case for the verifiable computation that smart con-
+tracts provide Galal and Youssef (2019); Blass and Kerschbaum (2018).11 Auctions have
+also been suggested as a desirable mechanism for deciding ordering and inclusion of
+transactions to mitigate MEV Kulkarni et al. (2022). Historically, these were decided by
+a combination of auction and speed based mechanisms, leading Daian et al. (2019) to
+compare MEV to high frequency trading as described in Budish et al. (2015). Initially in-
+clusion and priority within the block were decided by priority gas auctions (PGAs), since
+most validators gathered transactions directly from the mempool and ordered them ac-
+cording to their miner tips, breaking ties using a first come first serve rule Daian et al.
+(2020). But recently, a super-majority of validators have switched their execution clients
+to MEV-boost compatible versions meaning the right to decide inclusion and ordering for
+most blocks is sold to the highest bidder. These bidders are typically established builders
+who specialize in extracting the maximum value from each block. The leading advocate
+9For e.g., Vickrey (1961) notes “To prevent the use of a “shill” to jack up the price. . . it would probably
+be desirable to have all bids . . . certified by a trustworthy holder who would then deliver all the bids
+simultaneously to the seller.”
+10Originally envisaged in Szabo (1997), who noted that “. . . a blockchain with a built-in fully fledged Turing-
+complete programming language that can be used to create “contracts” . . . simply by writing up the logic
+in a few lines of code.”
+11See, e.g., https://a16zcrypto.com/hidden-in-plain-sight-a-sneaky-solidity-implementation-
+of-a-sealed-bid-auction/.
+4
+
+CENSORSHIP RESISTANCE IN ON-CHAIN AUCTIONS
+for this approach has been Flashbots, the company behind the initial open source MEV
+client. Their next product SUAVE, aims to move these auctions on-chain Flashbots (2022).
+Prior MEV mitigation research has focused on fairness rather than on censorship Kelkar
+et al. (2020, 2021). But Ferreira and Parkes (2022) showed that for every sequencing rule
+of trades through a liquidity pool, there exists a way for the proposer to obtain non-zero
+risk-free profits suggesting that ordering based MEV is inevitable with current on chain
+financial application design. In response to this, researchers have suggested that Frequent
+Batch Auctions or other order agnostic mechanisms might alleviate the MEV that arises
+from transaction ordering power Johnson et al. (2022).
+On-chain auctions have also been studied as a mechanism for the sale of non-fungible
+tokens (NFTs) Milionis et al. (2022). Gradual dutch auctions (GDAs) Frankie et al. (2022),
+are a dynamic mechanism for selling multiple NFTs. Kulkarni et al. (2023) explores the
+credibility of GDAs, and finds that an auctioneer can bid to artificially raise the sale price
+and create the appearance of demand.
+3. MODEL
+We consider a traditional independent private values setting. There is a single seller
+with a single unit of an indivisible good for sale. There are n + 1 buyers for the good,
+n ≥ 1— we denote the set of bidders by N = {0, 1, . . . , n}. Each of these buyers i ∈ N
+has a private value for the good, vi . We suppose buyer 0’s value v0 is drawn from a
+distribution with CDF F0 and density f, and the other buyers’ values are are drawn i.i.d.
+from a distribution with CDF F and density f. Both distributions have bounded support,
+we normalize these to be equal to the unit interval [0, 1]. Several of our results will be
+for the special case F = F0 = U[0, 1]. Bidders know their own vi; and n, F, and F0 are
+common knowledge among all bidders and the seller.
+The seller wishes to run a sealed-bid second-price auction with reserve price r. As
+described in this introduction, the point of departure of our model is that this auction runs
+on a blockchain. Initially, we consider an auction that accepts bids in a single designated
+designated block. Below we formally define this game and our solution concept.
+In an idealized world with honest/ non-strategic proposers, the auction would run as
+follows:
+(1) The seller announces the auction.
+(2) All buyers privately commit bids to the auction as transactions.
+(3) Proposer(s) include these transactions on relevant block(s).12
+(4) The second-price auction is computed based on the included bids, i.e., the highest
+bid is selected to win if this bid ≥ r, in this case paying a price of max{r, other bids}.
+12We abstract away from issues such as block size constraints/ congestion.
+5
+
+PAI, RESNICK, AND FOX
+In particular, we assume that the idealized sealed-bid nature of off-chain auctions can
+be achieved on-chain via cryptographic methods.13 We also assume that the set of bids
+submitted for the auction are public (the bid itself may be private, but the fact that it exists
+as a bid is public).
+Our main concern is that bids submitted for this auction may be censored, that is, omit-
+ted from a block. More specifically, we suppose that after all other bids are submitted, but
+before they are revealed, a designated bidder, bidder 0, can pay the proposer of the block
+to censor bids. These censored bids are then excluded from the block and have no im-
+pact the auction. We assume that the proposer is purely profit focused and that bidder’s
+utilities are quasilinear.
+Formally, we consider the following game:
+(1) The seller announces second-price sealed-bid auction with reserve price r to be
+conducted over a single block.
+(2) Buyers learn their values vi ← F.
+(3) Buyers 1, . . . , n each simultaneously submit a private bid bi and a public tip ti.
+(4) Buyer 0 observes all the other tips ti and can offer the proposer of the block a take-
+it-or-leave-it-offer of a subset S ⊆ {1, . . . , n} of bidders and a bribe p to exclude
+that subset’s bids. Bidder 0 also submits their own bid b0.
+(5) The proposer accepts or rejects bidder 0’s bribe and constructs the block accord-
+ingly, either including N \ S if he accepts or N otherwise.
+(6) The auction is computed based on the bids included in the block.
+In the next section, we consider the case of auctions over multiple sequential blocks with
+independent proposers, and the case of simultaneous proposers. Those games are vari-
+ants of the game above. We describe them in-line.
+Formally, pure strategies in this game are:
+• For players i ∈ {1, . . . , n}: A tuple of bidding and tipping strategies βi : [0, 1] →
+ℜ+, τi : [0, 1] → ℜ+ for players i ∈ {1, . . . n}, i.e., player i with value vi bids βi(vi)
+and tips τi(vi).
+• For player 0: an offer to the proposer θ0 : ℜn+ × [0, 1] → 2N × ℜ+, and a bid
+function β0 : ℜn+ × [0, 1] → ℜ+, i.e. as a function of tips t = (τ1(v1), . . . , τn(vn))
+and his own value v0, an offer θ0(t, v0) and a bid β0(t, v0).
+• For proposer, given the tips t and offer from player 0, θ0(t, v0), a choice of which
+bids to include.
+Since our game is an extensive-form game of incomplete information, our solution con-
+cept is Perfect Bayes-Nash Equilibrium (PBE). This requires strategies to be mutual best-
+responses as is standard in equilibrium. Additionally, for each player, it requires the
+13This can be practically achieved by submitting the hash of the bid and revealing it later.
+6
+
+CENSORSHIP RESISTANCE IN ON-CHAIN AUCTIONS
+player to have beliefs about unknowns at every information set (on-, and off-, path) at
+which they are called upon to play such that their strategy maximizes their expected util-
+ity given the beliefs and others’ strategies. Beliefs are correct on path (i.e., derived from
+the prior, and Bayesian updating given agents’ strategies), and unrestricted off path.
+Note that the proposer has multiple potential indifferences: e.g. should they include a
+bid with 0 tip? Should they censor a set of bids if bidder 0’s offered bribe exactly equals
+the total tip from that set? We assume that given tips t from bidders {1, . . . , n} and an
+offered from bidder 0 to censor subset S for a bribe of p, the proposer includes the bids
+of N − S if and only if p ≥ ∑i∈S ti, and includes bids from all N otherwise (i.e. we
+are breaking proposer indifferences in favor of bidder 0 so that best responses are well
+defined).
+There are multiple PBEs of the game, driven in part by the fact that there are multiple
+equilibria in a second-price auction (for instance it is an equilibrium in the second price
+auction for one player to bid a high value, and all others to bid 0). However, most of these
+equilibria are in weakly dominated strategies. We therefore focus on the following class
+of equilibria:
+(1) Bidders {1, . . . n} submit a truthful bid, i.e. βi(vi) = vi. Note that this is a weakly
+dominant strategy for them. Further, these bidders use a symmetric tipping func-
+tion τ, i.e., τi(·) = τ(·).
+(2) Bidder 0 bids equal to his value if he believes, given the tips of {1, . . . n}, that there
+is a non-zero probability that he could win the auction, otherwise he bids 0 or does
+not bid.
+In what follows we simply refer to a PBE that satisfies this refinement as an equilibrium
+of the game (with no qualifier). We reiterate that there are multiple PBEs of the original
+game, we are simply restricting attention to these “reasonable” equilibria for tractability.
+4. RESULTS
+Our results are easiest for the case that n=1, i.e., there are two bidders. We present that
+as an illustration before considering the general case.
+4.1. Two Bidder Case
+Suppose there are only two bidders, one “honest” bidder 1 with value drawn according
+to distribution F, and one “colluding” bidder who has the opportunity to collude with the
+proposer, bidder 0, with value drawn independently from distribution F0. We assume that
+F0 satisfies a regularity condition, i.e., that F0(t)/ f0(t) is non-decreasing in t.
+The equilibrium in this case is easy to describe:
+7
+
+PAI, RESNICK, AND FOX
+PROPOSITION 1. The following constitutes an equilibrium of the game with 2 bidders, i.e. N =
+{0, 1}, when the seller announces a second-price auction with a reserve price r = 0:
+• Bidder 1 submits a truthful bid, and his tipping strategy as function of his value v1 is given
+by t1(v1) solves (v1 − t) − F0(t)
+f0(t) = 0.
+• Bidder 0’s strategy as function of the observed tip t1 and his value v0 is given by
+σ0(t1, v0) =
+�
+�
+�
+bribe
+t1 ≤ v0,
+don’t bribe
+t1 > v0.
+where bribe is shorthand for paying t1 to the proposer in exchange for omitting bidder 1’s
+transaction. Further bidder 0 submits a non-zero bid in the auction if and only if he bribes
+the proposer.
+• The proposer accepts bidder 0’s bribe whenever it is offered and omits bidder 1’s bid, other-
+wise the proposer includes both bids.
+Before providing a proof of this result, the following corollary summarizes the outcome
+that results in this equilibrium when F = F0 = Uniform[0, 1]. For comparison, recall that
+in the (standard) second price auction when both buyers have values drawn i.i.d. from
+Uniform[0, 1], the expected revenue is 1/3 and each bidder has an ex ante expected surplus
+of 1/6.
+COROLLARY 1. Bidder 0 wins the object with probability 3
+4, and has an expected surplus of 13
+48,
+while bidder 1 wins the auction with probability 1
+4 and has an expected surplus of 1
+12. The revenue
+to the seller in this auction is 0, and the expected tip revenue to the proposer is 1
+4.
+In short, the proposer collects all of the revenue from this auction, while the seller col-
+lects none. Bidder 0 is substantially advantaged by his ability to see bidder 1’s tip and
+then decide whether to bribe the proposer or not (wins the auction with higher proba-
+bility, collects more of the surplus). Our results for the n > 1 are similarly stark except
+for the fact that the auctioneer collects some positive revenue when n > 1, although this
+revenue rapidly decreases as n increases.
+PROOF. The proof of the proposition is straightforward so we describe it briefly in line.
+First to see that bidder 1 should bid his value (our refinement restricts attention to these)
+note that bidder 1 has two actions, he privately submits a bid b1 and publicly submits
+a tip t. Since bids only matter after inclusion has been decided, which is also after tips
+have been paid, tips are a sunk cost and what remains is simply a second price auction,
+in which truthful bidding is a weakly dominant strategy. Therefore it is (part of) an equi-
+librium for bidder 1 to bid his value.
+8
+
+CENSORSHIP RESISTANCE IN ON-CHAIN AUCTIONS
+Notice that bidder 1 does not benefit from submitting a tip t > v1 since even if he wins,
+he will end up paying more in tips (in addition to possible fees from the auction) than
+he values the item. Knowing this, it is always weakly better for player 0 to pay t to omit
+player 1’s bid when v0 ≥ t. Thus player 0 bribes the proposer if and only if v0 ≥ t. In that
+case player 1’s expected utility as a function of his tip is:
+E[U1(v1, t)] = F0(t) (v1 − t) .
+Taking the derivative with respect to t, and setting it equal to 0, we get, as desired, that
+t1(v1) solves (v1 − t) − F0(t)
+f0(t) = 0.
+Now that we have found a candidate equilibrium, we have some more work to do to
+verify that it is in fact a PBE. Formally, bidder 1’s beliefs at his only information set are
+that v0 ∼ Uniform[0, 1]. By our regularity condition, t1(·) is strictly increasing. Bidder 0’s
+beliefs, conditional on bidder 1’s tip being t1 are given by
+v1 =
+�
+�
+�
+t−1
+1 (t1)
+t1 ≤ t1(1),
+1
+otherwise.
+Notice that the case of t1 > t1(1) is off the equilibrium path. Finally note that Bidder 0’s
+strategy to bribe whenever his value exceeds bidder 1’s tip, and to bid only if he is willing
+to bribe, constitutes a best response. This concludes the proof.
+■
+Notice that even though bids are completely private in this model, because of the trans-
+action inclusion micro-structure, bids are effectively revealed by the tips attached to them.
+This calls into question whether we can conduct sealed bid auctions of any type on chain.
+We can also describe the equilibrium for the case where the seller chooses an auction
+with a reserve price r > 0. For brevity we describe this informally:
+t1(v1) solves (v1 − r − t) f0(r + t) − F0(r + t) = 0 if solution exists,
+t1(v1) = 0 otherwise.
+Our regularity condition implies that there exists v = r + F0(r)
+f0(r) > r such that t1(v1) = 0
+for v ≤ v and strictly increasing for v > v. Bidder 0’s strategy is to bribe and submit a bid
+only if his value v0 > t1 + r where t1 is the observed tip.
+PROPOSITION 2. The following constitutes an equilibrium of the game with 2 bidders, i.e., N =
+{0, 1}, when the seller announces a second-price auction with a reserve price r > 0:
+• Bidder 1 submits a truthful bid, and his tipping strategy as function of his value v1 is given
+by t1(v1) = v1/2 − r whenever v1 > 2r and 0 otherwise.
+9
+
+PAI, RESNICK, AND FOX
+0
+25
+50
+75
+100
+Number of Honest Bidders
+0.0
+0.2
+0.4
+0.6
+Expected Total Tip
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+0.000
+0.025
+0.050
+0.075
+0.100
+0.125
+FIGURE 1. Expected Total Tips and Tipping functions for F =
+F0
+∼
+Uniform[0, 1]
+• Bidder 0’s strategy as function of the observed tip t1 and his value v0 is given by
+σ0(t1, v0) =
+�
+�
+�
+bribe
+t1 + r ≤ v0
+don’t bribe
+o.w.
+where bribe is shorthand for paying t1 to the proposer in exchange for omitting bidder 1’s
+transaction. Further bidder 0 submits a non-zero bid in the auction if and only if he bribes
+the proposer.
+• The proposer accepts bidder 0’s bribe whenever it is offered and omits bidder 1’s bid, other-
+wise the proposer includes both bids.
+Note that while the seller does receive positive revenue in this case, they do not realize
+any “benefit” from running an auction relative to posting a “buy it now” price of r. We
+formalize this in the following corollary:
+COROLLARY 2. Suppose buyer values are i.i.d. Uniform[0, 1]. Assuming r ≤ 1
+2, Bidder 0 wins
+the object with ex-ante probability (1 − r)(1 − (1
+2 − r)2), while bidder 1 wins the object with
+ex-ante probability (1 − 2r)( r
+2 + 1
+4). The expected revenue of the seller is r(1 − r2), which is the
+same as the revenue for posting a “buy it now” price of r. The proposer makes an expected revenue
+of 1
+4(1 − 2r)2.
+Again bidder 0 has a strong advantage in this auction. Tips are no longer perfectly
+revealing, since a non-empty interval of bidder values tip 0, but remain weakly monotone
+in bid and perfectly revealing when strictly positive.
+4.2. Three or more bidders
+We now turn to the case where n ≥ 2, i.e., N = {0, 1, . . . , n}.
+At first the problem of finding an equilibrium may appear intractable since bidder 0’s
+best-response problem is itself complicated: there are 2n possible subsets of {1, . . . , n}
+and the problem of finding the best subset to buy out is therefore non-trivial. The tipping
+10
+
+nElt1
+(n(n- 1)Vi
+Tn m :m 二 2.n = 5(CENSORSHIP RESISTANCE IN ON-CHAIN AUCTIONS
+function of bidders {1, . . . , n} needs to be a best response to this (accounting for how
+changing their tip changes the probability that they are censored given a distribution of
+other tips). Nevertheless, there is an easy to describe equilibrium. In order to construct it,
+the following lemma is useful:
+LEMMA 1. Suppose that the tipping strategy of buyers 1 . . . n is such that t(v) ≤ v/n. Then we
+have that the best response for bidder 0, as a function of his own value v0 and observed vector of
+tips t = (t1 . . . tn) can be described as:
+σ0(v0, t1, . . . , tn) =
+�
+�
+�
+bribe,
+∑n
+i=1 ti ≤ v0
+don’t bribe,
+∑n
+i=1 ti > v0
+where bribe is shorthand for paying the proposer ∑i ti in exchange for omitting all of bidder 1
+through n’s transactions.
+PROOF. To see this note that:
+n
+∑
+i=1
+t(θi) ≤
+n
+∑
+i=1
+θi
+n ≤
+n
+∑
+i=1
+max(θ1, θ2, . . . , θn)
+n
+= max(θ1, θ2, . . . , θn).
+and therefore bribing the proposer and buying out all the bids (and therefore winning the
+object for free in the auction) is more profitable than buying out any subset of the bids and
+possibly losing the auction or having to pay more than the bribes for that subset would
+have cost.
+■
+This lemma is useful because, in equilibrium, the tipping strategy of bidders 1 through
+n will satisfy this property. Bidder 0’s strategy is therefore straightforward (analogous to
+the case N = {0, 1}). We are now in a position to describe equilibrium in this game.
+PROPOSITION 3. The following constitutes an equilibrium of the game with n + 1 bidders,
+N = {0, 1, . . . , n}, and buyer values drawn i.i.d. from Uniform[0, 1] when the seller announces a
+second-price auction with a reserve price r = 0:
+• Bidders 1 through n submit truthful bids, and their tipping strategy as function of their
+value vi is given by:
+t(v) =
+�
+�
+�
+0
+v < v,
+1
+2n (vn − vn)
+o.w.
+(1)
+where v solves
+(n + 1)
+vn
+n(n − 1) −
+vn+1
+(n + 1) −
+1
+n(n + 1) = 0.
+(2)
+11
+
+PAI, RESNICK, AND FOX
+• Bidder 0’s strategy as function of the observed tips t1, . . . , tn and their value v0 is given by
+σ0(v0, t1, . . . , tn) =
+�
+�
+�
+bribe,
+∑n
+i=1 ti ≤ v0
+don’t bribe,
+∑n
+i=1 ti > v0
+where bribe is shorthand for paying ∑i ti to the proposer in exchange for omitting bidder 1
+through n’s transactions. Further bidder 0 submits a truthful non-zero bid in the auction
+if and only if he bribes the proposer.
+• The proposer accepts bidder 0’s bribe whenever it is offered and omits the other bids, other-
+wise the proposer includes all bids.
+It is easy to see that (2) has exactly 1 root in [0, 1] by observing that the left hand side
+is increasing in v on [0, 1], and evaluates to a negative number at v = 0 and a positive
+number for θ = 1. Unfortunately we cannot analytically derive these roots for arbitrary
+n since polynomials of order ≥ 5 don’t have explicit roots (and even for n = 2, 3 these
+are not particularly nice); however, we can use a zero finding algorithm to compute these
+numerically. Results for the uniform case are presented in Figure 1.
+Analytically, we can bound how this root varies with n. Note that the expected total tip
+is nE[t(v)] and substituting in (1) and simplifying via (2), we have that the expected total
+tip =
+vn
+n−1. The following proposition describes the asymptotic behavior of the expected
+total tip:
+PROPOSITION 4. Let v(n) describe the solution to (2) as a function of n. There exists n large
+enough such that for n > n, we have that 1
+n ≤ v(n)n ≤
+1
+√n.
+Proposition 4 is particularly useful when you consider the fact that for large n, by the
+law of large numbers, the total tip concentrates around the expected tip with high proba-
+bility (buyer values are i.i.d. bounded random variables). Further by Proposition 4, this
+is decreasing at rate at least 1/n√n : as n grows, individual bidders are willing to tip
+less. To see why tipping is only profitable when it leads to the bid not being censored and
+winning the auction, but increasing the tip increases the probability of all bids not being
+censored. In short, tips have public goods type properties. Indeed, the rate of tipping
+shrinks fast enough so that the total tip is also decreasing. Therefore bidder 0 wins the
+auction with increasing probability in n, asymptotically tending to 1. Note that the seller
+only receives revenue when there is more than one bidder in the auction (or more gener-
+ally, in the auction with a reserve price r, makes revenue larger than the reserve price)—
+and this happens with vanishing probability as n grows large.
+PROPOSITION 5. As n grows large, the expected revenue of the auction with reserve price r
+reduces asymptotically to the expected revenue of a posted price of r.
+12
+
+CENSORSHIP RESISTANCE IN ON-CHAIN AUCTIONS
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+0.0
+0.5
+1.0
+1.5
+2.0
+2.5
+Beta Distribution PDFs
+0
+20
+40
+60
+80
+100
+Number of Bidders
+0.00
+0.05
+0.10
+0.15
+Expected Total Tip
+FIGURE 2. Expected Total Tips for F0 ∼ Uniform[0, 1], F ∼ Beta(α, β)
+4.3. General Distributions
+It is straightforward to generalize our results to the case where bidders {1, . . . , n} are
+distributed according to some general distribution with density f and CDF F on [0, 1].
+ASSUMPTION 1. We assume throughout that F satisfies � v
+0 Fn−1(θ)dθ ≤ v
+n for all v ∈ [0, 1].
+Formally, we have the following Proposition:
+PROPOSITION 6. The following constitutes an equilibrium of the game with n + 1 bidders, i.e.
+N = {0, 1, . . . , n}, when the seller announces a second-price auction with a reserve price r = 0,
+bidder 0 has a value Uniform[0, 1] and bidders 1 through n have values distributed i.i.d. according
+to a distribution with density f and CDF F satisfying Assumption 1:
+• Bidders 1 through n submit truthful bids, and their tipping strategy as function of their
+value vi is given by:
+t(v) =
+�
+�
+�
+0
+v < v,
+1
+2
+� v
+v Fn−1(θ)dθ
+o.w.
+(3)
+where v solves
+� 1
+0 Fn−1(θ)dθ −
+� 1
+v Fn(θ)dθ = n + 1
+n − 1
+� v
+0 Fn−1(θ)dθ.
+(4)
+• Bidder 0’s strategy as function of the observed tips t1, . . . , tn and their value v0 is given by
+σ0(v0, t1, . . . , tn) =
+�
+�
+�
+bribe,
+∑n
+i=1 ti ≤ v0
+don’t bribe,
+∑n
+i=1 ti > v0
+where bribe is shorthand for paying ∑i ti to the proposer in exchange for omitting bidder 1
+through n’s transactions. Further bidder 0 submits a truthful non-zero bid in the auction
+if and only if he bribes the proposer.
+13
+
+α = 0.5, β = 0.5α = 5.0, β = 1.0α = 1.0, β = 3.02.0. B = 2.0
+α二2.0. B = 5.0
+α二α = 0.5, β = 0.5α = 5.0, β = 1.0α = 1.0, β = 3.02.0. B = 2.0
+α二2.0. B = 5.0
+α二PAI, RESNICK, AND FOX
+• The proposer accepts bidder 0’s bribe whenever it is offered and omits the other bids, other-
+wise the proposer includes all bids.
+This proposition allows us to numerically solve for tipping behavior in this auction.
+Using the flexible Beta distribution for a range of parameters, we compute nE[t] as a
+function of n in Figure 2.
+Analytical results for the case where bidder 0’s value is distributed non-uniformly ap-
+pear out of reach. To see why—for bidders 1 through n, part of the payoff of increasing
+their tip is increasing the probability that bidder 0 chooses not to buy them out. When
+bidder 0’s value is distributed uniformly, the increase in probability is constant and inde-
+pendent of others’ tips (which from the perspective of the bidder is a random variable).
+This simplifies the optimality condition and makes it analytically tractable. Nevertheless,
+the intuition above suggests that our qualitative results (seller expected revenue drops
+to close to the posted price, tips do not offer much “protection” due to the public goods
+nature of tips suggests, bidder 0 has a strong advantage in the auction) carry over to this
+case as well.
+5. RESTORING AUCTION CREDIBILITY
+We now discuss possible design choices to restore auction credibility, so that an auction
+can be run on chain with the desired results.
+5.1. Auction over Multiple Blocks
+The source of the popularly stylized eventual censorship resistance of blockchains, a.k.a
+liveness, is that even though a single proposer is the “monopolist” over one block, over
+a longer period, multiple proposers get a chance to make a block. In order for a specific
+transaction to be censored, multiple proposers will have to be incentivized to exclude it.
+Motivated by this, we now investigate whether running the auction over multiple blocks
+restores the desired behavior.
+Formally we consider the following dynamic game corresponding to an auction being
+run over m blocks. We assume that each of these blocks is produced by an independent
+proposer.14
+(1) Period 0: Bidders learn their values vi. Bidders 1, . . . , n each submit simultane-
+ously a private bid bi and a public tip ti.
+(2) Period j for j in 1 to k: Bidder 0 observes which bids from 1, . . . n have not been
+included in a block in periods 1 to j − 1. They offer Proposer j a take-it-or-leave-it-
+offer of a subset Sj of the unincluded bids and a payment pj to exclude that subset.
+14In practice, an majority of blocks on major blockchains is produced by one of a small oligopoly of pro-
+posers. We discuss the implications of this in the sequel.
+14
+
+CENSORSHIP RESISTANCE IN ON-CHAIN AUCTIONS
+The proposer j observes the tips and the offer from Bidder 0 and decides which
+bids if any to include.
+(3) Period m + 1: The seller’s auction is run on blocks produced in periods 1 to m.
+If a transaction is included in period j, it is removed from the set of bids in the mempool,
+its tip is attributed to proposer j where j is the block it was included in, it is included in
+the auction, and it cannot be included in subsequent blocks.
+Note that the game we describe is a natural extension of the previous game to the case
+of an auction over m > 1 blocks. In particular, it reduces to the original game for the case
+of m = 1. We consider the same refinement as before, which applies to this game in a
+similar fashion.
+Note that there are two possible sources of additional security in this auction. The first
+is mechanical: in order to censor a transaction, intuitively, bidder 0 has to bribe m pro-
+posers, which is more expensive for a given tip. The second is that the marginal returns
+to a tip have increased (increasing a tip by q increases the cost to censor for bidder 0 by
+mq, and decreases the probability they can afford it correspondingly).
+In our results, we show that the latter effect is null. In particular, we show that for
+m < n, the tipping behavior of bidders 1, . . . n stays unaffected.
+Formally, we have the following result:
+PROPOSITION 7. Suppose buyers 1 to n have values drawn i.i.d. U[0, 1] and buyer 0 has value
+drawn i.i.d. U[0, κ] for κ > m. The following constitutes an equilibrium of the game with n + 1
+bidders, i.e. N = {0, 1, . . . , n}, when the seller announces a second-price auction with a reserve
+price r = 0 to be run over m blocks for m < n: Bidders 1 through n and the proposers have the
+same strategy as in Proposition 3.
+Bidder 0’s strategy as function of the observed tips t1, . . . , tn and his value v0 is given by
+σ0(v0, t1, . . . , tn) =
+�
+�
+�
+bribe,
+m ∑n
+i=1 ti ≤ v0,
+don’t bribe,
+otherwise,
+Before we proceed, we comment on the assumption that bidder 0’s value is distributed
+U[0, κ]. Suppose bidder 0 is distributed U[0, 1], but bidders 1 to n tip as in Proposition 3.
+Note that with positive probability the total tip could exceed 1 when m > 1. Therefore,
+given bidders 2 to n follow the tipping strategy of Proposition 3, bidder 1 will have incen-
+tives to shade their tip relative to t(·). After all, the marginal value of a tips depends on
+the how they increase the probability of not being censored. From the Proof of 3, in the
+case of m = 1, increasing one’s tip on the margin always increases the probability that the
+bids are not censored, because the total tip is strictly smaller than 1 with probability 1 on
+path. Intuitively, therefore if bidder 0 is distributed U[0, 1], and the auction is conducted
+over m > 1 blocks, the equilibrium tipping strategy for bidders 1 to n is weakly lower
+15
+
+PAI, RESNICK, AND FOX
+than the corresponding tipping strategy for m = 1 (Proposition 3). This can be shown
+numerically, but is out of reach analytically.
+Note that we had already shown that expected total tip of n bidders was smaller than
+1/n3/2. Therefore, the probability that bidder 0 does not censor the remaining bids col-
+lapses to 0 as n grows large, as long as m grows sublinearly with n. To see that we had
+already shown that expected total tip of n bidders was smaller than 1/n3/2. Therefore m
+times this for m < n still grows smaller than 1/√n.
+Put differently, guaranteeing the auction outcome is “as desired” requires m > n. This
+comes with its own costs: for example, the auction would have to remain open for a
+relatively long time which may be undesirable, particularly for financial applications.
+5.2. Multiple Concurrent Block Proposers
+Depending on the number of bidders and the time constraints inherent to the specific
+auction application, it may not be feasible to hold the auction for long enough to achieve
+the desired censorship resistance level.
+A different solution we now consider would be to allow more than one proposer within
+a single slot. Formally, we now consider k concurrent block proposers (by analogy to
+our previous section where we considered k sequential block producers). The seller an-
+nounces an auction which will execute within the single slot, i.e. the bids included on at
+least one of the k concurrent produced blocks will be included in the auction.
+In view of the concurrency, we allow bidders to submit conditional tips, which depend
+on the number of proposers who include the transaction. For simplicity, we consider a
+twin tip, i.e., each bidder submits a conditional tip of the form (t, T), where T is paid
+if only a single proposer includes bidder 1’s transaction and t is paid if more than one
+proposer includes the transaction. After the honest bidder observes v1 and submits his
+private bid b1 and public tip (t, T), the bribing bidder submits a bribe to each proposer.
+Formally, we first consider the following game:
+(1) Seller announces second-price sealed-bid auction with reserve price r to be con-
+ducted over a single slot.
+(2) Buyers learn their values vi ∼ F.
+(3) Buyers 1, . . . , n each submit simultaneously a private bid bi and a public tip ti, Ti.
+(4) Buyer 0 observes all the other tips ti, Ti and simultaneously offers each proposer a
+take-it-or-leave-it-offer of a subset S ⊆ {1, . . . , n} of bidders and a payment p to
+exclude that subset’s bids. Bidder 0 also submits his own bid b0.
+(5) Each Proposer simultaneously accepts or rejects bidder 0’s offer and constructs the
+block accordingly i.e., either containing bids of set N \ S or N.
+16
+
+CENSORSHIP RESISTANCE IN ON-CHAIN AUCTIONS
+(6) The auction is computed based on the union of the bids included in all blocks, tips
+are paid based on the inclusion behavior.
+As before we focus our attention on equilibria where Bidders {1, . . . , n} bid truthfully
+in the auction. Note that each proposer, in choosing whether to censor a transaction,
+needs to reason about the behavior of other proposers since that potentially affects their
+tip if they include the transaction.
+PROPOSITION 8. Consider the Multiple Concurrent Block Proposer game, with m proposers and
+n = 1 honest bidder, i.e., N = {0, 1}, with bidder i’s value drawn from a distribution with CDF
+Fi and PDF fi.
+This game has an equilibrium where the outcome of the auction is the same as a standard second
+price auction without a censorship step and where the expected tip by each bidder to each proposer
+is t.
+In particular, bidders 1’s tipping strategy in equilibrium is given by:
+t1(v1) = 0,
+T1(v1) = 1
+(5)
+Bidder 0’s offer strategy to the proposer based on their own value v0 and the observed tips (t, T) is
+z0(t, T, v0) =
+�
+�
+�
+0
+C(v0) < mT
+T
+C(v0) ≥ mT.
+(6)
+Here C(v0) is buyer 0’s net value to censoring bidder 1’s bid (i.e., the difference their profit
+from censoring the competing bid and winning in the auction for free (v0); and their expected
+surplus from competing with bidder 1 in the auction). Finally, the proposer’s strategies are to
+censor transactions with the following probabilities:
+p(z, t, T) =
+�
+�
+�
+�
+�
+�
+�
+�
+�
+0
+z < t
+� z−t
+T−t
+�
+1
+m−1
+t ≤ z < T
+1
+z ≥ T
+(7)
+The above proposition may admittedly appear a little dense. We provide the following
+corollary regarding (on-path) equilibrium behavior.
+COROLLARY 3. Consider the equilibrium proposed in Proposition 8 for any m ≥ 2. On path,
+bidder 0 does not bribe the proposers and instead competes in the second-price auction. All bidders
+pay 0 in tips on path. Equilibrium tips do not reveal bids.
+Further, a careful study of the proof of Proposition 8 shows that the Corollary con-
+tinues to hold even when n > 1. Therefore even 2 concurrent block proposers restore
+the “desired” outcome relative to a single block proposer system. This is partly driven
+17
+
+PAI, RESNICK, AND FOX
+by concurrency of block proposers which removes the “monopoly” that they have over
+transaction inclusion, and partly by the conditional tip. The conditional tip allows bidder
+1 to get security via a high-tip offer conditional on inclusion by only a single proposer.
+This high tip offer makes it very expensive for bidder 0 to attempt censor bidder 1’s bid
+since they would need to pay m times the high tip to censor the bid by all m producers.
+Therefore, no bribe is offered. Further, this tip never needs to be paid, since both pro-
+posers find it weakly dominant to include the bid and pick up the low tip.15 As an aside,
+note that this also restores equilibrium bid privacy, since tips no longer reveal bids.
+6. DISCUSSION
+Our results suggest that single proposer blockchains are not ideal for holding time sen-
+sitive auctions when the number of potential bidders is large. In our results, collusion
+arrangements are extremely profitable for the colluding bidder but only marginally prof-
+itable for the proposer. However, this is because we restrict the model to have one po-
+tential colluding bidder who can bribe the proposer. In reality, there are many possible
+colluding bidders, and only one proposer in each slot, the proposer could end up charg-
+ing for the right to collude and extract a significant portion of the value that the colluding
+bidder gains from the arrangement. In fact, the predominant block building system, MEV-
+boost, can be thought of as a direct channel through which the proposer can sell the right
+to censor transactions to the highest bidder. This suggests that one driver of MEV is the
+proposer’s right to determine inclusion. Previous work has focused on a different source:
+the proposer’s right to order transactions within a block. From the position that proposer
+ordering power is the source, order agnostic mechanisms should solve MEV. But if cen-
+sorship power is the source, these order agnostic mechanisms, including the second price
+auction we study here, could be just as susceptible to value extraction.
+Another proposed source for MEV is the public nature of transactions in the mempool.
+The argument is, transactions in the mempool are sitting ducks, waiting to be front-ran.
+It follows that, if transactions are encrypted while in the mempool, they will be less sus-
+ceptible to MEV. But our results demonstrate that even when bids in the auction are en-
+crypted, public tips may reveal private bids.
+6.1. Future Directions
+From a theoretical perspective, this work leaves open questions of how censorship in
+on chain auctions might effect the equilibria of auctions with different assumptions about
+15Note that t = 0 supports alternative asymmetric equilibria in the inclusion subgame where only a single
+proposer includes the transaction. In the broader game, these would correspond to the equilibria in the
+single proposer cases where T substitutes for the old single dimensional tip. However, when t is bounded
+away from 0, these equilibria disappear, since it is now strictly dominant for the proposer to include the bid
+in the inclusion subgame.
+18
+
+CENSORSHIP RESISTANCE IN ON-CHAIN AUCTIONS
+bidder valuations. For example a natural extension to our results would be to consider
+honest bidders with interdependent or common values. This may be a better model for
+on chain order flow auctions and collateral liquidation auctions.
+Our results are based on the assumption that a single bidder has been selected as the
+colluding bidder in advance, but an assumption that would track more closely to the
+realities of MEV-boost would be to have the right to collude be auctioned off after bids
+have been submitted. If the right to collude is auctioned off before the bids are submitted,
+then our results would still hold, since our result would simply be a subgame of the
+larger game being considered, and the result would be that proposers end up with a
+larger share of their monopoly rents; however, when the right to collude is auctioned off
+after transactions have been submitted, and therefore after bidders discover their types,
+the players who are willing to pay to collude are more often those who value the item
+more. This could warp the equilibrium slightly.
+Outside of mechanism design, this work provides a strong theoretical justification for
+investigating multiple concurrent block proposer based consensus frameworks as a tool
+for MEV mitigation. Specifically, we identify conditional tipping as a powerful tool to
+combat censorship in situations where there are more than one block proposer.
+Another potential tool for combating censorship on chain, that we have not discussed,
+is a data availability layer. Instead of being submitted to a blockchain directly, bids could
+be submitted to a data availability layer, nodes could then compute the results of the auc-
+tion based on whichever transactions were included on the data availability layer. This is
+similar to holding the auction directly on chain except that the nodes tasked with curating
+a data availability layer do not necessarily need to participate in consensus. The require-
+ments for a data availability layer are weaker than those required for a full blockchain
+so it may be easier to integrate multiple proposer architecture on data availability layers
+than on blockchains themselves.
+19
+
+PAI, RESNICK, AND FOX
+REFERENCES
+Akbarpour, Mohammad and Shengwu Li, “Credible Mechanisms.,” in “EC” 2018, p. 371.
+and
+, “Credible auctions: A trilemma,” Econometrica, 2020, 88 (2), 425–467.
+Blass, Erik-Oliver and Florian Kerschbaum, “Strain: A secure auction for blockchains,”
+in “European Symposium on Research in Computer Security” Springer 2018, pp. 87–
+110.
+Budish, Eric, Peter Cramton, and John Shim, “The high-frequency trading arms race:
+Frequent batch auctions as a market design response,” The Quarterly Journal of Econom-
+ics, 2015, 130 (4), 1547–1621.
+Daian, Philip, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov,
+Lorenz Breidenbach, and Ari Juels, “Flash Boys 2.0: Frontrunning, Transaction Re-
+ordering, and Consensus Instability in Decentralized Exchanges,” 2019.
+,
+,
+,
+,
+,
+,
+, and
+, “Flash boys 2.0:
+Frontrunning in decentralized exchanges, miner extractable value, and consensus in-
+stability,” in “2020 IEEE Symposium on Security and Privacy (SP)” IEEE 2020, pp. 910–
+927.
+Elkind, Edith and Helger Lipmaa, “Interleaving cryptography and mechanism design:
+The case of online auctions,” in “Financial Cryptography: 8th International Conference,
+FC 2004, Key West, FL, USA, February 9-12, 2004. Revised Papers 8” Springer 2004,
+pp. 117–131.
+Ferreira, Matheus VX and David C Parkes, “Credible Decentralized Exchange Design
+via Verifiable Sequencing Rules,” arXiv preprint arXiv:2209.15569, 2022.
+and S Matthew Weinberg, “Credible, truthful, and two-round (optimal) auctions
+via cryptographic commitments,” in “Proceedings of the 21st ACM Conference on Eco-
+nomics and Computation” 2020, pp. 683–712.
+Flashbots, “The future of MeV is suave: Flashbots,” Nov 2022.
+Frankie, Dan Robinson, Dave White, and andy8052, “Gradual Dutch Auctions,” Apr
+2022.
+Galal, Hisham S and Amr M Youssef, “Verifiable sealed-bid auction on the ethereum
+blockchain,” in “Financial Cryptography and Data Security: FC 2018 International
+Workshops, BITCOIN, VOTING, and WTSC, Nieuwpoort, Curaçao, March 2, 2018, Re-
+vised Selected Papers 22” Springer 2019, pp. 265–278.
+Johnson, Nicholas AG, Theo Diamandis, Alex Evans, Henry de Valence, and Guillermo
+Angeris, “Concave Pro-rata Games,” 2022.
+Kelkar, Mahimna, Fan Zhang, Steven Goldfeder, and Ari Juels, “Order-fairness for
+byzantine consensus,” in “Annual International Cryptology Conference” Springer
+2020, pp. 451–480.
+20
+
+CENSORSHIP RESISTANCE IN ON-CHAIN AUCTIONS
+, Soubhik Deb, Sishan Long, Ari Juels, and Sreeram Kannan, “Themis: Fast,
+strong order-fairness in byzantine consensus,” Cryptology ePrint Archive, 2021.
+Kulkarni, Kshitij, Matheus VX Ferreira, and Tarun Chitra, “Credibility and Incentives
+in Gradual Dutch Auctions,” arXiv, 2023.
+, Theo Diamandis, and Tarun Chitra, “Towards a theory of maximal extractable
+value i: Constant function market makers,” arXiv preprint arXiv:2207.11835, 2022.
+Lee, Byoungcheon, Kwangjo Kim, and Joongsoo Ma, “Efficient public auction with one-
+time registration and public verifiability,” in “Progress in Cryptology—INDOCRYPT
+2001: Second International Conference on Cryptology in India Chennai, India, Decem-
+ber 16–20, 2001 Proceedings 2” Springer 2001, pp. 162–174.
+Milionis, Jason, Dean Hirsch, Andy Arditi, and Pranav Garimidi, “A Framework for
+Single-Item NFT Auction Mechanism Design,” in “Proceedings of the 2022 ACM CCS
+Workshop on Decentralized Finance and Security” 2022, pp. 31–38.
+Rothkopf, Michael H, Thomas J Teisberg, and Edward P Kahn, “Why are Vickrey auc-
+tions rare?,” Journal of Political Economy, 1990, 98 (1), 94–109.
+Suzuki, Koutarou and Makoto Yokoo, “Secure generalized vickrey auction using homo-
+morphic encryption,” in “Financial Cryptography: 7th International Conference, FC
+2003, Guadeloupe, French West Indies, January 27-30, 2003. Revised Papers 7” Springer
+2003, pp. 239–249.
+Szabo, Nick, “Formalizing and securing relationships on public networks,” First monday,
+1997.
+Vickrey, William, “Counterspeculation, auctions, and competitive sealed tenders,” The
+Journal of finance, 1961, 16 (1), 8–37.
+21
+
+PAI, RESNICK, AND FOX
+7. OMITTED PROOFS
+7.1. Proof of Proposition 3
+PROOF. We first need consider the tipping strategy t(v). To do this we first work out the
+expected utility for player 1 when all other n − 1 “honest” bidders are bidding according
+to t(·) and bidder 0 is following the strategy above, i.e., censoring all the bids whenever
+the total tip doesn’t exceed their value:
+U(v, t) =
+� v
+0 . . .
+� v
+0
+�
+F0(
+n
+∑
+j=2
+t(vj) + t)(v − max(vj))
+�
+dv2 . . . dvn
+(8)
+− tE
+�
+F0(
+n
+∑
+j=2
+t(vj) + t)
+�
+.
+Here the first term is expected profit of the buyer in the auction, and the second term is
+the expected cost of the tip: tip times the probability that the bid is not censored and the
+tip is therefore charged. Note that since the buyer 0’s value is distributed uniformly, so
+F0(∑n
+j=2 t(vj) + t) = ∑n
+j=2 t(vj) + t.16
+=⇒ U(v, t) =
+� v
+0 . . .
+� v
+0
+�
+(
+n
+∑
+j=2
+t(vj) + t)(v − max(vj))
+�
+dv2 . . . dvn
+− tE
+�
+(
+n
+∑
+j=2
+t(vj) + t)
+�
+.
+Differentiating with respect to t
+∂U(v, t)
+∂t
+=
+� v
+0 . . .
+� v
+0
+�(v − max(vj))
+�
+dv2 . . . dvn − E
+�
+(
+n
+∑
+j=2
+t(vj))
+�
+− 2t.
+Therefore optimality implies that t(v) must solve:
+=⇒ vn
+n − E
+�
+(
+n
+∑
+j=2
+t(vj))
+�
+− 2t(v) ≤ 0.
+with the inequality binding when t(v) > 0.
+Let us denote E[t(vj)] by c.
+=⇒ vn
+n − (n − 1)c − 2t = 0.
+16Formally, this is only true as long as ∑n
+j=2 t(vj) + t < 1, but our solution will be such that ∑n
+1 t(vi) ≤ 1 for
+any profile of values i.
+22
+
+CENSORSHIP RESISTANCE IN ON-CHAIN AUCTIONS
+Therefore we have that:
+t(v) =
+�
+�
+�
+0
+v < v,
+1
+2
+�
+vn
+n − (n − 1)c
+�
+o.w.
+where v = ((n2 − n)c)1/n. Finally, since E[t(vj)] = c, it must be that
+� 1
+v
+1
+2
+�vn
+n − (n − 1)c
+�
+dv = c,
+=⇒
+1
+n(n + 1)(1 − vn+1) − (n − 1)c(1 − v) = 2c.
+Putting together we have that
+vn+1
+n(n + 1) + (n + 1)c − (n − 1)cv =
+1
+n(n + 1).
+(9)
+Recall that v = ((n2 − n)c)1/n =⇒ c =
+vn
+n(n−1). Substituting this into (9) we have
+vn+1
+n(n + 1) + (n + 1)
+vn
+n(n − 1) − (n − 1).
+vn
+n(n − 1).v =
+1
+n(n + 1).
+=⇒ (n + 1)
+vn
+n(n − 1) −
+vn+1
+(n + 1) −
+1
+n(n + 1) = 0,
+(10)
+as desired.
+Further by observation, we have that the assumption of Lemma 1 is satisfied, i.e., t(v) ≤
+v
+n and therefore we have from Lemma 1 that Bidder 0’s bribing strategy is a best response
+to these tips.
+■
+As an aside, we note that the the first step in the proof, i.e. noting that F0(∑n
+j=2 t(vj) +
+t) = ∑n
+j=2 t(vj) + t under the uniform distribution, allows to make the E[F0(∑n
+j=2 t(vj) +
+t)] in the first expression analytically tractable. This is the reason we are unable to gener-
+alize beyond the uniform distribution for bidder 0
+7.2. Proof of Proposition 4
+First suppose vn = 1/√n. Substituting in to the left hand side of (10), we have
+n + 1
+n(n − 1)√n −
+1
+(n + 1)(√n)
+n+1
+n
+−
+1
+n(n + 1).
+Note that the first term is O(1/n3/2), and the latter two terms are smaller. So the left hand
+side is always positive.
+Therefore we have that vn ≤
+1
+√n (since the left hand side of (10) goes from negative to
+positive and is 0 at the unique root).
+This in turn implies that nc ≤
+1
+(n−1)√n.
+23
+
+PAI, RESNICK, AND FOX
+By a similar argument we can argue that vn > 1/n. To see this, note that substituting
+into left hand side of (10), we have
+n + 1
+n2(n − 1) −
+1
+(n + 1)(n)
+n+1
+n
+−
+1
+n(n + 1),
+=(n + 1)2 − n(n − 1)
+n2(n − 1)(n + 1)
+−
+1
+(n + 1)(n)
+n+1
+n
+,
+=
+3n + 1
+n2(n − 1)(n + 1) −
+1
+(n + 1)(n)
+n+1
+n
+.
+Note that the first term is O(1/n3), while the second term is ≈ O(1/n2), so for n large this
+will be negative.
+7.3. Proof of Proposition 5
+Repeating the calculation of the proof of Proposition 3, we have that a bidder of value
+v’ indirect utility from a tip of t given all other n − 1 bidders tip according to t(·) is given
+by
+U(v, t) =
+� v
+r . . .
+� v
+r
+�
+P0(v0 < r +
+n
+∑
+j=2
+t(vj) + t)(v − max(vj))
+�
+dv2 . . . dvn
++ P0(v0 < r + t)rn−1(v − r) − tE
+�
+F0(r +
+n
+∑
+j=2
+t(vj) + t)
+�
+t.
+Again, the buyer 0’s value is distributed uniformly, so F0(r + ∑n
+j=2 t(vj) + t) = r + ∑n
+j=2 t(vj) +
+t.
+=⇒ U(v, t) =
+� v
+r . . .
+� v
+r
+�
+(r +
+n
+∑
+j=2
+t(vj) + t)(v − max(vj))
+�
+dv2 . . . dvn
++ (r + t)rn−1(v − r) − tE
+�
+(r +
+n
+∑
+j=2
+t(vj) + t)
+�
+.
+Differentiating with respect to t, we have
+∂U(v, t)
+∂t
+� v
+r . . .
+� v
+r
+�(v − max(vj))
+�
+dv2 . . . dvn + rn−1(v − r) − E
+�
+r + (
+n
+∑
+j=2
+t(vj))
+�
+− 2t.
+The first two terms are just the interim expected surplus of a bidder with value v in a
+second price auction with n bidders and reserve price r, which by revenue equivalence is
+the integral of the allocation of lower types, i.e.,
+� v
+r . . .
+� v
+r
+�(v − max(vj))
+�
+dv2 . . . dvn + rn−1(v − r)
+24
+
+CENSORSHIP RESISTANCE IN ON-CHAIN AUCTIONS
+=
+� v
+r θn−1dθ,
+=vn
+n − rn
+n .
+Therefore, substituting back in, optimality of t(·) requires that
+vn
+n − rn
+n − r − E
+�
+n
+∑
+j=2
+t(vj)
+�
+− 2t(v) ≤ 0,
+with equality whenever t(v) > 0. Therefore we have that:
+t(v) =
+�
+�
+�
+1
+2
+�
+vn
+n − (n − 1)cr − (r + rn
+n )
+�
+v ≥ (n((n − 1)cr + (r + rn
+n ))1/n
+0
+otherwise
+where cr = E[t(v)].
+Therefore we have t(v) =
+1
+2
+�
+vn
+n − (n − 1)cr − (r + rn
+n )
+�
+when v > v and 0 otherwise.
+Recall that when r = 0, t(v) = 1
+2
+�
+vn
+n − (n − 1)c
+�
+. Therefore cr < c and (n − 1)cr − (r +
+rn
+n ) > n − 1c.
+Therefore the equilibrium tipping function t(v) when r > 0 are first order stochastically
+dominated by the tipping function when r = 0. We already showed in Proposition 4 that
+the tipping function when r = 0 as a function of n implies that total tips collapse to 0
+at a super-linear rate. Therefore that continues to be the case here, and the Proposition
+follows.
+7.4. Proof of Proposition 6
+Repeating the calculation of the Proof of Proposition 3 but assuming that the bidders
+are now distributed according to some distribution F, an taking first order conditions, we
+must have that
+� v
+0 Fn−1(v)dv − c − 2t(v) ≤ 0
+with it binding whenever t(v) > 0.
+So we must have:
+t(θ) =
+�
+�
+�
+0
+v ≤ v
+1
+2
+�� v
+0 Fn−1(v)dv − (n − 1)c
+�
+o.w.
+where c, v jointly solve
+� v
+0 Fn−1(v)dv = (n − 1)c,
+25
+
+PAI, RESNICK, AND FOX
+� 1
+0 t(v)dF(v) = c.
+Note that the latter equation can be written as:
+� 1
+v
+1
+2
+�� v
+0 Fn−1(v)dv − (n − 1)c
+�
+dF(v) = c
+=⇒
+� 1
+v
+�� v
+0 Fn−1(v)dv − (n − 1)c
+�
+dF(v) = 2c,
+=⇒
+� 1
+v
+�� v
+0 Fn−1(v)dv
+�
+dF(v) = (2 + (n − 1)(1 − F(v))) c,
+writing � v
+0 Fn−1(v)dv = S(v) and doing integration by parts
+=⇒ S(1) − S(v)F(v) −
+� 1
+v Fn(v)dv = (2 + (n − 1)(1 − F(v))) S(v)
+n − 1,
+=⇒ S(1) −
+� 1
+v Fn(v)dv = n + 1
+n − 1S(v),
+as desired.
+Note that under Assumption 1, 1, this implies that the assumption of Lemma 1 con-
+tinues to be satisfied, i.e., t(v) ≤ v
+n and therefore we have from Lemma 1 that Bidder 0’s
+bribing strategy is a best response to these tips.
+7.5. Proof of Proposition 7
+The proof follows from the Proof of Proposition 3. To see this, note that if bidder 0 is
+distributed U[0, κ], given the conjectured strategies of 1 to n, we have the total tip is al-
+ways smaller than the highest possible value of bidder 0. Therefore the proof continues to
+hold as written: bidder 0 being distributed U[0, κ] changes (8) by a multiplicative constant
+1
+κ, and therefore this does not affect the optimization.
+7.6. Proof of Proposition 8
+PROOF. We proceed by backward induction. First consider the subgame where tips (t, T),
+and bribe z have already been offered. Given that all other proposers are censoring with
+probability p. The expected utility for proposer i as a function of censoring probability pi
+is given by:
+piz + (1 − pi)(pm−1)T + (1 − pi)(1 − pm−1)t.
+Differentiating this with respect to pi we have
+z − pm−1T − t + pm−1t.
+26
+
+CENSORSHIP RESISTANCE IN ON-CHAIN AUCTIONS
+Therefore for a symmetric mixed equilibrium of the subgame it must be that
+0 = z − t − (T − t)pm−1
+=⇒ p =
+� z − t
+T − t
+�
+1
+m−1
+Given this, the probability of successfully censoring the bid for a given bribe z ∈ [t, T] is
+pm =
+� z − t
+T − t
+�
+m
+m−1
+If the value of censorship to the bribing bidder is C relative to the no censorship case, then
+the expected utility of the bribing bidder relative to the no censorship case as a function
+of z is
+Cpm − mzp = C
+� z − t
+T − t
+�
+m
+m−1
+− mz
+� z − t
+T − t
+�
+1
+m−1
+Define u ≡
+1
+T−t
+1/m−1, and q ≡ z − t. Substituting in to the latter expression, we have
+umCq
+m
+m−1 − u
+�
+mtq
+1
+m−1 + mq
+m
+m−1
+�
+Note that this is convex in q, and therefore the solution is to either tip t (which effectively
+is the same as tip 0), or tip T. Finally, note that C ≤ v0 by definition.
+Given this, the strategy of (t, T) = (0, 1) is a best response for bidder 1 since it will
+result in bidder 0 offering a bribe of 0.
+■
+27
+
diff --git a/RtFQT4oBgHgl3EQfazZ8/content/tmp_files/load_file.txt b/RtFQT4oBgHgl3EQfazZ8/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..6349a396be1462f4837897a705b5fafb9ced2d3e
--- /dev/null
+++ b/RtFQT4oBgHgl3EQfazZ8/content/tmp_files/load_file.txt
@@ -0,0 +1,844 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf,len=843
+page_content='CENSORSHIP RESISTANCE IN ON-CHAIN AUCTIONS MALLESH M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' PAIA r⃝, MAX RESNICKB r⃝, AND ELIJAH FOXC ABSTRACT: Smart contracts offer a way to credibly commit to a mechanism, as long as it can be expressed as an easily computable mapping from inputs, in the form of transactions on-chain, to outputs: allocations and payments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' But proposers de- cide which transactions to include, allowing them to manipulate these mechanisms and extract temporary monopoly rents known as MEV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Motivated by both general interest in running auctions on-chain, and current proposals to conduct MEV auc- tions on-chain, we study how these manipulations effect the equilibria of auctions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Formally, we consider an independent private value auction where bidders si- multaneously submit private bids, and public tips, that are paid to the proposer upon inclusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' A single additional bidder may bribe the proposer to omit com- peting bids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' We show that even if bids are completely sealed, tips reveal bids in equilibrium, which suggests that encrypting bids may not prevent manipulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Further, we show that collusion at the transaction inclusion step is extremely profitable for the colluding bidder: as the number of bidders increases, the probability that the win- ner is not colluding and the economic efficiency of the auction both decrease faster than 1/n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Running the auction over multiple blocks, each with a different proposer, alleviates the problem only if the number of blocks is larger than the number of bidders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' We argue that blockchains with more than one concurrent proposer can credibly execute auctions on chain, as long as tips can be conditioned on the num- ber of proposers that include the transaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' KEYWORDS: auctions, blockchain, MEV, on-chain, censorship JEL CLASSIFICATION: D82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' ADEPARTMENT OF ECONOMICS, RICE UNIVERSITYMALLESH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='PAI@RICE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='EDU BRISK HARBOR MAX@RISKHARBOR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='COM BDUALITY LABS ELIJAH@DUALITY.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='XYZ FEBRUARY 1, 2023 Pai gratefully acknolwedges support from the NSF (CCF-1763349).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='13321v1 [econ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='TH] 30 Jan 2023 CENSORSHIP RESISTANCE IN ON-CHAIN AUCTIONS 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' INTRODUCTION This paper considers the problem of running an auction via a smart contract on-chain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' From an academic perspective, smart contracts provide tools to ensure credible commitment to a mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' By encoding the underlying mechanism in a smart contract, the princi- pal can commit to the rules, and the underlying blockchain will faithfully execute them as written.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' However, modern blockchains are typically leader driven.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' By this, we mean that they select a rotating proposer who has absolute power over which transactions are included in each slot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Since smart contracts can only compute based on transactions that make it onto the chain, these proposers can manipulate the outcome of on-chain mecha- nisms by censoring some of their inputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' This leads to the general question of whether economically valuable mechanisms, such as auctions, are manipulable by the proposer, and how these manipulations can warp the outcomes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' A reason to study auctions specifically, as opposed to general mechanisms, is driven by recent interest in auctions as a solution to Miner Extractable Value (MEV), a form of value extraction similar to high frequency trading in traditional finance Daian et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='1 MEV arises from the proposer’s power to include and order transactions in any way they see fit, which gives them a source of temporary monopoly rents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Flashbots estimates that over 600 million USD of MEV has been extracted on Ethereum since 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='2 One proposed solution has been to auction off the right to be the proposer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' For example, MEV-boost, the mechanism responsible for deciding the contents of more than 4 out of every 5 new Ethereum blocks,3 is effectively a sealed-bid first-price auction for the right to decide the content of a block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' The creators of MEV-boost, Flashbots, have announced plans to move this process on-chain Flashbots (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' At the application level, Maker DAO, the entity behind popular stablecoin DAI, uses Dutch clock auctions to sell the right to liquidate collateral for distressed loans, which have historically been a major source of MEV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='4 Censorship concerns are particularly salient today given the increasing super-majority of Ethereum validators who have switched to MEV-Boost clients in order to opt in to proposer builder separation (PBS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Senior Researchers within the Ethereum Foundation identified the proposer’s temporary monopoly on inclusion as a centralizing force within Ethereum’s consensus network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Among them was Ethereum co-founder Vitalik Buterin, who authored a forum post suggesting Proposer Builder Separation (PBS) as a solution to this centralization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='5 Instead of requiring proposers to run sophisticated, computationally 1Of course other digital goods such as NFTs may also be auctioned off on-chain, we describe some related work below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 2See, https://explore.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='flashbots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='net.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 3Source: https://dune.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='com/ChainsightAnalytics/mev-after-ethereum-merge 4See, https://docs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='makerdao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='com/keepers/the-auctions-of-the-maker-protocol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 5See, https://ethresear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='ch/t/proposer-block-builder-separation-friendly-fee-market-designs /9725.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 1 PAI, RESNICK, AND FOX intensive algorithms to maximize their MEV, under PBS, the building of blocks would be outsourced to a community of builders, proposers would then have the simple task of se- lecting the highest revenue block from among those offered by the builders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' These ideas were built into MEV-boost which today is responsible for deciding the contents of over 80% of new Ethereum blocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' While PBS was successful in reducing the sophistication required to run an Ethereum node, its effects on decentralization are mixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' The central- ization that Vitalik feared would play out at the validator level has instead occurred at the builder level, with half of all new blocks at the time we write this being built by the Flashbots relay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='6 More importantly for our purposes, PBS created a direct channel through which proposers could collude with bidders to manipulate the outcome of an auction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' In fact, proposers who collude with bidders through MEV-boost aren’t even aware that they have colluded until after they have signed the block header, effectively committing them to collusion before they realize what they have done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Formally, we consider a seller who holds a second-price auction for a single unit of an indivisible good on-chain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' The seller encodes the rules of the second-price auction in a smart contract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' The contract selects the bidder who submitted the highest bid over a predefined period, and sets the payment to the second-highest bid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' But, since this all takes place on a blockchain, before a bid can be submitted to the auction, it must be included in a transaction on-chain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Valid transactions are submitted to a mempool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Each slot, the proposer gathers transactions from the mempool into a block that will eventually be added to the chain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Proposers have complete autonomy over which transactions to include.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' The power of the proposer to determine the contents of the block—and therefore the outcome of the auction—sets up a competition for inclusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Bidders include tips for the proposer along with their bids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' The proposer receives these tips if and only if the corresponding transactions are included in his block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' We suppose that there is a single colluding bidder who may offer a bribe to the proposer in exchange for omitting certain transactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' In the auction setting, tips for inclusion are a public good, since they provide security to other transactions and only benefit the bidder who pays the tip if they win the auction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' On the contrary bribes for omission are purely for private benefit and make other bidders worse off in equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Consequently, our results suggest that the colluding bidder is highly advantaged in this game.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' In particular, we show that as the number of honest bidders increases, the colluding bidder wins the auction increasingly often, and collects an increasingly large share of the surplus created by the auction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Notably, we assume that bids are sealed, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=', that the colluding bidder must choose which transactions to try and omit based solely on the associated tip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' We show that the 6As reported by https://transparency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='flashbots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='net.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 2 CENSORSHIP RESISTANCE IN ON-CHAIN AUCTIONS colluding bidder can back out the private bids (and therefore whether it is profitable to attempt to censor these bids) based on these public tips.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' This suggests that cryptographic approaches (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' commit-reveal schemes) are not a silver bullet for resolving censorship concerns in such settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' We then consider two ways to restore the security of the auction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' The first is to run the auction over multiple slots with a different proposer for each.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' We find that this achieves credibility, only if the number of blocks is larger than the number of bidders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' This is undesirable for reasons external to our model, for example, executing the auction in a short window is important for financial applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' MEV auctions in particular are concerned about speed since they clear at least once every slot—once every 12 seconds on Ethereum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' The second is to have blockchains with multiple concurrent block proposers, k > 1, and allow bidder tips to be conditioned not only on inclusion, but also on the number of proposers who include the bid within a slot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' This allows bidders to set up a sort of “prisoner’s dilemma” among the proposers by proposing to pay a large tip T when only one proposer includes, and a small tip t ≪ T if multiple proposers include.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Each proposer is incentivized to include since if they are alone in including the transaction, there is a high tip attached.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' All proposers therefore include the bid in equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' This leads to a low expected tip of kt but an asymmetrically expensive censorship cost of kT ≫ kt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' This asymmetry allows for a pooling equilibrium in which the probability of censorship is 0, tips no longer reveal bids, and expected total tips are low.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' We are not aware of any blockchains that currently allow multiple concurrent block proposers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Representatives from at least one major chain, however, mentioned concur- rency as a goal going forward, in order to scale throughput and decrease latency from the user to the nearest proposer within a given slot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='7 The co-founder, and CEO of Solana even mentioned MEV resistance as a motivation for the desirability of multiple concur- rent block proposers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='8 Our results suggest that progress in this direction could reduce MEV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' RELATED LITERATURE Early scholars of auctions identified a fundamental tension between incentive compat- ibility for bidders and credibility for auctioneers Vickrey (1961);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Rothkopf et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' (1990), more recently formalized in Akbarpour and Li (2018, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' A common method for 7See, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=', https://blog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='chain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='link/execution-and-parallelism-for-dag-based-bft-consensus/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 8See https://twitter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='com/aeyakovenko/status/1584676110948012032.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 3 PAI, RESNICK, AND FOX resolving this tension is to use a trusted third party to oversee the auction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='9 Using a blockchain as this third party is attractive, since the assumptions required to trust a blockchain are weaker than those required to trust an individual Galal and Youssef (2019);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Blass and Kerschbaum (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='10 In online auctions, bids are seldom announced simultaneously, and maintaining the seal on bids transmitted through public channels requires cryptography.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' For example a simple cryptographic second-price sealed-bid auction involves bidders submitting the hash of their bids rather than the bids themselves and then revealing the hash after all bids have been submitted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Ferreira and Weinberg (2020) showed that, using a crypto- graphically secure commitment scheme, it is possible to design an auction that is optimal, strategy proof and credible, but only when the number of bidders is known in advance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' More complicated cryptographic approaches can eliminate the need to reveal any infor- mation beyond the results of the auction and can accommodate combinatorial auctions as well Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' (2001);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Elkind and Lipmaa (2004);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Suzuki and Yokoo (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' However, these still require that the bidder set is known in advance and struggle to accommodate scenarios when bidders may drop and never submit a bid, where blockchains have an advantage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Auctions commonly cited as use case for the verifiable computation that smart con- tracts provide Galal and Youssef (2019);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Blass and Kerschbaum (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='11 Auctions have also been suggested as a desirable mechanism for deciding ordering and inclusion of transactions to mitigate MEV Kulkarni et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Historically, these were decided by a combination of auction and speed based mechanisms, leading Daian et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' (2019) to compare MEV to high frequency trading as described in Budish et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Initially in- clusion and priority within the block were decided by priority gas auctions (PGAs), since most validators gathered transactions directly from the mempool and ordered them ac- cording to their miner tips, breaking ties using a first come first serve rule Daian et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' But recently, a super-majority of validators have switched their execution clients to MEV-boost compatible versions meaning the right to decide inclusion and ordering for most blocks is sold to the highest bidder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' These bidders are typically established builders who specialize in extracting the maximum value from each block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' The leading advocate 9For e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=', Vickrey (1961) notes “To prevent the use of a “shill” to jack up the price.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' it would probably be desirable to have all bids .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' certified by a trustworthy holder who would then deliver all the bids simultaneously to the seller.” 10Originally envisaged in Szabo (1997), who noted that “.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' a blockchain with a built-in fully fledged Turing- complete programming language that can be used to create “contracts” .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' simply by writing up the logic in a few lines of code.” 11See, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=', https://a16zcrypto.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='com/hidden-in-plain-sight-a-sneaky-solidity-implementation- of-a-sealed-bid-auction/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 4 CENSORSHIP RESISTANCE IN ON-CHAIN AUCTIONS for this approach has been Flashbots, the company behind the initial open source MEV client.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Their next product SUAVE, aims to move these auctions on-chain Flashbots (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Prior MEV mitigation research has focused on fairness rather than on censorship Kelkar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' (2020, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' But Ferreira and Parkes (2022) showed that for every sequencing rule of trades through a liquidity pool, there exists a way for the proposer to obtain non-zero risk-free profits suggesting that ordering based MEV is inevitable with current on chain financial application design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' In response to this, researchers have suggested that Frequent Batch Auctions or other order agnostic mechanisms might alleviate the MEV that arises from transaction ordering power Johnson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' On-chain auctions have also been studied as a mechanism for the sale of non-fungible tokens (NFTs) Milionis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Gradual dutch auctions (GDAs) Frankie et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' (2022), are a dynamic mechanism for selling multiple NFTs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Kulkarni et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' (2023) explores the credibility of GDAs, and finds that an auctioneer can bid to artificially raise the sale price and create the appearance of demand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' MODEL We consider a traditional independent private values setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' There is a single seller with a single unit of an indivisible good for sale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' There are n + 1 buyers for the good, n ≥ 1— we denote the set of bidders by N = {0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' , n}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Each of these buyers i ∈ N has a private value for the good, vi .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' We suppose buyer 0’s value v0 is drawn from a distribution with CDF F0 and density f, and the other buyers’ values are are drawn i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' from a distribution with CDF F and density f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Both distributions have bounded support, we normalize these to be equal to the unit interval [0, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Several of our results will be for the special case F = F0 = U[0, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Bidders know their own vi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' and n, F, and F0 are common knowledge among all bidders and the seller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' The seller wishes to run a sealed-bid second-price auction with reserve price r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' As described in this introduction, the point of departure of our model is that this auction runs on a blockchain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Initially, we consider an auction that accepts bids in a single designated designated block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Below we formally define this game and our solution concept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' In an idealized world with honest/ non-strategic proposers, the auction would run as follows: (1) The seller announces the auction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' (2) All buyers privately commit bids to the auction as transactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' (3) Proposer(s) include these transactions on relevant block(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='12 (4) The second-price auction is computed based on the included bids, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=', the highest bid is selected to win if this bid ≥ r, in this case paying a price of max{r, other bids}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 12We abstract away from issues such as block size constraints/ congestion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 5 PAI, RESNICK, AND FOX In particular, we assume that the idealized sealed-bid nature of off-chain auctions can be achieved on-chain via cryptographic methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='13 We also assume that the set of bids submitted for the auction are public (the bid itself may be private, but the fact that it exists as a bid is public).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Our main concern is that bids submitted for this auction may be censored, that is, omit- ted from a block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' More specifically, we suppose that after all other bids are submitted, but before they are revealed, a designated bidder, bidder 0, can pay the proposer of the block to censor bids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' These censored bids are then excluded from the block and have no im- pact the auction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' We assume that the proposer is purely profit focused and that bidder’s utilities are quasilinear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Formally, we consider the following game: (1) The seller announces second-price sealed-bid auction with reserve price r to be conducted over a single block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' (2) Buyers learn their values vi ← F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' (3) Buyers 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' , n each simultaneously submit a private bid bi and a public tip ti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' (4) Buyer 0 observes all the other tips ti and can offer the proposer of the block a take- it-or-leave-it-offer of a subset S ⊆ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' , n} of bidders and a bribe p to exclude that subset’s bids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Bidder 0 also submits their own bid b0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' (5) The proposer accepts or rejects bidder 0’s bribe and constructs the block accord- ingly, either including N \\ S if he accepts or N otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' (6) The auction is computed based on the bids included in the block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' In the next section, we consider the case of auctions over multiple sequential blocks with independent proposers, and the case of simultaneous proposers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Those games are vari- ants of the game above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' We describe them in-line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Formally, pure strategies in this game are: For players i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' , n}: A tuple of bidding and tipping strategies βi : [0, 1] → ℜ+, τi : [0, 1] → ℜ+ for players i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' n}, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=', player i with value vi bids βi(vi) and tips τi(vi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' For player 0: an offer to the proposer θ0 : ℜn+ × [0, 1] → 2N × ℜ+, and a bid function β0 : ℜn+ × [0, 1] → ℜ+, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' as a function of tips t = (τ1(v1), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' , τn(vn)) and his own value v0, an offer θ0(t, v0) and a bid β0(t, v0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' For proposer, given the tips t and offer from player 0, θ0(t, v0), a choice of which bids to include.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Since our game is an extensive-form game of incomplete information, our solution con- cept is Perfect Bayes-Nash Equilibrium (PBE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' This requires strategies to be mutual best- responses as is standard in equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Additionally, for each player, it requires the 13This can be practically achieved by submitting the hash of the bid and revealing it later.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 6 CENSORSHIP RESISTANCE IN ON-CHAIN AUCTIONS player to have beliefs about unknowns at every information set (on-, and off-, path) at which they are called upon to play such that their strategy maximizes their expected util- ity given the beliefs and others’ strategies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Beliefs are correct on path (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=', derived from the prior, and Bayesian updating given agents’ strategies), and unrestricted off path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Note that the proposer has multiple potential indifferences: e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' should they include a bid with 0 tip?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Should they censor a set of bids if bidder 0’s offered bribe exactly equals the total tip from that set?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' We assume that given tips t from bidders {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' , n} and an offered from bidder 0 to censor subset S for a bribe of p, the proposer includes the bids of N − S if and only if p ≥ ∑i∈S ti, and includes bids from all N otherwise (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' we are breaking proposer indifferences in favor of bidder 0 so that best responses are well defined).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' There are multiple PBEs of the game, driven in part by the fact that there are multiple equilibria in a second-price auction (for instance it is an equilibrium in the second price auction for one player to bid a high value, and all others to bid 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' However, most of these equilibria are in weakly dominated strategies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' We therefore focus on the following class of equilibria: (1) Bidders {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' n} submit a truthful bid, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' βi(vi) = vi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Note that this is a weakly dominant strategy for them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Further, these bidders use a symmetric tipping func- tion τ, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=', τi(·) = τ(·).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' (2) Bidder 0 bids equal to his value if he believes, given the tips of {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' n}, that there is a non-zero probability that he could win the auction, otherwise he bids 0 or does not bid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' In what follows we simply refer to a PBE that satisfies this refinement as an equilibrium of the game (with no qualifier).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' We reiterate that there are multiple PBEs of the original game, we are simply restricting attention to these “reasonable” equilibria for tractability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' RESULTS Our results are easiest for the case that n=1, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=', there are two bidders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' We present that as an illustration before considering the general case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Two Bidder Case Suppose there are only two bidders, one “honest” bidder 1 with value drawn according to distribution F, and one “colluding” bidder who has the opportunity to collude with the proposer, bidder 0, with value drawn independently from distribution F0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' We assume that F0 satisfies a regularity condition, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=', that F0(t)/ f0(t) is non-decreasing in t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' The equilibrium in this case is easy to describe: 7 PAI, RESNICK, AND FOX PROPOSITION 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' The following constitutes an equilibrium of the game with 2 bidders, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' N = {0, 1}, when the seller announces a second-price auction with a reserve price r = 0: Bidder 1 submits a truthful bid, and his tipping strategy as function of his value v1 is given by t1(v1) solves (v1 − t) − F0(t) f0(t) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Bidder 0’s strategy as function of the observed tip t1 and his value v0 is given by σ0(t1, v0) = � � � bribe t1 ≤ v0, don’t bribe t1 > v0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' where bribe is shorthand for paying t1 to the proposer in exchange for omitting bidder 1’s transaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Further bidder 0 submits a non-zero bid in the auction if and only if he bribes the proposer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' The proposer accepts bidder 0’s bribe whenever it is offered and omits bidder 1’s bid, other- wise the proposer includes both bids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Before providing a proof of this result, the following corollary summarizes the outcome that results in this equilibrium when F = F0 = Uniform[0, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' For comparison, recall that in the (standard) second price auction when both buyers have values drawn i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' from Uniform[0, 1], the expected revenue is 1/3 and each bidder has an ex ante expected surplus of 1/6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' COROLLARY 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Bidder 0 wins the object with probability 3 4, and has an expected surplus of 13 48, while bidder 1 wins the auction with probability 1 4 and has an expected surplus of 1 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' The revenue to the seller in this auction is 0, and the expected tip revenue to the proposer is 1 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' In short, the proposer collects all of the revenue from this auction, while the seller col- lects none.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Bidder 0 is substantially advantaged by his ability to see bidder 1’s tip and then decide whether to bribe the proposer or not (wins the auction with higher proba- bility, collects more of the surplus).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Our results for the n > 1 are similarly stark except for the fact that the auctioneer collects some positive revenue when n > 1, although this revenue rapidly decreases as n increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' PROOF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' The proof of the proposition is straightforward so we describe it briefly in line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' First to see that bidder 1 should bid his value (our refinement restricts attention to these) note that bidder 1 has two actions, he privately submits a bid b1 and publicly submits a tip t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Since bids only matter after inclusion has been decided, which is also after tips have been paid, tips are a sunk cost and what remains is simply a second price auction, in which truthful bidding is a weakly dominant strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Therefore it is (part of) an equi- librium for bidder 1 to bid his value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 8 CENSORSHIP RESISTANCE IN ON-CHAIN AUCTIONS Notice that bidder 1 does not benefit from submitting a tip t > v1 since even if he wins, he will end up paying more in tips (in addition to possible fees from the auction) than he values the item.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Knowing this, it is always weakly better for player 0 to pay t to omit player 1’s bid when v0 ≥ t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Thus player 0 bribes the proposer if and only if v0 ≥ t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' In that case player 1’s expected utility as a function of his tip is: E[U1(v1, t)] = F0(t) (v1 − t) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Taking the derivative with respect to t, and setting it equal to 0, we get, as desired, that t1(v1) solves (v1 − t) − F0(t) f0(t) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Now that we have found a candidate equilibrium, we have some more work to do to verify that it is in fact a PBE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Formally, bidder 1’s beliefs at his only information set are that v0 ∼ Uniform[0, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' By our regularity condition, t1(·) is strictly increasing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Bidder 0’s beliefs, conditional on bidder 1’s tip being t1 are given by v1 = � � � t−1 1 (t1) t1 ≤ t1(1), 1 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Notice that the case of t1 > t1(1) is off the equilibrium path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Finally note that Bidder 0’s strategy to bribe whenever his value exceeds bidder 1’s tip, and to bid only if he is willing to bribe, constitutes a best response.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' This concludes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' ■ Notice that even though bids are completely private in this model, because of the trans- action inclusion micro-structure, bids are effectively revealed by the tips attached to them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' This calls into question whether we can conduct sealed bid auctions of any type on chain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' We can also describe the equilibrium for the case where the seller chooses an auction with a reserve price r > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' For brevity we describe this informally: t1(v1) solves (v1 − r − t) f0(r + t) − F0(r + t) = 0 if solution exists, t1(v1) = 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Our regularity condition implies that there exists v = r + F0(r) f0(r) > r such that t1(v1) = 0 for v ≤ v and strictly increasing for v > v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Bidder 0’s strategy is to bribe and submit a bid only if his value v0 > t1 + r where t1 is the observed tip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' PROPOSITION 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' The following constitutes an equilibrium of the game with 2 bidders, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=', N = {0, 1}, when the seller announces a second-price auction with a reserve price r > 0: Bidder 1 submits a truthful bid, and his tipping strategy as function of his value v1 is given by t1(v1) = v1/2 − r whenever v1 > 2r and 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 9 PAI, RESNICK, AND FOX 0 25 50 75 100 Number of Honest Bidders 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='6 Expected Total Tip 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='050 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='075 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='125 FIGURE 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Expected Total Tips and Tipping functions for F = F0 ∼ Uniform[0, 1] Bidder 0’s strategy as function of the observed tip t1 and his value v0 is given by σ0(t1, v0) = � � � bribe t1 + r ≤ v0 don’t bribe o.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' where bribe is shorthand for paying t1 to the proposer in exchange for omitting bidder 1’s transaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Further bidder 0 submits a non-zero bid in the auction if and only if he bribes the proposer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' The proposer accepts bidder 0’s bribe whenever it is offered and omits bidder 1’s bid, other- wise the proposer includes both bids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Note that while the seller does receive positive revenue in this case, they do not realize any “benefit” from running an auction relative to posting a “buy it now” price of r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' We formalize this in the following corollary: COROLLARY 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Suppose buyer values are i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Uniform[0, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Assuming r ≤ 1 2, Bidder 0 wins the object with ex-ante probability (1 − r)(1 − (1 2 − r)2), while bidder 1 wins the object with ex-ante probability (1 − 2r)( r 2 + 1 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' The expected revenue of the seller is r(1 − r2), which is the same as the revenue for posting a “buy it now” price of r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' The proposer makes an expected revenue of 1 4(1 − 2r)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Again bidder 0 has a strong advantage in this auction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Tips are no longer perfectly revealing, since a non-empty interval of bidder values tip 0, but remain weakly monotone in bid and perfectly revealing when strictly positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Three or more bidders We now turn to the case where n ≥ 2, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=', N = {0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' , n}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' At first the problem of finding an equilibrium may appear intractable since bidder 0’s best-response problem is itself complicated: there are 2n possible subsets of {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' , n} and the problem of finding the best subset to buy out is therefore non-trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' The tipping 10 nElt1 (n(n- 1)Vi Tn m :m 二 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='n = 5(CENSORSHIP RESISTANCE IN ON-CHAIN AUCTIONS function of bidders {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' , n} needs to be a best response to this (accounting for how changing their tip changes the probability that they are censored given a distribution of other tips).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Nevertheless, there is an easy to describe equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' In order to construct it, the following lemma is useful: LEMMA 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Suppose that the tipping strategy of buyers 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' n is such that t(v) ≤ v/n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Then we have that the best response for bidder 0, as a function of his own value v0 and observed vector of tips t = (t1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' tn) can be described as: σ0(v0, t1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' , tn) = � � � bribe, ∑n i=1 ti ≤ v0 don’t bribe, ∑n i=1 ti > v0 where bribe is shorthand for paying the proposer ∑i ti in exchange for omitting all of bidder 1 through n’s transactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' PROOF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' To see this note that: n ∑ i=1 t(θi) ≤ n ∑ i=1 θi n ≤ n ∑ i=1 max(θ1, θ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' , θn) n = max(θ1, θ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' , θn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' and therefore bribing the proposer and buying out all the bids (and therefore winning the object for free in the auction) is more profitable than buying out any subset of the bids and possibly losing the auction or having to pay more than the bribes for that subset would have cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' ■ This lemma is useful because, in equilibrium, the tipping strategy of bidders 1 through n will satisfy this property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Bidder 0’s strategy is therefore straightforward (analogous to the case N = {0, 1}).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' We are now in a position to describe equilibrium in this game.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' PROPOSITION 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' The following constitutes an equilibrium of the game with n + 1 bidders, N = {0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' , n}, and buyer values drawn i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' from Uniform[0, 1] when the seller announces a second-price auction with a reserve price r = 0: Bidders 1 through n submit truthful bids, and their tipping strategy as function of their value vi is given by: t(v) = � � � 0 v < v, 1 2n (vn − vn) o.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' (1) where v solves (n + 1) vn n(n − 1) − vn+1 (n + 1) − 1 n(n + 1) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' (2) 11 PAI, RESNICK, AND FOX Bidder 0’s strategy as function of the observed tips t1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' , tn and their value v0 is given by σ0(v0, t1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' , tn) = � � � bribe, ∑n i=1 ti ≤ v0 don’t bribe, ∑n i=1 ti > v0 where bribe is shorthand for paying ∑i ti to the proposer in exchange for omitting bidder 1 through n’s transactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Further bidder 0 submits a truthful non-zero bid in the auction if and only if he bribes the proposer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' The proposer accepts bidder 0’s bribe whenever it is offered and omits the other bids, other- wise the proposer includes all bids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' It is easy to see that (2) has exactly 1 root in [0, 1] by observing that the left hand side is increasing in v on [0, 1], and evaluates to a negative number at v = 0 and a positive number for θ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Unfortunately we cannot analytically derive these roots for arbitrary n since polynomials of order ≥ 5 don’t have explicit roots (and even for n = 2, 3 these are not particularly nice);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' however, we can use a zero finding algorithm to compute these numerically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Results for the uniform case are presented in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Analytically, we can bound how this root varies with n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Note that the expected total tip is nE[t(v)] and substituting in (1) and simplifying via (2), we have that the expected total tip = vn n−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' The following proposition describes the asymptotic behavior of the expected total tip: PROPOSITION 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Let v(n) describe the solution to (2) as a function of n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' There exists n large enough such that for n > n, we have that 1 n ≤ v(n)n ≤ 1 √n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Proposition 4 is particularly useful when you consider the fact that for large n, by the law of large numbers, the total tip concentrates around the expected tip with high proba- bility (buyer values are i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' bounded random variables).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Further by Proposition 4, this is decreasing at rate at least 1/n√n : as n grows, individual bidders are willing to tip less.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' To see why tipping is only profitable when it leads to the bid not being censored and winning the auction, but increasing the tip increases the probability of all bids not being censored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' In short, tips have public goods type properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Indeed, the rate of tipping shrinks fast enough so that the total tip is also decreasing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Therefore bidder 0 wins the auction with increasing probability in n, asymptotically tending to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Note that the seller only receives revenue when there is more than one bidder in the auction (or more gener- ally, in the auction with a reserve price r, makes revenue larger than the reserve price)— and this happens with vanishing probability as n grows large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' PROPOSITION 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' As n grows large, the expected revenue of the auction with reserve price r reduces asymptotically to the expected revenue of a posted price of r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 12 CENSORSHIP RESISTANCE IN ON-CHAIN AUCTIONS 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='5 Beta Distribution PDFs 0 20 40 60 80 100 Number of Bidders 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='15 Expected Total Tip FIGURE 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Expected Total Tips for F0 ∼ Uniform[0, 1], F ∼ Beta(α, β) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' General Distributions It is straightforward to generalize our results to the case where bidders {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' , n} are distributed according to some general distribution with density f and CDF F on [0, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' ASSUMPTION 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' We assume throughout that F satisfies � v 0 Fn−1(θ)dθ ≤ v n for all v ∈ [0, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Formally, we have the following Proposition: PROPOSITION 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' The following constitutes an equilibrium of the game with n + 1 bidders, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' N = {0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' , n}, when the seller announces a second-price auction with a reserve price r = 0, bidder 0 has a value Uniform[0, 1] and bidders 1 through n have values distributed i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' according to a distribution with density f and CDF F satisfying Assumption 1: Bidders 1 through n submit truthful bids, and their tipping strategy as function of their value vi is given by: t(v) = � � � 0 v < v, 1 2 � v v Fn−1(θ)dθ o.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' (3) where v solves � 1 0 Fn−1(θ)dθ − � 1 v Fn(θ)dθ = n + 1 n − 1 � v 0 Fn−1(θ)dθ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' (4) Bidder 0’s strategy as function of the observed tips t1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' , tn and their value v0 is given by σ0(v0, t1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' , tn) = � � � bribe, ∑n i=1 ti ≤ v0 don’t bribe, ∑n i=1 ti > v0 where bribe is shorthand for paying ∑i ti to the proposer in exchange for omitting bidder 1 through n’s transactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Further bidder 0 submits a truthful non-zero bid in the auction if and only if he bribes the proposer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 13 α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='5, β = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='5α = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='0, β = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='0α = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='0, β = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='02.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' B = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='0 α二2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' B = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='0 α二α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='5, β = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='5α = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='0, β = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='0α = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='0, β = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='02.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' B = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='0 α二2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' B = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='0 α二PAI, RESNICK, AND FOX The proposer accepts bidder 0’s bribe whenever it is offered and omits the other bids, other- wise the proposer includes all bids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' This proposition allows us to numerically solve for tipping behavior in this auction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Using the flexible Beta distribution for a range of parameters, we compute nE[t] as a function of n in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Analytical results for the case where bidder 0’s value is distributed non-uniformly ap- pear out of reach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' To see why—for bidders 1 through n, part of the payoff of increasing their tip is increasing the probability that bidder 0 chooses not to buy them out.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' When bidder 0’s value is distributed uniformly, the increase in probability is constant and inde- pendent of others’ tips (which from the perspective of the bidder is a random variable).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' This simplifies the optimality condition and makes it analytically tractable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Nevertheless, the intuition above suggests that our qualitative results (seller expected revenue drops to close to the posted price, tips do not offer much “protection” due to the public goods nature of tips suggests, bidder 0 has a strong advantage in the auction) carry over to this case as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' RESTORING AUCTION CREDIBILITY We now discuss possible design choices to restore auction credibility, so that an auction can be run on chain with the desired results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Auction over Multiple Blocks The source of the popularly stylized eventual censorship resistance of blockchains, a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='a liveness, is that even though a single proposer is the “monopolist” over one block, over a longer period, multiple proposers get a chance to make a block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' In order for a specific transaction to be censored, multiple proposers will have to be incentivized to exclude it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Motivated by this, we now investigate whether running the auction over multiple blocks restores the desired behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Formally we consider the following dynamic game corresponding to an auction being run over m blocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' We assume that each of these blocks is produced by an independent proposer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='14 (1) Period 0: Bidders learn their values vi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Bidders 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' , n each submit simultane- ously a private bid bi and a public tip ti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' (2) Period j for j in 1 to k: Bidder 0 observes which bids from 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' n have not been included in a block in periods 1 to j − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' They offer Proposer j a take-it-or-leave-it- offer of a subset Sj of the unincluded bids and a payment pj to exclude that subset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 14In practice, an majority of blocks on major blockchains is produced by one of a small oligopoly of pro- posers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' We discuss the implications of this in the sequel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 14 CENSORSHIP RESISTANCE IN ON-CHAIN AUCTIONS The proposer j observes the tips and the offer from Bidder 0 and decides which bids if any to include.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' (3) Period m + 1: The seller’s auction is run on blocks produced in periods 1 to m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' If a transaction is included in period j, it is removed from the set of bids in the mempool, its tip is attributed to proposer j where j is the block it was included in, it is included in the auction, and it cannot be included in subsequent blocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Note that the game we describe is a natural extension of the previous game to the case of an auction over m > 1 blocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' In particular, it reduces to the original game for the case of m = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' We consider the same refinement as before, which applies to this game in a similar fashion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Note that there are two possible sources of additional security in this auction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' The first is mechanical: in order to censor a transaction, intuitively, bidder 0 has to bribe m pro- posers, which is more expensive for a given tip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' The second is that the marginal returns to a tip have increased (increasing a tip by q increases the cost to censor for bidder 0 by mq, and decreases the probability they can afford it correspondingly).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' In our results, we show that the latter effect is null.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' In particular, we show that for m < n, the tipping behavior of bidders 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' n stays unaffected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Formally, we have the following result: PROPOSITION 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Suppose buyers 1 to n have values drawn i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' U[0, 1] and buyer 0 has value drawn i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' U[0, κ] for κ > m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' The following constitutes an equilibrium of the game with n + 1 bidders, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' N = {0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' , n}, when the seller announces a second-price auction with a reserve price r = 0 to be run over m blocks for m < n: Bidders 1 through n and the proposers have the same strategy as in Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Bidder 0’s strategy as function of the observed tips t1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' , tn and his value v0 is given by σ0(v0, t1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' , tn) = � � � bribe, m ∑n i=1 ti ≤ v0, don’t bribe, otherwise, Before we proceed, we comment on the assumption that bidder 0’s value is distributed U[0, κ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Suppose bidder 0 is distributed U[0, 1], but bidders 1 to n tip as in Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Note that with positive probability the total tip could exceed 1 when m > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Therefore, given bidders 2 to n follow the tipping strategy of Proposition 3, bidder 1 will have incen- tives to shade their tip relative to t(·).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' After all, the marginal value of a tips depends on the how they increase the probability of not being censored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' From the Proof of 3, in the case of m = 1, increasing one’s tip on the margin always increases the probability that the bids are not censored, because the total tip is strictly smaller than 1 with probability 1 on path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Intuitively, therefore if bidder 0 is distributed U[0, 1], and the auction is conducted over m > 1 blocks, the equilibrium tipping strategy for bidders 1 to n is weakly lower 15 PAI, RESNICK, AND FOX than the corresponding tipping strategy for m = 1 (Proposition 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' This can be shown numerically, but is out of reach analytically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Note that we had already shown that expected total tip of n bidders was smaller than 1/n3/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Therefore, the probability that bidder 0 does not censor the remaining bids col- lapses to 0 as n grows large, as long as m grows sublinearly with n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' To see that we had already shown that expected total tip of n bidders was smaller than 1/n3/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Therefore m times this for m < n still grows smaller than 1/√n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Put differently, guaranteeing the auction outcome is “as desired” requires m > n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' This comes with its own costs: for example, the auction would have to remain open for a relatively long time which may be undesirable, particularly for financial applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Multiple Concurrent Block Proposers Depending on the number of bidders and the time constraints inherent to the specific auction application, it may not be feasible to hold the auction for long enough to achieve the desired censorship resistance level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' A different solution we now consider would be to allow more than one proposer within a single slot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Formally, we now consider k concurrent block proposers (by analogy to our previous section where we considered k sequential block producers).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' The seller an- nounces an auction which will execute within the single slot, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' the bids included on at least one of the k concurrent produced blocks will be included in the auction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' In view of the concurrency, we allow bidders to submit conditional tips, which depend on the number of proposers who include the transaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' For simplicity, we consider a twin tip, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=', each bidder submits a conditional tip of the form (t, T), where T is paid if only a single proposer includes bidder 1’s transaction and t is paid if more than one proposer includes the transaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' After the honest bidder observes v1 and submits his private bid b1 and public tip (t, T), the bribing bidder submits a bribe to each proposer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Formally, we first consider the following game: (1) Seller announces second-price sealed-bid auction with reserve price r to be con- ducted over a single slot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' (2) Buyers learn their values vi ∼ F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' (3) Buyers 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' , n each submit simultaneously a private bid bi and a public tip ti, Ti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' (4) Buyer 0 observes all the other tips ti, Ti and simultaneously offers each proposer a take-it-or-leave-it-offer of a subset S ⊆ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' , n} of bidders and a payment p to exclude that subset’s bids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Bidder 0 also submits his own bid b0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' (5) Each Proposer simultaneously accepts or rejects bidder 0’s offer and constructs the block accordingly i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=', either containing bids of set N \\ S or N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 16 CENSORSHIP RESISTANCE IN ON-CHAIN AUCTIONS (6) The auction is computed based on the union of the bids included in all blocks, tips are paid based on the inclusion behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' As before we focus our attention on equilibria where Bidders {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' , n} bid truthfully in the auction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Note that each proposer, in choosing whether to censor a transaction, needs to reason about the behavior of other proposers since that potentially affects their tip if they include the transaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' PROPOSITION 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Consider the Multiple Concurrent Block Proposer game, with m proposers and n = 1 honest bidder, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=', N = {0, 1}, with bidder i’s value drawn from a distribution with CDF Fi and PDF fi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' This game has an equilibrium where the outcome of the auction is the same as a standard second price auction without a censorship step and where the expected tip by each bidder to each proposer is t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' In particular, bidders 1’s tipping strategy in equilibrium is given by: t1(v1) = 0, T1(v1) = 1 (5) Bidder 0’s offer strategy to the proposer based on their own value v0 and the observed tips (t, T) is z0(t, T, v0) = � � � 0 C(v0) < mT T C(v0) ≥ mT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' (6) Here C(v0) is buyer 0’s net value to censoring bidder 1’s bid (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=', the difference their profit from censoring the competing bid and winning in the auction for free (v0);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' and their expected surplus from competing with bidder 1 in the auction).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Finally, the proposer’s strategies are to censor transactions with the following probabilities: p(z, t, T) = � � � � � � � � � 0 z < t � z−t T−t � 1 m−1 t ≤ z < T 1 z ≥ T (7) The above proposition may admittedly appear a little dense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' We provide the following corollary regarding (on-path) equilibrium behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' COROLLARY 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Consider the equilibrium proposed in Proposition 8 for any m ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' On path, bidder 0 does not bribe the proposers and instead competes in the second-price auction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' All bidders pay 0 in tips on path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Equilibrium tips do not reveal bids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Further, a careful study of the proof of Proposition 8 shows that the Corollary con- tinues to hold even when n > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Therefore even 2 concurrent block proposers restore the “desired” outcome relative to a single block proposer system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' This is partly driven 17 PAI, RESNICK, AND FOX by concurrency of block proposers which removes the “monopoly” that they have over transaction inclusion, and partly by the conditional tip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' The conditional tip allows bidder 1 to get security via a high-tip offer conditional on inclusion by only a single proposer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' This high tip offer makes it very expensive for bidder 0 to attempt censor bidder 1’s bid since they would need to pay m times the high tip to censor the bid by all m producers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Therefore, no bribe is offered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Further, this tip never needs to be paid, since both pro- posers find it weakly dominant to include the bid and pick up the low tip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='15 As an aside, note that this also restores equilibrium bid privacy, since tips no longer reveal bids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' DISCUSSION Our results suggest that single proposer blockchains are not ideal for holding time sen- sitive auctions when the number of potential bidders is large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' In our results, collusion arrangements are extremely profitable for the colluding bidder but only marginally prof- itable for the proposer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' However, this is because we restrict the model to have one po- tential colluding bidder who can bribe the proposer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' In reality, there are many possible colluding bidders, and only one proposer in each slot, the proposer could end up charg- ing for the right to collude and extract a significant portion of the value that the colluding bidder gains from the arrangement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' In fact, the predominant block building system, MEV- boost, can be thought of as a direct channel through which the proposer can sell the right to censor transactions to the highest bidder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' This suggests that one driver of MEV is the proposer’s right to determine inclusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Previous work has focused on a different source: the proposer’s right to order transactions within a block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' From the position that proposer ordering power is the source, order agnostic mechanisms should solve MEV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' But if cen- sorship power is the source, these order agnostic mechanisms, including the second price auction we study here, could be just as susceptible to value extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Another proposed source for MEV is the public nature of transactions in the mempool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' The argument is, transactions in the mempool are sitting ducks, waiting to be front-ran.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' It follows that, if transactions are encrypted while in the mempool, they will be less sus- ceptible to MEV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' But our results demonstrate that even when bids in the auction are en- crypted, public tips may reveal private bids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Future Directions From a theoretical perspective, this work leaves open questions of how censorship in on chain auctions might effect the equilibria of auctions with different assumptions about 15Note that t = 0 supports alternative asymmetric equilibria in the inclusion subgame where only a single proposer includes the transaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' In the broader game, these would correspond to the equilibria in the single proposer cases where T substitutes for the old single dimensional tip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' However, when t is bounded away from 0, these equilibria disappear, since it is now strictly dominant for the proposer to include the bid in the inclusion subgame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 18 CENSORSHIP RESISTANCE IN ON-CHAIN AUCTIONS bidder valuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' For example a natural extension to our results would be to consider honest bidders with interdependent or common values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' This may be a better model for on chain order flow auctions and collateral liquidation auctions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Our results are based on the assumption that a single bidder has been selected as the colluding bidder in advance, but an assumption that would track more closely to the realities of MEV-boost would be to have the right to collude be auctioned off after bids have been submitted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' If the right to collude is auctioned off before the bids are submitted, then our results would still hold, since our result would simply be a subgame of the larger game being considered, and the result would be that proposers end up with a larger share of their monopoly rents;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' however, when the right to collude is auctioned off after transactions have been submitted, and therefore after bidders discover their types, the players who are willing to pay to collude are more often those who value the item more.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' This could warp the equilibrium slightly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Outside of mechanism design, this work provides a strong theoretical justification for investigating multiple concurrent block proposer based consensus frameworks as a tool for MEV mitigation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Specifically, we identify conditional tipping as a powerful tool to combat censorship in situations where there are more than one block proposer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Another potential tool for combating censorship on chain, that we have not discussed, is a data availability layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Instead of being submitted to a blockchain directly, bids could be submitted to a data availability layer, nodes could then compute the results of the auc- tion based on whichever transactions were included on the data availability layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' This is similar to holding the auction directly on chain except that the nodes tasked with curating a data availability layer do not necessarily need to participate in consensus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' The require- ments for a data availability layer are weaker than those required for a full blockchain so it may be easier to integrate multiple proposer architecture on data availability layers than on blockchains themselves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 19 PAI, RESNICK, AND FOX REFERENCES Akbarpour, Mohammad and Shengwu Li, “Credible Mechanisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=',” in “EC” 2018, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 371.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' and , “Credible auctions: A trilemma,” Econometrica, 2020, 88 (2), 425–467.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Blass, Erik-Oliver and Florian Kerschbaum, “Strain: A secure auction for blockchains,” in “European Symposium on Research in Computer Security” Springer 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 87– 110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Budish, Eric, Peter Cramton, and John Shim, “The high-frequency trading arms race: Frequent batch auctions as a market design response,” The Quarterly Journal of Econom- ics, 2015, 130 (4), 1547–1621.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Daian, Philip, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov, Lorenz Breidenbach, and Ari Juels, “Flash Boys 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='0: Frontrunning, Transaction Re- ordering, and Consensus Instability in Decentralized Exchanges,” 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' , , , , , , , and , “Flash boys 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='0: Frontrunning in decentralized exchanges, miner extractable value, and consensus in- stability,” in “2020 IEEE Symposium on Security and Privacy (SP)” IEEE 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 910– 927.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Elkind, Edith and Helger Lipmaa, “Interleaving cryptography and mechanism design: The case of online auctions,” in “Financial Cryptography: 8th International Conference, FC 2004, Key West, FL, USA, February 9-12, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Revised Papers 8” Springer 2004, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 117–131.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Ferreira, Matheus VX and David C Parkes, “Credible Decentralized Exchange Design via Verifiable Sequencing Rules,” arXiv preprint arXiv:2209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='15569, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' and S Matthew Weinberg, “Credible, truthful, and two-round (optimal) auctions via cryptographic commitments,” in “Proceedings of the 21st ACM Conference on Eco- nomics and Computation” 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 683–712.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Flashbots, “The future of MeV is suave: Flashbots,” Nov 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Frankie, Dan Robinson, Dave White, and andy8052, “Gradual Dutch Auctions,” Apr 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Galal, Hisham S and Amr M Youssef, “Verifiable sealed-bid auction on the ethereum blockchain,” in “Financial Cryptography and Data Security: FC 2018 International Workshops, BITCOIN, VOTING, and WTSC, Nieuwpoort, Curaçao, March 2, 2018, Re- vised Selected Papers 22” Springer 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 265–278.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Johnson, Nicholas AG, Theo Diamandis, Alex Evans, Henry de Valence, and Guillermo Angeris, “Concave Pro-rata Games,” 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Kelkar, Mahimna, Fan Zhang, Steven Goldfeder, and Ari Juels, “Order-fairness for byzantine consensus,” in “Annual International Cryptology Conference” Springer 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 451–480.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 20 CENSORSHIP RESISTANCE IN ON-CHAIN AUCTIONS , Soubhik Deb, Sishan Long, Ari Juels, and Sreeram Kannan, “Themis: Fast, strong order-fairness in byzantine consensus,” Cryptology ePrint Archive, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Kulkarni, Kshitij, Matheus VX Ferreira, and Tarun Chitra, “Credibility and Incentives in Gradual Dutch Auctions,” arXiv, 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' , Theo Diamandis, and Tarun Chitra, “Towards a theory of maximal extractable value i: Constant function market makers,” arXiv preprint arXiv:2207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='11835, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Lee, Byoungcheon, Kwangjo Kim, and Joongsoo Ma, “Efficient public auction with one- time registration and public verifiability,” in “Progress in Cryptology—INDOCRYPT 2001: Second International Conference on Cryptology in India Chennai, India, Decem- ber 16–20, 2001 Proceedings 2” Springer 2001, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 162–174.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Milionis, Jason, Dean Hirsch, Andy Arditi, and Pranav Garimidi, “A Framework for Single-Item NFT Auction Mechanism Design,” in “Proceedings of the 2022 ACM CCS Workshop on Decentralized Finance and Security” 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 31–38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Rothkopf, Michael H, Thomas J Teisberg, and Edward P Kahn, “Why are Vickrey auc- tions rare?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=',” Journal of Political Economy, 1990, 98 (1), 94–109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Suzuki, Koutarou and Makoto Yokoo, “Secure generalized vickrey auction using homo- morphic encryption,” in “Financial Cryptography: 7th International Conference, FC 2003, Guadeloupe, French West Indies, January 27-30, 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Revised Papers 7” Springer 2003, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 239–249.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Szabo, Nick, “Formalizing and securing relationships on public networks,” First monday, 1997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Vickrey, William, “Counterspeculation, auctions, and competitive sealed tenders,” The Journal of finance, 1961, 16 (1), 8–37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 21 PAI, RESNICK, AND FOX 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' OMITTED PROOFS 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Proof of Proposition 3 PROOF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' We first need consider the tipping strategy t(v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' To do this we first work out the expected utility for player 1 when all other n − 1 “honest” bidders are bidding according to t(·) and bidder 0 is following the strategy above, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=', censoring all the bids whenever the total tip doesn’t exceed their value: U(v, t) = � v 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' � v 0 � F0( n ∑ j=2 t(vj) + t)(v − max(vj)) � dv2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' dvn (8) − tE � F0( n ∑ j=2 t(vj) + t) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Here the first term is expected profit of the buyer in the auction, and the second term is the expected cost of the tip: tip times the probability that the bid is not censored and the tip is therefore charged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Note that since the buyer 0’s value is distributed uniformly, so F0(∑n j=2 t(vj) + t) = ∑n j=2 t(vj) + t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='16 =⇒ U(v, t) = � v 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' � v 0 � ( n ∑ j=2 t(vj) + t)(v − max(vj)) � dv2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' dvn − tE � ( n ∑ j=2 t(vj) + t) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Differentiating with respect to t ∂U(v, t) ∂t = � v 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' � v 0 �(v − max(vj)) � dv2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' dvn − E � ( n ∑ j=2 t(vj)) � − 2t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Therefore optimality implies that t(v) must solve: =⇒ vn n − E � ( n ∑ j=2 t(vj)) � − 2t(v) ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' with the inequality binding when t(v) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Let us denote E[t(vj)] by c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' =⇒ vn n − (n − 1)c − 2t = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 16Formally, this is only true as long as ∑n j=2 t(vj) + t < 1, but our solution will be such that ∑n 1 t(vi) ≤ 1 for any profile of values i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 22 CENSORSHIP RESISTANCE IN ON-CHAIN AUCTIONS Therefore we have that: t(v) = � � � 0 v < v, 1 2 � vn n − (n − 1)c � o.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' where v = ((n2 − n)c)1/n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Finally, since E[t(vj)] = c, it must be that � 1 v 1 2 �vn n − (n − 1)c � dv = c, =⇒ 1 n(n + 1)(1 − vn+1) − (n − 1)c(1 − v) = 2c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Putting together we have that vn+1 n(n + 1) + (n + 1)c − (n − 1)cv = 1 n(n + 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' (9) Recall that v = ((n2 − n)c)1/n =⇒ c = vn n(n−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Substituting this into (9) we have vn+1 n(n + 1) + (n + 1) vn n(n − 1) − (n − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' vn n(n − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='v = 1 n(n + 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' =⇒ (n + 1) vn n(n − 1) − vn+1 (n + 1) − 1 n(n + 1) = 0, (10) as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Further by observation, we have that the assumption of Lemma 1 is satisfied, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=', t(v) ≤ v n and therefore we have from Lemma 1 that Bidder 0’s bribing strategy is a best response to these tips.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' ■ As an aside, we note that the the first step in the proof, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' noting that F0(∑n j=2 t(vj) + t) = ∑n j=2 t(vj) + t under the uniform distribution, allows to make the E[F0(∑n j=2 t(vj) + t)] in the first expression analytically tractable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' This is the reason we are unable to gener- alize beyond the uniform distribution for bidder 0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Proof of Proposition 4 First suppose vn = 1/√n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Substituting in to the left hand side of (10), we have n + 1 n(n − 1)√n − 1 (n + 1)(√n) n+1 n − 1 n(n + 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Note that the first term is O(1/n3/2), and the latter two terms are smaller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' So the left hand side is always positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Therefore we have that vn ≤ 1 √n (since the left hand side of (10) goes from negative to positive and is 0 at the unique root).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' This in turn implies that nc ≤ 1 (n−1)√n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 23 PAI, RESNICK, AND FOX By a similar argument we can argue that vn > 1/n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' To see this, note that substituting into left hand side of (10), we have n + 1 n2(n − 1) − 1 (n + 1)(n) n+1 n − 1 n(n + 1), =(n + 1)2 − n(n − 1) n2(n − 1)(n + 1) − 1 (n + 1)(n) n+1 n , = 3n + 1 n2(n − 1)(n + 1) − 1 (n + 1)(n) n+1 n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Note that the first term is O(1/n3), while the second term is ≈ O(1/n2), so for n large this will be negative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Proof of Proposition 5 Repeating the calculation of the proof of Proposition 3, we have that a bidder of value v’ indirect utility from a tip of t given all other n − 1 bidders tip according to t(·) is given by U(v, t) = � v r .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' � v r � P0(v0 < r + n ∑ j=2 t(vj) + t)(v − max(vj)) � dv2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' dvn + P0(v0 < r + t)rn−1(v − r) − tE � F0(r + n ∑ j=2 t(vj) + t) � t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Again, the buyer 0’s value is distributed uniformly, so F0(r + ∑n j=2 t(vj) + t) = r + ∑n j=2 t(vj) + t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' =⇒ U(v, t) = � v r .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' � v r � (r + n ∑ j=2 t(vj) + t)(v − max(vj)) � dv2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' dvn + (r + t)rn−1(v − r) − tE � (r + n ∑ j=2 t(vj) + t) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Differentiating with respect to t, we have ∂U(v, t) ∂t � v r .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' � v r �(v − max(vj)) � dv2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' dvn + rn−1(v − r) − E � r + ( n ∑ j=2 t(vj)) � − 2t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' The first two terms are just the interim expected surplus of a bidder with value v in a second price auction with n bidders and reserve price r, which by revenue equivalence is the integral of the allocation of lower types, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=', � v r .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' � v r �(v − max(vj)) � dv2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' dvn + rn−1(v − r) 24 CENSORSHIP RESISTANCE IN ON-CHAIN AUCTIONS = � v r θn−1dθ, =vn n − rn n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Therefore, substituting back in, optimality of t(·) requires that vn n − rn n − r − E � n ∑ j=2 t(vj) � − 2t(v) ≤ 0, with equality whenever t(v) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Therefore we have that: t(v) = � � � 1 2 � vn n − (n − 1)cr − (r + rn n ) � v ≥ (n((n − 1)cr + (r + rn n ))1/n 0 otherwise where cr = E[t(v)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Therefore we have t(v) = 1 2 � vn n − (n − 1)cr − (r + rn n ) � when v > v and 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Recall that when r = 0, t(v) = 1 2 � vn n − (n − 1)c � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Therefore cr < c and (n − 1)cr − (r + rn n ) > n − 1c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Therefore the equilibrium tipping function t(v) when r > 0 are first order stochastically dominated by the tipping function when r = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' We already showed in Proposition 4 that the tipping function when r = 0 as a function of n implies that total tips collapse to 0 at a super-linear rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Therefore that continues to be the case here, and the Proposition follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Proof of Proposition 6 Repeating the calculation of the Proof of Proposition 3 but assuming that the bidders are now distributed according to some distribution F, an taking first order conditions, we must have that � v 0 Fn−1(v)dv − c − 2t(v) ≤ 0 with it binding whenever t(v) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' So we must have: t(θ) = � � � 0 v ≤ v 1 2 �� v 0 Fn−1(v)dv − (n − 1)c � o.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' where c, v jointly solve � v 0 Fn−1(v)dv = (n − 1)c, 25 PAI, RESNICK, AND FOX � 1 0 t(v)dF(v) = c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Note that the latter equation can be written as: � 1 v 1 2 �� v 0 Fn−1(v)dv − (n − 1)c � dF(v) = c =⇒ � 1 v �� v 0 Fn−1(v)dv − (n − 1)c � dF(v) = 2c, =⇒ � 1 v �� v 0 Fn−1(v)dv � dF(v) = (2 + (n − 1)(1 − F(v))) c, writing � v 0 Fn−1(v)dv = S(v) and doing integration by parts =⇒ S(1) − S(v)F(v) − � 1 v Fn(v)dv = (2 + (n − 1)(1 − F(v))) S(v) n − 1, =⇒ S(1) − � 1 v Fn(v)dv = n + 1 n − 1S(v), as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Note that under Assumption 1, 1, this implies that the assumption of Lemma 1 con- tinues to be satisfied, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=', t(v) ≤ v n and therefore we have from Lemma 1 that Bidder 0’s bribing strategy is a best response to these tips.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Proof of Proposition 7 The proof follows from the Proof of Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' To see this, note that if bidder 0 is distributed U[0, κ], given the conjectured strategies of 1 to n, we have the total tip is al- ways smaller than the highest possible value of bidder 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Therefore the proof continues to hold as written: bidder 0 being distributed U[0, κ] changes (8) by a multiplicative constant 1 κ, and therefore this does not affect the optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Proof of Proposition 8 PROOF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' We proceed by backward induction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' First consider the subgame where tips (t, T), and bribe z have already been offered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Given that all other proposers are censoring with probability p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' The expected utility for proposer i as a function of censoring probability pi is given by: piz + (1 − pi)(pm−1)T + (1 − pi)(1 − pm−1)t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Differentiating this with respect to pi we have z − pm−1T − t + pm−1t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' 26 CENSORSHIP RESISTANCE IN ON-CHAIN AUCTIONS Therefore for a symmetric mixed equilibrium of the subgame it must be that 0 = z − t − (T − t)pm−1 =⇒ p = � z − t T − t � 1 m−1 Given this,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' the probability of successfully censoring the bid for a given bribe z ∈ [t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' T] is pm = � z − t T − t � m m−1 If the value of censorship to the bribing bidder is C relative to the no censorship case,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' then the expected utility of the bribing bidder relative to the no censorship case as a function of z is Cpm − mzp = C � z − t T − t � m m−1 − mz � z − t T − t � 1 m−1 Define u ≡ 1 T−t 1/m−1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' and q ≡ z − t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Substituting in to the latter expression, we have umCq m m−1 − u � mtq 1 m−1 + mq m m−1 � Note that this is convex in q, and therefore the solution is to either tip t (which effectively is the same as tip 0), or tip T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Finally, note that C ≤ v0 by definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' Given this, the strategy of (t, T) = (0, 1) is a best response for bidder 1 since it will result in bidder 0 offering a bribe of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
+page_content=' ■ 27' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtFQT4oBgHgl3EQfazZ8/content/2301.13321v1.pdf'}
diff --git a/S9A0T4oBgHgl3EQfD__i/content/2301.02013v1.pdf b/S9A0T4oBgHgl3EQfD__i/content/2301.02013v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..e9837df42b2e3772cee48f68da626c42af14d6f1
--- /dev/null
+++ b/S9A0T4oBgHgl3EQfD__i/content/2301.02013v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:a5e78ffc0527aab5b87a791269fc3d8c10331d08df22c757e310bc9a3cf7b17e
+size 1874625
diff --git a/S9A0T4oBgHgl3EQfD__i/vector_store/index.pkl b/S9A0T4oBgHgl3EQfD__i/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..7d96771865aeb0c2cb9a43f65e8ac2b07d54ad40
--- /dev/null
+++ b/S9A0T4oBgHgl3EQfD__i/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:3fe6a28e68467d2c6a33966e98caa403669dd0a9b25e5c8d12301de112fe0782
+size 95064
diff --git a/SdE4T4oBgHgl3EQflw0o/content/tmp_files/2301.05162v1.pdf.txt b/SdE4T4oBgHgl3EQflw0o/content/tmp_files/2301.05162v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..efa59bb5524608e997031a1e5d85f5e6c0d21132
--- /dev/null
+++ b/SdE4T4oBgHgl3EQflw0o/content/tmp_files/2301.05162v1.pdf.txt
@@ -0,0 +1,1343 @@
+arXiv:2301.05162v1 [cs.PL] 12 Jan 2023
+Duoidally enriched Freyd categories⋆
+Chris Heunen[0000−0001−7393−2640] and Jesse Sigal[0000−0002−5117−8752]
+School of Informatics, University of Edinburgh, United Kingdom,
+{chris.heunen, jesse.sigal}@ed.ac.uk
+Abstract. Freyd categories provide a semantics for first-order effectful
+programming languages by capturing the two different orders of eval-
+uation for products. We enrich Freyd categories in a duoidal category,
+which provides a new, third choice of parallel composition. Duoidal cat-
+egories have two monoidal structures which account for the sequential
+and parallel compositions. The traditional setting is recovered as a full
+coreflective subcategory for a judicious choice of duoidal category. We
+give several worked examples of this uniform framework, including the
+parameterised state monad, basic separation semantics for resources, and
+interesting cases of change of enrichment.
+Keywords: Freyd category · duoidal category · Kleisli category · Law-
+vere theory · monad
+1
+Introduction
+Computational effects encapsulate interactions of a computer program with its
+environment in a modular way, and are a staple of modern programming lan-
+guages [17]. Originally captured by strong monads [15], they have been extended
+to Arrows to deal with input as well as output [12], to Lawvere theories to bet-
+ter combine effects algebraically [20], to PROs and PROPs to deal with non-
+cartesian settings [13], and to Freyd categories to deal with effects that are not
+higher-order [14].
+Freyd categories let one compose effectful computations both in sequence
+and, to some extent, in parallel, and reason about such compositions rigorously.
+For an effectful computation f : a → b, we may embed it, the domain, and the
+codomain into a larger context by extending with − ⊗ c for any object c and
+monoidal-like operation ⊗, which we write as f ⊗ id : a ⊗ c → b ⊗ c. Intuitively,
+f ⊗ id does not interact with c. Effectful computations need not commute as
+they may alter the environment: (f ⊗ id).(id ⊗ g) ̸= (id ⊗ g).(f ⊗ id) in general.
+But what if we want to track more data about computations than just types
+and effects? For example, suppose we want to annotate every computation with
+its resource needs: there could e.g. be a set R of resources, and every computation
+f requires a certain subset P ⊆ R of resources for it to execute. Sequencing two
+computations needs all resources to execute both, so if f : a → b and g : b → c
+⋆ Jesse Sigal is partly funded by Huawei.
+
+2
+C. Heunen and J. Sigal
+require resources P and Q respectively, then g.f requires P ∪ Q. The same is
+true for parallel composition: if f1 : a1 → b1 and f2 : a2 → b2 require P1 and P2
+respectively, then f1 ⊗ f2 : a1 ⊗ a2 → b1 ⊗ b2 requires P1 ∪ P2. However, it is
+often desirable to restrict P1 and P2 by requiring P1 ∩P2 = ∅ so that morphisms
+composed in parallel use different resources. If we have an identity map id : a → a
+for all a which requires ∅ ⊆ R, then we can always form f ⊗ id for any f, but
+what of the general case?
+This article proposes a solution that achieves just this: enrich Freyd cate-
+gories in duoidal categories. Duoidal categories carry two interacting monoidal
+structures that will account for the sequential and parallel composition of both
+the effectful computations and the extra data we want to track, such as the
+resources above. We provide a concrete example for resources in Section 3.1.
+Section 2 introduces duoidally enriched Freyd categories. Section 3 shows the
+breadth of such categories by treating disparate examples: separation semantics
+for resources as above, indexed state monads, and Kleisli categories of Lawvere
+theories. Section 4 shows that a judicious choice of duoidal enriching category
+recovers traditional Freyd categories as a full coreflective subcategory, and Sec-
+tion 5 gives an abstract characterisation of duoidally enriched Freyd categories
+in purely algebraic terms. Section 6 considers changing the enriching duoidal
+category, accounting for e.g. changing the underlying permission model in the
+example above. Section 7 concludes and suggests directions for future work.
+Related work Morrison and Penneys define a V-monoidal category [16] for
+braided monoidal V as a V-category with parallel composition that interacts
+well with the braid. In the case V is braided (and thus duoidal), our definition
+of a V-Freyd category is similar. However, we also require bifunctorality of the
+hom objects, an important difference for some of our constructions.
+The abstract characterisation in Section 5 is inspired by Fujii’s characteri-
+sation of PROs and PROPs [7] as monoids in MonCatlax
+�
+Nop × N, Set
+�
+and
+MonCatlax
+�
+Pop × P, Set
+�
+respectively, where N and P have natural numbers
+as objects and equalities respectively bijections as morphisms.
+Garner and López Franco describe a general framework for commutativity
+using categories enriched in the sequential product of a duoidal category [8].
+Their framework requires the duoidal category to be normal, meaning that the
+two units are isomorphic. Only with this requirement and others do they define
+a monoidal structure on their category of enriched categories, and do not define
+a monoidal enriched category. We do not require normality.
+Finally, Forcey [6], and Batanin and Markl [4] enrich over duoidal categories,
+but using the parallel product instead. We choose to enrich over the sequential
+product in order to define examples in which this is the appropriate choice.
+2
+Duoidally enriched Freyd categories
+This section introduces duoidally enriched Freyd categories (in Section 2.3),
+but first we discuss Freyd categories (in Section 2.1) and duoidal categories (in
+Section 2.2).
+
+Duoidally enriched Freyd categories
+3
+2.1
+Freyd categories
+Freyd categories provide semantics for first-order call-by-value programming lan-
+guages with effects [20]. We will generalise the definition of a Freyd category
+slightly so that the effect free fragment need not have products, beginning with
+the following preliminary definitions [14,18].
+Definition 1. A category C is binoidal when it comes with endofunctors (−)⋉x
+and x ⋊ (−) for each object x such that x ⋉ y = x ⋊ y for all y; write x ⊗ y for
+this object. A morphism f : x → y is central if for any morphism g : x′ → y′ the
+two maps (y ⋊ g).(f ⋉ x′) and (f ⋉ y′).(x ⋊ g) of type x ⊗ x′ → y ⊗ y′ are equal,
+as are the two maps (y′ ⋊ f).(g ⋉ x) and (g ⋉ y).(x′ ⋊ f) of type x′ ⊗ x → y′ ⊗ y.
+Central morphisms form a wide subcategory Z(C) called the centre.
+Definition 2. A binoidal category C is premonoidal when equipped with an
+object e and families of central isomorphisms α: (x ⊗ y) ⊗ z → x ⊗ (y ⊗ z),
+λ: e ⊗ x → x, and ρ: x ⊗ e → x that are natural in each component and satisfy
+triangle and pentagon equations.
+Definition 3. A functor F : C → D between premonoidal categories is a pre-
+monoidal functor when equipped with central morphisms η: eD → F (eC) and
+µ: F(x) ⊗D F(y) → F (x ⊗C y) such that µ is natural in each component, and
+the following diagrams commute:
+(F(x) ⊗D F(y)) ⊗D F(z)
+F(x) ⊗D (F(y) ⊗D F(z))
+F(x ⊗C y) ⊗D F(z)
+F(x) ⊗D F(y ⊗C z)
+F((x ⊗C y) ⊗C z)
+F(x ⊗C (y ⊗C z))
+µ⊗id
+µ
+F αC
+αD
+id⊗µ
+µ
+eD ⊗D F(x)
+F(eC) ⊗D F(x)
+F(x)
+F(eC ⊗C x)
+F(x) ⊗D eD
+F(x) ⊗D F(eC)
+F(x)
+F(x ⊗C eC)
+λD
+η⊗id
+µ
+F λC
+ρD
+id⊗η
+µ
+F ρC
+A premonoidal functor is strong (strict) when η and µ are isomorphisms (iden-
+tities).
+Note that a strict premonoidal functor F preserves associators and unitors
+on the nose. Recall that a functor F : C → D between monoidal categories
+is lax monoidal when it comes with a morphism η: I → F(I) and a natural
+transformation µ: F(X) ⊗ F(Y ) → F(X ⊗ Y ) satisfying coherence conditions.
+It is strong monoidal when η and µ are invertible. Lax/strong monoidal functors
+are closed under composition. Here now is our definition of a Freyd category.
+Definition 4. A Freyd category consists of a monoidal category M and a pre-
+monoidal category C with the same objects, and an identity-on-objects strict
+premonoidal functor J : M → C whose image lies in Z(C). A morphism J → J′
+of Freyd categories consists of a strong monoidal functor F0 : M → M′ and a
+strong premonoidal functor F1 : C → C′ such that F1J = J′F0. Freyd categories
+and their morphisms form a category Freyd.
+
+4
+C. Heunen and J. Sigal
+2.2
+Duoidal categories
+A duoidal category carries two interacting monoidal structures, that one may
+intuitively think of as sequential and parallel composition, but let us give the
+definition [2, Definition 6.1] before examples.
+Definition 5. A category V is duoidal when it comes with two monoidal struc-
+tures (V, ∗, J) and (V, ◦, I), a natural transformation ζA,B,C,D : (A ◦ B) ∗ (C ◦
+D) → (A ∗ C) ◦ (B ∗ D), and three morphisms ∆: J → J ◦ J, ∇: I ∗ I → I, and
+ǫ: J → I such that (I, ∇, ǫ) is a monoid in (V, ∗, J) and (J, ∆, ǫ) is a comonoid
+in (V, ◦, I), and the following diagrams commute:
+((A ◦ B) ∗ (C ◦ D)) ∗ (E ◦ F)
+(A ◦ B) ∗ ((C ◦ D) ∗ (E ◦ F))
+((A ∗ C) ◦ (B ∗ D)) ∗ (E ◦ F)
+(A ◦ B) ∗ ((C ∗ E) ◦ (D ∗ F))
+((A ∗ C) ∗ E) ◦ ((B ∗ D) ∗ F)
+(A ∗ (C ∗ E)) ◦ (B ∗ (D ∗ F))
+ζ∗id
+ζ
+α
+id∗ζ
+ζ
+α◦α
+J ∗ (A ◦ B)
+(J ◦ J) ∗ (A ◦ B)
+A ◦ B
+(J ∗ A) ◦ (J ∗ B)
+(A ◦ B) ∗ J
+(A ◦ B) ∗ (J ◦ J)
+A ◦ B
+(A ∗ J) ◦ (B ∗ J)
+λ
+∆∗id
+ζ
+λ◦λ
+ρ
+id∗∆
+ζ
+ρ◦ρ
+((A ◦ B) ◦ C) ∗ ((D ◦ E) ◦ F)
+(A ◦ (B ◦ C)) ∗ (D ◦ (E ◦ F))
+((A ◦ B) ∗ (D ◦ E)) ◦ (C ∗ F)
+(A ∗ D) ◦ ((B ◦ C) ∗ (E ◦ F))
+((A ∗ D) ◦ (B ∗ E)) ◦ (C ∗ F)
+(A ∗ D) ◦ ((B ∗ E) ◦ (C ∗ F))
+ζ
+ζ◦id
+α
+α∗α
+ζ
+id◦ζ
+I ◦ (A ∗ B)
+(I ∗ I) ◦ (A ∗ B)
+A ∗ B
+(I ◦ A) ∗ (I ◦ B)
+(A ∗ B) ◦ I
+(A ∗ B) ◦ (I ∗ I)
+A ∗ B
+(A ◦ I) ∗ (B ◦ I)
+λ
+∇◦id
+ζ
+λ∗λ
+ρ
+id◦∇
+ζ
+ρ∗ρ
+We may write (V, ∗, J, ◦, I) or (V, ∗, ◦) to be explicit about the role of each
+monoidal structure.
+Example 1. Any braided monoidal category becomes duoidal by letting both
+monoidal structures coincide and ζ be the middle-four interchange x ⊗ y ⊗ z ⊗ w
+→ x ⊗ z ⊗ y ⊗ w up to associativity. In particular, any symmetric or cartesian
+monoidal category is duoidal [2, Proposition 6.10, Example 6.19].
+Example 2. If (V, ∗, J, ◦, I) is duoidal, so is (Vop, ◦, I, ∗, J), with opposite struc-
+ture maps [2, Section 6.1.2].
+Example 3. If (V, ⊗, I) is a monoidal category with products, (V, ⊗, I, ×, 1) is
+duoidal with ζ = ⟨π1 ⊗ π1, π2 ⊗ π2⟩, ∆ = ⟨id, id⟩, and ∇ and ǫ terminal maps.
+Similarly, if a monoidal category V has coproducts, (V, +, 0, ⊗, I) is duoidal [2,
+Example 6.19].
+
+Duoidally enriched Freyd categories
+5
+Example 4. If (V, ∗, J, ◦, I) is small and duoidal, straightforward calculation
+shows Day convolution [5] of each monoidal structure makes the category of
+presheaves ([Vop, Set], ∗Day, V(−, J), ◦Day, V(−, I)) again duoidal where
+(F ∗Day G) (A) =
+� B,C
+V (A, B ∗ C) × F (B) × G (C)
+and likewise for ◦Day. An analogous construction holds for [V, Set] by starting
+with Vop.
+Example 5. An endofunctor on Set is finitary when it preserves filtered colim-
+its and is therefore determined on finite sets. Finitary endofunctors are closed
+under functor composition, ◦, with unit Id; closed under Day convolution with
+products, ×Day, with unit Set (1, −) ∼= Id; making
+�
+[Set, Set]f, ×Day, Id, ◦, Id
+�
+a duoidal category. [8]
+Example 6. For a small monoidal category (M, ⊕, e), the category of Set-valued
+endoprofunctors Prof(M) := [Mop×M, Set] is duoidal (Prof(M), ⊕Day,⋄) with
+profunctor composition (P⋄Q)(a, c) :=
+� b P(a, b)×Q(b, c) (having unit M(−, −))
+and Day convolution of ⊕ on both sides (P ⊕DayQ)(a, b) := � a1,a2,b2,b2 M(a, a1⊕
+a2) × M(b1 ⊕ b2, b) × P(a1, b1) × Q(a2, b2) (having unit M(−, e) × M(e, −)). [8]
+Example 7. An important example for us is the category Subset of distinguished
+subsets. Objects are pairs of sets (X, A) such that X ⊆ A and morphisms
+f : (X, A) → (Y, B) are functions f : A → B with f(X) ⊆ Y . We call X the
+distinguished subset. Composition and identities are as in Set. We may suppress
+the distinguished subset X by writing a � A when a ∈ X. Next, we give two
+monoidal structures on Subset.
+The first is the cartesian product: (X, A) × (Y, B) := (X × Y, A × B) on
+objects, and f × g as in Set on morphisms, with unit (1, 1). Associators and
+unitors are as in Set. This is also a categorical product.
+The second is the disjunctive product: on objects (X, A)⊗(Y, B) is defined as
+�
+X × Y, (A× Y )∪(X × B)
+�
+with unit (1, 1). We again have f × g on morphisms,
+which is well-defined. Finally, the coherence maps are restricted versions of those
+for the cartesian product.
+Now
+�
+Subset, ⊗, (1, 1), ×, (1, 1)
+�
+is duoidal by Example 3: ∆ and ∇ are uni-
+tors, ǫ is the identity, and ζ :
+�
+(X, A) × (Y, B)
+�
+⊗
+�
+(Z, C) × (W, D)
+�
+→
+�
+(X, A) ⊗
+(Z, C)
+�
+×
+�
+(Y, B) ⊗ (W, D)
+�
+is the restricted middle-four interchange; all axioms
+are inherited from (Set, ×, 1) via Example 1.
+The important difference between
+�
+Subset, ⊗, ×
+�
+and (Set, ×, ×) is that ζ
+is not invertible in the former (as it is not surjective as a Set map). This allows
+Freyd categories enriched in Subset a premonoidal-like structure.
+2.3
+Concrete definition
+We are now ready for the titular notion of this paper. We first give a concrete
+definition, leaving an abstract characterisation to Section 5.
+
+6
+C. Heunen and J. Sigal
+Definition 6. Let (V, ∗, J, ◦, I) be a duoidal category and (M, ⊕, e) a monoidal
+category. A V-Freyd category over M consists of
+– a bifunctor C: Mop × M → V
+– an extranatural family idt: I → C(a, a), meaning C(id, f).idt = C(f, id).idt
+– an extranatural family seq: C(a, b)◦C(b, c) → C(a, c), meaning seq is natural
+in a and c, and seq.(id ◦ C(f, id)) = seq.(C(id, f) ◦ id)
+– a morphism zero: J → C(e, e)
+– a natural family par: C(a1, b1) ∗ C(a2, b2) → C(a1 ⊕ a2, b1 ⊕ b2)
+satisfying the following axioms:
+(i) idt is the identity for seq, that is, seq.(idt ◦ id) = λ and symmetrically;
+(ii) seq is associative, that is, seq.(seq ◦ id) = seq.(id ◦ seq).α;
+(iii) zero is the identity for par, that is, C(λ−1, λ).par.(zero ∗ id) = λ and sym-
+metrically;
+(iv) par is associative, that is, C(α−1, α).par.(par ∗ id) = par.(id ∗ par).α;
+(v) idt respects zero via idt.ǫ = zero;
+(vi) idt respects par via idt.∇ = par.(idt ∗ idt);
+(vii) seq respects zero via seq.(zero ◦ zero).∆ = zero;
+(viii) seq respects par via seq.(par ◦ par).ζ = par.(seq ∗ seq).
+See Appendix A for diagrams expressing the axioms.
+Definition 7. A morphism of V-Freyd categories consists of a strong monoidal
+functor F0 : M → M′ and a natural transformation F1 : C(a, b) → C′ (F0a, F0b)
+satisfying:
+– F1.idt = idt′;
+– F1.seq = seq′. (F1 ◦ F1);
+– C′ (id, µ) .par′. (F1 ∗ F1) = C′ (µ, id) .F1.par.
+V-Freyd categories and morphisms between them form a category V-Freyd.
+Our definition differs from the duoidally enriched categories of Batanin and
+Markl [4] in a few important ways. They use ∗ for sequencing and ◦ for par-
+allel composition. Their analogues to axioms v to viii are idt = zero.ǫ, idt =
+par.(idt ◦ idt).∆, seq.(zero ∗ zero) = zero.∇, and seq.(par ∗ par) = par.(seq ◦ seq).ζ.
+Additionally, their monoidal structure is more enriched while we inherit ours
+from a Set-category, namely M. Thus, we believe both notions are not inter-
+expressible.
+3
+Examples
+This section works out three applications of duoidally enriched Freyd categories:
+resource management (in Section 3.1), indexed state (in Section 3.2), and Kleisli
+categories of Lawvere theories (in Section 3.3).
+
+Duoidally enriched Freyd categories
+7
+3.1
+Stateful functions and separated monoids
+To deal with resources abstractly, we first introduce the novel notion of a sepa-
+rated monoid.
+Definition 8. A monoid (M, •, e) is separated when it comes with a binary
+relation ∥ such that: e∥m and m∥e; and mm′∥n iff m∥n and m′∥n; and m∥nn′
+iff m∥n and m∥n′.
+Examples include (N, +, 0) with x∥y iff x = 0 or y = 0; finite subsets
+(Pf(R), ∪, ∅) of a fixed set R, with P∥Q iff P ∩Q = ∅; and products of separated
+monoids under pointwise separation. Separated monoids parametrise duoidal
+categories of resources as follows.
+Definition 9. Let (M, ∥) be a separated monoid. The category LabelM of M-
+labelled sets has as objects functions ℓ: A → M and as morphisms functions
+f : A → A′ with ℓ′f = ℓ. This category has a monoidal structure • as follows:
+on objects, ℓ • ℓ′ : A × A′ → M sends (a, a′) to ℓ(a) • ℓ′(a′); on morphisms,
+f•f ′ = f×f ′; the unit cste : 1 → M picks out e ∈ M. There is a second monoidal
+structure ∥ as follows: on objects, ℓ∥ℓ′ is the restriction of ℓ • ℓ′ to {(a, a′) |
+ℓ(a)∥ℓ′(a′)}; on morphisms, f∥f ′ = f ×f ′. The category (LabelM, ∥, cste, •, cste)
+is duoidal with ζ : (ℓ1 • ℓ′
+1) ∥ (ℓ2 • ℓ′
+2) → (ℓ1∥ℓ2) • (ℓ′
+1∥ℓ′
+2) the restricted version of
+the ζ for (Set, ×, 1, ×, 1).
+Think of objects in LabelM as sets of elements labelled with their resource
+needs. The multiplication of M combines resources, and the separation ∥ relates
+non-conflicting resources. We will now describe an enriched Freyd category where
+morphisms are labelled by resources as in the introduction.
+Fix a countable family R = {x, y, z, . . .} of sets which we think of as resources.
+The set Pf(R) of finite subsets of R is a monoid under union, and becomes a
+separated monoid under disjointness. For set of resources Q ∈ Pf(R), fix a
+product of sets Πx∈Qx =: ΠQ which thus combines the resources in Q. Write
+πQ′ : ΠQ → ΠQ′ for the projection if Q′ ⊆ Q, and given a map f : a × ΠQ′ →
+b × ΠQ′ for sets a and b, write f Q
+Q′ for the map a × ΠQ → b × ΠQ induced by f
+when Q′ ⊆ Q which leaves the extra resources Q \ Q′ unchanged.
+We will define a LabelPf (R)-Freyd category over Set of state-transforming
+functions. Let C(a, b) be the function from the disjoint union of Set(a× ΠQ, b×
+ΠQ) over Q ∈ Pf(R) to Pf(R), that sends f : a×ΠQ → b×ΠQ to Q. Thus, a map
+f ∈ C(a, b) with label Q is an effectful computation from a to b which can effect
+only resources in Q. This becomes a bifunctor under pre- and post-composition.
+Writing ∪ for • and ∩ for ∥ for the sake of concreteness, the structure maps are:
+idt: cst∅ → C(a, a)
+zero: cst∅ → C(1, 1)
+⋆ �→ (∅, ida×1)
+⋆ �→ (∅, id)
+seq: C(a, b) ∪ C(b, c) → C(a, c)
+((P, f), (Q, g)) �→
+�
+P ∪ Q, gP ∪Q
+Q
+.f P ∪Q
+P
+�
+
+8
+C. Heunen and J. Sigal
+par: C(a, b) ∩ C(a′, b′) → C(a × a′, b × b′)
+((Q, f), (Q′, f ′)) �→
+�
+Q ∪ Q′,
+�
+id × ⟨πQ, πQ′⟩−1�
+m−1.(f × f ′).m. (id × ⟨πQ, πQ′⟩)
+�
+where ⟨πQ, πQ′⟩ : ΠQ∪Q′ → ΠQ × ΠQ′ is invertible because Q ∩ Q′ = ∅ and m is
+middle-four interchange. So par places maps in parallel up to rearranging state.
+3.2
+Indexed state
+An important computational effect is global state. However, it is often inflexible
+as the type of storage remains constant over time. In this example the type can
+vary. We use the duoidal category of finitary endofunctors on Set of Example 5 to
+give a [Set, Set]f-Freyd category over Set based on the state monad (s× (−))s,
+extending Atkey’s example [3]. Define C(a, b) = (b × (−))a, which is a bifunctor
+via pre- and post-composition. The natural structure maps are:
+idtX : X → (a × X)a
+zeroX : X → (1 × X)1
+x �→ λa.(x, a)
+x �→ λ ⋆ .(x, ⋆)
+seqX :
+�
+b ×
+�
+(c × X)b��a
+→ (c × X)a
+f �→ eval.f
+parX :
+� Y,Z XY ×Z × (b × Y )a × (c × Z)a′
+→ ((b × c) × X)a×a′
+(k, f, g) �→ (id × k).m.(f × g)
+where eval: b×(c × X)b → c×X is the evaluation map and m is the middle-four
+interchange. idt and seq are the unit and multiplication of a state monad but
+with varying types of state.
+3.3
+Kleisli categories of Lawvere theories
+Lawvere theories model effectful computations. Functional programmers might
+be more familiar with Kleisli categories of monads, to which they are closely
+related. Here we describe an indexed version, which models independent effects
+in parallel. Let Law be the category of Lawvere theories. Its initial object is the
+theory S of sets, the unit for the tensor product ⊗ of Lawvere theories [10]. This
+makes Law a symmetric monoidal category, with the special property that there
+exist inclusion maps φi : Li → L1 ⊗ L2. Thus the functor category [Law, Set] is
+monoidal under Day convolution with unit the constant functor Law(S, −) ≃ 1.
+As this category also has products, Example 3 makes it duoidal.
+Now, Law is equivalent to the category of finitary monads [1, Chapter 3]: any
+Lawvere theory L induces a monad T (L), and any map θ of Lawvere theories
+induces a monad morphism T (θ). Every monad T on Set is canonically bistrong:
+there are maps stT : a × T b → T (a × b) and st′T : T a × b → T (a × b) making the
+
+Duoidally enriched Freyd categories
+9
+two induced maps (a × T b) × c → T ((a × b) × c) equal. Each monad morphism
+T (θ) preserves strength: T (θ)a×b.stT (L) = stT (L′).(id × T (θ)b).
+We now show a [Law, Set]-Freyd category over Set given by the Kleisli
+construction on Lawvere theories. Define on objects C(a, b) = T (−)(b)a, and on
+morphisms C(f, g): C(a, b) ⇒ C(a′, b′) by C(f, g)L(k) = T (L)(g).k.f, finally:
+idtL : 1 → T (L)(a)a
+zeroL : 1 → T (L)(1)1
+⋆ �→ η
+⋆ �→ η
+seqL : T (L)(b)a × T (L)(c)b → T (L)(c)a
+(f, g) �→ µ.T (L)g.f
+parL :
+� L1,L2 Law(L1⊗L2, L)×T (L1)(b1)a1 ×T (L2)(b2)a2 → T (L)(b1×b2)a1×a2
+(θ, f1, f2) �→ T (θ).µ.T (L1 ⊗ L2)(st′).st. (T (φ1) × T (φ2)) . (f1 × f2)
+Intuitively, par lets us put Kleisli maps in parallel as long as their effects are
+forced to commute (by ⊗). So idtL and seqL are the identity and composition for
+the Kleisli category of T (L). The definition of parL seems noncanonical because
+of the use of T (L1⊗L2)(st′).st, but it is not: µ.T (L1⊗L2)(st′).st. (T (φ1) × T (φ2))
+and µ.T (L1 ⊗ L2)(st).st′. (T (φ1) × T (φ2)) are equal by definition of L1 ⊗ L2.
+4
+Adjunction between Subset-Freyd and Freyd
+Now let us explain how V-Freyd categories generalise Freyd categories. Our
+approach is similar to Power’s [19] in that we work with Subset-enriched cate-
+gories. Take V = Subset and consider a Subset-Freyd category C: Mop×M →
+Subset; it comes equipped with a premonoidal-like structure via par and idt. We
+call a morphism f � C(a, b) which is a member of the distinguished subset a
+distinguished morphism. We will show they are central in the premonoidal sense.
+First observe that idt: (1, 1) → C(a, a) is a Subset morphism, so idt(⋆) �
+C(a, a) is distinguished. Thus, for g ∈ C(a′, b′) we find
+�
+idt(⋆), g
+�
+∈ C (a, a) ⊗
+C(a′, b′) by definition of ⊗. Hence the pair is in the domain of par, giving
+par
+�
+idt(⋆), g
+�
+∈ C(a ⊕ a′, a ⊕ b′) which we denote by a ⋊par g. Similarly, for any
+f ∈ C(a, b) we have f⋉parb′ ∈ C(a⊕b′, b⊕b′). We may also construct f⋉para′ and
+b⋊parg. Hence it makes sense to ask if seq(a⋊parg, f⋉parb′) = seq(f⋉para′, b⋊parg),
+and if this equation (and its mirrored version by placing g on the left) holds for
+all f, we call g central in analogy to the binoidal case from Definition 1.
+Next we claim that distinguished morphisms g � C(a′, b′) are central. Note
+that
+�
+idt(⋆), g
+�
+� C(a′, a′) × C(a′, b′) and
+�
+g, idt(⋆)
+�
+� C(a′, b′) × C(b′, b′)
+are distinguished and in the domain of seq. For any f ∈ C(a, b), we have
+�
+(idt(⋆), f), (g, idt(⋆))
+�
+∈
+�
+C(a, a)×C(a, b)
+�
+⊗
+�
+C(a′, b′)×C(b′, b′)
+�
+and similarly
+�
+(f, idt(⋆)), (idt(⋆)), g
+�
+∈
+�
+C(a, b)×C(b, b)
+�
+⊗
+�
+C(a′, a′)×C(a′, b′)
+�
+by definition
+of ⊗ and are thus in the domain of seq⊗seq. We now apply par.(seq⊗seq) to each
+pair and find they equal par (f, g). Axiom viii states par.(seq ⊗ seq) = seq.(par ×
+par).ζ and therefore seq(a ⋊par g, f ⋉par b′) = par(f, g) = seq(f ⋉par a′, b ⋊par g)
+(and the mirrored equation analogously), so g is central.
+
+10
+C. Heunen and J. Sigal
+Distinguished morphisms have their centrality preserved by Subset-Freyd
+maps as they are mapped to distinguished morphisms, but central morphisms
+need not be distinguished. Thus, Definition 7 ensures that membership in the
+distinguished subset is preserved by Subset-Freyd maps, so centrality of distin-
+guished morphisms of C is preserved by all maps. Furthermore, bifunctorality of
+C ensures that for all f ∈ M (a, b), C (id, f) (idt (⋆)) � C(a, b), and so the image
+of M is central and this centrality is preserved. The same is true for a Freyd
+category J : M → C, the image of M under J is central and this centrality is
+preserved by all morphisms of Freyd categories. This preservation requirement
+is the difference between Freyd categories and Subset-Freyd categories: the lat-
+ter can require more central morphisms than the image of M to have centrality
+preserved. The rest of this subsection proves that there is an adjunction between
+Freyd and Subset-Freyd. The left adjoint F: Freyd → Subset-Freyd is a
+free functor that only requires the image of M to be preserved. The right adjoint
+U: Subset-Freyd → Freyd forgets the extra distinguished central morphisms.
+Proposition 1. There is a functor F: Freyd → Subset-Freyd defined on ob-
+jects as F(C)(a, b) =
+�
+J(M(a, b)), C(a, b)
+�
+and F(C)(f, g) = C(Jf, Jg).
+Proof (Proof sketch). F(C) is well-defined on morphisms because J is identity-
+on-objects, and it is bifunctorial by bifunctorality of hom and functorality of J.
+The structure maps are:
+– idt: (1, 1) → F(C)(a, a) is ∗ �→ id;
+– seq: F(C)(a, b) × F(C)(b, c) → F(C)(a, c) is (f, g) �→ g.f;
+– zero: (1, 1) → F(C)(e, e) is ∗ �→ id;
+– par: F(C)(a1, b1)⊗F(C)(a2, b2) → F(C)(a1⊕a2, b1⊕b2) is (f1, f2) �→ f1⊗f2;
+this is well-defined whether (f1, f2) is in J(M(a1, b1)) × C(a2, b2) or is in
+C(a1, b1) × J(M(a2, b2)) as J preserves centrality of M = Z(M).
+The (extra)naturality of the structure maps comes from the extranaturality of
+composition, functorality of M’s monoidal product, and J being a strict pre-
+monoidal functor preserving centrality. Axioms i and ii are true by C’s com-
+position, axioms iii and iv follow from the strict premonoidality of J and the
+naturality of unitors and associators, and axioms v and vii are trivial. Finally,
+axioms vi and viii follow from C’s premonoidal structure.
+Finally, it is easy to check that F(F) = F is well-defined and functorial.
+Proposition 2. There is a functor U: Subset-Freyd → Freyd that sends an
+object C: Mop × M → Subset to the functor J : M → U(C) defined as follows:
+– the category U(C) has the same objects as M but homsets U(C)(a, b) = A
+where (X, A) := C(a, b), with composition g.f = seq(f, g), and identity ida =
+idt(⋆);
+– the functor J is the identity on objects and J(f) = C(ida, f)(idt(⋆)) on
+morphisms;
+– the binoidal structure on U(C) is a ⋊ b = a ⋉ b = a ⊕M b on objects and
+a ⋊ f = par(idt(⋆), f) and f ⋉ b = par(f, idt(⋆)) on morphisms.
+
+Duoidally enriched Freyd categories
+11
+Proof (Proof sketch). It is mechanical to check that U(C) is a well-defined Freyd
+category. Given a morphism F = (F0, F1) from C: Mop × M → Subset to
+C′ : M′op × M′ → Subset, we must define a morphism U (F) : JU(C) → JU(C′).
+We define U (F)0 to be the strong monoidal functor F0, and define U (F)1 as
+F0 on objects and as F1 on homsets. This is a well-defined morphism of Freyd
+categories. It is straightforward to verify that U is functorial.
+Theorem 1. The functors of Propositions 1 and 2 form an adjunction F ⊣ U.
+Proof (Proof sketch). For the unit η of the adjunction we may take the identity
+as a short calculation shows that UF = IdFreyd. A second calculation shows that
+for a Subset-Freyd category C: Mop × M → Subset, we have FU (C) (a, b) =
+�
+C(id, M(a, b))(idt(⋆)), C(a, b)
+�
+, and so each component ǫC : FU (C) → C of the
+counit can be defined as ǫC0 = IdM and ǫC1 = idC(a,b) : FU (C) (a, b) → C (a, b).
+Note that the underlying Set map for ǫC1 is the identity map, but this is not
+an identity in Subset. This counit is natural, and this unit and counit satisfy
+the zig-zag identities for an adjunction.
+Recall that an adjunction F ⊣ G with unit η: Id → GF and counit ǫ: FG →
+Id is idempotent if any of Fη, ǫF, ηG, or Gǫ are invertible [9, Section 3.8]. In
+the case of the previous theorem, clearly Fη is invertible as η is the identity, so
+this adjunction is idempotent. This leads to the following theorem detailing just
+how Subset-Freyd generalises Freyd.
+Theorem 2. The full coreflective subcategory of Subset-Freyd consisting of
+objects C: Mop × M → Subset for which C (a, b) has the distinguished subset
+C (id, M (a, b)) (idt (⋆)) is equivalent to Freyd.
+Proof (Proof sketch). The following is a general fact about idempotent adjunc-
+tions [9, Section 3.8]: if F ⊣ G is an idempotent adjunction with associated
+monad T = GF and comonad S = FG: A → A, then the category of algebras
+of T is equivalent to the category of coalgebras of S, and the category of coal-
+gebras of S is a full coreflective subcategory of A given by the objects of A for
+which ǫ: SA → A is invertible.
+The category of algebras for the monad UF = Id is equivalent to Freyd, which
+is therefore a full coreflective subcategory of Subset-Freyd. Furthermore, we
+can characterize the objects of this subcategory as Subset-Freyd categories C
+for which to ǫ: FU (C) → C is invertible. Concretely, this means ǫC1 must be
+invertible in Subset. But the underlying Set map is the identity, establishing
+the claim.
+5
+Abstract characterisation
+Definition 6 is a very concrete way to specify a V-Freyd category, involving a
+nontrivial amount of data and axioms. Yet it fits together, as we show in this
+subsection by giving a characterisation in the style of [12]. Recall that a natu-
+ral transformation between lax monoidal functors is monoidal when it respects
+
+12
+C. Heunen and J. Sigal
+the coherence maps µ and η. Write MonCatlax
+�
+C, D
+�
+for the category of lax
+monoidal functors from C to D and monoidal natural transformations between
+them. If A and B are monoidal categories, so are Aop and A × B, with com-
+ponentwise structure. Thus we may consider MonCatlax
+�
+Mop × M, V
+�
+for the
+monoidal category (V, ∗, J). We will lift the other monoidal structure (V, ◦, I)
+to MonCatlax
+�
+Mop × M, V
+�
+and prove that a V-Freyd category is exactly a
+monoid with respect to this monoidal structure, under additional assumptions
+on V. Most proofs are deferred to Appendix B.
+Definition 10. A duoidal category V is a cocomplete duoidal category if V
+is cocomplete and ∗ and ◦ are cocontinuous in each argument. In a cocomplete
+duoidal category, the following diagrams and their symmetric versions commute:
+J ∗ colim(D)
+colim (J ∗ D)
+colim(D)
+≃
+≃
+≃
+I ◦ colim(D)
+colim (I ◦ D)
+colim(D)
+≃
+≃
+≃
+where the top isomorphism is colimit preservation and the others are induced by
+unitors.
+The rest of this subsection assumes that V is a cocomplete duoidal category;
+importantly, this is satisfied for presheaf categories. This restriction will be mit-
+igated in Section 6.2 for small V. We also assume that M is small. All laxness is
+with respect to (V, ∗, J). We now lift (V, ◦, I); first the unit, then composition.
+Proposition 3. There is a lax monoidal functor homM : Mop×M → V defined
+on objects as homM(a, b) = �
+σ∈homM(a,b) I.
+Proposition 4. If S, T : Mop × M → V are lax monoidal functors, the functor
+S ˆ◦ T : Mop × M → V defined using coends as (S ˆ◦ T )(a, c) =
+� b T (a, b) ◦ S(b, c)
+is lax monoidal.
+Proposition 5.
+�
+MonCatlax(Mop × M, V), ˆ◦, homM
+�
+is a monoidal category.
+Proof. Lemmas 5 to 7 in Appendix B show that the ◦-composition is functorial,
+associative, and has homM as left and right unit. That leaves only the trian-
+gle and pentagon identities, which follow from cocontinuity and the equivalent
+identities for ◦.
+With these preparations we can characterise V-Freyd categories abstractly.
+Theorem 3. Let V be a cocomplete duoidal category. Then a V-Freyd category
+C: M × Mop → V is exactly a monoid in MonCatlax(Mop × M, V).
+Proof (Proof sketch). A monoid C in MonCatlax(Mop × M, V) consists of
+two maps e: homM → C and m: C ˆ◦ C → C, inducing idt and seq satisfying
+unit and associativity conditions. The lax monoidal structure of C gives zero
+and par respectively, so identity and associativity conditions follow. Finally, the
+components of e and m are monoidal natural transformations, ensuring that idt
+and seq respect zero and par.
+
+Duoidally enriched Freyd categories
+13
+We note that by Fujii’s observations [7], PROs and PROPs are equivalent to Set-
+Freyd categories over N and P respectively because (Set, ×, ×) is a cocomplete
+duoidal category.
+6
+Change of enrichment
+After defining enriched categories, a natural next step is to consider a change of
+enrichment. Any monoidal functor V → W induces a functor V-Cat → W-Cat.
+We will show that the same holds for the appropriate type of functors between
+duoidal categories and enriched Freyd categories (in Section 6.1). We will then
+use that to alleviate the restriction of duoidal cocompleteness on the abstract
+characterisation of Section 5 (in Section 6.2) at the cost of losing a direction
+of the correspondence. Finally, changing enrichment along a forgetful functor
+gives an underlying (unenriched) Freyd category J : M → C with C monoidal,
+which we show recovers the pure computations in the examples of Section 3 (in
+Section 6.3).
+6.1
+Lifting duoidal functors
+To talk about change of enrichment, we first need to define the appropriate type
+of functor between the enriching categories along which to change.
+Definition 11. [2, Definition 6.54] Take duoidal categories (V, ∗V, JV, ◦V, IV)
+and (W, ∗W, JW, ◦W, IW). A functor F : V→W is a double lax monoidal func-
+tor when equipped with η∗, µ∗, η◦, and µ◦ such that (F, η∗, µ∗) is lax monoidal
+for ∗V and ∗W, (F, η◦, µ◦) is lax monoidal for ◦V and ◦W, and the following
+diagrams commute:
+(F(A) ◦W F(B)) ∗W (F(C) ◦W F(D))
+(F(A) ∗W F(C)) ◦W (F(B) ∗W F(D))
+F (A ◦V B) ∗W F (C ◦V D)
+F (A ∗V C) ◦W F (B ∗V D)
+F ((A ◦V B) ∗V (C ◦V D))
+F ((A ∗V C) ◦V (B ∗V D))
+µ◦∗µ◦
+µ∗
+ζ
+µ∗◦µ∗
+µ◦
+F ζ
+F(JV)
+F(IV)
+JW
+IW
+F ǫ
+η∗
+ǫ
+η◦
+JW
+F(JV)
+F (JV ◦V JV)
+JW ◦W JW
+F(JV) ◦W F(JV)
+η∗
+F ∆
+∆
+η∗◦η∗
+µ◦
+IW
+F(IV)
+F (IV ∗V IV)
+IW ∗W IW
+F(IV) ∗W F(IV)
+η◦
+F ∇
+∇
+η◦∗η◦
+µ∗
+Here now is the change-of-enrichment theorem for duoidally enriched Freyd
+categories.
+Theorem 4. Let F : V → W be a double lax monoidal functor. For a V-Freyd
+category C: Mop×M → V, define F(C)(a, b) := F(C(a, b)) with structure maps
+idtF := Fidt.η◦, seqF := Fseq.µ◦, zeroF := Fzero.η∗, and parF := Fpar.µ∗. For
+a map G = (G0, G1): C → C′, define F(G) := (G0, FG1). This F is a functor
+V-Freyd → W-Freyd.
+
+14
+C. Heunen and J. Sigal
+Proof. See Appendix C.
+Example 8. Let M and N be separated monoids and φ: M → N a homo-
+morphism such that φ(m) ∥ φ(m′) implies m ∥ m′. Then φ induces a double
+lax monoidal functor φ∗ : LabelM → LabelN given by ℓ �→ φ.ℓ on objects
+and f �→ f on morphisms. The maps η∗, µ∗, and η◦ are all identities, while
+µ◦ : {(a, a′) | φ.ℓ(a)∥φ.ℓ′(a′)} → {(a, a′) | ℓ(a)∥ℓ′(a′)} is the inclusion, and so
+φ∗ is clearly double lax monoidal. Apply Theorem 4 to the example from Sec-
+tion 3.1 along the map Pf(!): Pf(R) → Pf(1), which is a homomorphism such
+that Pf(!)(P) ∩ Pf(!)(Q) = ∅ implies P ∩ Q = ∅. We get Pf(!)∗(C)(a, b) =
+�
+Q∈Pf(R) (Set(a × ΠQ, b × ΠQ)) → Pf(1), (Q, f) �→ ∅ if Q = ∅, else 1. This
+change of enrichment alters the example to only allowing maps to be put in
+parallel if at least one of them requires no resources.
+Example 9. We can use change of enrichment for the indexed state example of
+Section 3.2. Consider Example 6 for (Set, ×, 1) (using universes for this example
+to avoid size issues). There, the definition of Day convolution ×Day simplifies to
+(P ×DayQ)(a, b) =
+� b2,b2 Set(b1×b2, b)×P(a, b1)×Q(a, b2) and its unit becomes
+k(a, b) = b. The Kleisli construction turns a finitary endofunctor on Set into a
+profunctor as follows. Define Kl: [Set, Set]f → Prof(Set) by Kl(F)(a, b) =
+Set(a, Fb), and coherence maps:
+η∗ : k → Kl(Id)
+µ∗ : Kl(F1) ×Day Kl(F2) → Kl(F1 ×Day F2)
+b �→ cstb
+(k, f1, f2) �→ λa.(k, f1(a), f2(a))
+η◦ : hom → Kl(Id)
+µ◦ : Kl(F) ⋄ Kl(G) → Kl(F ◦ G)
+f �→ f
+(f, g) �→ Fg.f
+This makes Kl a double lax monoidal functor. Theorem 4 then gives a Prof(Set)-
+Freyd category defined by Kl(C)(a, b)(x, y) := Set(x, (b × y)a).
+6.2
+Yoneda embedding
+The Yoneda embedding of a small monoidal category is a strong monoidal functor
+with respect to Day convolution. This extends to small duoidal categories.
+Proposition 6. The Yoneda embedding V→[Vop, Set] is a double lax monoidal
+functor from small (V, ∗, J, ◦, I) to
+�
+[Vop, Set], ∗Day, V(−, J), ◦Day, V(−, I)
+�
+.
+Proof. See [11] for the fact that it is lax monoidal for each monoidal structure
+separately. The diagrams of Definition 11 are verified straightforwardly.
+It follows from Theorem 4 that every V-Freyd category for small V induces a
+[Vop, Set]-Freyd category. But [Vop, Set] is duoidally cocomplete, so the setting
+in which the abstract characterisation of Theorem 3 applies. We conclude that
+the characterisation extends beyond the duoidally cocomplete setting in the sense
+that every V-Freyd category for small V induces a monoid in MonCatlax(Mop×
+M, [Vop, Set]).
+
+Duoidally enriched Freyd categories
+15
+6.3
+Forgetful functors
+Any category enriched in a monoidal category V has an underlying (unenriched)
+category, got by changing the enrichment along the ‘forgetful’ monoidal functor
+V(I, −): V → Set. A similar process plays out for duoidal categories.
+Proposition 7. Let (V, ∗, J, ◦, I) be a duoidal category and write φ: J → J ∗ J
+for the inverse of the unitors. Then V(J, −): V → Set is a double lax monoidal
+functor with coherence maps:
+η∗ : 1 → V(J, J)
+µ∗ : V(J, A1) × V(J, A2) → V(J, A1 ∗ A2)
+⋆ �→ id
+(f1, f2) �→ (f1 ∗ f2).φ
+η◦ : 1 → V(J, I)
+µ◦ : V(J, A1) × V(J, A2) → V(J, A1 ◦ A2)
+⋆ �→ ǫ
+(f1, f2) �→ (f1 ◦ f2).∆
+Applying Theorem 4 along the forgetful functor of the previous proposition in
+the case of the examples of Section 3 will show that this recovers the underlying
+pure computations. Note that a Set-Freyd category C has a trivial instance of
+the exchange axiom, axiom viii, and so C is a monoidal category with identity-
+on-objects monoidal functor J : M → C.
+Example 10. Applying the forgetful functor to the stateful function example of
+Section 3.1 results in the (unenriched) category with LabelPf(R)(cst∅, C(a, b))
+as the homsets. Because labels are preserved, the morphisms in this (unenriched)
+category are exactly the elements of C(a, b) which have label ∅, i.e. maps a×1 →
+b × 1 which are pure functions.
+Example 11. Changing the enrichment of the indexed state example from Sec-
+tion 3.2 along the forgetful functor gives the (unenriched) category with homsets
+[Set, Set]f (Id, C(a, b)). If φ: Id → (b × (−))a is such a natural transformation,
+then the function φ1 : 1 → (b × 1)a, which is equivalent to choosing a function
+f : a → b, completely determines φ, because for any set X and x ∈ X by nat-
+urality 1
+x−→ X
+φX
+−−→ (b × X)a = 1
+φ1
+−→ (b × 1)a
+(id×x).−
+−−−−−−→ (b × X)a, whence
+φX(x)(a) = (f(a), x). Therefore the morphisms in this (unenriched) category
+are all functions a → b.
+Example 12. Changing the enrichment of the Kleisli categories of Lawvere theo-
+ries example from Section 3.3 along the forgetful functor gives the (unenriched)
+category with homsets [Law, Set](1, C(a, b)). Consider such a natural transfor-
+mation φ: 1 → T (−)(b)a. It is completely determined by its component at S. For
+any L let ι: S → L be the unique map, then naturality implies φL = T (ι)φS.
+Furthermore, φS(⋆) ∈ T (S)(b)a = ba. So the morphisms in this (unenriched)
+category again are all functions a → b.
+
+16
+C. Heunen and J. Sigal
+7
+Conclusion
+We have defined a version of Freyd categories enriched over any duoidal category
+V, and morphisms between them. We used various duoidal categories to give ex-
+amples based on separation of resources, parameterised monads, and the Kleisli
+construction for Lawvere theories. By enriching with Subset, we have proven
+that the category of Freyd categories Freyd is a full coreflective subcategory
+of Subset-Freyd, thus establishing that V-Freyd categories indeed generalise
+Freyd categories. Additionally, we proved an abstract characterisation of V-
+Freyd categories over small M for duoidally cocomplete V, they are monoids
+in MonCatlax
+�
+Mop × M, V
+�
+. Finally, we provided change of enrichment and
+examples thereof.
+Future work There are several directions for further investigation:
+– The abstract characterisation of Section 5 may be part of a larger structure,
+namely a bicategory with proarrow equipment, whose objects are monoidal
+categories, arrows are strong monoidal functors, proarrows are lax monoidal
+profunctors, and cells are lax monoidal natural transformations. In this set-
+ting, a V-Freyd category would be a monad and the vertical monad mor-
+phisms would be a V-Freyd morphism. This would enable applying general
+constructions for monads in a bicategory.
+– Relatedly, an fc-multicategory structure on MonCatlax(Mop × M, V) may
+bypass cocompleteness in characterising V-Freyd categories as monoids.
+– The abstract characterisation of Section 5 also uses the free V-category on
+M. It may be fruitful to change the definition of a V-Freyd category to be
+a V-functor J : M → C where we extend V-categories in a way similar to
+Morrison and Penneys [16].
+– Freyd categories can have the property of being closed. In this case they
+induce a strong monad. A similar definition may be possible for V-Freyd
+categories. This could determine a higher-order semantics for effectful pro-
+grams based on duoidal categories. A nontrivial definition of closure may
+require a V-category M that is not free.
+– Our original motivation stemmed from the desire for semantics combining
+differentiable and probabilistic programming, in particular, the possibility of
+having a linear structure for the probabilistic fragment and a cartesian one
+for differentiable terms. Prof-Freyd categories may provide a useful separa-
+tion to aid the desired distinction between linear and cartesian properties.
+Acknowledgments We would like to thank Robin Kaarsgaard, Ohad Kam-
+mar, and Matthew Di Meglio for their input and encouragement, as well as the
+reviewers of all versions of this work.
+References
+1. Adamek, J., Rosicky, J.: Locally presentable and accessible categories. Cambridge
+University Press (1994). https://doi.org/10.1017/CBO9780511600579
+
+Duoidally enriched Freyd categories
+17
+2. Aguiar, M., Mahajan, S.: Monoidal Functors, Species and Hopf Algebras. American
+Mathematical Society (2010). https://doi.org/10.1090/crmm/029
+3. Atkey, R.: Algebras for parameterised monads. In: Kurz, A., Lenisa, M.,
+Tarlecki,
+A.
+(eds.)
+Algebra
+and
+Coalgebra
+in
+Computer
+Science,
+Lec-
+ture
+Notes
+in
+Computer
+Science,
+vol.
+5728,
+pp.
+3–17.
+Springer
+(2009).
+https://doi.org/10.1007/978-3-642-03741-2_2
+4. Batanin,
+M.,
+Markl,
+M.:
+Centers
+and
+homotopy
+centers
+in
+enriched
+monoidal
+categories.
+Advances
+in
+Mathematics
+230,
+1811–1858
+(2012).
+https://doi.org/10.1016/j.aim.2012.04.011
+5. Day, B.: On closed categories of functors. In: Midwest Category Seminar. Lecture
+Notes in Mathematics, vol. 137, pp. 1–38 (1970)
+6. Forcey, S.: Enrichment over iterated monoidal categories. Algebraic & Geometric
+Topology 4, 95–119 (2004). https://doi.org/10.2140/agt.2004.4.95
+7. Fujii, S.: A unified framework for notions of algebraic theory. Theory and Appli-
+cations of Categories 34(40), 1246–1316 (2019)
+8. Garner, R., López Franco, I.: Commutativity. Journal of Pure and Applied Algebra
+220(5), 1707–1751 (2016). https://doi.org/10.1016/j.jpaa.2015.09.003
+9. Grandis, M.: Category theory and applications: a textbook for beginners. World
+Scientific, 2 edn. (Apr 2021). https://doi.org/10.1142/12253
+10. Hyland, M., Plotkin, G., Power, J.: Combining effects: sum and tensor. Theor.
+Comput. Sci. 357(1–3), 70–99 (2006). https://doi.org/10.1016/j.tcs.2006.03.013
+11. Im, G.B., Kelly, G.M.: A universal property of the convolution monoidal
+structure.
+Journal
+of
+Pure
+and
+Applied
+Algebra
+43,
+75–88
+(1986).
+https://doi.org/10.1016/0022-4049(86)90005-8
+12. Jacobs,
+B.,
+Heunen,
+C.,
+Hasuo,
+I.:
+Categorical
+semantics
+for
+Ar-
+rows.
+Journal
+of
+Functional
+Programming
+19(3–4),
+403–438
+(2009).
+https://doi.org/10.1017/S0956796809007308
+13. Lack, S.: Composing PROPs. Theory and Applications of Categories 13(9), 147–
+163 (2004)
+14. Levy, P.B., Power, J., Thielecke, H.: Modelling environments in call-by-value
+programming languages. Information and Computation 185(2), 182–210 (2003).
+https://doi.org/10.1016/S0890-5401(03)00088-9
+15. Moggi, E.: Notions of computation and monads. Information and Computation 93,
+55–92 (1991). https://doi.org/10.1016/0890-5401(91)90052-4
+16. Morrison, S., Penneys, D.: Monoidal categories enriched in braided monoidal
+categories. International Mathematical Research Notes 11, 3527–3579 (2019).
+https://doi.org/10.1093/imrn/rnx217
+17. Plotkin, G., Power, J.: Computational effects and operations: an overview. In:
+Domains. Electronic Notes in Theoretical Computer Science, vol. 73, pp. 149–163
+(2004). https://doi.org/10.1016/j.entcs.2004.08.008
+18. Power, J., Robinson, E.: Premonoidal categories and notions of computa-
+tion. Mathematical Structures in Computer Science 7(5), 453–468
+(1997).
+https://doi.org/10.1017/S0960129597002375
+19. Power,
+J.:
+Premonoidal
+categories
+as
+categories
+with
+alge-
+braic
+structure.
+Theoretical
+Computer
+Science
+278(1-2),
+303–
+321
+(May
+2002).
+https://doi.org/10.1016/S0304-3975(00)00340-6,
+https://www.sciencedirect.com/science/article/pii/S0304397500003406,
+pub-
+lisher: Elsevier
+20. Staton,
+S.:
+Freyd
+categories
+are
+enriched
+Lawvere
+theories.
+In:
+Proceed-
+ings
+of
+the
+Workshop
+on
+Algebra,
+Coalgebra
+and
+Topology.
+Electronic
+
+18
+C. Heunen and J. Sigal
+Notes
+in
+Theoretical
+Computer
+Science,
+vol.
+303,
+pp.
+197–206
+(2014).
+https://doi.org/10.1016/j.entcs.2014.02.010
+A
+Definition of V-Freyd category
+This appendix spells out the type diagrams of Definition 6 of V-Freyd categories.
+Extranaturality of idt:
+I
+C(b, b)
+C(a, a)
+C(a, b)
+idt
+C(f,id)
+idt
+C(id,f)
+Extranaturality of seq:
+C(a, b) ◦ C(b′, c)
+C(a, b′) ◦ C(b′, c)
+C(a, b) ◦ C(b, c)
+C(a, c)
+C(id,f)◦id
+seq
+id◦C(f,id)
+seq
+idt is the identity for seq:
+I ◦ C(a, b)
+C(a, a) ◦ C(a, b)
+C(a, b)
+λ
+seq
+idt◦id
+C(a, b) ◦ I
+C(a, b) ◦ C(b, b)
+C(a, b)
+ρ
+seq
+id◦idt
+seq is associative:
+(C(a, b) ◦ C(b, c)) ◦ C(c, d)
+C(a, b) ◦ (C(b, c) ◦ C(c, d))
+C(a, c) ◦ C(c, d)
+C(a, b) ◦ C(b, d)
+C(a, d)
+α
+id◦seq
+seq
+seq◦id
+seq
+zero is the identity for par:
+J ∗ C(a, b)
+C(e, e) ∗ C(a, b)
+C(a, b)
+C(e ⊕ a, e ⊕ b)
+λ
+zero∗id
+par
+C(λ−1,λ)
+C(a, b) ∗ J
+C(a, b) ∗ C(e, e)
+C(a, b)
+C(b ⊕ e, b ⊕ e)
+ρ
+id∗zero
+par
+C(ρ−1,ρ)
+
+Duoidally enriched Freyd categories
+19
+par is associative:
+(C(a1, b1) ∗ C(a2, b2)) ∗ C(a3, b3)
+C(a1, b1) ∗ (C(a2, b2) ∗ C(a3, b3))
+C(a1 ⊕ a2, b1 ⊕ b2) ∗ C(a3, b3)
+C(a1, b1) ∗ C(a2 ⊕ a3, b2 ⊕ b3)
+C((a1 ⊕ a2) ⊕ a3, (b1 ⊕ b2) ⊕ b3)
+C(a1 ⊕ (a2 ⊕ a3), b1 ⊕ (b2 ⊕ b3))
+α
+id∗par
+par
+par∗id
+par
+C(α−1,α)
+idt respects zero:
+J
+I
+C(e, e)
+ǫ
+idt
+zero
+idt respects par:
+I ∗ I
+C(a, a) ∗ C(b, b)
+I
+C(a ⊕ b, a ⊕ b)
+par
+idt∗idt
+∇
+idt
+seq respects zero:
+J
+J ◦ J
+C(e, e)
+C(e, e) ◦ C(e, e)
+zero
+zero◦zero
+∆
+seq
+seq respects par:
+(C(a1, b1)◦C(b1, c1))∗(C(a2, b2)◦C(b2, c2))
+(C(a1, b1)∗C(a2, b2))◦(C(b1, c1)∗C(b2, c2))
+C(a1, c1) ∗ C(a2, c2)
+C(a1 ⊕ a2, b1 ⊕ b2) ◦ C(b1 ⊕ b2, c1 ⊕ c2)
+C(a1 ⊕ a2, c1 ⊕ c2)
+ζ
+par◦par
+seq
+seq∗seq
+par
+B
+Proofs for abstract characterisation
+This appendix contains proofs of the abstract characterisation of V-Freyd cate-
+gories of Section 5. They rely on properties of V-Freyd categories listed in the
+following four lemmas, that are mechanical to verify.
+Lemma 1. The unitors of ◦ respect zero and par:
+ρ.zero = (zero ◦ ǫ).∆
+zero.λ = (ǫ ◦ zero).∆
+ρ.par = (par ◦ ∇).ζ.(ρ ∗ ρ)
+par.λ = (par ◦ ∇).ζ.(λ ∗ λ)
+
+20
+C. Heunen and J. Sigal
+Lemma 2. The associator of ◦ respects zero and par:
+α.(zero ◦ (zero ◦ zero)).(id ◦ ∆).∆ = ((zero ◦ zero) ◦ zero).(∆ ◦ id).∆
+α.(par ◦ (par ◦ par)).(id ◦ ζ).ζ = ((par ◦ par) ◦ par)).(ζ ◦ id).ζ.(α ∗ α)
+Lemma 3. The unitors of ∗ respect zero and par:
+id = (par ◦ par).ζ.(id ∗ ((zero ◦ zero).∆)).ρ
+id = (par ◦ par).ζ.(((zero ◦ zero).∆) ∗ id).λ
+Lemma 4. The associator of ∗ respects par:
+((par.(par ∗ id)) ◦ (par.(par ∗ id)).ζ.(ζ ∗ id) =
+((par.(id ∗ par)) ◦ (par.(id ∗ par)).ζ.(id ∗ ζ).α
+The previous lemmas require all the axioms of a duoidal category between
+them, except for ◦ being a monoid in (V, ∗, J). This latter property is used in
+the abstract characterisation.
+Proof (Proof of Proposition 3). Bifunctorality is inherited from homM. The
+coherence morphisms making it lax monoidal are η: J
+ǫ−→ I
+ιid0
+−−→ �
+σ I ∼=
+homM(e, e) and
+µ:
+� �
+σ1 I
+�
+∗
+� �
+σ2 I
+� ∼=
+�
+σ1,σ2 I ∗ I
+� ∇
+−−−→ �
+σ1,σ2 I
+[ισ1⊕σ2]σ1,σ2
+−−−−−−−−−→ �
+σ .
+The coherence diagrams commute by cocontinuity and the monoidal structure
+(I, ∇, ǫ).
+Proof (Proof of Proposition 4). The coherence morphisms are:
+ηSˆ◦T : J
+∆
+−→ J ◦ J
+ηS◦ηT
+−−−−→ T (e, e) ◦ S(e, e) →
+� b T (e, b) ◦ S(b, e) ∼= (S ˆ◦ T )(e, e)
+µSˆ◦T : (S ˆ◦ T )(a, c) ∗ (S ˆ◦ T )(a′, c′)
+≃
+� b,b′
+(T (a, b)◦S(b, c)) ∗ (T (a′, b′)◦S(b′, c′))
+�
+ζ
+−−→
+� b,b′
+(T (a, b)∗T (a′, b′)) ◦ (S(b, c)∗S(b′, c′))
+�
+µT ◦µS
+−−−−−→
+� b,b′
+T (a ⊕ a′, b ⊕ b′) ◦ S(b ⊕ b′, c ⊕ c′)
+→
+� b T (a ⊕ a′, b) ◦ S(b, c′ ⊕ c′) ≃ (S ˆ◦ T )(a ⊕ a′, c ⊕ c′)
+Cocontinuity and Lemmas 3 and 4 finish the proof.
+Lemma 5. The ◦-composition of Proposition 4 is functorial.
+Proof. It is easy to see that ˆ◦ is well-defined on objects. Bifunctorality for mor-
+phisms then follows from bifunctorality of ◦ and functorality of coends.
+
+Duoidally enriched Freyd categories
+21
+Lemma 6. The functor homM of Proposition 3 is the left and right identity of
+the ◦-composition of Proposition 4.
+Proof. The isomorphism on objects involves cocontinuity, the unitors of ◦, left
+Kan extending along the identity. Naturality is inherited from the naturality of
+the constructions involved. The unitors must also be monoidal natural transfor-
+mations, which is true via cocontinuity and Lemma 1.
+Lemma 7. The ◦-composition of Proposition 4 is associative.
+Proof. The isomorphism uses cocontinuity and the associator of ◦. Naturality is
+inherited from the naturality of the constructions involved. The associator is a
+monoidal natural transformation by cocontinuity and Lemma 2.
+C
+Proofs for change of enrichment
+Proof (Proof of Theorem 4). Axioms i to iv hold by the axioms for lax monoidal
+functors for the same reason lax monoidal functors preserve monoids. Axioms v
+to viii each require the use of an axiom of double lax monoidal functors as shown
+below.
+idtF .ǫ = Fidt.η◦.ǫ
+= Fidt.Fǫ.η∗
+= Fzero.η∗
+= zeroF
+idtF .∇ = Fidt.η◦.∇
+= Fidt.F∇.µ∗.(η◦ ∗ η◦)
+= Fpar.F(idt ∗ idt).µ∗.(η◦ ∗ η◦)
+= Fpar.µ∗.(Fidt ∗ Fidt).(η◦ ∗ η◦)
+= parF .(idtF ∗ idtF )
+seqF .(zeroF ◦ zeroF ).∆ = Fseq.µ◦.(Fzero ◦ Fzero).(η∗ ◦ η∗).∆
+= Fseq.F(zero ◦ zero).µ◦.(η∗ ◦ η∗).∆
+= Fseq.F(zero ◦ zero).F∆.η∗
+= Fzero.η∗
+= zeroF
+seqF .(parF ◦ parF ).ζ = Fseq.µ◦.(Fpar ◦ Fpar).(µ∗ ◦ µ∗).ζ
+= Fseq.F(par ◦ par).µ◦.(µ∗ ◦ µ∗).ζ
+= Fseq.F(par ◦ par).Fζ.µ◦.(µ∗ ◦ µ∗)
+= Fpar.F(seq ∗ seq).µ◦.(µ∗ ◦ µ∗)
+= Fpar.µ◦.(Fseq ∗ Fseq).(µ∗ ◦ µ∗)
+= parF .(seqF ∗ seqF )
+
+22
+C. Heunen and J. Sigal
+Similar checks show that F(G) is a W-Freyd map. F is functorial by functorality
+of F.
+
diff --git a/SdE4T4oBgHgl3EQflw0o/content/tmp_files/load_file.txt b/SdE4T4oBgHgl3EQflw0o/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..a92868490beafe67231152037d1928db7a5efd8c
--- /dev/null
+++ b/SdE4T4oBgHgl3EQflw0o/content/tmp_files/load_file.txt
@@ -0,0 +1,1035 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf,len=1034
+page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='05162v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='PL] 12 Jan 2023 Duoidally enriched Freyd categories⋆ Chris Heunen[0000−0001−7393−2640] and Jesse Sigal[0000−0002−5117−8752] School of Informatics, University of Edinburgh, United Kingdom, {chris.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='heunen, jesse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='sigal}@ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='uk Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Freyd categories provide a semantics for first-order effectful programming languages by capturing the two different orders of eval- uation for products.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' We enrich Freyd categories in a duoidal category, which provides a new, third choice of parallel composition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Duoidal cat- egories have two monoidal structures which account for the sequential and parallel compositions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The traditional setting is recovered as a full coreflective subcategory for a judicious choice of duoidal category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' We give several worked examples of this uniform framework, including the parameterised state monad, basic separation semantics for resources, and interesting cases of change of enrichment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Keywords: Freyd category · duoidal category · Kleisli category · Law- vere theory · monad 1 Introduction Computational effects encapsulate interactions of a computer program with its environment in a modular way, and are a staple of modern programming lan- guages [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Originally captured by strong monads [15], they have been extended to Arrows to deal with input as well as output [12], to Lawvere theories to bet- ter combine effects algebraically [20], to PROs and PROPs to deal with non- cartesian settings [13], and to Freyd categories to deal with effects that are not higher-order [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Freyd categories let one compose effectful computations both in sequence and, to some extent, in parallel, and reason about such compositions rigorously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' For an effectful computation f : a → b, we may embed it, the domain, and the codomain into a larger context by extending with − ⊗ c for any object c and monoidal-like operation ⊗, which we write as f ⊗ id : a ⊗ c → b ⊗ c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Intuitively, f ⊗ id does not interact with c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Effectful computations need not commute as they may alter the environment: (f ⊗ id).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (id ⊗ g) ̸= (id ⊗ g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (f ⊗ id) in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' But what if we want to track more data about computations than just types and effects?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' For example, suppose we want to annotate every computation with its resource needs: there could e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' be a set R of resources, and every computation f requires a certain subset P ⊆ R of resources for it to execute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Sequencing two computations needs all resources to execute both, so if f : a → b and g : b → c ⋆ Jesse Sigal is partly funded by Huawei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' 2 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Heunen and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Sigal require resources P and Q respectively, then g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='f requires P ∪ Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The same is true for parallel composition: if f1 : a1 → b1 and f2 : a2 → b2 require P1 and P2 respectively, then f1 ⊗ f2 : a1 ⊗ a2 → b1 ⊗ b2 requires P1 ∪ P2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' However, it is often desirable to restrict P1 and P2 by requiring P1 ∩P2 = ∅ so that morphisms composed in parallel use different resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' If we have an identity map id : a → a for all a which requires ∅ ⊆ R, then we can always form f ⊗ id for any f, but what of the general case?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' This article proposes a solution that achieves just this: enrich Freyd cate- gories in duoidal categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Duoidal categories carry two interacting monoidal structures that will account for the sequential and parallel composition of both the effectful computations and the extra data we want to track, such as the resources above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' We provide a concrete example for resources in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Section 2 introduces duoidally enriched Freyd categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Section 3 shows the breadth of such categories by treating disparate examples: separation semantics for resources as above, indexed state monads, and Kleisli categories of Lawvere theories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Section 4 shows that a judicious choice of duoidal enriching category recovers traditional Freyd categories as a full coreflective subcategory, and Sec- tion 5 gives an abstract characterisation of duoidally enriched Freyd categories in purely algebraic terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Section 6 considers changing the enriching duoidal category, accounting for e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' changing the underlying permission model in the example above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Section 7 concludes and suggests directions for future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Related work Morrison and Penneys define a V-monoidal category [16] for braided monoidal V as a V-category with parallel composition that interacts well with the braid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' In the case V is braided (and thus duoidal), our definition of a V-Freyd category is similar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' However, we also require bifunctorality of the hom objects, an important difference for some of our constructions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The abstract characterisation in Section 5 is inspired by Fujii’s characteri- sation of PROs and PROPs [7] as monoids in MonCatlax � Nop × N, Set � and MonCatlax � Pop × P, Set � respectively, where N and P have natural numbers as objects and equalities respectively bijections as morphisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Garner and López Franco describe a general framework for commutativity using categories enriched in the sequential product of a duoidal category [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Their framework requires the duoidal category to be normal, meaning that the two units are isomorphic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Only with this requirement and others do they define a monoidal structure on their category of enriched categories, and do not define a monoidal enriched category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' We do not require normality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Finally, Forcey [6], and Batanin and Markl [4] enrich over duoidal categories, but using the parallel product instead.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' We choose to enrich over the sequential product in order to define examples in which this is the appropriate choice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' 2 Duoidally enriched Freyd categories This section introduces duoidally enriched Freyd categories (in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='3), but first we discuss Freyd categories (in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='1) and duoidal categories (in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Duoidally enriched Freyd categories 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='1 Freyd categories Freyd categories provide semantics for first-order call-by-value programming lan- guages with effects [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' We will generalise the definition of a Freyd category slightly so that the effect free fragment need not have products, beginning with the following preliminary definitions [14,18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' A category C is binoidal when it comes with endofunctors (−)⋉x and x ⋊ (−) for each object x such that x ⋉ y = x ⋊ y for all y;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' write x ⊗ y for this object.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' A morphism f : x → y is central if for any morphism g : x′ → y′ the two maps (y ⋊ g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (f ⋉ x′) and (f ⋉ y′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (x ⋊ g) of type x ⊗ x′ → y ⊗ y′ are equal, as are the two maps (y′ ⋊ f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (g ⋉ x) and (g ⋉ y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (x′ ⋊ f) of type x′ ⊗ x → y′ ⊗ y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Central morphisms form a wide subcategory Z(C) called the centre.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' A binoidal category C is premonoidal when equipped with an object e and families of central isomorphisms α: (x ⊗ y) ⊗ z → x ⊗ (y ⊗ z), λ: e ⊗ x → x, and ρ: x ⊗ e → x that are natural in each component and satisfy triangle and pentagon equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' A functor F : C → D between premonoidal categories is a pre- monoidal functor when equipped with central morphisms η: eD → F (eC) and µ: F(x) ⊗D F(y) → F (x ⊗C y) such that µ is natural in each component,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' and the following diagrams commute: (F(x) ⊗D F(y)) ⊗D F(z) F(x) ⊗D (F(y) ⊗D F(z)) F(x ⊗C y) ⊗D F(z) F(x) ⊗D F(y ⊗C z) F((x ⊗C y) ⊗C z) F(x ⊗C (y ⊗C z)) µ⊗id µ F αC αD id⊗µ µ eD ⊗D F(x) F(eC) ⊗D F(x) F(x) F(eC ⊗C x) F(x) ⊗D eD F(x) ⊗D F(eC) F(x) F(x ⊗C eC) λD η⊗id µ F λC ρD id⊗η µ F ρC A premonoidal functor is strong (strict) when η and µ are isomorphisms (iden- tities).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Note that a strict premonoidal functor F preserves associators and unitors on the nose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Recall that a functor F : C → D between monoidal categories is lax monoidal when it comes with a morphism η: I → F(I) and a natural transformation µ: F(X) ⊗ F(Y ) → F(X ⊗ Y ) satisfying coherence conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' It is strong monoidal when η and µ are invertible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Lax/strong monoidal functors are closed under composition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Here now is our definition of a Freyd category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' A Freyd category consists of a monoidal category M and a pre- monoidal category C with the same objects, and an identity-on-objects strict premonoidal functor J : M → C whose image lies in Z(C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' A morphism J → J′ of Freyd categories consists of a strong monoidal functor F0 : M → M′ and a strong premonoidal functor F1 : C → C′ such that F1J = J′F0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Freyd categories and their morphisms form a category Freyd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' 4 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Heunen and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Sigal 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='2 Duoidal categories A duoidal category carries two interacting monoidal structures, that one may intuitively think of as sequential and parallel composition, but let us give the definition [2, Definition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='1] before examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' A category V is duoidal when it comes with two monoidal struc- tures (V,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' ∗,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' J) and (V,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' ◦,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' I),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' a natural transformation ζA,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='B,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='C,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='D : (A ◦ B) ∗ (C ◦ D) → (A ∗ C) ◦ (B ∗ D),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' and three morphisms ∆: J → J ◦ J,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' ∇: I ∗ I → I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' and ǫ: J → I such that (I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' ∇,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' ǫ) is a monoid in (V,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' ∗,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' J) and (J,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' ∆,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' ǫ) is a comonoid in (V,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' ◦,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' I),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' and the following diagrams commute: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='((A ◦ B) ∗ (C ◦ D)) ∗ (E ◦ F) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='(A ◦ B) ∗ ((C ◦ D) ∗ (E ◦ F)) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='((A ∗ C) ◦ (B ∗ D)) ∗ (E ◦ F) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='(A ◦ B) ∗ ((C ∗ E) ◦ (D ∗ F)) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='((A ∗ C) ∗ E) ◦ ((B ∗ D) ∗ F) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='(A ∗ (C ∗ E)) ◦ (B ∗ (D ∗ F)) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='ζ∗id ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='ζ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='α ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='id∗ζ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='ζ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='α◦α ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='J ∗ (A ◦ B) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='(J ◦ J) ∗ (A ◦ B) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='A ◦ B ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='(J ∗ A) ◦ (J ∗ B) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='(A ◦ B) ∗ J ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='(A ◦ B) ∗ (J ◦ J) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='A ◦ B ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='(A ∗ J) ◦ (B ∗ J) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='λ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='∆∗id ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='ζ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='λ◦λ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='ρ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='id∗∆ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='ζ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='ρ◦ρ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='((A ◦ B) ◦ C) ∗ ((D ◦ E) ◦ F) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='(A ◦ (B ◦ C)) ∗ (D ◦ (E ◦ F)) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='((A ◦ B) ∗ (D ◦ E)) ◦ (C ∗ F) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='(A ∗ D) ◦ ((B ◦ C) ∗ (E ◦ F)) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='((A ∗ D) ◦ (B ∗ E)) ◦ (C ∗ F) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='(A ∗ D) ◦ ((B ∗ E) ◦ (C ∗ F)) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='ζ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='ζ◦id ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='α ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='α∗α ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='ζ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='id◦ζ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='I ◦ (A ∗ B) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='(I ∗ I) ◦ (A ∗ B) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='A ∗ B ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='(I ◦ A) ∗ (I ◦ B) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='(A ∗ B) ◦ I ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='(A ∗ B) ◦ (I ∗ I) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='A ∗ B ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='(A ◦ I) ∗ (B ◦ I) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='λ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='∇◦id ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='ζ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='λ∗λ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='ρ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='id◦∇ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='ζ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='ρ∗ρ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='We may write (V,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' ∗,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' J,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' ◦,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' I) or (V,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' ∗,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' ◦) to be explicit about the role of each monoidal structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Example 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Any braided monoidal category becomes duoidal by letting both monoidal structures coincide and ζ be the middle-four interchange x ⊗ y ⊗ z ⊗ w → x ⊗ z ⊗ y ⊗ w up to associativity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' In particular, any symmetric or cartesian monoidal category is duoidal [2, Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='10, Example 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' If (V, ∗, J, ◦, I) is duoidal, so is (Vop, ◦, I, ∗, J), with opposite struc- ture maps [2, Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Example 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' If (V, ⊗, I) is a monoidal category with products, (V, ⊗, I, ×, 1) is duoidal with ζ = ⟨π1 ⊗ π1, π2 ⊗ π2⟩, ∆ = ⟨id, id⟩, and ∇ and ǫ terminal maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Similarly, if a monoidal category V has coproducts, (V, +, 0, ⊗, I) is duoidal [2, Example 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Duoidally enriched Freyd categories 5 Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' If (V, ∗, J, ◦, I) is small and duoidal, straightforward calculation shows Day convolution [5] of each monoidal structure makes the category of presheaves ([Vop, Set], ∗Day, V(−, J), ◦Day, V(−, I)) again duoidal where (F ∗Day G) (A) = � B,C V (A, B ∗ C) × F (B) × G (C) and likewise for ◦Day.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' An analogous construction holds for [V, Set] by starting with Vop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Example 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' An endofunctor on Set is finitary when it preserves filtered colim- its and is therefore determined on finite sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Finitary endofunctors are closed under functor composition, ◦, with unit Id;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' closed under Day convolution with products, ×Day, with unit Set (1, −) ∼= Id;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' making � [Set, Set]f, ×Day, Id, ◦, Id � a duoidal category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' [8] Example 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' For a small monoidal category (M, ⊕, e), the category of Set-valued endoprofunctors Prof(M) := [Mop×M, Set] is duoidal (Prof(M), ⊕Day,⋄) with profunctor composition (P⋄Q)(a, c) := � b P(a, b)×Q(b, c) (having unit M(−, −)) and Day convolution of ⊕ on both sides (P ⊕DayQ)(a, b) := � a1,a2,b2,b2 M(a, a1⊕ a2) × M(b1 ⊕ b2, b) × P(a1, b1) × Q(a2, b2) (having unit M(−, e) × M(e, −)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' [8] Example 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' An important example for us is the category Subset of distinguished subsets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Objects are pairs of sets (X, A) such that X ⊆ A and morphisms f : (X, A) → (Y, B) are functions f : A → B with f(X) ⊆ Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' We call X the distinguished subset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Composition and identities are as in Set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' We may suppress the distinguished subset X by writing a � A when a ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Next, we give two monoidal structures on Subset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The first is the cartesian product: (X, A) × (Y, B) := (X × Y, A × B) on objects, and f × g as in Set on morphisms, with unit (1, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Associators and unitors are as in Set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' This is also a categorical product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The second is the disjunctive product: on objects (X, A)⊗(Y, B) is defined as � X × Y, (A× Y )∪(X × B) � with unit (1, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' We again have f × g on morphisms, which is well-defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Finally, the coherence maps are restricted versions of those for the cartesian product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Now � Subset, ⊗, (1, 1), ×, (1, 1) � is duoidal by Example 3: ∆ and ∇ are uni- tors, ǫ is the identity, and ζ : � (X, A) × (Y, B) � ⊗ � (Z, C) × (W, D) � → � (X, A) ⊗ (Z, C) � × � (Y, B) ⊗ (W, D) � is the restricted middle-four interchange;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' all axioms are inherited from (Set, ×, 1) via Example 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The important difference between � Subset, ⊗, × � and (Set, ×, ×) is that ζ is not invertible in the former (as it is not surjective as a Set map).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' This allows Freyd categories enriched in Subset a premonoidal-like structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='3 Concrete definition We are now ready for the titular notion of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' We first give a concrete definition, leaving an abstract characterisation to Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' 6 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Heunen and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Sigal Definition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Let (V, ∗, J, ◦, I) be a duoidal category and (M, ⊕, e) a monoidal category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' A V-Freyd category over M consists of – a bifunctor C: Mop × M → V – an extranatural family idt: I → C(a, a), meaning C(id, f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='idt = C(f, id).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='idt – an extranatural family seq: C(a, b)◦C(b, c) → C(a, c), meaning seq is natural in a and c, and seq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (id ◦ C(f, id)) = seq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (C(id, f) ◦ id) – a morphism zero: J → C(e, e) – a natural family par: C(a1, b1) ∗ C(a2, b2) → C(a1 ⊕ a2, b1 ⊕ b2) satisfying the following axioms: (i) idt is the identity for seq, that is, seq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (idt ◦ id) = λ and symmetrically;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (ii) seq is associative, that is, seq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (seq ◦ id) = seq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (id ◦ seq).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='α;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (iii) zero is the identity for par, that is, C(λ−1, λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='par.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (zero ∗ id) = λ and sym- metrically;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (iv) par is associative, that is, C(α−1, α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='par.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (par ∗ id) = par.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (id ∗ par).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='α;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (v) idt respects zero via idt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='ǫ = zero;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (vi) idt respects par via idt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='∇ = par.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (idt ∗ idt);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (vii) seq respects zero via seq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (zero ◦ zero).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='∆ = zero;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (viii) seq respects par via seq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (par ◦ par).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='ζ = par.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (seq ∗ seq).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' See Appendix A for diagrams expressing the axioms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Definition 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' A morphism of V-Freyd categories consists of a strong monoidal functor F0 : M → M′ and a natural transformation F1 : C(a, b) → C′ (F0a, F0b) satisfying: – F1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='idt = idt′;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' – F1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='seq = seq′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (F1 ◦ F1);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' – C′ (id, µ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='par′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (F1 ∗ F1) = C′ (µ, id) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='F1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='par.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' V-Freyd categories and morphisms between them form a category V-Freyd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Our definition differs from the duoidally enriched categories of Batanin and Markl [4] in a few important ways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' They use ∗ for sequencing and ◦ for par- allel composition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Their analogues to axioms v to viii are idt = zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='ǫ, idt = par.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (idt ◦ idt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='∆, seq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (zero ∗ zero) = zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='∇, and seq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (par ∗ par) = par.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (seq ◦ seq).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='ζ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Additionally, their monoidal structure is more enriched while we inherit ours from a Set-category, namely M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Thus, we believe both notions are not inter- expressible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' 3 Examples This section works out three applications of duoidally enriched Freyd categories: resource management (in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='1), indexed state (in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='2), and Kleisli categories of Lawvere theories (in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Duoidally enriched Freyd categories 7 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='1 Stateful functions and separated monoids To deal with resources abstractly, we first introduce the novel notion of a sepa- rated monoid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Definition 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' A monoid (M, •, e) is separated when it comes with a binary relation ∥ such that: e∥m and m∥e;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' and mm′∥n iff m∥n and m′∥n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' and m∥nn′ iff m∥n and m∥n′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Examples include (N, +, 0) with x∥y iff x = 0 or y = 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' finite subsets (Pf(R), ∪, ∅) of a fixed set R, with P∥Q iff P ∩Q = ∅;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' and products of separated monoids under pointwise separation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Separated monoids parametrise duoidal categories of resources as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Definition 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Let (M, ∥) be a separated monoid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The category LabelM of M- labelled sets has as objects functions ℓ: A → M and as morphisms functions f : A → A′ with ℓ′f = ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' This category has a monoidal structure • as follows: on objects, ℓ • ℓ′ : A × A′ → M sends (a, a′) to ℓ(a) • ℓ′(a′);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' on morphisms, f•f ′ = f×f ′;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' the unit cste : 1 → M picks out e ∈ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' There is a second monoidal structure ∥ as follows: on objects, ℓ∥ℓ′ is the restriction of ℓ • ℓ′ to {(a, a′) | ℓ(a)∥ℓ′(a′)};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' on morphisms, f∥f ′ = f ×f ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The category (LabelM, ∥, cste, •, cste) is duoidal with ζ : (ℓ1 • ℓ′ 1) ∥ (ℓ2 • ℓ′ 2) → (ℓ1∥ℓ2) • (ℓ′ 1∥ℓ′ 2) the restricted version of the ζ for (Set, ×, 1, ×, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Think of objects in LabelM as sets of elements labelled with their resource needs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The multiplication of M combines resources, and the separation ∥ relates non-conflicting resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' We will now describe an enriched Freyd category where morphisms are labelled by resources as in the introduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Fix a countable family R = {x, y, z, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='} of sets which we think of as resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The set Pf(R) of finite subsets of R is a monoid under union, and becomes a separated monoid under disjointness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' For set of resources Q ∈ Pf(R), fix a product of sets Πx∈Qx =: ΠQ which thus combines the resources in Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Write πQ′ : ΠQ → ΠQ′ for the projection if Q′ ⊆ Q, and given a map f : a × ΠQ′ → b × ΠQ′ for sets a and b, write f Q Q′ for the map a × ΠQ → b × ΠQ induced by f when Q′ ⊆ Q which leaves the extra resources Q \\ Q′ unchanged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' We will define a LabelPf (R)-Freyd category over Set of state-transforming functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Let C(a, b) be the function from the disjoint union of Set(a× ΠQ, b× ΠQ) over Q ∈ Pf(R) to Pf(R), that sends f : a×ΠQ → b×ΠQ to Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Thus, a map f ∈ C(a, b) with label Q is an effectful computation from a to b which can effect only resources in Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' This becomes a bifunctor under pre- and post-composition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Writing ∪ for • and ∩ for ∥ for the sake of concreteness, the structure maps are: idt: cst∅ → C(a, a) zero: cst∅ → C(1, 1) ⋆ �→ (∅, ida×1) ⋆ �→ (∅, id) seq: C(a, b) ∪ C(b, c) → C(a, c) ((P, f), (Q, g)) �→ � P ∪ Q, gP ∪Q Q .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='f P ∪Q P � 8 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Heunen and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Sigal par: C(a, b) ∩ C(a′, b′) → C(a × a′, b × b′) ((Q, f), (Q′, f ′)) �→ � Q ∪ Q′, � id × ⟨πQ, πQ′⟩−1� m−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (f × f ′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (id × ⟨πQ, πQ′⟩) � where ⟨πQ, πQ′⟩ : ΠQ∪Q′ → ΠQ × ΠQ′ is invertible because Q ∩ Q′ = ∅ and m is middle-four interchange.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' So par places maps in parallel up to rearranging state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='2 Indexed state An important computational effect is global state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' However, it is often inflexible as the type of storage remains constant over time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' In this example the type can vary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' We use the duoidal category of finitary endofunctors on Set of Example 5 to give a [Set, Set]f-Freyd category over Set based on the state monad (s× (−))s, extending Atkey’s example [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Define C(a, b) = (b × (−))a, which is a bifunctor via pre- and post-composition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The natural structure maps are: idtX : X → (a × X)a zeroX : X → (1 × X)1 x �→ λa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (x, a) x �→ λ ⋆ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (x, ⋆) seqX : � b × � (c × X)b��a → (c × X)a f �→ eval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='f parX : � Y,Z XY ×Z × (b × Y )a × (c × Z)a′ → ((b × c) × X)a×a′ (k, f, g) �→ (id × k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (f × g) where eval: b×(c × X)b → c×X is the evaluation map and m is the middle-four interchange.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' idt and seq are the unit and multiplication of a state monad but with varying types of state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='3 Kleisli categories of Lawvere theories Lawvere theories model effectful computations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Functional programmers might be more familiar with Kleisli categories of monads, to which they are closely related.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Here we describe an indexed version, which models independent effects in parallel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Let Law be the category of Lawvere theories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Its initial object is the theory S of sets, the unit for the tensor product ⊗ of Lawvere theories [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' This makes Law a symmetric monoidal category, with the special property that there exist inclusion maps φi : Li → L1 ⊗ L2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Thus the functor category [Law, Set] is monoidal under Day convolution with unit the constant functor Law(S, −) ≃ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' As this category also has products, Example 3 makes it duoidal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Now, Law is equivalent to the category of finitary monads [1, Chapter 3]: any Lawvere theory L induces a monad T (L), and any map θ of Lawvere theories induces a monad morphism T (θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Every monad T on Set is canonically bistrong: there are maps stT : a × T b → T (a × b) and st′T : T a × b → T (a × b) making the Duoidally enriched Freyd categories 9 two induced maps (a × T b) × c → T ((a × b) × c) equal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Each monad morphism T (θ) preserves strength: T (θ)a×b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='stT (L) = stT (L′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (id × T (θ)b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' We now show a [Law, Set]-Freyd category over Set given by the Kleisli construction on Lawvere theories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Define on objects C(a, b) = T (−)(b)a, and on morphisms C(f, g): C(a, b) ⇒ C(a′, b′) by C(f, g)L(k) = T (L)(g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='f, finally: idtL : 1 → T (L)(a)a zeroL : 1 → T (L)(1)1 ⋆ �→ η ⋆ �→ η seqL : T (L)(b)a × T (L)(c)b → T (L)(c)a (f, g) �→ µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='T (L)g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='f parL : � L1,L2 Law(L1⊗L2, L)×T (L1)(b1)a1 ×T (L2)(b2)a2 → T (L)(b1×b2)a1×a2 (θ, f1, f2) �→ T (θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='T (L1 ⊗ L2)(st′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='st.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (T (φ1) × T (φ2)) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (f1 × f2) Intuitively, par lets us put Kleisli maps in parallel as long as their effects are forced to commute (by ⊗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' So idtL and seqL are the identity and composition for the Kleisli category of T (L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The definition of parL seems noncanonical because of the use of T (L1⊗L2)(st′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='st, but it is not: µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='T (L1⊗L2)(st′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='st.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (T (φ1) × T (φ2)) and µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='T (L1 ⊗ L2)(st).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='st′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (T (φ1) × T (φ2)) are equal by definition of L1 ⊗ L2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' 4 Adjunction between Subset-Freyd and Freyd Now let us explain how V-Freyd categories generalise Freyd categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Our approach is similar to Power’s [19] in that we work with Subset-enriched cate- gories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Take V = Subset and consider a Subset-Freyd category C: Mop×M → Subset;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' it comes equipped with a premonoidal-like structure via par and idt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' We call a morphism f � C(a, b) which is a member of the distinguished subset a distinguished morphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' We will show they are central in the premonoidal sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' First observe that idt: (1, 1) → C(a, a) is a Subset morphism, so idt(⋆) � C(a, a) is distinguished.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Thus, for g ∈ C(a′, b′) we find � idt(⋆), g � ∈ C (a, a) ⊗ C(a′, b′) by definition of ⊗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Hence the pair is in the domain of par, giving par � idt(⋆), g � ∈ C(a ⊕ a′, a ⊕ b′) which we denote by a ⋊par g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Similarly, for any f ∈ C(a, b) we have f⋉parb′ ∈ C(a⊕b′, b⊕b′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' We may also construct f⋉para′ and b⋊parg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Hence it makes sense to ask if seq(a⋊parg, f⋉parb′) = seq(f⋉para′, b⋊parg), and if this equation (and its mirrored version by placing g on the left) holds for all f, we call g central in analogy to the binoidal case from Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Next we claim that distinguished morphisms g � C(a′, b′) are central.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Note that � idt(⋆), g � � C(a′, a′) × C(a′, b′) and � g, idt(⋆) � � C(a′, b′) × C(b′, b′) are distinguished and in the domain of seq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' For any f ∈ C(a, b), we have � (idt(⋆), f), (g, idt(⋆)) � ∈ � C(a, a)×C(a, b) � ⊗ � C(a′, b′)×C(b′, b′) � and similarly � (f, idt(⋆)), (idt(⋆)), g � ∈ � C(a, b)×C(b, b) � ⊗ � C(a′, a′)×C(a′, b′) � by definition of ⊗ and are thus in the domain of seq⊗seq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' We now apply par.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (seq⊗seq) to each pair and find they equal par (f, g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Axiom viii states par.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (seq ⊗ seq) = seq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (par × par).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='ζ and therefore seq(a ⋊par g, f ⋉par b′) = par(f, g) = seq(f ⋉par a′, b ⋊par g) (and the mirrored equation analogously), so g is central.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' 10 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Heunen and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Sigal Distinguished morphisms have their centrality preserved by Subset-Freyd maps as they are mapped to distinguished morphisms, but central morphisms need not be distinguished.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Thus, Definition 7 ensures that membership in the distinguished subset is preserved by Subset-Freyd maps, so centrality of distin- guished morphisms of C is preserved by all maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Furthermore, bifunctorality of C ensures that for all f ∈ M (a, b), C (id, f) (idt (⋆)) � C(a, b), and so the image of M is central and this centrality is preserved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The same is true for a Freyd category J : M → C, the image of M under J is central and this centrality is preserved by all morphisms of Freyd categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' This preservation requirement is the difference between Freyd categories and Subset-Freyd categories: the lat- ter can require more central morphisms than the image of M to have centrality preserved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The rest of this subsection proves that there is an adjunction between Freyd and Subset-Freyd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The left adjoint F: Freyd → Subset-Freyd is a free functor that only requires the image of M to be preserved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The right adjoint U: Subset-Freyd → Freyd forgets the extra distinguished central morphisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' There is a functor F: Freyd → Subset-Freyd defined on ob- jects as F(C)(a, b) = � J(M(a, b)), C(a, b) � and F(C)(f, g) = C(Jf, Jg).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Proof (Proof sketch).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' F(C) is well-defined on morphisms because J is identity- on-objects, and it is bifunctorial by bifunctorality of hom and functorality of J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The structure maps are: – idt: (1, 1) → F(C)(a, a) is ∗ �→ id;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' – seq: F(C)(a, b) × F(C)(b, c) → F(C)(a, c) is (f, g) �→ g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='f;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' – zero: (1, 1) → F(C)(e, e) is ∗ �→ id;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' – par: F(C)(a1, b1)⊗F(C)(a2, b2) → F(C)(a1⊕a2, b1⊕b2) is (f1, f2) �→ f1⊗f2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' this is well-defined whether (f1, f2) is in J(M(a1, b1)) × C(a2, b2) or is in C(a1, b1) × J(M(a2, b2)) as J preserves centrality of M = Z(M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The (extra)naturality of the structure maps comes from the extranaturality of composition, functorality of M’s monoidal product, and J being a strict pre- monoidal functor preserving centrality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Axioms i and ii are true by C’s com- position, axioms iii and iv follow from the strict premonoidality of J and the naturality of unitors and associators, and axioms v and vii are trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Finally, axioms vi and viii follow from C’s premonoidal structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Finally, it is easy to check that F(F) = F is well-defined and functorial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' There is a functor U: Subset-Freyd → Freyd that sends an object C: Mop × M → Subset to the functor J : M → U(C) defined as follows: – the category U(C) has the same objects as M but homsets U(C)(a, b) = A where (X, A) := C(a, b), with composition g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='f = seq(f, g), and identity ida = idt(⋆);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' – the functor J is the identity on objects and J(f) = C(ida, f)(idt(⋆)) on morphisms;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' – the binoidal structure on U(C) is a ⋊ b = a ⋉ b = a ⊕M b on objects and a ⋊ f = par(idt(⋆), f) and f ⋉ b = par(f, idt(⋆)) on morphisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Duoidally enriched Freyd categories 11 Proof (Proof sketch).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' It is mechanical to check that U(C) is a well-defined Freyd category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Given a morphism F = (F0, F1) from C: Mop × M → Subset to C′ : M′op × M′ → Subset, we must define a morphism U (F) : JU(C) → JU(C′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' We define U (F)0 to be the strong monoidal functor F0, and define U (F)1 as F0 on objects and as F1 on homsets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' This is a well-defined morphism of Freyd categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' It is straightforward to verify that U is functorial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The functors of Propositions 1 and 2 form an adjunction F ⊣ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Proof (Proof sketch).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' For the unit η of the adjunction we may take the identity as a short calculation shows that UF = IdFreyd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' A second calculation shows that for a Subset-Freyd category C: Mop × M → Subset, we have FU (C) (a, b) = � C(id, M(a, b))(idt(⋆)), C(a, b) � , and so each component ǫC : FU (C) → C of the counit can be defined as ǫC0 = IdM and ǫC1 = idC(a,b) : FU (C) (a, b) → C (a, b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Note that the underlying Set map for ǫC1 is the identity map, but this is not an identity in Subset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' This counit is natural, and this unit and counit satisfy the zig-zag identities for an adjunction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Recall that an adjunction F ⊣ G with unit η: Id → GF and counit ǫ: FG → Id is idempotent if any of Fη, ǫF, ηG, or Gǫ are invertible [9, Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' In the case of the previous theorem, clearly Fη is invertible as η is the identity, so this adjunction is idempotent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' This leads to the following theorem detailing just how Subset-Freyd generalises Freyd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The full coreflective subcategory of Subset-Freyd consisting of objects C: Mop × M → Subset for which C (a, b) has the distinguished subset C (id, M (a, b)) (idt (⋆)) is equivalent to Freyd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Proof (Proof sketch).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The following is a general fact about idempotent adjunc- tions [9, Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='8]: if F ⊣ G is an idempotent adjunction with associated monad T = GF and comonad S = FG: A → A, then the category of algebras of T is equivalent to the category of coalgebras of S, and the category of coal- gebras of S is a full coreflective subcategory of A given by the objects of A for which ǫ: SA → A is invertible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The category of algebras for the monad UF = Id is equivalent to Freyd, which is therefore a full coreflective subcategory of Subset-Freyd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Furthermore, we can characterize the objects of this subcategory as Subset-Freyd categories C for which to ǫ: FU (C) → C is invertible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Concretely, this means ǫC1 must be invertible in Subset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' But the underlying Set map is the identity, establishing the claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' 5 Abstract characterisation Definition 6 is a very concrete way to specify a V-Freyd category, involving a nontrivial amount of data and axioms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Yet it fits together, as we show in this subsection by giving a characterisation in the style of [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Recall that a natu- ral transformation between lax monoidal functors is monoidal when it respects 12 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Heunen and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Sigal the coherence maps µ and η.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Write MonCatlax � C, D � for the category of lax monoidal functors from C to D and monoidal natural transformations between them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' If A and B are monoidal categories, so are Aop and A × B, with com- ponentwise structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Thus we may consider MonCatlax � Mop × M, V � for the monoidal category (V, ∗, J).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' We will lift the other monoidal structure (V, ◦, I) to MonCatlax � Mop × M, V � and prove that a V-Freyd category is exactly a monoid with respect to this monoidal structure, under additional assumptions on V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Most proofs are deferred to Appendix B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Definition 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' A duoidal category V is a cocomplete duoidal category if V is cocomplete and ∗ and ◦ are cocontinuous in each argument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' In a cocomplete duoidal category, the following diagrams and their symmetric versions commute: J ∗ colim(D) colim (J ∗ D) colim(D) ≃ ≃ ≃ I ◦ colim(D) colim (I ◦ D) colim(D) ≃ ≃ ≃ where the top isomorphism is colimit preservation and the others are induced by unitors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The rest of this subsection assumes that V is a cocomplete duoidal category;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' importantly, this is satisfied for presheaf categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' This restriction will be mit- igated in Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='2 for small V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' We also assume that M is small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' All laxness is with respect to (V, ∗, J).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' We now lift (V, ◦, I);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' first the unit, then composition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' There is a lax monoidal functor homM : Mop×M → V defined on objects as homM(a, b) = � σ∈homM(a,b) I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' If S, T : Mop × M → V are lax monoidal functors, the functor S ˆ◦ T : Mop × M → V defined using coends as (S ˆ◦ T )(a, c) = � b T (a, b) ◦ S(b, c) is lax monoidal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' � MonCatlax(Mop × M, V), ˆ◦, homM � is a monoidal category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Lemmas 5 to 7 in Appendix B show that the ◦-composition is functorial, associative, and has homM as left and right unit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' That leaves only the trian- gle and pentagon identities, which follow from cocontinuity and the equivalent identities for ◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' With these preparations we can characterise V-Freyd categories abstractly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Let V be a cocomplete duoidal category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Then a V-Freyd category C: M × Mop → V is exactly a monoid in MonCatlax(Mop × M, V).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Proof (Proof sketch).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' A monoid C in MonCatlax(Mop × M, V) consists of two maps e: homM → C and m: C ˆ◦ C → C, inducing idt and seq satisfying unit and associativity conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The lax monoidal structure of C gives zero and par respectively, so identity and associativity conditions follow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Finally, the components of e and m are monoidal natural transformations, ensuring that idt and seq respect zero and par.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Duoidally enriched Freyd categories 13 We note that by Fujii’s observations [7], PROs and PROPs are equivalent to Set- Freyd categories over N and P respectively because (Set, ×, ×) is a cocomplete duoidal category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' 6 Change of enrichment After defining enriched categories, a natural next step is to consider a change of enrichment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Any monoidal functor V → W induces a functor V-Cat → W-Cat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' We will show that the same holds for the appropriate type of functors between duoidal categories and enriched Freyd categories (in Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' We will then use that to alleviate the restriction of duoidal cocompleteness on the abstract characterisation of Section 5 (in Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='2) at the cost of losing a direction of the correspondence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Finally, changing enrichment along a forgetful functor gives an underlying (unenriched) Freyd category J : M → C with C monoidal, which we show recovers the pure computations in the examples of Section 3 (in Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='1 Lifting duoidal functors To talk about change of enrichment, we first need to define the appropriate type of functor between the enriching categories along which to change.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Definition 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' [2, Definition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='54] Take duoidal categories (V, ∗V, JV, ◦V, IV) and (W, ∗W, JW, ◦W, IW).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' A functor F : V→W is a double lax monoidal func- tor when equipped with η∗,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' µ∗,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' η◦,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' and µ◦ such that (F,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' η∗,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' µ∗) is lax monoidal for ∗V and ∗W,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (F,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' η◦,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' µ◦) is lax monoidal for ◦V and ◦W,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' and the following ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='diagrams commute: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='(F(A) ◦W F(B)) ∗W (F(C) ◦W F(D)) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='(F(A) ∗W F(C)) ◦W (F(B) ∗W F(D)) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='F (A ◦V B) ∗W F (C ◦V D) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='F (A ∗V C) ◦W F (B ∗V D) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='F ((A ◦V B) ∗V (C ◦V D)) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='F ((A ∗V C) ◦V (B ∗V D)) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='µ◦∗µ◦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='µ∗ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='ζ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='µ∗◦µ∗ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='µ◦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='F ζ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='F(JV) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='F(IV) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='JW ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='IW ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='F ǫ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='η∗ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='ǫ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='η◦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='JW ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='F(JV) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='F (JV ◦V JV) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='JW ◦W JW ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='F(JV) ◦W F(JV) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='η∗ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='F ∆ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='∆ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='η∗◦η∗ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='µ◦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='IW ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='F(IV) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='F (IV ∗V IV) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='IW ∗W IW ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='F(IV) ∗W F(IV) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='η◦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='F ∇ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='∇ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='η◦∗η◦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='µ∗ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='Here now is the change-of-enrichment theorem for duoidally enriched Freyd ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Let F : V → W be a double lax monoidal functor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' For a V-Freyd category C: Mop×M → V, define F(C)(a, b) := F(C(a, b)) with structure maps idtF := Fidt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='η◦, seqF := Fseq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='µ◦, zeroF := Fzero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='η∗, and parF := Fpar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='µ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' For a map G = (G0, G1): C → C′, define F(G) := (G0, FG1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' This F is a functor V-Freyd → W-Freyd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' 14 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Heunen and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Sigal Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' See Appendix C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Example 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Let M and N be separated monoids and φ: M → N a homo- morphism such that φ(m) ∥ φ(m′) implies m ∥ m′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Then φ induces a double lax monoidal functor φ∗ : LabelM → LabelN given by ℓ �→ φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='ℓ on objects and f �→ f on morphisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The maps η∗, µ∗, and η◦ are all identities, while µ◦ : {(a, a′) | φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='ℓ(a)∥φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='ℓ′(a′)} → {(a, a′) | ℓ(a)∥ℓ′(a′)} is the inclusion, and so φ∗ is clearly double lax monoidal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Apply Theorem 4 to the example from Sec- tion 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='1 along the map Pf(!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' ): Pf(R) → Pf(1), which is a homomorphism such that Pf(!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' )(P) ∩ Pf(!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' )(Q) = ∅ implies P ∩ Q = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' We get Pf(!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' )∗(C)(a, b) = � Q∈Pf(R) (Set(a × ΠQ, b × ΠQ)) → Pf(1), (Q, f) �→ ∅ if Q = ∅, else 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' This change of enrichment alters the example to only allowing maps to be put in parallel if at least one of them requires no resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Example 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' We can use change of enrichment for the indexed state example of Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Consider Example 6 for (Set, ×, 1) (using universes for this example to avoid size issues).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' There, the definition of Day convolution ×Day simplifies to (P ×DayQ)(a, b) = � b2,b2 Set(b1×b2, b)×P(a, b1)×Q(a, b2) and its unit becomes k(a, b) = b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The Kleisli construction turns a finitary endofunctor on Set into a profunctor as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Define Kl: [Set, Set]f → Prof(Set) by Kl(F)(a, b) = Set(a, Fb), and coherence maps: η∗ : k → Kl(Id) µ∗ : Kl(F1) ×Day Kl(F2) → Kl(F1 ×Day F2) b �→ cstb (k, f1, f2) �→ λa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (k, f1(a), f2(a)) η◦ : hom → Kl(Id) µ◦ : Kl(F) ⋄ Kl(G) → Kl(F ◦ G) f �→ f (f, g) �→ Fg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='f This makes Kl a double lax monoidal functor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Theorem 4 then gives a Prof(Set)- Freyd category defined by Kl(C)(a, b)(x, y) := Set(x, (b × y)a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='2 Yoneda embedding The Yoneda embedding of a small monoidal category is a strong monoidal functor with respect to Day convolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' This extends to small duoidal categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The Yoneda embedding V→[Vop, Set] is a double lax monoidal functor from small (V, ∗, J, ◦, I) to � [Vop, Set], ∗Day, V(−, J), ◦Day, V(−, I) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' See [11] for the fact that it is lax monoidal for each monoidal structure separately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The diagrams of Definition 11 are verified straightforwardly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' It follows from Theorem 4 that every V-Freyd category for small V induces a [Vop, Set]-Freyd category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' But [Vop, Set] is duoidally cocomplete, so the setting in which the abstract characterisation of Theorem 3 applies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' We conclude that the characterisation extends beyond the duoidally cocomplete setting in the sense that every V-Freyd category for small V induces a monoid in MonCatlax(Mop× M, [Vop, Set]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Duoidally enriched Freyd categories 15 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='3 Forgetful functors Any category enriched in a monoidal category V has an underlying (unenriched) category, got by changing the enrichment along the ‘forgetful’ monoidal functor V(I, −): V → Set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' A similar process plays out for duoidal categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Proposition 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Let (V, ∗, J, ◦, I) be a duoidal category and write φ: J → J ∗ J for the inverse of the unitors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Then V(J, −): V → Set is a double lax monoidal functor with coherence maps: η∗ : 1 → V(J, J) µ∗ : V(J, A1) × V(J, A2) → V(J, A1 ∗ A2) ⋆ �→ id (f1, f2) �→ (f1 ∗ f2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='φ η◦ : 1 → V(J, I) µ◦ : V(J, A1) × V(J, A2) → V(J, A1 ◦ A2) ⋆ �→ ǫ (f1, f2) �→ (f1 ◦ f2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='∆ Applying Theorem 4 along the forgetful functor of the previous proposition in the case of the examples of Section 3 will show that this recovers the underlying pure computations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Note that a Set-Freyd category C has a trivial instance of the exchange axiom, axiom viii, and so C is a monoidal category with identity- on-objects monoidal functor J : M → C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Example 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Applying the forgetful functor to the stateful function example of Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='1 results in the (unenriched) category with LabelPf(R)(cst∅, C(a, b)) as the homsets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Because labels are preserved, the morphisms in this (unenriched) category are exactly the elements of C(a, b) which have label ∅, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' maps a×1 → b × 1 which are pure functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Example 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Changing the enrichment of the indexed state example from Sec- tion 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='2 along the forgetful functor gives the (unenriched) category with homsets [Set, Set]f (Id, C(a, b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' If φ: Id → (b × (−))a is such a natural transformation, then the function φ1 : 1 → (b × 1)a, which is equivalent to choosing a function f : a → b, completely determines φ, because for any set X and x ∈ X by nat- urality 1 x−→ X φX −−→ (b × X)a = 1 φ1 −→ (b × 1)a (id×x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='− −−−−−−→ (b × X)a, whence φX(x)(a) = (f(a), x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Therefore the morphisms in this (unenriched) category are all functions a → b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Example 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Changing the enrichment of the Kleisli categories of Lawvere theo- ries example from Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='3 along the forgetful functor gives the (unenriched) category with homsets [Law, Set](1, C(a, b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Consider such a natural transfor- mation φ: 1 → T (−)(b)a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' It is completely determined by its component at S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' For any L let ι: S → L be the unique map, then naturality implies φL = T (ι)φS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Furthermore, φS(⋆) ∈ T (S)(b)a = ba.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' So the morphisms in this (unenriched) category again are all functions a → b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' 16 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Heunen and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Sigal 7 Conclusion We have defined a version of Freyd categories enriched over any duoidal category V, and morphisms between them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' We used various duoidal categories to give ex- amples based on separation of resources, parameterised monads, and the Kleisli construction for Lawvere theories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' By enriching with Subset, we have proven that the category of Freyd categories Freyd is a full coreflective subcategory of Subset-Freyd, thus establishing that V-Freyd categories indeed generalise Freyd categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Additionally, we proved an abstract characterisation of V- Freyd categories over small M for duoidally cocomplete V, they are monoids in MonCatlax � Mop × M, V � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Finally, we provided change of enrichment and examples thereof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Future work There are several directions for further investigation: – The abstract characterisation of Section 5 may be part of a larger structure, namely a bicategory with proarrow equipment, whose objects are monoidal categories, arrows are strong monoidal functors, proarrows are lax monoidal profunctors, and cells are lax monoidal natural transformations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' In this set- ting, a V-Freyd category would be a monad and the vertical monad mor- phisms would be a V-Freyd morphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' This would enable applying general constructions for monads in a bicategory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' – Relatedly, an fc-multicategory structure on MonCatlax(Mop × M, V) may bypass cocompleteness in characterising V-Freyd categories as monoids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' – The abstract characterisation of Section 5 also uses the free V-category on M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' It may be fruitful to change the definition of a V-Freyd category to be a V-functor J : M → C where we extend V-categories in a way similar to Morrison and Penneys [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' – Freyd categories can have the property of being closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' In this case they induce a strong monad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' A similar definition may be possible for V-Freyd categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' This could determine a higher-order semantics for effectful pro- grams based on duoidal categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' A nontrivial definition of closure may require a V-category M that is not free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' – Our original motivation stemmed from the desire for semantics combining differentiable and probabilistic programming, in particular, the possibility of having a linear structure for the probabilistic fragment and a cartesian one for differentiable terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Prof-Freyd categories may provide a useful separa- tion to aid the desired distinction between linear and cartesian properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Acknowledgments We would like to thank Robin Kaarsgaard, Ohad Kam- mar, and Matthew Di Meglio for their input and encouragement, as well as the reviewers of all versions of this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' References 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Adamek, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=', Rosicky, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=': Locally presentable and accessible categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Cambridge University Press (1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='1017/CBO9780511600579 Duoidally enriched Freyd categories 17 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Aguiar, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=', Mahajan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=': Monoidal Functors, Species and Hopf Algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' American Mathematical Society (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='1090/crmm/029 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Atkey, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=': Algebras for parameterised monads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' In: Kurz, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=', Lenisa, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=', Tarlecki, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=') Algebra and Coalgebra in Computer Science, Lec- ture Notes in Computer Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' 5728, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' 3–17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Springer (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='1007/978-3-642-03741-2_2 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Batanin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=', Markl, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=': Centers and homotopy centers in enriched monoidal categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Advances in Mathematics 230, 1811–1858 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='aim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='011 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Day, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=': On closed categories of functors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' In: Midwest Category Seminar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Lecture Notes in Mathematics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' 137, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' 1–38 (1970) 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Forcey, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=': Enrichment over iterated monoidal categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Algebraic & Geometric Topology 4, 95–119 (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='2140/agt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='95 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Fujii, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=': A unified framework for notions of algebraic theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Theory and Appli- cations of Categories 34(40), 1246–1316 (2019) 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Garner, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=', López Franco, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=': Commutativity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Journal of Pure and Applied Algebra 220(5), 1707–1751 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='jpaa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='003 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Grandis, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=': Category theory and applications: a textbook for beginners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' World Scientific, 2 edn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (Apr 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='1142/12253 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Hyland, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=', Plotkin, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=', Power, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=': Combining effects: sum and tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' 357(1–3), 70–99 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='tcs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='013 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Im, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=', Kelly, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' : A universal property of the convolution monoidal structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Journal of Pure and Applied Algebra 43, 75–88 (1986).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='1016/0022-4049(86)90005-8 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Jacobs, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=', Heunen, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=', Hasuo, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=': Categorical semantics for Ar- rows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Journal of Functional Programming 19(3–4), 403–438 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='1017/S0956796809007308 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Lack, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=': Composing PROPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Theory and Applications of Categories 13(9), 147– 163 (2004) 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Levy, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=', Power, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=', Thielecke, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=': Modelling environments in call-by-value programming languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Information and Computation 185(2), 182–210 (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='1016/S0890-5401(03)00088-9 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Moggi, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=': Notions of computation and monads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Information and Computation 93, 55–92 (1991).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='1016/0890-5401(91)90052-4 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Morrison, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=', Penneys, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=': Monoidal categories enriched in braided monoidal categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' International Mathematical Research Notes 11, 3527–3579 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='1093/imrn/rnx217 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Plotkin, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=', Power, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=': Computational effects and operations: an overview.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' In: Domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Electronic Notes in Theoretical Computer Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' 73, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' 149–163 (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='entcs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='008 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Power, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=', Robinson, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=': Premonoidal categories and notions of computa- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Mathematical Structures in Computer Science 7(5), 453–468 (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='1017/S0960129597002375 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Power, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=': Premonoidal categories as categories with alge- braic structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Theoretical Computer Science 278(1-2), 303– 321 (May 2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='1016/S0304-3975(00)00340-6, https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='sciencedirect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='com/science/article/pii/S0304397500003406, pub- lisher: Elsevier 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Staton, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=': Freyd categories are enriched Lawvere theories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' In: Proceed- ings of the Workshop on Algebra, Coalgebra and Topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Electronic 18 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Heunen and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Sigal Notes in Theoretical Computer Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' 303, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' 197–206 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='entcs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='02.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='010 A Definition of V-Freyd category This appendix spells out the type diagrams of Definition 6 of V-Freyd categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Extranaturality of idt: I C(b,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' b) C(a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' a) C(a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' b) idt C(f,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='id) idt C(id,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='f) Extranaturality of seq: C(a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' b) ◦ C(b′,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' c) C(a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' b′) ◦ C(b′,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' c) C(a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' b) ◦ C(b,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' c) C(a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' c) C(id,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='f)◦id seq id◦C(f,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='id) seq idt is the identity for seq: I ◦ C(a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' b) C(a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' a) ◦ C(a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' b) C(a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' b) λ seq idt◦id C(a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' b) ◦ I C(a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' b) ◦ C(b,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' b) C(a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' b) ρ seq id◦idt seq is associative: (C(a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' b) ◦ C(b,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' c)) ◦ C(c,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' d) C(a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' b) ◦ (C(b,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' c) ◦ C(c,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' d)) C(a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' c) ◦ C(c,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' d) C(a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' b) ◦ C(b,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' d) C(a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' d) α id◦seq seq seq◦id seq zero is the identity for par: J ∗ C(a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' b) C(e,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' e) ∗ C(a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' b) C(a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' b) C(e ⊕ a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' e ⊕ b) λ zero∗id par C(λ−1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='λ) C(a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' b) ∗ J C(a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' b) ∗ C(e,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' e) C(a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' b) C(b ⊕ e,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' b ⊕ e) ρ id∗zero par C(ρ−1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='ρ) Duoidally enriched Freyd categories 19 par is associative: (C(a1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' b1) ∗ C(a2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' b2)) ∗ C(a3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' b3) C(a1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' b1) ∗ (C(a2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' b2) ∗ C(a3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' b3)) C(a1 ⊕ a2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' b1 ⊕ b2) ∗ C(a3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' b3) C(a1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' b1) ∗ C(a2 ⊕ a3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' b2 ⊕ b3) C((a1 ⊕ a2) ⊕ a3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (b1 ⊕ b2) ⊕ b3) C(a1 ⊕ (a2 ⊕ a3),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' b1 ⊕ (b2 ⊕ b3)) α id∗par par par∗id par C(α−1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='α) idt respects zero: J I C(e,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' e) ǫ idt zero idt respects par: I ∗ I C(a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' a) ∗ C(b,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' b) I C(a ⊕ b,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' a ⊕ b) par idt∗idt ∇ idt seq respects zero: J J ◦ J C(e,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' e) C(e,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' e) ◦ C(e,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' e) zero zero◦zero ∆ seq seq respects par: (C(a1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' b1)◦C(b1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' c1))∗(C(a2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' b2)◦C(b2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' c2)) (C(a1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' b1)∗C(a2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' b2))◦(C(b1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' c1)∗C(b2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' c2)) C(a1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' c1) ∗ C(a2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' c2) C(a1 ⊕ a2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' b1 ⊕ b2) ◦ C(b1 ⊕ b2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' c1 ⊕ c2) C(a1 ⊕ a2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' c1 ⊕ c2) ζ par◦par seq seq∗seq par B Proofs for abstract characterisation This appendix contains proofs of the abstract characterisation of V-Freyd cate- gories of Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' They rely on properties of V-Freyd categories listed in the following four lemmas, that are mechanical to verify.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The unitors of ◦ respect zero and par: ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='zero = (zero ◦ ǫ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='∆ zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='λ = (ǫ ◦ zero).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='∆ ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='par = (par ◦ ∇).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='ζ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (ρ ∗ ρ) par.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='λ = (par ◦ ∇).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='ζ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (λ ∗ λ) 20 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Heunen and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Sigal Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The associator of ◦ respects zero and par: α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (zero ◦ (zero ◦ zero)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (id ◦ ∆).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='∆ = ((zero ◦ zero) ◦ zero).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (∆ ◦ id).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='∆ α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (par ◦ (par ◦ par)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (id ◦ ζ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='ζ = ((par ◦ par) ◦ par)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (ζ ◦ id).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='ζ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (α ∗ α) Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The unitors of ∗ respect zero and par: id = (par ◦ par).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='ζ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (id ∗ ((zero ◦ zero).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='∆)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='ρ id = (par ◦ par).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='ζ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (((zero ◦ zero).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='∆) ∗ id).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='λ Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The associator of ∗ respects par: ((par.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (par ∗ id)) ◦ (par.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (par ∗ id)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='ζ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (ζ ∗ id) = ((par.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (id ∗ par)) ◦ (par.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (id ∗ par)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='ζ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (id ∗ ζ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='α The previous lemmas require all the axioms of a duoidal category between them, except for ◦ being a monoid in (V, ∗, J).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' This latter property is used in the abstract characterisation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Proof (Proof of Proposition 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Bifunctorality is inherited from homM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The coherence morphisms making it lax monoidal are η: J ǫ−→ I ιid0 −−→ � σ I ∼= homM(e, e) and µ: � � σ1 I � ∗ � � σ2 I � ∼= � σ1,σ2 I ∗ I � ∇ −−−→ � σ1,σ2 I [ισ1⊕σ2]σ1,σ2 −−−−−−−−−→ � σ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The coherence diagrams commute by cocontinuity and the monoidal structure (I, ∇, ǫ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Proof (Proof of Proposition 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The coherence morphisms are: ηSˆ◦T : J ∆ −→ J ◦ J ηS◦ηT −−−−→ T (e, e) ◦ S(e, e) → � b T (e, b) ◦ S(b, e) ∼= (S ˆ◦ T )(e, e) µSˆ◦T : (S ˆ◦ T )(a, c) ∗ (S ˆ◦ T )(a′, c′) ≃ � b,b′ (T (a, b)◦S(b, c)) ∗ (T (a′, b′)◦S(b′, c′)) � ζ −−→ � b,b′ (T (a, b)∗T (a′, b′)) ◦ (S(b, c)∗S(b′, c′)) � µT ◦µS −−−−−→ � b,b′ T (a ⊕ a′, b ⊕ b′) ◦ S(b ⊕ b′, c ⊕ c′) → � b T (a ⊕ a′, b) ◦ S(b, c′ ⊕ c′) ≃ (S ˆ◦ T )(a ⊕ a′, c ⊕ c′) Cocontinuity and Lemmas 3 and 4 finish the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The ◦-composition of Proposition 4 is functorial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' It is easy to see that ˆ◦ is well-defined on objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Bifunctorality for mor- phisms then follows from bifunctorality of ◦ and functorality of coends.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Duoidally enriched Freyd categories 21 Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The functor homM of Proposition 3 is the left and right identity of the ◦-composition of Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The isomorphism on objects involves cocontinuity, the unitors of ◦, left Kan extending along the identity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Naturality is inherited from the naturality of the constructions involved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The unitors must also be monoidal natural transfor- mations, which is true via cocontinuity and Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Lemma 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The ◦-composition of Proposition 4 is associative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The isomorphism uses cocontinuity and the associator of ◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Naturality is inherited from the naturality of the constructions involved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' The associator is a monoidal natural transformation by cocontinuity and Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' C Proofs for change of enrichment Proof (Proof of Theorem 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Axioms i to iv hold by the axioms for lax monoidal functors for the same reason lax monoidal functors preserve monoids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Axioms v to viii each require the use of an axiom of double lax monoidal functors as shown below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' idtF .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='ǫ = Fidt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='η◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='ǫ = Fidt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='Fǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='η∗ = Fzero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='η∗ = zeroF idtF .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='∇ = Fidt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='η◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='∇ = Fidt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='F∇.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='µ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (η◦ ∗ η◦) = Fpar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='F(idt ∗ idt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='µ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (η◦ ∗ η◦) = Fpar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='µ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (Fidt ∗ Fidt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (η◦ ∗ η◦) = parF .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (idtF ∗ idtF ) seqF .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (zeroF ◦ zeroF ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='∆ = Fseq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='µ◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (Fzero ◦ Fzero).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (η∗ ◦ η∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='∆ = Fseq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='F(zero ◦ zero).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='µ◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (η∗ ◦ η∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='∆ = Fseq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='F(zero ◦ zero).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='F∆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='η∗ = Fzero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='η∗ = zeroF seqF .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (parF ◦ parF ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='ζ = Fseq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='µ◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (Fpar ◦ Fpar).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (µ∗ ◦ µ∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='ζ = Fseq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='F(par ◦ par).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='µ◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (µ∗ ◦ µ∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='ζ = Fseq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='F(par ◦ par).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='Fζ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='µ◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (µ∗ ◦ µ∗) = Fpar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='F(seq ∗ seq).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='µ◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (µ∗ ◦ µ∗) = Fpar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content='µ◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (Fseq ∗ Fseq).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (µ∗ ◦ µ∗) = parF .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' (seqF ∗ seqF ) 22 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Heunen and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' Sigal Similar checks show that F(G) is a W-Freyd map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
+page_content=' F is functorial by functorality of F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdE4T4oBgHgl3EQflw0o/content/2301.05162v1.pdf'}
diff --git a/T9AyT4oBgHgl3EQfhPid/content/2301.00374v1.pdf b/T9AyT4oBgHgl3EQfhPid/content/2301.00374v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..de240b170a61802453d619b638aaf95ee689fe93
--- /dev/null
+++ b/T9AyT4oBgHgl3EQfhPid/content/2301.00374v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:be5284554c2254ddfe99e4b650cd5c048d349754fe24de33c8740983d2f7946a
+size 335293
diff --git a/T9AyT4oBgHgl3EQfhPid/vector_store/index.pkl b/T9AyT4oBgHgl3EQfhPid/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..99fe83f29351c7f765f0759e29a445c60b7cb65e
--- /dev/null
+++ b/T9AyT4oBgHgl3EQfhPid/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e5f4a3f86847f05f57effeb2f48882b7f14b07ae38bf1c8e6f6d362cafdce46f
+size 203319
diff --git a/UdE0T4oBgHgl3EQfVQAV/content/tmp_files/2301.02260v1.pdf.txt b/UdE0T4oBgHgl3EQfVQAV/content/tmp_files/2301.02260v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..42f1923a34617f0043a8e853a738cca7cdea4e3c
--- /dev/null
+++ b/UdE0T4oBgHgl3EQfVQAV/content/tmp_files/2301.02260v1.pdf.txt
@@ -0,0 +1,1387 @@
+Astronomy & Astrophysics manuscript no. aanda
+©ESO 2023
+January 9, 2023
+Orbital analysis of the Pluto-Charon’s moon system mutual
+interactions and forced frequencies
+Dionysios Gakis ⋆ and Konstantinos N. Gourgouliatos ⋆⋆
+Department of Physics, University of Patras, Patras, Rio, 26504, Greece
+Received 9 August 2022; accepted 4 January 2023
+ABSTRACT
+Context. The orbits of the four small moons in the Pluto-Charon system, Styx, Nix, Kerberos and Hydra, are circumbinary, as the
+former form a binary dwarf planet. Consequently, the orbit of each one of them is characterized by a number of frequencies, arising
+by the central binary and the mutual gravitational interactions.
+Aims. In this work, we identify the most prominent of these forced frequencies using Fast Fourier Transformations.
+Methods. Two methods are implemented, a semi-analytic and a numerical one, and comparisons are being made.
+Results. The results indicate that as a first approximation, moon orbits may well be modelled as the superposition of a series of
+inevitable oscillations, induced by Pluto and Charon, deviating from circular ones, even if the eccentricity is set to zero. Moreover, the
+mutual gravitational effects are significant in their long term evolution, especially for the lighter moons Styx and Kerberos, activating
+modes that dominate the low-frequency region of the power spectrum. This becomes evident through the comparison of simulations
+where only one moon is included along with the binary dwarf planet and simulations of the entire six-body system. These modes
+become noticeable over long integration times and may affect the orbits of the lighter moons of the system.
+Key words. celestial mechanics – Kuiper belt objects: individual: Pluto-Charon – planets and satellites: dynamical evolution and
+stability
+1. Introduction
+Pluto’s moon system is a dynamical treasure. As the mass ratio
+between the dwarf planet Pluto and its largest moon Charon is
+8:1 (Stern et al. 2015), they are, in fact, a binary dwarf planet.
+Along with the central binary, with at present four known moons
+orbiting the system’s center of mass, namely Styx, Nix, Ker-
+beros and Hydra, this structure is valuable for studying in depth
+circumbinary orbits. Thus, studying the motions of these small
+moons is of particular interest, as the potential arising from Pluto
+and Charon forces them into orbits that deviate significantly
+from the standard elliptical ones.
+Circumbinary orbits differ a lot from the ones described by
+Keplerian orbital elements. Lee & Peale (2006) developed a the-
+oretical solution to model orbits around a zero-eccentricity bi-
+nary system. Their theory, which holds for point masses on cir-
+cumbinary coplanar orbits, yields that a circumbinary orbit is the
+superposition of a circular orbit around the center of mass, an
+epicyclic motion caused by the binary and a vertical component.
+Leung & Lee (2013) generalized this theory to include eccentric
+orbits of the central binary as well.
+Another study, by Bromley & Kenyon (2021), revisited the
+above theory and provided quantitative tools to apply it in prac-
+tice. A “most circular” circumbinary orbit is defined, corre-
+sponding to a circular orbit around a single mass. Deviations
+from the most circular orbit are quantified using the free eccen-
+tricity (e free). They tested outcomes for the eccentricity damping
+of tracer particles in the Pluto-Charon system, along with other
+extrasolar planetary systems, achieving their objective satisfac-
+⋆ dgakis@upnet.gr
+⋆⋆ kngourg@upatras.gr
+torily. Nevertheless, it is acknowledged that more precise tech-
+niques are required to analyze the actual moon orbits instead of
+of test particles. In a follow-up study, Kenyon & Bromley (2022)
+further examined and set improved constraints on the the dynam-
+ical behaviour and masses of the smallest moons by performing
+an array of simulations.
+Woo & Lee (2020) used Fast Fourier Transformations (FFT)
+on numerical simulations of the dynamical system to estimate
+the exact values of the amplitudes and frequencies that outline
+the peculiar orbits of the moons of Pluto and Charon. Although
+they confirmed the accuracy of this method, they found signifi-
+cant deviations of the orbit of Styx, from the expected one. By
+adopting the Hamiltonian approach by Lithwick & Wu (2008),
+they propose that at least a part of these deviations can be ex-
+plained by the 3:1 mean motion resonance.
+Some other theoretical solutions for circumbinary orbits ex-
+ist too. For instance, Georgakarakos & Eggl (2015) used per-
+turbations of the Runge–Lenz vector to study the short-term of
+the evolution of low-eccentricity orbits in a hierarchical triple
+system. Another example appears in the work of Sutherland &
+Kratter (2019), which proposed the usage of empirical geometric
+orbital elements to search for active resonances in orbits around
+a binary system. These studies do result in compatible solutions
+to the ones based on the Lee & Peale (2006) theory, so we do not
+discuss them further.
+In a previous paper (Gakis & Gourgouliatos 2022a), we ex-
+amined the moon motions within the dynamical system of Pluto
+and Charon. Despite attempting to define orbits which are as
+close as possible to circular, moons, nonetheless appeared to
+deviate from such orbits, and the barycentric distance varied
+significantly. Our conclusion was that the time-depending, non-
+Article number, page 1 of 11
+arXiv:2301.02260v1 [astro-ph.EP] 5 Jan 2023
+
+A&A proofs: manuscript no. aanda
+axisymmetric potential by Pluto and Charon induces irregular
+patterns to the orbits. We also inspected that major discrepancies
+concerning Keplerian orbital elements between different stud-
+ies so far do not primarily reflect limitations and inaccuracies in
+measurements, observations and calculations, but are in fact a
+result of the underlying specifications of the actual system.
+This work is the second part of our analysis concerning the
+circumbinary orbits within the gravitational system of Pluto and
+Charon. Here, our goal is to give a more quantitative view on the
+dynamical specifications of the system, focusing on the effect of
+mutual interactions between the moons, in addition to the impact
+of the central binary that we have already studied. To that end, we
+utilize both semi-analytic and numerical approaches, and infer
+the most prominent amplitudes and frequencies. Specifically, we
+apply Fast Fourier Transformations (FFT) to identify the exact
+frequencies of the many oscillations that moons perform. This
+way we quantify the impact of the mutual interactions between
+the moons that force additional frequencies in the orbits.
+The structure of this paper is the following. In Section 2, we
+describe our calculations, which are both semi-analytic (Section
+2.1) and numerical (Section 2.2). Section 3 contains our main
+results. Our final conclusions are summarized in the last section
+(Section 4).
+2. Calculations
+The orbital elements of the dynamical system, used in this work,
+are presented in Table 1. There are notable differences between
+the data set of Showalter & Hamilton (2015), and another promi-
+nent study, by Brozovi´c et al. (2015). These deviations are most
+probably explained by the intrinsic behavior of the system, as
+illustrated by Gakis & Gourgouliatos (2022a). In particular, ob-
+servations at different time periods inevitably produced distinct
+outcomes because of the variations in the relative positions of
+the bodies.
+2.1. Semi-analytic approach
+A short description of the model for circumbinary orbits, intro-
+duced by Lee & Peale (2006) and reconsidered by Bromley &
+Kenyon (2021), on which our semi-analytic approach is prin-
+cipally based, is given below. Adopting cylindrical coordinates
+and assuming that the barycenter lies on the origin O (0, 0, 0),
+the potential caused by the central binary system at a point
+P (R, φ, z = 0) may be approximated by a cosine series:
+Φ (R, φ, z = 0) =
+∞
+�
+k=0
+Φk cos k (φ − nPCt) .
+(1)
+The coefficients Φk are related to the binary properties (masses
+MP, MC and separation aPC) and the orbital radius of the moon,
+RS . The orbital frequency of Pluto and Charon is given by
+nPC =
+�
+GM
+a3
+PC
+.
+(2)
+Solving the equations of motion, the solution yields the follow-
+ing expressions for the position of a point-mass body initially
+located at P, as a function of time:
+R(t) = RS
+�������1 − efree cos (vet + κ) +
+∞
+�
+k=1
+Ck cos
+�
+knsynt
+�������� ,
+(3)
+z(t) = iRS cos (vit + λ) ,
+(4)
+where nsyn stands for the synodic frequency, i.e. nsyn = nPC − nS
+and i is the inclination of the moon orbit with respect to the
+Pluto-Charon orbital plane. The moon’s mean motion nS , the
+epicyclic frequency ve and the vertical frequency vi are defined
+as follows (see Appendix of Bromley & Kenyon (2021)):
+n2
+S =
+1
+RS
+dΦ00
+dR
+������RS
+= GM
+R3
+S
+�
+1 + µ
+M
+×
+�
+3
+4
+a2
+PC
+R2
+S + 45
+64
+M(+)
+3
+M3
+a4
+PC
+R4
+S + 175
+256
+M(+)
+5
+M5
+a6
+PC
+R6
+S + O
+�
+a8
+PC
+R8
+S
+� ��
+(5)
+v2
+e = RS
+dn2
+S
+dR
+������RS
++ 4n2
+S = GM
+R3
+S
+�
+1 − µ
+M
+×
+�
+3
+4
+a2
+PC
+R2
+S + 135
+64
+M(+)
+3
+M3
+a4
+PC
+R4
+S + 875
+256
+M(+)
+5
+M5
+a6
+PC
+R6
+S + O
+�
+a8
+PC
+R8
+S
+� ��
+(6)
+v2
+i = 1
+z
+dΦ
+dz
+������z=0, RS
+= GM
+R3
+S
+�
+1 − µ
+M
+×
+�
+9
+4
+a2
+PC
+R2
+S + 225
+64
+M(+)
+3
+M3
+a4
+PC
+R4
+S + 1225
+256
+M(+)
+5
+M5
+a6
+PC
+R6
+S + O
+�
+a8
+PC
+R8
+S
+� ��
+(7)
+where M = MP+MC, µ = (MP·MC)/(MP+MC) are the total and
+reduced mass of the binary, respectively, and M(+)
+a
+= Ma
+P + Ma
+C
+(the subscripts denote the respective objects).
+The factor Ck represents the amplitudes of the oscillations:
+Ck =
+�������
+1
+RS
+dΦk
+dR
+������RS
+− 2nS Φk
+R2
+S nsyn
+�������
+1
+v2e − k2n2syn
+(8)
+Assuming that the whole system’s barycenter coincides with the
+Pluto-Charon’s barycenter, the orbital distance of a small moon
+would be:
+r(t) =
+�
+R2(t) + z2(t)
+(9)
+We assign the nominal eccentricities (Table 1) of each moon
+as e free. Table 2 presents the calculated values of the major fre-
+quencies at which the moons oscillate. The central binary fre-
+quency is, according to the data of Table 1, 0.1566 days−1.
+2.2. Numerical approach
+We approach the orbits numerically by implementing an n-body
+symplectic integrator in a Python 3.9.6 IDLE environment. The
+n-body simulation code utilises the kick-drift technique to solve
+the differential equations representing gravitational interactions.
+The desired accuracy of the code is validated, since the total cal-
+culated energy of the system is being kept constant.
+Simulations concerning the in-question 6-body system, with
+different initial data sets each time, have already been performed
+using the same n-body code in Gakis & Gourgouliatos (2022a).
+We re-examine the basic situation of those, in order to give a
+more thorough perspective on the concepts discussed in this pa-
+per. Specifically, initial conditions are taken from Brozovi´c et al.
+(2015), where a table is provided (Table 8 therein) of measured
+Article number, page 2 of 11
+
+Dionysios Gakis and Konstantinos N. Gourgouliatos : Pluto-Charon’s moon system frequencies
+Table 1. Orbital parameters for Pluto’s moon system. The semi-major
+axes are given with respect to the system’s center of mass. The masses
+are based on the results of Buie et al. (2012) and all the other parameters
+are adopted from Showalter & Hamilton (2015).
+Object
+Mass (1016 kg)
+Semi-major axis (km)
+Pluto
+1,303,000
+2,126
+Charon
+158,600
+17,470
+Styx
+0.06
+42,656 ± 78
+Nix
+4.5
+48,694 ± 3
+Kerberos
+0.1
+57,783 ± 19
+Hydra
+4.8
+64,738 ± 3
+Period (days)
+Eccentricity (10−3)
+Inclination (◦)
+6.3872273
+0.000
+0.000
+6.3872273
+0.000
+0.000
+20.16155 ± 0.00027
+5.787 ± 1.144
+0.809 ± 0.162
+24.85463 ± 0.00003
+2.036 ± 0.050
+0.133 ± 0.008
+32.16756 ± 0.00014
+3.280 ± 0.200
+0.389 ± 0.037
+38.20177 ± 0.00003
+5.862 ± 0.025
+0.242 ± 0.005
+Table 2. The first major oscillatory frequencies, in (2π days)−1, for all
+small moons. The rest of the them are calculated similarly.
+Parameter
+Styx
+Nix
+Kerberos
+Hydra
+nS
+0.0492
+0.0402
+0.0311
+0.0262
+ve
+0.0482
+0.0396
+0.0308
+0.0260
+vi
+0.0502
+0.0408
+0.0314
+0.0264
+nsyn
+0.1074
+0.1163
+0.1255
+0.1304
+3-d vectors of positions and velocities for every object. We ana-
+lyze the evolution of the system forward in time using this data
+set.
+Numerical integration timestep is fixed to ∆t = 5000 s,
+which maintains computational times under manageable limits,
+and at the same time keeps uncertainties below 0.1%, as deter-
+mined in Gakis & Gourgouliatos (2022a). Besides, Kenyon &
+Bromley (2019a,b) propose at least ∆t ⪅ 13, 500 s for reliable
+integrations. Timesteps like these are used by various studies on
+the orbits within Pluto-Charon’s system; for example numerical
+calculations in Woo & Lee (2020) have a ∆t = 3, 000 s, whereas
+Lee & Peale (2006) uses a larger timestep, ∆t = 10, 000 s. Nev-
+ertheless, we also ran numerical tests with smaller timesteps, not
+identifying however any noticeable changes. The gravitational
+effect of the Sun is significant at distances ∼10 times larger than
+Hydra’s average orbital distance (Michaely et al. 2017); there-
+fore, we focus on a restricted 6-body problem in our simulations,
+neglecting the Sun or other Solar System bodies.
+3. Results
+Several algorithms are implemented in order to study the or-
+bits in several dynamical systems. In our analysis, we choose
+to adopt FFT to decompose the orbits in Pluto-Charon system.
+Although FFT may be less accurate than other methods like e.g.,
+FMA (Laskar 1999), it still produces reliable outcomes signifi-
+cantly fast, and hence, is often applied to analyze circumbinary
+orbits (e.g. Woo & Lee 2020; Gakis & Gourgouliatos 2022b).
+Our results indicate that the resolution provided by FFT is suit-
+able to detect and separate the forced frequencies by the central
+binary and some of their harmonics, as well as the main trends
+of the reciprocal effects by each other moon. Besides, since our
+goal is to identify the frequencies of the moon oscillations rather
+than studying chaos in the system that has been explored thor-
+oughly in past studies (e.g. Kenyon & Bromley 2019a,b; Kenyon
+& Bromley 2022), FFT method will suffice.
+The general formula used to convert a sequence x[n] of
+length N into a new one y[k] using a Fourier Transformation is:
+y[k] =
+N−1
+�
+n=0
+e−2πj kn
+N x[n]
+(10)
+More precisely, we convert a distance domain into a domain of
+frequencies. Fast Fourier Transformations are performed using
+the Python scipy routine fft.
+3.1. Central binary effects
+At first, we apply FFT of r(t) for the outcomes of the semi-
+analytic model (Fig. 1). The timestep adopted for the semi-
+analytic calculations was the same with the n-body integrations
+timestep, and the total duartion was set to 106 days. Unlike Woo
+& Lee (2020), the vertical motion is examined here, since our
+calculations include the proper inclinations. The most outstand-
+ing frequencies arising, are the ones defined when computing the
+equations (3) and (4), as expected. The red vertical dotted line in
+each periodogram corresponds to the value of ve, whereas the
+grey ones correspond to the harmonics k(nPC − nS ). Spikes vary
+regarding their height, as anticipated by the factor Ck. In other
+words, the relative size of each peak would give us a comparison
+of the different amplitudes of each frequency.
+As far as the vertical frequency vi is concerned, there also
+appears to be a minuscule peak, though not visible in the fre-
+quency spectra of Fig. 1. Having zoomed into the low-frequency
+area of each spectrum and identifying a corresponding (barely
+visible) formation, we advocate that its apparent absence is not a
+problem of the frequency resolution nor with the wide frequency
+range. Instead, this is a result of the factor i RS in equation (4)
+outlining the vertical frequency, which is a lot smaller than RS in
+equation (3) which dominates in the configuration of the strength
+of each peak in the frequency spectrum (i < 1◦ for all moons).
+There are also some other secondary spikes, not correspond-
+ing to the values of Table 2. They originate from the vertical
+component of the motion and the sinusoidal products deriving
+from equation (9). Namely, R2(t) and z2(t), along with the square
+root, give an amount of harmonic cross terms, which eventually
+result in frequencies of forms like ve±k nsyn (and multiples), 2ve,
+2vi and so on. In general, many combinations of ve, k nsyn and vi
+arise from equation (9), which are present in the periodograms
+of Fig. 1. Most of the secondary peaks have a quite small ampli-
+tude, which makes them only clearly visible on zoom scale.
+There are some distinctive differences once the n-body sim-
+ulation is employed. The resulting power spectra are shown in
+Fig. 2. The system is let to evolve for 104 and 106 days. Again,
+in this figure, vertical lines show the main expected frequencies,
+as they have been computed in Table 2. The primary peaks are
+observed at these frequencies in this case as well. Nevertheless, a
+sheer number of other minor peaks are also visible. In fact, when
+we increase the simulated time, additional frequencies appear, or
+alternatively, the already-present frequencies are enhanced. Fur-
+thermore, the rise of the total timespan reduces unwanted noise;
+the values of the power spectrum are diminished.
+We notice that the vertical lines (i.e. the findings of the semi-
+analytic model) do not match exactly with the peaks of the pe-
+riodogram of Fig. 2. This is not largely visible in large scale
+Article number, page 3 of 11
+
+A&A proofs: manuscript no. aanda
+(deviations scale to ∼0.5%), but may be observed when zoom-
+ing in each individual spike. This distinction is evidence of the
+unavoidable inconsistency between the two approaches that we
+follow. Any differences could safely be attributed to approxima-
+tions made in the semi-analytic model, as justified in Section 2.
+For example, we neglect the non-linear terms that definitely rule
+the motions of the moons. Styx is the most striking example and
+reveals the limitations of the Lee & Peale (2006) theory in dis-
+tances close to the binary.
+Yet, apart from the peaks dominating the region around zero,
+which we will discuss later, the low-amplitude spikes appearing
+in between the vertical lines may well be understood within the
+semi-analytic model. As we discussed earlier for Fig. 1, these
+peaks are the result of the multiple sinusoidal products of equa-
+tion (9). Thus, they are not in principal caused by numerical er-
+rors, but are undeniably anticipated by the theoretical model.
+Bromley & Kenyon (2021) and Woo & Lee (2020) found fur-
+ther formations in their power spectra, unable to be explained by
+the epicyclic theory. In the first paper, the authors found a resid-
+ual signal at the epicyclic frequency, when simulating a most-
+circular orbit for Nix (purple curve in their Figure 2). We be-
+lieve that attributing this residual solely to numerical challenges
+seems unlikely, as it occurs in the exact frequency of ve and ap-
+pears prominently when increasing e free. We argue, instead, that
+this behavior most probably reflects the practical impossibility
+of defining a zero-eccentric circumbinary orbit, as validated by
+Gakis & Gourgouliatos (2022a). In other words, although the lin-
+earized theory allows an orbit exempt of free eccentricity, even
+adopting such initial conditions inevitably yields that some fre-
+quencies will couple to ve. Accordingly, forced frequencies of
+the form nsyn − ve are expected, as we explained earlier. In the
+latter study, we inspect that peaks near the values of nS and ve in
+Figures 5 and 6 of Woo & Lee (2020) might truly appear at some
+extent from higher-order terms, but perhaps are generated by the
+merging of the frequencies ve, k (nPC − nS ) and vi, as quantified
+by equation (9).
+3.2. Mutual interactions
+The remaining peaks in Fig. 2 at low frequencies are caused by
+the mutual interactions, corresponding to resonances between
+the moons. Considering that there are 6 bodies constituting the
+system, it is understandable to expect that several synodic pe-
+riods (and their harmonics) can be found. In this Section, we
+determine and identify these mutual frequencies caused by one
+moon to another. Some frequencies of the perturbations, for the
+case of Kerberos, have been identified by Showalter & Hamil-
+ton (2015) (Extended Data Figure 3 therein). In order to sepa-
+rate the effects by the binary system from the ones by the other
+moons, the authors chose to merge Pluto and Charon into a sin-
+gle central body and compare the harmonics of resonances with
+the peaks of their power spectrum. In this work, we identify the
+mutual gravitational effects between moons by collating the sim-
+ulation of the system, accounting for all objects, with a set of
+runs of a fictitious system where we consider the motion of each
+moon, accounting only for the gravitational attraction by Pluto
+and Charon.
+Especially in frequencies near zero (i.e. large periods), an
+immense amount of secondary peaks is visible, implying that
+the orbits also include long-period frequencies. Actually, in this
+region, the spectrum is occupied by a forest of very long frequen-
+cies. As noted above, this behavior is evident in the 6-body, long
+timescale simulations. The situation is more prominent for the
+two lightest bodies, Styx and Kerberos. Their small masses ex-
+plain their comparatively broader susceptibility to perturbations
+caused by the other bodies.
+To quantify this effect, we provide a comparison of the power
+spectrum coming from the 6-body integrations and the one deriv-
+ing from 3-body integrations (when simulating only the binary
+and one of the moons). This is shown in Fig. 3. Discrepancies
+are indeed more significant for Styx and Kerberos. Additionally,
+Fig. 3 confidently establishes that the large number of peaks that
+appear in Fig. 2 do not indicate numerical noise, but appear be-
+cause of the mutual gravitational effects. That is, the long-term
+periodicity terms of one moon to each other cover almost entirely
+the frequency region near zero. In 3-body simulations, especially
+this area of the spectrum lacks peaks because only moon-binary
+interactions are considered.
+In order to study more precisely the mutual gravitational
+interactions, we zoom in the area of low frequencies (<0.20
+days−1) of the frequency spectra of Fig. 3. These magnified spec-
+tra are presented successively in Fig. 4-7 for Styx, Nix, Ker-
+beros and Hydra, respectively. For a more efficient visualization,
+we divide the low-frequency area of each moon to four pan-
+els, corresponding to frequencies ≤ 0.0025 days−1(panels a), be-
+tween 0.0025 days−1 and 0.050 days−1 (panels b), between 0.050
+days−1 and 0.10 days−1(panels c), and between 0.10 days−1 and
+0.20 days−1 (panels d). That way, we managed to study in de-
+tail the reciprocal effects which gradually become weaker com-
+pared to the forced oscillations as the frequency rises. Obviously,
+when improving the resolution of the periodogram, separate os-
+cillations arise from the seemingly almost continuous spectrum
+of frequencies in Fig. 3. Some of these frequencies, though im-
+mense in their number, drop in favour of a few more dominant
+peaks.
+At first, all four small moons are placed close to mean mo-
+tion resonances (MMRs) with Charon. Specifically, the ratios of
+their Keplerian orbital periods are about 1:3:4:5:6, similarly to
+the Laplace configuration in the Galilean moons of Jupiter. Al-
+though they do not definitely belong in the resonance accord-
+ing to the currently accepted orbital elements for the four moons
+(Brozovi´c et al. 2015; Showalter & Hamilton 2015), adopting
+the range of their uncertainties could certainly place them well
+inside the MMRs (Giuppone et al. 2022). Additionally, a reso-
+nant term could affect the tidal damping of a moon even if it is
+not located in the actual position of the resonance, as shown e.g.
+for the 3:1 resonance of Nix in Lithwick & Wu (2008). For that
+reason, we examine this type of resonance in our analysis. In the
+same study it is shown that even other MMRs of the form N:1
+with Charon could be significant for some moons (e.g., the 2:1
+MMR of Nix with Charon). Nevertheless, in order to maintain
+our analysis feasible and focused on the most strongest mutual
+interactions, we examine only the most prominent 1:3:4:5:6 res-
+onance with Charon. For each moon, the anticipated positions
+of the harmonics of this resonances is shown in purple vertical
+dotted lines in the frequency spectra of Fig. 4-7.
+More complex resonances can also be defined. After an ex-
+tensive search for potential resonances, Showalter & Hamil-
+ton (2015) found two major such resonances implicating three
+moons. The strongest resonance identified was Φ = 3λS − 5λN +
+2λH ≈ 180◦, which implies that the synodic period of Nix-Hydra
+divided by the one of Styx-Nix is 3/2, i.e. 3SNH = 2SS N, where
+the subscripts note the respective moons. A second resonance,
+now involving Styx, Nix and Hydra, was found as 42SNK ≈
+43SS N. We calculate the frequencies induced by the above res-
+onances and mark their harmonics with yellow and cyan dotted
+lines in the frequency spectra.
+Article number, page 4 of 11
+
+Dionysios Gakis and Konstantinos N. Gourgouliatos : Pluto-Charon’s moon system frequencies
+Of course, apart from any resonances we note the strong in-
+teraction of one with another over a time period equal to synodic
+period of them. Therefore, we calculate the respective frequen-
+cies by the synodic frequencies S S N, S S K, S S H, S NK, S NH and
+S KH. The positions of their harmonics are shown in blue, green,
+orange, lime, olive and brown vertical dotted lines in Fig. 4-7,
+respectively.
+To avoid further contamination of the images with many ver-
+tical lines representing expected oscillatory modes, in these fig-
+ures we present only the frequencies by the mutual interactions
+(the forced frequencies by the binary system are shown clearly in
+Fig. 1 and 2). Of course, peaks where the 6-body spectra match
+with the 3-body ones mark the modes by Pluto and Charon, as
+explained in Section 3.1. As far as the long-period resonance
+42SNK ≈ 43SS N is considered, we mark only its first 20 harmon-
+ics - further lines could heavily fill the figures.
+Despite the fact the each mode would ideally appear as delta
+function (negligible width), in practise many of them have a sig-
+nificant width. As it is evident by the vertical lines in Fig. 4-7,
+this is not primarily an effect of the limited accuracy of the FFT
+method. Instead, it is a result of a number of oscillations with
+very close frequencies.
+As noted by Gakis & Gourgouliatos (2022a), Keplerian os-
+culating elements are not sufficient to describe circumbinary or-
+bits. Hence, obtaining the synodic periods of one moon with an-
+other or the locations of the resonances is uncertain, as it is based
+on the deduced orbital periods of them, Future observations may
+increase the accuracy of the measurements providing more ro-
+bust estimate for the masses and the 3-d position and velocity
+vectors of the objects. This is yet another reason for possible
+minor discrepancies between a peak in the periodogram and the
+anticipated position of its respective frequency (no more than
+∼0.2%). Apart from that, these orbital elements themselves have
+not been decisively determined yet, as we find significant differ-
+ences in previous data tables. For our calculations, we adopted
+the values of Table 1, deduced by Showalter & Hamilton (2015).
+Styx is the moon most heavily affected by mutual perturba-
+tions, along with Kerberos. The strongest mode in Styx’s spec-
+trum (Fig. 4) is the one induced by Nix, which is the closest
+moon. The interaction with Hydra has a similar strength, since
+Hydra is the most massive moon (though most distant to Styx).
+It is then evident that the the resonance 3SNH = 2SS N produces
+the most important perturbations in the orbital pattern of Styx.
+On the other hand, due to its small mass, Kerberos, forces much
+weaker modes to Styx, about 3 times weaker compared to the
+perturbations by Nix and Hydra. The purple lines in Fig. 4, mark-
+ing the resonance 1:3:4:5:6, correspond to small peaks either, as
+Styx does not belong well within the resonance. On the contrary,
+Styx experiences the effects of the resonance 42SNK ≈ 43SS N
+strongly in low frequencies, but as the frequency of their har-
+monics rises, their strength gradually drops. This is however the
+reason for the large number of peaks in between the most promi-
+nent ones, by 3SNH = 2SS N, though they are not marked in detail
+in the diagrams.
+Nix appears to have a similar behavior, though the number
+and strength of peaks is not as large as Styx’s. Again, the reso-
+nance 3SNH = 2SS N is the dominant one, while there is a slight
+preference to the modes by Hydra rather than those by Styx. De-
+spite their proximity, the gravitational interaction between Nix
+and Kerberos is not powerful (Hydra has a much more clear im-
+print in the frequency spectrum of Nix than Kerberos). The reso-
+nance 42S NK ≈ 43SS N mainly affects the low-frequency region,
+as noted by the cyan vertical lines of Fig. 5, whereas the 4:1
+MMR with Charon does not seem to produce an intense peak.
+The strongest peaks in the spectrum of Kerberos, Fig. 6, are
+undeniably the harmonics of the synodic frequency S KH. They
+are followed by the interactions of Kerberos with Styx, while the
+mutual effects between Kerberos and Nix seem to be minuscule
+compared to the above two. However, the 5:1 MMR with Charon
+has a more substantial impact on Kerberos than the effect N:1
+MMR has on Styx or Nix. The resonance 42SNK ≈ 43SS N re-
+mains quite strong even for larger frequencies as well, forming
+evident peaks in between the main components of the synodic
+frequencies.
+Hydra is the most massive moon and has the largest distance
+from the system’s barycenter. Evidently, the effects by either
+Pluto-Charon or the other three moons are the lowest, and its mo-
+tion is the closest approximation to a typical Keplerian elliptic
+orbit in the system. As Fig. 7 suggests, Hydra is mainly disturbed
+by the resonance 3SNH = 2SS N. The motion of Kerberos also in-
+duces some perturbations, through of a smaller scale. Apart from
+that, Hydra’s resonance with Charon is evident through some in-
+termediate peaks.
+For each one of the moons, there is a number of lower-
+amplitude peaks, not explained by the resonances examined
+above. This effect is more obvious for the lightest moons, Styx
+and Kerberos. We argue that their origin lies in the N:1 MMRs
+with Charon. As mentioned, a specific type of resonance could
+have a gravitational effect on a moon even if it is not located
+in the exact position of the resonance. Consequently, our con-
+clusion is that these smaller-scale modes are created by near-
+resonance kicks other than 1:3:4:5:6.
+Lastly, a significant remark on the power spectra of the four
+moons is that the peaks by mutual interactions have a compa-
+rable size with the binary-induced ones for Styx and Kerberos,
+at least in the low-frequency region. This is not the case for the
+heavier Nix and Hydra, where the binary effects are in general
+stronger in the entire frequency region. This fact implies that the
+reciprocal effects for the less massive moons may influence the
+orbits just as much as the binary system, or even dominate over
+them for large periods. Consequently, we speculate that mod-
+elling the orbits of these moons would not be realistic when ig-
+noring the dynamics of the rest of the objects in the system.
+4. Conclusions
+In this paper, we identified the most prominent frequencies at
+which the moons of Pluto and Charon swing. To achieve that, we
+employed FFT to computed orbital elements by a semi-analytic
+and an arithmetic process. It is confirmed that forced oscillations
+caused by the rotating non-axisymmetric components of the cen-
+tral binary extend to values set by the Ck term and occur at fre-
+quencies k(nS − nPC). We also notice that although our adopted
+linearized theory allows it, minimising such frequencies is im-
+possible even when demanding e free = 0 for the circumbinary
+orbits, because of the ubiquitous non-linear terms of gravity.
+By collating outcomes from restricted 3-body simulations
+along with the case in which every moon is present, we also
+managed to assess the mutual gravitational effect. We deduce
+that the low-mass moons Styx and Kerberos are more intensely
+affected by the other objects, and over long integration times, the
+mutual interactions have a significant effect on their orbital fre-
+quencies. In fact, the mutual effects concerning these two moons
+have comparable (in strength) perturbations to the orbits with the
+central binary, at least in the low-frequency region.
+Specifically, we found that the strongest mutual gravitational
+interactions are caused by the resonances 3SNH = 2SS Nand
+Article number, page 5 of 11
+
+A&A proofs: manuscript no. aanda
+42SNK ≈ 43SS N. In the first case, strong kicks are sparsely pro-
+duced, while the second, longer-period, type of resonance fills
+the region in between. Nonetheless, the N:1 MMR with Charon
+is not as powerful, which is attributed to the proximity of the
+moons to the resonance.
+Acknowledgements. The authors thank Prof. Alain Vienne for useful suggestions
+that enhanced this work. The numerical code used in this work was branched
+from an n-body code (https://github.com/pmocz/nbody-python) created by Philip
+Mocz. KNG acknowledges support by grant University of Patras, ELKE81641.
+References
+Bromley, B. C. & Kenyon, S. J. 2021, AJ, 161, 25
+Brozovi´c, M., Showalter, M. R., Jacobson, R. A., & Buie, M. W. 2015, Icarus,
+246, 317
+Buie, M. W., Tholen, D. J., & Grundy, W. M. 2012, AJ, 144, 15
+Gakis, D. & Gourgouliatos, K. N. 2022a, Celestial Mechanics and Dynamical
+Astronomy, 134, 14
+Gakis, D. & Gourgouliatos, K. N. 2022b, MNRAS[arXiv:2212.05016]
+Georgakarakos, N. & Eggl, S. 2015, ApJ, 802, 94
+Giuppone, C. A., Rodríguez, A., Michtchenko, T. A., & de Almeida, A. A. 2022,
+Astronomy & Astrophysics, 658, A99
+Kenyon, S. J. & Bromley, B. C. 2019a, The Astronomical Journal, 158, 69
+Kenyon, S. J. & Bromley, B. C. 2019b, The Astronomical Journal, 157, 79
+Kenyon, S. J. & Bromley, B. C. 2022, AJ, 163, 238
+Laskar, J. 1999, in Hamiltonian systems with three or more degrees of freedom
+(Springer), 134–150
+Lee, M. H. & Peale, S. J. 2006, Icarus, 184, 573
+Leung, G. C. K. & Lee, M. H. 2013, ApJ, 763, 107
+Lithwick, Y. & Wu, Y. 2008, arXiv preprint arXiv:0802.2939
+Michaely, E., Perets, H. B., & Grishin, E. 2017, ApJ, 836, 27
+Showalter, M. R. & Hamilton, D. P. 2015, Nature, 522, 45
+Stern, S. A., Bagenal, F., Ennico, K., et al. 2015, Science, 350, aad1815
+Sutherland, A. P. & Kratter, K. M. 2019, Monthly Notices of the Royal Astro-
+nomical Society, 487, 3288
+Woo, J. M. Y. & Lee, M. H. 2020, AJ, 159, 277
+a
+b
+c
+d
+Fig. 1. FFT power spectrum for all small moons using the semi-analytic
+approach. The red vertical line represents the epicyclic frequency of
+each moon (ve) and the gray ones the synodic frequency and its har-
+monics (k nsyn), as shown in Table 2.
+Article number, page 6 of 11
+
+Styx
+12
+5
+semi-analytic
+10.0
+log(power) (arbitrary units)
+7.5
+5.0
+2.5
+0.0
+2.5
+-5.0
+0.0
+0.1
+0.2
+0.3
+0.4
+0.5
+0.6
+0.7
+0.8
+frequency (days-1)Nix
+semi-analytic
+10
+) (arbitrary units)
+8
+6
+4
+log(power)
+2
+0
+-2
+0.0
+0.1
+0.2
+0.3
+0.4
+0.5
+0.6
+0.7
+0.8
+frequency (days-1)Kerberos
+12.5
+semi-analytic
+10.0
+log(power) (arbitrary units)
+7.5
+5.0
+2.5
+0.0
+2.5
+-5.0
+-7.5
+0.0
+0.1
+0.2
+0.3
+0.4
+0.5
+0.6
+0.7
+0.8
+frequency (days-1)Hydra
+2
+semi-analytic
+log(power) (arbitrary units)
+10
+8
+6
+4
+2
+0
+-2
+0.0
+0.2
+0.4
+0.6
+0.8
+frequency (days-1)Dionysios Gakis and Konstantinos N. Gourgouliatos : Pluto-Charon’s moon system frequencies
+a
+b
+c
+d
+Fig. 2. FFT power spectrum for all small moons by varying the total
+simulated time of 6-body integrations (104 and 106 days). The red ver-
+tical dotted line represents the epicyclic frequency of each moon (ve)
+and the gray ones the synodic frequency and its harmonics (k nsyn), as
+shown in Table 2.
+a
+b
+c
+d
+Fig. 3. FFT power spectrum for all small moons for 6-body (violet) and
+3-body integrations (dark gray blue). The simulated time is 106 days (∼
+2700 years).
+Article number, page 7 of 11
+
+Nix
+6-body
+10.0
+3-body
+7.5
+5.0
+2.5
+0.0
+2.5
+-5.0
+0.00
+0.25
+0.50
+0.75
+1.00
+1.25
+1.50
+1.75
+2.00
+frequency (days-1)Kerberos
+12
+6-body
+10.0
+3-body
+log(power) (arbitrary units)
+7.5
+5.0
+2.5
+0.0
+-2.5
+5.0
+-7.5
+0.00
+0.25
+0.50
+0.75
+1.00
+1.25
+1.50
+1.75
+2.00
+frequency (days-1)Hydra
+6-body
+3-body
+10.0
+7.5
+5.0
+2.5
+0.0
+2.5
+-5.0
+0.00
+0.25
+0.50
+0.75
+1.00
+1.25
+1.50
+1.75
+2.00
+frequency (days-1)Styx
+104 days
+10.0
+106 days
+log(power) (arbitrary units)
+7.5
+5.0
+2.5
+0.0
+2.5
+-5.0
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+1.2
+1.4
+1.6
+frequency (days-1)Nix
+104 days
+10
+106 days
+8
+6
+4
+2
+0
+Z
+.4
+6
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+1.2
+1.4
+1.6
+frequency (days-1)Kerberos
+104 days
+10.0
+106 days
+(n e) (ao)
+7.5
+5.0
+2.5
+0.0
+2.5
+5.0
+7.5
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+1.2
+1.4
+1.6
+frequency (days-1)Hydra
+12.
+104 days
+10.0
+106 days
+7.5
+5.0
+2.5
+0.0
+2.5
+-5.0
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+1.2
+1.4
+1.6
+frequency (days-1)Styx
+6-body
+10.0
+3-body
+log(power) (arbitrary units)
+7.5
+5.0
+2.5
+0.0
+2.5
+5.0
+7.5
+0.00
+0.25
+0.50
+0.75
+1.00
+1.25
+1.50
+1.75
+2.00
+frequency (days-1)A&A proofs: manuscript no. aanda
+a
+b
+c
+d
+Fig. 4. FFT successive power spectra for Styx, magnified in low frequencies. Panel a includes frequencies ≤ 0.0025 days−1, panel b between 0.0025
+days−1 and 0.050 days−1, panel c between 0.050 days−1 and 0.10 days−1 and panel d ≥ 0.20 days−1. Violet plots represent the 6-body integrations
+and dark gray blue plots the 3-body ones. Vertical dotted lines mark the expected positions of the main mutual gravitational interactions.
+Article number, page 8 of 11
+
+Styx
+6-body
+3-body
+10.0
+log(power) (arbitrary units)
+7.5
+5.0
+2.5
+0.0
+2.5
+-5.0
+0.000
+0.005
+0.010
+0.015
+0.020
+0.025
+frequency (days-1)Styx
+10.0
+log(power) (arbitrary units)
+7.5
+5.0
+2.5
+0.0
+2.5
+-5.0
+0.025
+0.030
+0.035
+0.040
+0.045
+0.050
+frequency (days-1)Styx
+10.0
+log(power) (arbitrary units)
+7.5
+5.0
+2.5
+0.0
+2.5
+-5.0
+0.05
+0.06
+0.07
+0.08
+0.09
+0.10
+frequency (days-1)Styx
+SsK
+10.0
+SsN
+SsH
+log(power) (arbitrary units)
+42SNK:43SsN
+7.5
+2SsN:3SNH
+1:3:4:5:6
+5.0
+2.5
+0.0
+2.5
+-5.0
+0.10
+0.12
+0.14
+0.16
+0.18
+0.20
+frequency (days-1)Dionysios Gakis and Konstantinos N. Gourgouliatos : Pluto-Charon’s moon system frequencies
+a
+b
+c
+d
+Fig. 5. FFT successive power spectra for Nix, magnified in low frequencies. Panel a includes frequencies ≤ 0.0025 days−1, panel b between 0.0025
+days−1 and 0.050 days−1, panel c between 0.050 days−1 and 0.10 days−1 and panel d ≥ 0.20 days−1. Violet plots represent the 6-body integrations
+and dark gray blue plots the 3-body ones. Vertical dotted lines mark the expected positions of the main mutual gravitational interactions.
+Article number, page 9 of 11
+
+Nix
+6-body
+3-body
+10.0
+7.5
+5.0
+2.5
+0.0
+2.5
+-5.0
+0.000
+0.005
+0.010
+0.015
+0.020
+0.025
+frequency (days-1)Nix
+10.0
+log(power) (arbitrary units)
+7.5
+5.0
+2.5
+0.0
+2.5
+-5.0
+0.025
+0.030
+0.035
+0.040
+0.045
+0.050
+frequency (days-1)Nix
+10.0
+log(power) (arbitrary units)
+7.5
+5.0
+2.5
+0.0
+2.5
+-5.0
+0.05
+0.06
+0.07
+0.08
+0.09
+0.10
+frequency (days-1)Nix
+SNK
+10.0
+SsN
+SNH
+log(power) (arbitrary units)
+42SNK:43SsN
+7.5
+2SsN:3SNH
+1:3:4:5:6
+5.0
+2.5
+0.0
+2.5
+-5.0
+0.10
+0.12
+0.14
+0.16
+0.18
+0.20
+frequency (days-1)A&A proofs: manuscript no. aanda
+a
+b
+c
+d
+Fig. 6. FFT successive power spectra for Kerberos, magnified in low frequencies. Panel a includes frequencies ≤ 0.0025 days−1, panel b between
+0.0025 days−1 and 0.050 days−1, panel c between 0.050 days−1 and 0.10 days−1 and panel d ≥ 0.20 days−1. Violet plots represent the 6-body inte-
+grations and dark gray blue plots the 3-body ones. Vertical dotted lines mark the expected positions of the main mutual gravitational interactions.
+Article number, page 10 of 11
+
+Kerberos
+6-body
+3-body
+10.0
+log(power) (arbitrary units)
+7.5
+5.0
+2.5
+0.0
+2.5
+-5.0
+0.000
+0.005
+0.010
+0.015
+0.020
+0.025
+frequency (days-1)Kerberos
+10.0
+log(power) (arbitrary units)
+7.5
+5.0
+2.5
+0.0
+2.5
+-5.0
+0.025
+0.030
+0.035
+0.040
+0.045
+0.050
+frequency (days-1)Kerberos
+10.0
+(n e) (ao)
+7.5
+5.0
+2.5
+0.0
+2.5
+-5.0
+0.05
+0.06
+0.07
+0.08
+0.09
+0.10
+frequency (days-1)Kerberos
+SNK
+10.0
+SsK
+SKH
+log(power) (arbitrary units)
+42SNK:43SsN
+7.5
+1:3:4:5:6
+5.0
+2.5
+0.0
+2.5
+-5.0
+0.10
+0.12
+0.14
+0.16
+0.18
+0.20
+frequency (days-1)Dionysios Gakis and Konstantinos N. Gourgouliatos : Pluto-Charon’s moon system frequencies
+a
+b
+c
+d
+Fig. 7. FFT successive power spectra for Hydra, magnified in low frequencies. Panel a includes frequencies ≤ 0.0025 days−1, panel b between
+0.0025 days−1 and 0.050 days−1, panel c between 0.050 days−1 and 0.10 days−1 and panel d ≥ 0.20 days−1. Violet plots represent the 6-body inte-
+grations and dark gray blue plots the 3-body ones. Vertical dotted lines mark the expected positions of the main mutual gravitational interactions.
+Article number, page 11 of 11
+
+Hydra
+6-body
+3-body
+10.0
+7.5
+5.0
+2.5
+0.0
+2.5
+-5.0
+0.000
+0.005
+0.010
+0.015
+0.020
+0.025
+frequency (days-1)Hydra
+10.0
+log(power) (arbitrary units)
+7.5
+5.0
+2.5
+0.0
+2.5
+-5.0
+0.025
+0.030
+0.035
+0.040
+0.045
+0.050
+frequency (days-1)Hydra
+222
+10.0
+(n e) (ao)
+7.5
+5.0
+2.5
+0.0
+R
+2.5
+-5.0
+H:
+0.05
+0.06
+0.07
+0.08
+0.09
+0.10
+frequency (days-1)Hydra
+SNH
+10.0
+SsH
+SKH
+log(power) (arbitrary units)
+2SsN:3SNH
+7.5
+1:3:4:5:6
+5.0
+2.5
+0.0
+2.5
+5.0
+0.10
+0.12
+0.14
+0.16
+0.18
+0.20
+frequency (days-1)
\ No newline at end of file
diff --git a/UdE0T4oBgHgl3EQfVQAV/content/tmp_files/load_file.txt b/UdE0T4oBgHgl3EQfVQAV/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..b6c64c2f94267eaf2f7d8970209b695f04271b6a
--- /dev/null
+++ b/UdE0T4oBgHgl3EQfVQAV/content/tmp_files/load_file.txt
@@ -0,0 +1,995 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf,len=994
+page_content='Astronomy & Astrophysics manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' aanda ©ESO 2023 January 9, 2023 Orbital analysis of the Pluto-Charon’s moon system mutual interactions and forced frequencies Dionysios Gakis ⋆ and Konstantinos N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Gourgouliatos ⋆⋆ Department of Physics, University of Patras, Patras, Rio, 26504, Greece Received 9 August 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' accepted 4 January 2023 ABSTRACT Context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' The orbits of the four small moons in the Pluto-Charon system, Styx, Nix, Kerberos and Hydra, are circumbinary, as the former form a binary dwarf planet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Consequently, the orbit of each one of them is characterized by a number of frequencies, arising by the central binary and the mutual gravitational interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Aims.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' In this work, we identify the most prominent of these forced frequencies using Fast Fourier Transformations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Two methods are implemented, a semi-analytic and a numerical one, and comparisons are being made.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' The results indicate that as a first approximation, moon orbits may well be modelled as the superposition of a series of inevitable oscillations, induced by Pluto and Charon, deviating from circular ones, even if the eccentricity is set to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Moreover, the mutual gravitational effects are significant in their long term evolution, especially for the lighter moons Styx and Kerberos, activating modes that dominate the low-frequency region of the power spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' This becomes evident through the comparison of simulations where only one moon is included along with the binary dwarf planet and simulations of the entire six-body system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' These modes become noticeable over long integration times and may affect the orbits of the lighter moons of the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Key words.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' celestial mechanics – Kuiper belt objects: individual: Pluto-Charon – planets and satellites: dynamical evolution and stability 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Introduction Pluto’s moon system is a dynamical treasure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' As the mass ratio between the dwarf planet Pluto and its largest moon Charon is 8:1 (Stern et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 2015), they are, in fact, a binary dwarf planet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Along with the central binary, with at present four known moons orbiting the system’s center of mass, namely Styx, Nix, Ker- beros and Hydra, this structure is valuable for studying in depth circumbinary orbits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Thus, studying the motions of these small moons is of particular interest, as the potential arising from Pluto and Charon forces them into orbits that deviate significantly from the standard elliptical ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Circumbinary orbits differ a lot from the ones described by Keplerian orbital elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Lee & Peale (2006) developed a the- oretical solution to model orbits around a zero-eccentricity bi- nary system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Their theory, which holds for point masses on cir- cumbinary coplanar orbits, yields that a circumbinary orbit is the superposition of a circular orbit around the center of mass, an epicyclic motion caused by the binary and a vertical component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Leung & Lee (2013) generalized this theory to include eccentric orbits of the central binary as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Another study, by Bromley & Kenyon (2021), revisited the above theory and provided quantitative tools to apply it in prac- tice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' A “most circular” circumbinary orbit is defined, corre- sponding to a circular orbit around a single mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Deviations from the most circular orbit are quantified using the free eccen- tricity (e free).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' They tested outcomes for the eccentricity damping of tracer particles in the Pluto-Charon system, along with other extrasolar planetary systems, achieving their objective satisfac- ⋆ dgakis@upnet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='gr ⋆⋆ kngourg@upatras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='gr torily.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Nevertheless, it is acknowledged that more precise tech- niques are required to analyze the actual moon orbits instead of of test particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' In a follow-up study, Kenyon & Bromley (2022) further examined and set improved constraints on the the dynam- ical behaviour and masses of the smallest moons by performing an array of simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Woo & Lee (2020) used Fast Fourier Transformations (FFT) on numerical simulations of the dynamical system to estimate the exact values of the amplitudes and frequencies that outline the peculiar orbits of the moons of Pluto and Charon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Although they confirmed the accuracy of this method, they found signifi- cant deviations of the orbit of Styx, from the expected one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' By adopting the Hamiltonian approach by Lithwick & Wu (2008), they propose that at least a part of these deviations can be ex- plained by the 3:1 mean motion resonance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Some other theoretical solutions for circumbinary orbits ex- ist too.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' For instance, Georgakarakos & Eggl (2015) used per- turbations of the Runge–Lenz vector to study the short-term of the evolution of low-eccentricity orbits in a hierarchical triple system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Another example appears in the work of Sutherland & Kratter (2019), which proposed the usage of empirical geometric orbital elements to search for active resonances in orbits around a binary system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' These studies do result in compatible solutions to the ones based on the Lee & Peale (2006) theory, so we do not discuss them further.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' In a previous paper (Gakis & Gourgouliatos 2022a), we ex- amined the moon motions within the dynamical system of Pluto and Charon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Despite attempting to define orbits which are as close as possible to circular, moons, nonetheless appeared to deviate from such orbits, and the barycentric distance varied significantly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Our conclusion was that the time-depending, non- Article number, page 1 of 11 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='02260v1 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='EP] 5 Jan 2023 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' aanda axisymmetric potential by Pluto and Charon induces irregular patterns to the orbits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' We also inspected that major discrepancies concerning Keplerian orbital elements between different stud- ies so far do not primarily reflect limitations and inaccuracies in measurements, observations and calculations, but are in fact a result of the underlying specifications of the actual system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' This work is the second part of our analysis concerning the circumbinary orbits within the gravitational system of Pluto and Charon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Here, our goal is to give a more quantitative view on the dynamical specifications of the system, focusing on the effect of mutual interactions between the moons, in addition to the impact of the central binary that we have already studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' To that end, we utilize both semi-analytic and numerical approaches, and infer the most prominent amplitudes and frequencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Specifically, we apply Fast Fourier Transformations (FFT) to identify the exact frequencies of the many oscillations that moons perform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' This way we quantify the impact of the mutual interactions between the moons that force additional frequencies in the orbits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' The structure of this paper is the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' In Section 2, we describe our calculations, which are both semi-analytic (Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='1) and numerical (Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Section 3 contains our main results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Our final conclusions are summarized in the last section (Section 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Calculations The orbital elements of the dynamical system, used in this work, are presented in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' There are notable differences between the data set of Showalter & Hamilton (2015), and another promi- nent study, by Brozovi´c et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' These deviations are most probably explained by the intrinsic behavior of the system, as illustrated by Gakis & Gourgouliatos (2022a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' In particular, ob- servations at different time periods inevitably produced distinct outcomes because of the variations in the relative positions of the bodies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Semi-analytic approach A short description of the model for circumbinary orbits, intro- duced by Lee & Peale (2006) and reconsidered by Bromley & Kenyon (2021), on which our semi-analytic approach is prin- cipally based, is given below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Adopting cylindrical coordinates and assuming that the barycenter lies on the origin O (0, 0, 0), the potential caused by the central binary system at a point P (R, φ, z = 0) may be approximated by a cosine series: Φ (R, φ, z = 0) = ∞ � k=0 Φk cos k (φ − nPCt) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' (1) The coefficients Φk are related to the binary properties (masses MP, MC and separation aPC) and the orbital radius of the moon, RS .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' The orbital frequency of Pluto and Charon is given by nPC = � GM a3 PC .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' (2) Solving the equations of motion, the solution yields the follow- ing expressions for the position of a point-mass body initially located at P, as a function of time: R(t) = RS �������1 − efree cos (vet + κ) + ∞ � k=1 Ck cos � knsynt �������� , (3) z(t) = iRS cos (vit + λ) , (4) where nsyn stands for the synodic frequency, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' nsyn = nPC − nS and i is the inclination of the moon orbit with respect to the Pluto-Charon orbital plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' The moon’s mean motion nS ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' the ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='epicyclic frequency ve and the vertical frequency vi are defined ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='as follows (see Appendix of Bromley & Kenyon (2021)): ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='n2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='S = ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='RS ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='dΦ00 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='dR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='������RS ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='= GM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='R3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='S ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='1 + µ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='× ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='PC ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='R2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='S + 45 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='64 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='M(+) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='M3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='a4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='PC ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='R4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='S + 175 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='256 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='M(+) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='M5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='a6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='PC ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='R6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='S + O ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='a8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='PC ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='R8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='S ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='� �� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='(5) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='v2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='e = RS ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='dn2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='S ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='dR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='������RS ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='+ 4n2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='S = GM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='R3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='S ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='1 − µ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='× ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='PC ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='R2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='S + 135 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='64 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='M(+) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='M3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='a4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='PC ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='R4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='S + 875 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='256 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='M(+) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='M5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='a6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='PC ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='R6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='S + O ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='a8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='PC ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='R8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='S ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='� �� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='(6) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='v2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='i = 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='dΦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='dz ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='������z=0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' RS = GM R3 S � 1 − µ M × � 9 4 a2 PC R2 S + 225 64 M(+) 3 M3 a4 PC R4 S + 1225 256 M(+) 5 M5 a6 PC R6 S + O � a8 PC R8 S � �� (7) where M = MP+MC,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' µ = (MP·MC)/(MP+MC) are the total and reduced mass of the binary,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' respectively,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' and M(+) a = Ma P + Ma C (the subscripts denote the respective objects).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' The factor Ck represents the amplitudes of the oscillations: Ck = ������� 1 RS dΦk dR ������RS − 2nS Φk R2 S nsyn ������� 1 v2e − k2n2syn (8) Assuming that the whole system’s barycenter coincides with the Pluto-Charon’s barycenter, the orbital distance of a small moon would be: r(t) = � R2(t) + z2(t) (9) We assign the nominal eccentricities (Table 1) of each moon as e free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Table 2 presents the calculated values of the major fre- quencies at which the moons oscillate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' The central binary fre- quency is, according to the data of Table 1, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='1566 days−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Numerical approach We approach the orbits numerically by implementing an n-body symplectic integrator in a Python 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='6 IDLE environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' The n-body simulation code utilises the kick-drift technique to solve the differential equations representing gravitational interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' The desired accuracy of the code is validated, since the total cal- culated energy of the system is being kept constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Simulations concerning the in-question 6-body system, with different initial data sets each time, have already been performed using the same n-body code in Gakis & Gourgouliatos (2022a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' We re-examine the basic situation of those, in order to give a more thorough perspective on the concepts discussed in this pa- per.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Specifically, initial conditions are taken from Brozovi´c et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' (2015), where a table is provided (Table 8 therein) of measured Article number, page 2 of 11 Dionysios Gakis and Konstantinos N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Gourgouliatos : Pluto-Charon’s moon system frequencies Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Orbital parameters for Pluto’s moon system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' The semi-major axes are given with respect to the system’s center of mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' The masses are based on the results of Buie et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' (2012) and all the other parameters are adopted from Showalter & Hamilton (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Object Mass (1016 kg) Semi-major axis (km) Pluto 1,303,000 2,126 Charon 158,600 17,470 Styx 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='06 42,656 ± 78 Nix 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 48,694 ± 3 Kerberos 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='1 57,783 ± 19 Hydra 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='8 64,738 ± 3 Period (days) Eccentricity (10−3) Inclination (◦) 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='3872273 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='000 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='3872273 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='000 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='16155 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='00027 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='787 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='144 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='809 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='162 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='85463 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='00003 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='036 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='050 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='133 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='008 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='16756 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='00014 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='280 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='200 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='389 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='037 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='20177 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='00003 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='862 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='242 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='005 Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' The first major oscillatory frequencies, in (2π days)−1, for all small moons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' The rest of the them are calculated similarly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Parameter Styx Nix Kerberos Hydra nS 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0492 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0402 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0311 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0262 ve 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0482 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0396 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0308 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0260 vi 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0502 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0408 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0314 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0264 nsyn 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='1074 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='1163 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='1255 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='1304 3-d vectors of positions and velocities for every object.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' We ana- lyze the evolution of the system forward in time using this data set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Numerical integration timestep is fixed to ∆t = 5000 s, which maintains computational times under manageable limits, and at the same time keeps uncertainties below 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='1%, as deter- mined in Gakis & Gourgouliatos (2022a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Besides, Kenyon & Bromley (2019a,b) propose at least ∆t ⪅ 13, 500 s for reliable integrations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Timesteps like these are used by various studies on the orbits within Pluto-Charon’s system;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' for example numerical calculations in Woo & Lee (2020) have a ∆t = 3, 000 s, whereas Lee & Peale (2006) uses a larger timestep, ∆t = 10, 000 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Nev- ertheless, we also ran numerical tests with smaller timesteps, not identifying however any noticeable changes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' The gravitational effect of the Sun is significant at distances ∼10 times larger than Hydra’s average orbital distance (Michaely et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 2017);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' there- fore, we focus on a restricted 6-body problem in our simulations, neglecting the Sun or other Solar System bodies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Results Several algorithms are implemented in order to study the or- bits in several dynamical systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' In our analysis, we choose to adopt FFT to decompose the orbits in Pluto-Charon system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Although FFT may be less accurate than other methods like e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=', FMA (Laskar 1999), it still produces reliable outcomes signifi- cantly fast, and hence, is often applied to analyze circumbinary orbits (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Woo & Lee 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Gakis & Gourgouliatos 2022b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Our results indicate that the resolution provided by FFT is suit- able to detect and separate the forced frequencies by the central binary and some of their harmonics, as well as the main trends of the reciprocal effects by each other moon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Besides, since our goal is to identify the frequencies of the moon oscillations rather than studying chaos in the system that has been explored thor- oughly in past studies (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Kenyon & Bromley 2019a,b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Kenyon & Bromley 2022), FFT method will suffice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' The general formula used to convert a sequence x[n] of length N into a new one y[k] using a Fourier Transformation is: y[k] = N−1 � n=0 e−2πj kn N x[n] (10) More precisely, we convert a distance domain into a domain of frequencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Fast Fourier Transformations are performed using the Python scipy routine fft.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Central binary effects At first, we apply FFT of r(t) for the outcomes of the semi- analytic model (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' The timestep adopted for the semi- analytic calculations was the same with the n-body integrations timestep, and the total duartion was set to 106 days.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Unlike Woo & Lee (2020), the vertical motion is examined here, since our calculations include the proper inclinations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' The most outstand- ing frequencies arising, are the ones defined when computing the equations (3) and (4), as expected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' The red vertical dotted line in each periodogram corresponds to the value of ve, whereas the grey ones correspond to the harmonics k(nPC − nS ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Spikes vary regarding their height, as anticipated by the factor Ck.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' In other words, the relative size of each peak would give us a comparison of the different amplitudes of each frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' As far as the vertical frequency vi is concerned, there also appears to be a minuscule peak, though not visible in the fre- quency spectra of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Having zoomed into the low-frequency area of each spectrum and identifying a corresponding (barely visible) formation, we advocate that its apparent absence is not a problem of the frequency resolution nor with the wide frequency range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Instead, this is a result of the factor i RS in equation (4) outlining the vertical frequency, which is a lot smaller than RS in equation (3) which dominates in the configuration of the strength of each peak in the frequency spectrum (i < 1◦ for all moons).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' There are also some other secondary spikes, not correspond- ing to the values of Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' They originate from the vertical component of the motion and the sinusoidal products deriving from equation (9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Namely, R2(t) and z2(t), along with the square root, give an amount of harmonic cross terms, which eventually result in frequencies of forms like ve±k nsyn (and multiples), 2ve, 2vi and so on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' In general, many combinations of ve, k nsyn and vi arise from equation (9), which are present in the periodograms of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Most of the secondary peaks have a quite small ampli- tude, which makes them only clearly visible on zoom scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' There are some distinctive differences once the n-body sim- ulation is employed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' The resulting power spectra are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' The system is let to evolve for 104 and 106 days.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Again, in this figure, vertical lines show the main expected frequencies, as they have been computed in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' The primary peaks are observed at these frequencies in this case as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Nevertheless, a sheer number of other minor peaks are also visible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' In fact, when we increase the simulated time, additional frequencies appear, or alternatively, the already-present frequencies are enhanced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Fur- thermore, the rise of the total timespan reduces unwanted noise;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' the values of the power spectrum are diminished.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' We notice that the vertical lines (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' the findings of the semi- analytic model) do not match exactly with the peaks of the pe- riodogram of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' This is not largely visible in large scale Article number, page 3 of 11 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' aanda (deviations scale to ∼0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5%), but may be observed when zoom- ing in each individual spike.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' This distinction is evidence of the unavoidable inconsistency between the two approaches that we follow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Any differences could safely be attributed to approxima- tions made in the semi-analytic model, as justified in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' For example, we neglect the non-linear terms that definitely rule the motions of the moons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Styx is the most striking example and reveals the limitations of the Lee & Peale (2006) theory in dis- tances close to the binary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Yet, apart from the peaks dominating the region around zero, which we will discuss later, the low-amplitude spikes appearing in between the vertical lines may well be understood within the semi-analytic model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' As we discussed earlier for Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 1, these peaks are the result of the multiple sinusoidal products of equa- tion (9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Thus, they are not in principal caused by numerical er- rors, but are undeniably anticipated by the theoretical model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Bromley & Kenyon (2021) and Woo & Lee (2020) found fur- ther formations in their power spectra, unable to be explained by the epicyclic theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' In the first paper, the authors found a resid- ual signal at the epicyclic frequency, when simulating a most- circular orbit for Nix (purple curve in their Figure 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' We be- lieve that attributing this residual solely to numerical challenges seems unlikely, as it occurs in the exact frequency of ve and ap- pears prominently when increasing e free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' We argue, instead, that this behavior most probably reflects the practical impossibility of defining a zero-eccentric circumbinary orbit, as validated by Gakis & Gourgouliatos (2022a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' In other words, although the lin- earized theory allows an orbit exempt of free eccentricity, even adopting such initial conditions inevitably yields that some fre- quencies will couple to ve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Accordingly, forced frequencies of the form nsyn − ve are expected, as we explained earlier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' In the latter study, we inspect that peaks near the values of nS and ve in Figures 5 and 6 of Woo & Lee (2020) might truly appear at some extent from higher-order terms, but perhaps are generated by the merging of the frequencies ve, k (nPC − nS ) and vi, as quantified by equation (9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Mutual interactions The remaining peaks in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 2 at low frequencies are caused by the mutual interactions, corresponding to resonances between the moons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Considering that there are 6 bodies constituting the system, it is understandable to expect that several synodic pe- riods (and their harmonics) can be found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' In this Section, we determine and identify these mutual frequencies caused by one moon to another.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Some frequencies of the perturbations, for the case of Kerberos, have been identified by Showalter & Hamil- ton (2015) (Extended Data Figure 3 therein).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' In order to sepa- rate the effects by the binary system from the ones by the other moons, the authors chose to merge Pluto and Charon into a sin- gle central body and compare the harmonics of resonances with the peaks of their power spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' In this work, we identify the mutual gravitational effects between moons by collating the sim- ulation of the system, accounting for all objects, with a set of runs of a fictitious system where we consider the motion of each moon, accounting only for the gravitational attraction by Pluto and Charon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Especially in frequencies near zero (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' large periods), an immense amount of secondary peaks is visible, implying that the orbits also include long-period frequencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Actually, in this region, the spectrum is occupied by a forest of very long frequen- cies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' As noted above, this behavior is evident in the 6-body, long timescale simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' The situation is more prominent for the two lightest bodies, Styx and Kerberos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Their small masses ex- plain their comparatively broader susceptibility to perturbations caused by the other bodies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' To quantify this effect, we provide a comparison of the power spectrum coming from the 6-body integrations and the one deriv- ing from 3-body integrations (when simulating only the binary and one of the moons).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' This is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Discrepancies are indeed more significant for Styx and Kerberos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Additionally, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 3 confidently establishes that the large number of peaks that appear in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 2 do not indicate numerical noise, but appear be- cause of the mutual gravitational effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' That is, the long-term periodicity terms of one moon to each other cover almost entirely the frequency region near zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' In 3-body simulations, especially this area of the spectrum lacks peaks because only moon-binary interactions are considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' In order to study more precisely the mutual gravitational interactions, we zoom in the area of low frequencies (<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='20 days−1) of the frequency spectra of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' These magnified spec- tra are presented successively in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 4-7 for Styx, Nix, Ker- beros and Hydra, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' For a more efficient visualization, we divide the low-frequency area of each moon to four pan- els, corresponding to frequencies ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0025 days−1(panels a), be- tween 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0025 days−1 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='050 days−1 (panels b), between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='050 days−1 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='10 days−1(panels c), and between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='10 days−1 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='20 days−1 (panels d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' That way, we managed to study in de- tail the reciprocal effects which gradually become weaker com- pared to the forced oscillations as the frequency rises.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Obviously, when improving the resolution of the periodogram, separate os- cillations arise from the seemingly almost continuous spectrum of frequencies in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Some of these frequencies, though im- mense in their number, drop in favour of a few more dominant peaks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' At first, all four small moons are placed close to mean mo- tion resonances (MMRs) with Charon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Specifically, the ratios of their Keplerian orbital periods are about 1:3:4:5:6, similarly to the Laplace configuration in the Galilean moons of Jupiter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Al- though they do not definitely belong in the resonance accord- ing to the currently accepted orbital elements for the four moons (Brozovi´c et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Showalter & Hamilton 2015), adopting the range of their uncertainties could certainly place them well inside the MMRs (Giuppone et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Additionally, a reso- nant term could affect the tidal damping of a moon even if it is not located in the actual position of the resonance, as shown e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' for the 3:1 resonance of Nix in Lithwick & Wu (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' For that reason, we examine this type of resonance in our analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' In the same study it is shown that even other MMRs of the form N:1 with Charon could be significant for some moons (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=', the 2:1 MMR of Nix with Charon).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Nevertheless, in order to maintain our analysis feasible and focused on the most strongest mutual interactions, we examine only the most prominent 1:3:4:5:6 res- onance with Charon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' For each moon, the anticipated positions of the harmonics of this resonances is shown in purple vertical dotted lines in the frequency spectra of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 4-7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' More complex resonances can also be defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' After an ex- tensive search for potential resonances, Showalter & Hamil- ton (2015) found two major such resonances implicating three moons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' The strongest resonance identified was Φ = 3λS − 5λN + 2λH ≈ 180◦, which implies that the synodic period of Nix-Hydra divided by the one of Styx-Nix is 3/2, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 3SNH = 2SS N, where the subscripts note the respective moons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' A second resonance, now involving Styx, Nix and Hydra, was found as 42SNK ≈ 43SS N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' We calculate the frequencies induced by the above res- onances and mark their harmonics with yellow and cyan dotted lines in the frequency spectra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Article number, page 4 of 11 Dionysios Gakis and Konstantinos N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Gourgouliatos : Pluto-Charon’s moon system frequencies Of course, apart from any resonances we note the strong in- teraction of one with another over a time period equal to synodic period of them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Therefore, we calculate the respective frequen- cies by the synodic frequencies S S N, S S K, S S H, S NK, S NH and S KH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' The positions of their harmonics are shown in blue, green, orange, lime, olive and brown vertical dotted lines in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 4-7, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' To avoid further contamination of the images with many ver- tical lines representing expected oscillatory modes, in these fig- ures we present only the frequencies by the mutual interactions (the forced frequencies by the binary system are shown clearly in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 1 and 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Of course, peaks where the 6-body spectra match with the 3-body ones mark the modes by Pluto and Charon, as explained in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' As far as the long-period resonance 42SNK ≈ 43SS N is considered, we mark only its first 20 harmon- ics - further lines could heavily fill the figures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Despite the fact the each mode would ideally appear as delta function (negligible width), in practise many of them have a sig- nificant width.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' As it is evident by the vertical lines in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 4-7, this is not primarily an effect of the limited accuracy of the FFT method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Instead, it is a result of a number of oscillations with very close frequencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' As noted by Gakis & Gourgouliatos (2022a), Keplerian os- culating elements are not sufficient to describe circumbinary or- bits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Hence, obtaining the synodic periods of one moon with an- other or the locations of the resonances is uncertain, as it is based on the deduced orbital periods of them, Future observations may increase the accuracy of the measurements providing more ro- bust estimate for the masses and the 3-d position and velocity vectors of the objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' This is yet another reason for possible minor discrepancies between a peak in the periodogram and the anticipated position of its respective frequency (no more than ∼0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='2%).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Apart from that, these orbital elements themselves have not been decisively determined yet, as we find significant differ- ences in previous data tables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' For our calculations, we adopted the values of Table 1, deduced by Showalter & Hamilton (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Styx is the moon most heavily affected by mutual perturba- tions, along with Kerberos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' The strongest mode in Styx’s spec- trum (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 4) is the one induced by Nix, which is the closest moon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' The interaction with Hydra has a similar strength, since Hydra is the most massive moon (though most distant to Styx).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' It is then evident that the the resonance 3SNH = 2SS N produces the most important perturbations in the orbital pattern of Styx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' On the other hand, due to its small mass, Kerberos, forces much weaker modes to Styx, about 3 times weaker compared to the perturbations by Nix and Hydra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' The purple lines in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 4, mark- ing the resonance 1:3:4:5:6, correspond to small peaks either, as Styx does not belong well within the resonance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' On the contrary, Styx experiences the effects of the resonance 42SNK ≈ 43SS N strongly in low frequencies, but as the frequency of their har- monics rises, their strength gradually drops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' This is however the reason for the large number of peaks in between the most promi- nent ones, by 3SNH = 2SS N, though they are not marked in detail in the diagrams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Nix appears to have a similar behavior, though the number and strength of peaks is not as large as Styx’s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Again, the reso- nance 3SNH = 2SS N is the dominant one, while there is a slight preference to the modes by Hydra rather than those by Styx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' De- spite their proximity, the gravitational interaction between Nix and Kerberos is not powerful (Hydra has a much more clear im- print in the frequency spectrum of Nix than Kerberos).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' The reso- nance 42S NK ≈ 43SS N mainly affects the low-frequency region, as noted by the cyan vertical lines of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 5, whereas the 4:1 MMR with Charon does not seem to produce an intense peak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' The strongest peaks in the spectrum of Kerberos, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 6, are undeniably the harmonics of the synodic frequency S KH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' They are followed by the interactions of Kerberos with Styx, while the mutual effects between Kerberos and Nix seem to be minuscule compared to the above two.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' However, the 5:1 MMR with Charon has a more substantial impact on Kerberos than the effect N:1 MMR has on Styx or Nix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' The resonance 42SNK ≈ 43SS N re- mains quite strong even for larger frequencies as well, forming evident peaks in between the main components of the synodic frequencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Hydra is the most massive moon and has the largest distance from the system’s barycenter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Evidently, the effects by either Pluto-Charon or the other three moons are the lowest, and its mo- tion is the closest approximation to a typical Keplerian elliptic orbit in the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' As Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 7 suggests, Hydra is mainly disturbed by the resonance 3SNH = 2SS N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' The motion of Kerberos also in- duces some perturbations, through of a smaller scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Apart from that, Hydra’s resonance with Charon is evident through some in- termediate peaks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' For each one of the moons, there is a number of lower- amplitude peaks, not explained by the resonances examined above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' This effect is more obvious for the lightest moons, Styx and Kerberos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' We argue that their origin lies in the N:1 MMRs with Charon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' As mentioned, a specific type of resonance could have a gravitational effect on a moon even if it is not located in the exact position of the resonance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Consequently, our con- clusion is that these smaller-scale modes are created by near- resonance kicks other than 1:3:4:5:6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Lastly, a significant remark on the power spectra of the four moons is that the peaks by mutual interactions have a compa- rable size with the binary-induced ones for Styx and Kerberos, at least in the low-frequency region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' This is not the case for the heavier Nix and Hydra, where the binary effects are in general stronger in the entire frequency region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' This fact implies that the reciprocal effects for the less massive moons may influence the orbits just as much as the binary system, or even dominate over them for large periods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Consequently, we speculate that mod- elling the orbits of these moons would not be realistic when ig- noring the dynamics of the rest of the objects in the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Conclusions In this paper, we identified the most prominent frequencies at which the moons of Pluto and Charon swing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' To achieve that, we employed FFT to computed orbital elements by a semi-analytic and an arithmetic process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' It is confirmed that forced oscillations caused by the rotating non-axisymmetric components of the cen- tral binary extend to values set by the Ck term and occur at fre- quencies k(nS − nPC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' We also notice that although our adopted linearized theory allows it, minimising such frequencies is im- possible even when demanding e free = 0 for the circumbinary orbits, because of the ubiquitous non-linear terms of gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' By collating outcomes from restricted 3-body simulations along with the case in which every moon is present, we also managed to assess the mutual gravitational effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' We deduce that the low-mass moons Styx and Kerberos are more intensely affected by the other objects, and over long integration times, the mutual interactions have a significant effect on their orbital fre- quencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' In fact, the mutual effects concerning these two moons have comparable (in strength) perturbations to the orbits with the central binary, at least in the low-frequency region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Specifically, we found that the strongest mutual gravitational interactions are caused by the resonances 3SNH = 2SS Nand Article number, page 5 of 11 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' aanda 42SNK ≈ 43SS N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' In the first case, strong kicks are sparsely pro- duced, while the second, longer-period, type of resonance fills the region in between.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Nonetheless, the N:1 MMR with Charon is not as powerful, which is attributed to the proximity of the moons to the resonance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Acknowledgements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' The authors thank Prof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Alain Vienne for useful suggestions that enhanced this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' The numerical code used in this work was branched from an n-body code (https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='com/pmocz/nbody-python) created by Philip Mocz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' KNG acknowledges support by grant University of Patras, ELKE81641.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' References Bromley, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' & Kenyon, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 2021, AJ, 161, 25 Brozovi´c, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=', Showalter, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=', Jacobson, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=', & Buie, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 2015, Icarus, 246, 317 Buie, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=', Tholen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=', & Grundy, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 2012, AJ, 144, 15 Gakis, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' & Gourgouliatos, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 2022a, Celestial Mechanics and Dynamical Astronomy, 134, 14 Gakis, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' & Gourgouliatos, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 2022b, MNRAS[arXiv:2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='05016] Georgakarakos, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' & Eggl, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 2015, ApJ, 802, 94 Giuppone, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=', Rodríguez, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=', Michtchenko, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=', & de Almeida, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 2022, Astronomy & Astrophysics, 658, A99 Kenyon, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' & Bromley, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 2019a, The Astronomical Journal, 158, 69 Kenyon, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' & Bromley, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 2019b, The Astronomical Journal, 157, 79 Kenyon, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' & Bromley, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 2022, AJ, 163, 238 Laskar, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 1999, in Hamiltonian systems with three or more degrees of freedom (Springer), 134–150 Lee, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' & Peale, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 2006, Icarus, 184, 573 Leung, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' & Lee, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 2013, ApJ, 763, 107 Lithwick, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' & Wu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 2008, arXiv preprint arXiv:0802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='2939 Michaely, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=', Perets, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=', & Grishin, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 2017, ApJ, 836, 27 Showalter, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' & Hamilton, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 2015, Nature, 522, 45 Stern, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=', Bagenal, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=', Ennico, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 2015, Science, 350, aad1815 Sutherland, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' & Kratter, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 2019, Monthly Notices of the Royal Astro- nomical Society, 487, 3288 Woo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' & Lee, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 2020, AJ, 159, 277 a b c d Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' FFT power spectrum for all small moons using the semi-analytic approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' The red vertical line represents the epicyclic frequency of each moon (ve) and the gray ones the synodic frequency and its har- monics (k nsyn), as shown in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Article number, page 6 of 11 Styx 12 5 semi-analytic 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 log(power) (arbitrary units) 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='8 frequency (days-1)Nix semi-analytic 10 ) (arbitrary units) 8 6 4 log(power) 2 0 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='8 frequency (days-1)Kerberos 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 semi-analytic 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 log(power) (arbitrary units) 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='8 frequency (days-1)Hydra 2 semi-analytic log(power) (arbitrary units) 10 8 6 4 2 0 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='8 frequency (days-1)Dionysios Gakis and Konstantinos N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Gourgouliatos : Pluto-Charon’s moon system frequencies a b c d Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' FFT power spectrum for all small moons by varying the total simulated time of 6-body integrations (104 and 106 days).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' The red ver- tical dotted line represents the epicyclic frequency of each moon (ve) and the gray ones the synodic frequency and its harmonics (k nsyn), as shown in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' a b c d Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' FFT power spectrum for all small moons for 6-body (violet) and 3-body integrations (dark gray blue).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' The simulated time is 106 days (∼ 2700 years).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Article number, page 7 of 11 Nix 6-body 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 3-body 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='50 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='75 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='00 frequency (days-1)Kerberos 12 6-body 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 3-body log(power) (arbitrary units) 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='50 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='75 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='00 frequency (days-1)Hydra 6-body 3-body 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='50 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='75 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='00 frequency (days-1)Styx 104 days 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 106 days log(power) (arbitrary units) 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='6 frequency (days-1)Nix 104 days 10 106 days 8 6 4 2 0 Z .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='4 6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='6 frequency (days-1)Kerberos 104 days 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 106 days (n e) (ao) 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='6 frequency (days-1)Hydra 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 104 days 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 106 days 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='6 frequency (days-1)Styx 6-body 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 3-body log(power) (arbitrary units) 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='50 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='75 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='00 frequency (days-1)A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' aanda a b c d Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' FFT successive power spectra for Styx, magnified in low frequencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Panel a includes frequencies ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0025 days−1, panel b between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0025 days−1 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='050 days−1, panel c between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='050 days−1 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='10 days−1 and panel d ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='20 days−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Violet plots represent the 6-body integrations and dark gray blue plots the 3-body ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Vertical dotted lines mark the expected positions of the main mutual gravitational interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Article number, page 8 of 11 Styx 6-body 3-body 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 log(power) (arbitrary units) 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='015 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='020 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='025 frequency (days-1)Styx 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 log(power) (arbitrary units) 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='030 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='035 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='040 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='045 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='050 frequency (days-1)Styx 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 log(power) (arbitrary units) 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='07 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='10 frequency (days-1)Styx SsK 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 SsN SsH log(power) (arbitrary units) 42SNK:43SsN 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 2SsN:3SNH 1:3:4:5:6 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='20 frequency (days-1)Dionysios Gakis and Konstantinos N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Gourgouliatos : Pluto-Charon’s moon system frequencies a b c d Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' FFT successive power spectra for Nix, magnified in low frequencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Panel a includes frequencies ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0025 days−1, panel b between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0025 days−1 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='050 days−1, panel c between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='050 days−1 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='10 days−1 and panel d ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='20 days−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Violet plots represent the 6-body integrations and dark gray blue plots the 3-body ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Vertical dotted lines mark the expected positions of the main mutual gravitational interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Article number, page 9 of 11 Nix 6-body 3-body 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='015 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='020 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='025 frequency (days-1)Nix 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 log(power) (arbitrary units) 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='030 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='035 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='040 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='045 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='050 frequency (days-1)Nix 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 log(power) (arbitrary units) 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='07 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='10 frequency (days-1)Nix SNK 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 SsN SNH log(power) (arbitrary units) 42SNK:43SsN 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 2SsN:3SNH 1:3:4:5:6 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='20 frequency (days-1)A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' aanda a b c d Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' FFT successive power spectra for Kerberos, magnified in low frequencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Panel a includes frequencies ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0025 days−1, panel b between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0025 days−1 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='050 days−1, panel c between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='050 days−1 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='10 days−1 and panel d ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='20 days−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Violet plots represent the 6-body inte- grations and dark gray blue plots the 3-body ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Vertical dotted lines mark the expected positions of the main mutual gravitational interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Article number, page 10 of 11 Kerberos 6-body 3-body 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 log(power) (arbitrary units) 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='015 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='020 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='025 frequency (days-1)Kerberos 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 log(power) (arbitrary units) 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='030 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='035 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='040 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='045 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='050 frequency (days-1)Kerberos 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 (n e) (ao) 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='07 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='10 frequency (days-1)Kerberos SNK 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 SsK SKH log(power) (arbitrary units) 42SNK:43SsN 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 1:3:4:5:6 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='20 frequency (days-1)Dionysios Gakis and Konstantinos N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Gourgouliatos : Pluto-Charon’s moon system frequencies a b c d Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' FFT successive power spectra for Hydra, magnified in low frequencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Panel a includes frequencies ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0025 days−1, panel b between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0025 days−1 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='050 days−1, panel c between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='050 days−1 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='10 days−1 and panel d ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='20 days−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Violet plots represent the 6-body inte- grations and dark gray blue plots the 3-body ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Vertical dotted lines mark the expected positions of the main mutual gravitational interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content=' Article number, page 11 of 11 Hydra 6-body 3-body 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='015 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='020 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='025 frequency (days-1)Hydra 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 log(power) (arbitrary units) 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='030 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='035 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='040 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='045 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='050 frequency (days-1)Hydra 222 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 (n e) (ao) 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 R 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 H: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='07 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='10 frequency (days-1)Hydra SNH 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 SsH SKH log(power) (arbitrary units) 2SsN:3SNH 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 1:3:4:5:6 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
+page_content='20 frequency (days-1)' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UdE0T4oBgHgl3EQfVQAV/content/2301.02260v1.pdf'}
diff --git a/WdE0T4oBgHgl3EQfVwBf/content/2301.02268v1.pdf b/WdE0T4oBgHgl3EQfVwBf/content/2301.02268v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..65f8b86fa9a20908dd83a045c3df1e0576e6d3a5
--- /dev/null
+++ b/WdE0T4oBgHgl3EQfVwBf/content/2301.02268v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:3226506a3eee4d85b3492a71019c29ceca73f45f64b4e5c2a626306d6fd1d8e3
+size 3820265
diff --git a/WdE0T4oBgHgl3EQfVwBf/vector_store/index.pkl b/WdE0T4oBgHgl3EQfVwBf/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..47e14e047d2b88fccdad7e5fefd19ccd883e1df5
--- /dev/null
+++ b/WdE0T4oBgHgl3EQfVwBf/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4e63e72779110b9ad2708803a4d9d84b6705a6ffeeeff13c09d87dc904b9b608
+size 286348
diff --git a/WdFJT4oBgHgl3EQfPCy7/content/tmp_files/2301.11485v1.pdf.txt b/WdFJT4oBgHgl3EQfPCy7/content/tmp_files/2301.11485v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..23fb7e15881d266fb5286c6faa6850ac64b8c99b
--- /dev/null
+++ b/WdFJT4oBgHgl3EQfPCy7/content/tmp_files/2301.11485v1.pdf.txt
@@ -0,0 +1,548 @@
+Sub-ppb aerosol detection at a distance of 30 meters by millijoule
+femtosecond laser pulse filamentation in air
+Jiewei Guo a,b,c,#, Zhi Zhanga,b,c,#, Nan Zhanga,b,c*, Binpeng Shanga,d, Jiayun Xuea,d, Yuezheng Wanga,c, Shishi Taoa,c,
+Bofu Xiea,c, Lanjun Guoa,b,d, Lie Lina,b,d, Weiwei Liua,b,c*
+a Institute of Modern Optics, Eye Institute, Nankai University, Tianjin 300350, China
+b Tianjin Eye Hospital, Tianjin 300020, China
+c Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
+dTianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
+# Equal contributors
+* Corresponding author. E-mail: zhangn@nankai.edu.cn, liuweiwei@nankai.edu.cn
+
+ABSTRACT In this work, sub-ppb aerosol detection is achieved by femtosecond laser filament with a single pulse energy of 4 mJ at a
+distance of 30 m. A concave mirror with an open aperture of 41.4 cm is employed in an off-axis optical system to focus the femtosecond
+laser beam and collect the fluorescence of NaCl aerosol. The simulation and experimental results show that the astigmatism can be greatly
+reduced when femtosecond laser beam is incident non-symmetrically on the concave mirror. Compared with the case that femtosecond
+laser strikes at the center of the concave mirror, the intensity of the optical filament is increased by 69.5 times, and the detection of limit
+of sodium chloride aerosol is reduced by 86%, which is down to 0.32 ppb. The improved excitation scheme in this work utilizes the
+nonsymmetrical beam spot on the concave mirror to compensate the non-symmetry induced by the off-axis setup, reducing the
+astigmatism of the focusing laser beam and improving the aerosol’s detection of limit.
+KEYWORDS femtosecond laser filamentation; sub-ppb detection of limit; astigmatism compensation; remote sensing.
+
+1. Introduction
+During the propagation of high intensity femtosecond laser pulses in transparent media, the laser beam can
+overcome the natural diffraction and form a plasma channel with a diameter of ~100 um, which is termed of optical
+filament[1-4]. The formation of the laser filament can be attributed to the dynamic balance among the beam
+diffraction, the optical Kerr effect induced self-focusing and the defocusing by the plasma[5]. Femtosecond laser
+filament has a nearly constant laser intensity of about 1013 ~ 1014 W/cm2 [6, 7], which is sufficient to cause the
+ionization and fragmentation of molecules[8]. The ionization or dissociation of molecules or atoms emits the
+fingerprint fluorescence spectrum during the relaxation process, which provides the capability of detecting the
+chemical composition in a long distance[9-12].
+Compared with the current methods of atmospheric aerosol composition detection, such as ion chromatography
+(IC)[13], gas chromatography (GC)[14], atomic absorption spectrometry (AAS)[15], mass spectrometry (MS)[16],
+etc., femtosecond laser filament-induced plasma spectroscopy (FIPS) can realize real-time remote sensing of the
+chemical composition of air pollutants in different forms, such as solid, aerosol, gas, etc., which has aroused
+widespread research interest. In previous works, Daigle et al.[17] reported that the detection limit was ~33ppm with
+femtosecond laser pulses of 72 mJ at a distance of 50 m. Then, Daigle et al.[18] reported the detection limits for
+different constituents in aerosol: 127 mg/L (127 ppm) for Fe, 27 mg/L (27 ppm) for Cu, 9 mg/L (9 ppm) for Pb, and
+3mg/L (3 ppm) for Na. Recently, using a femtosecond laser with relatively low pulse energy (4.4 mJ), Golik et al.[19]
+measured the filament-induced fluorescence of aerosols containing Al, Ba, Na, etc. The detection limit of Na was 0.7
+mg/L (0.7 ppm) at a distance of 0.5 m. Figure 1 compares the detection limit of Na measured in this work and the
+detection limits achieved in literatures. It should be noted that the limit of detection reported in literatures is presented
+in the form of the mass ratio of the metal element in the water droplet (solution concentration). For the convenience of
+comparison, the limit of detection obtained in this work is also presented by the solution concentration (0.025 ppm,
+corresponding to 0.32 ppb in air) in Figure 1.
+
+2
+
+Fig. 1. Reported detection limits with different laser pulse energies at different distances.[17-23] The red ball represents the measurement
+results reported in the literatures, and the “NK” logo represents the measurement result in this work.
+
+The femtosecond laser is considered an attractive LIDAR technology for real-time detection of atmospheric aerosol
+composition due to its unique filamentation properties in the atmosphere. However, improving the detection
+sensitivity is still a technical problem faced by this technology. The self-focusing distance is proportional to the
+square of the beam diameter[17], but in fact, femtosecond laser filamentation system composed of refraction optical
+components is difficult to achieve large diameter, light weight and low cost[24, 25]. Although reflective femtosecond
+laser filamentation system has the advantages of large aperture, no chromatic aberration, light weight and low cost
+which is widely used in atmospheric remote sensing and Earth observation[26-28], astigmatism is inevitably
+introduced for the off-axis optical system composed of a concave lens and a large diameter concave mirror. Therefore,
+a simple and efficient scheme that can reduce the astigmatism of the off-axis system is badly needed for increasing the
+intensity of the filament. Daigle et al. replaced the concave lens with a deformable mirror to correct the wavefront
+aberration in a closed-loop system[29]. However, the low energy efficiency and low damage threshold of deformable
+mirrors limit the application in the remote sensing by high intensity femtosecond laser filamentation. Spatial light
+modulators (SLM) are also used to correct the astigmatism[30-32]. However, SLM's low laser damage threshold
+limits its operation in high-power laser systems. Recently, Tao et al. proposed to eliminate astigmatism by designing a
+phase plate with free-form surface[33], whereas one phase plate is only suitable for certain optical setup with fixed
+focal length.
+In this paper, we found experimentally that the astigmatism in the off-axis femtosecond laser filamentation system
+can be reduced by breaking the symmetry of the beam spot distribution on the concave mirror. The numerical
+simulations demonstrate that most of the wavefront distortion due to the off-axis configuration can be corrected by the
+non-symmetrical incidence of the laser beam on the concave mirror. After compensating the astigmatism, a filament
+was generated at a distance of 30 m, which is practically limited by the lab size. The intensity of the optical filament is
+increased by 69.5 times, and the detection of limit of sodium chloride aerosol is reduced by 86%, which is down to a
+record of 0.32 ppb in air, corresponding to 0.025 ppm (mass concentration) of Na+ in aerosol droplets.
+3. 2. Setup design and numerical simulations
+To enhance the filament intensity and improve the detection limit of aerosol, the astigmatism of the off-axis
+femtosecond laser filamentation system must be reduced as much as possible. The off-axis optical setup is simulated
+using Zemax software. In Figure 2a the collimated laser beam is focused at a distance of 30 m using the lens group
+composed of a plano-concave lens ( = 25 mm, f = -150 mm) and a concave mirror ( = 41.4 cm, f = 2 m). The
+divergent laser beam after passing through the concave lens strikes on the concave mirror at an incident angle of 2.5°.
+Further deceasing the incident angle will cause the laser beam focused by the concave mirror be blocked by the beam
+steering mirror (M1 in Figure 2a). The beam spot diameter
+2
+(1
+)
+e
+ on the concave mirror is 20.2 cm. When the beam
+spot on the concave mirror is symmetric relative to the center of the concave mirror, obvious astigmatism appears near
+the focal spot as is shown in the insets of Figure 2a. Sagittal beam and tangential beam converge before and after the
+
+Result in this work
+Aerosol-droplet
+103
+Mn
+102
+Cu
+Sensitivity (ppm)
+10
+Si
+N
+CO
+100
+Na
+10-
+10-2
+10
+Na
+(0.32ppbinair)
+Energy(mJ)
+
+
+ 3
+
+geometric focus of the system, respectively. To quantitatively present the astigmatism of the setup in Figure 2a, the
+dependences of the beam diameters
+2
+(1
+)
+e
+ along X and Y directions on the laser propagation distance were
+calculated and shown in Figure 2b. From Figure 2b, it is found that the distance between the sagittal and tangential
+focus lines is 40 cm for the setup in Figure 2a. With the help of Zemax software, the wavefront phase on the concave
+mirror can be calculated, which is shown in Figure 2c. It indicates that the non-symmetric wavefront phase exists on
+the concave mirror leads to the large astigmatism when the beam strikes at the center of the concave mirror.
+In order to evaluate the astigmatism of Figure 2a quantitatively, the aberration characteristics of the system were
+analyzed through the wave aberration of the system, and the zernike fringe polynomial was used to characterize the
+wave aberration of the system, where the fifth and sixth terms (Z5 and Z6) of the Zernike Fringe polynomials
+respectively representing the astigmatism in X and Y directions are calculated. Z5 is
+(
+)
+(
+)
+2
+5
+cos 2
+C
+P
+A
+
+
+ and Z6 is
+(
+)
+(
+)
+2
+6
+sin 2
+C
+P
+A
+
+
+, in which A is the angle measured counterclockwise from the local +x axis, P is the normalized
+radial coordinate, C5 and C6 are astigmatism coefficients. Since the laser beam is incident on the concave mirror
+obliquely in the XOZ plane, only C5 in the x direction is non-zero, which is calculated to be 1.26 , and
+6
+0
+C =
+.
+It is found numerically that when the concave mirror moves towards -x direction, C5 gradually decreases to zero.
+When the beam spot is just tangent to the edge of the concave mirror as is shown in Figure 3a, i.e. the concave mirror
+shifts 10.6 cm towards -x direction, most of the astigmatism can be reduced (see Figure 3b) and the wavefront of the
+beam spot on the concave mirror is nearly symmetric (see Figure 3c). In this case, C5 and C6 are respectively 0.045λ
+and 0. The beam profiles at different propagation distances are shown in the insets of Figure 3a. Clearly, the beam
+quality near the focal spot has been greatly improved.
+The main difference between the two optical setups in Figures 2a and 3a is the different relative position between
+the laser beam spot and the concave mirror which is shown in Figure 4a. Figure 4b illustrates the variations of the
+astigmatic parameter β along the propagation direction for the optical system with central/edge incidence. The
+astigmatic parameter β is defined as the ratio of the beam width
+(
+, )
+j
+W
+j
+X Y
+=
+ in the X and Y directions.
+1
+ =
+represents the beam spot is circular. It is seen from Figure 4b that the edge incidence fully optimizes the astigmatism
+of the off-axis system, and the beam spot has a circular shape.
+
+
+Fig. 2. Off-axis reflective filamentation system. The laser beam strikes at the center of the concave mirror. (a) Off-axis reflective setup; (b)
+dependences of the beam diameters in X and Y directions on the propagation distance; (c) wavefront phase distribution of the incident
+laser on the concave mirror.
+
+1.0
+0.75元
+(arb.u.)
+0.5元
+0.25元
+Y
+-1.0
+-1.0
+0
+1.0
+X (arb.u.)4
+
+Fig. 3. Off-axis reflective filamentation system. The laser beam strikes non-symmetrically on the concave mirror. (a) Off-axis reflective
+setup; (b) dependences of the beam diameters in X and Y directions on the propagation distance; (c) wavefront phase distribution of the
+incident laser on the concave mirror.
+
+Fig. 4. (a) Different relative position between the beam spot and the concave mirror in Figures 2a and 3a; (b) variations of the astigmatic
+parameter β along the propagation direction.
+
+3. Experimental results and discussions
+3.1. Off-axis reflection system for femtosecond laser filamentation and aerosol detection
+In this work, a commercial Ti:Sapphire femtosecond laser system (Legend Elite, Coherent Inc.) was employed to
+generate 500 Hz, 35 fs, 800 nm, 4 mJ laser pulses. The schematic diagram of the experimental setup is shown in
+Figure 5a. The laser pulse output from the laser system was focused by a lens group consisting of a concave lens (L1,
+ = 25 mm, f = −150 mm) and a concave mirror (L2, = 41.4 cm, f = 2 m) which is identical to those used in the
+numerical simulations. The geometrical focus of the lens group locates 30 m away from the concave mirror (L2). The
+laser pulse is incident non-symmetrically on one side of the concave mirror after passing through the concave lens,
+and the reflected laser beam by the concave mirror is focused and form optical filament at a distance of 30 m relative
+to the concave mirror (L2).
+In order to characterize the length and intensity distribution of the optical filament, a microphone (V306, Olympus.
+Ltd) combined with an amplifier (5072PR, Olympus. Ltd) an oscilloscope (DPO3034, Tektronix Inc.) is used to
+measure the ultrasonic wave emitted from the optical filament. The typical time domain ultrasonic signal is shown in
+Figure 5b. Because the length of laser filament (~40 cm) is much longer than the spatial resolution (~0.87 cm) of the
+ultrasonic microphone, the microphone is mounted on an electrically driven sliding rail and moved parallel to the laser
+propagation direction to measure the length and distribution of the filament point by point. The spatial step of the
+microphone is 2.5 cm which is just the spatial resolution of the microphone.
+To analyze the residual astigmatism, a CCD camera is used to record the variation of the cross-sectional intensity
+distribution of the laser beam spot along the beam propagation direction. It should be noted that in order to protect the
+CCD camera from being damaged, all the beam spots are captured under the linear optical propagation with
+attenuated pulse energy.
+An aerosol generator (HRH-WAG3, Beijing Huironghe Technology Co., Ltd.) is employed to generate sodium
+chloride aerosol with different concentrations. The aerosol is stably injected into the tube by controlling the air pump
+
+1.0
+(arb.u.)
+0.75元
+0.5元
+Y
+0.25元
+0
+-1.0
+-1.0
+1.0
+X
+(arb.u.)beam
+beam
+
+
+ 5
+
+of the generator to interact with the filament, which is shown in Figure 5c. The mean diameter of the particle size
+inside the tube is about 2 um measured by an aerodynamic particle size spectrometer (TSI3321, TSI Inc). The laser
+filament ionizes the aerosol and generate fingerprint fluorescence which is collected by the concave mirror and
+focused onto the end of the tail fiber. The backward fluorescence was detected by a grating spectrometer (Omni-λ 300,
+Zolix Ltd.) equipped with an intensified CMOS camera (Istar-sCMOS, Andor TechnologyLtd.).
+
+
+Fig.5. (a) Schematic diagram of the experimental setup; (b) typical ultrasonic signal in time domain; (c) aerosol generating device.
+
+3.2. Improving the limit of detection of aerosol using the astigmatism-compensated off-axis system
+Figures 6a and 6b show the beam profile’s variation along the laser propagation direction respectively for the cases
+that the laser spot strikes at the center or one side of the concave mirror. The diameter
+2
+(1
+)
+e
+ of the laser spot at
+different positions along the laser propagation direction was extracted and shown in Figures 6c and 6d, which are
+highly consistent with the simulation results. Experimental results show that the astigmatism is greatly compensated
+and the distance between the sagittal and tangential focus lines is reduced to be zero when the laser beam
+non-symmetrically strikes on the concave mirror. Figure 6e illustrates the variations of the astigmatic parameter β
+along the propagation direction, which also agrees well with the simulation results. The astigmatism compensation
+method proposed here is applicable for different focal lengths, which is superior to the free-form surfaces that only
+works with one specific focal length [22].
+
+
+Oscilloscope
+Current Amplifier
+Spectrometer
+ICMOS6
+
+Fig.6 Variation of beam profiles near the geometric focus along the laser propagation direction recorded by CCD camera. (a) and (c):
+beam profiles and beam diameters for the case of laser beam incident on the center of the concave mirror; (b) and (d): beam profiles and
+beam diameters for the case of laser beam incident on one side of the concave mirror; (e) variations of the astigmatic parameter β along
+the propagation direction.
+
+Figure 7 presents the ultrasonic signal intensity as a function of the laser propagation distance, and the black dotted
+line represents 3 times standard deviation of the background noises. Due to the astigmatism during the laser
+filamentation when the laser beam strikes at the center of the concave mirror, the ultrasonic signal of the laser
+filament has two peaks along the laser filament, respectively representing the sagittal and tangential focal spot. It
+should be noted that the Y-axis ruler of the pink data is on the right to facilitate analysis. After compensating the
+astigmatism by making the laser beam non-symmetrically incident on the concave mirror, only one peak is left and its
+intensity increases by ~70 times, which will greatly enhance the fingerprint fluorescence spectrum of aerosol excited
+by the laser filament.
+
+Fig. 7 Ultrasonic signal intensity along the femtosecond laser filament
+
+
+z=29.678m
+z=29.678m
+12
+(mm)
+12
+(mm)
+20
+20
+10
+10
+Y
+Y
+0
+12
+12
+0
+0
+6
+0
+6
+X (mm)
+X (mm)
+z=29.878m
+z=29.878m
+(uru)
+12
+12
+20
+(mm)
+20
+6
+10
+10
+Y
+Y
+0
+612
+0
+0
+6
+X (mm)
+X (mm)
+z=30.078m
+z=30.078m
+12
+(mm)
+12
+(mm)
+20
+20
+6
+10
+10
+Y
+Y
+0
+1
+4
+0
+6
+12
+0
+6
+12
+X (mm)
+X (mm)
+z=30.228m
+z=30.228m
+12
+(uw)
+20
+(mm)
+12
+20
+6
+10
+10
+Y
+Y
+0
+6
+12
+6
+12
+0
+0
+0
+X (mm)
+X (mm)
+z=30.428m
+z=30.428m
+(uu)
+12
+12
+20
+(mm)
+20
+6
+10
+10
+Y
+-
+6
+12
+12
+0
+0
+0
+6
+X (mm)
+X (mm)0.030
+0.025
+Intensity (arb.u.)
+0.020
+Laser
+0.015
+0.010
+0.005
+.ff
+0.000
+
+
+ 7
+
+Figures 8a and 8c show the filament-induced fluorescence spectra of NaCl aerosol with different concentrations
+recorded respectively by the optical setups in Figures 2a and 3a. The exposure time of 30 s was adopted for all the
+measurements, and the gain of ICMOS camera is also identical for these spectral curves. Figures 8b and 8d present
+the integral intensity of fingerprint fluorescence peak as a function of Na+ concentration, which are respectively
+obtained using the data in Figures 8a and 8c. It can be found that in the logarithmic coordinate system, the relation
+between the integral intensity and Na+ concentration can be well fitted by a linear function. The intersection point of
+the fitted line and 3σ line is the detection limit of NaCl aerosol for the setup used in this work. It can be found that in
+the off-axis reflection femtosecond laser filamentation system, the detection limit can be reduced by 86% when the
+laser beam spot strikes non-symmetrically on the concave mirror, leading to a sub-ppb limit of detection, which is the
+lowest one as we know.
+
+
+Fig. 8. (a) Fluorescence spectra of NaCl aerosol with different concentrations when the laser beam symmetrically strikes on the concave
+mirror (see Figure 2a); (b) integral intensity of the fingerprint fluorescence peak of NaCl aerosol as a function of Na+ concentrations
+which is summarized using the data in (a); (c) fluorescence spectra of NaCl aerosol with different concentrations when the laser beam
+non-symmetrically strikes on the concave mirror (see Figure 3a);; (d) integral intensity of the fingerprint fluorescence peak of NaCl
+aerosol as a function of Na+ concentrations which is summarized using the data in (c).
+
+Due to the limited size of the laboratory, we can only achieve the experimental verification at a distance of 30 m. In
+practical ambient air environment, air turbulence may have many adverse effects on laser transmission when the
+detection distance reaches the order of kilometers, such as the beam cross-sectional intensity distortion, pulse
+temporal profile distortion and phase fluctuation[34, 35]. Fortunately, many spatiotemporal modulation methods have
+been developed to overcome the turbulence induced beam distortion[36, 37]. Furthermore, our previous experimental
+results also show that the air turbulence may even improve the limit of detection of aerosol due to the generation of
+multiple optical filaments, i.e. the increase of the filament number[38].
+4. Conclusion
+In this work, a novel method which can eliminate the astigmatism of the large-aperture off-axis femtosecond laser
+filamentation system is proposed. Astigmatism in off-axis system is mainly caused by the non-symmetric wavefront
+distortion when the beam is obliquely incident into the optical setup. By introducing additional non-symmetricity in
+the off-axis optical setup, the astigmatism is almost completely eliminated. As a result, the limit of detection of
+aerosol by femtosecond laser filament induced fluorescence is significantly improved, which achieves a record of
+sub-ppb aerosol detection limit in a distance of 30 m by millijoule laser pulse. The results in this paper solve one of
+the key problems hindering the femtosecond laser filament remote sensing, which greatly promotes the development
+of the related research fields.
+
+
+8
+Acknowledgments
+This work was supported by National Key Research and Development Program of China (2018YFB0504400).;
+Fundamental Research Funds for the Central Universities (63223052).
+Compliance with ethics guidelines
+Jiewei Guo, Zhi Zhang, Nan Zhang, Binpeng Shang, Jiayun Xue, Yuezheng Wang, Shishi Tao, Bofu Xie, Lanjun
+Guo,Lie Lin and Weiwei Liu declare that they have no conflict of interest or financial conflicts to disclose.
+References
+[1] Fontaine BL, Vidal F, Jiang ZM, Chien CY, Comtois D, Desparois A et al. Filamentation of ultrashort pulse laser beams
+resulting from their propagation over long distances in air. Physics of Plasmas. 1999;6:1615-21.
+[2] Liu W, Gravel J-F, Théberge F, Becker A, Chin SL. Background reservoir: its crucial role for long-distance propagation
+of femtosecond laser pulses in air. Applied Physics B. 2005;80:857-60.
+[3] Akozbek N, Becker A, Chin SL. Propagation and filamentation of femtosecond laser pulses in optical media. Laser
+Physics. 2005;15:607-15.
+[4] Hosseini SA, Azarm A, Daigle J-F, Kamali Y, Chin SL. Filament-induced amplified spontaneous emission in
+air–hydrocarbons gas mixture. Optics Communications. 2014;316:61-6.
+[5] Qi P, Lin L, Su Q, Zhang N, Sun L, Liu W. In-situ visualization of multiple filament competition dynamic during
+nonlinear propagation of femtosecond laser. Scientific Reports. 2017;7.
+[6] Kasparian J, Sauerbrey RA, Chin SL. The critical laser intensity of self-guided light filaments in air. Applied Physics B.
+2000;71:877-9.
+[7] Xu S, Zheng Y, Liu Y, Liu W. Intensity clamping during dual-beam interference. Laser Physics. 2010;20:1968-72.
+[8] Yao J, Chu W, Liu Z, Chen J, Xu B, Cheng Y. An anatomy of strong-field ionization-induced air lasing. Applied
+Physics B. 2018;124:1-17.
+[9] Yuan S, Chin See L, Zeng H-P. Femtosecond filamentation induced fluorescence technique for atmospheric sensing.
+Chinese Physics B. 2015;24.
+[10] Chin SL, Xu HL, Luo Q, Théberge F, Liu W, Daigle J-F et al. Filamentation “remote” sensing of chemical and
+biological agents/pollutants using only one femtosecond laser source. Applied Physics B. 2009;95:1-12.
+[11] Xu H-L, Chin SL. Femtosecond Laser Filamentation for Atmospheric Sensing. Sensors (Basel, Switzerland).
+2010;11:32 - 53.
+[12] Li H, Wei X-Y, Xu H, Chin SL, Yamanouchi K, Sun H. Femtosecond laser filamentation for sensing combustion
+intermediates: A comparative study. Sensors and Actuators B-chemical. 2014;203:887-90.
+[13] Pannier F, Dauchy X, Potin-Gautier M, Astruc A, Astruc M. Speciation of butyltin compounds by ion chromatography
+coupled to electrothermal atomic absorption spectrometry. Applied Organometallic Chemistry. 1993;7:213-8.
+[14] Blase RC, Patrick EL, Mitchell JN, Libardoni MJ. Analysis of cave atmospheres by comprehensive two-dimensional
+gas chromatography (GC×GC) with flame ionization detection (FID). Analytical Chemistry Research. 2015;3:54-62.
+[15] Pallier V, Serpaud B, Feuillade-Cathalifaud G, Bollinger J-C. Comparison of voltammetric and AAS methods for
+As(III) quantification in presence of iron species in model water samples with a low mineral content. International Journal
+of Environmental Analytical Chemistry. 2011;91:1 - 16.
+[16] Monge ME, Harris GA, Dwivedi P, Fernández FM. Mass spectrometry: recent advances in direct open air surface
+sampling/ionization. Chemical reviews. 2013;113 4:2269-308.
+[17] Daigle JF, Mejean G, Liu W, Theberge F, Xu HL, Kamali Y et al. Long range trace detection in aqueous aerosol using
+remote filament-induced breakdown spectroscopy. Applied Physics B-Lasers and Optics. 2007;87:749-54.
+[18] Daigle J-F, Mathieu P, Roy G, Simard J-R, Chin SL. Multi-constituents detection in contaminated aerosol clouds using
+remote-filament-induced breakdown spectroscopy. Optics Communications. 2007;278:147-52.
+[19] Golik S, Mayor AY, Lisitsa VV, Tolstonogova YS, Ilyin AA, Borovskiy AV et al. Limits of Detection of Chemical
+Elements in an Aqueous Aerosol in Filament-Induced Breakdown Spectroscopy. Journal of Applied Spectroscopy.
+2021;88:337 - 42.
+[20] Luo Q, Xu HL, Hosseini SA, Daigle J-F, Théberge F, Sharifi M et al. Remote sensing of pollutants using femtosecond
+laser pulse fluorescence spectroscopy. Applied Physics B. 2006;82:105-9.
+[21] Daigle JF, Kamali Y, Chateauneuf M, Tremblay G, Theberge F, Dubois J et al. Remote sensing with intense filaments
+enhanced by adaptive optics. Applied Physics B-Lasers and Optics. 2009;97:701-13.
+[22] Gravel JF, Luo Q, Boudreau D, Tang XP, Chin SL. Sensing of halocarbons using femtosecond laser-induced
+fluorescence. Analytical Chemistry. 2004;76:4799-805.
+[23] Liu W, Xu HL, Méjean G, Kamali Y, Daigle J-F, Azarm A et al. Efficient non-gated remote filament-induced
+breakdown spectroscopy of metallic sample. Spectrochimica Acta Part B: Atomic Spectroscopy. 2007;62:76-81.
+[24] Liu W, Théberge F, Daigle J-F, Simard PT, Sarifi SM, Kamali Y et al. An efficient control of ultrashort laser filament
+location in air for the purpose of remote sensing. Applied Physics B. 2006;85:55-8.
+[25] Zeng B, Wang T-J, Hosseini SA, Cheng Y, Xu Zz, Liu W et al. Enhanced remote filament-induced breakdown
+spectroscopy with spatio-temporally chirped pulses. Journal of The Optical Society of America B-optical Physics.
+2012;29:3226-30.
+[26] Meng Q, Wang H, Wang K-j, Wang Y, Ji Z, Wang D. Off-axis three-mirror freeform telescope with a large linear field
+of view based on an integration mirror. Applied optics. 2016;55 32:8962-70.
+
+
+
+
+ 9
+
+[27] Garoli D, Rodriguez de Marcos LV, Larruquert JI, Corso AJ, Proietti Zaccaria R, Pelizzo MG. Mirrors for space
+telescopes: degradation issues. Optics + Optoelectronics2020.
+[28] Nan R. Five hundred meter aperture spherical radio telescope (FAST). Science in China Series G. 2006;49:129-48.
+[29] Daigle JF, Kamali Y, Bernhardt J, Liu W, Marceau C, Azarm A et al. Generation of powerful filaments at a long
+distance using adaptive optics. Optics Communications. 2008;281:3327-35.
+[30] He A, Quan C. Wavefront correction for spatial nonuniformity of the liquid crystal on silicon based spatial light
+modulator. Optics and Lasers in Engineering. 2019.
+[31] Maurer C, Jesacher A, Bernet S, Ritsch-Marte M. What spatial light modulators can do for optical microscopy. Laser &
+Photonics Reviews. 2011;5.
+[32] Jesacher A, Schwaighofer A, Fürhapter S, Maurer C, Bernet S, Ritsch-Marte M. Wavefront correction of spatial light
+modulators using an optical vortex image. Optics express. 2007;15 9:5801-8.
+[33] Tao S, Xie B, Xue J, Zhang Z, Zhang N, Guo L et al. Giant enhancement of acoustic and fluorescence emission from
+an off-axis reflective femtosecond laser filamentation system. Optics express. 2022;30 21:38745-52.
+[34] Kandidov VP, Kosareva OG, Tamarov MP, Brodeur A, Chin SL. NONLINEAR OPTICAL PHENOMENA:
+Nucleation and random movement of filaments in the propagation of high-power laser radiation in a turbulent atmosphere.
+1999.
+[35] Méchain G, Couairon A, Andre YB, d'Amico C, Franco M, Prade BS et al. Long-range self-channeling of infrared
+laser pulses in air: a new propagation regime without ionization. Applied Physics B. 2004;79:379-82.
+[36] Zeng T, Yang M. A simple method to suppress turbulence-induced multiple filamentation. Laser Physics. 2019;29.
+[37] Zhang Z, Liang X, Goutsoulas M, Li D, Yang X, Yin S et al. Robust propagation of pin-like optical beam through
+atmospheric turbulence. Apl Photonics. 2019;4.
+[38] Liu J, Zhang Z, Shang B, Chu C, Sun L, Zhang N et al. Enhancement of multi-filament generation and
+filament-induced fluorescence by turbulence. Optics Communications. 2022;517.
+
+
diff --git a/WdFJT4oBgHgl3EQfPCy7/content/tmp_files/load_file.txt b/WdFJT4oBgHgl3EQfPCy7/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..50380b8bae0f06ed95aee78ee2e6099c0ceebbb1
--- /dev/null
+++ b/WdFJT4oBgHgl3EQfPCy7/content/tmp_files/load_file.txt
@@ -0,0 +1,466 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf,len=465
+page_content='Sub-ppb aerosol detection at a distance of 30 meters by millijoule femtosecond laser pulse filamentation in air Jiewei Guo a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='b,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='c,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='#,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Zhi Zhanga,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='b,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='c,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='#,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Nan Zhanga,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='b,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='c*,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Binpeng Shanga,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='d,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Jiayun Xuea,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='d,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Yuezheng Wanga,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='c,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Shishi Taoa,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='c,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Bofu Xiea,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='c,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Lanjun Guoa,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='b,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='d,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Lie Lina,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='b,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='d,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Weiwei Liua,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='b,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='c* a Institute of Modern Optics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Eye Institute,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Nankai University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Tianjin 300350,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' China b Tianjin Eye Hospital,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Tianjin 300020,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' China c Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Tianjin 300350,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' China dTianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Tianjin 300350,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' China # Equal contributors Corresponding author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' E-mail: zhangn@nankai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='cn, liuweiwei@nankai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='cn ABSTRACT In this work, sub-ppb aerosol detection is achieved by femtosecond laser filament with a single pulse energy of 4 mJ at a distance of 30 m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' A concave mirror with an open aperture of 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='4 cm is employed in an off-axis optical system to focus the femtosecond laser beam and collect the fluorescence of NaCl aerosol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' The simulation and experimental results show that the astigmatism can be greatly reduced when femtosecond laser beam is incident non-symmetrically on the concave mirror.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Compared with the case that femtosecond laser strikes at the center of the concave mirror, the intensity of the optical filament is increased by 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='5 times, and the detection of limit of sodium chloride aerosol is reduced by 86%, which is down to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='32 ppb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' The improved excitation scheme in this work utilizes the nonsymmetrical beam spot on the concave mirror to compensate the non-symmetry induced by the off-axis setup, reducing the astigmatism of the focusing laser beam and improving the aerosol’s detection of limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' KEYWORDS femtosecond laser filamentation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' sub-ppb detection of limit;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' astigmatism compensation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' remote sensing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Introduction During the propagation of high intensity femtosecond laser pulses in transparent media, the laser beam can overcome the natural diffraction and form a plasma channel with a diameter of ~100 um, which is termed of optical filament[1-4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' The formation of the laser filament can be attributed to the dynamic balance among the beam diffraction, the optical Kerr effect induced self-focusing and the defocusing by the plasma[5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Femtosecond laser filament has a nearly constant laser intensity of about 1013 ~ 1014 W/cm2 [6, 7], which is sufficient to cause the ionization and fragmentation of molecules[8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' The ionization or dissociation of molecules or atoms emits the fingerprint fluorescence spectrum during the relaxation process, which provides the capability of detecting the chemical composition in a long distance[9-12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Compared with the current methods of atmospheric aerosol composition detection, such as ion chromatography (IC)[13], gas chromatography (GC)[14], atomic absorption spectrometry (AAS)[15], mass spectrometry (MS)[16], etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=', femtosecond laser filament-induced plasma spectroscopy (FIPS) can realize real-time remote sensing of the chemical composition of air pollutants in different forms, such as solid, aerosol, gas, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=', which has aroused widespread research interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' In previous works, Daigle et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' [17] reported that the detection limit was ~33ppm with femtosecond laser pulses of 72 mJ at a distance of 50 m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Then, Daigle et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' [18] reported the detection limits for different constituents in aerosol: 127 mg/L (127 ppm) for Fe, 27 mg/L (27 ppm) for Cu, 9 mg/L (9 ppm) for Pb, and 3mg/L (3 ppm) for Na.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Recently, using a femtosecond laser with relatively low pulse energy (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='4 mJ), Golik et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' [19] measured the filament-induced fluorescence of aerosols containing Al, Ba, Na, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' The detection limit of Na was 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='7 mg/L (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='7 ppm) at a distance of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='5 m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Figure 1 compares the detection limit of Na measured in this work and the detection limits achieved in literatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' It should be noted that the limit of detection reported in literatures is presented in the form of the mass ratio of the metal element in the water droplet (solution concentration).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' For the convenience of comparison, the limit of detection obtained in this work is also presented by the solution concentration (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='025 ppm, corresponding to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='32 ppb in air) in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 2 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Reported detection limits with different laser pulse energies at different distances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' [17-23] The red ball represents the measurement results reported in the literatures, and the “NK” logo represents the measurement result in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' The femtosecond laser is considered an attractive LIDAR technology for real-time detection of atmospheric aerosol composition due to its unique filamentation properties in the atmosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' However, improving the detection sensitivity is still a technical problem faced by this technology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' The self-focusing distance is proportional to the square of the beam diameter[17], but in fact, femtosecond laser filamentation system composed of refraction optical components is difficult to achieve large diameter, light weight and low cost[24, 25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Although reflective femtosecond laser filamentation system has the advantages of large aperture, no chromatic aberration, light weight and low cost which is widely used in atmospheric remote sensing and Earth observation[26-28], astigmatism is inevitably introduced for the off-axis optical system composed of a concave lens and a large diameter concave mirror.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Therefore, a simple and efficient scheme that can reduce the astigmatism of the off-axis system is badly needed for increasing the intensity of the filament.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Daigle et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' replaced the concave lens with a deformable mirror to correct the wavefront aberration in a closed-loop system[29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' However, the low energy efficiency and low damage threshold of deformable mirrors limit the application in the remote sensing by high intensity femtosecond laser filamentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Spatial light modulators (SLM) are also used to correct the astigmatism[30-32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=" However, SLM's low laser damage threshold limits its operation in high-power laser systems." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Recently, Tao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' proposed to eliminate astigmatism by designing a phase plate with free-form surface[33], whereas one phase plate is only suitable for certain optical setup with fixed focal length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' In this paper, we found experimentally that the astigmatism in the off-axis femtosecond laser filamentation system can be reduced by breaking the symmetry of the beam spot distribution on the concave mirror.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' The numerical simulations demonstrate that most of the wavefront distortion due to the off-axis configuration can be corrected by the non-symmetrical incidence of the laser beam on the concave mirror.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' After compensating the astigmatism, a filament was generated at a distance of 30 m, which is practically limited by the lab size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' The intensity of the optical filament is increased by 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='5 times, and the detection of limit of sodium chloride aerosol is reduced by 86%, which is down to a record of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='32 ppb in air, corresponding to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='025 ppm (mass concentration) of Na+ in aerosol droplets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Setup design and numerical simulations To enhance the filament intensity and improve the detection limit of aerosol, the astigmatism of the off-axis femtosecond laser filamentation system must be reduced as much as possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' The off-axis optical setup is simulated using Zemax software.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' In Figure 2a the collimated laser beam is focused at a distance of 30 m using the lens group composed of a plano-concave lens (\uf046 = 25 mm, f = -150 mm) and a concave mirror (\uf046 = 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='4 cm, f = 2 m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' The divergent laser beam after passing through the concave lens strikes on the concave mirror at an incident angle of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='5°.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Further deceasing the incident angle will cause the laser beam focused by the concave mirror be blocked by the beam steering mirror (M1 in Figure 2a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' The beam spot diameter 2 (1 ) e on the concave mirror is 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='2 cm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' When the beam spot on the concave mirror is symmetric relative to the center of the concave mirror, obvious astigmatism appears near the focal spot as is shown in the insets of Figure 2a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Sagittal beam and tangential beam converge before and after the Result in this work Aerosol-droplet 103 Mn 102 Cu Sensitivity (ppm) 10 Si N CO 100 Na 10- 10-2 10 Na (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='32ppbinair) Energy(mJ) 3 geometric focus of the system, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' To quantitatively present the astigmatism of the setup in Figure 2a, the dependences of the beam diameters 2 (1 ) e along X and Y directions on the laser propagation distance were calculated and shown in Figure 2b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' From Figure 2b, it is found that the distance between the sagittal and tangential focus lines is 40 cm for the setup in Figure 2a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' With the help of Zemax software, the wavefront phase on the concave mirror can be calculated, which is shown in Figure 2c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' It indicates that the non-symmetric wavefront phase exists on the concave mirror leads to the large astigmatism when the beam strikes at the center of the concave mirror.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' In order to evaluate the astigmatism of Figure 2a quantitatively, the aberration characteristics of the system were analyzed through the wave aberration of the system, and the zernike fringe polynomial was used to characterize the wave aberration of the system, where the fifth and sixth terms (Z5 and Z6) of the Zernike Fringe polynomials respectively representing the astigmatism in X and Y directions are calculated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Z5 is ( ) ( ) 2 5 cos 2 C P A \uf0b4 \uf0b4 and Z6 is ( ) ( ) 2 6 sin 2 C P A \uf0b4 \uf0b4 , in which A is the angle measured counterclockwise from the local +x axis, P is the normalized radial coordinate, C5 and C6 are astigmatism coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Since the laser beam is incident on the concave mirror obliquely in the XOZ plane, only C5 in the x direction is non-zero, which is calculated to be 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='26\uf06c , and 6 0 C = .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' It is found numerically that when the concave mirror moves towards -x direction, C5 gradually decreases to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' When the beam spot is just tangent to the edge of the concave mirror as is shown in Figure 3a, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' the concave mirror shifts 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='6 cm towards -x direction, most of the astigmatism can be reduced (see Figure 3b) and the wavefront of the beam spot on the concave mirror is nearly symmetric (see Figure 3c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' In this case, C5 and C6 are respectively 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='045λ and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' The beam profiles at different propagation distances are shown in the insets of Figure 3a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Clearly, the beam quality near the focal spot has been greatly improved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' The main difference between the two optical setups in Figures 2a and 3a is the different relative position between the laser beam spot and the concave mirror which is shown in Figure 4a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Figure 4b illustrates the variations of the astigmatic parameter β along the propagation direction for the optical system with central/edge incidence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' The astigmatic parameter β is defined as the ratio of the beam width ( , ) j W j X Y = in the X and Y directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 1 \uf062 = represents the beam spot is circular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' It is seen from Figure 4b that the edge incidence fully optimizes the astigmatism of the off-axis system, and the beam spot has a circular shape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Off-axis reflective filamentation system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' The laser beam strikes at the center of the concave mirror.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' (a) Off-axis reflective setup;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' (b) dependences of the beam diameters in X and Y directions on the propagation distance;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' (c) wavefront phase distribution of the incident laser on the concave mirror.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='75元 (arb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=') 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='5元 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='25元 Y 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='0 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='0 X (arb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' )4 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Off-axis reflective filamentation system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' The laser beam strikes non-symmetrically on the concave mirror.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' (a) Off-axis reflective setup;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' (b) dependences of the beam diameters in X and Y directions on the propagation distance;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' (c) wavefront phase distribution of the incident laser on the concave mirror.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' (a) Different relative position between the beam spot and the concave mirror in Figures 2a and 3a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' (b) variations of the astigmatic parameter β along the propagation direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Experimental results and discussions 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Off-axis reflection system for femtosecond laser filamentation and aerosol detection In this work, a commercial Ti:Sapphire femtosecond laser system (Legend Elite, Coherent Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=') was employed to generate 500 Hz, 35 fs, 800 nm, 4 mJ laser pulses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' The schematic diagram of the experimental setup is shown in Figure 5a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' The laser pulse output from the laser system was focused by a lens group consisting of a concave lens (L1, \uf046 = 25 mm, f = −150 mm) and a concave mirror (L2, \uf046 = 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='4 cm, f = 2 m) which is identical to those used in the numerical simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' The geometrical focus of the lens group locates 30 m away from the concave mirror (L2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' The laser pulse is incident non-symmetrically on one side of the concave mirror after passing through the concave lens, and the reflected laser beam by the concave mirror is focused and form optical filament at a distance of 30 m relative to the concave mirror (L2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' In order to characterize the length and intensity distribution of the optical filament, a microphone (V306, Olympus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Ltd) combined with an amplifier (5072PR, Olympus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Ltd) an oscilloscope (DPO3034, Tektronix Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=') is used to measure the ultrasonic wave emitted from the optical filament.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' The typical time domain ultrasonic signal is shown in Figure 5b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Because the length of laser filament (~40 cm) is much longer than the spatial resolution (~0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='87 cm) of the ultrasonic microphone, the microphone is mounted on an electrically driven sliding rail and moved parallel to the laser propagation direction to measure the length and distribution of the filament point by point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' The spatial step of the microphone is 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='5 cm which is just the spatial resolution of the microphone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' To analyze the residual astigmatism, a CCD camera is used to record the variation of the cross-sectional intensity distribution of the laser beam spot along the beam propagation direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' It should be noted that in order to protect the CCD camera from being damaged, all the beam spots are captured under the linear optical propagation with attenuated pulse energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' An aerosol generator (HRH-WAG3, Beijing Huironghe Technology Co.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=', Ltd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=') is employed to generate sodium chloride aerosol with different concentrations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' The aerosol is stably injected into the tube by controlling the air pump 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='0 (arb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=') 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='75元 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='5元 Y 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='25元 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='0 X (arb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' )beam beam 5 of the generator to interact with the filament, which is shown in Figure 5c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' The mean diameter of the particle size inside the tube is about 2 um measured by an aerodynamic particle size spectrometer (TSI3321, TSI Inc).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' The laser filament ionizes the aerosol and generate fingerprint fluorescence which is collected by the concave mirror and focused onto the end of the tail fiber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' The backward fluorescence was detected by a grating spectrometer (Omni-λ 300, Zolix Ltd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=') equipped with an intensified CMOS camera (Istar-sCMOS, Andor TechnologyLtd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' (a) Schematic diagram of the experimental setup;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' (b) typical ultrasonic signal in time domain;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' (c) aerosol generating device.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Improving the limit of detection of aerosol using the astigmatism-compensated off-axis system Figures 6a and 6b show the beam profile’s variation along the laser propagation direction respectively for the cases that the laser spot strikes at the center or one side of the concave mirror.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' The diameter 2 (1 ) e of the laser spot at different positions along the laser propagation direction was extracted and shown in Figures 6c and 6d, which are highly consistent with the simulation results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Experimental results show that the astigmatism is greatly compensated and the distance between the sagittal and tangential focus lines is reduced to be zero when the laser beam non-symmetrically strikes on the concave mirror.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Figure 6e illustrates the variations of the astigmatic parameter β along the propagation direction, which also agrees well with the simulation results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' The astigmatism compensation method proposed here is applicable for different focal lengths, which is superior to the free-form surfaces that only works with one specific focal length [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Oscilloscope Current Amplifier Spectrometer ICMOS6 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='6 Variation of beam profiles near the geometric focus along the laser propagation direction recorded by CCD camera.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' (a) and (c): beam profiles and beam diameters for the case of laser beam incident on the center of the concave mirror;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' (b) and (d): beam profiles and beam diameters for the case of laser beam incident on one side of the concave mirror;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' (e) variations of the astigmatic parameter β along the propagation direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Figure 7 presents the ultrasonic signal intensity as a function of the laser propagation distance, and the black dotted line represents 3 times standard deviation of the background noises.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Due to the astigmatism during the laser filamentation when the laser beam strikes at the center of the concave mirror, the ultrasonic signal of the laser filament has two peaks along the laser filament, respectively representing the sagittal and tangential focal spot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' It should be noted that the Y-axis ruler of the pink data is on the right to facilitate analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' After compensating the astigmatism by making the laser beam non-symmetrically incident on the concave mirror, only one peak is left and its intensity increases by ~70 times, which will greatly enhance the fingerprint fluorescence spectrum of aerosol excited by the laser filament.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 7 Ultrasonic signal intensity along the femtosecond laser filament z=29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='678m z=29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='678m 12 (mm) 12 (mm) 20 20 10 10 Y Y 0 12 12 0 0 6 0 6 X (mm) X (mm) z=29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='878m z=29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='878m (uru) 12 12 20 (mm) 20 6 10 10 Y Y 0 612 0 0 6 X (mm) X (mm) z=30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='078m z=30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='078m 12 (mm) 12 (mm) 20 20 6 10 10 Y Y 0 1 4 0 6 12 0 6 12 X (mm) X (mm) z=30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='228m z=30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='228m 12 (uw) 20 (mm) 12 20 6 10 10 Y Y 0 6 12 6 12 0 0 0 X (mm) X (mm) z=30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='428m z=30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='428m (uu) 12 12 20 (mm) 20 6 10 10 Y 6 12 12 0 0 0 6 X (mm) X (mm)0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='030 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='025 Intensity (arb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=') 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='020 Laser 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='015 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='005 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='ff 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='000 7 Figures 8a and 8c show the filament-induced fluorescence spectra of NaCl aerosol with different concentrations recorded respectively by the optical setups in Figures 2a and 3a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' The exposure time of 30 s was adopted for all the measurements, and the gain of ICMOS camera is also identical for these spectral curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Figures 8b and 8d present the integral intensity of fingerprint fluorescence peak as a function of Na+ concentration, which are respectively obtained using the data in Figures 8a and 8c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' It can be found that in the logarithmic coordinate system, the relation between the integral intensity and Na+ concentration can be well fitted by a linear function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' The intersection point of the fitted line and 3σ line is the detection limit of NaCl aerosol for the setup used in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' It can be found that in the off-axis reflection femtosecond laser filamentation system, the detection limit can be reduced by 86% when the laser beam spot strikes non-symmetrically on the concave mirror, leading to a sub-ppb limit of detection, which is the lowest one as we know.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' (a) Fluorescence spectra of NaCl aerosol with different concentrations when the laser beam symmetrically strikes on the concave mirror (see Figure 2a);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' (b) integral intensity of the fingerprint fluorescence peak of NaCl aerosol as a function of Na+ concentrations which is summarized using the data in (a);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' (c) fluorescence spectra of NaCl aerosol with different concentrations when the laser beam non-symmetrically strikes on the concave mirror (see Figure 3a);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' (d) integral intensity of the fingerprint fluorescence peak of NaCl aerosol as a function of Na+ concentrations which is summarized using the data in (c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Due to the limited size of the laboratory, we can only achieve the experimental verification at a distance of 30 m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' In practical ambient air environment, air turbulence may have many adverse effects on laser transmission when the detection distance reaches the order of kilometers, such as the beam cross-sectional intensity distortion, pulse temporal profile distortion and phase fluctuation[34, 35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Fortunately, many spatiotemporal modulation methods have been developed to overcome the turbulence induced beam distortion[36, 37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Furthermore, our previous experimental results also show that the air turbulence may even improve the limit of detection of aerosol due to the generation of multiple optical filaments, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' the increase of the filament number[38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Conclusion In this work, a novel method which can eliminate the astigmatism of the large-aperture off-axis femtosecond laser filamentation system is proposed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Astigmatism in off-axis system is mainly caused by the non-symmetric wavefront distortion when the beam is obliquely incident into the optical setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' By introducing additional non-symmetricity in the off-axis optical setup, the astigmatism is almost completely eliminated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' As a result, the limit of detection of aerosol by femtosecond laser filament induced fluorescence is significantly improved, which achieves a record of sub-ppb aerosol detection limit in a distance of 30 m by millijoule laser pulse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' The results in this paper solve one of the key problems hindering the femtosecond laser filament remote sensing, which greatly promotes the development of the related research fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 8 Acknowledgments This work was supported by National Key Research and Development Program of China (2018YFB0504400).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Fundamental Research Funds for the Central Universities (63223052).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Compliance with ethics guidelines Jiewei Guo, Zhi Zhang, Nan Zhang, Binpeng Shang, Jiayun Xue, Yuezheng Wang, Shishi Tao, Bofu Xie, Lanjun Guo,Lie Lin and Weiwei Liu declare that they have no conflict of interest or financial conflicts to disclose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' References [1] Fontaine BL, Vidal F, Jiang ZM, Chien CY, Comtois D, Desparois A et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Physics of Plasmas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 1999;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='6:1615-21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' [2] Liu W, Gravel J-F, Théberge F, Becker A, Chin SL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Background reservoir: its crucial role for long-distance propagation of femtosecond laser pulses in air.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Applied Physics B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 2005;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='80:857-60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' [3] Akozbek N, Becker A, Chin SL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Propagation and filamentation of femtosecond laser pulses in optical media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Laser Physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 2005;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='15:607-15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' [4] Hosseini SA, Azarm A, Daigle J-F, Kamali Y, Chin SL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Filament-induced amplified spontaneous emission in air–hydrocarbons gas mixture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Optics Communications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='316:61-6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' [5] Qi P, Lin L, Su Q, Zhang N, Sun L, Liu W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' In-situ visualization of multiple filament competition dynamic during nonlinear propagation of femtosecond laser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Scientific Reports.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' [6] Kasparian J, Sauerbrey RA, Chin SL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' The critical laser intensity of self-guided light filaments in air.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Applied Physics B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 2000;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='71:877-9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' [7] Xu S, Zheng Y, Liu Y, Liu W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Intensity clamping during dual-beam interference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Laser Physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='20:1968-72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' [8] Yao J, Chu W, Liu Z, Chen J, Xu B, Cheng Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' An anatomy of strong-field ionization-induced air lasing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Applied Physics B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='124:1-17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' [9] Yuan S, Chin See L, Zeng H-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Femtosecond filamentation induced fluorescence technique for atmospheric sensing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Chinese Physics B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' [10] Chin SL, Xu HL, Luo Q, Théberge F, Liu W, Daigle J-F et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Applied Physics B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='95:1-12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' [11] Xu H-L, Chin SL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Femtosecond Laser Filamentation for Atmospheric Sensing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Sensors (Basel, Switzerland).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='11:32 - 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' [12] Li H, Wei X-Y, Xu H, Chin SL, Yamanouchi K, Sun H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Femtosecond laser filamentation for sensing combustion intermediates: A comparative study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Sensors and Actuators B-chemical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='203:887-90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' [13] Pannier F, Dauchy X, Potin-Gautier M, Astruc A, Astruc M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Speciation of butyltin compounds by ion chromatography coupled to electrothermal atomic absorption spectrometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Applied Organometallic Chemistry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 1993;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='7:213-8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' [14] Blase RC, Patrick EL, Mitchell JN, Libardoni MJ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Analysis of cave atmospheres by comprehensive two-dimensional gas chromatography (GC×GC) with flame ionization detection (FID).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Analytical Chemistry Research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='3:54-62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' [15] Pallier V, Serpaud B, Feuillade-Cathalifaud G, Bollinger J-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Comparison of voltammetric and AAS methods for As(III) quantification in presence of iron species in model water samples with a low mineral content.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' International Journal of Environmental Analytical Chemistry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='91:1 - 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' [16] Monge ME, Harris GA, Dwivedi P, Fernández FM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Mass spectrometry: recent advances in direct open air surface sampling/ionization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Chemical reviews.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='113 4:2269-308.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' [17] Daigle JF, Mejean G, Liu W, Theberge F, Xu HL, Kamali Y et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Long range trace detection in aqueous aerosol using remote filament-induced breakdown spectroscopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Applied Physics B-Lasers and Optics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='87:749-54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' [18] Daigle J-F, Mathieu P, Roy G, Simard J-R, Chin SL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Multi-constituents detection in contaminated aerosol clouds using remote-filament-induced breakdown spectroscopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Optics Communications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='278:147-52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' [19] Golik S, Mayor AY, Lisitsa VV, Tolstonogova YS, Ilyin AA, Borovskiy AV et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Limits of Detection of Chemical Elements in an Aqueous Aerosol in Filament-Induced Breakdown Spectroscopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Journal of Applied Spectroscopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='88:337 - 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' [20] Luo Q, Xu HL, Hosseini SA, Daigle J-F, Théberge F, Sharifi M et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Applied Physics B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='82:105-9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' [21] Daigle JF, Kamali Y, Chateauneuf M, Tremblay G, Theberge F, Dubois J et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Remote sensing with intense filaments enhanced by adaptive optics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Applied Physics B-Lasers and Optics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='97:701-13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' [22] Gravel JF, Luo Q, Boudreau D, Tang XP, Chin SL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Sensing of halocarbons using femtosecond laser-induced fluorescence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Analytical Chemistry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 2004;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='76:4799-805.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' [23] Liu W, Xu HL, Méjean G, Kamali Y, Daigle J-F, Azarm A et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Efficient non-gated remote filament-induced breakdown spectroscopy of metallic sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Spectrochimica Acta Part B: Atomic Spectroscopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='62:76-81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' [24] Liu W, Théberge F, Daigle J-F, Simard PT, Sarifi SM, Kamali Y et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' An efficient control of ultrashort laser filament location in air for the purpose of remote sensing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Applied Physics B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='85:55-8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' [25] Zeng B, Wang T-J, Hosseini SA, Cheng Y, Xu Zz, Liu W et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Enhanced remote filament-induced breakdown spectroscopy with spatio-temporally chirped pulses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Journal of The Optical Society of America B-optical Physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='29:3226-30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' [26] Meng Q, Wang H, Wang K-j, Wang Y, Ji Z, Wang D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Off-axis three-mirror freeform telescope with a large linear field of view based on an integration mirror.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Applied optics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='55 32:8962-70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 9 [27] Garoli D, Rodriguez de Marcos LV, Larruquert JI, Corso AJ, Proietti Zaccaria R, Pelizzo MG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Mirrors for space telescopes: degradation issues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Optics + Optoelectronics2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' [28] Nan R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Five hundred meter aperture spherical radio telescope (FAST).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Science in China Series G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='49:129-48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' [29] Daigle JF, Kamali Y, Bernhardt J, Liu W, Marceau C, Azarm A et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Generation of powerful filaments at a long distance using adaptive optics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Optics Communications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='281:3327-35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' [30] He A, Quan C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Wavefront correction for spatial nonuniformity of the liquid crystal on silicon based spatial light modulator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Optics and Lasers in Engineering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' [31] Maurer C, Jesacher A, Bernet S, Ritsch-Marte M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' What spatial light modulators can do for optical microscopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Laser & Photonics Reviews.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' [32] Jesacher A, Schwaighofer A, Fürhapter S, Maurer C, Bernet S, Ritsch-Marte M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Wavefront correction of spatial light modulators using an optical vortex image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Optics express.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='15 9:5801-8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' [33] Tao S, Xie B, Xue J, Zhang Z, Zhang N, Guo L et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Giant enhancement of acoustic and fluorescence emission from an off-axis reflective femtosecond laser filamentation system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Optics express.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='30 21:38745-52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' [34] Kandidov VP, Kosareva OG, Tamarov MP, Brodeur A, Chin SL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' NONLINEAR OPTICAL PHENOMENA: Nucleation and random movement of filaments in the propagation of high-power laser radiation in a turbulent atmosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 1999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=" [35] Méchain G, Couairon A, Andre YB, d'Amico C, Franco M, Prade BS et al." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Applied Physics B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 2004;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='79:379-82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' [36] Zeng T, Yang M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' A simple method to suppress turbulence-induced multiple filamentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Laser Physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' [37] Zhang Z, Liang X, Goutsoulas M, Li D, Yang X, Yin S et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Robust propagation of pin-like optical beam through atmospheric turbulence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Apl Photonics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' [38] Liu J, Zhang Z, Shang B, Chu C, Sun L, Zhang N et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Enhancement of multi-filament generation and filament-induced fluorescence by turbulence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' Optics Communications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
+page_content='517.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdFJT4oBgHgl3EQfPCy7/content/2301.11485v1.pdf'}
diff --git a/X9FLT4oBgHgl3EQfUi8y/content/2301.12049v1.pdf b/X9FLT4oBgHgl3EQfUi8y/content/2301.12049v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..8b0155dfd2bcc22c0a5cee83ce53d8892b088b04
--- /dev/null
+++ b/X9FLT4oBgHgl3EQfUi8y/content/2301.12049v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:b7492ae8f1683f4b11469dc2cd59c9872a7e0c6b84393ff70c8a190a6d20b741
+size 4745472
diff --git a/X9FLT4oBgHgl3EQfUi8y/vector_store/index.faiss b/X9FLT4oBgHgl3EQfUi8y/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..6ae3c46fd17f4a48bc68bce6caf9c8b5d6f600e1
--- /dev/null
+++ b/X9FLT4oBgHgl3EQfUi8y/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:7c6454883a3b9507f4e48102e38e6489f20876713a8e1946309cf146a37201c7
+size 5242925
diff --git a/X9FQT4oBgHgl3EQfdjZ7/content/tmp_files/2301.13331v1.pdf.txt b/X9FQT4oBgHgl3EQfdjZ7/content/tmp_files/2301.13331v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..d14e8c6a0453aa579e9ebcb523f52f83d7000037
--- /dev/null
+++ b/X9FQT4oBgHgl3EQfdjZ7/content/tmp_files/2301.13331v1.pdf.txt
@@ -0,0 +1,2952 @@
+Fast Resolution Agnostic Neural Techniques to Solve
+Partial Differential Equations
+Hrishikesh Viswanatha,∗, Md Ashiqur Rahmana, Abhijeet Vyasa, Andrey Shora, Beatriz Medeirosd, Stephanie
+Hernandezd, Suhas Eswarappa Prameelab,c,d, Aniket Beraa
+aDepartment of Computer Science, Purdue University, West Lafayette, IN, USA
+bDepartment of Materials Science and Engineering, MIT, Cambridge, MA, USA
+cDepartment of Aeronautics and Astronautics, MIT, Cambridge, MA, USA
+dHopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD, USA
+Abstract
+Numerical approximations of partial differential equations (PDEs) are routinely employed to formulate the solution of
+physics, engineering and mathematical problems involving functions of several variables, such as the propagation of heat
+or sound, fluid flow, elasticity, electrostatics, electrodynamics, and more. While this has led to solving many complex
+phenomena, there are still significant limitations. Conventional approaches such as Finite Element Methods (FEMs)
+and Finite Differential Methods (FDMs) require considerable time and are computationally expensive.
+In contrast,
+machine learning-based methods such as neural networks are faster once trained, but tend to be restricted to a specific
+discretization. This article aims to provide a comprehensive summary of conventional methods and recent machine
+learning-based methods to approximate PDEs numerically. Furthermore, we highlight several key architectures centered
+around the neural operator, a novel and fast approach (∼1000x) to learning the solution operator of a PDE. We will
+note how these new computational approaches can bring immense advantages in tackling many problems in fundamental
+and applied physics.
+Keywords:
+Machine learning, Neural networks, Neural operators, Fourier neural operator, Geo-FNO, Graph neural
+operator, Physics informed neural operator, Finite element method, Finite volume method, Finite difference method,
+DeepONet, Spectral neural operator, Adaptive Fourier neural operator, Burgers equation, Darcy Flow equation, Navier
+Stokes equation, Kolmogorov Flow
+1. Introduction
+Partial differential equations (PDEs) are an integral tool in
+mathematically modeling the physical world. They allow
+one to describe how a quantity changes with respect to
+multiple variables and have allowed physicists to model
+various phenomena in fluid flow, electrodynamics, and
+quantum mechanics. An example family of generic PDEs
+can be represented as shown in equation 1,
+(Lau)(x) = f(x),
+x ∈ D,
+(1)
+u(x) = 0,
+x ∈ δD
+for some a ∈ A, f ∈ L, where A, L are Banach spaces, D
+is the domain of the PDE and u : D → R, u ∈ U is the
+solution function.
+While PDEs are all around us, it is
+oftentimes very difficult for one to solve them analytically.
+The best that one can achieve is an approximation of the
+true solution of the PDE. The most popular approaches
+to solving PDEs are numerical methods such as finite
+∗Corresponding author
+Email address: hviswan@purdue.edu (Hrishikesh Viswanath)
+difference methods (FDMs) Godunov & Bohachevsky
+(1959), finite element methods (FEMs) Zienkiewicz et al.
+(2005),
+and finite volume methods (FVMs) Eymard
+et al. (2000) as they are able to approximate solutions to
+PDEs with high amounts of accuracy. However, they are
+computationally expensive.
+Finite difference methods solve PDEs by converting them
+into linear algebraic equations called finite difference
+equations. These equations are obtained by discretizing
+the domain of the functions involved in the PDEs and
+representing the derivatives as differences according to the
+first principles of calculus Jordan & Jord´an (1965). The
+different discretization schemes result in different methods
+tailored to specific applications such as gas-dynamics Sod
+(1978) and heat transfer ¨Ozi¸sik et al. (2017). An exhaus-
+tive study of applying this method to various families of
+PDEs has been published by Smith et al. (1985). Finite
+element methods, on the other hand, generate algebraic
+equations by applying fundamental physics laws on static
+or moving quantum of a system Hughes (2012) and have
+been used to solve several different problems in physics
+such as the fluid flow problem Donea & Huerta (2003)
+Preprint submitted to Communications Physics
+February 1, 2023
+arXiv:2301.13331v1 [cs.AI] 30 Jan 2023
+
+and strain localization in metals Roters et al. (2011).
+Numerical methods have traditionally been used to solve
+PDEs, but in an effort to reduce the computational cost
+and achieve greater accuracy, they are being replaced
+by data-driven methods in the current scientific era.
+These methods come under the overarching paradigm of
+machine learning approaches, which utilize data-driven
+algorithms that allow a program to learn and improve
+from experience. The modern face of machine learning is
+neural networks, which have led to a variety of advances
+in many scientific endeavors.
+Recent advances in deep
+learning, a subfield of machine learning which studies
+algorithms known as artificial neural networks, have al-
+lowed researchers to develop neural network architectures
+capable of approximating the solution of PDEs through
+large amounts of data. Deep neural networks that can ap-
+proximate any function to an arbitrary precision Cybenko
+(1989) consist of multiple hidden layers and serve as a
+mapping between inputs and outputs LeCun et al. (2015).
+Deep neural networks have been applied to a multitude of
+problems in material physics, thermodynamics, and fluid
+dynamics problems Cai et al. (2022), Mao et al. (2020),
+Cai et al. (2021b), Thais et al. (2022) due to their innate
+ability to learn complex relationships between physical
+entities. To solve PDEs using neural networks, a dataset
+of inputs {xi}n
+1 and their solution mappings {u(xi)}n
+1
+is used to train or learn an approximate function map
+u+ : D → R of the solution function u, where R is the
+range of u. The accuracy of the predictions of u depends
+on the complexity of the function class u+, which in turn
+depends on the neural network architecture. The ability
+of the network to predict u(x) for x /∈ {xi}n
+1 is known as
+generalization and is vital to solving PDEs accurately.
+In particular, physics informed neural networks (PINNs)
+Raissi et al. (2019), Deep-ONet Lu et al. (2019), and
+neural operator Li et al. (2020a) architectures have shown
+great success in learning PDEs.
+Neural operator is an emerging deep learning technique
+that is different from a typical neural network in several
+ways.
+While neural networks are able to approximate
+any function, which is a map between finite-dimensional
+spaces Cybenko (1989), to approximate an operator,
+which is a map between infinite dimensional spaces, a
+network of infinite length is required Guss & Salakhut-
+dinov (2019).
+Thus, neural networks fail to accurately
+approximate solution operators of PDEs, which are map-
+pings between infinite dimensional spaces. The need for
+more accurate solutions has motivated the development of
+neural operators: a generalization of neural networks to
+map between infinite dimensional spaces Kovachki et al.
+(2021). Neural operators are composed of linear integral
+operators and nonlinear activation functions. The result
+is an operator capable of approximating highly nonlinear
+solution operators of PDEs. Furthermore, neural opera-
+tors are resolution-invariant and up to ≈1000x faster than
+traditional neural networks in approximating the solution
+of PDEs Li et al. (2020a). Current state-of-the-art neural
+operator architecture includes the graph neural network
+(GNO) Li et al. (2020c), Fourier neural network (FNO) Li
+et al. (2020a) and its variant geo-Fourier neural network
+(Geo-FNO) Li et al. (2022), and physics informed neural
+network (PINO) Rosofsky & Huerta (2022).
+This paper aims to provide a brief overview of popular
+numerical methods and emphasize on several machine
+learning-based
+methods
+to
+numerically
+approximate
+PDEs.
+Figure 1 provides an overview of both conven-
+tional and machine learning-based approaches to solving
+PDEs. We will highlight several key architectures centered
+around the neural operator, a novel and fast approach
+(1000x) to learning the solution operator of a PDE. We
+will note how these new computational approaches can
+bring immense advantages in tackling many problems
+in fundamental and applied physics.
+Sections 2 and 3
+describe some of the conventional and neural network-
+based architectures, while sections 4 through 8 talk about
+different types of neural operator-based architectures.
+Section 9 discusses various fields where neural operators
+have been successful.
+Tables 6 and 5, in the appendix
+section,
+provide the definitions of the mathematical
+notations and the GitHub links to neural operator models
+respectively.
+2. Conventional Solvers
+In this section, we will discuss some of the conventional
+approaches that have been used to solve PDEs, such as
+finite difference methods, finite element methods and
+finite volume methods.
+2.1. Finite difference method
+The finite difference method (FDM) is a class of grid-point
+techniques in numerical methods used to approximate
+the solution to differential equations.
+FDMs work by
+discretizing a function in an infinite domain into a finite,
+space-time grid Moczo et al. (2004).
+Each point in
+the grid represents a value of the particular function
+being approximated. FDMs are able to approximate the
+solution to a PDE at each grid-point by approximating
+the derivatives with finite difference formulas Godunov &
+Bohachevsky (1959). The more grid-points available, the
+more accurate the solution.
+FDMs have been used to help understand earthquake
+physics Aochi et al. (2013), conservation laws Sod (1978),
+and fluid flow simulations Fadlun et al. (2000). Due to
+its simplicity, the FDM is very fast at solving PDEs on
+structured grids. However, FDM struggles with complex
+geometries and is often less accurate than finite element
+2
+
+and finite volume methods.
+2.2. Finite element method
+The finite element method (FEM) is a numerical method
+for solving PDEs in which a complex domain is discretized
+into a collection of small, simple domains. These simple
+domains are referred to as finite elements and are used
+to construct approximation functions over each element
+Reddy (2019). The FEM creates a sparse matrix repre-
+senting the discretization and solves it via a sparse matrix
+solver to achieve a global solution. The FEM allows one
+to solve complex PDEs since the method is adaptable
+over difficult domains.
+Furthermore, the FEM offers
+very accurate results dependent on discretization.
+The
+disadvantages of the FEM are that it is computationally
+expensive and that the accuracy of the solution depends
+on the resolution of the mesh.
+The FEM is utilized
+heavily in problems involving complex geometries and for
+modeling heat transfer Wilson et al. (1974), electromag-
+netic potential Li et al. (2017), and quantum mechanics
+Searles & von Nagy-Felsobuki (1988).
+2.3. Finite volume method
+Finite volume methods (FVM) are capable of evaluating
+PDEs numerically through the use of algebraic equations.
+FVMs utilize a volume integral formation of the PDE and
+discretize the geometry of the PDE through the use of a
+finite collection of volumes. Then, FVMs evaluate each
+volume integral at each volume.
+FVMs are often used
+to approximate solutions to physical problems that arise
+from conservation laws. These include computational fluid
+dynamics Acharya et al. (2007), dynamic solid mechanics
+Slone et al. (2003), and stress analysis Demirdˇzi´c &
+Muzaferija (1994).
+The key advantage of FVMs is the
+ability to be used on unstructured grids and complex
+geometries.
+However, FVMs are computationally inten-
+sive and usually restricted to first- and second-order PDEs.
+3. Neural network architectures
+In this section, we go over some of the most commonly
+used neural network based architectures for solving PDEs,
+such as fully connected neural networks, convolutional
+neural networks and physics informed neural networks.
+A neural network is a mesh of layers, where each layer
+consists of a set of nodes, which computes the weighted
+sum of the input and applies a non-linear activation to
+it. These networks are also called feed-forward networks
+because the input flows forward from the input layer to
+the output layer through one or more hidden layers Bebis
+& Georgiopoulos (1994).
+3.1. Fully Connected neural networks
+Fully connected neural networks (FCNs) are the most
+basic neural network architecture.
+They consist of a
+multitude of layers, including an input layer, one or more
+hidden layers, and an output layer Yegnanarayana (2009).
+These types of networks are considered ”feed-forward”
+because the information in this structure only moves
+forward, from one layer to the next, until it reaches the
+output layer Sazli (2006).
+This architecture has been
+an attractive approach to solving PDEs because of its
+generalizability Lagaris et al. (1998).
+Many approaches have been proposed to approximate
+the solution to PDEs using FCNs.
+One such approach
+is to create a model consisting of the sum of two terms.
+The first term is used to satisfy the boundary conditions,
+whereas the second term is an FCN that is trained to
+satisfy the PDE itself Lagaris et al. (1998). An FCN can
+be used here to approximate the solution to the PDE be-
+cause FCNs are universal function approximators Hornik
+et al. (1989). Through this approach, one can achieve a
+differentiable, closed analytic form of the solution to the
+PDE Lagaris et al. (1998). While this approach can be
+applied to both PDEs and ODEs, it struggles to handle
+PDEs of higher dimensions as the number of training
+points increases greatly. This, in turn, makes the proposed
+method computationally exhaustive.
+Furthermore, this
+approach is less precise than Finite Element methods in
+approximating a solution of the PDE Lagaris et al. (1998).
+Another common issue is the difficulty in solving PDEs
+with complex boundary conditions.
+In fact, there are
+times
+when
+numerical
+methods
+cannot
+approximate
+solutions to such PDEs Tadmor (2012).
+The method
+proposed in Sirignano & Spiliopoulos (2018) is known as
+the deep Galerkin method (DGM). This method utilizes
+an FCN that is trained on a set of randomly sampled
+time and space points. The key strength of this method
+is that it is able to satisfy the differential operator and
+initial/boundary conditions. Furthermore, this approach
+is meshfree; hence it can approximate solutions to PDEs
+that standard numerical methods may struggle with.
+Lastly, this method is capable of solving PDEs in high
+dimensional spaces, unlike the approach described by
+Lagaris et al. (1998).
+While these approaches have shown success in solv-
+ing PDEs, there are still many limitations.
+One such
+limitation is that FCNs are unable to capture spatial
+and temporal data, primarily because of how FCNs
+process data. FCNs deal with data in a one-dimensional
+spatially-invariant format. Therefore it is hard for FCNs
+to capture spatial information Livingstone et al. (1997).
+Another issue with FCNs is that they cannot outperform
+numerical methods in low-dimensional spaces Lagaris
+et al. (1998). Lastly, FCNs primarily depend on a specific
+3
+
+Figure 1: The above figure represents the logical flow of how PDEs can be solved using various methods, highlighting existing ML techniques
+and various families of neural operator based techniques
+discretization of the grid from which training points are
+sampled and hence need to be retrained each time the
+discretization changes Li et al. (2020b).
+3.2. Convolutional neural networks
+While FCNs can approximate PDEs, they fail to capture
+potentially vital information,
+such as spatiotemporal
+features.
+CNNs are the key to learning spatial features
+O’Shea & Nash (2015). Traditionally, the CNN architec-
+ture has been utilized in image processing tasks Browne
+& Ghidary (2003), Naranjo-Torres et al. (2020), Ciresan
+et al. (2011), but have in recent years been trained to
+solve PDEs due to their ability to learn complex patterns
+in image-formatted data.
+CNNs have been shown to
+be able to approximate the solution of elliptical PDEs
+Winovich et al. (2019) and have been the foundation for
+hybrid architectures such as PhyGeoNet Gao et al. (2021).
+Standard CNN architecture differs from FCN architecture
+by utilizing three distinct layers:
+convolutional layers,
+pooling layers, and fully-connected layers O’Shea & Nash
+(2015).
+As the name suggests, the convolutional layers
+apply convolution to the input. This allows the network
+to learn local features in an image.
+The pooling layers
+are applied to convolutional layers in order to further
+generalize the local features. Pooling can be a function
+such as max, min or avg, which is applied to subsets of the
+input. The resulting matrix will have fewer elements than
+the original. Lastly, the fully connected layers are utilized
+in order to aid with classification problems Aghdam &
+Heravi (2017).
+ConvPDE-UQ is a framework that utilizes CNNs to
+construct lightweight numerical solvers that can solve
+elliptical PDEs Winovich et al. (2019). These lightweight
+solvers utilize the representative power of a neural net-
+work to approximate the solution to a PDE on a general
+domain in a single forward pass by using Green’s functions
+Winovich et al. (2019). This allows the solvers to be more
+computationally efficient than conventional solvers such
+as FEMs. One key limitation of this architecture is that
+it cannot be easily extended to modeling systems that are
+inhomogeneous and contain mixed boundary conditions
+Winovich et al. (2019).
+Physics-informed geometry-adaptive convolutional neu-
+ral networks (PhyGeoNet) are an extension of CNNs.
+This architecture utilizes convolutional neural networks
+(CNNs) with a physics constraint. CNNs are often utilized
+when one needs to learn spatiotemporal data O’Shea &
+Nash (2015). The key disadvantage of CNN architecture
+is that it can only handle rectangular grids;
+hence
+utilizing a pure CNN architecture on complex geometries
+is challenging. PhyGeoNet is a physics-constrained CNN
+architecture capable of learning solutions to parametric
+PDEs on irregular geometries and nonuniform grids
+without the need to utilize labeled data Gao et al. (2021).
+This architecture is capable of learning the solutions to
+parametric PDEs by utilizing an elliptic mapping from the
+irregular physical domain to a regular reference domain
+Gao et al. (2021).
+While PhyGeoNet shows promise in
+solving PDEs, the architecture is constrained by the fact
+that it is only capable of solving steady-state parametric
+PDEs and thus cannot be applied to dynamic systems.
+4
+
+Theory Intro
+ of Neural Operator
+Fourier Neural
+Operator
+DeepONet
+Current Architectures
+Darcy Flow
+Physics-Informed
+Navier Stokes
+Neural Operator
+Neural Operator
+Climate Modeling
+PDEs
+Application
+Discretization
+of PDEs
+ Turbulent Flow of Fluids
+Variant
+Pros
+ Molecular Dynamics
+Limitations
+Solving PDEs
+Finite Element
+CNNs
+Methods
+FCNNs
+Traditional Methods
+Current Architectures
+Finite Differential
+Neural-FEM
+Methods
+Conventional Tools
+PINNs
+Time
+to Solve PDEs
+Current ML Tools
+Limitations
+Resolution
+Resolution
+to Solve PDEs
+Learning Instances
+of PDE
+Limitations
+NN Map between
+Finite Spaces3.3. Physics informed neural networks
+PINNs are a neural network architecture that utilize
+the laws of physics to help guide their training. In deep
+learning paradigms, neural networks learn by minimizing
+a convex loss function.
+In machine learning, the loss
+function typically contains the loss (ex: L2-Norm) and
+a regularization term which helps alleviate the risk of
+overfitting.
+With PINNs, the loss function also con-
+tains a knowledge-based term Raissi et al. (2019).
+The
+knowledge-based term allows one to incorporate existing
+physical laws into the training of the neural network.
+This allows for a mapping that allows the neural network
+to be consistent with existing physical laws.
+Since PDEs most frequently define physical laws, PINNs
+can be used to learn the solution to PDEs. The loss func-
+tion in PINN architecture embeds boundary conditions,
+initial conditions, PDE residuals for a finite amount of
+points, and space-time domain boundary Cuomo et al.
+(2022) into the knowledge-based term.
+Upon training,
+PINNs are able to map between an input point in the
+integration domain and the estimated solutions of the dif-
+ferential equation at that point. Unlike other supervised
+learning techniques, PINNs are capable of taking into
+account the underlying physics of the problem instead of
+just using existing data.
+Traditional PINNs have shown limited accuracy in solving
+PDEs, especially on multi-scale dynamic systems.
+A
+variation that is capable of addressing this limitation is
+gradient-enhanced PINNs (gPINNS). Traditional PINNs
+use the knowledge-based term to encode the PDE residual
+into the loss function;
+however, gPINNs also utilize
+the gradient information of the PDE residual in the loss
+function Yu et al. (2022), allowing for much more accurate
+results after training.
+Another typical issue with PINNs when solving nonlinear
+PDEs is when those PDEs have discontinuous solutions.
+Hybrid PINNs utilize ideas from convolutional neural
+networks (CNNs) and FVMs in their architecture. Instead
+of using automatic differentiation to solve the PDE, this
+method utilizes an approximation to the differential
+operator,
+hence allowing the architecture to have a
+convergent rate and avoiding the problem of discontinuity
+Fang (2021).
+4. Neural operator based models
+To address the challenges posed by traditional neural
+network-based architectures in solving PDEs, a new learn-
+ing mechanism called operator learning was proposed by
+Li et al. (2020a). The intuition behind operator learning
+was
+to
+design
+mesh-independent,
+resolution-invariant
+models to solve PDEs.
+This means one could train a
+model on a 40x40 matrix but test it against 256x256 ma-
+trices. The primary difference between a neural network
+and a neural operator is that while a neural network
+learns the mapping between finite-dimensional spaces, a
+neural operator is designed to learn the mapping between
+functional spaces.
+The key characteristic of a neural
+operator is that it attempts to learn the mapping between
+two infinite dimensional spaces using a finite collection
+of input-output pairs.
+The input could be a Gaussian
+field, and the output could be the solution of the PDE
+on the field. An important advantage of neural operators
+is that they are mesh-independent because a single set
+of parameters may be used for different discretizations
+Li et al. (2020a). The training requires only the input-
+output pairs and no knowledge of the PDEs being learned.
+Let G+ be a (potentially non-linear) map from the input
+space A to the solution space U, where A and U are
+separable Banach function spaces and take the values
+Rda and Rdu, i.e., if we draw aj and the corresponding
+solution uj from A and U respectively, then uj = G+(aj).
+The neural operator is a parametric map that aims to
+approximate G+. This approximation is the operator G
+denoted as G: A x Θ −→ U. The learning problem would
+then be an optimization problem where the cost function
+C : U × U → R is an L2 Bochner norm-based distance
+generating function defined on U.
+The problem then
+becomes minθ∈ΘEa[C(Gθ(a), G+(a)], which would be the
+discrepancy in the actual map versus the operator. While
+a neural network learns a map from the input domain
+D to an element in U using samples of input-output
+pairings {xi, u(xi)}n
+i=1, a neural operator learns a map-
+ping between A to U using samples of {ui, ai}n
+i=1 The
+algorithm, as proposed in Li et al. (2020a) is an itera-
+tive approach and is explained in the following subsections.
+4.1. Operator Learning
+As presented in Kovachki et al. (2021), operator learning
+is a 3-step process - lifting, iterative kernel integration,
+and projection.
+The first step involves mapping the in-
+put a to the first hidden state v0 by a pointwise function
+Rda −→ Rdv0 . This is performed by a local operator. dv0 is
+chosen such that it is bigger than da. The second step, or
+the iterative Kernel Integration, is when each hidden rep-
+resentation is mapped to the next hidden representation
+by summing a local linear operator, a non-local integral
+kernel operator, and a bias function. The sum has a fixed
+point-wise non-linearity.
+{vt : Dt −→ Rdvt } −→ {vt+1 :
+Dt+1 −→ Rdvt+1 }, for all t = 1...T − 1. The final projec-
+tion step is when the representation corresponding to the
+final hidden layer, vT , is mapped to the output u. in this
+case, the space dvT is larger than the space du. This oper-
+ation is once again performed by a local operator. These
+sequences of operation are very similar to the functioning
+of a finite-dimensional neural network, and as presented in
+5
+
+Li et al. (2020a), they can be mathematically written as
+follows:
+Gθ = Q◦σT (WT −1+κT −1+bT −1)◦...◦σ1(W0+κ0+b0)◦P
+(2)
+In equation 2, P and Q are the lifting and projecting maps,
+respectively, acting point-wise, projecting to higher and
+lower dimensional spaces. W are the point-wise linear op-
+erations, κ are the kernel integral operations, b are the
+biases, and σ is some non-linear activation function acting
+point-wise.
+5. DeepONet
+Deep operator network (DeepONet) is formulated around
+the observation that a neural operator is a universal
+operator approximator Lu et al. (2019).
+The universal
+approximation theorems for neural operators are derived
+following the key result that a single non-linear layer
+in a neural network is capable of approximating any
+continuous operator Chen & Chen (1995).
+The DeepONet architecture consists of two encoder
+networks. The first encoder is used for encoding the input
+function and the second encoder is used for encoding
+the location of the output functions.
+This architecture
+has been shown to significantly outperform traditional
+fully connected neural network architecture on dynamic
+systems and PDEs. The key strength of this architecture
+lies in its capability of accurately approximating complex
+mappings between infinite dimensional Banach spaces,
+hence making it a natural choice for being utilized in
+learning the solution operator to a PDE.
+While the original DeepONet architecture has shown
+its ability to learn PDEs, its main downside is the high
+amounts of training data required. Oftentimes, generating
+this data can be very computationally expensive, and
+even with large training datasets, DeepONet may fail to
+learn the underlying physical principles of the equation.
+Physics-informed DeepONets are advanced DeepONets
+that utilize these physical principles as a regularization
+mechanism,
+hence leading to predictions that abide
+by the governing physical laws described.
+Automatic
+differentiation is used to integrate these physical laws as
+penalties while the model trains Wang et al. (2021).
+DeepONet and its variants have been used to solve a
+plethora of problems, including material physics Goswami
+et al. (2022), electrodynamics Cai et al. (2021a), and
+aerothermodynamics Sharma Priyadarshini et al. (2021).
+A particularly interesting use of DeepONet comes from
+utilizing this model for medical image simulation, partic-
+ularly for aortic dissection. Aortic dissection is a lethal
+condition which is characterized by the tear of the aorta,
+which is a blood vessel used to deliver oxygen to the rest
+of the body DeSanctis et al. (1987). The DeepONet ar-
+chitecture has been used to predict dissection progression
+in a heterogeneous aortic wall, which is a very complex
+physical environment Yin et al. (2022).
+Since the DeepONet architecture is capable of learning
+the non-linear operator between infinite dimensional
+Banach spaces,
+it is capable of learning oscillatory
+continuous functions. These types of functions are often
+found in earthquake physics.
+An interesting problem
+that DeepONet has been able to solve is how buildings
+respond to seismic excitation over a certain time period.
+The DeepONet architecture utilizes scaling techniques
+that convert a high-frequency function to a low-frequency
+function, which then allows this architecture to learn a
+range of frequencies for the low-frequency function. This
+multi-scale architecture, known as multi-scale DeepONet,
+has allowed scientists to map seismic excitation to build-
+ing responses Liu & Cai (2021).
+6. Graph neural operator
+Graph neural network is a machine learning architecture
+that is built upon the traditional neural network.
+The
+additional information that a graph neural network aims
+to capture are interactions between constituent objects,
+which in the case of the PDE, would be the kernel. Tra-
+ditional neural networks do not capture such relation-
+ships. A graph neural network represents these relation-
+ships as edges between features, which are represented as
+vertices. Learning relationships between these objects oc-
+curs through a process called message passing. This tech-
+nique allows nodes to learn the information held by neigh-
+boring nodes through an aggregating function, which com-
+bines the embeddings (feature vector) of the neighboring
+nodes. An update function learns the new embeddings for
+the nodes. This process is described in equation 3.
+vt+1(x) =
+�
+y∈N(x)
+F(hx, hy, exy)
+(3)
+In the above equation, the new embedding is an aggregate
+function of the current embedding with the embeddings
+of all neighboring nodes and F is an arbitrary function
+of hidden layer embeddings hx, hy and the edge exy.
+Message passing allows the network to learn the kernel,
+which in turn approximates the solution to the PDE.
+Graph neural networks, however, ignore long-range rela-
+tionships because of scaling issues. These approximations
+of relationships are ineffective when trying to solve a
+PDE since they lead to issues with generalization.
+To
+capture long-range relationships, Li et al. (2020c) discuss
+multipole methods.
+They propose an architecture of
+linear complexity called multipole graph neural operator,
+which captures long-range relationships between objects.
+6
+
+Figure 2: Architecture of the basic Fourier neural operator
+The model recursively adds points to the kernel matrix
+and is equivalent to the multi-level formulation.
+The
+long-range relationships are modeled through the addition
+of inducing points, which form sub-graphs.
+6.1. Kernel operator
+Kernel integration is a key component of the iterative
+learning process that occurs in the Graph Neural oper-
+ator. This process helps learn the mapping between func-
+tion spaces in PDEs. The process is described in equation
+18 and is equivalent to message passing in graphs. Every
+spatial point in the discretized input can be represented
+by x-y coordinates. The values at that point can be repre-
+sented as functions a(x) and a(y) from the input function
+space. A kernel operator can be defined to act on these
+data values in the following manner
+(Kau)(x) =
+�
+D
+kφ(a(x), a(y), x, y)u(y)dy
+(4)
+Equation 4 can then be converted to an iterative neural
+network-based architecture in equation 5.
+v(t) = σ((W + Ka)v(t−1))
+(5)
+6.2. Kernel decomposition
+The interactions between the nodes of the graph are di-
+vided based on their range of interaction. The decompo-
+sition of a single kernel into a series of kernels, each rep-
+resenting a different range of interaction, is the feature re-
+sponsible for the linear complexity of the graph neural op-
+erator. The graph is broken down into L levels, where the
+first level represents the shortest level interactions while
+the last level, L, is the coarsest and represents the longest
+range of interactions. The first level is full rank but very
+sparse, but the last level is dense but of low rank. The
+coarse graph is derived recursively from the dense graph
+through the inducing points method or Nystrom approxi-
+mation, which is shown in equation 6.
+Knn ≈ KnmKmmKmn
+(6)
+Nystrom approximation allows the graphs to be unstruc-
+tured and of arbitrary sizes.
+6.3. V cycle Algorithm
+The authors Li et al. (2020c) proposed V-cycle algorithm
+to iteratively and efficiently compute the matrix factoriza-
+tion. The algorithm contains two passes - the downward
+pass, where the algorithm starts with the fine graph and
+updates it by applying a downward transition. In the up-
+ward pass, the algorithm starts with the coarse graph and
+updates it by applying an upward transition.
+The two
+passes are defined in equations 7 and 8, respectively.
+Downward pass
+ˇv(t+1)
+l+1
+= σ(ˆv(t)
+l+1 + Kl+1,lˇv(t+1)
+l
+)
+(7)
+Upward pass
+ˆv(t+1)
+l
+= σ((Wl + Kl,l)ˇv(t+1)
+l
++ Kl,l−1ˆv(t+1)
+l−1 )
+(8)
+The above process facilitates multi-resolution matrix fac-
+torization. This process, combined with Nystrom approx-
+imation, leads to O(m) complexity, which has been proven
+through empirical studies. The kernel integration and the
+V-cycle algorithm allow the GNO to learn mesh invariant
+solutions to parametric PDEs and make it invariant to dif-
+ferent discretizations. However, in problems with regular
+meshes, GNO architectures are outperformed by Fourier
+neural operators.
+7. Fourier neural operator
+Fourier neural operators (FNOs) are another class of
+neural operators that use the properties of the Fourier
+transforms to perform the calculation of the integration
+operation at each layer of the neural operator.
+The
+motivation
+behind
+using
+Fourier
+transforms
+instead
+of convolution is that they are faster, and PDEs are
+inherently continuous, and representing them in Fourier
+space is more efficient.
+Convolution in physical space
+is equivalent to multiplication in Fourier space.
+Linear
+transformations are therefore performed in the Fourier
+space.
+However, activation functions are applied in the
+original space because they help recover non-periodic
+boundaries, which are left by the Fourier space.
+The
+entire pipeline is shown in Figure 2.
+7
+
+S
+FFI
+Linear
+1FFT
+Linear
+Transform
+Transform
+IFFT
+Lift
+Fourier Layer
+Fourier Layer
+Non-
+Non-
+Project
+Linearity
+Linearity7.1. Architecture
+Fourier neural operator utilizes the operator learning tech-
+nique implemented by Li et al. (2020a). It has been applied
+in spatial and temporal settings, such as modeling the flow
+of fluids with time, specifically for weather modeling and
+forecast. As specified in Li et al. (2020a), The iterative
+updates to a state vi to reach the state vi+1 is denoted by
+equation 9.
+vi+1(x) = σ(Wvi(x) + κvi(x))
+(9)
+In the above equation,κ denotes the kernel integral trans-
+formation which is defined in equation 10.
+[κvt](x) =
+�
+D
+κ(y)vt(y)dy
+(10)
+The kernel integral operator is replaced with a convolution
+operator defined in the Fourier space. This becomes the
+basis for the Fourier neural operator. Equations 11 and 12
+define Fourier transform and inverse Fourier transform.
+(Ff)j(k) =
+�
+D
+fj(x)e−2iπ⟨x,k⟩dx
+(11)
+(F−1f)j(x) =
+�
+D
+fj(k)e2iπ⟨x,k⟩dk
+(12)
+The kernel integral operator can be represented as follows
+[κvt](x) = F−1(F(κ)F(vt))(x)
+(13)
+In equation 13, F(κ) is the Fourier transform of a periodic
+function κ and can therefore be approximated as a Fourier
+series.
+By truncating the series at a maximal number
+of modes kmax, the series can be represented with a
+finite-dimensional parameterization.
+8. Variants of Fourier neural operator
+The neural operator has been fine-tuned and modified for
+specific instances and situations. The following section dis-
+cusses the different variations of the basic neural operator
+architecture. Figures 3 and 4 illustrate the flow of various
+neural operators. 5 provides links to the source code for
+various neural operators.
+8.1. GANO and UNO
+Generative adversarial neural operator Rahman et al.
+(2022a) and U-shaped neural operator Rahman et al.
+(2022c) are the operator variants of Generative adver-
+sarial networks and U-Net, which are typically used
+for generative modeling.
+These two architectures allow
+for memory-efficient implementations of deeper neural
+operators. The generator network of GANO and the UNO
+network have similar architecture, comprising an encoder
+network and a decoder network with skip connections.
+However, in this paradigm, the input function spaces are
+mapped to vector-valued function spaces with steadily
+decreasing domains in the encoder network and increasing
+domains in the decoder network.
+GANOs also use a discriminator neural functional, anolo-
+gous to the discriminator network in a GAN, to facilitate
+adversarial learning.
+This discriminator differentiates
+between the generated solutions to the PDE and the
+ground truth PDE solution. This network is optimized for
+Polish function spaces. The adversarial learning is done
+using Wasserstein formulation, which allows for a bounded
+norm in infinite dimensional space. This architecture is
+both resolution and discretization invariant, similar to the
+basic FNO an is good at learning probability measures
+on function spaces. Another advantage of GANOs over
+regular GANs is that they do not suffer from modal
+collapse.
+8.2. Adaptive Fourier neural operator
+AFNO is a powerful sequence-to-sequence generative
+model similar to a Vision Transformer that is built by
+stacking individual operator networks.
+The network
+learns the representations through token mixing in the
+Fourier domain. The model treats tokens as continuous
+objects in infinite space. The network has a block diagonal
+structure, where the weight matrix is divided into weight
+blocks and the kernel operates on them independently.
+This architecture is the basis for FourcastNet Pathak
+et al. (2022), a weather prediction model that has shown
+tremendous promise in forecasting weather, matching
+the accuracy of ECMWF Integrated Forecasting System.
+Weather systems are applications of complex physical
+entities that can be modeled as PDEs.
+Generative
+models such as VFiT and FourCastNet can be used to
+model other complex physical systems such as meteor
+trajectories, volcanoes, predicting the deformations on
+the surface of space vehicles, etc.
+8.3. Implicit Fourier neural operator
+Implicit Fourier neural operator (IFNO) was designed by
+You et al. (2022) address some of the limitations of the
+basic Fourier neural operator network such as it’s ten-
+dency to overfit as the number of layers increases and it’s
+susceptibility to vanishing gradient. IFNO is an integral
+operator based architecture where the operator learning
+is defined to be an implicit mapping, modeled as a fixed
+point. Through this technique, the PDEs can be implicitly
+expressed as a set of equations that can be solved using
+methods such as the Newton-Raphson method, where ap-
+proximations to the solution V are successively improved
+until a precise value is achieved. This process is defined in
+equation 14.
+V[l + 1] = V[l] + R(V[l], F)
+(14)
+8
+
+Figure 3: The logical pipeline of the main neural operator architectures. The above figure highlights the differences in the building blocks of
+the neural architecture
+Figure 4: The logical pipeline of geo-FNO, implicit FNO and mul-
+tivariate FNO, which are all modified versions of the basic neural
+operator architecture
+where V[l] is the current approximation of the solution, R
+is the operator that improves the approximation, and F is
+the input vector. The network update equation is denoted
+in equation 15.
+f(x, ∆t) =f(x, ∆t) + σ(Wf(x, ∆t)
+(15)
++F−1(F(κvt)F(f(.; ∆t)))(x) + b)
+The key difference between this method and the vanilla
+FNO is that, in this case, the parameters of the hidden
+layers are considered independent. The total number of
+trainable parameters does not depend on the number of
+layers.
+As the layer deepens, it becomes the analog of
+discretized ordinary differential equations.
+The weight
+update is simply a time discretization of the ODE.
+You et al. (2022) further showed that this architecture can
+model heterogenity and material defects.
+These claims
+were empirically verified against hyperelastic, brittle and
+anisotropic materials.
+The specific applications where this method showed
+promising results were as follows
+• Porous medium flow in a 2-dimensional setting with
+heterogenous permeability field.
+• Fiber material deformation in hyperelastic and
+anisotropic settings, represented by the Holzapfel-
+Gasser-Odgen (HGO) model. Two boundary condi-
+tions were considered - the Dirichlet boundary with
+uniform uniaxial displacement applied on the right,
+and top edges and the Neumann boundary with uni-
+axial tension applied on the top edge.
+• Fracture mechanisms in brittle glass ceramics, which
+as modeled as the Darcy-Flow equation.
+8.4. Geo Fourier neural operator
+Geo-Fourier neural operator is an architecture developed
+by Li et al. (2022) and is designed to be ’geometry-aware’.
+This architecture addressed the input limitations of
+regular FNO, which is that it only works with rectangular
+domains with uniform meshes. FNOs were made to work
+in irregular domains by embedding them within larger
+rectangular domains, however, this was an inefficient way
+to represent irregularity, and geo-FNO was designed to
+fix this issue. Rather than embedding in a larger regular
+mesh, geo-FNO deforms the non-uniform meshes into
+uniform meshes on which FFT can be applied.
+This
+architecture can be used when the input is represented by
+non-uniform meshes or point clouds or if the input domain
+is represented as signed distance functions. The network
+performs two operations - deforming the non-uniform
+input into a uniform mesh, followed by operator learning
+in latent space. Traditional methods do not work when
+the input is deformed because the deformed mesh in
+Fourier space does not correspond to the original system.
+9
+
+a(x)
+Lantent space
+Lift
+Project
+u(x)
+feature learning
+Fourier Neural Operator (FNO)
+a(x)
+Vt + 1
+Dense
+Dense
+(x)n
+V-cycle
+Kernel convolution
+Graph Neural Operator (GNO)
+L-layers
+Patch and
+Linear
+Channel
+a(x)
+Spatial
+u(x)
+positional
+mixing
+mixing
+decoded
+embedding
+FFT
+Adaptive Fourier Neural Operator (AFNO)Latent
+a(x)
+Deform
+(x)n
+Deform
+Lift
+space
+learning
+Geo-FNO
+Iterative
+a(x)
+u(x)
+Lift
+Project
+fourier layers
+IFNO
+Decomposition
+NN
+Reconstruction
+NN
+Filters
+Filters
+a(x)
+u(x)
+NN
+NN
+Multivariate-FNOHowever, since the FNO approximates through training
+data, it is not constrained by this limitation.
+The deformation from the physical space to the computa-
+tional space is done using an adaptive moving mesh defined
+by a coordinate transformation. Geo-FNO can be used in
+both structural and fluid mechanics problems, and it per-
+forms well on Euler’s Equation for flow over the airfoil and
+the plastic forging problem defined by equation 16.
+ρs ∂2U
+∂t2 + ∇.ς = 0
+(16)
+In the above equation, ρs refers to the mass density, U
+is the displacement and ς is the stress tensor. However,
+geo-FNOs have only been tested on regular homeomorphic
+topologies and more studies are needed to exhaustively
+determine the range of problems that can be solved by
+this architecture.
+8.5. Multiwavelet neural operator
+The motivation for this architecture stems from the fact
+that the solution to any PDE can be found by learning
+the inverse operator mapping from input to output.
+To do this, the authors of Gupta et al. (2021) suggest
+decomposing the kernel using fine wavelets. Embedding
+the inverse wavelet filters allows for projecting the kernel
+into multiwavelet polynomial bases.
+Repeated multi-
+wavelet transform aids in learning complex dependencies
+and resolution-independent solutions.
+The purpose of
+this architecture is to achieve compact representations
+of the operator and to exploit orthogonality properties
+& vanishing moments to capture complex information
+about physical systems and data streams.
+The model
+maps the multiwavelet transform of the input to the
+output at a very fine scale and has two components - the
+decomposition network and the reconstruction network.
+The network computes multiwavelet coefficients of the
+output at a coarse level using four neural networks.
+The reconstruction network uses the output of the four
+networks to compute the multiwavelet coefficients of the
+output at a finer level. This has a recurrent structure, and
+it continues until the finest level is achieved. This model
+was empirically shown to perform well on the 2D-Navier
+Stokes equation, where the wavelet transform was applied
+to velocity. It has also shown promise in generating finer
+resolution outputs when trained on low-resolution data.
+However, it cannot generalize to high frequency signals
+from low frequency ones.
+8.6. Spectral neural operator
+Spectral neural operator (SNO) is a recently proposed
+neural architecture that has been designed to address
+opaque outputs and aliasing errors which can be poten-
+tially observed in vanilla FNOs due to parameterization
+of the output function Fanaskov & Oseledets (2022). This
+model is designed to not suffer from aliasing errors and
+perform lossless operations on functions.
+Typically, when FNOs are applied on inputs with coarser
+grids,
+then,
+the
+activation
+functions
+mitigate
+these
+aliasing errors. However, when the grid is refined, these
+errors disappear but FNOs would try to mitigate them
+further, causing outputs to deviate from the ground truth,
+resulting in errors in the final solution.
+To elaborate further, any function when represented using
+Fourier Series with k < |N| terms, can be structured on a
+uniform grid of 2N + 1 points. However, when activation
+function is applied, the output will have higher frequency
+points and this means, the grid will need to have more
+than 2N + 1 points. However, while training, the FNO
+will learn to fix these errors in representing higher
+harmonics. In situations where the higher harmonics also
+fit the grid with 2N + 1 points, the bias of the FNO
+induced during the training will cause it to try to fit the
+non-existent high harmonics.
+To fix this issue, Spectral neural operator is defined with
+a fixed number of harmonics. It also decouples the inter-
+polation process from the function mapping process. The
+mapping is proposed in equation 17.
+�
+i
+gi(x)di =
+�
+i
+gi(x)bi
+(17)
+In the above equation, gi(x) are either complex exponen-
+tial or Chebyshev polynomial. di and bi can be stacked
+finite-dimensional vectors.
+Spectral neural operator
+performs the above mapping and, importantly, preserves
+the structure of the series. To perform this mapping on
+finer grids, Chebyshev or Trigonometric interpolation
+should be used.
+SNO has been shown to outperform vanilla FNO on in-
+tegration, differentiation, parametric ODE, elliptic equa-
+tion, KdV equation and non-linear Schrodinger equation.
+However, it does not perform as well on Burger’s equation
+with low viscosity. The limitations of this version of SNO
+are that it is subject to Gibb’s phenomenon and can only
+work on smooth input and output data. Basis functions
+used for SNO are non-adaptive.
+9. Physics Informed neural operator
+In this section, we will discuss a hybrid neural operator ar-
+chitecture called physics informed neural operator (PINO),
+which learns the mapping between function spaces through
+data-driven training while being subjected to physics con-
+straints.
+This architecture is not to be confused with
+physics informed neural network (PINN), which learns
+the solution function as opposed to the solution operator.
+10
+
+PINO was designed to address the following key limita-
+tions of existing approaches Li et al. (2021b)
+• Data-driven methods perform poorly if the training
+data is noisy or insufficient
+• Physics-based approaches require a lot of compu-
+tation power and may not optimize when the con-
+straints are more complex.
+Due to the fact that PINO learns the solution operator as
+opposed to just the solution to a particular instance of the
+PDE, this architecture is resolution invariant. This means
+that even when the operator is trained on low-resolution
+or coarse data, it accurately manages to predict the
+solution to high-resolution test instances.
+Furthermore,
+low-resolution data can be combined with high-resolution
+PDE constraints without any degradation in accuracy. It
+has been empirically shown Li et al. (2021b) that PINO
+has better generalization capabilities than regular FNO
+and requires far less training data.
+PINO architecture comprises of a sequence of linear
+integral operators followed by non-linearity, which allows
+the operator to learn non-linear continuous operators.
+Operator learning, however, is done with two loss func-
+tions - a data-based loss function, similar to the ones
+used by other neural operators, and a physics-based loss
+function, used by PINN-based architectures.
+The data-based loss function is given by equation 18.
+Ldata = ||u − Gθ(a)||2 =
+�
+D
+(u(x) − Gθ(a)(x))2dx
+(18)
+In the above equation, u denotes the actual solution,
+Gθ represents the operator and Gθ(a) represents the
+predicted solution.
+The physics-based loss function is defined on both station-
+ary and dynamic systems. A simple stationary system may
+be defined with bounded domain D as follows.
+P(u, a) = 0
+in D ⊂ Rd
+(19)
+u = g
+in ∂D
+The physics-based loss function for the stationary system
+presented in equation 19 is defined as follows.
+Lpde = ||P(a, uθ)||2
+L2(D) + α||uθ|∂D − g||2
+L2(D)
+(20)
+In equation 20, P is a partial differential operator.
+a
+is the instance and u is the solution.
+uθ is the neural
+network parameterized by θ.
+Let a dynamic system be defined as follows
+du
+dt = R(u) in D × (0, ∞)
+(21)
+u = g in ∂D × (0, ∞)
+u = a in
+¯D × 0
+In equation 21, a = u(0) is the initial condition, R is the
+non-linear partial differential operator defined on Banach
+spaces. The Loss on this system is calculated in equation
+22.
+Lpde(a, uθ) = ||duθ
+dt − R(uθ)||2
+L2(T ;D) +
+(22)
+α||uθ|∂D − g||2
+L2(T ;∂D) + β||uθ|t=0 − a||2
+L2(D)
+The above losses allow PINO to be constrained by physics
+while also being trained with data. Furthermore, instance-
+wise fine-tuning is done after training by using an operator
+loss. To compute the exact derivatives for the loss func-
+tions, point-wise differentiation approaches are used.
+PINO architecture, when fine-tuned, has shown promise in
+learning specific equations such as Long Temporal Tran-
+sient Flow, Chaotic Kolmogorov Flow, Transfer Reynolds
+Numbers and Lid Cavity Flows. However, it has yet to be
+tested on different kinds of geometry and it remains to be
+seen whether it can function well on irregular geometry.
+10. Applications in physics problems
+In this section, we discuss various applications of neural
+operators in material physics problems.
+Table 4 sum-
+marizes the advantages, limitations and applications of
+various neural operator architectures. Figure 11 highlights
+the key applications where neural operators have been
+successful in outperforming the conventional methods.
+10.1. Solving partial differential equations
+We shall first discuss the key PDEs for which neural
+operator architectures have been designed. A large part of
+this subsection is devoted to exploring the Navier-Stokes
+family of equations due to their broad range of applica-
+tions, which will be described in the following sections.
+Figure 5 depicts the relative errors of various machine
+learning models in learning these PDEs.
+The Navier-Stokes family of equations were developed to
+model the behavior of viscous fluids. They represent the
+conservation of mass and momentum of Newtonian Fluids.
+The 2D Navier Stokes equation is described in equation 23.
+∂w(x, t)
+∂t
++u(x, t).∇w(x, t) − ν∆w(x, t) = f(x)
+(23)
+∇.u(x, t) =0,
+x ∈ (0, 1)2, t ∈ [0, T]
+w0(x) =w(x, t = 0),
+x ∈ (0, 1)2
+In the above equations, w represents the vorticity. The
+neural operator learns to map the vorticity up to time T
+to vorticity at a time t>T. These equations are derived
+from Newton’s second law to fluid mechanics, under
+the assumption that stress is dependent on viscosity
+and pressure.
+Navier Stokes Equations have various
+applications beyond modeling the flow of a liquid through
+11
+
+Figure 5:
+The figure highlights the performance of neural operator-based architecture against neural network-based architectures.
+(a)
+represents how the relative error decreases with the number of Epochs on the Navier-Stokes Equation. It can be seen that FNO outperforms
+other architectures. (b) represents how the relative error varies with resolution on Burgers’ Equation. FNO has a significantly lower error
+than Multipole Graph neural operator (MGNO), Graph neural operator (GNO), Low-Rank neural operator (LNO), etc. (c) shows that FNO
+outperforms all other models on Darcy Flow Equation. Image taken from Kovachki et al. (2021)
+a pipe. They are also useful in aerodynamics by modeling
+the flow of air around a wing, and they can even be
+used to model weather Pathak et al. (2022). One of its
+derivatives, the Burgers equation, is particularly useful
+for modeling the one-dimensional flow of fluids as well as
+wave propagation and even vehicular traffic movement
+Musha & Higuchi (1978); Taigbenu (1999).
+Another derivative of Navier Stokes, known as Darcy
+Flow, is useful for modeling the flow of fluids through a
+porous medium.
+Because of the wide range of physical
+phenomena that can be modeled by these three equations,
+methods of solving them are critical for several academic
+and commercial applications. However, these equations,
+which take the form of non-linear PDEs, are expensive to
+solve numerically.
+In the following subsections, we will discuss the em-
+pirical results of neural operators on these families of
+PDEs.
+The following two sections describe the Poisson
+equation and Darcy flow, which belong to the class of
+equations described in (??) and the FNO approximates
+the maps G+ : f → a and G+ : u → a respectively.
+The remaining sections deal with evolution equations
+where a = u0 = u(., 0) are the initial conditions and
+u(., t), the evolved states at a fixed time t, are the
+solution function.
+The operator approximates a map
+G+ : a = u(., 0) → u = u(., t) for some t. The datasets, ie.
+{fi, ui}n
+i=1 or {ai, ui}n
+i=1 as discussed earlier are generated
+using appropriate numerical solvers.
+10.1.1. Burgers equation
+The Burgers equation is a non-linear PDE, which is rep-
+resented in equation 24.
+∂tu(x, t) + ∂x(u2(x, t)/2) =ν∂2
+xu(x, t) x ∈ (0, 1), t ∈ (0, 1]
+(24)
+u(x, 0) =u0(x) x ∈ (0, 1)
+with periodic boundary conditions where the initial
+condition a = u0 ∈ L2
+per((0, 1); R) is an element in
+the class of Bochner measurable functions whose norms
+∥f∥(0,1);R lie in the standard L2 space and ν ∈ R+ is
+the viscosity coefficient.
+We aim to learn the operator
+mapping the initial condition to the solution at time
+t = 1, G+ : L2
+per((0, 1); R)×R+ → Hr
+per((0, 1); R) defined
+by u0 → u(., 1) for any r > 0.
+Li et al. (2020a) showed that FNO architectures out-
+performed other architectures (Traditional CNN based
+architectures, autoencoder, Graph neural networks) and
+provided the following loss measures against the Burgers
+Equation, as shown in table 1.
+Model
+s=256
+s=512
+s=1024
+s=2048
+FNO
+0.0149
+0.0158
+0.0160
+0.0146
+MGNO
+0.0243
+0.0355
+0.0374
+0.0360
+GNO
+0.0555
+0.0594
+0.0651
+0.0663
+DeepONet
+0.0569
+0.0617
+0.0685
+0.0702
+Table 1
+Performance of different neural operators against Burgers Equation.
+The data has been taken from Kovachki et al. (2021)
+10.1.2. Darcy Flow equation
+Li et al. (2020a) trained a Fourier neural operator to learn
+the solution operator to the steady state 2D Darcy Flow
+12
+
+FNO-3D
+100
+100
+FNO-2D
+ResNet
+U-Net
+IINN
+TNN
+Relative error
+TF-Net
++GCN
++RBM
+10-1
+-FCN
+10-1
++FCN
+PCANN
++PCANN
++DeepONet
++DeepoNet
+GNO
+TGNO
+TLNO
++LNO
+10~2
+-MGNO
++MGNO
+TFNO
++FNO
+10-2 d
+10-2
+10~3
+85
+141
+211
+421
+0
+100
+200
+300
+400
+500
+256
+512
+1024
+2048
+4096
+8192
+Epochs
+resolution
+resolution
+(a) Navier-Stokes Equation
+(b) Burgers' Equation
+(c) Darcy Flow EquationEquation, shown in equation 25, with a Dirichlet boundary
+a ∈ L∞((0, 1)2; R+), where a is the diffusion coefficient
+and f ∈ L2((0, 1)2; R) is the forcing function.
+−∇.(a(x)∇u(x)) = f(x)
+(25)
+Table 2 highlights the performance of various neural oper-
+ator architectures against the Darcy Flow equation.
+Model
+s=85
+s=128
+s=141
+s=211
+s=256
+s=421
+FNO
+0.0108
+0.0111
+0.0109
+0.0109
+0.0107
+0.0098
+MGNO
+0.0416
+0.0547
+0.0428
+0.0428
+0.0542
+0.0420
+GNO
+0.0346
+-
+0.0332
+0.0342
+-
+0.0369
+DeepONet
+0.0476
+-
+0.0479
+0.0462
+-
+0.0487
+UNO
+0.0075
+-
+0.0072
+0.0070
+-
+0.0068
+MWT
+-
+0.0074
+-
+-
+0.0072
+-
+Table 2
+Performance of different neural operator-based architectures against
+Darcy Flow Equation. It can be seen that UNO outperforms other
+models, with Multiwavelet models (MWT) having similar perfor-
+mance values as UNO. The values represent the relative L2 error.
+The data has been taken from Kovachki et al. (2021), Gupta et al.
+(2021) and Rahman et al. (2022c)
+10.1.3. Navier Stokes equation
+The Navier-Stokes equation is defined as follows.
+∂tw(x, t) + u(x, t).∇w(x, t) = ν∆w(x, t) + f(x)
+(26)
+In equation 26, u ∈ C([0, T ]; Hr
+per((0, 1)2; R2)) for any
+r > 0 is the velocity field, w = ∇ × u is the vorticity,
+w ∈ Lper((0, 1)2; R) is the initial vorticity, ν ∈ R+ is
+the viscosity coefficient, and f ∈ L2
+per((0, 1)2; R) is the
+forcing function.
+Li et al. (2020a) aims to map the vorticity at a given time
+T to vorticity at a later time in the future. They argue
+that vorticity is more challenging to model than velocity.
+Table 3 contrasts the performance of FNO and UNO on
+the 2D and 3D variants of the Navier Stokes equation.
+Model
+ν=1e-3;
+ν=1e-4;
+ν=1e-5;
+T=50
+T=30
+T=20
+FNO-3d
+0.0086
+0.1918
+0.1893
+FNO-2d
+0.0128
+0.1559
+0.1556
+UNO-3d
+0.0080
+0.0830
+0.1120
+UNO-2d
+0.0050
+0.0590
+0.0700
+Table 3
+Performance of FNO and UNO architectures against Navier Stokes
+Equation at fixed N = 1000. It can be observed that UNO outper-
+forms FNO. The values represent the relative L2 error. The data has
+been taken from Rahman et al. (2022c) Kovachki et al. (2021)
+10.1.4. Flow equations
+In their work Wen et al. (2022) explore the possibility of
+applying FNOs to solve multiphase flow equation, specif-
+ically with CO2 and Water, given by the following equa-
+tions 27 and 28.
+∂(ϕΣpSpρpXCO2
+p
+)
+∂t
+= −∇.[ΦCO2|adv + ΦCO2|dif] + qCO2
+(27)
+∂(ϕΣpSpρpXwater
+p
+)
+∂t
+= −∇.[F water|adv+F water|dif]+qwater
+(28)
+ϕ is the porosity, Sp is the saturation of phase p, and Xη
+p
+is the mass fraction of component η (water or CO2)in
+phase p. For both components, the advective mass flux
+F η|adv is obtained by summing over phases p. To solve
+this type of PDE, two types of variables are sampled -
+scalars and fields. Field variables are horizontal & vertical
+permeability, porosity, and injection perforation.
+The
+domain of this problem is defined to be a bounded and
+open set and a modified version of FNO called U-FNO is
+proposed to solve this problem.
+The primary difference between a regular Fourier layer
+and a U-Fourier Layer is that the U-Fourier layer also
+includes a U-Net embedded within it to enhance the rep-
+resentation power of the layer through local convolutions.
+However, since it is a CNN architecture, it is less flexible
+than an Operator.
+10.1.5. Photoacoustic equation
+2D Photoacoustic equation is another PDE that can be
+solved using neural operators, as shown by Guan et al.
+(2021). A slight modification is made to the way the input
+is fed to the neural network.
+The training data is not
+normalized beforehand (a term that refers to centering
+the data w.r.t its moments) with Gaussian normalization
+prior to training.
+They show that both FNO-2D and
+FNO-3D can be used to solve this equation. The former
+performs 2d convolutions in space for a fixed interval of
+time, which is then recurrently propagated in time to solve
+the next interval. In the case of 3D FNO, the network
+performs 3D convolutions in space-time. They argue that
+while both can be applied, the FNO-3D performs better
+than its 2D counterpart.
+The photoacoustic pressure wave that Guan et al. (2021)
+used as the basis for their experiments was defined in equa-
+tion 29.
+(∂tt − c2
+0∆)p(r, t) = 0, p(r, t = 0) = x, ∂tp(r, t = 0) = 0
+(29)
+Here p(r, t) is the photoacoustic pressure wave at position
+r and time t. c is the speed of sound.
+10.2. Weather modelling
+Pathak et al. (2022) discuss an FNO-based architecture -
+FourcastNet, which aims to model weather data at a res-
+13
+
+olution of 0.25◦, which is approximately equal to the area
+of 900Km2 near the equator.
+At such high resolutions,
+the predictions of their model can be compared with
+those of the Integrated Forecasting System (IFS). The
+key advantage of FourCastNet is that it is 45,000 times
+faster than NWP models on a node-hour basis, making
+it efficient for the generation of large ensemble forecasts.
+The model can be used to generate forecasts of massive
+weather phenomena such as Tornadoes, hurricanes, and
+extreme precipitations.
+Once trained, it consumes less
+power than IFS to generate forecasts. Some of the other
+advantages of the FourCastNet, as mentioned by Pathak
+et al. (2022), are 1.
+It has eight times the resolution
+of typical DL-based weather modeling systems.
+2.
+It
+predicts lead times of up to a week with exceptional lev-
+els of accuracy. 3. It is rapid and inexpensive once trained.
+10.3. High resolution simulation of SARS-COV-2 replica-
+tion transcription complex dynamics
+The replication of the SARS-COV-2 virus is done primar-
+ily by a multi-domain protein.
+Conventional tools such
+as all-atom molecular dynamics (AAMD) have shown to
+be limited in representing the molecular dynamics in high
+resolution and timescale.
+Trifan et al. (2021) propose
+a graph neural operator based model to simulate the
+molecular dynamics from the AAMD data.
+The model
+was used to learn time-dependent conformational changes
+within the molecules. The GNO model was able to predict
+protein backbone conformation up to 5ps.
+10.4. Thermochemical curing of composites
+Figure 6: The figure represents the degree of cure predicted by the
+FEM method vs. the same done by FNO. The figure has been taken
+from Chen et al. (2021)
+The composite curing process is strongly dependent on the
+temperature gradient, which influences the strength and
+mechanical properties of the resulting material. Chen et al.
+(2021) propose a residual FNO architecture that learns the
+mapping between the curing cycle and the temperature
+history. The model leverages the time resolution invari-
+ance property of neural operators and learns with smaller
+training datasets. The general heat transfer equation that
+the model learns is as follows
+Figure 7: These graphs represent the degree of cure predicted by
+FNO and FEM methods at x = 35mm and 21mm. It can be observed
+that the two curves almost entirely overlap for the whole duration.
+The maximum prediction errors were within 0.02. This figure has
+been taken from Chen et al. (2021)
+ρC ∂T
+∂t = ∂
+∂x(λx
+∂T
+∂x )+ ∂
+∂y (λy
+∂T
+∂y )+ ∂
+∂z (λz
+∂T
+∂z )+Q (30)
+In equation 30, T is the temperature, ρ and C are density
+and specific heat capacity, respectively, λ is the directional
+thermal conductivity, and Q is the internal heat source.
+The boundary conditions used for this problem were
+Dirichlet boundaries, Neumann boundaries, and Robin
+boundaries. The architecture comprises K Fourier Layers,
+similar to a ResNet neural network.
+The cure period
+is discretized into finite intervals and each cure cycle is
+sampled as a vector from the space of n discrete cycles.
+A key advantage of residual FNO is that it leverages the
+domain knowledge to train the model using less training
+data. Rather than learning the mapping over the entire
+hypothesis space, it learns the mapping with respect to
+the specific input. For instance, if Ta is the cure cycle and
+Gθ(Ta) is the learned temperature history, the network
+learns the difference Gθ(Ta) − Ta, restricting the size of
+the hypothesis space.
+The authors empirically showed that this is an efficient
+way to model the curing process due to the limited
+number of Fourier modes. Using domain knowledge, the
+14
+
+(a) Degree of cure simulated by FEM
+50
+0.8
+40
+0.6
+(ww)c
+0.4
+30
+0.2
+20
+0
+100
+200
+300
+400
+500
+(c) Degree of cure predicted by FNO
+50
+0.8
+40
+0.6
+(ww)c
+0.4
+30
+0.2
+20
+0
+100
+200
+300
+400
+500
+Time (min)(b) Degree of cure at = 35mm
+1.0
+αFNO
+Degree of cure
+0.8
+α simulated
+0.6
+0.4
+0.2
+0.0
+0
+50
+100
+150
+200
+(d) Degree of cure at α = 2lmm
+1.0
+α FNO
+Degree of cure
+0.8
+aα simulated
+0.6
+0.4
+0.2
+0.0
+0
+50
+100
+150
+200
+Time (min)model was able to generate more accurate results. Figure
+6 visually represents the differences between the degree
+of cure predicted by the finite element method and by
+the neural operator method. Figure 7 is the plot of the
+trends in predicting the degree of cure with time by the
+two methods.
+10.5. Coastal flood Modelling
+Jiang et al. (2021) developed a digital twin of the earth’s
+coastlines using FNO to predict sea surface levels on
+coastlines.
+They extended the basic FNO to learn
+multivariate dynamics.
+They built surrogate models of
+NEMO (Nucleus for European Modelling of the Ocean)
+and used these models to train the FNO to predict sea
+surface height. Their empirical evaluations showed that
+FNO-based models are approximately 45 times faster
+than systems such as NEMO and are better suited for
+real-time predictions of coastal flooding.
+10.6. Continuous spatio-temporal dynamics
+Stochastic PDEs are used to model various physical sys-
+tems under the influence of randomness. Finite difference
+and spectral Galerkin methods require high computation
+power and high-resolution meshes. SPDEs can be defined
+by the following equation
+dut = (Lut + F(ut))dt + G(ut)dWt
+(31)
+In equation 31, Wt represents a Weiner process, F and G
+are continuous operators and L is the linear differential
+operator. From the operator perspective, W is the contin-
+uous embedding of the spatio-temporal data stream. To
+solve the system, u(t), with the initial condition, is pro-
+jected into the latent space and the ODE solver solves it in
+the latent space, and the solution is mapped back into the
+original space. Salvi et al. (2021) have proposed a neural
+operator to solve the following equations
+• Stochastic Ginzburg-Landau equation
+∂tu − ∆u = 3u − u3 + ξ
+(32)
+u(t, 0) = u(t, 1)
+u(0, x) = u0(x), (t, x) ∈ [0, T] × [0, 1]
+Where the operator learns the solution along the
+noise path ξ.
+• Stochastic Korteweg-De Vries equation
+∂tu + 0.1∂3
+xu = 6u∂xu + ξ
+(33)
+u(t, 0) = u(t, 1)
+u(0, x) = u0(x), (t, x) ∈ [0, T] × [0, 1]
+This equation describes the propagation of non-
+linear waves on the surface of fluids under ran-
+dom perturbations. The equation becomes stochas-
+tic when the noise is defined to be the partial sum
+approximation of a Q-Weiner Process.
+Figure 8: This figure shows the simulation of Kolmogorov flow by
+the Markov neural operator (MNO) with an initial condition gener-
+ated from a random Gaussian field. The model captures the energy
+spectrum that converges to the cascade rate of k−5/3. Image taken
+courtesy of Li et al. (2022)
+• Stochastic Navier Stokes equation in 2D
+∂tu − ν∆w = −u.∇w + f + 0.05ξ
+(34)
+This equation describes the incompressible flow of
+fluids under force. w refers to the vorticity and ν
+is the viscosity coefficient. The noise is set to a Q-
+Weiner process.
+10.7. Disspative dynamics in chaotic systems
+Chaotic systems tend to be unpredictable because they are
+susceptible to minor perturbations Li et al. (2021a). How-
+ever, their long-term trajectories depend on an invariant
+measure called the global attractor. This problem has been
+previously approached using recurrent neural networks but
+has only worked for very short trajectories. The dissipa-
+tivity and Markovian properties of these systems can be
+modeled using neural operator because they exhibit in-
+variance. Dissipativity can be described as a compact set
+into which all other bounded sets evolve over time. The
+solution operator maps these initial conditions into the so-
+lution set.
+To train the neural operator, dissipativity is imposed on
+the mesh by augmenting data on the outer shell.
+The
+authors consider finite-dimensional Lorenz-63 system,
+infinite-dimensional
+Kuramoto-Sivashinsky
+equations,
+and Kolmogorov flows. For their work, the authors limit
+themselves to ergodic systems, and the model does not
+make predictions outside the trained distribution.
+The
+operator learns the mapping in single time steps so that
+15
+
+vorticity,t=40
+vorticity,t=80
+0.9
+0.8
+0.7
+0.7
+0.6
+0.6
+0.5
+0.5
+0.4
+0.4
+0.3
+0.3
+0.2
+0.2
+0.1
+0.
+0.1
+0.2
+0.3
+0.4
+0.5
+0.6
+0.7
+0.8
+0.9
+0.1
+0.2
+0.6
+0.7
+0.8
+0.9
+averagedovert=[0.40]
+averagedovert=[o,80]
+1010
+1010
+108
+108
+106
+106
+104
+104.
+102
+prediction
+102
+prediction
+ground truth
+ground truth
+k^-5/3scaling
+k-5/3 scaling
+100
+100
+100
+101
+102
+100
+101
+102
+wavenumber
+wavenumberModel
+Advantages
+Limitations
+Applications
+Fourier neural operator
+Faster
+Resolution invariant
+discretization invariant
+Data driven
+Doesn’t need to know the underlying PDE
+Zero shot Super resolution Li et al. (2020a)
+Parameterization may lead to opaque outputs
+and aliasing errors Fanaskov & Oseledets (2022)
+Only works on rectangular domains with uniform
+meshes Li et al. (2022)
+Overfits with deeper networks
+Susceptible to Vanishing Gradient Rahman et al. (2022a)
+Constrained by availability of training data. Li et al. (2021b)
+Burger’s Equation
+Darcy Flow Equation
+Navier Stokes Equation Li et al. (2020a)
+Coastal Flood modelling Jiang et al. (2021)
+Photoacoustic Equation Guan et al. (2021)
+Chaotic systems Li et al. (2021a)
+Seismic wave progressions Yang et al. (2021)
+GANO/UNO
+Memory efficient implementations of
+deeper networks
+Optimized for Polish and Banach spaces
+Works well for bounded norms in infinite spaces
+Good at learning probability measures
+Don’t suffer from modal collapse Rahman et al. (2022a)
+Only works on rectangular domains with uniform
+meshes Li et al. (2022)
+Parameterization may lead to opaque outputs and
+aliasing errors. Fanaskov & Oseledets (2022)
+Volcanic deformations Rahman et al. (2022a)
+Video Interpolation Viswanath et al. (2022)
+Dyadic Human motion prediction Rahman et al. (2022b)
+DeepONet
+Accurately approximate mappings
+between infinite dimensional banach
+spaces
+Learns oscillatory continuous functions
+Can learn the mapping from high frequency
+functions to low frequency functions Lu et al. (2019)
+Requires high amount of training data
+May fail to learn underlying physical
+principles
+Material Physics Goswami et al. (2022)
+Electrodynamics Cai et al. (2021a)
+Aerothermodynamics Sharma Priyadarshini et al. (2021)
+Medical imaging DeSanctis et al. (1987)
+Effects of seismic waves on buildings Liu & Cai (2021)
+Graph neural operator
+Learns long range dependencies in graph like data
+Linear time complexity
+Discretization invariant
+Can learn Mesh invariant solutions Li et al. (2020c)
+Outperformed by Fourier neural operator on all PDEs
+with regular meshes. Li et al. (2020a)
+Burgers Equation
+Darcy Flow Equation Li et al. (2020c)
+Protein dynamics in SARS-COV-2
+virus Trifan et al. (2021)
+PINO
+Doesn’t suffer from generalization
+errors that other operators suffer from
+Overcomes the limitations of purely physics based
+and purely data driven approaches.
+Incorporate constraints at different resolutions -
+combine coarse resolution data and high resolution
+data. Li et al. (2021b)
+Has not been tested rigorously on High dimensional
+PDEs Li et al. (2021b)
+Long Temporal Transient Flow
+Kolmogorov Flows
+Wave Equation
+Non-Linear Shallow Water Equation Li et al. (2021b)
+Adaptive FNO
+Powerful generative model Pathak et al. (2022)
+Efficient Token Mixer
+Adaptive Weight sharing among tokens
+Quasi-Linear Time Complexity
+highly parallelized
+Outperforms self-attention mechanisms Guibas et al. (2021)
+Can be modified through wavelet transforms
+to better capture locality Guibas et al. (2021)
+Climate Modelling
+Weather forecast
+Hurricane prediction Pathak et al. (2022)
+Generative imaging Guibas et al. (2021)
+geo-FNO
+geometry Aware
+Input can be irregular meshes, point clouds
+As fast as FNO but more efficient and accurate Li et al. (2022)
+Only been tested on regular homeomorphic topologies
+Can be potentially expanded into PINOs but hasn’t been
+empirically verified. Li et al. (2022)
+Structural and Fluid Mechanics
+Problems
+Euler’s equation for Airfoil flow Li et al. (2022)
+Implicit FNO
+Doesn’t suffer from Vanishing Gradient
+Less prone to overfitting
+Hidden Layer parameters are independent
+Has the ability to learn material responses directly
+from DIC displacement tracking measurements. You et al. (2022)
+Has long training times despite having fewer parameters
+due to the iterative algorithm used for learning. You et al. (2022)
+Model Heterogenity and
+Material Defects in anisotropic
+and hyperelastic setting
+Porous Medium Flow
+Fracture mechanisms You et al. (2022)
+Multiwavelet FNO
+Compact Representation of data
+Resolution-independent solutions
+Learn complex dependencies Gupta et al. (2021)
+Performance degrades if the Kernel
+used for data generation is changed.
+Cannot generalize to high frequency
+signals from low frequency ones Gupta et al. (2021)
+Burgers Equation (1D)
+Navier-Stokes Equation (2D)
+Darcy Flow Equation (2D)
+Korteweg-de Vries Equation (1D) Gupta et al. (2021)
+Spectral FNO
+Doesn’t suffer from aliasing errors
+Lossless operations on Functions
+Preserves the structure of the functions Fanaskov & Oseledets (2022)
+Doesn’t perform well on Burger’s Equations
+Suffers from Gibbs Phenomenon
+Only works on smooth input/output
+Basis functions used are non-adaptive Fanaskov & Oseledets (2022)
+Basic Integration, Differentiation
+Parametric ODEs
+Elliptic Equations
+KdV Equation
+Non-Linear Schrodinger Equation
+Fanaskov & Oseledets (2022)
+Table 4
+The table highlights the key advantages and limitations of the most recent operator-based neural architectures for solving PDE and other
+physics problems
+the input would be the system at time step t, and the op-
+erator maps it to the system at time step t+1. Long-term
+predictions are made with repeated composition. Figure
+8 highlights the simulation of Kolmogorov flow in a 40
+second span from an initial Gaussian Random Field.
+10.8. Seismic Wave propagation
+Earthquakes and seismic activities are described by
+various forms of wave equations. However, solving these
+equations can be computationally expensive. Yang et al.
+(2021) discuss neural operators as a way to overcome
+the computation constraints by training the networks
+on an ensemble of wave equation data represented as
+low-resolution matrices. The neural operator is trained to
+learn the 2D acoustic wave equation, defined as the map-
+ping from velocity, defined on an irregular mesh, to the
+wavefield solution. The network is also used to perform
+waveform inversions through reverse mode automatic
+differentiation. Figure 9 illustrates the difference between
+the inverted waveforms obtained through SEM and neural
+operator based methods.
+10.9. Inelastic impact problems
+The training data for the operator is generated as random
+fields with the von Karman covariance function.
+The
+solution is obtained using the Spectral-Element method
+by applying the Ricker Wavelet source.
+An added
+advantage of a neural operator is that its ability to
+perform automatic differentiation, which is equivalent
+to the adjoint state method, allows for full waveform
+inversion without having to compute the adjoint wavefield.
+In their work, Liu et al. (2022) design neural operators
+to learn the inelastic deformation of polycrystalline solids,
+where polycrystalline refers to materials composed of dis-
+joint grains, where each grain is made of the same material
+but exhibits different orientations based on the reference
+viewpoint. Plastic deformations occur through the mech-
+anisms of slip and twinning. The problem is defined by
+the kinetic relation between crystallographic orientation,
+inelastic deformation gradient, slip activity, and twin vol-
+ume fractions. The study is motivated by the fact that
+fine-scale behavior influences the behavior on a coarser
+scale. The authors propose two models to learn this re-
+16
+
+Figure 9:
+The figure compares the waveform inversion obtained
+through FNO vs the same obtained through SEM and adjoint to-
+mography. The waveforms on the left (a) and (c) represent the true
+velocity and the source locations are denoted by the red circles. The
+relative misfit between true and inverted velocity in case of SEM
+is 0.028 while for FNO it is 0.0319. Image taken from Yang et al.
+(2021)
+Figure 10: This Figure illustrates the 3D deformation experienced by
+a plate due to projectile impact. Each figure denotes the deformation
+in a 25 micro-second interval.
+Each subfigue represents the axial
+cross-section with Von Mises stress measure. Figure taken courtesey
+of Liu et al. (2022)
+lation.
+• 2DFFT This model represents the problem in 2 di-
+mensions with two slip systems and no twinning.
+The problem is solved using Fast Fourier Transform.
+The input to the network is the deformation history.
+The operator uses this information to approximate
+Cauchy stress.
+• 3D Taylor This is the 3-dimensional setting to study
+the behavior of materials such as magnesium.
+To
+solve this system, Taylor averaging assumption is
+used to assume that the deformation gradient is uni-
+form on the unit cell.
+Figure 10 portrays how the neural operator simulates pro-
+jectile impact on a plate. It shows the axial cross section
+of the plate subjected to impact.
+10.10. Forecasting subcritical cylinder Wakes
+In their work, Renn et al. (2023) propose using Fourier
+neural operators to temporally forecast velocity fields to
+study the Karman vortex street phenomenon. They use
+this approach to determine how physical fluid flows evolve
+with time. The neural operator is trained on flow data
+obtained through particle image velocimetry and predicts
+ten-time steps.
+They show that the model predicts the
+velocity fields over the entire range of Reynolds numbers.
+While the model achieves low errors in predicting, it fails
+to learn unsteady turbulent dynamics.
+This could be
+because of the insufficient spatial resolution of the model.
+The authors speculate that training the model to learn
+smaller secondary flows could help predict the flows at
+larger lengths.
+10.11. Video interpolation
+More recently, neural operator-based models have been
+used for computer vision problems.
+In their work,
+Viswanath et al. (2022) model the problem of video frame
+interpolation as implicitly learning a PDE, where the
+complex motions exhibited by the moving objects within
+a video follow a PDE. A UNO was used to learn these
+complex trajectories to predict intermediate frames in a
+video.
+10.12. Human motion analysis in dyadic setting
+Prediction of reactions to human actions in dyadic or
+two-person settings is an interesting problem that has
+applications in gaming and 3D simulations.
+In their
+work, Rahman et al. (2022b) explore using Conditional
+GANO-based
+architectures
+to
+predict
+the
+reactions
+of
+humans
+conditioned
+on
+the
+movements
+of
+their
+dyadic partners. The model accurately learns from long
+sequences of motions at any arbitrary temporal resolution.
+17
+
+0.25 μs
+0
+M
+1400
+0.5 μs
+1283
+1167
+1050
+933
+817
+700
+583
+0.75 μs
+467
+350
+233
+117
+0
+1.0 μs(a) True velocity
+(b) Reconstruction with SEM
+3300
+(m/s)
+3000
+2700
+(c) True velocity
+(d) Reconstruction with FNO
+3300
+Vp (m/s)
+3000
+2700Figure 11: The above figure highlights the performance of various neural operator based architectures in solving different types of problems.
+It provides a visual comparison between generated solution an ground truth. The images on the top are the ground truth values while the
+ones on the bottom row are generated by the operator models. The first image on the left represents the airfoil Flow simulation generated
+by the geo-FNO architecture Liu et al. (2022). The second one is the Darcy Flow simulation generated by the GANO architecture Rahman
+et al. (2022a). The third one represents the Kolmogorov Flow generated by the PINO architecture Li et al. (2021b), the fourth pair represents
+the Navier-Stokes equations simulated by the vanilla FNO Li et al. (2020a) and the last one is the weather forecast model generated by the
+FourcastNet Pathak et al. (2022).
+11. Scalability
+Finite element approaches are generally slow and im-
+precise as they suffer from a trade-off between mesh
+resolution and computation time.
+The higher the reso-
+lution, the higher the computation cost per evaluation.
+Moreover, the results of a computation are only valid for
+a single instance of a PDE. Changing initial or boundary
+conditions or any other parameter requires the expensive
+computation to be re-run.
+Neural network based methods are capable of approxi-
+mating a PDE with decent accuracy. Although training
+them is computationally expensive, each computation of
+the forward evaluation is much faster than the conven-
+tional approaches.
+Some of these methods, such as the
+ConvPDE-UQ framework, are even able to parameterize
+the initial and boundary conditions as part of the input
+to the model in order to enable computation of any
+system within a given family of PDEs on any domain
+without having to retrain the model (Winovich et al.
+(2019)).
+However, neural network approaches are still
+mesh-dependent.
+The resolution that can be achieved
+from the model is determined by the resolution of the
+training data, which is computed via conventional meth-
+ods.
+Thus the computational cost for training is still
+sensitive to resolution.
+This is where a neural operator
+is advantageous as it attempts to learn the function
+and hence, the mapping between infinite dimensional
+spaces. The result is that they are resolution invariant in
+that they can be trained with data that has a relatively
+low resolution and will still be able to evaluate at a
+higher resolution with the same error rate as in low
+resolution.
+Li et al. (2021b) demonstrated that their
+neural operator variant, the Fourier neural operator,
+is capable of accurately learning PDEs with zero-shot
+super-resolution.
+They further proved that the Fourier
+neural operator achieves superior accuracy compared
+to neural network-based solvers while still enjoying the
+same benefits in terms of fast computation of the forward
+evaluation and generalization to any instance within a
+PDE family.
+All of these features of FNOs- low evaluation cost,
+zero-shot
+super
+resolution,
+and
+generalization-
+have
+significant implications in terms of computational effi-
+ciency. Li et al. (2021b) highlight this by presenting the
+Bayesian Inversion Problem, where they use a function
+space Markov chain Monte Carlo (MCMC) method
+(Cotter et al. (2013)) to draw samples from the posterior
+distribution of the initial vorticity in Navier-Stokes.
+MCMC are a set of algorithms for sampling data from
+distributions. The approach involves constructing Markov
+chains for the desired distribution, and a sample of this
+distribution would be a set of states of the Markov chain.
+Metropolis-Hastings is a well-known MCMC algorithm.
+In this experiment, they compare FNOs and conventional
+solvers.
+While both are able to achieve similar results,
+they vary substantially in terms of computation time.
+The MCMC using the traditional solver took 2.2 seconds
+per computation, whereas the FNO took only 0.005s per
+computation.
+The FNO, however, requires a one-time
+18
+
+Airfoil Flow (Geo-FNO)
+Darcy Flow (GANO)
+Kolmogorov Flow (PINO)
+Navier Stokes (FNO)
+Weather model (FourcastNet)training, which in this scenario took approximately 12
+hours. The traditional solver, on the other hand, requires
+no such training.
+Hence, for a small number of data
+points, the conventional solver is more efficient.
+The
+benefits of FNOs are instead realized at a larger scale
+because the model only has to be trained once and can
+be used to quickly evaluate any instance of the PDE. To
+illustrate this point, let T represent the total computation
+time in seconds to make n evaluations. For the traditional
+solver, the computation time has the form of a fixed rate
+(T = 2.2n in this particular setting), whereas for FNO,
+computation time would behave as a smaller rate plus a
+one-time cost (T = 43200 + 0.005n in their setup). The
+authors generated 30,000 data points using each method.
+Using the FNO, this took 12 hours for training plus an
+additional 2.5 minutes for the 30,000 forward evaluations,
+whereas the traditional solver took a total of 18 hours for
+the same number of evaluations (Li et al. (2021b)).
+These advantages in computation time extend to cost
+savings, especially at large scale.
+To illustrate the
+difference in cost at a large scale, consider the cost of
+running both models with the same experimental setup
+as above on a p3.2xlarge EC2 instance on AWS, which
+has 8 vCPU and 61 GiB (or approx. 65 GB) of memory.
+The P3 instances feature the NVIDIA V100 GPU making
+it the most similar of the AWS compute options to the
+NVIDIA V100 GPU with 16 GB memory used by Li et al.
+(2021b). For the purposes of this demonstration, assume
+these instances have the same hardware performance as
+the hardware used by Li et al. The on-demand rate for
+this instance, which is the cheapest of the P3s, is $3.06
+per hour.
+Thus, training the FNO would cost approxi-
+mately $36.72. Once trained, the FNO can theoretically
+perform up to 720000 computations per hour, while the
+conventional solver would take 440 hours to do the same
+number of evaluations. For 100,000 evaluations, the FNO
+would cost under $40, including training time, whereas
+the conventional solver would cost approximately $187.
+Beyond the cost savings, this computational efficiency
+has important implications for environmental impact, as
+cloud computing is known to consume significant energy
+resulting in a large carbon footprint.
+In designing mechanical systems involving aerodynamics
+or fluid dynamics, it is common for engineers to have to
+compute the forward operation of Navier Stokes several
+thousands of times varying the coefficients with each
+evaluation in order to recover certain properties of the
+system.
+Fourestey & Moubachir (2005), for example,
+investigated inverse problems of the Navier Stokes equa-
+tions in the context of designing bridge decks under wind
+loads. Solving the inverse problem of a given PDE is also
+critical to tuning predictive modelling systems such as
+those for weather and climate modelling (Kashinath et al.
+(2021)). Using conventional numerical methods to solve
+inverse problems of a given PDE can be prohibitively slow
+and expensive.
+The scalability of FNOs can make this
+problem not only feasible but cost-effective, which has
+significant implications for mechanical design.
+12. Future work - Adaptability
+In this paper, we have illustrated the advantages that
+FNOs have over traditional numerical solvers in terms
+of computational performance, as well as their superior
+accuracy when compared to neural network-based solvers.
+The remaining question to be answered is how these ben-
+efits can be realized in academic research and commercial
+applications. The development of numerical methods such
+as FDM and FEM began as early as the 1940s Hrennikoff
+(1941). However, these methods did not see wide-spread
+use until the 1960s when open-source programs for FEM
+began to be developed, such as Nastran developed by
+NASA Butler & Michel (1971) and SAP IV developed
+at UC Berkeley Gran & Yang (1978). Since then, many
+tools for the numerical modeling of physical systems have
+been built and made widely available to researchers and
+engineers, including MATLAB, COMSOL, and Autodesk
+Simulation.
+The question now becomes- how can the
+same be done with FNO-based solvers?
+As FNOs are still relatively new computational methods,
+there is more work that is needed to develop them further
+and more variants of them are likely to be developed over
+the next few years. Nevertheless, existing variants already
+have the potential to greatly accelerate physics-based
+modelling.
+However, as with many newly developed
+neural networks, they are unlikely to see practical use
+or widespread adoption by physics researchers until they
+are integrated into a software package that can reliably
+be used without a firm background in machine learning.
+Developing this software and enabling it to be used
+for practical applications would further motivate future
+research and development of these approaches for PDE
+approximation. An important factor in achieving this is
+open-source. Li et al. have already made their code open-
+source for their work in Li et al. (2020a).
+Open-source
+accelerates development and enables standardization in
+software packages. This standardization is central to the
+repeatability of results and is hence, critical for research.
+It is important to note that numerical solvers are still
+required to produce the training data for FNOs.
+As
+with all machine learning approaches, the quality of
+this data, in terms of the size and spread of training
+data, as well as accuracy, impacts the performance of
+the FNO. In this respect, machine learning paradigms
+such as that of active learning Settles (2012), which uses
+learning theoretic arguments to come up with strategies
+to select training data, can be used to improve the
+sample complexity (a term used in machine learning for
+the number of samples required to achieve a particular
+19
+
+accuracy) of learning based techniques. In particular, the
+learning algorithm would decide on the pairs of {ui}N
+i=1
+for which the solver should generate the corresponding
+{fi} or {ai} with the aim of selecting the right pairs such
+that the network is able to approximate the solver func-
+tion with the lowest number of pairs N.
+Meta-learning
+is another paradigm that can be used to improve the
+sample complexity of learning algorithms. This method
+aims to learn some underlying connection to different
+machine-learning tasks. While there are several notions
+of meta-learning, a popular algorithm is MAML Finn
+et al. (2017), which aims to learn an initialization for
+gradient-based learning approaches from different tasks
+sharing a common structure. This learned initialization,
+when used for the gradient-based learning approaches,
+allows for better sample complexity Saunshi et al. (2020).
+Due to the dependency of FNOs on the numerical solvers,
+one potential future for FNOs would be to integrate them
+into FEM software packages. This would make them more
+accessible to physics researchers allowing them to lever-
+age the computational benefits of FNOs to accelerate their
+work. The software could train an FNO for a user-inputted
+PDE with data it produces using FEM and a sampling
+method based on active learning or meta-learning. The
+trained FNO would then be used in computation of the
+forward evaluation with a mesh and other parameters de-
+fined by the user via the same interfaces they use today as
+the software would handle the parameterization of those
+inputs into the structure expected by the FNO. Of course
+there are many variants of FNOs each created for different
+types of systems involving PDEs where they achieve supe-
+rior performance over the vanilla version. Users of FEM
+software would not be aware of the distinctions between
+them. Hence, this software would have to be able to pro-
+vide the user with some recommendation of which variant,
+if any, to use in which scenarios. A deeper study of the
+performance of different variants across different use-cases
+would be required in order to build this knowledge base.
+This paper is a starting point for that.
+While the accuracy of FNO-based solvers is invariant to
+resolution, it is still true that a given FNO-based solver
+could have higher accuracy on certain systems over others
+due to the non-deterministic nature of machine-learning.
+This would be an additional consideration for researchers
+using this software. One approach to contend with this
+would be to have the software also produce test data along
+with the training data and provide a report of accuracy on
+this test set so that the researcher can weigh the accuracy-
+efficiency trade off between FNO and conventional meth-
+ods in order to decide which approach to use. If they opt
+for the FNO approach, they could also include this report
+in their findings.
+13. Conclusion
+The goal of this paper was to characterize the numer-
+ous methods that have been developed for approximat-
+ing PDEs in order to highlight the potential opportunities
+that exist for further development of these technologies.
+We have provided a dense overview of these methods from
+conventional solvers to more novel approaches developed in
+recent years that leverage neural networks to approximate
+the mapping between finite spaces as well as those capable
+of approximating the mapping between function spaces by
+leveraging the neural operator. We have provided details
+about several variants of each type of PDE solver and have
+compared the performance of these variants across sev-
+eral applications particularly those in the field of physics.
+We have also articulated the advantages of FNO-based
+solvers as compared to conventional solvers and the im-
+plications this could have for the future of physics mod-
+elling. Furthermore, we proposed a high-level vision for
+how this technology could eventually be used to accelerate
+computation-based physics research.
+20
+
+References
+Acharya, S., Baliga, B., Karki, K., Murthy, J., Prakash, C., & Vanka,
+S. P. (2007). Pressure-based finite-volume methods in computa-
+tional fluid dynamics, .
+Aghdam, H. H., & Heravi, E. J. (2017).
+Guide to convolutional
+neural networks. New York, NY: Springer, 10, 51.
+Aochi, H., Ulrich, T., Ducellier, A., Dupros, F., & Michea, D. (2013).
+Finite difference simulations of seismic wave propagation for un-
+derstanding earthquake physics and predicting ground motions:
+Advances and challenges. In Journal of Physics: Conference Se-
+ries (p. 012010). IOP Publishing volume 454.
+Bebis, G., & Georgiopoulos, M. (1994).
+Feed-forward neural net-
+works. Ieee Potentials, 13, 27–31.
+Browne, M., & Ghidary, S. S. (2003).
+Convolutional neural net-
+works for image processing: an application in robot vision.
+In
+Australasian Joint Conference on Artificial Intelligence (pp. 641–
+652). Springer.
+Butler, T. G., & Michel, D. (1971).
+NASTRAN: A summary of
+the functions and capabilities of the NASA structural analysis
+computer system volume 260. Scientific and Technical Information
+Office, National Aeronautics and Space . . . .
+Cai, S., Mao, Z., Wang, Z., Yin, M., & Karniadakis, G. E. (2022).
+Physics-informed neural networks (pinns) for fluid mechanics: A
+review. Acta Mechanica Sinica, (pp. 1–12).
+Cai, S., Wang, Z., Lu, L., Zaki, T. A., & Karniadakis, G. E. (2021a).
+Deepm&mnet: Inferring the electroconvection multiphysics fields
+based on operator approximation by neural networks. Journal of
+Computational Physics, 436, 110296.
+Cai, S., Wang, Z., Wang, S., Perdikaris, P., & Karniadakis, G. E.
+(2021b). Physics-informed neural networks for heat transfer prob-
+lems. Journal of Heat Transfer, 143.
+Chen, G., Li, Y., Meng, Q., Zhou, J., Hao, X. et al. (2021). Residual
+fourier neural operator for thermochemical curing of composites.
+arXiv preprint arXiv:2111.10262, .
+Chen, T., & Chen, H. (1995). Universal approximation to nonlinear
+operators by neural networks with arbitrary activation functions
+and its application to dynamical systems. IEEE Transactions on
+Neural Networks, 6, 911–917.
+Ciresan, D. C., Meier, U., Masci, J., Gambardella, L. M., & Schmid-
+huber, J. (2011). Flexible, high performance convolutional neural
+networks for image classification. In Twenty-second international
+joint conference on artificial intelligence.
+Cotter, Roberts, Stuart, & White (2013). Mcmc methods for func-
+tions: Modifying old algorithms to make them faster. Statist. Sci.,
+28, 424 – 446.
+Cuomo, S., Di Cola, V. S., Giampaolo, F., Rozza, G., Raissi, M., &
+Piccialli, F. (2022). Scientific machine learning through physics-
+informed neural networks: Where we are and what’s next. arXiv
+preprint arXiv:2201.05624, .
+Cybenko, G. (1989). Approximation by superpositions of a sigmoidal
+function. Mathematics of control, signals and systems, 2, 303–
+314.
+Demirdˇzi´c, I., & Muzaferija, S. (1994). Finite volume method for
+stress analysis in complex domains. International journal for nu-
+merical methods in engineering, 37, 3751–3766.
+DeSanctis, R. W., Doroghazi, R. M., Austen, W. G., & Buckley, M. J.
+(1987). Aortic dissection. New England Journal of Medicine, 317,
+1060–1067.
+Donea, J., & Huerta, A. (2003). Finite element methods for flow
+problems. John Wiley & Sons.
+Eymard, R., Gallou¨et, T., & Herbin, R. (2000). Finite volume meth-
+ods. Handbook of numerical analysis, 7, 713–1018.
+Fadlun, E., Verzicco, R., Orlandi, P., & Mohd-Yusof, J. (2000).
+Combined immersed-boundary finite-difference methods for three-
+dimensional complex flow simulations. Journal of computational
+physics, 161, 35–60.
+Fanaskov, V., & Oseledets, I. (2022).
+Spectral neural operators.
+arXiv preprint arXiv:2205.10573, .
+Fang, Z. (2021). A high-efficient hybrid physics-informed neural net-
+works based on convolutional neural network. IEEE Transactions
+on Neural Networks and Learning Systems, .
+Finn, C., Abbeel, P., & Levine, S. (2017).
+Model-agnostic meta-
+learning for fast adaptation of deep networks.
+In International
+conference on machine learning (pp. 1126–1135). PMLR.
+Fourestey, G., & Moubachir, M. (2005). Mcmc methods for functions:
+Modifying old algorithms to make them faster. Computer Methods
+in Applied Mechanics and Engineering, 194, 877–906.
+Gao, H., Sun, L., & Wang, J.-X. (2021).
+Phygeonet:
+Physics-
+informed geometry-adaptive convolutional neural networks for
+solving parameterized steady-state pdes on irregular domain.
+Journal of Computational Physics, 428, 110079.
+Godunov, S., & Bohachevsky, I. (1959). Finite difference method for
+numerical computation of discontinuous solutions of the equations
+of fluid dynamics. Matematiˇceskij sbornik, 47, 271–306.
+Goswami, S., Yin, M., Yu, Y., & Karniadakis, G. E. (2022).
+A
+physics-informed variational deeponet for predicting crack path in
+quasi-brittle materials. Computer Methods in Applied Mechanics
+and Engineering, 391, 114587.
+Gran, C. S., & Yang, T. (1978). Nastran and sap iv applications on
+the seismic response of column-supported cooling towers. Com-
+puters & Structures, 8, 761–768.
+Guan, S., Hsu, K.-T., & Chitnis, P. V. (2021). Fourier neural op-
+erator networks: A fast and general solver for the photoacoustic
+wave equation. arXiv preprint arXiv:2108.09374, .
+Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., & Catan-
+zaro, B. (2021). Adaptive fourier neural operators: Efficient token
+mixers for transformers. arXiv preprint arXiv:2111.13587, .
+Gupta, G., Xiao, X., & Bogdan, P. (2021). Multiwavelet-based op-
+erator learning for differential equations. Advances in Neural In-
+formation Processing Systems, 34, 24048–24062.
+Guss, W. H., & Salakhutdinov, R. (2019).
+On universal ap-
+proximation by neural networks with uniform guarantees on
+approximation of infinite dimensional maps.
+arXiv preprint
+arXiv:1910.01545, .
+Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feed-
+forward networks are universal approximators. Neural networks,
+2, 359–366.
+Hrennikoff, A. (1941). Solution of problems of elasticity by the frame-
+work method, .
+Hughes, T. J. (2012). The finite element method: linear static and
+dynamic finite element analysis. Courier Corporation.
+Jiang, P., Meinert, N., Jord˜ao, H., Weisser, C., Holgate, S., Lavin,
+A., L¨utjens, B., Newman, D., Wainwright, H., Walker, C. et al.
+(2021). Digital twin earth–coasts: Developing a fast and physics-
+informed surrogate model for coastal floods via neural operators.
+arXiv preprint arXiv:2110.07100, .
+Jordan, C., & Jord´an, K. (1965). Calculus of finite differences vol-
+ume 33. American Mathematical Soc.
+Kashinath, K., Mustafa, M., Albert, A., Wu, J., Jiang, C., Es-
+maeilzadeh, S., Azizzadenesheli, K., Wang, R., Chattopadhyay,
+A., Singh, A. et al. (2021). Physics-informed machine learning:
+case studies for weather and climate modelling.
+Philosophical
+Transactions of the Royal Society A, 379, 20200093.
+Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhattacharya, K.,
+Stuart, A., & Anandkumar, A. (2021). Neural operator: Learning
+maps between function spaces. arXiv preprint arXiv:2108.08481,
+.
+Lagaris, I. E., Likas, A., & Fotiadis, D. I. (1998). Artificial neural
+networks for solving ordinary and partial differential equations.
+IEEE transactions on neural networks, 9, 987–1000.
+LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature,
+521, 436–444.
+Li, S., Cui, X., & Li, G. (2017).
+Multi-physics analysis of elec-
+tromagnetic forming process using an edge-based smoothed finite
+element method. International Journal of Mechanical Sciences,
+134, 244–252.
+Li, Z., Huang, D. Z., Liu, B., & Anandkumar, A. (2022). Fourier
+neural operator with learned deformations for pdes on general
+geometries. arXiv preprint arXiv:2207.05209, .
+Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K.,
+Stuart, A., & Anandkumar, A. (2020a).
+Fourier neural opera-
+tor for parametric partial differential equations. arXiv preprint
+21
+
+arXiv:2010.08895, .
+Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K.,
+Stuart, A., & Anandkumar, A. (2020b). Neural operator: Graph
+kernel network for partial differential equations. arXiv preprint
+arXiv:2003.03485, .
+Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K.,
+Stuart, A., & Anandkumar, A. (2021a). Markov neural operators
+for learning chaotic systems. arXiv preprint arXiv:2106.06898, .
+Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Stuart, A., Bhat-
+tacharya, K., & Anandkumar, A. (2020c). Multipole graph neural
+operator for parametric partial differential equations. Advances
+in Neural Information Processing Systems, 33, 6755–6766.
+Li, Z., Zheng, H., Kovachki, N., Jin, D., Chen, H., Liu, B., Azizzade-
+nesheli, K., & Anandkumar, A. (2021b). Physics-informed neural
+operator for learning partial differential equations. arXiv preprint
+arXiv:2111.03794, .
+Liu, B., Kovachki, N., Li, Z., Azizzadenesheli, K., Anandkumar, A.,
+Stuart, A. M., & Bhattacharya, K. (2022). A learning-based mul-
+tiscale method and its application to inelastic impact problems.
+Journal of the Mechanics and Physics of Solids, 158, 104668.
+Liu, L., & Cai, W. (2021).
+Multiscale deeponet for nonlinear op-
+erators in oscillatory function spaces for building seismic wave
+responses. arXiv preprint arXiv:2111.04860, .
+Livingstone, D. J., Manallack, D. T., & Tetko, I. V. (1997). Data
+modelling with neural networks:
+advantages and limitations.
+Journal of computer-aided molecular design, 11, 135–142.
+Lu, L., Jin, P., & Karniadakis, G. E. (2019). Deeponet: Learning
+nonlinear operators for identifying differential equations based on
+the universal approximation theorem of operators. arXiv preprint
+arXiv:1910.03193, .
+Mao, Z., Jagtap, A. D., & Karniadakis, G. E. (2020).
+Physics-
+informed neural networks for high-speed flows. Computer Methods
+in Applied Mechanics and Engineering, 360, 112789.
+Moczo, P., Kristek, J., & Halada, L. (2004). The finite-difference
+method for seismologists. An Introduction, 161.
+Musha, T., & Higuchi, H. (1978). Traffic current fluctuation and the
+burgers equation. Japanese journal of applied physics, 17, 811.
+Naranjo-Torres, J., Mora, M., Hern´andez-Garc´ıa, R., Barrientos,
+R. J., Fredes, C., & Valenzuela, A. (2020). A review of convo-
+lutional neural network applied to fruit image processing. Applied
+Sciences, 10, 3443.
+O’Shea, K., & Nash, R. (2015). An introduction to convolutional
+neural networks. arXiv preprint arXiv:1511.08458, .
+¨Ozi¸sik, M. N., Orlande, H. R., Colaco, M. J., & Cotta, R. M. (2017).
+Finite difference methods in heat transfer. CRC press.
+Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopad-
+hyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzade-
+nesheli, K. et al. (2022). Fourcastnet: A global data-driven high-
+resolution weather model using adaptive fourier neural operators.
+arXiv preprint arXiv:2202.11214, .
+Rahman, M. A., Florez, M. A., Anandkumar, A., Ross, Z. E., &
+Azizzadenesheli, K. (2022a). Generative adversarial neural oper-
+ators. arXiv preprint arXiv:2205.03017, .
+Rahman, M. A., Ghosh, J., Viswanath, H., Azizzadenesheli, K., &
+Bera, A. (2022b). Pacmo: Partner dependent human motion gen-
+eration in dyadic human activity using neural operators. arXiv
+preprint arXiv:2211.16210, .
+Rahman, M. A., Ross, Z. E., & Azizzadenesheli, K. (2022c). U-no:
+U-shaped neural operators. arXiv e-prints, (pp. arXiv–2204).
+Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019).
+Physics-
+informed neural networks: A deep learning framework for solving
+forward and inverse problems involving nonlinear partial differen-
+tial equations. Journal of Computational physics, 378, 686–707.
+Reddy, J. N. (2019).
+Introduction to the finite element method.
+McGraw-Hill Education.
+Renn, P. I., Wang, C., Lale, S., Li, Z., Anandkumar, A., & Gharib,
+M. (2023).
+Forecasting subcritical cylinder wakes with fourier
+neural operators. arXiv preprint arXiv:2301.08290, .
+Rosofsky, S. G., & Huerta, E. A. (2022).
+Applications of physics
+informed neural operators. arXiv preprint arXiv:2203.12634, .
+Roters, F., Eisenlohr, P., Bieler, T. R., & Raabe, D. (2011). Crystal
+plasticity finite element methods: in materials science and engi-
+neering. John Wiley & Sons.
+Salvi, C., Lemercier, M., & Gerasimovics, A. (2021). Neural stochas-
+tic pdes: Resolution-invariant learning of continuous spatiotem-
+poral dynamics. arXiv preprint arXiv:2110.10249, .
+Saunshi, N., Zhang, Y., Khodak, M., & Arora, S. (2020). A sam-
+ple complexity separation between non-convex and convex meta-
+learning. In International Conference on Machine Learning (pp.
+8512–8521). PMLR.
+Sazli, M. H. (2006). A brief review of feed-forward neural networks.
+Communications Faculty of Sciences University of Ankara Series
+A2-A3 Physical Sciences and Engineering, 50.
+Searles, D. J., & von Nagy-Felsobuki, E. I. (1988). Numerical ex-
+periments in quantum physics: Finite-element method. American
+Journal of Physics, 56, 444–448.
+Settles, B. (2012). Active learning. Synthesis lectures on artificial
+intelligence and machine learning, 6, 1–114.
+Sharma Priyadarshini, M., Venturi, S., & Panesi, M. (2021). Ap-
+plication of deeponet to model inelastic scattering probabilities in
+air mixtures. In AIAA AVIATION 2021 FORUM (p. 3144).
+Sirignano, J., & Spiliopoulos, K. (2018).
+Dgm: A deep learning
+algorithm for solving partial differential equations.
+Journal of
+computational physics, 375, 1339–1364.
+Slone, A., Bailey, C., & Cross, M. (2003). Dynamic solid mechanics
+using finite volume methods.
+Applied mathematical modelling,
+27, 69–87.
+Smith, G. D., Smith, G. D., & Smith, G. D. S. (1985). Numerical so-
+lution of partial differential equations: finite difference methods.
+Oxford university press.
+Sod, G. A. (1978).
+A survey of several finite difference methods
+for systems of nonlinear hyperbolic conservation laws. Journal of
+computational physics, 27, 1–31.
+Tadmor, E. (2012). A review of numerical methods for nonlinear par-
+tial differential equations. Bulletin of the American Mathematical
+Society, 49, 507–554.
+Taigbenu, A. E. (1999).
+Burgers equation.
+In The Green El-
+ement Method
+(pp. 195–216).
+Boston,
+MA: Springer US.
+URL: https://doi.org/10.1007/978-1-4757-6738-4_7. doi:10.
+1007/978-1-4757-6738-4_7.
+Thais, S., Calafiura, P., Chachamis, G., DeZoort, G., Duarte, J.,
+Ganguly, S., Kagan, M., Murnane, D., Neubauer, M. S., &
+Terao, K. (2022).
+Graph neural networks in particle physics:
+Implementations, innovations, and challenges.
+arXiv preprint
+arXiv:2203.12852, .
+Trifan, A., Gorgun, D., Li, Z., Brace, A., Zvyagin, M., Ma, H., Clyde,
+A., Clark, D., Salim, M., Hardy, D. J. et al. (2021). Intelligent res-
+olution: Integrating cryo-em with ai-driven multi-resolution simu-
+lations to observe the sars-cov-2 replication-transcription machin-
+ery in action. bioRxiv, .
+Viswanath, H., Rahman, M. A., Bhaskara, R., & Bera, A. (2022).
+Nio:
+Lightweight neural operator-based architecture for video
+frame interpolation. arXiv preprint arXiv:2211.10791, .
+Wang, S., Wang, H., & Perdikaris, P. (2021). Learning the solution
+operator of parametric partial differential equations with physics-
+informed deeponets. Science advances, 7, eabi8605.
+Wen, G., Li, Z., Azizzadenesheli, K., Anandkumar, A., & Benson,
+S. M. (2022). U-fno—an enhanced fourier neural operator-based
+deep-learning model for multiphase flow. Advances in Water Re-
+sources, 163, 104180.
+Wilson, E., Bathe, K., & Peterson, F. (1974). Finite element analysis
+of linear and nonlinear heat transfer.
+Nuclear engineering and
+design, 29, 110–124.
+Winovich, N., Ramani, K., & Lin, G. (2019). Convpde-uq: Convo-
+lutional neural networks with quantified uncertainty for hetero-
+geneous elliptic partial differential equations on varied domains.
+Journal of Computational Physics, 394, 263–279.
+Yang, Y., Gao, A. F., Castellanos, J. C., Ross, Z. E., Azizzadenesheli,
+K., & Clayton, R. W. (2021). Seismic wave propagation and in-
+version with neural operators. The Seismic Record, 1, 126–134.
+Yegnanarayana, B. (2009). Artificial neural networks. PHI Learning
+Pvt. Ltd.
+22
+
+Yin, M., Ban, E., Rego, B. V., Zhang, E., Cavinato, C., Humphrey,
+J. D., & Em Karniadakis, G. (2022). Simulating progressive in-
+tramural damage leading to aortic dissection using deeponet: an
+operator–regression neural network. Journal of the Royal Society
+Interface, 19, 20210670.
+You, H., Zhang, Q., Ross, C. J., Lee, C.-H., & Yu, Y. (2022).
+Learning deep implicit fourier neural operators (ifnos) with ap-
+plications to heterogeneous material modeling.
+arXiv preprint
+arXiv:2203.08205, .
+Yu, J., Lu, L., Meng, X., & Karniadakis, G. E. (2022). Gradient-
+enhanced physics-informed neural networks for forward and in-
+verse pde problems.
+Computer Methods in Applied Mechanics
+and Engineering, 393, 114823.
+Zienkiewicz, O. C., Taylor, R. L., & Zhu, J. Z. (2005). The finite
+element method: its basis and fundamentals. Elsevier.
+14. Appendix
+Model
+Link
+FNO
+https://github.com/neural-operator/fourier neural operator
+FourCastNet
+https://github.com/NVlabs/FourCastNet
+GANO
+https://github.com/kazizzad/GANO
+geo-FNO
+https://github.com/neural-operator/Geo-FNO
+GNO
+https://github.com/neural-operator/graph-pde
+MWT-NO
+https://github.com/gaurav71531/mwt-operator
+PINO
+https://github.com/neural-operator/PINO
+SNO
+https://github.com/vlsf/sno
+UNO
+https://github.com/ashiq24/UNO
+Table 5
+This table provides links to the source code for various neural oper-
+ator architectures
+Term
+Meaning
+A
+Banach Function Space
+a(x)
+Input function
+α
+Hyperparameter for neural network
+b
+Bias
+β
+Hyperparameter for neural network
+C
+Specific heat capacity
+C
+Cost Function
+c
+Speed of Sound
+D
+Domain
+di, bi
+Finite dimensional vectors
+exy
+Edge from node x to node y in a graph neural network
+F
+Fourier Transform
+f(x)
+Function
+F−1
+Inverse Fourier Transform
+G
+neural operator
+G+
+Non-Linear map between Function Spaces
+gi
+Complex Exponential/Chebyshev polynomial
+hi
+Hidden layer Embedding
+k
+directional Thermal Conductivity
+K, κ
+Kernel
+L
+Banach Function Space
+L
+Linear Differential Operator
+L
+Loss Function
+λ
+Directional Thermal Conductivity
+N
+Natural Numbers
+n
+Arbitrary Natural number
+P
+Lifting Map
+p(r,t)
+photoacoustic pressure wave at position r, time t
+P
+Partial Differential Operator
+Φ
+flux
+ϕ
+Porosity
+Q
+internal heat source
+Q
+Projecting Map
+R
+Non-Linear Partial Differential Operator
+R
+Real Numbers
+ρ
+density
+ς
+stress tensor
+Sp
+Saturation of phase p
+σ
+Non-Linear Activation
+T
+temperature
+t, T
+time
+U
+Banach Function Space
+u(x)
+solution function
+U
+Velocity
+uθ
+neural network parameterized by θ
+vi, v(i)
+ith output of a neural network
+V
+neural network Approximation of Solution
+ν
+Viscosity coefficient
+W
+Weight
+W
+Weiner Process
+w
+Vorticity
+X
+mass fraction
+ξ
+noise
+xi
+ith input element
+∇
+Gradient Operator
+∆
+Laplacian Operator
+Table 6
+A summary of mathematical notations used in the article
+23
+
diff --git a/X9FQT4oBgHgl3EQfdjZ7/content/tmp_files/load_file.txt b/X9FQT4oBgHgl3EQfdjZ7/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..8edc9404e76aee9fbe1070e26ebf8d44de2a764a
--- /dev/null
+++ b/X9FQT4oBgHgl3EQfdjZ7/content/tmp_files/load_file.txt
@@ -0,0 +1,1987 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf,len=1986
+page_content='Fast Resolution Agnostic Neural Techniques to Solve Partial Differential Equations Hrishikesh Viswanatha,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='∗,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Md Ashiqur Rahmana,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Abhijeet Vyasa,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Andrey Shora,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Beatriz Medeirosd,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Stephanie Hernandezd,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Suhas Eswarappa Prameelab,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='c,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='d,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Aniket Beraa aDepartment of Computer Science,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Purdue University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' West Lafayette,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' IN,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' USA bDepartment of Materials Science and Engineering,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' MIT,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Cambridge,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' MA,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' USA cDepartment of Aeronautics and Astronautics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' MIT,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Cambridge,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' MA,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' USA dHopkins Extreme Materials Institute,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Johns Hopkins University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Baltimore,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' MD,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' USA Abstract Numerical approximations of partial differential equations (PDEs) are routinely employed to formulate the solution of physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' engineering and mathematical problems involving functions of several variables,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' such as the propagation of heat or sound,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' fluid flow,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' elasticity,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' electrostatics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' electrodynamics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' and more.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' While this has led to solving many complex phenomena, there are still significant limitations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Conventional approaches such as Finite Element Methods (FEMs) and Finite Differential Methods (FDMs) require considerable time and are computationally expensive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' In contrast, machine learning-based methods such as neural networks are faster once trained, but tend to be restricted to a specific discretization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This article aims to provide a comprehensive summary of conventional methods and recent machine learning-based methods to approximate PDEs numerically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Furthermore, we highlight several key architectures centered around the neural operator, a novel and fast approach (∼1000x) to learning the solution operator of a PDE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' We will note how these new computational approaches can bring immense advantages in tackling many problems in fundamental and applied physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Keywords: Machine learning, Neural networks, Neural operators, Fourier neural operator, Geo-FNO, Graph neural operator, Physics informed neural operator, Finite element method, Finite volume method, Finite difference method, DeepONet, Spectral neural operator, Adaptive Fourier neural operator, Burgers equation, Darcy Flow equation, Navier Stokes equation, Kolmogorov Flow 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Introduction Partial differential equations (PDEs) are an integral tool in mathematically modeling the physical world.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' They allow one to describe how a quantity changes with respect to multiple variables and have allowed physicists to model various phenomena in fluid flow, electrodynamics, and quantum mechanics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' An example family of generic PDEs can be represented as shown in equation 1, (Lau)(x) = f(x), x ∈ D, (1) u(x) = 0, x ∈ δD for some a ∈ A, f ∈ L, where A, L are Banach spaces, D is the domain of the PDE and u : D → R, u ∈ U is the solution function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' While PDEs are all around us, it is oftentimes very difficult for one to solve them analytically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The best that one can achieve is an approximation of the true solution of the PDE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The most popular approaches to solving PDEs are numerical methods such as finite ∗Corresponding author Email address: hviswan@purdue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='edu (Hrishikesh Viswanath) difference methods (FDMs) Godunov & Bohachevsky (1959), finite element methods (FEMs) Zienkiewicz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2005), and finite volume methods (FVMs) Eymard et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2000) as they are able to approximate solutions to PDEs with high amounts of accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' However, they are computationally expensive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Finite difference methods solve PDEs by converting them into linear algebraic equations called finite difference equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' These equations are obtained by discretizing the domain of the functions involved in the PDEs and representing the derivatives as differences according to the first principles of calculus Jordan & Jord´an (1965).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The different discretization schemes result in different methods tailored to specific applications such as gas-dynamics Sod (1978) and heat transfer ¨Ozi¸sik et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' An exhaus- tive study of applying this method to various families of PDEs has been published by Smith et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (1985).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Finite element methods, on the other hand, generate algebraic equations by applying fundamental physics laws on static or moving quantum of a system Hughes (2012) and have been used to solve several different problems in physics such as the fluid flow problem Donea & Huerta (2003) Preprint submitted to Communications Physics February 1, 2023 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='13331v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='AI] 30 Jan 2023 and strain localization in metals Roters et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Numerical methods have traditionally been used to solve PDEs, but in an effort to reduce the computational cost and achieve greater accuracy, they are being replaced by data-driven methods in the current scientific era.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' These methods come under the overarching paradigm of machine learning approaches, which utilize data-driven algorithms that allow a program to learn and improve from experience.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The modern face of machine learning is neural networks, which have led to a variety of advances in many scientific endeavors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Recent advances in deep learning, a subfield of machine learning which studies algorithms known as artificial neural networks, have al- lowed researchers to develop neural network architectures capable of approximating the solution of PDEs through large amounts of data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Deep neural networks that can ap- proximate any function to an arbitrary precision Cybenko (1989) consist of multiple hidden layers and serve as a mapping between inputs and outputs LeCun et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Deep neural networks have been applied to a multitude of problems in material physics, thermodynamics, and fluid dynamics problems Cai et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022), Mao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2020), Cai et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021b), Thais et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022) due to their innate ability to learn complex relationships between physical entities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' To solve PDEs using neural networks, a dataset of inputs {xi}n 1 and their solution mappings {u(xi)}n 1 is used to train or learn an approximate function map u+ : D → R of the solution function u, where R is the range of u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The accuracy of the predictions of u depends on the complexity of the function class u+, which in turn depends on the neural network architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The ability of the network to predict u(x) for x /∈ {xi}n 1 is known as generalization and is vital to solving PDEs accurately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' In particular, physics informed neural networks (PINNs) Raissi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2019), Deep-ONet Lu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2019), and neural operator Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2020a) architectures have shown great success in learning PDEs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Neural operator is an emerging deep learning technique that is different from a typical neural network in several ways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' While neural networks are able to approximate any function, which is a map between finite-dimensional spaces Cybenko (1989), to approximate an operator, which is a map between infinite dimensional spaces, a network of infinite length is required Guss & Salakhut- dinov (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Thus, neural networks fail to accurately approximate solution operators of PDEs, which are map- pings between infinite dimensional spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The need for more accurate solutions has motivated the development of neural operators: a generalization of neural networks to map between infinite dimensional spaces Kovachki et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Neural operators are composed of linear integral operators and nonlinear activation functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The result is an operator capable of approximating highly nonlinear solution operators of PDEs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Furthermore, neural opera- tors are resolution-invariant and up to ≈1000x faster than traditional neural networks in approximating the solution of PDEs Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2020a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Current state-of-the-art neural operator architecture includes the graph neural network (GNO) Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2020c), Fourier neural network (FNO) Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2020a) and its variant geo-Fourier neural network (Geo-FNO) Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022), and physics informed neural network (PINO) Rosofsky & Huerta (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This paper aims to provide a brief overview of popular numerical methods and emphasize on several machine learning-based methods to numerically approximate PDEs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Figure 1 provides an overview of both conven- tional and machine learning-based approaches to solving PDEs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' We will highlight several key architectures centered around the neural operator, a novel and fast approach (1000x) to learning the solution operator of a PDE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' We will note how these new computational approaches can bring immense advantages in tackling many problems in fundamental and applied physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Sections 2 and 3 describe some of the conventional and neural network- based architectures, while sections 4 through 8 talk about different types of neural operator-based architectures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Section 9 discusses various fields where neural operators have been successful.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Tables 6 and 5, in the appendix section, provide the definitions of the mathematical notations and the GitHub links to neural operator models respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Conventional Solvers In this section, we will discuss some of the conventional approaches that have been used to solve PDEs, such as finite difference methods, finite element methods and finite volume methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Finite difference method The finite difference method (FDM) is a class of grid-point techniques in numerical methods used to approximate the solution to differential equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' FDMs work by discretizing a function in an infinite domain into a finite, space-time grid Moczo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Each point in the grid represents a value of the particular function being approximated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' FDMs are able to approximate the solution to a PDE at each grid-point by approximating the derivatives with finite difference formulas Godunov & Bohachevsky (1959).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The more grid-points available, the more accurate the solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' FDMs have been used to help understand earthquake physics Aochi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2013), conservation laws Sod (1978), and fluid flow simulations Fadlun et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Due to its simplicity, the FDM is very fast at solving PDEs on structured grids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' However, FDM struggles with complex geometries and is often less accurate than finite element 2 and finite volume methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Finite element method The finite element method (FEM) is a numerical method for solving PDEs in which a complex domain is discretized into a collection of small, simple domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' These simple domains are referred to as finite elements and are used to construct approximation functions over each element Reddy (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The FEM creates a sparse matrix repre- senting the discretization and solves it via a sparse matrix solver to achieve a global solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The FEM allows one to solve complex PDEs since the method is adaptable over difficult domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Furthermore, the FEM offers very accurate results dependent on discretization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The disadvantages of the FEM are that it is computationally expensive and that the accuracy of the solution depends on the resolution of the mesh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The FEM is utilized heavily in problems involving complex geometries and for modeling heat transfer Wilson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (1974), electromag- netic potential Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2017), and quantum mechanics Searles & von Nagy-Felsobuki (1988).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Finite volume method Finite volume methods (FVM) are capable of evaluating PDEs numerically through the use of algebraic equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' FVMs utilize a volume integral formation of the PDE and discretize the geometry of the PDE through the use of a finite collection of volumes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Then, FVMs evaluate each volume integral at each volume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' FVMs are often used to approximate solutions to physical problems that arise from conservation laws.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' These include computational fluid dynamics Acharya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2007), dynamic solid mechanics Slone et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2003), and stress analysis Demirdˇzi´c & Muzaferija (1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The key advantage of FVMs is the ability to be used on unstructured grids and complex geometries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' However, FVMs are computationally inten- sive and usually restricted to first- and second-order PDEs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Neural network architectures In this section, we go over some of the most commonly used neural network based architectures for solving PDEs, such as fully connected neural networks, convolutional neural networks and physics informed neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' A neural network is a mesh of layers, where each layer consists of a set of nodes, which computes the weighted sum of the input and applies a non-linear activation to it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' These networks are also called feed-forward networks because the input flows forward from the input layer to the output layer through one or more hidden layers Bebis & Georgiopoulos (1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Fully Connected neural networks Fully connected neural networks (FCNs) are the most basic neural network architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' They consist of a multitude of layers, including an input layer, one or more hidden layers, and an output layer Yegnanarayana (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' These types of networks are considered ”feed-forward” because the information in this structure only moves forward, from one layer to the next, until it reaches the output layer Sazli (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This architecture has been an attractive approach to solving PDEs because of its generalizability Lagaris et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Many approaches have been proposed to approximate the solution to PDEs using FCNs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' One such approach is to create a model consisting of the sum of two terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The first term is used to satisfy the boundary conditions, whereas the second term is an FCN that is trained to satisfy the PDE itself Lagaris et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' An FCN can be used here to approximate the solution to the PDE be- cause FCNs are universal function approximators Hornik et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (1989).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Through this approach, one can achieve a differentiable, closed analytic form of the solution to the PDE Lagaris et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' While this approach can be applied to both PDEs and ODEs, it struggles to handle PDEs of higher dimensions as the number of training points increases greatly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This, in turn, makes the proposed method computationally exhaustive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Furthermore, this approach is less precise than Finite Element methods in approximating a solution of the PDE Lagaris et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Another common issue is the difficulty in solving PDEs with complex boundary conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' In fact, there are times when numerical methods cannot approximate solutions to such PDEs Tadmor (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The method proposed in Sirignano & Spiliopoulos (2018) is known as the deep Galerkin method (DGM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This method utilizes an FCN that is trained on a set of randomly sampled time and space points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The key strength of this method is that it is able to satisfy the differential operator and initial/boundary conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Furthermore, this approach is meshfree;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' hence it can approximate solutions to PDEs that standard numerical methods may struggle with.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Lastly, this method is capable of solving PDEs in high dimensional spaces, unlike the approach described by Lagaris et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' While these approaches have shown success in solv- ing PDEs, there are still many limitations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' One such limitation is that FCNs are unable to capture spatial and temporal data, primarily because of how FCNs process data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' FCNs deal with data in a one-dimensional spatially-invariant format.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Therefore it is hard for FCNs to capture spatial information Livingstone et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Another issue with FCNs is that they cannot outperform numerical methods in low-dimensional spaces Lagaris et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Lastly, FCNs primarily depend on a specific 3 Figure 1: The above figure represents the logical flow of how PDEs can be solved using various methods, highlighting existing ML techniques and various families of neural operator based techniques discretization of the grid from which training points are sampled and hence need to be retrained each time the discretization changes Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2020b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Convolutional neural networks While FCNs can approximate PDEs, they fail to capture potentially vital information, such as spatiotemporal features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' CNNs are the key to learning spatial features O’Shea & Nash (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Traditionally, the CNN architec- ture has been utilized in image processing tasks Browne & Ghidary (2003), Naranjo-Torres et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2020), Ciresan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2011), but have in recent years been trained to solve PDEs due to their ability to learn complex patterns in image-formatted data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' CNNs have been shown to be able to approximate the solution of elliptical PDEs Winovich et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2019) and have been the foundation for hybrid architectures such as PhyGeoNet Gao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Standard CNN architecture differs from FCN architecture by utilizing three distinct layers: convolutional layers, pooling layers, and fully-connected layers O’Shea & Nash (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' As the name suggests, the convolutional layers apply convolution to the input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This allows the network to learn local features in an image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The pooling layers are applied to convolutional layers in order to further generalize the local features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Pooling can be a function such as max, min or avg, which is applied to subsets of the input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The resulting matrix will have fewer elements than the original.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Lastly, the fully connected layers are utilized in order to aid with classification problems Aghdam & Heravi (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' ConvPDE-UQ is a framework that utilizes CNNs to construct lightweight numerical solvers that can solve elliptical PDEs Winovich et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' These lightweight solvers utilize the representative power of a neural net- work to approximate the solution to a PDE on a general domain in a single forward pass by using Green’s functions Winovich et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This allows the solvers to be more computationally efficient than conventional solvers such as FEMs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' One key limitation of this architecture is that it cannot be easily extended to modeling systems that are inhomogeneous and contain mixed boundary conditions Winovich et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Physics-informed geometry-adaptive convolutional neu- ral networks (PhyGeoNet) are an extension of CNNs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This architecture utilizes convolutional neural networks (CNNs) with a physics constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' CNNs are often utilized when one needs to learn spatiotemporal data O’Shea & Nash (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The key disadvantage of CNN architecture is that it can only handle rectangular grids;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' hence utilizing a pure CNN architecture on complex geometries is challenging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' PhyGeoNet is a physics-constrained CNN architecture capable of learning solutions to parametric PDEs on irregular geometries and nonuniform grids without the need to utilize labeled data Gao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This architecture is capable of learning the solutions to parametric PDEs by utilizing an elliptic mapping from the irregular physical domain to a regular reference domain Gao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' While PhyGeoNet shows promise in solving PDEs, the architecture is constrained by the fact that it is only capable of solving steady-state parametric PDEs and thus cannot be applied to dynamic systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Theory Intro ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='of Neural Operator ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Fourier Neural ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Operator ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='DeepONet ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Current Architectures ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Darcy Flow ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Physics-Informed ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Navier Stokes ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Neural Operator ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Neural Operator ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Climate Modeling ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='PDEs ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Application ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Discretization ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='of PDEs ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Turbulent Flow of Fluids ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Variant ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Pros ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Molecular Dynamics ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Limitations ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Solving PDEs ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Finite Element ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='CNNs ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Methods ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='FCNNs ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Traditional Methods ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Current Architectures ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Finite Differential ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Neural-FEM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Methods ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Conventional Tools ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='PINNs ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Time ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='to Solve PDEs ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Current ML Tools ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Limitations ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Resolution ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Resolution ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='to Solve PDEs ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Learning Instances ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='of PDE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Limitations ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='NN Map between ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Finite Spaces3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Physics informed neural networks PINNs are a neural network architecture that utilize the laws of physics to help guide their training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' In deep learning paradigms, neural networks learn by minimizing a convex loss function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' In machine learning, the loss function typically contains the loss (ex: L2-Norm) and a regularization term which helps alleviate the risk of overfitting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' With PINNs, the loss function also con- tains a knowledge-based term Raissi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The knowledge-based term allows one to incorporate existing physical laws into the training of the neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This allows for a mapping that allows the neural network to be consistent with existing physical laws.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Since PDEs most frequently define physical laws, PINNs can be used to learn the solution to PDEs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The loss func- tion in PINN architecture embeds boundary conditions, initial conditions, PDE residuals for a finite amount of points, and space-time domain boundary Cuomo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022) into the knowledge-based term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Upon training, PINNs are able to map between an input point in the integration domain and the estimated solutions of the dif- ferential equation at that point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Unlike other supervised learning techniques, PINNs are capable of taking into account the underlying physics of the problem instead of just using existing data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Traditional PINNs have shown limited accuracy in solving PDEs, especially on multi-scale dynamic systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' A variation that is capable of addressing this limitation is gradient-enhanced PINNs (gPINNS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Traditional PINNs use the knowledge-based term to encode the PDE residual into the loss function;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' however, gPINNs also utilize the gradient information of the PDE residual in the loss function Yu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022), allowing for much more accurate results after training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Another typical issue with PINNs when solving nonlinear PDEs is when those PDEs have discontinuous solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Hybrid PINNs utilize ideas from convolutional neural networks (CNNs) and FVMs in their architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Instead of using automatic differentiation to solve the PDE, this method utilizes an approximation to the differential operator, hence allowing the architecture to have a convergent rate and avoiding the problem of discontinuity Fang (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Neural operator based models To address the challenges posed by traditional neural network-based architectures in solving PDEs, a new learn- ing mechanism called operator learning was proposed by Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2020a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The intuition behind operator learning was to design mesh-independent, resolution-invariant models to solve PDEs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This means one could train a model on a 40x40 matrix but test it against 256x256 ma- trices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The primary difference between a neural network and a neural operator is that while a neural network learns the mapping between finite-dimensional spaces, a neural operator is designed to learn the mapping between functional spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The key characteristic of a neural operator is that it attempts to learn the mapping between two infinite dimensional spaces using a finite collection of input-output pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The input could be a Gaussian field, and the output could be the solution of the PDE on the field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' An important advantage of neural operators is that they are mesh-independent because a single set of parameters may be used for different discretizations Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2020a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The training requires only the input- output pairs and no knowledge of the PDEs being learned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Let G+ be a (potentially non-linear) map from the input space A to the solution space U, where A and U are separable Banach function spaces and take the values Rda and Rdu, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', if we draw aj and the corresponding solution uj from A and U respectively, then uj = G+(aj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The neural operator is a parametric map that aims to approximate G+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This approximation is the operator G denoted as G: A x Θ −→ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The learning problem would then be an optimization problem where the cost function C : U × U → R is an L2 Bochner norm-based distance generating function defined on U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The problem then becomes minθ∈ΘEa[C(Gθ(a), G+(a)], which would be the discrepancy in the actual map versus the operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' While a neural network learns a map from the input domain D to an element in U using samples of input-output pairings {xi, u(xi)}n i=1, a neural operator learns a map- ping between A to U using samples of {ui, ai}n i=1 The algorithm, as proposed in Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2020a) is an itera- tive approach and is explained in the following subsections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Operator Learning As presented in Kovachki et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021), operator learning is a 3-step process - lifting, iterative kernel integration, and projection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The first step involves mapping the in- put a to the first hidden state v0 by a pointwise function Rda −→ Rdv0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This is performed by a local operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' dv0 is chosen such that it is bigger than da.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The second step, or the iterative Kernel Integration, is when each hidden rep- resentation is mapped to the next hidden representation by summing a local linear operator, a non-local integral kernel operator, and a bias function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The sum has a fixed point-wise non-linearity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' {vt : Dt −→ Rdvt } −→ {vt+1 : Dt+1 −→ Rdvt+1 }, for all t = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='T − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The final projec- tion step is when the representation corresponding to the final hidden layer, vT , is mapped to the output u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' in this case, the space dvT is larger than the space du.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This oper- ation is once again performed by a local operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' These sequences of operation are very similar to the functioning of a finite-dimensional neural network, and as presented in 5 Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2020a), they can be mathematically written as follows: Gθ = Q◦σT (WT −1+κT −1+bT −1)◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='◦σ1(W0+κ0+b0)◦P (2) In equation 2, P and Q are the lifting and projecting maps, respectively, acting point-wise, projecting to higher and lower dimensional spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' W are the point-wise linear op- erations, κ are the kernel integral operations, b are the biases, and σ is some non-linear activation function acting point-wise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' DeepONet Deep operator network (DeepONet) is formulated around the observation that a neural operator is a universal operator approximator Lu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The universal approximation theorems for neural operators are derived following the key result that a single non-linear layer in a neural network is capable of approximating any continuous operator Chen & Chen (1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The DeepONet architecture consists of two encoder networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The first encoder is used for encoding the input function and the second encoder is used for encoding the location of the output functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This architecture has been shown to significantly outperform traditional fully connected neural network architecture on dynamic systems and PDEs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The key strength of this architecture lies in its capability of accurately approximating complex mappings between infinite dimensional Banach spaces, hence making it a natural choice for being utilized in learning the solution operator to a PDE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' While the original DeepONet architecture has shown its ability to learn PDEs, its main downside is the high amounts of training data required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Oftentimes, generating this data can be very computationally expensive, and even with large training datasets, DeepONet may fail to learn the underlying physical principles of the equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Physics-informed DeepONets are advanced DeepONets that utilize these physical principles as a regularization mechanism, hence leading to predictions that abide by the governing physical laws described.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Automatic differentiation is used to integrate these physical laws as penalties while the model trains Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' DeepONet and its variants have been used to solve a plethora of problems, including material physics Goswami et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022), electrodynamics Cai et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021a), and aerothermodynamics Sharma Priyadarshini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' A particularly interesting use of DeepONet comes from utilizing this model for medical image simulation, partic- ularly for aortic dissection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Aortic dissection is a lethal condition which is characterized by the tear of the aorta, which is a blood vessel used to deliver oxygen to the rest of the body DeSanctis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (1987).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The DeepONet ar- chitecture has been used to predict dissection progression in a heterogeneous aortic wall, which is a very complex physical environment Yin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Since the DeepONet architecture is capable of learning the non-linear operator between infinite dimensional Banach spaces, it is capable of learning oscillatory continuous functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' These types of functions are often found in earthquake physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' An interesting problem that DeepONet has been able to solve is how buildings respond to seismic excitation over a certain time period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The DeepONet architecture utilizes scaling techniques that convert a high-frequency function to a low-frequency function, which then allows this architecture to learn a range of frequencies for the low-frequency function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This multi-scale architecture, known as multi-scale DeepONet, has allowed scientists to map seismic excitation to build- ing responses Liu & Cai (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Graph neural operator Graph neural network is a machine learning architecture that is built upon the traditional neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The additional information that a graph neural network aims to capture are interactions between constituent objects, which in the case of the PDE, would be the kernel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Tra- ditional neural networks do not capture such relation- ships.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' A graph neural network represents these relation- ships as edges between features, which are represented as vertices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Learning relationships between these objects oc- curs through a process called message passing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This tech- nique allows nodes to learn the information held by neigh- boring nodes through an aggregating function, which com- bines the embeddings (feature vector) of the neighboring nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' An update function learns the new embeddings for the nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This process is described in equation 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' vt+1(x) = � y∈N(x) F(hx, hy, exy) (3) In the above equation, the new embedding is an aggregate function of the current embedding with the embeddings of all neighboring nodes and F is an arbitrary function of hidden layer embeddings hx, hy and the edge exy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Message passing allows the network to learn the kernel, which in turn approximates the solution to the PDE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Graph neural networks, however, ignore long-range rela- tionships because of scaling issues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' These approximations of relationships are ineffective when trying to solve a PDE since they lead to issues with generalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' To capture long-range relationships, Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2020c) discuss multipole methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' They propose an architecture of linear complexity called multipole graph neural operator, which captures long-range relationships between objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 6 Figure 2: Architecture of the basic Fourier neural operator The model recursively adds points to the kernel matrix and is equivalent to the multi-level formulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The long-range relationships are modeled through the addition of inducing points, which form sub-graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Kernel operator Kernel integration is a key component of the iterative learning process that occurs in the Graph Neural oper- ator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This process helps learn the mapping between func- tion spaces in PDEs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The process is described in equation 18 and is equivalent to message passing in graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Every spatial point in the discretized input can be represented by x-y coordinates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The values at that point can be repre- sented as functions a(x) and a(y) from the input function space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' A kernel operator can be defined to act on these data values in the following manner (Kau)(x) = � D kφ(a(x), a(y), x, y)u(y)dy (4) Equation 4 can then be converted to an iterative neural network-based architecture in equation 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' v(t) = σ((W + Ka)v(t−1)) (5) 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Kernel decomposition The interactions between the nodes of the graph are di- vided based on their range of interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The decompo- sition of a single kernel into a series of kernels, each rep- resenting a different range of interaction, is the feature re- sponsible for the linear complexity of the graph neural op- erator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The graph is broken down into L levels, where the first level represents the shortest level interactions while the last level, L, is the coarsest and represents the longest range of interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The first level is full rank but very sparse, but the last level is dense but of low rank.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The coarse graph is derived recursively from the dense graph through the inducing points method or Nystrom approxi- mation, which is shown in equation 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Knn ≈ KnmKmmKmn (6) Nystrom approximation allows the graphs to be unstruc- tured and of arbitrary sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' V cycle Algorithm The authors Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2020c) proposed V-cycle algorithm to iteratively and efficiently compute the matrix factoriza- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The algorithm contains two passes - the downward pass, where the algorithm starts with the fine graph and updates it by applying a downward transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' In the up- ward pass, the algorithm starts with the coarse graph and updates it by applying an upward transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The two passes are defined in equations 7 and 8, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Downward pass ˇv(t+1) l+1 = σ(ˆv(t) l+1 + Kl+1,lˇv(t+1) l ) (7) Upward pass ˆv(t+1) l = σ((Wl + Kl,l)ˇv(t+1) l + Kl,l−1ˆv(t+1) l−1 ) (8) The above process facilitates multi-resolution matrix fac- torization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This process, combined with Nystrom approx- imation, leads to O(m) complexity, which has been proven through empirical studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The kernel integration and the V-cycle algorithm allow the GNO to learn mesh invariant solutions to parametric PDEs and make it invariant to dif- ferent discretizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' However, in problems with regular meshes, GNO architectures are outperformed by Fourier neural operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Fourier neural operator Fourier neural operators (FNOs) are another class of neural operators that use the properties of the Fourier transforms to perform the calculation of the integration operation at each layer of the neural operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The motivation behind using Fourier transforms instead of convolution is that they are faster, and PDEs are inherently continuous, and representing them in Fourier space is more efficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Convolution in physical space is equivalent to multiplication in Fourier space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Linear transformations are therefore performed in the Fourier space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' However, activation functions are applied in the original space because they help recover non-periodic boundaries, which are left by the Fourier space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The entire pipeline is shown in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 7 S FFI Linear 1FFT Linear Transform Transform IFFT Lift Fourier Layer Fourier Layer Non- Non- Project Linearity Linearity7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Architecture Fourier neural operator utilizes the operator learning tech- nique implemented by Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2020a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' It has been applied in spatial and temporal settings, such as modeling the flow of fluids with time, specifically for weather modeling and forecast.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' As specified in Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2020a), The iterative updates to a state vi to reach the state vi+1 is denoted by equation 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' vi+1(x) = σ(Wvi(x) + κvi(x)) (9) In the above equation,κ denotes the kernel integral trans- formation which is defined in equation 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' [κvt](x) = � D κ(y)vt(y)dy (10) The kernel integral operator is replaced with a convolution operator defined in the Fourier space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This becomes the basis for the Fourier neural operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Equations 11 and 12 define Fourier transform and inverse Fourier transform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (Ff)j(k) = � D fj(x)e−2iπ⟨x,k⟩dx (11) (F−1f)j(x) = � D fj(k)e2iπ⟨x,k⟩dk (12) The kernel integral operator can be represented as follows [κvt](x) = F−1(F(κ)F(vt))(x) (13) In equation 13, F(κ) is the Fourier transform of a periodic function κ and can therefore be approximated as a Fourier series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' By truncating the series at a maximal number of modes kmax, the series can be represented with a finite-dimensional parameterization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Variants of Fourier neural operator The neural operator has been fine-tuned and modified for specific instances and situations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The following section dis- cusses the different variations of the basic neural operator architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Figures 3 and 4 illustrate the flow of various neural operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 5 provides links to the source code for various neural operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' GANO and UNO Generative adversarial neural operator Rahman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022a) and U-shaped neural operator Rahman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022c) are the operator variants of Generative adver- sarial networks and U-Net, which are typically used for generative modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' These two architectures allow for memory-efficient implementations of deeper neural operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The generator network of GANO and the UNO network have similar architecture, comprising an encoder network and a decoder network with skip connections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' However, in this paradigm, the input function spaces are mapped to vector-valued function spaces with steadily decreasing domains in the encoder network and increasing domains in the decoder network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' GANOs also use a discriminator neural functional, anolo- gous to the discriminator network in a GAN, to facilitate adversarial learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This discriminator differentiates between the generated solutions to the PDE and the ground truth PDE solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This network is optimized for Polish function spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The adversarial learning is done using Wasserstein formulation, which allows for a bounded norm in infinite dimensional space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This architecture is both resolution and discretization invariant, similar to the basic FNO an is good at learning probability measures on function spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Another advantage of GANOs over regular GANs is that they do not suffer from modal collapse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Adaptive Fourier neural operator AFNO is a powerful sequence-to-sequence generative model similar to a Vision Transformer that is built by stacking individual operator networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The network learns the representations through token mixing in the Fourier domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The model treats tokens as continuous objects in infinite space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The network has a block diagonal structure, where the weight matrix is divided into weight blocks and the kernel operates on them independently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This architecture is the basis for FourcastNet Pathak et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022), a weather prediction model that has shown tremendous promise in forecasting weather, matching the accuracy of ECMWF Integrated Forecasting System.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Weather systems are applications of complex physical entities that can be modeled as PDEs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Generative models such as VFiT and FourCastNet can be used to model other complex physical systems such as meteor trajectories, volcanoes, predicting the deformations on the surface of space vehicles, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Implicit Fourier neural operator Implicit Fourier neural operator (IFNO) was designed by You et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022) address some of the limitations of the basic Fourier neural operator network such as it’s ten- dency to overfit as the number of layers increases and it’s susceptibility to vanishing gradient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' IFNO is an integral operator based architecture where the operator learning is defined to be an implicit mapping, modeled as a fixed point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Through this technique, the PDEs can be implicitly expressed as a set of equations that can be solved using methods such as the Newton-Raphson method, where ap- proximations to the solution V are successively improved until a precise value is achieved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This process is defined in equation 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' V[l + 1] = V[l] + R(V[l], F) (14) 8 Figure 3: The logical pipeline of the main neural operator architectures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The above figure highlights the differences in the building blocks of the neural architecture Figure 4: The logical pipeline of geo-FNO, implicit FNO and mul- tivariate FNO, which are all modified versions of the basic neural operator architecture where V[l] is the current approximation of the solution, R is the operator that improves the approximation, and F is the input vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The network update equation is denoted in equation 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' f(x, ∆t) =f(x, ∆t) + σ(Wf(x, ∆t) (15) +F−1(F(κvt)F(f(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' ∆t)))(x) + b) The key difference between this method and the vanilla FNO is that, in this case, the parameters of the hidden layers are considered independent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The total number of trainable parameters does not depend on the number of layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' As the layer deepens, it becomes the analog of discretized ordinary differential equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The weight update is simply a time discretization of the ODE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' You et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022) further showed that this architecture can model heterogenity and material defects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' These claims were empirically verified against hyperelastic, brittle and anisotropic materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The specific applications where this method showed promising results were as follows Porous medium flow in a 2-dimensional setting with heterogenous permeability field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Fiber material deformation in hyperelastic and anisotropic settings, represented by the Holzapfel- Gasser-Odgen (HGO) model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Two boundary condi- tions were considered - the Dirichlet boundary with uniform uniaxial displacement applied on the right, and top edges and the Neumann boundary with uni- axial tension applied on the top edge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Fracture mechanisms in brittle glass ceramics, which as modeled as the Darcy-Flow equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Geo Fourier neural operator Geo-Fourier neural operator is an architecture developed by Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022) and is designed to be ’geometry-aware’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This architecture addressed the input limitations of regular FNO, which is that it only works with rectangular domains with uniform meshes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' FNOs were made to work in irregular domains by embedding them within larger rectangular domains, however, this was an inefficient way to represent irregularity, and geo-FNO was designed to fix this issue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Rather than embedding in a larger regular mesh, geo-FNO deforms the non-uniform meshes into uniform meshes on which FFT can be applied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This architecture can be used when the input is represented by non-uniform meshes or point clouds or if the input domain is represented as signed distance functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The network performs two operations - deforming the non-uniform input into a uniform mesh, followed by operator learning in latent space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Traditional methods do not work when the input is deformed because the deformed mesh in Fourier space does not correspond to the original system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='a(x) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Lantent space ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Lift ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Project ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='u(x) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='feature learning ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Fourier Neural Operator (FNO) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='a(x) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Vt + 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Dense ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Dense ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='(x)n ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='V-cycle ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Kernel convolution ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Graph Neural Operator (GNO) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='L-layers ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Patch and ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Linear ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Channel ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='a(x) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Spatial ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='u(x) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='positional ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='mixing ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='mixing ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='decoded ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='embedding ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='FFT ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Adaptive Fourier Neural Operator (AFNO)Latent ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='a(x) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Deform ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='(x)n ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Deform ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Lift ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='space ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='learning ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Geo-FNO ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Iterative ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='a(x) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='u(x) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Lift ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Project ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='fourier layers ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='IFNO ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Decomposition ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='NN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Reconstruction ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='NN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Filters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Filters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='a(x) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='u(x) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='NN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='NN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Multivariate-FNOHowever,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' since the FNO approximates through training data,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' it is not constrained by this limitation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The deformation from the physical space to the computa- tional space is done using an adaptive moving mesh defined by a coordinate transformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Geo-FNO can be used in both structural and fluid mechanics problems, and it per- forms well on Euler’s Equation for flow over the airfoil and the plastic forging problem defined by equation 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' ρs ∂2U ∂t2 + ∇.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='ς = 0 (16) In the above equation, ρs refers to the mass density, U is the displacement and ς is the stress tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' However, geo-FNOs have only been tested on regular homeomorphic topologies and more studies are needed to exhaustively determine the range of problems that can be solved by this architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Multiwavelet neural operator The motivation for this architecture stems from the fact that the solution to any PDE can be found by learning the inverse operator mapping from input to output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' To do this, the authors of Gupta et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021) suggest decomposing the kernel using fine wavelets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Embedding the inverse wavelet filters allows for projecting the kernel into multiwavelet polynomial bases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Repeated multi- wavelet transform aids in learning complex dependencies and resolution-independent solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The purpose of this architecture is to achieve compact representations of the operator and to exploit orthogonality properties & vanishing moments to capture complex information about physical systems and data streams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The model maps the multiwavelet transform of the input to the output at a very fine scale and has two components - the decomposition network and the reconstruction network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The network computes multiwavelet coefficients of the output at a coarse level using four neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The reconstruction network uses the output of the four networks to compute the multiwavelet coefficients of the output at a finer level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This has a recurrent structure, and it continues until the finest level is achieved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This model was empirically shown to perform well on the 2D-Navier Stokes equation, where the wavelet transform was applied to velocity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' It has also shown promise in generating finer resolution outputs when trained on low-resolution data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' However, it cannot generalize to high frequency signals from low frequency ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Spectral neural operator Spectral neural operator (SNO) is a recently proposed neural architecture that has been designed to address opaque outputs and aliasing errors which can be poten- tially observed in vanilla FNOs due to parameterization of the output function Fanaskov & Oseledets (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This model is designed to not suffer from aliasing errors and perform lossless operations on functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Typically, when FNOs are applied on inputs with coarser grids, then, the activation functions mitigate these aliasing errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' However, when the grid is refined, these errors disappear but FNOs would try to mitigate them further, causing outputs to deviate from the ground truth, resulting in errors in the final solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' To elaborate further, any function when represented using Fourier Series with k < |N| terms, can be structured on a uniform grid of 2N + 1 points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' However, when activation function is applied, the output will have higher frequency points and this means, the grid will need to have more than 2N + 1 points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' However, while training, the FNO will learn to fix these errors in representing higher harmonics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' In situations where the higher harmonics also fit the grid with 2N + 1 points, the bias of the FNO induced during the training will cause it to try to fit the non-existent high harmonics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' To fix this issue, Spectral neural operator is defined with a fixed number of harmonics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' It also decouples the inter- polation process from the function mapping process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The mapping is proposed in equation 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' � i gi(x)di = � i gi(x)bi (17) In the above equation, gi(x) are either complex exponen- tial or Chebyshev polynomial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' di and bi can be stacked finite-dimensional vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Spectral neural operator performs the above mapping and, importantly, preserves the structure of the series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' To perform this mapping on finer grids, Chebyshev or Trigonometric interpolation should be used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' SNO has been shown to outperform vanilla FNO on in- tegration, differentiation, parametric ODE, elliptic equa- tion, KdV equation and non-linear Schrodinger equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' However, it does not perform as well on Burger’s equation with low viscosity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The limitations of this version of SNO are that it is subject to Gibb’s phenomenon and can only work on smooth input and output data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Basis functions used for SNO are non-adaptive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Physics Informed neural operator In this section, we will discuss a hybrid neural operator ar- chitecture called physics informed neural operator (PINO), which learns the mapping between function spaces through data-driven training while being subjected to physics con- straints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This architecture is not to be confused with physics informed neural network (PINN), which learns the solution function as opposed to the solution operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 10 PINO was designed to address the following key limita- tions of existing approaches Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021b) Data-driven methods perform poorly if the training data is noisy or insufficient Physics-based approaches require a lot of compu- tation power and may not optimize when the con- straints are more complex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Due to the fact that PINO learns the solution operator as opposed to just the solution to a particular instance of the PDE, this architecture is resolution invariant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This means that even when the operator is trained on low-resolution or coarse data, it accurately manages to predict the solution to high-resolution test instances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Furthermore, low-resolution data can be combined with high-resolution PDE constraints without any degradation in accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' It has been empirically shown Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021b) that PINO has better generalization capabilities than regular FNO and requires far less training data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' PINO architecture comprises of a sequence of linear integral operators followed by non-linearity, which allows the operator to learn non-linear continuous operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Operator learning, however, is done with two loss func- tions - a data-based loss function, similar to the ones used by other neural operators, and a physics-based loss function, used by PINN-based architectures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The data-based loss function is given by equation 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Ldata = ||u − Gθ(a)||2 = � D (u(x) − Gθ(a)(x))2dx (18) In the above equation, u denotes the actual solution, Gθ represents the operator and Gθ(a) represents the predicted solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The physics-based loss function is defined on both station- ary and dynamic systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' A simple stationary system may be defined with bounded domain D as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' P(u, a) = 0 in D ⊂ Rd (19) u = g in ∂D The physics-based loss function for the stationary system presented in equation 19 is defined as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Lpde = ||P(a, uθ)||2 L2(D) + α||uθ|∂D − g||2 L2(D) (20) In equation 20, P is a partial differential operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' a is the instance and u is the solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' uθ is the neural network parameterized by θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Let a dynamic system be defined as follows du dt = R(u) in D × (0, ∞) (21) u = g in ∂D × (0, ∞) u = a in ¯D × 0 In equation 21, a = u(0) is the initial condition, R is the non-linear partial differential operator defined on Banach spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The Loss on this system is calculated in equation 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Lpde(a, uθ) = ||duθ dt − R(uθ)||2 L2(T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='D) + (22) α||uθ|∂D − g||2 L2(T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='∂D) + β||uθ|t=0 − a||2 L2(D) The above losses allow PINO to be constrained by physics while also being trained with data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Furthermore, instance- wise fine-tuning is done after training by using an operator loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' To compute the exact derivatives for the loss func- tions, point-wise differentiation approaches are used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' PINO architecture, when fine-tuned, has shown promise in learning specific equations such as Long Temporal Tran- sient Flow, Chaotic Kolmogorov Flow, Transfer Reynolds Numbers and Lid Cavity Flows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' However, it has yet to be tested on different kinds of geometry and it remains to be seen whether it can function well on irregular geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Applications in physics problems In this section, we discuss various applications of neural operators in material physics problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Table 4 sum- marizes the advantages, limitations and applications of various neural operator architectures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Figure 11 highlights the key applications where neural operators have been successful in outperforming the conventional methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Solving partial differential equations We shall first discuss the key PDEs for which neural operator architectures have been designed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' A large part of this subsection is devoted to exploring the Navier-Stokes family of equations due to their broad range of applica- tions, which will be described in the following sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Figure 5 depicts the relative errors of various machine learning models in learning these PDEs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The Navier-Stokes family of equations were developed to model the behavior of viscous fluids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' They represent the conservation of mass and momentum of Newtonian Fluids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The 2D Navier Stokes equation is described in equation 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' ∂w(x, t) ∂t +u(x, t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='∇w(x, t) − ν∆w(x, t) = f(x) (23) ∇.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='u(x, t) =0, x ∈ (0, 1)2, t ∈ [0, T] w0(x) =w(x, t = 0), x ∈ (0, 1)2 In the above equations, w represents the vorticity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The neural operator learns to map the vorticity up to time T to vorticity at a time t>T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' These equations are derived from Newton’s second law to fluid mechanics, under the assumption that stress is dependent on viscosity and pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Navier Stokes Equations have various applications beyond modeling the flow of a liquid through 11 Figure 5: The figure highlights the performance of neural operator-based architecture against neural network-based architectures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (a) represents how the relative error decreases with the number of Epochs on the Navier-Stokes Equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' It can be seen that FNO outperforms other architectures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (b) represents how the relative error varies with resolution on Burgers’ Equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' FNO has a significantly lower error than Multipole Graph neural operator (MGNO), Graph neural operator (GNO), Low-Rank neural operator (LNO), etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (c) shows that FNO outperforms all other models on Darcy Flow Equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Image taken from Kovachki et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021) a pipe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' They are also useful in aerodynamics by modeling the flow of air around a wing, and they can even be used to model weather Pathak et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' One of its derivatives, the Burgers equation, is particularly useful for modeling the one-dimensional flow of fluids as well as wave propagation and even vehicular traffic movement Musha & Higuchi (1978);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Taigbenu (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Another derivative of Navier Stokes, known as Darcy Flow, is useful for modeling the flow of fluids through a porous medium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Because of the wide range of physical phenomena that can be modeled by these three equations, methods of solving them are critical for several academic and commercial applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' However, these equations, which take the form of non-linear PDEs, are expensive to solve numerically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' In the following subsections, we will discuss the em- pirical results of neural operators on these families of PDEs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The following two sections describe the Poisson equation and Darcy flow, which belong to the class of equations described in (?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=') and the FNO approximates the maps G+ : f → a and G+ : u → a respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The remaining sections deal with evolution equations where a = u0 = u(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', 0) are the initial conditions and u(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', t), the evolved states at a fixed time t, are the solution function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The operator approximates a map G+ : a = u(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', 0) → u = u(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', t) for some t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The datasets, ie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' {fi, ui}n i=1 or {ai, ui}n i=1 as discussed earlier are generated using appropriate numerical solvers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Burgers equation The Burgers equation is a non-linear PDE, which is rep- resented in equation 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' ∂tu(x, t) + ∂x(u2(x, t)/2) =ν∂2 xu(x, t) x ∈ (0, 1), t ∈ (0, 1] (24) u(x, 0) =u0(x) x ∈ (0, 1) with periodic boundary conditions where the initial condition a = u0 ∈ L2 per((0, 1);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' R) is an element in the class of Bochner measurable functions whose norms ∥f∥(0,1);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='R lie in the standard L2 space and ν ∈ R+ is the viscosity coefficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' We aim to learn the operator mapping the initial condition to the solution at time t = 1, G+ : L2 per((0, 1);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' R)×R+ → Hr per((0, 1);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' R) defined by u0 → u(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', 1) for any r > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2020a) showed that FNO architectures out- performed other architectures (Traditional CNN based architectures, autoencoder, Graph neural networks) and provided the following loss measures against the Burgers Equation, as shown in table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Model s=256 s=512 s=1024 s=2048 FNO 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0149 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0158 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0160 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0146 MGNO 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0243 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0355 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0374 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0360 GNO 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0555 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0594 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0651 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0663 DeepONet 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0569 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0617 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0685 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0702 Table 1 Performance of different neural operators against Burgers Equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The data has been taken from Kovachki et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021) 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Darcy Flow equation Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2020a) trained a Fourier neural operator to learn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='the solution operator to the steady state 2D Darcy Flow ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='FNO-3D ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='FNO-2D ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='ResNet ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='U-Net ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='IINN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='TNN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Relative error ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='TF-Net ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='+GCN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='+RBM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='10-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='FCN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='10-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='+FCN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='PCANN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='+PCANN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='+DeepONet ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='+DeepoNet ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='GNO ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='TGNO ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='TLNO ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='+LNO ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='10~2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='MGNO ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='+MGNO ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='TFNO ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='+FNO ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='10-2 d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='10-2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='10~3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='85 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='141 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='211 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='421 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='300 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='256 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='512 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='1024 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='2048 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='4096 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='8192 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='Epochs ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='resolution ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='resolution ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='(a) Navier-Stokes Equation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content="(b) Burgers' Equation " metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='(c) Darcy Flow EquationEquation,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' shown in equation 25,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' with a Dirichlet boundary a ∈ L∞((0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 1)2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' R+), where a is the diffusion coefficient and f ∈ L2((0, 1)2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' R) is the forcing function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' −∇.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (a(x)∇u(x)) = f(x) (25) Table 2 highlights the performance of various neural oper- ator architectures against the Darcy Flow equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Model s=85 s=128 s=141 s=211 s=256 s=421 FNO 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0108 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0111 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0109 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0109 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0107 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0098 MGNO 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0416 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0547 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0428 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0428 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0542 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0420 GNO 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0346 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0332 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0342 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0369 DeepONet 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0476 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0479 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0462 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0487 UNO 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0075 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0072 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0070 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0068 MWT 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0074 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0072 Table 2 Performance of different neural operator-based architectures against Darcy Flow Equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' It can be seen that UNO outperforms other models, with Multiwavelet models (MWT) having similar perfor- mance values as UNO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The values represent the relative L2 error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The data has been taken from Kovachki et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021), Gupta et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021) and Rahman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022c) 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Navier Stokes equation The Navier-Stokes equation is defined as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' ∂tw(x, t) + u(x, t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='∇w(x, t) = ν∆w(x, t) + f(x) (26) In equation 26, u ∈ C([0, T ];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Hr per((0, 1)2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' R2)) for any r > 0 is the velocity field, w = ∇ × u is the vorticity, w ∈ Lper((0, 1)2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' R) is the initial vorticity, ν ∈ R+ is the viscosity coefficient, and f ∈ L2 per((0, 1)2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' R) is the forcing function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2020a) aims to map the vorticity at a given time T to vorticity at a later time in the future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' They argue that vorticity is more challenging to model than velocity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Table 3 contrasts the performance of FNO and UNO on the 2D and 3D variants of the Navier Stokes equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Model ν=1e-3;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' ν=1e-4;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' ν=1e-5;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' T=50 T=30 T=20 FNO-3d 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0086 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='1918 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='1893 FNO-2d 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0128 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='1559 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='1556 UNO-3d 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0080 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0830 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='1120 UNO-2d 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0050 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0590 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0700 Table 3 Performance of FNO and UNO architectures against Navier Stokes Equation at fixed N = 1000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' It can be observed that UNO outper- forms FNO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The values represent the relative L2 error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The data has been taken from Rahman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022c) Kovachki et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021) 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Flow equations In their work Wen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022) explore the possibility of applying FNOs to solve multiphase flow equation, specif- ically with CO2 and Water, given by the following equa- tions 27 and 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' ∂(ϕΣpSpρpXCO2 p ) ∂t = −∇.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' [ΦCO2|adv + ΦCO2|dif] + qCO2 (27) ∂(ϕΣpSpρpXwater p ) ∂t = −∇.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' [F water|adv+F water|dif]+qwater (28) ϕ is the porosity, Sp is the saturation of phase p, and Xη p is the mass fraction of component η (water or CO2)in phase p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' For both components, the advective mass flux F η|adv is obtained by summing over phases p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' To solve this type of PDE, two types of variables are sampled - scalars and fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Field variables are horizontal & vertical permeability, porosity, and injection perforation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The domain of this problem is defined to be a bounded and open set and a modified version of FNO called U-FNO is proposed to solve this problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The primary difference between a regular Fourier layer and a U-Fourier Layer is that the U-Fourier layer also includes a U-Net embedded within it to enhance the rep- resentation power of the layer through local convolutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' However, since it is a CNN architecture, it is less flexible than an Operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Photoacoustic equation 2D Photoacoustic equation is another PDE that can be solved using neural operators, as shown by Guan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' A slight modification is made to the way the input is fed to the neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The training data is not normalized beforehand (a term that refers to centering the data w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='t its moments) with Gaussian normalization prior to training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' They show that both FNO-2D and FNO-3D can be used to solve this equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The former performs 2d convolutions in space for a fixed interval of time, which is then recurrently propagated in time to solve the next interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' In the case of 3D FNO, the network performs 3D convolutions in space-time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' They argue that while both can be applied, the FNO-3D performs better than its 2D counterpart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The photoacoustic pressure wave that Guan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021) used as the basis for their experiments was defined in equa- tion 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (∂tt − c2 0∆)p(r, t) = 0, p(r, t = 0) = x, ∂tp(r, t = 0) = 0 (29) Here p(r, t) is the photoacoustic pressure wave at position r and time t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' c is the speed of sound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Weather modelling Pathak et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022) discuss an FNO-based architecture - FourcastNet, which aims to model weather data at a res- 13 olution of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='25◦, which is approximately equal to the area of 900Km2 near the equator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' At such high resolutions, the predictions of their model can be compared with those of the Integrated Forecasting System (IFS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The key advantage of FourCastNet is that it is 45,000 times faster than NWP models on a node-hour basis, making it efficient for the generation of large ensemble forecasts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The model can be used to generate forecasts of massive weather phenomena such as Tornadoes, hurricanes, and extreme precipitations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Once trained, it consumes less power than IFS to generate forecasts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Some of the other advantages of the FourCastNet, as mentioned by Pathak et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022), are 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' It has eight times the resolution of typical DL-based weather modeling systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' It predicts lead times of up to a week with exceptional lev- els of accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' It is rapid and inexpensive once trained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' High resolution simulation of SARS-COV-2 replica- tion transcription complex dynamics The replication of the SARS-COV-2 virus is done primar- ily by a multi-domain protein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Conventional tools such as all-atom molecular dynamics (AAMD) have shown to be limited in representing the molecular dynamics in high resolution and timescale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Trifan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021) propose a graph neural operator based model to simulate the molecular dynamics from the AAMD data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The model was used to learn time-dependent conformational changes within the molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The GNO model was able to predict protein backbone conformation up to 5ps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Thermochemical curing of composites Figure 6: The figure represents the degree of cure predicted by the FEM method vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' the same done by FNO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The figure has been taken from Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021) The composite curing process is strongly dependent on the temperature gradient, which influences the strength and mechanical properties of the resulting material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021) propose a residual FNO architecture that learns the mapping between the curing cycle and the temperature history.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The model leverages the time resolution invari- ance property of neural operators and learns with smaller training datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The general heat transfer equation that the model learns is as follows Figure 7: These graphs represent the degree of cure predicted by FNO and FEM methods at x = 35mm and 21mm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' It can be observed that the two curves almost entirely overlap for the whole duration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The maximum prediction errors were within 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='02.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This figure has been taken from Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021) ρC ∂T ∂t = ∂ ∂x(λx ∂T ∂x )+ ∂ ∂y (λy ∂T ∂y )+ ∂ ∂z (λz ∂T ∂z )+Q (30) In equation 30, T is the temperature, ρ and C are density and specific heat capacity, respectively, λ is the directional thermal conductivity, and Q is the internal heat source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The boundary conditions used for this problem were Dirichlet boundaries, Neumann boundaries, and Robin boundaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The architecture comprises K Fourier Layers, similar to a ResNet neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The cure period is discretized into finite intervals and each cure cycle is sampled as a vector from the space of n discrete cycles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' A key advantage of residual FNO is that it leverages the domain knowledge to train the model using less training data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Rather than learning the mapping over the entire hypothesis space, it learns the mapping with respect to the specific input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' For instance, if Ta is the cure cycle and Gθ(Ta) is the learned temperature history, the network learns the difference Gθ(Ta) − Ta, restricting the size of the hypothesis space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The authors empirically showed that this is an efficient way to model the curing process due to the limited number of Fourier modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Using domain knowledge, the 14 (a) Degree of cure simulated by FEM 50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='8 40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='6 (ww)c 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='4 30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='2 20 0 100 200 300 400 500 (c) Degree of cure predicted by FNO 50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='8 40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='6 (ww)c 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='4 30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='2 20 0 100 200 300 400 500 Time (min)(b) Degree of cure at = 35mm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0 αFNO Degree of cure 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='8 α simulated 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0 0 50 100 150 200 (d) Degree of cure at α = 2lmm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0 α FNO Degree of cure 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='8 aα simulated 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0 0 50 100 150 200 Time (min)model was able to generate more accurate results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Figure 6 visually represents the differences between the degree of cure predicted by the finite element method and by the neural operator method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Figure 7 is the plot of the trends in predicting the degree of cure with time by the two methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Coastal flood Modelling Jiang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021) developed a digital twin of the earth’s coastlines using FNO to predict sea surface levels on coastlines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' They extended the basic FNO to learn multivariate dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' They built surrogate models of NEMO (Nucleus for European Modelling of the Ocean) and used these models to train the FNO to predict sea surface height.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Their empirical evaluations showed that FNO-based models are approximately 45 times faster than systems such as NEMO and are better suited for real-time predictions of coastal flooding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Continuous spatio-temporal dynamics Stochastic PDEs are used to model various physical sys- tems under the influence of randomness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Finite difference and spectral Galerkin methods require high computation power and high-resolution meshes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' SPDEs can be defined by the following equation dut = (Lut + F(ut))dt + G(ut)dWt (31) In equation 31, Wt represents a Weiner process, F and G are continuous operators and L is the linear differential operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' From the operator perspective, W is the contin- uous embedding of the spatio-temporal data stream.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' To solve the system, u(t), with the initial condition, is pro- jected into the latent space and the ODE solver solves it in the latent space, and the solution is mapped back into the original space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Salvi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021) have proposed a neural operator to solve the following equations Stochastic Ginzburg-Landau equation ∂tu − ∆u = 3u − u3 + ξ (32) u(t, 0) = u(t, 1) u(0, x) = u0(x), (t, x) ∈ [0, T] × [0, 1] Where the operator learns the solution along the noise path ξ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Stochastic Korteweg-De Vries equation ∂tu + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='1∂3 xu = 6u∂xu + ξ (33) u(t, 0) = u(t, 1) u(0, x) = u0(x), (t, x) ∈ [0, T] × [0, 1] This equation describes the propagation of non- linear waves on the surface of fluids under ran- dom perturbations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The equation becomes stochas- tic when the noise is defined to be the partial sum approximation of a Q-Weiner Process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Figure 8: This figure shows the simulation of Kolmogorov flow by the Markov neural operator (MNO) with an initial condition gener- ated from a random Gaussian field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The model captures the energy spectrum that converges to the cascade rate of k−5/3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Image taken courtesy of Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022) Stochastic Navier Stokes equation in 2D ∂tu − ν∆w = −u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='∇w + f + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='05ξ (34) This equation describes the incompressible flow of fluids under force.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' w refers to the vorticity and ν is the viscosity coefficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The noise is set to a Q- Weiner process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Disspative dynamics in chaotic systems Chaotic systems tend to be unpredictable because they are susceptible to minor perturbations Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' How- ever, their long-term trajectories depend on an invariant measure called the global attractor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This problem has been previously approached using recurrent neural networks but has only worked for very short trajectories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The dissipa- tivity and Markovian properties of these systems can be modeled using neural operator because they exhibit in- variance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Dissipativity can be described as a compact set into which all other bounded sets evolve over time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The solution operator maps these initial conditions into the so- lution set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' To train the neural operator, dissipativity is imposed on the mesh by augmenting data on the outer shell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The authors consider finite-dimensional Lorenz-63 system, infinite-dimensional Kuramoto-Sivashinsky equations, and Kolmogorov flows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' For their work, the authors limit themselves to ergodic systems, and the model does not make predictions outside the trained distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The operator learns the mapping in single time steps so that 15 vorticity,t=40 vorticity,t=80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='9 averagedovert=[0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='40] averagedovert=[o,80] 1010 1010 108 108 106 106 104 104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 102 prediction 102 prediction ground truth ground truth k^-5/3scaling k-5/3 scaling 100 100 100 101 102 100 101 102 wavenumber wavenumberModel Advantages Limitations Applications Fourier neural operator Faster Resolution invariant discretization invariant Data driven Doesn’t need to know the underlying PDE Zero shot Super resolution Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2020a) Parameterization may lead to opaque outputs and aliasing errors Fanaskov & Oseledets (2022) Only works on rectangular domains with uniform meshes Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022) Overfits with deeper networks Susceptible to Vanishing Gradient Rahman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022a) Constrained by availability of training data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021b) Burger’s Equation Darcy Flow Equation Navier Stokes Equation Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2020a) Coastal Flood modelling Jiang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021) Photoacoustic Equation Guan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021) Chaotic systems Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021a) Seismic wave progressions Yang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021) GANO/UNO Memory efficient implementations of deeper networks Optimized for Polish and Banach spaces Works well for bounded norms in infinite spaces Good at learning probability measures Don’t suffer from modal collapse Rahman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022a) Only works on rectangular domains with uniform meshes Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022) Parameterization may lead to opaque outputs and aliasing errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Fanaskov & Oseledets (2022) Volcanic deformations Rahman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022a) Video Interpolation Viswanath et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022) Dyadic Human motion prediction Rahman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022b) DeepONet Accurately approximate mappings between infinite dimensional banach spaces Learns oscillatory continuous functions Can learn the mapping from high frequency functions to low frequency functions Lu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2019) Requires high amount of training data May fail to learn underlying physical principles Material Physics Goswami et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022) Electrodynamics Cai et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021a) Aerothermodynamics Sharma Priyadarshini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021) Medical imaging DeSanctis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (1987) Effects of seismic waves on buildings Liu & Cai (2021) Graph neural operator Learns long range dependencies in graph like data Linear time complexity Discretization invariant Can learn Mesh invariant solutions Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2020c) Outperformed by Fourier neural operator on all PDEs with regular meshes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2020a) Burgers Equation Darcy Flow Equation Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2020c) Protein dynamics in SARS-COV-2 virus Trifan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021) PINO Doesn’t suffer from generalization errors that other operators suffer from Overcomes the limitations of purely physics based and purely data driven approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Incorporate constraints at different resolutions - combine coarse resolution data and high resolution data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021b) Has not been tested rigorously on High dimensional PDEs Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021b) Long Temporal Transient Flow Kolmogorov Flows Wave Equation Non-Linear Shallow Water Equation Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021b) Adaptive FNO Powerful generative model Pathak et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022) Efficient Token Mixer Adaptive Weight sharing among tokens Quasi-Linear Time Complexity highly parallelized Outperforms self-attention mechanisms Guibas et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021) Can be modified through wavelet transforms to better capture locality Guibas et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021) Climate Modelling Weather forecast Hurricane prediction Pathak et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022) Generative imaging Guibas et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021) geo-FNO geometry Aware Input can be irregular meshes, point clouds As fast as FNO but more efficient and accurate Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022) Only been tested on regular homeomorphic topologies Can be potentially expanded into PINOs but hasn’t been empirically verified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022) Structural and Fluid Mechanics Problems Euler’s equation for Airfoil flow Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022) Implicit FNO Doesn’t suffer from Vanishing Gradient Less prone to overfitting Hidden Layer parameters are independent Has the ability to learn material responses directly from DIC displacement tracking measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' You et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022) Has long training times despite having fewer parameters due to the iterative algorithm used for learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' You et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022) Model Heterogenity and Material Defects in anisotropic and hyperelastic setting Porous Medium Flow Fracture mechanisms You et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022) Multiwavelet FNO Compact Representation of data Resolution-independent solutions Learn complex dependencies Gupta et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021) Performance degrades if the Kernel used for data generation is changed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Cannot generalize to high frequency signals from low frequency ones Gupta et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021) Burgers Equation (1D) Navier-Stokes Equation (2D) Darcy Flow Equation (2D) Korteweg-de Vries Equation (1D) Gupta et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021) Spectral FNO Doesn’t suffer from aliasing errors Lossless operations on Functions Preserves the structure of the functions Fanaskov & Oseledets (2022) Doesn’t perform well on Burger’s Equations Suffers from Gibbs Phenomenon Only works on smooth input/output Basis functions used are non-adaptive Fanaskov & Oseledets (2022) Basic Integration,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Differentiation Parametric ODEs Elliptic Equations KdV Equation Non-Linear Schrodinger Equation Fanaskov & Oseledets (2022) Table 4 The table highlights the key advantages and limitations of the most recent operator-based neural architectures for solving PDE and other physics problems the input would be the system at time step t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' and the op- erator maps it to the system at time step t+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Long-term predictions are made with repeated composition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Figure 8 highlights the simulation of Kolmogorov flow in a 40 second span from an initial Gaussian Random Field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Seismic Wave propagation Earthquakes and seismic activities are described by various forms of wave equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' However, solving these equations can be computationally expensive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Yang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021) discuss neural operators as a way to overcome the computation constraints by training the networks on an ensemble of wave equation data represented as low-resolution matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The neural operator is trained to learn the 2D acoustic wave equation, defined as the map- ping from velocity, defined on an irregular mesh, to the wavefield solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The network is also used to perform waveform inversions through reverse mode automatic differentiation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Figure 9 illustrates the difference between the inverted waveforms obtained through SEM and neural operator based methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Inelastic impact problems The training data for the operator is generated as random fields with the von Karman covariance function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The solution is obtained using the Spectral-Element method by applying the Ricker Wavelet source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' An added advantage of a neural operator is that its ability to perform automatic differentiation, which is equivalent to the adjoint state method, allows for full waveform inversion without having to compute the adjoint wavefield.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' In their work, Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022) design neural operators to learn the inelastic deformation of polycrystalline solids, where polycrystalline refers to materials composed of dis- joint grains, where each grain is made of the same material but exhibits different orientations based on the reference viewpoint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Plastic deformations occur through the mech- anisms of slip and twinning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The problem is defined by the kinetic relation between crystallographic orientation, inelastic deformation gradient, slip activity, and twin vol- ume fractions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The study is motivated by the fact that fine-scale behavior influences the behavior on a coarser scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The authors propose two models to learn this re- 16 Figure 9: The figure compares the waveform inversion obtained through FNO vs the same obtained through SEM and adjoint to- mography.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The waveforms on the left (a) and (c) represent the true velocity and the source locations are denoted by the red circles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The relative misfit between true and inverted velocity in case of SEM is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='028 while for FNO it is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0319.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Image taken from Yang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021) Figure 10: This Figure illustrates the 3D deformation experienced by a plate due to projectile impact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Each figure denotes the deformation in a 25 micro-second interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Each subfigue represents the axial cross-section with Von Mises stress measure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Figure taken courtesey of Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022) lation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 2DFFT This model represents the problem in 2 di- mensions with two slip systems and no twinning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The problem is solved using Fast Fourier Transform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The input to the network is the deformation history.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The operator uses this information to approximate Cauchy stress.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 3D Taylor This is the 3-dimensional setting to study the behavior of materials such as magnesium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' To solve this system, Taylor averaging assumption is used to assume that the deformation gradient is uni- form on the unit cell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Figure 10 portrays how the neural operator simulates pro- jectile impact on a plate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' It shows the axial cross section of the plate subjected to impact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Forecasting subcritical cylinder Wakes In their work, Renn et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2023) propose using Fourier neural operators to temporally forecast velocity fields to study the Karman vortex street phenomenon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' They use this approach to determine how physical fluid flows evolve with time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The neural operator is trained on flow data obtained through particle image velocimetry and predicts ten-time steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' They show that the model predicts the velocity fields over the entire range of Reynolds numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' While the model achieves low errors in predicting, it fails to learn unsteady turbulent dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This could be because of the insufficient spatial resolution of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The authors speculate that training the model to learn smaller secondary flows could help predict the flows at larger lengths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Video interpolation More recently, neural operator-based models have been used for computer vision problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' In their work, Viswanath et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022) model the problem of video frame interpolation as implicitly learning a PDE, where the complex motions exhibited by the moving objects within a video follow a PDE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' A UNO was used to learn these complex trajectories to predict intermediate frames in a video.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Human motion analysis in dyadic setting Prediction of reactions to human actions in dyadic or two-person settings is an interesting problem that has applications in gaming and 3D simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' In their work, Rahman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022b) explore using Conditional GANO-based architectures to predict the reactions of humans conditioned on the movements of their dyadic partners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The model accurately learns from long sequences of motions at any arbitrary temporal resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 17 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='25 μs 0 M 1400 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='5 μs 1283 1167 1050 933 817 700 583 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='75 μs 467 350 233 117 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='0 μs(a) True velocity (b) Reconstruction with SEM 3300 (m/s) 3000 2700 (c) True velocity (d) Reconstruction with FNO 3300 Vp (m/s) 3000 2700Figure 11: The above figure highlights the performance of various neural operator based architectures in solving different types of problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' It provides a visual comparison between generated solution an ground truth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The images on the top are the ground truth values while the ones on the bottom row are generated by the operator models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The first image on the left represents the airfoil Flow simulation generated by the geo-FNO architecture Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The second one is the Darcy Flow simulation generated by the GANO architecture Rahman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The third one represents the Kolmogorov Flow generated by the PINO architecture Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021b), the fourth pair represents the Navier-Stokes equations simulated by the vanilla FNO Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2020a) and the last one is the weather forecast model generated by the FourcastNet Pathak et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Scalability Finite element approaches are generally slow and im- precise as they suffer from a trade-off between mesh resolution and computation time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The higher the reso- lution, the higher the computation cost per evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Moreover, the results of a computation are only valid for a single instance of a PDE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Changing initial or boundary conditions or any other parameter requires the expensive computation to be re-run.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Neural network based methods are capable of approxi- mating a PDE with decent accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Although training them is computationally expensive, each computation of the forward evaluation is much faster than the conven- tional approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Some of these methods, such as the ConvPDE-UQ framework, are even able to parameterize the initial and boundary conditions as part of the input to the model in order to enable computation of any system within a given family of PDEs on any domain without having to retrain the model (Winovich et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2019)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' However, neural network approaches are still mesh-dependent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The resolution that can be achieved from the model is determined by the resolution of the training data, which is computed via conventional meth- ods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Thus the computational cost for training is still sensitive to resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This is where a neural operator is advantageous as it attempts to learn the function and hence, the mapping between infinite dimensional spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The result is that they are resolution invariant in that they can be trained with data that has a relatively low resolution and will still be able to evaluate at a higher resolution with the same error rate as in low resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021b) demonstrated that their neural operator variant, the Fourier neural operator, is capable of accurately learning PDEs with zero-shot super-resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' They further proved that the Fourier neural operator achieves superior accuracy compared to neural network-based solvers while still enjoying the same benefits in terms of fast computation of the forward evaluation and generalization to any instance within a PDE family.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' All of these features of FNOs- low evaluation cost, zero-shot super resolution, and generalization- have significant implications in terms of computational effi- ciency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021b) highlight this by presenting the Bayesian Inversion Problem, where they use a function space Markov chain Monte Carlo (MCMC) method (Cotter et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2013)) to draw samples from the posterior distribution of the initial vorticity in Navier-Stokes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' MCMC are a set of algorithms for sampling data from distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The approach involves constructing Markov chains for the desired distribution, and a sample of this distribution would be a set of states of the Markov chain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Metropolis-Hastings is a well-known MCMC algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' In this experiment, they compare FNOs and conventional solvers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' While both are able to achieve similar results, they vary substantially in terms of computation time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The MCMC using the traditional solver took 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='2 seconds per computation, whereas the FNO took only 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='005s per computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The FNO, however, requires a one-time 18 Airfoil Flow (Geo-FNO) Darcy Flow (GANO) Kolmogorov Flow (PINO) Navier Stokes (FNO) Weather model (FourcastNet)training, which in this scenario took approximately 12 hours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The traditional solver, on the other hand, requires no such training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Hence, for a small number of data points, the conventional solver is more efficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The benefits of FNOs are instead realized at a larger scale because the model only has to be trained once and can be used to quickly evaluate any instance of the PDE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' To illustrate this point, let T represent the total computation time in seconds to make n evaluations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' For the traditional solver, the computation time has the form of a fixed rate (T = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='2n in this particular setting), whereas for FNO, computation time would behave as a smaller rate plus a one-time cost (T = 43200 + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='005n in their setup).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The authors generated 30,000 data points using each method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Using the FNO, this took 12 hours for training plus an additional 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='5 minutes for the 30,000 forward evaluations, whereas the traditional solver took a total of 18 hours for the same number of evaluations (Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' These advantages in computation time extend to cost savings, especially at large scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' To illustrate the difference in cost at a large scale, consider the cost of running both models with the same experimental setup as above on a p3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='2xlarge EC2 instance on AWS, which has 8 vCPU and 61 GiB (or approx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 65 GB) of memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The P3 instances feature the NVIDIA V100 GPU making it the most similar of the AWS compute options to the NVIDIA V100 GPU with 16 GB memory used by Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' For the purposes of this demonstration, assume these instances have the same hardware performance as the hardware used by Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The on-demand rate for this instance, which is the cheapest of the P3s, is $3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='06 per hour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Thus, training the FNO would cost approxi- mately $36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Once trained, the FNO can theoretically perform up to 720000 computations per hour, while the conventional solver would take 440 hours to do the same number of evaluations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' For 100,000 evaluations, the FNO would cost under $40, including training time, whereas the conventional solver would cost approximately $187.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Beyond the cost savings, this computational efficiency has important implications for environmental impact, as cloud computing is known to consume significant energy resulting in a large carbon footprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' In designing mechanical systems involving aerodynamics or fluid dynamics, it is common for engineers to have to compute the forward operation of Navier Stokes several thousands of times varying the coefficients with each evaluation in order to recover certain properties of the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Fourestey & Moubachir (2005), for example, investigated inverse problems of the Navier Stokes equa- tions in the context of designing bridge decks under wind loads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Solving the inverse problem of a given PDE is also critical to tuning predictive modelling systems such as those for weather and climate modelling (Kashinath et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Using conventional numerical methods to solve inverse problems of a given PDE can be prohibitively slow and expensive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The scalability of FNOs can make this problem not only feasible but cost-effective, which has significant implications for mechanical design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Future work - Adaptability In this paper, we have illustrated the advantages that FNOs have over traditional numerical solvers in terms of computational performance, as well as their superior accuracy when compared to neural network-based solvers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The remaining question to be answered is how these ben- efits can be realized in academic research and commercial applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The development of numerical methods such as FDM and FEM began as early as the 1940s Hrennikoff (1941).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' However, these methods did not see wide-spread use until the 1960s when open-source programs for FEM began to be developed, such as Nastran developed by NASA Butler & Michel (1971) and SAP IV developed at UC Berkeley Gran & Yang (1978).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Since then, many tools for the numerical modeling of physical systems have been built and made widely available to researchers and engineers, including MATLAB, COMSOL, and Autodesk Simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The question now becomes- how can the same be done with FNO-based solvers?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' As FNOs are still relatively new computational methods, there is more work that is needed to develop them further and more variants of them are likely to be developed over the next few years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Nevertheless, existing variants already have the potential to greatly accelerate physics-based modelling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' However, as with many newly developed neural networks, they are unlikely to see practical use or widespread adoption by physics researchers until they are integrated into a software package that can reliably be used without a firm background in machine learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Developing this software and enabling it to be used for practical applications would further motivate future research and development of these approaches for PDE approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' An important factor in achieving this is open-source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' have already made their code open- source for their work in Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2020a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Open-source accelerates development and enables standardization in software packages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This standardization is central to the repeatability of results and is hence, critical for research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' It is important to note that numerical solvers are still required to produce the training data for FNOs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' As with all machine learning approaches, the quality of this data, in terms of the size and spread of training data, as well as accuracy, impacts the performance of the FNO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' In this respect, machine learning paradigms such as that of active learning Settles (2012), which uses learning theoretic arguments to come up with strategies to select training data, can be used to improve the sample complexity (a term used in machine learning for the number of samples required to achieve a particular 19 accuracy) of learning based techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' In particular, the learning algorithm would decide on the pairs of {ui}N i=1 for which the solver should generate the corresponding {fi} or {ai} with the aim of selecting the right pairs such that the network is able to approximate the solver func- tion with the lowest number of pairs N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Meta-learning is another paradigm that can be used to improve the sample complexity of learning algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This method aims to learn some underlying connection to different machine-learning tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' While there are several notions of meta-learning, a popular algorithm is MAML Finn et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2017), which aims to learn an initialization for gradient-based learning approaches from different tasks sharing a common structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This learned initialization, when used for the gradient-based learning approaches, allows for better sample complexity Saunshi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Due to the dependency of FNOs on the numerical solvers, one potential future for FNOs would be to integrate them into FEM software packages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This would make them more accessible to physics researchers allowing them to lever- age the computational benefits of FNOs to accelerate their work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The software could train an FNO for a user-inputted PDE with data it produces using FEM and a sampling method based on active learning or meta-learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The trained FNO would then be used in computation of the forward evaluation with a mesh and other parameters de- fined by the user via the same interfaces they use today as the software would handle the parameterization of those inputs into the structure expected by the FNO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Of course there are many variants of FNOs each created for different types of systems involving PDEs where they achieve supe- rior performance over the vanilla version.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Users of FEM software would not be aware of the distinctions between them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Hence, this software would have to be able to pro- vide the user with some recommendation of which variant, if any, to use in which scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' A deeper study of the performance of different variants across different use-cases would be required in order to build this knowledge base.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This paper is a starting point for that.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' While the accuracy of FNO-based solvers is invariant to resolution, it is still true that a given FNO-based solver could have higher accuracy on certain systems over others due to the non-deterministic nature of machine-learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' This would be an additional consideration for researchers using this software.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' One approach to contend with this would be to have the software also produce test data along with the training data and provide a report of accuracy on this test set so that the researcher can weigh the accuracy- efficiency trade off between FNO and conventional meth- ods in order to decide which approach to use.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' If they opt for the FNO approach, they could also include this report in their findings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Conclusion The goal of this paper was to characterize the numer- ous methods that have been developed for approximat- ing PDEs in order to highlight the potential opportunities that exist for further development of these technologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' We have provided a dense overview of these methods from conventional solvers to more novel approaches developed in recent years that leverage neural networks to approximate the mapping between finite spaces as well as those capable of approximating the mapping between function spaces by leveraging the neural operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' We have provided details about several variants of each type of PDE solver and have compared the performance of these variants across sev- eral applications particularly those in the field of physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' We have also articulated the advantages of FNO-based solvers as compared to conventional solvers and the im- plications this could have for the future of physics mod- elling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Furthermore, we proposed a high-level vision for how this technology could eventually be used to accelerate computation-based physics research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 20 References Acharya, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Baliga, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Karki, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Murthy, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Prakash, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Vanka, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Pressure-based finite-volume methods in computa- tional fluid dynamics, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Aghdam, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Heravi, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Guide to convolutional neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' New York, NY: Springer, 10, 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Aochi, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Ulrich, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Ducellier, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Dupros, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Michea, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Finite difference simulations of seismic wave propagation for un- derstanding earthquake physics and predicting ground motions: Advances and challenges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' In Journal of Physics: Conference Se- ries (p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 012010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' IOP Publishing volume 454.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Bebis, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Georgiopoulos, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Feed-forward neural net- works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Ieee Potentials, 13, 27–31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Browne, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Ghidary, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Convolutional neural net- works for image processing: an application in robot vision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' In Australasian Joint Conference on Artificial Intelligence (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 641– 652).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Butler, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Michel, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (1971).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' NASTRAN: A summary of the functions and capabilities of the NASA structural analysis computer system volume 260.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Scientific and Technical Information Office, National Aeronautics and Space .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Cai, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Mao, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Wang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Yin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Karniadakis, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Physics-informed neural networks (pinns) for fluid mechanics: A review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Acta Mechanica Sinica, (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 1–12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Cai, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Wang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Lu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Zaki, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Karniadakis, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Deepm&mnet: Inferring the electroconvection multiphysics fields based on operator approximation by neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Journal of Computational Physics, 436, 110296.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Cai, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Wang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Wang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Perdikaris, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Karniadakis, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Physics-informed neural networks for heat transfer prob- lems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Journal of Heat Transfer, 143.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Chen, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Li, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Meng, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Zhou, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Hao, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Residual fourier neural operator for thermochemical curing of composites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' arXiv preprint arXiv:2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='10262, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Chen, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Chen, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' IEEE Transactions on Neural Networks, 6, 911–917.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Ciresan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Meier, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Masci, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Gambardella, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Schmid- huber, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Flexible, high performance convolutional neural networks for image classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' In Twenty-second international joint conference on artificial intelligence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Cotter, Roberts, Stuart, & White (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Mcmc methods for func- tions: Modifying old algorithms to make them faster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Statist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', 28, 424 – 446.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Cuomo, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Di Cola, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Giampaolo, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Rozza, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Raissi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Piccialli, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Scientific machine learning through physics- informed neural networks: Where we are and what’s next.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' arXiv preprint arXiv:2201.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='05624, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Cybenko, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (1989).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Approximation by superpositions of a sigmoidal function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Mathematics of control, signals and systems, 2, 303– 314.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Demirdˇzi´c, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Muzaferija, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Finite volume method for stress analysis in complex domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' International journal for nu- merical methods in engineering, 37, 3751–3766.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' DeSanctis, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Doroghazi, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Austen, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Buckley, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (1987).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Aortic dissection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' New England Journal of Medicine, 317, 1060–1067.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Donea, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Huerta, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Finite element methods for flow problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' John Wiley & Sons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Eymard, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Gallou¨et, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Herbin, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Finite volume meth- ods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Handbook of numerical analysis, 7, 713–1018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Fadlun, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Verzicco, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Orlandi, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Mohd-Yusof, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Combined immersed-boundary finite-difference methods for three- dimensional complex flow simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Journal of computational physics, 161, 35–60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Fanaskov, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Oseledets, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Spectral neural operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' arXiv preprint arXiv:2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='10573, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Fang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' A high-efficient hybrid physics-informed neural net- works based on convolutional neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' IEEE Transactions on Neural Networks and Learning Systems, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Finn, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Abbeel, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Levine, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Model-agnostic meta- learning for fast adaptation of deep networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' In International conference on machine learning (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 1126–1135).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' PMLR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Fourestey, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Moubachir, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Mcmc methods for functions: Modifying old algorithms to make them faster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Computer Methods in Applied Mechanics and Engineering, 194, 877–906.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Gao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Sun, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='-X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Phygeonet: Physics- informed geometry-adaptive convolutional neural networks for solving parameterized steady-state pdes on irregular domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Journal of Computational Physics, 428, 110079.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Godunov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Bohachevsky, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (1959).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Matematiˇceskij sbornik, 47, 271–306.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Goswami, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Yin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Yu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Karniadakis, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' A physics-informed variational deeponet for predicting crack path in quasi-brittle materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Computer Methods in Applied Mechanics and Engineering, 391, 114587.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Gran, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Yang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (1978).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Nastran and sap iv applications on the seismic response of column-supported cooling towers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Com- puters & Structures, 8, 761–768.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Guan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Hsu, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='-T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Chitnis, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Fourier neural op- erator networks: A fast and general solver for the photoacoustic wave equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' arXiv preprint arXiv:2108.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='09374, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Guibas, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Mardani, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Tao, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Anandkumar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Catan- zaro, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Adaptive fourier neural operators: Efficient token mixers for transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' arXiv preprint arXiv:2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='13587, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Gupta, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Xiao, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Bogdan, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Multiwavelet-based op- erator learning for differential equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Advances in Neural In- formation Processing Systems, 34, 24048–24062.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Guss, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Salakhutdinov, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' On universal ap- proximation by neural networks with uniform guarantees on approximation of infinite dimensional maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' arXiv preprint arXiv:1910.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='01545, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Hornik, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Stinchcombe, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & White, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (1989).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Multilayer feed- forward networks are universal approximators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Neural networks, 2, 359–366.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Hrennikoff, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (1941).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Solution of problems of elasticity by the frame- work method, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Hughes, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The finite element method: linear static and dynamic finite element analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Courier Corporation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Jiang, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Meinert, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Jord˜ao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Weisser, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Holgate, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Lavin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', L¨utjens, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Newman, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Wainwright, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Walker, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Digital twin earth–coasts: Developing a fast and physics- informed surrogate model for coastal floods via neural operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' arXiv preprint arXiv:2110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='07100, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Jordan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Jord´an, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (1965).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Calculus of finite differences vol- ume 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' American Mathematical Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Kashinath, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Mustafa, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Albert, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Wu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Jiang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Es- maeilzadeh, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Azizzadenesheli, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Wang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Chattopadhyay, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Singh, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Physics-informed machine learning: case studies for weather and climate modelling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Philosophical Transactions of the Royal Society A, 379, 20200093.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Kovachki, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Liu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Azizzadenesheli, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Bhattacharya, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Stuart, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Anandkumar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Neural operator: Learning maps between function spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' arXiv preprint arXiv:2108.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='08481, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Lagaris, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Likas, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Fotiadis, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Artificial neural networks for solving ordinary and partial differential equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' IEEE transactions on neural networks, 9, 987–1000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' LeCun, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Bengio, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Hinton, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Deep learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' nature, 521, 436–444.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Li, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Cui, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Li, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Multi-physics analysis of elec- tromagnetic forming process using an edge-based smoothed finite element method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' International Journal of Mechanical Sciences, 134, 244–252.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Huang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Liu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Anandkumar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Fourier neural operator with learned deformations for pdes on general geometries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' arXiv preprint arXiv:2207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='05209, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Kovachki, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Azizzadenesheli, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Liu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Bhattacharya, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Stuart, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Anandkumar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2020a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Fourier neural opera- tor for parametric partial differential equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' arXiv preprint 21 arXiv:2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='08895, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Kovachki, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Azizzadenesheli, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Liu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Bhattacharya, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Stuart, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Anandkumar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2020b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Neural operator: Graph kernel network for partial differential equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' arXiv preprint arXiv:2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='03485, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Kovachki, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Azizzadenesheli, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Liu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Bhattacharya, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Stuart, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Anandkumar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Markov neural operators for learning chaotic systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' arXiv preprint arXiv:2106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='06898, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Kovachki, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Azizzadenesheli, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Liu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Stuart, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Bhat- tacharya, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Anandkumar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2020c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Multipole graph neural operator for parametric partial differential equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Advances in Neural Information Processing Systems, 33, 6755–6766.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Zheng, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Kovachki, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Jin, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Chen, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Liu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Azizzade- nesheli, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Anandkumar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Physics-informed neural operator for learning partial differential equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' arXiv preprint arXiv:2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='03794, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Liu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Kovachki, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Azizzadenesheli, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Anandkumar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Stuart, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Bhattacharya, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' A learning-based mul- tiscale method and its application to inelastic impact problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Journal of the Mechanics and Physics of Solids, 158, 104668.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Liu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Cai, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Multiscale deeponet for nonlinear op- erators in oscillatory function spaces for building seismic wave responses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' arXiv preprint arXiv:2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='04860, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Livingstone, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Manallack, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Tetko, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Data modelling with neural networks: advantages and limitations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Journal of computer-aided molecular design, 11, 135–142.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Lu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Jin, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Karniadakis, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Deeponet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' arXiv preprint arXiv:1910.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='03193, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Mao, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Jagtap, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Karniadakis, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Physics- informed neural networks for high-speed flows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Computer Methods in Applied Mechanics and Engineering, 360, 112789.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Moczo, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Kristek, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Halada, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The finite-difference method for seismologists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' An Introduction, 161.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Musha, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Higuchi, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (1978).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Traffic current fluctuation and the burgers equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Japanese journal of applied physics, 17, 811.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Naranjo-Torres, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Mora, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Hern´andez-Garc´ıa, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Barrientos, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Fredes, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Valenzuela, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' A review of convo- lutional neural network applied to fruit image processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Applied Sciences, 10, 3443.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' O’Shea, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Nash, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' An introduction to convolutional neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' arXiv preprint arXiv:1511.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='08458, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' ¨Ozi¸sik, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Orlande, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Colaco, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Cotta, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Finite difference methods in heat transfer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' CRC press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Pathak, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Subramanian, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Harrington, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Raja, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Chattopad- hyay, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Mardani, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Kurth, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Hall, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Azizzade- nesheli, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Fourcastnet: A global data-driven high- resolution weather model using adaptive fourier neural operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' arXiv preprint arXiv:2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='11214, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Rahman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Florez, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Anandkumar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Ross, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Azizzadenesheli, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Generative adversarial neural oper- ators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' arXiv preprint arXiv:2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='03017, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Rahman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Ghosh, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Viswanath, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Azizzadenesheli, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Bera, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Pacmo: Partner dependent human motion gen- eration in dyadic human activity using neural operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' arXiv preprint arXiv:2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='16210, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Rahman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Ross, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Azizzadenesheli, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' U-no: U-shaped neural operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' arXiv e-prints, (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' arXiv–2204).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Raissi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Perdikaris, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Karniadakis, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Physics- informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differen- tial equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Journal of Computational physics, 378, 686–707.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Reddy, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Introduction to the finite element method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' McGraw-Hill Education.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Renn, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Wang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Lale, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Anandkumar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Gharib, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2023).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Forecasting subcritical cylinder wakes with fourier neural operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' arXiv preprint arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='08290, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Rosofsky, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Huerta, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Applications of physics informed neural operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' arXiv preprint arXiv:2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='12634, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Roters, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Eisenlohr, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Bieler, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Raabe, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Crystal plasticity finite element methods: in materials science and engi- neering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' John Wiley & Sons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Salvi, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Lemercier, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Gerasimovics, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Neural stochas- tic pdes: Resolution-invariant learning of continuous spatiotem- poral dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' arXiv preprint arXiv:2110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='10249, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Saunshi, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Zhang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Khodak, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Arora, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' A sam- ple complexity separation between non-convex and convex meta- learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' In International Conference on Machine Learning (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 8512–8521).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' PMLR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Sazli, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' A brief review of feed-forward neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering, 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Searles, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & von Nagy-Felsobuki, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (1988).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Numerical ex- periments in quantum physics: Finite-element method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' American Journal of Physics, 56, 444–448.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Settles, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Active learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Synthesis lectures on artificial intelligence and machine learning, 6, 1–114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Sharma Priyadarshini, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Venturi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Panesi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Ap- plication of deeponet to model inelastic scattering probabilities in air mixtures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' In AIAA AVIATION 2021 FORUM (p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 3144).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Sirignano, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Spiliopoulos, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Dgm: A deep learning algorithm for solving partial differential equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Journal of computational physics, 375, 1339–1364.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Slone, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Bailey, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Cross, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Dynamic solid mechanics using finite volume methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Applied mathematical modelling, 27, 69–87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Smith, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Smith, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Smith, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (1985).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Numerical so- lution of partial differential equations: finite difference methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Oxford university press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Sod, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (1978).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Journal of computational physics, 27, 1–31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Tadmor, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' A review of numerical methods for nonlinear par- tial differential equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Bulletin of the American Mathematical Society, 49, 507–554.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Taigbenu, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Burgers equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' In The Green El- ement Method (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 195–216).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Boston, MA: Springer US.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' URL: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='1007/978-1-4757-6738-4_7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 1007/978-1-4757-6738-4_7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Thais, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Calafiura, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Chachamis, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', DeZoort, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Duarte, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Ganguly, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Kagan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Murnane, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Neubauer, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Terao, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Graph neural networks in particle physics: Implementations, innovations, and challenges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' arXiv preprint arXiv:2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='12852, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Trifan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Gorgun, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Brace, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Zvyagin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Ma, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Clyde, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Clark, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Salim, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Hardy, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Intelligent res- olution: Integrating cryo-em with ai-driven multi-resolution simu- lations to observe the sars-cov-2 replication-transcription machin- ery in action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' bioRxiv, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Viswanath, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Rahman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Bhaskara, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Bera, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Nio: Lightweight neural operator-based architecture for video frame interpolation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' arXiv preprint arXiv:2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='10791, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Wang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Wang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Perdikaris, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Learning the solution operator of parametric partial differential equations with physics- informed deeponets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Science advances, 7, eabi8605.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Wen, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Azizzadenesheli, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Anandkumar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Benson, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' U-fno—an enhanced fourier neural operator-based deep-learning model for multiphase flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Advances in Water Re- sources, 163, 104180.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Wilson, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Bathe, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Peterson, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (1974).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Finite element analysis of linear and nonlinear heat transfer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Nuclear engineering and design, 29, 110–124.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Winovich, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Ramani, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Lin, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Convpde-uq: Convo- lutional neural networks with quantified uncertainty for hetero- geneous elliptic partial differential equations on varied domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Journal of Computational Physics, 394, 263–279.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Yang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Gao, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Castellanos, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Ross, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Azizzadenesheli, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Clayton, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Seismic wave propagation and in- version with neural operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The Seismic Record, 1, 126–134.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Yegnanarayana, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Artificial neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' PHI Learning Pvt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Ltd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 22 Yin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Ban, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Rego, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Zhang, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Cavinato, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Humphrey, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Em Karniadakis, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Simulating progressive in- tramural damage leading to aortic dissection using deeponet: an operator–regression neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Journal of the Royal Society Interface, 19, 20210670.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' You, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Zhang, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Ross, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Lee, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Yu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Learning deep implicit fourier neural operators (ifnos) with ap- plications to heterogeneous material modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' arXiv preprint arXiv:2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='08205, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Yu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Lu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Meng, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Karniadakis, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Gradient- enhanced physics-informed neural networks for forward and in- verse pde problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Computer Methods in Applied Mechanics and Engineering, 393, 114823.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Zienkiewicz, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', Taylor, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=', & Zhu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' The finite element method: its basis and fundamentals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Elsevier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' Appendix Model Link FNO https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='com/neural-operator/fourier neural operator FourCastNet https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='com/NVlabs/FourCastNet GANO https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='com/kazizzad/GANO geo-FNO https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='com/neural-operator/Geo-FNO GNO https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='com/neural-operator/graph-pde MWT-NO https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='com/gaurav71531/mwt-operator PINO https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='com/neural-operator/PINO SNO https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='com/vlsf/sno UNO https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='com/ashiq24/UNO Table 5 This table provides links to the source code for various neural oper- ator architectures Term Meaning A Banach Function Space a(x) Input function α Hyperparameter for neural network b Bias β Hyperparameter for neural network C Specific heat capacity C Cost Function c Speed of Sound D Domain di,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' bi Finite dimensional vectors exy Edge from node x to node y in a graph neural network F Fourier Transform f(x) Function F−1 Inverse Fourier Transform G neural operator G+ Non-Linear map between Function Spaces gi Complex Exponential/Chebyshev polynomial hi Hidden layer Embedding k directional Thermal Conductivity K,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' κ Kernel L Banach Function Space L Linear Differential Operator L Loss Function λ Directional Thermal Conductivity N Natural Numbers n Arbitrary Natural number P Lifting Map p(r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content='t) photoacoustic pressure wave at position r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' time t P Partial Differential Operator Φ flux ϕ Porosity Q internal heat source Q Projecting Map R Non-Linear Partial Differential Operator R Real Numbers ρ density ς stress tensor Sp Saturation of phase p σ Non-Linear Activation T temperature t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' T time U Banach Function Space u(x) solution function U Velocity uθ neural network parameterized by θ vi,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
+page_content=' v(i) ith output of a neural network V neural network Approximation of Solution ν Viscosity coefficient W Weight W Weiner Process w Vorticity X mass fraction ξ noise xi ith input element ∇ Gradient Operator ∆ Laplacian Operator Table 6 A summary of mathematical notations used in the article 23' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/X9FQT4oBgHgl3EQfdjZ7/content/2301.13331v1.pdf'}
diff --git a/ZdAzT4oBgHgl3EQf2P7l/content/tmp_files/2301.01813v1.pdf.txt b/ZdAzT4oBgHgl3EQf2P7l/content/tmp_files/2301.01813v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..277cf4f47be8abb1c4b1f310638c605bf97bdead
--- /dev/null
+++ b/ZdAzT4oBgHgl3EQf2P7l/content/tmp_files/2301.01813v1.pdf.txt
@@ -0,0 +1,5667 @@
+Draft version January 6, 2023
+Typeset using LATEX twocolumn style in AASTeX631
+The HH 24 Complex:
+Jets, Multiple Star Formation, and Orphaned Protostars
+Bo Reipurth,1 J. Bally,2 Hsi-Wei Yen,3 H.G. Arce,4 L.-F. Rodr´ıguez,5 A.C. Raga,6 T.R. Geballe,7 R. Rao,8
+F. Comer´on,9 S. Mikkola,10 C.A. Aspin,1 and J. Walawender11
+1Institute for Astronomy, University of Hawaii, 640 North A’Ohoku Place, Hilo, HI 96720, USA
+2Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309, USA
+3Academia Sinica Institute of Astronomy and Astrophysics, 11F of Astro-Math Bldg, 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan
+4Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101, USA
+5Instituto de Radioastronom´ıa y Astrof´ısica, Universidad Nacional Aut´onoma de M´exico, Apdo. Postal 3-72 (Xangari), 58089 Morelia,
+Michoac´an, M´exico and Mesoamerican Center for Theoretical Physics, Universidad Aut´onoma de Chiapas, Carretera Emiliano Zapata
+km. 4, Real del Bosque (Ter´an). 29050 Tuxtla Guti´errez, Chiapas, M´exico
+6Instituto de Ciencias Nucleares, Universidad Nacional Aut´onoma de M´exico, Ap. 70-543, 04510 D.F., M´exico
+7Gemini Observatory/NSF’s NOIRLab, 670 N. Aohoku Place, Hilo, HI 96720, USA
+8Submillimeter Array, Academia Sinica Institute of Astronomy and Astrophysics, 645 N. A’ohoku Place, Hilo, HI 96720, USA
+9European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei M¨unchen, Germany
+10University of Turku, Dept. of Physics and Astronomy, Vesilinnantie 5, FIN-20014, Finland
+11W. M. Keck Observatory, 65-1120 Mamalahoa Hwy, Kamuela, HI 96743, USA
+ABSTRACT
+The HH 24 complex harbors five collimated jets emanating from a small protostellar multiple system.
+We have carried out a multi-wavelength study of the jets, their driving sources, and the cloud core
+hosting the embedded stellar system, based on data from the HST, Gemini, Subaru, APO 3.5m, VLA,
+and ALMA telescopes. The data show that the multiple system, SSV 63, contains at least 7 sources,
+ranging in mass from the hydrogen-burning limit to proto-Herbig Ae stars. The stars are in an unstable
+non-hierarchical configuration, and one member, a borderline brown dwarf, is moving away from the
+protostellar system with 25 km s−1, after being ejected ∼5,800 yr ago as an orphaned protostar. Five
+of the embedded sources are surrounded by small, possibly truncated, disks resolved at 1.3 mm with
+ALMA. Proper motions and radial velocities imply jet speeds of 200-300 km s−1. The two main HH 24
+jets, E and C, form a bipolar jet system which traces the innermost portions of parsec-scale chains of
+Herbig-Haro and H2 shocks with a total extent of at least 3 parsec. H2CO and C18O observations show
+that the core has been churned and continuously fed by an infalling streamer. 13CO and 12CO trace
+compact, low-velocity, cavity walls carved by the jets and an ultra-compact molecular outflow from
+the most embedded object. Chaotic N-body dynamics likely will eject several more of these objects.
+The ejection of stars from their feeding zones sets their masses. Dynamical decay of non-hierarchical
+systems can thus be a major contributor to establishing the initial mass function.
+Keywords: Herbig-Haro objects (722) — Multiple stars (1081) — Young stellar objects (1834) — Cir-
+cumstellar disks (235) — Protostars (1302) — Herbig Ae/Be stars (723) — Star formation
+(1569)
+1. INTRODUCTION
+Evidence is mounting that stars rarely form in isola-
+tion as single objects, but rather as binaries or small
+multiple systems (e.g., Duchˆene & Kraus 2013). Small
+multiple systems are produced through fragmentation
+of prestellar cores, as first studied by Hoyle (1953) and
+Larson (1972).
+In modern terms, the two principal
+pathways for fragmentation are turbulent fragmenta-
+tion, which tends to operate on larger scales (e.g., Lee
+et al. 2019), and disk fragmentation, which operates on
+small scales in massive protostellar disks (e.g, Kratter
+& Matzner 2006). Most multiple systems form in non-
+hierarchical configurations, but soon undergo dynamical
+interactions. Over about a hundred crossing times such
+systems tend to rearrange into hierarchical configura-
+tions consisting of compact binaries and members that
+arXiv:2301.01813v1 [astro-ph.SR] 4 Jan 2023
+
+2
+Reipurth et al.
+either are ejected into a distant bound orbit, or escape
+(e.g., Anosova 1986, Delgado-Donate et al. 2004). Half
+of all such escapes occur during the embedded phase,
+leading to the ejection and exposure of orphaned proto-
+stars, some of which did not have time to gain enough
+mass to become hydrogen burning stars (Reipurth &
+Clarke 2001, Reipurth et al. 2010). This competition
+between accretion and ejection was shown by Bate &
+Bonnell (2005) to be the key driver in shaping the ini-
+tial mass function at all masses.
+The reconfiguring of a non-hierarchical triple system
+occurs after a close triple approach, when three bodies
+can exchange energy and momentum. After an ejection
+the remaining binary has a high eccentricity, leading to
+disk-disk interactions during periastron passages, and a
+gradual inspiral of the binary. The periastron passages
+lead to disk disturbances and accretion events, with en-
+suing outflow. The stellar magnetohydrodynamic jet en-
+gines are thus force-fed, resulting in spectacular giant
+Herbig-Haro (HH) flows (Reipurth 2000).
+Large-scale numerical simulations have offered insight
+into the formation of multiple systems and their dynam-
+ical interactions (Bate 2009, 2012). Such dynamical in-
+teractions can help to bind components into tighter bi-
+naries, but to produce the observed frequency of close bi-
+naries, dissipative interactions are needed, during which
+the presence of gas serves to transport angular momen-
+tum and dissipate energy in star-disk and disk-disk in-
+teractions. While any non-hierarchical system will even-
+tually always evolve into a hierarchical configuration on
+dynamical grounds alone, the presence of gas plays an
+important role in the subsequent orbital evolution of the
+binary and its mass-ratio (Bate et al. 2002).
+Evidently significant dynamical evolution is expected
+to occur during early stellar evolution, as borne out by
+observations.
+Early optical surveys of T Tauri stars
+showed an excess of companions relative to field stars
+(e.g., Reipurth & Zinnecker 1993, Leinert et al. 1993).
+This was further demonstrated with near-infrared obser-
+vations of Class I protostars, which revealed not only an
+excess of companions, but also a bimodal distribution
+of the separation distribution function with a second
+peak at several thousand AU (Connelley et al. 2008a,b).
+This population of distant companions decreases for the
+more evolved Class I sources, suggesting that the com-
+panions dynamically evolve and become unbound. Most
+recently, ALMA and VLA observations of Class 0 and
+Class I sources have yielded insights into the high mul-
+tiplicity of the youngest protostars (Tobin et al. 2016,
+2018, 2022) and have confirmed the existence of the bi-
+modal binary separation distribution.
+Table 1. Overview of the HH 24 Complex
+Jet
+PA
+Orient.
+Giant Bow-Shocksa
+Source
+C
+333◦
+Blue
+HH 20/21/37/70
+Ea
+E
+149◦
+Red
+Ea
+A
+-
+Red
+Ea/HOPS317
+G
+39◦
+Blue
+NE
+J
+311◦
+Blueb
+HH 19/27
+Wb
+L
+38◦
+-
+HOPS317
+X
+143◦
+-
+S(?)
+B
+-
+Blue
+Wa
+Note—a: Additional very distant bow shocks exist. b: De-
+duced from the blue-shift of HH 19.
+For reviews of multiple systems and their dynamical
+evolution, see Reipurth et al. (2014) and Offner et al.
+(2022).
+In this paper we present a detailed study of the HH 24
+jet complex and the compact multiple system that drives
+these jets. This is a complex region of star formation, in
+which a small multiple system has formed within a cloud
+core and through dynamical interactions has triggered
+disk disturbances that have lead to massive accretion
+events and ensuing outflow activity. This has resulted
+in the highest concentration of finely collimated HH jets
+known. An overview of the region is shown in Figure 1
+and some of the general properties of the outflows are
+given in Table 1.
+The paper is organized as follows: In Section 2 we
+present a summary of key results obtained in previous
+studies, and in Section 3 a description of the observa-
+tions obtained for this study.
+This is followed by an
+overview of the HH 24 complex in Section 4, and a sum-
+mary of the properties of the multiple system in Sec-
+tion 5. Section 6 contains a discussion of the individ-
+ual jets and shocks, and Section 7 presents an analy-
+sis of the neighboring protostar HH 24 MMS. The dis-
+covery of a low-mass runaway borderline brown dwarf
+that was ejected 5,800 yr ago from the multiple system
+is discussed in Section 8.
+After that the star forma-
+tion efficiency is derived in Section 9.
+Details of our
+ALMA observations are presented in Section 10 and Sec-
+tion 11, where the individual disks and the large-scale
+cloud structures, respectively, are studied. Finally Sec-
+tion 12 and Section 13 contain a detailed discussion and
+a summary of our results.
+
+The HH 24 Star Forming Complex
+3
+Figure 1. Deep Hα+[Sii] image obtained at the Subaru 8m telescope shows the central part of L1630 with identifications
+of objects discussed in the text. HH 24 is the cluster of jets emanating from the multiple system SSV 63, while HH 19, 20,
+21, 27, 37, and 70 are distant bow shocks related to the HH 24 jets. HH 22 is driven by an embedded source and HH 23
+possibly by V1647 Ori. HH 25 and 26 are driven by embedded sources south of SSV 61. The height of the figure corresponds to
+approximately 1.5 pc. Star formation occurs along a narrow ridge oriented N-S with a length of ∼1 pc and a total mass around
+230 M⊙. Coordinates are equinox 2000.
+
+02:00.0
+HH20
+HH23
+04:00.0
+HH 22A
+HH 21
+HH 22
+06:00.0
+HH 70
+HH37
+HH19
+V1647 Ori
+061 HH'
+08:00.0
+-0:10:00.0
+HH24
+SSV 63
+12:00.0
+SSV 61
+HH25
+14:00.0
+HH 27
+HH 26
+:
+25.0
+20.0
+15.0
+10.0
+05.0
+5:46:00.0
+55.0
+45:50.04
+Reipurth et al.
+2. PREVIOUS WORK
+HH 24 is located in the L1630 cloud (aka Orion B), in a
+dense core that is part of a chain of north-south oriented
+cores detected in both millimeter line emission and sub-
+millimeter continuum (e.g., Gibb & Heaton 1993, Lis et
+al. 1999, Mitchell et al. 2001, Kirk et al. 2016a, Hsieh
+et al. 2021). The driving source of HH 24 was detected
+in a near-infrared survey by Strom et al. (1976). This
+source, SSV 63, was later found to be a multiple proto-
+stellar system. We here assume HH 24 and the L1630
+cloud to be at a distance of ∼400 pc (e.g., Anthony-
+Twarog 1982), a distance supported by the more recent
+studies of Lombardi et al. (2011) [398±12 pc], Kounkel
+et al.
+(2017) [388±10 pc], and Zucker et al.
+(2019)
+[423±21 pc]. For an overview of star formation in L1630,
+see the review by Gibb (2008).
+The HH 24 complex was discovered by Herbig & Kuhi
+(1963) in their search for Hα emission stars in L16301.
+Subsequently HH 24 has been the subject of numerous
+studies, a selection of which are listed here. Schmidt &
+Miller (1979) and Scarrott et al. (1987) used polarimet-
+ric observations to infer that the HH 24 nebulosity is a
+mixture of emission from shocks and reflected light from
+embedded sources. HH 24 has been imaged optically by
+Herbig (1974), Strom et al. (1974a), Jones et al. (1987)
+and Mundt et al. (1991). Two of the knots in HH 24
+were detected in H2 2.122 µm emission by Davis et al.
+(1997).
+Optical or ultraviolet spectroscopy of various
+components in HH 24 has been presented by Strom et
+al. (1974), Brugel et al. (1981), Jones et al. (1987), Solf
+(1987), and B¨ohm et al. (1992). Some of the HH 24
+jets are associated with distant bow shocks, as noted by
+Jones et al. (1987) and Eisloeffel & Mundt (1997).
+For the following detailed discussion of the HH 24
+complex, it is important to have clear definitions of the
+nomenclature of the multitude of shocks in the region.
+Unfortunately, the existing knot designations were de-
+veloped over a number of years by many different re-
+searchers, and along the way a number of mistakes oc-
+curred, so that it is difficult to compare various studies.
+HH 24 was discovered by George Herbig, but besides the
+brief mention in Herbig & Kuhi (1964), he did not pro-
+vide further information until his HH catalog appeared,
+in which he identified four components A,B,C,D (Herbig
+1974). Simultaneously Strom et al. (1974a,b) labeled
+five knots A-E, but used E for knot D in Herbig’s no-
+1 The first mention of HH 24 is in a letter from George Herbig to
+Jesse Greenstein dated August 9, 1952 in which Herbig specu-
+lates that the faint nebulous emission-line objects he found on
+his photographic plates of the HH 24 region might be similar to
+the recently discovered objects HH 1 and 2.
+tation, a knot that was later shown to be an Hα-strong
+reflection nebula. Schmidt & Miller (1979) adopted the
+Strom et al. (1974a,b) nomenclature. Solf (1987) added
+the label F, which simultaneously was labeled E by Jones
+et al. (1987), who also introduced more detailed desig-
+nations of knots. In this paper we follow and extend
+the consistent designations by Herbig (1974), Jones et
+al. (1987), Mundt et al. (1991), and Eisloeffel & Mundt
+(1997).
+3. OBSERVATIONS
+3.1. HST WFC3
+The HH 24 complex was observed with HST under
+program GO-13485 (PI: Reipurth) in an Hα (F656N) fil-
+ter on UT 2014-03-10 with a total exposure time of 5578
+sec, in a [Sii] (F673N) filter on UT 2014-02-26 for 5578
+sec, in a [Feii] (F164N) filter on UT 2014-02-18 for two
+exposures of 3596 sec and 1798 sec. Parallel observations
+of HH 19 were made with ACS in Hα on UT 2014-03-
+10 for 5165 sec. Two years later, on UT 2016-02-03, a
+second-epoch [Feii] image of HH 24 was obtained under
+program GO-14344 with an exposure time of 5395 sec.
+3.2. Subaru SuprimeCam images
+The Subaru 8m telescope was used to observe HH 24
+with SuprimeCam (field of view 34′ × 27′ and scale
+0.′′20/pxl) on UT 2006-01-05 using a [Sii] filter (N-A-
+L671, FWHM 130 ˚A, transmission 88%) with 5×12 min
+dithered exposures; the sky was clear and seeing varied
+between 0.51 and 0.70 arcsec. On UT 2006-01-06 HH
+24 was observed using an Hα filter (N-A-L659, FWHM
+99 ˚A, transmission 88%) with 5×12 min dithered ex-
+posures through intermittent light cirrus and seeing be-
+tween 0.57 and 0.67 arcsec. The pixel scale was 0.20 arc-
+sec/pxl. Second-epoch observations with 5×6 min were
+similarly acquired on UT 2015-12-17 in a [Sii] filter in
+seeing of ∼0.8-0.9 arcsec.
+3.3. Gemini observations
+Several observing runs were carried out at the Gemini-
+North Frederick C. Gillett 8m telescope.
+GMOS was
+used on 2010-03-13 and 2010-03-16 under program GN-
+2010A-Q-10 to obtain g, r, i, Hα, and [Sii] images and
+multi-slit spectra of the SSV 63 region. At the time of
+these observations GMOS had a 5.5’×7.4’ field of view
+with 0.0727′′ pixels. Three exposures of 60 sec were ob-
+tained through the broadband filters and three 5 min
+exposures in the narrowband filters.
+The R400 grat-
+ing with a dispersion of 0.0673 nm/pxl was used for 6
+exposures of 20 min using slitless spectroscopy. NIRI
+was used on 2009-12-26 and 2010-02-09 to obtain near-
+infrared images in the J, H, K’, H2, and [Feii] filters.
+
+The HH 24 Star Forming Complex
+5
+Eighteen 30 sec exposures were obtained in the two nar-
+rowband filters and in nearby continuum filters, 9 ×
+25 sec exposures were obtained in the J-filter and 9 ×
+10 sec exposures in H and K’. Near-infrared spectroscopy
+was obtained with GNIRS under program GN-2013B-
+Q-77 in cross-dispersed SXD mode using the 32 l/mm
+grating and a 0.3 arcsec slit. Source Wb was observed
+on 2014-03-19 for 2400 sec in 0.87′′ seeing, and Ea on
+2014-03-20 for 1200 sec in 0.62′′ seeing. Subsequently
+near-infrared imaging of SSV 63 using NIRI and Gem-
+ini’s adaptive optics module ALTAIR with a laser guide
+star was performed on 2013-12-15 in J, H, K’ filters.
+3.4. Apache Point Observatory
+Radial velocities of various knots and features in the
+HH 24 field were measured using the ARCES echelle
+spectrograph on the APO 3.5 meter telescope on UT
+2018-11-19 and on UT 2021-02-27. ARCES captures the
+entire spectrum between 3200-10000 ˚A with a resolution
+(2.5 pixels) of about R∼32,000. The ARCES entrance
+aperture is a small slit 1.6′′ by 3.2′′ in extent on the sky.
+A one pixel interval near the Hα and red [Sii] doublet
+lines corresponds to a Doppler shift of ∼4 km s−1 per
+pixel. The ARCES spectrograph was also used to obtain
+spectra of the new knot in HH24 jet C on UT 2022-01-
+26. A set of five 300 second exposures was combined for
+the final spectrum.
+All ARCES velocities reported here are referenced to
+the mean Hα radial velocity of the Orion Nebula in the
+vicinity of the Trapezium cluster which is assumed to
+have a heliocentric radial velocity of 21 km s−1, corre-
+sponding to Vlsr = +2 km s−1. This reference frame is
+within a few km s−1 of the radial velocity of the Orion
+B cloud in which HH 24 is embedded. The Orion Neb-
+ula is located within 5◦ of HH 24, making the relative
+correction between the observatory reference frame and
+heliocentric (or LSR) reference frame smaller than the
+errors in radial velocity determinations. The measure-
+ment errors in the spectral line profiles are dominated
+by the large observed line-widths and low signal-to-noise
+ratios and are estimated to be between 5 to 10 km s−1.
+[Sii] images of the HH 24 outflow were obtained with
+a new [Sii] filter having a passband of 78 Angstroms
+and providing full illumination of the 8′ field of view
+of the ARCTIC CCD camera on UT 2021-12-01 with
+the APO 3.5 meter reflector. A dithered set of three to
+six 300 second exposures were acquired at four different
+pointings to cover the entire HH 24 outflow complex.
+Near-infrared observations were obtained with the
+NICFPS camera on the APO 3.5 meter telescope on
+UT 2018-11-19, 2018-12-23, 2022-01-25, and 2022-01-27.
+The pixel scale of this instrument is 0.273′′ per pixel with
+a field of view 4.58′ on a side. Dithered images with 300
+second exposures were obtained in the 2.122 µm S(1) line
+of H2 using a narrow-band filter (FWHM=0.4% of the
+central wavelength) plus identical separate sky frames.
+Atmospheric seeing produced 1.2′′ FWHM stellar im-
+ages.
+3.5. VLT
+An unpublished data set of images of SSV 63 in the Ks
+and L’ band obtained with NACO, the adaptive optics-
+assisted infrared imager and spectrograph at the Very
+Large Telescope (Lenzen et al., 2003, Rousset et al.,
+2003), was retrieved from the ESO Science Archive Fa-
+cility together with its relevant calibration frames. The
+data set consists of 33 individual frames through the Ks
+filter obtained on the night of 20/21 December 2007,
+with a total exposure time of 30 minutes, and 82 images
+through the L’ filter obtained on the night of 31 De-
+cember 2007 / 1 January 2008, with total exposure time
+of 41 minutes. The Ks- and L’-band images were flux
+calibrated using respectively the standard stars S252-
+D (Persson et al.
+1998) and S842-E (Leggett et al.
+2003).
+Data reduction was carried out using IRAF-
+based scripts.
+3.6. ALMA
+The Atacama Large Millimeter Array (ALMA) was
+used to observe molecular line and dust thermal con-
+tinuum emission from the HH 24 region in the 1.3 mm
+region of the spectrum (ALMA Band 6).
+The obser-
+vations, part of the Cycle 6 project 2018.1.01194 (PI:
+Reipurth), included one spectral configuration that al-
+lowed simultaneously observations of a 1.875 GHz-wide
+band of continuum emission, centered at 232.6 GHz,
+and the following spectral lines: 12CO(2-1), 13CO(2-1),
+C18O(2-1), H2CO(30,3-20,2), and SiO(5-4). The (single)
+pointing of the ALMA 12 m array observations was cen-
+tered at 05:46:08.35, -00:10:01.5 (2000), which was cho-
+sen to be able to cover, well within the 25′′ Half-Power
+Beam Width (HPBW) of the primary beam at the ob-
+served frequency, the circumstellar environment of the
+previously known protostars in the HH 24 region.
+The goal of the observations was to study the link be-
+tween the small scale structure (i.e., disks), with sizes
+of about 50 to 100 AU, and the larger structures with
+scales of ∼1000 AU (e.g., circumstellar envelopes, out-
+flows). As such, a range of baselines was needed to be
+sensitive to this range of scales and therefore the obser-
+vations were done using two array configurations (named
+C43-3 and C43-6).
+The more compact configuration
+(C43-3) consisted of baselines ranging from about 15
+to 500 m, while the more extended configuration (C43-
+6) contained baselines of up to approximately 3070 m.
+
+6
+Reipurth et al.
+Figure 2. The HH 24 complex (top) and SSV 61 reflection nebula (bottom) as seen in a color mosaic from Gemini composed of
+g′ (blue), r′ (cyan), i′ (orange), Hα (red) and [Sii] (blue). Color figure prepared by Travis Rector. The figure is ∼4×5 arcminutes,
+corresponding to about 1/2 pc wide. North is up and east is left.
+
+60 arcsecThe HH 24 Star Forming Complex
+7
+The angular resolution and maximum recoverable scale
+of the compact configuration was about 0.7′′ and 7.5′′,
+while for the extended configuration these were 0.12′′
+and 2′′, respectively. The data from the C43-3 configu-
+ration were taken with three execution blocks, obtained
+in December 2018 and April 2019, while the three execu-
+tion blocks with the C43-6 configuration were observed
+in September 2019.
+The Common Astronomy Software Application Pack-
+age (CASA, McMullin et al. 2007) was used to reduce
+the data. Version 5.4 of the CASA pipeline was used
+to calibrate the raw visibility data taken in configura-
+tion C43-3, while version 5.6 was used for data taken
+in configuration C43-6.
+We combined the calibrated
+data from both configurations to study the dust contin-
+uum and C18O emission at small (disk) scales and used
+CASA version 5.7 for self-calibration of the continuum
+data and imaging. We iteratively performed phase-only
+self-calibration with a minimum solution interval of 10 s,
+and then applied the solution to both the continuum and
+C18O data. These were subsequently imaged using the
+tclean task in CASA, with the multi-scale deconvolver
+with scales of 0, 0.′′3, 0.′′7, and 2.′′1 for the continuum im-
+age and 0, 0.′′5, 1.′′1, 2.′′3, and 5.′′2 for the C18O line map
+(which approximately correspond to 0, 2, 5, and 10–20
+times the beam sizes), and using Briggs weighting with
+robust parameters of −1 and 0.5, respectively.
+In order to study the gas structure and kinematics at
+larger scales (∼1000 AU) we used the 12CO, 13CO, C18O
+and H2CO line maps obtained with the C43-3 configu-
+ration. These were all imaged with version 5.4 of the
+CASA pipeline. Imaging of the visibility data was done
+using the tclean task in CASA with a robust parame-
+ter of -0.5. The continuum was subtracted from all the
+molecular line maps using the CASA task uvcontsub.
+Primary beam correction was applied to all maps, ex-
+cept for the high-resolution C18O map. The synthesized
+beam and rms noise of the resulting images are shown
+in Table 2.
+3.7. VLA
+The observations were part of our VLA project 19A-
+012, made with the NSF’s Karl G. Jansky Very Large
+Array (VLA) of NRAO2. The observations were ob-
+tained in the A configuration, those at 44.0 GHz (Q
+band) on UT 2019-8-19 and those at 10.0 GHz (X band)
+2 The National Radio Astronomy Observatory is a facility of the
+National Science Foundation operated under cooperative agree-
+ment by Associated Universities, Inc.
+Figure 3. Annotated Hα–[Sii] image obtained at the Sub-
+aru telescope showing the individual jets from SSV 63. The
+labels preserve and expand existing nomenclature. The mul-
+tiple system is shown as red circles. White is [Sii]-strong,
+black is Hα-strong. North is up and east is left.
+on UT 2019-8-24. These are the deepest observations of
+the HH 24 region obtained to date in those bands. The
+flux and bandpass calibrator was J0542+4951 (=3C147)
+and the phase calibrator was J0552+0313. The digital
+correlator of the VLA was configured in spectral win-
+dows of 128 MHz width, each divided in 64 channels
+of spectral resolution of 2 MHz. The total bandwidths
+were 4.0 and 8.0 GHz for the X band and Q band ob-
+servations, respectively. The data were processed and
+analyzed in the standard manner using the CASA pack-
+age of NRAO and the pipeline provided for VLA3 ob-
+servations. Maps were made using a robust weighting
+(Briggs 1995) of 2 in order to optimize the sensitivity at
+the expense of losing some angular resolution.
+4. THE HH 24 JET COMPLEX
+In the following we study in detail the complex struc-
+ture of the HH 24 jet group, based on Gemini, Subaru,
+and HST images. We discuss all the individual jets in
+the HH 24 complex based on new ultradeep high spatial
+resolution groundbased images. These reveal numerous
+new previously unseen or unresolved knots, which allow
+3 https://science.nrao.edu/facilities/vla/data-processing/pipeline
+
+G
+C
+NE
+Wb
+Wa
+Ea
+knot A
+E
+knot B
+X8
+Reipurth et al.
+Figure 4. HST multi-filter image with the protostellar components of the SSV 63 multiple system superposed (red circles).
+The red circle at the bottom of the figure marks the location of the embedded source HOPS 317, which illuminates an outflow
+cavity and drives the HH 24L flow. The filters used are: F814W (I-band) as blue, F814W+F160W as green, F160W (H-band)
+as orange, and F164N ([Feii]) as red. This mixture of narrowband and wideband images render jets, clouds, and outflow cavities
+particularly well. Color image courtesy Judy Schmidt/NASA/ESA. The F814W image is from HST programs 9160 (PI D.
+Padgett) and the F160W image from program 11548 (PI S.T. Megeath). The [Feii] image is from this paper.
+
+20"The HH 24 Star Forming Complex
+9
+Table 2. ALMA Observations
+Map
+Configurationsa
+Beam Size
+Beam P.A.
+∆V b
+rmsc
+[arcsec]
+[deg E of N]
+[km s-1]
+[mJy beam-1]
+Continuum
+C43-3 + C43-6
+0.13 × 0.08
+-87
+—
+0.038
+C18O(2-1)
+C43-3 + C43-6
+0.24 × 0.21
+-70
+0.2
+1.4
+12CO(2-1)
+C43-3
+0.78 × 0.52
+86
+0.16
+4.0
+13CO(2-1)
+C43-3
+0.81 × 0.54
+87
+0.08
+5.5
+C18O(2-1)
+C43-3
+0.82 × 0.54
+87
+0.08
+4.5
+H2CO(30,3-20,2)
+C43-3
+0.83 × 0.53
+87
+0.17
+2.8
+Note— aALMA configurations used to make map.
+bVelocity resolution of molecular line
+maps. crms per velocity channel at the quoted velocity resolution.
+Figure 5. Triptych of WFC3 HST images showing the HH 24 jet E and jet C in the Hα 6563 ˚A, [Sii] 6717/31 ˚A, and [Feii]
+1.644 ˚A lines. North is up and east is left.
+
+Ha
+[S]
+[Fell]10
+Reipurth et al.
+Figure 6. (top) H2 HST image of the SSV 63 multiple sys-
+tem. The deeply embedded mid-infrared source Eb is not de-
+tectable at 2.1 µm, but is marked with an asterisk. Archival
+image obtained with NICMOS (Program 11205, PI Muze-
+rolle). (bottom) A color composite of an HST [Feii] image,
+an HST H-band image (Program 11548, PI Megeath), and an
+ALMA 1.3mm continuum image. The circumstellar disks are
+clearly resolved, and it is seen that the near-infrared source
+Wb is not a star, but the compact NW lobe of a bipolar
+reflection nebula on either side of a silhouette disk (marked
+with white lines). North is up and east is left.
+Figure 7. Spitzer 8 µm image of the SSV 63 multiple sys-
+tem. The source Eb is clearly resolved from Ea. The figure
+is about 40 arcsec across. North is up and east is left.
+a better understanding of the multiple flow structures in
+the HH 24 complex. We introduce a new flow, HH 24X,
+and extend current knot nomenclature for the principal
+jets C and E, see Section 3.
+The environment of HH 24 in a ∼6′×10′ field is shown
+in Figure 1, which is the sum of deep (1 hour) expo-
+sures in Hα and [Sii] obtained with SuprimeCam at
+the Subaru 8m telescope. HH 24 is located in a highly
+Figure 8.
+An H2 image obtained at the Gemini-N telescope
+showing the faint source S just south of the E and W binaries
+together with a weak detection of the embedded source NE.
+Together with the ALMA-detected source N, SSV 63 thus
+constitutes at least a septuple stellar system. A complex of
+H2 knots is seen between knots Wa and Ea. North is up and
+east is left.
+structured N-S oriented cloud filament studied at mm-
+wavelengths by, e.g., Lada et al. (1991), and in the sub-
+mm by, e.g., Kirk et al. (2016). Figure 2 shows more
+detail of the jets in an optical color-figure based on the
+broadband and narrowband Gemini images. The figure
+shows how the group of jets that constitute HH 24 is
+emanating from a dense cloud core and in the process
+is tearing apart the cloud environment. Figure 3 shows
+a difference image between Hα and [Sii] displayed such
+that Hα dominant regions are black and [Sii]-dominant
+regions are white. The figure is annotated with desig-
+nations for the individual jets.
+We have also obtained HST images using WFC3 with
+Hα, [Sii], and [Feii] filters, see Section 3 for full details.
+Figure 4 shows a color image based on our narrow-band
+filter HST images and archival broadband HST images,
+which provides a more detailed overview of the region.
+The individual narrow-band images of the E- and C-jets
+are shown in Figure 5. These images do not have the
+same field-of-view as the Subaru and Gemini images,
+but offer higher resolution. In Section 6 we discuss the
+properties of the HH 24 jet complex based on these and
+other data sets.
+5. THE SSV 63 MULTIPLE SYSTEM
+In this section we consider the multiple system that
+drives the cluster of jets discussed above, and we at-
+tempt to associate specific jets with individual sources.
+
+SSV 63
+Wb
+Eb
+Wa
+Ea
+5"SSV63 8 micron
+NE
+Eb
+Wa
+EaSSV 63
+NE
+Wb
+Wa
+Ea
+5"
+S
+2000AUThe HH 24 Star Forming Complex
+11
+Figure 9. GNIRS spectra of SSV63 Ea and Wb. Source
+Ea shows a heavily reddened continuum with a few emission
+lines and the CO-bands in emission and no absorption fea-
+tures. In contrast, source Wb shows little reddening but a
+forest of molecular and atomic hydrogen lines, together with
+[Feii], indicative of shocked outflow. Spectral regions with
+poor atmospheric transmission are omitted.
+Strom et al. (1976) detected a near-infrared source as-
+sociated with HH 24 in a survey of L1630. It was subse-
+quently detected in the 6 cm radio continuum (Bieging
+et al.
+1984) and later at mid- and far-infrared wave-
+lengths as IRAS 05436-0011 (Cohen & Schwartz 1987)
+and with Herschel as HOPS 387 (Furlan et al. 2016).
+SSV 63 was resolved as a binary source with ∼10′′ sep-
+aration by Zealey et al. (1992) and Moneti & Reipurth
+(1995) and in the radio continuum by Bontemps et al.
+(1995). Subsequently, Davis et al. (1997) found that
+SSV 63W is itself a binary with a separation we mea-
+sure as 1.95′′. Reipurth et al. (2002) found yet another
+source, SSV 63NE, further to the north-east at 3.6 cm,
+which was detected at mid-infrared wavelengths by Hue-
+lamo et al. (2007). In the same study, Huelamo et al.
+found a new source at mid-infrared wavelengths, labeled
+Eb, located about 2.6′′ NNW of source E, henceforth Ea.
+Source Eb was also detected by Tobin et al. (2020) in
+their large-scale sub-mm and radio continuum survey of
+Orion protostars.
+Figure 6 shows an archival H2 image obtained with
+NICMOS on HST (PI Muzerolle, Program 11205) which
+demonstrates that SSV 63 is a non-hierarchical quadru-
+ple system. Such systems are unstable and will eventu-
+ally break apart. This is further discussed in Section 7.
+Source Eb appears prominently in a Spitzer 8 µm image
+where it is well separated from Ea (Figure 7).
+Properties of these and other sources are listed in Ta-
+ble 3.
+Additional photometry with adaptive optics is
+listed in Table 4.
+5.1. Near-IR Imaging and Spectroscopy
+None of the three sources Wa, Wb, and Ea are visible
+at optical wavelengths, and at near-infrared wavelengths
+the dominant source is Wa. At longer wavelengths, the
+Ea and Eb sources are dominant.
+From their energy
+distributions, all the five main components of SSV 63
+are likely Class I sources as determined by Furlan et
+al. (2016), who used near-, mid-, and far-infrared data
+to study the sources (under the designations HOPS 386
+and HOPS 387). We note that Eb is highly obscured and
+detectable only at mid-infrared and longer wavelengths,
+so it is likely a borderline Class 0 source.
+One additional source is found in the region on a deep
+K-band image from the Gemini-N 8m telescope. Fig-
+ure 8 shows this image, with the new very faint source,
+marked S, identified.
+The source is midway between
+and slightly to the south of the prominent Wa and Ea
+sources. It is faint, with K∼16.2, and it is not detected
+at shorter wavelengths, most likely due to extinction.
+In the L’-band it is much brighter, L∼13.7, see Table 4.
+Since the source is not seen in Spitzer images it is un-
+likely to be as luminous as the other sources, nor to be
+a background red giant. Given its location towards a
+dense cloud core, we assume that the source is a deeply
+embedded very low-mass star or brown dwarf.
+Figure 9 shows the Gemini/GNIRS spectra of SSV 63
+Ea and Wb. Source Ea shows a steeply rising continuum
+devoid of absorption lines with the CO bands as well as
+the Bracket hydrogen series in emission.
+In contrast,
+source Wb is much less reddened but sufficiently veiled
+to wash out absorption features. Its spectrum displays
+prominently a forest of molecular and atomic lines, as
+well as lines of [Feii], indicative of a shocked outflow. A
+planned spectrum of Wa was weathered out, but Simon
+et al. (2004) have presented a K-band spectrum of this
+
+0.002
+[Fell]
+0.0018
+H2
+0.0016
+Br-delta
+[Fell]
+Br-gamma
+0.0014
+Flux
+Pa-beta
+0.0012
+Relative F
+0.001
+0.0008
+H2
+0.0006
+0.0004
+SSV-63Wb
+0.0002
+10000
+12000
+14000
+16000
+18000
+20000
+22000
+24000
+Wavelength0.018
+0.016
+CO
+0.014
+0.012
+Flux
+Relative F
+0.01
+Br-gamma
+0.008
+Br-delta
+0.006
+0.004
+SSV-63 Ea
+Br
+0.002
+0
+16000
+18000
+20000
+22000
+24000
+Wavelenath12
+Reipurth et al.
+Table 3. Coordinates and 2MASS-, SPITZER-, and WISE-Photometry of HH 24 Sources and Hα emission stars
+Object
+α(2000)a
+δ(2000)a
+J
+H
+K
+W1
+I1
+I2
+W2
+I3
+I4
+W3
+W4
+M1
+1.25
+1.65
+2.2
+3.4
+3.6
+4.5
+4.6
+5.8
+8
+12
+22
+24
+IRS 1b
+05:46:07.77
+–00:09:38.3
+13.12
+12.60
+11.59
+11.09
+10.76
+9.81
+8.33
+4.47
+–
+0.04
+0.01
+0.01
+0.03
+0.01
+0.01
+0.05
+0.07
+–
+HH24-Wb
+05:46:07.84
+–00:09:59.3
+HH24-Wa
+05:46:07.86
+–00:10:01.2
+15.20
+13.46
+11.94
+9.32
+9.93
+8.60
+7.52
+7.63
+6.62
+4.45
+0.73
+2.12
+0.12
+0.13
+0.08
+0.05
+0.01
+0.01
+0.04
+0.01
+0.01
+0.02
+0.02
+0.03
+HH24-S
+05:46:08.16
+–00:10:05.3
+HH24-Eb
+05:46:08.40
+–00:10:00.6
+HH24-Ea
+05:46:08.49
+–00:10:03.0
+15.86
+14.16
+11.16
+8.40
+8.10
+6.69
+5.49
+5.57
+4.39
+2.86
+–0.11
+0.00
+–
+.12
+.05
+0.02
+0.01
+0.01
+0.03
+0.01
+0.01
+0.01
+0.01
+0.01
+HOPS 317
+05:46:08.53
+–00:10:39.1
+17.79
+16.79
+15.13
+12.80
+12.31
+10.65
+10.20
+9.39
+8.31
+7.19
+2.57
+3.59
+–
+–
+.13
+0.03
+0.01
+0.01
+0.02
+0.01
+0.01
+0.02
+0.02
+HH24-Nc
+05:46:08.46
+–00:09:54.8
+HH24-NE
+05:46:08.92
+–00:09:56.1
+11.63
+9.33
+7.87
+6.97
+3.40
+0.04
+0.01
+0.01
+0.01
+0.07
+HH24-Hα1
+05:46:11.34
+–00:07:55.1
+17.61
+15.86
+15.15
+13.85
+13.10
+12.72
+11.83
+8.06
+.28
+.14
+.15
+0.01
+0.01
+0.03
+0.04
+0.06
+HH24-Hα2
+05:46:12.27
+–00:08:07.8
+14.63
+13.94
+13.51
+12.70
+12.72
+12.32
+12.07
+11.91
+11.10
+9.06
+6.83
+8.21
+.03
+.02
+.04
+0.03
+0.01
+0.01
+0.03
+0.02
+0.02
+0.05
+0.02
+0.07
+HH24-Hα3
+05:46:12.99
+–00:08:14.8
+16.55
+15.63
+14.98
+14.45
+14.32
+13.59
+13.63
+12.73
+10.90
+8.83
+6.35
+6.32
+.11
+.11
+.12
+0.04
+0.01
+0.01
+0.05
+0.03
+0.02
+0.04
+0.13
+0.02
+HH24-Hα4
+05:46:13.17
+–00:09:10.0
+16.34
+15.39
+15.34
+15.09
+14.74
+12.36
+7.81
+.10
+.09
+.16
+0.04
+0.06
+–
+–
+IRS 2
+05:46:13.47
+–00:08:56.2
+18.68
+15.95
+13.54
+12.25
+11.71
+11.04
+10.94
+10.55
+9.53
+8.49
+6.00
+5.72
+–
+.15
+.04
+0.02
+0.01
+0.01
+0.02
+0.01
+0.01
+0.03
+0.06
+0.02
+HH24-Hα5
+05:46:13.58
+–00:10:34.0
+16.66
+16.08
+15.69
+15.09
+14.88
+12.38
+8.86
+.13
+.20
+.23
+0.04
+0.07
+–
+–
+Note— a Coordinates for HH24-Ea, -Wa, -NE, and MMS-VLA1 are 3.6 cm VLA astrometry from Reipurth et al. (2002), for HH24-N from
+ALMA (this paper), for MMS-HOPS317 from 2MASS, for IRS 1 from WISE, for IRS 2 from Spitzer I1-image, for SSV63-Eb from Spitzer
+I4-image, and for the rest they are from 2MASS. The Spitzer photometry is from Megeath et al. (2012). Note that a few sources that are
+close to brighter sources or surrounded by bright reflection nebulae can be seen in Spitzer images, but meaningful photometry cannot be
+extracted.
+b IRS 2 is not in the 2MASS catalog, even though it is optically visible, presumably due to confusion from its proximity to
+the knots in the C-jet. c HH24-N is a submm source only detected by ALMA.
+Table 4.
+VLT Photometry of
+SSV 63 Components
+Star
+Ks
+L’
+Wb
+>16.5
+12.34±0.04
+Wa
+12.79±0.03
+9.64±0.03
+Eb
+>16.5
+9.19±0.03
+Ea
+12.70±0.03
+8.32±0.03
+S
+16.16±0.22
+13.67±0.06
+NE
+>16.5
+11.21±0.03
+Note—
+These
+adaptive
+optics
+data
+from the ESO archive were obtained
+with NACO at the ESO VLT.
+source which shows a red continuum with a prominent
+Brγ emission line and some weaker H2 lines.
+5.2. Spitzer Imaging
+Spitzer observed the L1630 cloud and Megeath et al.
+(2012) compiled a catalog of all young stellar objects in
+the region.
+SSV 63 Wa, Ea, and NE are detected in
+all bands, whereas Wb is only weakly seen at 3.6 µm.
+As mentioned earlier, the Spitzer images reveal a new
+source, SSV 63 Eb, located just 2.8 arcsec (∼1100 AU)
+NNW of what is now labeled Ea. At 3.6 µm, Eb is seen
+as an extension to Ea, increasing in brightness at longer
+wavelengths, and at 8 µm it is nearly as bright as Ea.
+At 24 µm the pair is blended, but it appears that Eb
+has become the dominant source.
+5.3. VLA Observations
+SSV 63 was detected in the 6 cm radio continuum
+by Bieging et al. (1984) and at 3.6 cm by Bontemps
+
+The HH 24 Star Forming Complex
+13
+Figure 10.
+VLA X-band maps of the 5 main sources of
+SSV 63.
+A possible companion to Wb is seen, as well as
+filamentary structure linked to Wa. The Ea source shows a
+radio jet along the axis of the E/C jet pair, and an orthogonal
+stubby bipolar structure.
+Positions and flux densities are
+given in Table 5. North is up and east is left.
+et al.
+(1995), who resolved the SSV 63 E-W binary.
+Reipurth et al. (2002) carried out a 3.6 cm study in the
+A-configuration which detected a new source, labeled
+SSV 63 NE. Most recently, Tobin et al. (2020) observed
+the SSV 63 region as part of the large VANDAM proto-
+stellar survey.4
+We have carried out a deep high-resolution study of
+SSV 63 with the JVLA in the X-band (∼3 cm, see Sec-
+tion 2 for details of the observations). The five dom-
+inant sources in the SSV 63 multiple system, Ea, Eb,
+Wa, Wb, and NE, are detected, and Table 5 lists the
+VLA coordinates and total flux density for each YSO.
+Source Ea is by far the brightest in the radio contin-
+uum.
+Extended structure is seen around the sources,
+see Figure 10. Noteworthy is what appears to be a faint
+companion to Wb at a separation of 0.6 arcsec and a
+position angle of 43◦ (α2000 = 5:46:07.866, δ2000 = –
+00:09:59.18).
+However, more observations are needed
+to confirm its stellar nature. Source Wa exhibits what
+appears to be an almost 2 arcsec long wiggling outflow
+towards the NNE. Alternatively the extended emission
+may be thermal emission from a ridge of dust. Source Ea
+displays a prominent bipolar radio continuum jet along
+the axis of jet E, with evidence for another weaker out-
+flow perpendicular to the first, suggesting that source
+Ea is a close binary. A similar quadrupolar structure
+is seen around the prominent jet source HH 111 VLA-1
+(Reipurth et al. 1999). There is also a weak extension
+from Source NE towards the HH 24 G flow, although it
+should be noted that the source extension in that direc-
+tion almost coincides with the direction of the slightly
+elongated beam profile.
+Perhaps the more surprising
+result is that source Eb, which is so prominent in the
+mid-infrared, is the weakest of the sources.
+5.4. ALMA Observations
+We have observed the SSV 63 multiple system with
+ALMA in the 1.3 mm continuum, see Section 3. The
+sources Ea, Eb, Wa, Wb, and NE were all detected, and
+additionally a new source, here labeled N, was detected.
+Source S discussed in Section 5.1 was not detected. The
+ALMA observations of these sources are discussed in
+detail in Section 10.
+5.5. X-ray Observations
+4 Tobin et al. (2020) use the following nomenclature for the 5 main
+sources in SSV 63: Ea = HOPS 386A, Eb = HOPS 386B, NE =
+HOPS 386C, Wb = HOPS 387A, Wa = HOPS 387B.
+
+Wb
+Wa
+Eb
+Ea
+0
+0
+NE
+014
+Reipurth et al.
+Table 5. Parameters of the Radio Sources in the SSV 63 Region
+X Banda
+Q bandb
+Spectral
+Source
+α(2000)c
+δ(2000)c
+S(µJy)d
+α(2000)c
+δ(2000)c
+S(µJy)d
+Index
+Wb
+07.s836 ± 0.s001
+09′ 59.′′59 ± 0.′′02
+51±6
+07.s837 ± 0.s001
+09′ 59.′′60 ± 0.′′02
+1578±60
+2.3±0.1
+Wa
+07.s855 ± 0.s001
+10′ 01.′′29 ± 0.′′03
+119±11
+07.s855 ± 0.s001
+10′ 01.′′30 ± 0.′′01
+376±60
+0.8±0.1
+Ea
+08.s485 ± 0.s001
+10′ 03.′′04 ± 0.′′01
+203±9
+08.s485 ± 0.s001
+10′ 03.′′04 ± 0.′′01
+1181±90
+1.2±0.1
+Eb
+08.s426 ± 0.s001
+10′ 00.′′54 ± 0.′′02
+15±2
+...
+...
+≤50
+≤0.8
+NE
+08.s922 ± 0.s001
+09′ 56.′′12 ± 0.′′01
+83±6
+08.s922 ± 0.s001
+09′ 56.′′11 ± 0.′′02
+315±80
+0.9±0.2
+HH 24 MMS
+08.s380 ± 0.s004
+10′ 43.′′71 ± 0.′′05
+141±15
+08.s381 ± 0.s002
+10′ 43.′′70 ± 0.′′02
+10750±120
+2.9±0.1
+a 10.0 GHz
+b 44.0 GHz
+c α(2000) = 05h 46m; δ(2000) = −00◦.
+d Total flux density in µJy.
+SSV 63 has been observed several times at X-ray wave-
+lengths. Ozawa et al. (1999) obtained a 30 ks exposure
+with ASCA, but were not able to fully resolve SSV 63
+from the bright X-ray source SSV 61 (HBC 502) to the
+south (see Figure 2). Simon et al. (2004) used Chandra
+to resolve SSV 63 into Ea, Wa, and NE. The companion
+Wb was not detected. All three components have hard
+X-ray spectral indices. Spectral modeling of the bright-
+est X-ray source, Wa, suggested a visible extinction of
+roughly 48 mag. However, they found that the depth
+of the 3.08 µm ice band indicated only 10-20 mag of
+extinction. Principe et al (2014) did a very deep X-ray
+study of the L1630 region and also detected these three
+sources. In none of these X-ray studies was HH 24 MMS
+detected.
+5.6. Reflection Nebulae
+The HH 24 complex contains several bright reflection
+nebulae. The early polarization studies by Strom et al.
+(1974b), Schmidt & Miller (1979) and Scarrott et al.
+(1987) demonstrated that the source of illumination is
+associated with SSV 63, but the angular resolution was
+too low to identify any specific source. The principal
+reflection nebulosity, labeled knot D by Herbig (1974),
+is seen towards the base of the G-jet, see e.g., Figure 2.
+It is likely, at least in part, to originate from the NE
+source, which is obscured by a dense core of gas and
+dust (Figure 4). This is corroborated by comparing the
+optical Hα and [Sii] images with an infrared image, see
+Section 6.4.
+These reflection nebulae are variable, as can be seen
+when comparing images from the two epochs of HST
+observations (Figure 11). Such variability of reflection
+nebulosity around a young star was first seen by Hubble
+(1917) and Knox-Shaw (1917) and can be caused by light
+escaping from a partly embedded source (e.g., Reipurth
+& Bally 1986, Dahm & Hillenbrand 2017). Such varia-
+tions are shadowing effects from material moving close
+to the illuminating star (Graham & Phillips 1987). Ad-
+ditional compact reflection nebulae are located around
+the sources Ea/b and Wa/b (Figure 8).
+5.7. Association of Jets and Sources
+As discussed above, there are at least five sources
+in the SSV 63 multiple system, and together with
+source S and the additional companions suggested by
+the VLA observations as well as yet another component
+(source N) detected by ALMA (see Section 10), the sys-
+tem contains at least 7 components. We here attempt
+to sort out the connection between the multiple jets and
+the individual sources.
+The most eye-catching of the many jets in HH 24 is
+the E/C pair. Jet E is evidently launched by source Ea,
+as clearly seen in the HST and VLA images (Figures 4
+and 10). Jet C lies within just a few degrees of a line
+through jet E, and it is blueshifted whereas jet E is red-
+shifted, and hence it would be reasonable to assume that
+they form one bipolar pair. However, the two jets have
+rather different morphologies, with jet E being perfectly
+collimated whereas jet C has an irregular and wobbling
+appearance. Also, with the discovery of the embedded
+source Eb on the line connecting jets E and C, there
+is a potential different source to drive jet C. However,
+our ALMA observations (Section 11) show that there
+is almost no high-velocity emission associated with Eb,
+and the little there is forms a stubby bipolar outflow
+along an axis inclined by roughly 20◦ to the axis of
+jet E. Moreover, the southeastern lobe of this microflow
+is blueshifted and the northwestern is redshifted, oppo-
+site to that of jets E and C. We conclude that source Eb
+
+The HH 24 Star Forming Complex
+15
+Figure 11. Difference between the 2014 (black) and 2016
+(white) HST [Feii] images, showing the motion of the jet
+knots, seen especially clearly in the E and C jets. Note the
+∼5◦ change in position angle of the southeastern portion of
+the E-jet.
+Substantial variability in the reflection nebulae
+appears as black and white pairs of nebulosity. Three paral-
+lel line-segments running from upper left to lower right are
+artifacts. North is up and east is left. The figure is about
+55′′ wide.
+is not related to the C-jet. This leaves open the question
+of why the E and C jets have such different morpholo-
+gies. One possibility is that the C jet is forcing its way
+through the dense core in which the two sources Ea and
+Eb have formed, and through internal deflections in the
+core is losing an initial high collimation.
+Jet G has an unusual structure, as discussed in Sec-
+tion 6.4. Despite its morphology it does have a well de-
+fined axis, and SSV63 NE lies precisely along this axis.
+Our VLA observations show that the source is elongated
+along this axis.
+Jet J consists of a series of [Sii]-dominated knots lo-
+cated on a very well defined line that passes directly
+through the Wb source, which is likely the driving
+source. This alignment shows that jet J is not driven
+by the nearby bright source Wa. VLA observations sug-
+Figure 12.
+Jet J in a [Sii] image taken with HST and
+WFC3.
+The jet emanates from the source Wb which is
+deeply embedded and only detected at mm and cm wave-
+lengths, the object seen at optical and infrared light is a
+combination of shocks and reflected light. The source drives
+a very faint but highly collimated jet towards the NW and
+pointing to the large HH 19 bow shock. The SE lobe is bent
+slightly southwards, and points to the bright HH 27 bow
+shock. The location of the embedded sources Wb and Wa
+are marked with red lines. North is up and east is left.
+gest that Wb may be a binary with 0.6′′ separation,
+and either of the two sources could be driving the jet.
+There is a bit of emission just to the SE of Wb, the
+rest of the jet is only seen in the NW lobe. HH 19 is
+a distant bow shock driven by source Wb (Section 6.6).
+Figure 12 shows the inner region of jet J around the
+driving source. The precise location of the source de-
+rived from ALMA data reveals that the optical knot is
+not the driving source, but a compact reflection nebula
+mixed with shocked emission (see also Figure 6).
+Jet X is an inconspicuous slightly wobbly chain of
+faint [Sii]-dominant knots (Figure 3). It points directly
+away from the very faint source S, which is likely a
+brown dwarf seen through significant extinction (see Sec-
+tion 5.1). An increasing number of outflows have been
+found from very young brown dwarfs, e.g., Riaz et al.
+(2017), Riaz & Bally (2021).
+Jet L is not driven by any of the sources in the SSV 63
+multiple system, but by the nearby source HOPS 317 or
+by the embedded Class 0 source HH 24 MMS further to
+the south. This is discussed in detail in Section 7.
+In summary, the SSV 63 multiple system is found to
+consist of at least 7 sources: Ea, Eb, Wa, Wb, NE, S,
+and N within an ellipse of roughly 10′′× 20′′(4000 AU ×
+8000 AU). Additionally the VLA observations suggest
+that Ea is an unresolved binary driving a quadrupolar
+
+HH24 J jet
+Wb
+Wa
+5"
+HH24 B16
+Reipurth et al.
+jet, and Wb appears to have a faint companion. These
+sources are likely Class I sources, but the lack of near-
+infrared emission and X-ray emission from Eb and Wb
+suggest that they could be Class 0 sources. However,
+blending at longer wavelengths precludes a more precise
+classification. The very low luminosity of sources S and
+N suggest that they may be very low-mass stars or brown
+dwarfs.
+6. INDIVIDUAL JETS AND SHOCKS
+6.1. HH 24 Jet E
+As is evident in Figure 4, jet E is the most promi-
+nent of the multiple jets in the HH 24 complex, and is
+remarkable for its highly collimated appearance. It is
+very weak in Hα and strong in [Sii], indicating a series
+of very weak shocks. The near-infrared [Feii] and H2
+images at the Gemini-N telescope reveal that jet E is
+very bright in [Feii]. In contrast, jet E is not emitting
+in H2.
+6.1.1. Structure and Excitation
+The perfect collimation of jet E is seen well in the
+new HST images, and is particularly evident in the [Feii]
+image in Figure 13. However, beyond the large shock A,
+the jet slightly shifts course towards the southeast, as if
+it was deflected by an angle of ∼5◦. The nature of shock
+A is further discussed in Section 6.2.
+Figure 5 shows that the E-jet has a different appear-
+ance in the three filters transmitting Hα, [Sii], and
+[Feii]. Since Hα and [Sii] have similar wavelengths, they
+are affected similarly by extinction.
+Hence the ratio
+between the two relates to intrinsic properties of the
+shocks. Hα is much weaker, and it follows that jet E
+is a very low-excitation flow, and hence has low-velocity
+shocks. In contrast, the [Feii]/[Sii] ratio is heavily af-
+fected by extinction. Because the [Feii] 1.64 µm and [Sii]
+0.67 µm lines have similar energies of 1.7 and 1.8 eV
+above ground, and Fei and Si atoms have comparable
+ionization potentials of 7.87 and 10.36 eV, respectively,
+it follows that the intensity ratio of the two transitions
+is a good indicator of extinction.
+Whereas jet E can
+be traced all the way to the source in [Feii], the first
+knot that is (barely) visible in the [Sii] image is E6. In
+projection this is 1000 AU from source Ea. But there
+is still some extinction out to a projected distance of
+about 3000 AU from Ea. From the bright knot E13 and
+outwards, the [Feii]/[Sii] ratio is essentially constant, in-
+dicating that the jet has broken out of the cloud core.
+This situation is very similar to the case of the HH 1 jet,
+which undergoes two abrupt steps in extinction at 1400
+and 3000 AU (Reipurth et al. 2000). We discuss the
+Figure 13. Structure of the E jet, based on the HST [Feii]
+image in two cuts. 5 arcsec corresponds to 2000 AU. The
+panel shows jet E emanating from the Ea source. Knot A is
+the large bright knot at the bottom. Individual knots in the
+E jet are numbered, see text for details.
+
+1
+-20"
+5"
+A
+m
+SSV
+63
+忆记
+45
+2
+456789The HH 24 Star Forming Complex
+17
+Figure 14. Proper motions based on two epochs of HST
+images superposed on an Hα HST image. The 300 km s−1
+velocity vector is about 11′′ long and shows the motion in
+about 75 yr.
+cloud core in more detail in Section 11, and interpret
+the [Feii]/[Sii] ratio in Section 11.5.
+6.1.2. Proper Motions and Radial Velocities
+Our two HST images of the HH 24 complex in the
+[Feii] 1.644 µm line are separated by 744 days. As is
+evident in Figure 11 the motion of the jets is readily
+visible, allowing us to measure the proper motions of the
+shocked outflows. We have used a code that convolves
+the images with wavelet functions of chosen width, see
+Raga et al. (2016b) for details. Jet E shows pronounced
+motion, as illustrated in Figure 14. The slight deviations
+of some vectors from the well defined direction of the
+jet are likely due to slight changes in the structure of
+the knots. Especially near the source, such deviations
+can have significant impact on the angles. The mean
+tangential velocity of the knots between the source and
+HH 24A is about 250 km s−1. This is comparable to
+other HH jets, e.g., the HH 1 jet has a proper motion
+of ∼280 km s−1 (Bally et al. 2002) and the HH 34 jet
+∼190 km s−1 (Reipurth et al. 2002a).
+In our medium-resolution spectroscopy of jet E with
+the Apache Point 3.5m telescope, the [Sii] 6717/6731
+lines are the brightest and have heliocentric velocities
+from about +170 to 200 km s−1 with a peak around
++170 to 180 km s−1.
+If the bulk radial motion is
+Figure 15. (top) A tracing of the HH 24E-jet from the [Feii]
+HST image. Knots are identified with the nomenclature de-
+fined in Figure 13. (bottom) The FWHM of the individual
+knots of the E-jet within the first 20 arcsec (8000 AU) of
+the source were calculated by subtracting in quadrature the
+point-spread function.
+about +175 km s−1, and we adopt a proper motion of
+250 km s−1, then it follows that jet E moves away from
+the observer at an angle of roughly 35◦ to the plane of
+the sky with a total space velocity of ∼300 km s−1.
+6.1.3. Ejection Variability
+The [Feii] emission along the HH 24E jet is divided
+into three main groups of peaks: one at distances x =
+2′′ → 5′′, the second 5′′ → 10′′ and the third 10′′ → 15′′
+from the outflow source. Figure 13 provides a detailed
+view of the jet, with individual knots numbered.
+Selecting the points of highest intensity within each of
+the three groups, we obtain a mean separation between
+the groups of knots < ∆x >1= 7.7′′ ± 3.6′′. Together
+with a mean proper motion velocity vpm = 250 km s−1,
+this gives a timescale τ1 =< ∆x >1 /vpm = (33±16) yr.
+Similarly, if we take all of the intensity peaks in the top
+frame of Figure 13, we obtain a mean knot separation
+< ∆x >2= 0.93′′ ± 0.36′′, which for vpm = 250 km s−1
+gives a timescale τ2 = (7.1 ± 2.8) yr.
+Conceivably, τ1 and τ2 could correspond to two modes
+of a quasi-periodic, time-dependent ejection variability.
+
+300 km s-15
+20
+-15
+-1018
+Reipurth et al.
+Also, the ejections could be non-periodic with a char-
+acteristic timescale of ∼ 7 yr (corresponding to the
+timescale deduced including the fainter intensity peaks
+along the jet, see above), and with the brighter knots
+corresponding to mergers of the fainter knots. There is
+at least partial evidence that such knot mergers occur
+in the HH 34 jet (see Raga & Noriega-Crespo 2013), for
+which more detailed observations have been made.
+6.1.4. Jet Expansion
+It has been found in several well collimated HH jets
+that the knots widen as they move away from the source,
+e.g., the HH 1 and HH 34 jets (Reipurth et al. 2000,
+2002a). It is clear from Figure 13 that this is also the
+case for the HH 24E jet. The knots are well resolved in
+the HST images, and Figure 15 shows a gradual expan-
+sion of 0.7 arcsec in total width along the first 20 arc-
+sec until it enters the complex region around the bright
+knot A. This corresponds to a full opening angle of the
+jet of 2.6◦, which is comparable to the opening angles
+measured for other jets (e.g., Erkal et al. 2021). A jet
+velocity of 300 km s−1 implies that a half-angle of 1.3◦
+corresponds to knots spreading orthogonally to the jet
+axis with a velocity of 7 km s−1, comparable to the sound
+speed expected in the post-shock cooling layers where
+[Sii] emission originates. If the plasma is fully ionized
+(µ ≈ 0.6), the temperature of this region is about 3,500
+K. For mostly neutral gas (µ ≈ 1.3) the temperature is
+∼8000 K.
+6.2. The HH 24A Shock
+The two jets HH 24E and C are located in the interior
+of a pair of low-extinction cavities, north and south of
+the SSV 63 core, that are rendered visible in the near-
+infrared by scattered light (Figure 4).
+These cavities
+may have been excavated by the long-term action of the
+SSV 63 jets and outflows. Two pillars facing the SSV 63
+region are located along the south wall of the southern
+cavity. The HH 24A shock is located 25′′ (10,000 AU)
+south of SSV 63 Ea and about 2′′ south of the tip of
+the largest pillar in the cloud wall at the southern end
+of jet E. It is the brightest shock in the HH 24 complex,
+and has long been assumed to be a working surface for
+the HH 24E jet, possibly interacting with the cloud.
+Spectra of the brightest part of the HH 24A shock
+show peak velocities ranging from +30 to +40 km s−1,
+much less than the radial velocity of the HH 24E jet,
+and thus supporting the above picture that HH 24A
+is a shock driven into a stationary cloud.
+The [Sii]
+6717/6731 ratio is ∼0.68, indicating an electron density
+of 2400 cm−3 for a temperature of 10,000 K (or 1800
+at 5,000 K). Jones et al. (1987) present low-resolution
+spectra in which [Oiii] is detected, thus showing that at
+Figure 16. (top) Detail of Figure 4 showing the bright bow
+shock HH 24A, located at the intersection of two flows orig-
+inating from the embedded sources Ea and HOPS 317. The
+well collimated jet HH 24E launched from the Class I source
+Ea impacts a cloud edge (seen well in Figure 4) and partly
+burrows through the cloud to re-emerge further down in a
+slightly different direction. (bottom) An Hα-[Sii] difference
+image of HH 24A, with Hα black and [Sii] white. The little
+group of faint [SII]-bright knots to the left of the red dashed
+line move approximately along the jet-E axis towards the
+SSE with about 40-50
+km s−1 and evidently form part of
+this outflow. The bright central region of HH 24A is station-
+ary, while the western extension is either stationary or has
+at most a slight motion towards the west. The dotted arrow
+indicates the direction from HOPS 317. North is up and east
+is left.
+
+HH24E
+HH24Z
+5”
+Spray
+HH24A
+Cloud edge
+Cloud edge
+Jet burrowing
+HOPS317
+HH24E
+Halpha black
+Iarcsec
+[SI] white
+sixe
+HOPS317The HH 24 Star Forming Complex
+19
+least some part of HH 24A has a high excitation, very
+different from the very low excitation of the HH 24E jet.
+Jet E disappears at the pillar tip near the HH 24A
+shock, but re-appears about 8′′ farther south, bent to-
+wards the east by about 5◦. One possible interpretation
+is that jet E impacts the back-side of the pillar, and is
+deflected towards the east by the interaction.5 At right
+angles to jet E, HH 24A extends about 2′′ farther west
+than the western edge of the jet (Figure 16-top). Fig-
+ure 16-bottom shows an HST Hα-[Sii] difference image
+of HH 24A, which reveals a two-shock structure of the
+main body of HH 24A, with an Hα-strong part facing
+north and a southern side that is [Sii]-bright.
+HH 24A is located only about 22′′ from the Class 0
+source HH 24 MMS (see Section 7), and Bontemps et
+al. (1996) suggested that HH 24A may be a separate
+shock from a flow originating in this embedded source.
+HH 24 MMS is located just outside the lower right corner
+of Figure 16-top. That image shows a conical outflow
+cavity of another source, the Class 0 source HOPS 317,
+which is located even closer, only 17′′, to HH 24A. This
+reflection nebula is opening up towards the southwest,
+suggesting that the blueshifted lobe of outflow L is lo-
+cated southwest of this YSO. HH 24A, which is red-
+shifted, is located along the expected counterflow direc-
+tion of outflow L. A line from HOPS 317 to HH 24A
+is aligned with the outflow cavity of HOPS 317 as well
+as the molecular hydrogen outflow (HH 24L) extending
+SW from HOPS 317 (see Section 7). Figure 17 shows
+that this lobe of the L-counterflow also contains shock-
+excited 2.12 µm H2 emission connecting HOPS 317 to
+HH 24A. In addition, to the NE of HH 24A a new faint
+shock, here called HH 24Z, is found (Figure 16-top),
+which could be part of the outflow driven by HOPS 317.
+It thus appears, on morphological grounds, that HH 24A
+might be a bow shock powered by HOPS 317.
+Ideally, proper motions should resolve the issue of the
+origin of the HH 24A bow shock. Unfortunately, the 2-
+yr time interval between our two epochs of [Feii] HST
+images are not sufficient to show any motion reliably,
+but adding an archival wideband image including the
+[Feii] 1.64 µm line does show some rather slow motions.
+Figure 16-bottom shows two areas of HH 24A sepa-
+rated by a red dashed line. The [SII]-bright knots to
+the left of the line have motions towards the SSE with
+about 40-50 km s−1, roughly along the direction defined
+5 It should be noted that the little jet X associated with source S
+(see Section 5.7) is pointing straight towards the deflected part
+of the HH 24E jet so, at least in principle, it cannot be excluded
+that this deflected part of the jet could have an origin different
+from source Ea.
+Figure 17.
+A superposition of an Hα (blue), a [Sii] (green),
+and a 2.12 µm molecular hydrogen (red) image of the HH 24
+complex obtained at the APO 3.5m telescope. The figure is
+2.5’ wide.
+by jet E. They are slightly displaced from the axis of
+jet E, either because the jet has been disturbed by bur-
+rowing through the cloud, similar to jet C, or they may
+be shocks from a wider angle wind interacting with a
+flow cavity.
+The central part of HH 24A to the right of the red
+line is essentially stationary, indicating that the shock
+is ramming into the cloud. The western wing may have
+a slow tangential motion of 20-30±15 km s−1 approxi-
+mately due west. HH 24A shows a classical two-shock
+structure, with an Hα-strong and a [Sii]-strong compo-
+nent. The dashed arrow shows the direction from the
+HOPS 317 source.
+The data available do not allow a definite conclusion
+on the origin of HH 24A, it could originate from either
+source Ea or HOPS 317.
+If the gentle westward mo-
+tion of the wesstern wing is real it would in both cases
+represent gas squirting sideways along the wing of the
+bow shock. If the bright part of the HH 24A shock comes
+from HOPS 317 then both flows from Ea and HOPS 317
+interact with the pillar, but not necessarily with each
+other. The high-surface brightness of HH 24A and de-
+tection of [Oiii] suggests that it is interacting with the
+front side of the pillar while the cloud interaction with
+
+20
+Reipurth et al.
+Figure 18. Structure of the C jet, based on the HST [Feii]
+image in two cuts. 5 arcsec corresponds to 2000 AU.
+jet E occurs mainly within or on the back side of the
+pillar.
+6.3. HH 24 Jet C
+6.3.1. Structure and Excitation
+Figure 18 shows the detailed structure of jet C as seen
+in the HST [Feii] image. Although it appears to be a
+counter-jet to jet E, it does not share the perfect colli-
+mation of jet E. Another puzzling fact is that while jet E
+can be traced directly back to the source even though it
+is red-shifted, in contrast jet C only becomes visible (in
+the 1.644 µm [Feii] line) about 8.5 arcsec north of the
+source Ea (see below).
+Figure 3 shows that near the outflow source, jet C is
+strong in [Sii] and is surrounded by Hα-strong shocks
+sitting on the ’shoulders’ of the individual knots that
+protrude to either side of the main jet axis, in a very
+similar fashion to what is seen in the equally wiggling
+HH 46/47 jet (Heathcote et al. 1996). These Hα arcs
+Figure 19. The C jet in two groundbased [Sii] images taken
+in 2006 at Subaru and in 2021 at Apache Point Observatory.
+The emergence of two bright knots from behind a cloud edge,
+indicated by the dotted line, is clearly seen. The motion of
+the jet during the 15 years between exposures is indicated.
+are deflection shocks or spur shocks, caused by knots
+glancing off the side of a mostly-evacuated cavity, and
+they are seen in several other prominent jets, like HH 1,
+34, and 47 (Heathcote et al. 1996, Hartigan et al. 2005,
+2011). Further out along the flow axis a series of bow
+shocks are seen, which show a clear double-shock struc-
+ture, with an inner [Sii]-strong shock and an outer Hα-
+strong envelope. This is as expected from a heavy jet
+pushing through a tenuous ambient medium, either sta-
+tionary or co-moving, which will produce a double-shock
+working surface, with a weak jet-shock and a stronger
+bow shock (Hartigan 1989, Reipurth & Heathcote 1992).
+6.3.2. Proper Motions and Radial Velocities
+Jones et al.
+(1987) measured the proper motion of
+part of the C-jet and derived a tangential velocity of
+about 320 km s−1 to the NNW away from SSV 63. Our
+proper motion study concurs with this result, indicating
+motion of about 300 km s−1 away from the Ea/Eb pair
+(Figure 14).
+Our spectra along the C-jet show blue-
+shifted emission across the velocity range -180 to -230
+km s−1 with a peak radial velocity of -200 km s−1. If
+we adopt these two numbers, then we find that jet C is
+moving towards us at an angle to the plane of the sky
+of roughly 34◦. This is comparable to the angle of ∼35◦
+for the redshifted jet E, and although these angles have
+uncertainties of at least several degrees, their similarity
+supports the interpretation that the two jets form one
+bipolar outflow.
+Figure 19 shows two groundbased [Sii] images, one
+taken in 2006 at the Subaru telescope and a new taken
+in 2021 at the Apache Point Observatory. A new knot
+has appeared, emerging from behind a dense cloud edge.
+This new knot is also seen in the Hα and [Sii] images ob-
+tained with HST in 2014 (Figure 5), narrowing the inter-
+
+IRSI2006
+2021
+Jet CThe HH 24 Star Forming Complex
+21
+val during which it appeared to between 2006 and 2014.
+Our spectra yield a [Sii] ratio 6717/6731 of 0.63, indi-
+cating an electron density of 2300 - 3000 (T=10,000 K).
+The knot is blueshifted.
+6.3.3. Origin of Jet C
+Given that jets C and E are almost perfectly aligned
+with each other, and the fact that jet C is blueshifted
+while jet E is redshifted (Solf 1987) with the same an-
+gle to the plane of the sky, it appears evident that they
+form parts of a single bipolar outflow. However, as was
+discussed in Section 5, there are two sources between
+the two jets, Ea and Eb, so in principle the jets could
+arise from separate sources, which would make it easier
+to understand the curious difference in morphology of
+jets C and E. However, if jets C and E were driven by
+two separate sources, then we would expect that each
+source would also have a counterjet. Given the limited
+size of the SSV 63 cloud core, such counterjets should
+be readily visible.
+Also, the VLA observations of Ea
+clearly show a bipolar radio continuum jet along the
+common E/C jet axis. It thus seems well established
+that jets C and E form opposite sides of a bipolar out-
+flow from source Ea. The slight mis-alignment of the
+C and E jets could be explained if source Ea moves to-
+wards the southwest through the SSV 63 cloud core with
+a speed of ∼2 km s−1, consistent with the expected mo-
+tion of stars within the gravitational potential of the
+core.
+In this scenario, source Eb does not drive any
+jet. Our ALMA data shows that source Eb does drive
+an ultra-compact arcsecond-scale molecular flow along
+a northwest-southeast axis with the redshifted lobe ori-
+ented to the northwest (Section 11.2).
+6.3.4. Wiggling of Jet C
+As already mentioned, jet C shows pronounced wig-
+gling, which might suggest that the source is either a
+binary or the jet is anchored in a precessing disk. Raga
+et al. (2009a) have made models of precessing accre-
+tion disks around a star in a binary system, and find
+that it leads to a reflection-symmetric spiraling outflow
+on small scales from the orbital motion together with
+a reflection-symmetric spiral on large scales due to the
+precessing disk.
+On closer examination, however, this interpretation
+runs into difficulties. If we estimate the ratio between a
+typical extent of one of the wiggles (d∼10′′ or ∼4000
+AU) and its sideways displacement (h∼1′′), together
+with the measured jet velocity vj = 250 km/s the or-
+biting jet model then yields an estimate for the orbital
+velocity:
+vo =vj × h/d = 25 km/s
+Also, the orbital period is:
+to = d/vj= 76 yr
+corresponding to an orbital radius
+ro = vo to / (2 π) = 64 AU
+which is uncomfortably large.
+For a binary with two stars of equal mass M in circular
+orbits, the mass of one of the two stars can be obtained
+as:
+M = 2 vo2 ro/G = 180 M⊙
+which clearly is unrealistic. No matter what tweaks
+are made to the above numbers the resulting mass is
+far too large. There are HH jets with a wiggling that is
+convincingly interpreted as the result of binary motion,
+but the wiggles here are more irregular and are spread
+over longer distances along the jet. This may be due to
+unknown density perturbations that accompany the ve-
+locity differences along the jet, and when material runs
+into itself new knots will come and go.
+Another possible explanation for the difference in mor-
+phology of the E/C jet pair could be that, while source
+Ea is located at the edge of the cloud core and launching
+jet E unhindered, jet C is burrowing through the cloud
+core. Shear might excite Kelvin-Helmholtz instabilities
+along the cavity walls, and the jet could be slighly de-
+flected by these ripples in a quasi-periodic fashion.
+6.4. HH 24 Jet G
+Jet G has an unusual morphology. Figure 20 shows
+two cuts of a deep image from the Subaru 8m telescope,
+which reveals four main features of the jet, (1) a cen-
+tral axis with fragments of a long collimated flow which
+we denote Ga1-a5 (see Figure 21), (2) an envelope sur-
+rounding the entire flow, (3) several knots that are off-
+center from the main axis, in particular the pair of knots
+labeled Gb and Gc in Figure 21, which shows a 1.644 µm
+[Feii] HST image, and (4) a large bright and diffuse S-
+shaped region at the base of the jet, which corresponds
+to Herbig’s knot D.
+Knot D was observed spectroscopically by Jones et al.
+(1987) who found that it is mainly a reflected continuum
+with Hα and Hβ in emission. Polarimetry by Strom et
+al.
+(1974a,b), Schmidt & Miller (1979), and Scarrott
+(1987) suggested that SSV 63 is a likely source of the
+reflected light (see Section 5.6), but Jones et al. (1987)
+argued that another embedded source should exist on
+the axis of the G flow. Their proposed position is only 3
+arcsec from the NE radio continuum source found later
+by Reipurth et al. (2002), and lying on the axis of the
+G outflow (see Figure 21).
+The linear chain of knots denoted a1-a5 in Figure 21
+includes a fragment (a5) of a jet near the source NE.
+While this appearance is similar to many other ill-
+defined jets, an unusual feature is the envelope that sur-
+
+22
+Reipurth et al.
+Figure 20. Jet G in the optical in two different cuts, illus-
+trating the brighter interior and fainter exterior structures.
+Each figure is the sum of deep Hα and [Sii] images obtained
+at the Subaru 8m telescope. The vertical dimension is 84 arc-
+sec corresponding to 0.16 pc. The apex of the jet is denoted
+a1, and more features are labeled in Figure 21.
+rounds the jet, seen well in Figure 20.
+The distance
+from the tip of the jet to source NE is 75 arcsec, corre-
+sponding to 30,000 AU in projection. The width of the
+envelope at its widest is about 14 arcsec, corresponding
+to 5600 AU. Near its base, much of this envelope near its
+base is illuminated by light from source NE, and there
+appears to be several rings or corrugations in its lower
+part. Presumably this is an outflow cavity originating
+from source NE. The two brightest knots in Jet G are
+located off the axis of the Ga knot chain.
+Figure 21. HST near-infrared [Feii] image of the HH 24
+jet G. The tip of the jet (a1) falls outside the WFC3 field,
+but is seen as the top of the jet in Figure 20.
+This com-
+plex outflow consists of a central collimated jet (a1-a5) and
+two bright bow shocks (b and c) all wrapped within a wide
+outflow cavity whose sides are outlined in [Feii] emission.
+Knot D was originally so designated by Herbig (1974), but
+has turned out to be an Hα-bright reflection nebula illumi-
+nated by the embedded VLA source NE. The bright lower
+part of the figure is shown with a different cut. The height
+of the figure is about 70′′.
+Unique among the HH 24 jets, jet G has a bright com-
+ponent of H2 emission, see Figure 17. The apex of jet G,
+labeled a1, is dominant in H2, and closer to the source,
+around a3, prominent wings of H2 indicate the presence
+of low-velocity shocks.
+Jones et al. (1987) obtained long-slit spectroscopy of
+the central a1 - a5 knots, and found very high blueshifted
+heliocentric velocities of -130 to -140 km s−1. We have
+
+3
+alb
+a2
+c
+a3
+-a4
+Jet G
+a5
+"Knot D"
+× NEThe HH 24 Star Forming Complex
+23
+obtained spectra of the off-axis Gb-knot, and find a low
+velocity of ∼0 km s−1.
+Our proper motion measure-
+ments of the a-knots indicate motions of 100-200 km s−1,
+but the b and c off-axis-knots are stationary within the
+errors.
+They are both very bright in [Sii], indicating
+that they are low-excitation shocks. They seem to be
+oriented towards the north-east, and when tracing a
+line backwards one finds the near-IR YSO IRS 1 (see
+Section 8.2). However, the lack of measurable proper
+motions makes it impossible to establish a possible as-
+sociation with this source.
+6.5. Other Jets
+In addition to the above major shocked outflows, there
+are three additional rather inconspicuous flows, J, X,
+and L. The two first are discussed in Section 5.7 and the
+third in Section 7.
+6.6. Parsec-scale Outflows
+Many well-collimated HH jets are associated with dis-
+tant bow shocks that can be more than one parsec from
+their driving sources.
+Such giant jets provide fossil
+records of the mass loss and accretion histories of their
+driving sources (Reipurth, Bally, and Devine 1997). The
+formation of these giant terminal working surfaces is dis-
+cussed in Section 12.
+The HH 24 jet complex is not an exception to
+this.
+Several distant shocks, found by Herbig (1974,
+HH 19,20,21), Strom et al. (1986, HH 37), and Reipurth
+& Graham (1988, HH 70), are located to the north of
+the HH 24 complex (Figure 1). In their study of the HH
+objects in this region, Jones et al. (1987) recognized the
+probable relation of these objects to the HH 24 jets. Ba-
+sic properties of the various distant components of these
+giant flows, known as well as new, are given in Table 6,
+and are discussed in more detail below.
+6.6.1. HH 19
+HH 19 is a bright and highly structured object, with
+the appearance of a large fractured bow shock (Fig-
+ure 1). Between HH 19 and SSV 63 is a faint group of
+knots, labeled HH 19-O by Eisloeffel & Mundt (1997).
+The faint but well collimated jet J points within a few
+degrees towards HH 19. This jet is launched by source
+Wb, which is therefore also the likely driving source of
+HH 19. This identification was supported by the proper
+motion measurements of Jones et al. (1987), who found
+tangential velocity vectors of the HH 19 complex of 60-
+90 km s−1 directed away, to within a few degrees, from
+the SSV 63 multiple system. The distance of HH 19 from
+source Wb is ∼400 arcsec, corresponding to a projected
+distance of 0.77 pc.
+Figure 22. The two fractured giant bow shocks driven by
+the two jets C (axis shown in green) and J (axis blue) shown
+in an Hα–[Sii] image obtained with the Subaru telescope.
+Black is Hα-strong and white is [Sii]-strong. The two arrows
+mark defects in the CCD. The box indicates the area shown
+in Figure 23. North is up and east is left.
+Figure 23. Distant bow shocks HH 19, HH 21, and HH 37
+from an Hα image obtained with the HST as a parallel ACS
+observation. The annotation of HH 19 is from Mundt et al.
+(1984). North is up and east is left.
+Figure 22 shows an Hα–[Sii] difference image includ-
+ing HH 19. While some HH working surfaces have clean
+morphologies, with Hα-strong bow shocks and weaker
+[Sii] jet shocks (e.g., HH 34, Reipurth & Heathcote
+1992), HH 19’s highly fractured structure does not show
+
+60"
+HH20
+HH21
+HH2least
+HH19
+HH 37
+HH70HH 21
+61 HH
+D
+HH 37
+30"24
+Reipurth et al.
+such simple patterns.
+The complexity of the individ-
+ual shocks in HH 19 is further illustrated in Figure 23,
+which shows an Hα image that was fortuitously obtained
+in parallel-mode with ACS while the HH 24 jets were
+imaged with WFC3. Some features appear to have for-
+ward facing bow-shapes, while others are backward fac-
+ing. These latter structures tend to show little or no
+proper motion while the forward facing shocks exhibit
+the fastest motions.
+It seems that some ejecta asso-
+ciated with jet J are overrunning either stationary, or
+slowly moving, dense globules of material.
+Our measurements indicate a mean tangential velocity
+of HH 19 around 100 km s−1 but with large internal
+variations, and directed straight away from the SSV 63
+core along the axis of jet J. Assuming that this velocity
+is representative of the motion of HH 19 since it was
+launched, it indicates an age of ∼8,000 yr.
+Our spectra show that HH 19 is blueshifted, as already
+noted by Jones et al.
+(1987), with velocities ranging
+from -100 to +29 km s−1 and with a peak around -15 to
+-20 km s−1 in the Orion reference frame. This suggests
+that the flow is moving close to the plane of the sky, at
+an angle of roughly 10◦.
+6.6.2. HH 27
+On the opposite side of source Wb, along the axis of
+the J-jet and at a distance of ∼320 arcsec (0.62 pc), is
+the bright compact HH object HH 27 (Figure 1). Based
+on this location, it appears highly likely that HH 19 and
+HH 27 form opposite working surfaces in a giant outflow
+with a combined projected extent of ∼1.4 pc. Whereas
+HH 19 is blueshifted, HH 27 is redshifted, showing a
+broad Hα line profile with a peak velocity in the Orion
+Nebula rest frame of about +32 km s−1. The 0.15 pc
+difference in extent of the blue- and red-shifted lobes
+may be related to HH 19 moving out of the L1630 cloud,
+whereas HH 27 may still be closely associated with the
+cloud. This is supported by Jones et al. (1987) who
+found HH 27 to be the highest extinction object in the
+region, with an Av∼3, based on measurements of Balmer
+decrements.
+Despite the presence of bright, compact knots in
+HH 27, the absence of nearby reference stars means
+that only an upper bound on its tangential velocity of
+VP M <60 km s−1 could be measured, a limit consistent
+with the object moving into a cloud.
+6.6.3. Extensions of HH 24C
+The shocks in the HH 24C jet grow fainter and wider
+as they move to the NNW of source Ea. Several working
+surfaces with Hα-bright bow shocks sitting as shoulders
+on [Sii]-rich jet shocks are evident in Figure 3. Beyond
+those, the flow appears as a very faint and diffuse fil-
+igreed bubble of shocks reaching as far as 140 arcsec
+(55,000 AU = 0.27 pc in projection) from source Ea
+(Figure 1). Such a structure may result from a wider
+outflow interacting with the surface of the L1630 cloud.
+6.6.4. HH 20, 21, 37, 70, NNW
+Further downstream there is what appears to be a gi-
+ant fractured bow shock encompassing HH 20, 21, 37,
+and 70, see Figure 1. Our spectra show that HH 20 is
+blueshifted, with line profiles peaking at a velocity of
+about -120 km s−1, confirming the early work of Jones
+et al.
+(1987).
+The most distant shock in the HH 20
+complex is ∼530 arcsec (1.02 pc in projection) from
+source Ea.
+We concur with Jones et al.
+(1987) and
+Eisloeffel & Mundt (1997) that these distant shocks are
+likely driven by SSV 63.
+The tangential velocities of
+the components of the HH 20 complex are on average
+around 130 km s−1, indicating a dynamical age of 6800
+yr, again assuming a constant velocity over time. How-
+ever, there is a large dispersion in motion among the
+various features. For HH 21, 37 and 70 the motions are
+so slow that no measurable proper motions could be de-
+termined. For HH 20, tangential velocities are in the
+range ∼50-100 km s−1.
+The north-south oriented fil-
+ament, HH 21 east shows coherent motion towards the
+north with a speed larger than 100 km s−1. However, the
+northern-most knot exhibits apparent motion towards
+PA∼-24 deg. This may be due to fading of one part of
+the shock and brightening of another part towards the
+west.
+We have obtained widefield images to the NNW and
+SSE of HH 24 in search of further shocks, and have iden-
+tified several along the E/C jet axis. Figure 24 shows
+the sum of our deep Hα and [Sii] images with Suprime-
+Cam where we identify yet another faint shock, dubbed
+HH24-NNW, along the E/C jet axis, at a distance of
+750 arcsec, or 1.46 pc in projection. The object is too
+diffuse for proper motion to be measured.
+While within 1′ of source Ea, knots in the jets C and E
+exhibit tangential motions of about 250 to 300 km s−1,
+the various HH objects located farther away from the
+SSV 63 core show a systematic decline of the proper
+motions with increasing distance from the SSV 63 core.
+This behavior is similar to what is observed in other
+parsec-scale protostellar outflows and indicates deceler-
+ation of the ejecta as they interact with slower moving
+or stationary media.
+6.6.5. HH 24 SSE, SSE2e, SSE2w
+
+The HH 24 Star Forming Complex
+25
+Table 6. Giant Bow Shocksa
+Shock
+α2000
+δ2000
+Assoc. Jet
+Source
+Pos.Angle
+Sep.[′′]
+Length [pc]b
+HH 19
+5:45:49.6
+-00:05:11
+Jet J
+Wb
+317
+398
+0.77
+HH 20
+5:45:55.6
+-00:02:47
+Jet C
+Ea
+336
+477
+0.92
+HH 21
+5:45:55.7
+-00:04:27
+Jet C
+Ea
+330
+387
+0.75
+HH 21east
+5:45:59.8
+-00:04:46
+Jet C
+Ea
+338
+343
+0.67
+HH 27
+5:46:22.9
+-00:13:44
+Jet J
+Wb
+135
+319
+0.62
+HH 37
+5:45:56.0
+-00:05:32
+Jet C
+Ea
+325
+330
+0.64
+HH 70
+5:46:02.3
+-00:05:36
+Jet C
+Ea
+341
+283
+0.55
+HH 24 NNW
+5:45:51.3
++00:01:41
+Jet C
+Ea
+340
+750
+1.45
+HH 24 SSE
+5:46:28.6
+-00:17:53
+Jet E
+Ea
+147
+503
+0.98
+HH 24 SSE2e
+5:46:35.3
+-00:22:47
+Jet E
+Ea
+152
+863
+1.67
+HH 24 SSE2w
+5:46:31.0
+-00:23:04
+Jet E
+Ea
+157
+851
+1.65
+Note—a: All objects are very extended; coordinates refer to bright features or the geometric center
+of an object. All objects were measured on optical images except HH 24 SSE2e and HH 24 SSE2w,
+which were measured on Spitzer IRAC2 images. b: Projected length.
+Table 7. Images used for Proper Motions of Giant Bow
+Shocks
+Date
+MJD
+Instrument & Filter
+18 December 2001
+52261
+CTIO 4m Mosaic Hα, [Sii]
+06 January 2006
+53741
+Subaru Suprimecam Hα, [Sii]
+18 February 2014
+56706
+HST WFC3/ACS [Feii], Hα , [Sii]
+03 February 2016
+57421
+HST WFC3/ACS [Feii], Hα
+01 December 2021
+59549
+APO ARCTIC [Sii]
+In the southern part of the HH 24 complex we have dis-
+covered three more distant knots, labeled SSE, SSE2e,
+and SSE2w.
+They are shown on Figure 25, which is
+a composite from Spitzer IRAC1 (3.6 µm) and IRAC2
+(4.5 µm) images, where these distant shocks are more
+pronounced. The projected distance of SSE from source
+Ea is 0.98 pc, and from our optical images we determine
+a tangential motion of roughly 150 km s−1. Assuming a
+constant velocity the age of this knot is ∼8200 yr. The
+projected distance of the SSE2 pair from source Ea is
+1.66 pc. Thus, the total extent of the HH 24 E/C flow
+is 3.1 pc, making it among the largest HH flows known.
+Figure 26 shows optical close-ups of the individual NNW
+and SSE shocks. The NNW shock has a very large ex-
+tent of >40,000 AU, and is likely the northern terminal
+bow shock for the HH 24 E/C jet pair. In contrast, the
+SSE shock just consists of two knots, located well be-
+hind the two most distant shocks, SSE1 and 2, which
+likely together form the southern terminus of the E/C
+jet pair. We discuss how these multiple working surfaces
+have been formed in Section 12.
+6.6.6. Proper Motions of Distant Bow Shocks
+We have three epochs of groundbased optical images
+spanning from 2001 to 2021 that cover parts of these
+parsec-scale shocks surrounding the HH 24 complex (see
+Table 7). Images obtained with the Blanco 4-meter tele-
+scope at CTIO in 2001, the Subaru 8-meter telescope in
+2006, and the Apache Point Observatory (APO) 3.5-
+meter in 2021 were used for proper motion measure-
+ments of these distant HH objects. The time interval
+between the 2001 and 2021 images was 19.95 years
+Table 8 lists the positions and proper motions of fea-
+tures measured on the 2001 Blanco 4m, the 2006 Sub-
+aru, and 2021 APO images. At a distance of 400 pc, a
+displacement of 1′′ in a time interval of 19.95 years cor-
+responds to a speed of 93.5 km s−1. The uncertainties of
+the tangential velocities vary from about 20 to as much
+as 60 km s−1 owing to the diffuse structure of some of
+the features, residual distortions in the images, and the
+lack of close-by field stars to use for image registration.
+6.6.7. Parsec-scale CO Outflows
+Stanke et al. (2022) have mapped the entire Orion
+B molecular cloud in the J=3-2 CO transition at 346
+GHz with the APEX telescope (the ALCOHOLS sur-
+vey). The beam size of this survey is ∼19′′. Figure 27
+shows ‘high-velocity’ CO emission in the vicinity of the
+SSV 63 cloud core. Towards NNW, there is a low-radial
+velocity counterpart to jet J, also blueshifted as the HH
+objects. We find that a clumpy, low velocity bubble ap-
+pears to surround the various distant HH objects likely
+powered by jet C. Faint, redshifted emission is associ-
+ated with the counterflows. The impact of the SSV 63
+outflows on the Orion B cloud has been very significant,
+and not only in the immediate vicinity of the sources,
+
+26
+Reipurth et al.
+Table 8. Parsec-Scale Components & Proper Motions
+R.A. & Dec.
+PMa
+Va
+PA
+Comments
+(J2000)
+(mas yr−1)
+(km s−1)
+(deg.)
+5:46:35.2 -0:22:43
+-
+-
+-
+HH 24 SSE2-east. South terminus
+5:46:30.6 -0:23:06
+-
+-
+-
+HH 24 SSE2-west. South terminus
+5:46:28.8 -0:18:05
+61
+156
+115
+HH 24 SSE1
+5:46:22.7 -0:13:43
+<30
+<60
+-
+HH 27
+5:45:56.2 -0:07:18
+83
+157
+-43
+jet J; faint bow
+5:45:49.6 -0:05:11
+46
+87
+-23
+jet J; HH 19 S
+5:45:49.1 -0:04:53
+54
+102
+-25
+jet J; HH 19 N. Northwest terminus
+5:45:69.0 -0:04:32
+57
+108
+-24
+HH 21east
+5:45:59.8 -0:05:02
+49
+93
+-3
+HH 21east E1 (Hα)
+5:45:59.8 -0:04:55
+74
+140
+-7
+HH 21east E2 (Hα)
+5:45:59.8 -0:04:31
+131
+248
+-5
+HH 21east E3 (Hα)
+5:45:69.0 -0:04:28
+132
+250
+-11
+HH 21east N-tip (Hα)
+5:45:55.7 -0:04:26
+<30
+<60
+-
+HH 21
+5:45:58.5 -0:03:22
+55
+104
+9
+HH 20 S
+5:45:55.0 -0:03:02
+92
+175
+-16
+HH 20 NW1
+5:45:55.6 -0:02:47
+59
+112
+-22
+HH 20 NW2
+5:45:54.2 -0:02:01
+73
+139
+0
+HH 20 N
+5:45:51.1 +0:01:42
+<30
+<60
+-
+HH24 NNW. North terminus
+Note—a: no motion detected is marked as –
+where cavities have been blown out (Figure 4). A de-
+tailed analysis of these giant molecular outflows is, how-
+ever, beyond the scope of this paper.
+A number of smaller, and presumably younger bipolar
+outflows are also seen in this part of the Orion B cloud.
+7. THE CLASS 0 SOURCE HH 24 MMS
+Forty arcsec south of the SSV 63 complex lies a
+very bright submm source, HH 24 MMS, discovered at
+1300 µm by Chini et al. (1993). Bontemps et al. (1995)
+and Chandler et al. (1995) detected a VLA source to-
+wards HH 24 MMS at 3.6 cm and 7 mm, respectively,
+both in C/D configuration.
+Ward-Thompson et al.
+(1995) obtained an improved position at 350 µm, show-
+ing that the VLA source is coincident with the submm
+source, and identified it as a deeply embedded Class 0
+source.
+Reipurth et al.
+(2002b) detected the source
+at 3.6 cm with the VLA-A and provided a more accu-
+rate position for HH 24 MMS. Two additional nearby
+faint sources were detected with high-resolution VLA-
+C/D observations at 6.9 mm by Kang et al. (2008).
+Near HH 24 MMS, Furlan et al. (2016) identified on
+Herschel images a cool source, HOPS 317, which was
+previously discovered with Spitzer and identified as the
+near-infrared source 2MASS-J05460852–0010390. They
+concluded that it is a Class 0 source with a total luminos-
+ity of 10.6 L⊙, a bolometric temperature of Tbol=47.5 K,
+and an extinction AV =41.5 mag.
+However, examina-
+tion of the Herschel images show that HH 24 MMS and
+HOPS 317 are two separate sources, ∼5 arcsec apart.
+While the two sources are just resolved at 70 µm, with
+HOPS 317 being the dominant source, at 160 µm they
+are blended, see Figure 28. Hsieh et al. (2021) observed
+the region with ALMA and in addition to separating
+HOPS 317 and HH 24 MMS, they found a third source
+about 12′′ to the northwest, which they dub HH24mms-
+NW (their Figure 3b). It could be that HH 24 MMS
+forms a small multiple system, possibly non-hierarchical,
+and if so unstable.
+Figure 29 shows an infrared image obtained with
+WFC3 on HST through a [Feii] 1.64 µm filter.
+The
+image shows an illuminated outflow cavity with a bright
+apex opening out from HOPS 317 and several emission-
+line knots, the brightest of which is an optically visi-
+ble Herbig-Haro knot here designated HH 24L. The HH
+object is located 9′′ from HOPS 317, which at a dis-
+tance of 400 pc corresponds to a projected separation
+of 3600 AU. If the flow moves with a tangential velocity
+of about 100 km s−1, typical of HH flows, then it was
+ejected from this source ∼170 years ago.
+Figure 30 is an image in the H2 1-0 S(1) line at 2.12 µm
+of the same region, which shows that the HH 24L flow
+from HOPS 317 is much more pronounced in H2 near
+the source, showing a chain of small nested bow shocks
+and a series of more distant knots, with additional knots
+apparent in Figure 17. The molecular hydrogen flow em-
+anating from HOPS 317 is known as MHO 323 and we
+here extend the notation to the four fainter outflow com-
+
+The HH 24 Star Forming Complex
+27
+Figure 24. A large complex of shocks is found north of HH 24. The group HH 20, 21, 37, 70 forms a giant fractured bow
+shock. Further north, a distant faint shock is detected, here labeled NNW. The projected distance from source EA to the most
+distant shock HH 24 NNW is 1.45 pc. These shocks are associated with the HH 24C jet that is pointing towards them. HH 19
+is a giant bow shock associated with the HH 24J jet. Figure based on Hα (black) and [Sii] (white) Subaru images.
+Figure 25. The HH 27 shock is a counterpart to the HH 19 terminal bow shock for the HH 24J jet. Further south, a filamentary
+shock, here labeled HH 24 SSE, is located. Even further south, two faint nebulosities, labeled HH 24 SSE2e and SSE2w, are
+found. The figure is a composite from Spitzer IRAC1 and IRAC2 images.
+
+HIH124NNW
+HH20
+HH21east
+HH70
+H37
+H21
+19
+3 arcmin
+0.35pcH22
+HH27
+HH24SSE
+HH26
+HH24.SSE2-eant
+HH21east
+HH70
+HH24NNW
+HH37
+十H21
+HH24 SSE2-West
+Banomute0.58po
+HH1928
+Reipurth et al.
+Figure 26.
+Optical images of distant shocks in the HH
+24 complex. Top: HH 24 NNW, which is a low-excitation
+object, in a [Sii] image. Bottom: HH 24 SSE, which is a
+high-excitation object, in Hα. North is up and east is left.
+ponents.6 It is noteworthy that the position angles of
+the four outermost knots steadily increase with distance
+from HOPS 317, suggesting precession of the source and
+indicative of a close binary companion.
+Alternatively
+the flow may be deflected near knot 2.
+In the opposite direction, several H2 knots are seen
+along the principal flow axis, including a bow shaped
+H2 structure that is intertwined with the bright HH 24A
+knot located on the HH 24E flow axis. As discussed in
+Section 6.2, it appears that HH 24A represents, at least
+partially, the collision of a flow from HOPS 317 with a
+stationary cloud.
+We have carried out the hitherto deepest and highest
+resolution observations of the HH 24 MMS region with
+the Karl G. Jansky Very Large Array at 10.0 GHz (X
+band) and 44.0 GHz (Q band), see Section 2 for details.
+Figure 31 shows the Band-X map revealing an extended
+highly structured nebula. The VLA position obtained
+by Reipurth et al. (2002b), marked with a cross and
+labeled VLA-1A, is 0.8 arcsec from the peak of the new
+observations, labeled VLA-1B.
+These observations can be understood in several ways:
+6 The MHO catalog is maintained by Dirk Froebrich and is avail-
+able at http://astro.kent.ac.uk/∼df/MHCat and is described in
+Davis et al. (2010)
+Figure 27. Three-color image showing ‘high-velocity’ J=3-2
+CO emission associated with the parsec-scale outflows from
+the SSV 63 cloud core and the HH 24 jets. Vlsr = 0 to 5
+km s−1 is shown in blue; Vlsr = 5 to 7.5 km s−1 is shown
+in green; Vlsr= 15 to 20 km s−1 is shown in red. The var-
+ious HH objects that may be associated with the extended
+outflows from SSV 63 are marked. Dashed blue lines show
+the blueshifted HH components associated with jets C and
+J. Dashed red lines show redshifted components associated
+with their counterflows. North is up and east is left. Data
+from Stanke et al. (2022).
+a: The morphology seen in Figure 31 is reminiscent of
+a bow shock pointing back towards the SSV 63W sources
+about 40 arcsec to the NNW. If the radio continuum
+emission is due to shocks it is most likely free-free emis-
+sion (e.g., Rodr´ıguez et al. 1999), in which case the shift
+of the peak emission from 2000 to 2019 could be flick-
+ering of the shocks, as seen in many HH objects (e.g.,
+Raga et al. 2016a). However, if the shock originates
+in SSV 63W, it would be a remarkable coincidence that
+it happens to coincide with a bright embedded submm
+source.
+b: Alternatively, the shocks may be local, driven by
+outflow from the submm source. However, the extended
+emission has a spectral index between 9.0 and 11.0 GHz
+of 2.9±1.2, which seems too steep for free-free emission,
+in particular because for diffuse emission one expects an
+
+HH24 NNW
+25 arcsec
+10000 AUHH24 SSE
+25 arcsec
+10000 AUHH24 NNW
+HH20
+HH23
+HH21
+HH21
+east
+HH22
+HH19
+HH70
+HH37
+SSV63
+HH27
+HH24SSE1
+5arc-minuteS0.58pc
+HH24 SSE2-east
+HH24SSE2WestThe HH 24 Star Forming Complex
+29
+Figure 28.
+Herschel 70 µm image of the HH 24 source
+SSV 63 and HH 24 MMS. At 70 µm the two sources
+HOPS 317 and MMS VLA 1 are just resolved, but at 160 µm
+the two sources are unresolved. The width of the figure is
+85′′.
+Figure 29. HST near-infrared image of the HH 24 MMS
+region obtained with WFC3 in the [Feii] 1.644 µm line. The
+knot MHO 323-1c is an optically visible HH object here la-
+beled HH 24L. The protostar HOPS 317 is seen to illumi-
+nate an outflow cavity which contains several objects in the
+HH 24L flow (see Figure 3).
+It is evident that the VLA
+source(s), associated with HH 24 MMS, and HOPS 317 are
+separate sources. The labels VLA-1A and VLA-1B refer to
+the positions marked in Figure 31.
+optically-thin flat spectrum. The index between 10 and
+44 GHz has a value of 2.9±0.1, confirming the steepness
+(Table 5).
+c: The shift in position may be due to motion of the
+source.
+The two positions are measured 18.75 years
+apart, indicating a projected velocity of 15 km s−1.
+Such a high velocity would require the source to have
+been ejected from a small multiple system, but no other
+Figure 30. An H2 image of the HH 24 MMS region obtained
+with NIRI on the Gemini-N telescope. The HH 24L flow is
+very extended at near-IR wavelengths, and further H2 knots
+beyond knot 5 can be seen in Figure 17.
+Figure 31. A VLA X-band image of the HH 24 MMS region
+from 2019.
+The position of the earlier epoch observation
+from 2000 of Reipurth et al. (2002b) is shown as a cross and
+labeled VLA-1A, while the current position is labeled VLA-
+1B. Right ascension is in seconds at 5h 46m, declination is
+in arcseconds at -00◦10’.
+sources are found near HH 24 MMS from the presumed
+direction of motion.
+d: It is conceivable that HH 24 MMS is a binary with
+a separation of 0.8 arcsec, corresponding to a projected
+separation of 320 AU. Such binaries are common among
+young stars. If so, the components could be variable,
+as is sometimes seen in young radio continuum sources
+(Anglada et al. 2018). In 2000 the western source would
+have been the brighter of the two, while in 2019 the
+eastern source was brighter.
+e: Finally, HH 24 MMS may be irradiating its near
+environment, and the extended 3.6 cm emission could
+be dust heated by radiation from the submm source.
+Circumstellar material close to the source could obscure
+the light and create a lighthouse effect, and if the dust
+grains are small the heating and cooling would be rapid
+
+NE
+O
+Wa
+O
+Ea
+HOPS317
+VLA-IHOPS317
+MHO323-Ia
+VLA-IA
+VLA-IB
+MHO323-Ib
+MHO323-Ic = HH24L
+.01H2
+HH 24 Knot A
+HOPS317
+MHO323
+.0142
+Band X
+43
+VLA-IA
+VLA-IB
+44
+08.45
+08.40
+08.35
+08.3030
+Reipurth et al.
+and thus variable. The diffuse low-level emission seen in
+Figure 31 from the deep 2019 observations would seem
+to favor such an interpretation.
+None of the above scenarios can be firmly rejected,
+although some are more unlikely than others. We con-
+clude that variable heating of dust is the most likely
+explanation of the observations.
+HOPS 317 and HH 24 MMS are separated by 5′′, cor-
+responding to 2000 AU in projection. They are currently
+bound to their host core, but as they accrete mass and
+the core shrinks it is likely that they eventually become
+bound as a binary with a shrinking orbit due to dynami-
+cal friction (e.g., Stahler 2010, Sadavoy & Stahler 2017).
+It is conceivable that, in the future when the cloud dis-
+perses, HOPS 317 and HH 24 MMS will become bound
+to the SSV 63 multiple, thus forming a wide multiple
+system, not unlike the well known wide high-order mul-
+tiple system of Mizar and Alcor (Mamajek et al. 2010).
+8. KINEMATICS OF NEARBY LOW-MASS STARS
+AND BROWN DWARFS
+As we will discuss in Section 10, the stars in the
+SSV 63 system have significant masses, between 0.9 and
+2.1 M⊙.
+With such massive members one would ex-
+pect to find a large number of low-mass objects if the
+initial mass function is close to normal. However, the
+only potential low-mass objects are the components S
+(Section 5.1) and N (Section 10). In view of this dis-
+parity we have carried out a deep slitless grism survey
+using GMOS on the Gemini-N telescope to search for
+faint Hα emission stars in the area of SSV 63, for de-
+tails see Section 3. Hα emission was detected in only
+5 stars, marked as Hα 1-5 in Figure 32, and with coor-
+dinates and near- and mid-infrared photometry in Ta-
+ble 3. Fang et al. (2009) obtained low-resolution spectra
+of 4 of these sources, and our results concur with theirs.
+We find that Hα 1 is a CTTS with spectral type M3.5,
+Hα 2 is a strong-lined brown dwarf with spectral type
+M7, Hα 3 is a CTTS with spectral type M4.5, Hα 4 is a
+WTTS with spectral type M4.5, and Hα 5 is a WTTS
+borderline brown dwarf with spectral type M5.5. Spec-
+tra of the two objects with the latest spectral types are
+shown in Figure 33. All these five objects are optically
+faint red objects (Table 3).7
+7 Most of the sources discussed in this section, are listed as
+YSOs in Table 4 of Megeath et al.
+(2012) with the follow-
+ing IDs:
+Wa=#3168, Ea=#3167, NE=#3169, Hα 1=#3177,
+Hα 2=#3176, Hα 3=#3175, IRS 1=#3170, IRS 2=#3171. The
+sources Wb and Eb are not listed, probably because they could
+not be resolved from Wa and Ea, respectively. Hα 4 and Hα 5 are
+also not listed, probably because they are too faint for reliable
+photometry with Spitzer (they are, however, detected by WISE,
+see Table 3.)
+Figure 32. Identification of the optical Hα 1-5 sources and
+additional infrared sources in the HH 24 region, marked on
+an Hα+[Sii] image from the Subaru telescope. North is up
+and east is left.
+Hα 1 - 5 are located far from any of the dense cloud
+cores in the region (Figure 34), suggesting that they have
+traveled to their current locations from elsewhere. We
+have examined the Gaia EDR3 catalog, and find that
+Gaia has detected all of the five Hα emitters.
+8.1. The Runaway Borderline Brown Dwarf
+HH24-Hα5
+One object, Hα 5, immediately stands out because
+it has a very large, well determined proper motion de-
+termined in Gaia DR3 as 0.7839±0.0420 mas/yr in a
+reference frame determined by the motion of 129 YSOs
+in L1630 from Fang et al.
+(2009).
+This corresponds
+to a tangential velocity of vtan = 26.1±1.4 km s−1 at
+the assumed distance of 400 pc. Recently a number of
+such low-mass runaway and walkaway stars have been
+found near the ONC (McBride & Kounkel 2019, Schoet-
+tler et al. 2020), who estimate that 1-2% of the cluster
+members they studied are runaway stars. What is par-
+ticularly interesting about Hα 5 is that its proper mo-
+tion vector, with a position angle of 121◦, points directly
+away from the HH 24 cloud core (Figure 35). One mem-
+
+Hal
+Ha2
+Ha3
+IRS2
+Ha4
+IRSI
+NE
+Wa/b
+Ea/b
+Ha5
+HOPS317
+MMSThe HH 24 Star Forming Complex
+31
+Figure 33. Optical spectra of the M5.5 borderline brown
+dwarf Hα 5 and the M7 brown dwarf Hα 2 obtained with
+GMOS on Gemini-N.
+ber of the SSV 63 multiple system, source NE, is located
+within a 2σ uncertainty cone around the Hα 5 trajectory.
+It therefore appears very likely that Hα 5 was ejected
+from source NE about 5800 yr ago. If so, it implies that
+either NE or Hα 5 is a close binary.8
+Source NE is a protostellar object, so if Hα 5 was once
+part of a triple system including NE, it follows that it is
+itself also a protostellar object. Reipurth et al. (2010)
+posited that dynamical breakups during the embedded
+phase could produce optically visible low-mass orphaned
+protostars drifting away from their birthsites. Hα 5 ap-
+pears to be a fine case of such an orphaned protostar.
+The escape velocity from a ∼10 M⊙ core of gas and stars
+(see Section 9) is about 1.5 km s−1, and it follows that
+Hα 5 is escaping from the system.
+The spectral class to effective temperature conversion
+established by Herczeg & Hillenbrand (2014) indicates
+that a spectral type of M5.5 corresponds to an effective
+temperature of about 2900 K. The evolutionary mod-
+els of Baraffe et al. (2015) show that this is very close
+to the temperature for a 1 million year old object at
+the hydrogen-burning limit. So is Hα 5 a brown dwarf?
+8 It should be noted that there is another, more distant, star
+marginally within the uncertainty cone, namely the source la-
+beled IRS 1 in Figure 35, also known as WISE J054607.76-
+000937.7. It is a highly extincted YSO showing a mid-infrared
+excess.
+Figure 34. The cloud core in which the HH 24 multiple
+system is embedded and its surroundings are seen here in a
+850 µm dust continuum image from SCUBA2, courtesy He-
+len Kirk (see Kirk et al. 2016a,b). The components Wa/b,
+Ea/b, and NE are marked in red, as is HH 24 MMS to the
+south, while the five optically visible Hα emission stars are
+marked in green. Note how the multiple system is associated
+with a very dense core, while the Hα emission stars are lo-
+cated far from any dense cloud cores. The dimensions of the
+figure are 0.46 × 0.51 pc. North is up and east is left.
+Unfortunately the uncertainties involved are too large to
+allow a firm answer. First, even though both our spec-
+trum and that of Fang et al. (2009) agree on the spectral
+classification, a much higher spectral resolution would
+be needed for a more accurate classification.
+Second,
+for models at 1 Myr or younger, the sensitivity to initial
+conditions is significant, and the accretion history of an
+object adds further uncertainty. Third, the temperature
+of about 2900 K determined for a 1 Myr old object at
+the hydrogen burning limit is model dependent. Taken
+together, the best that can be said is that Hα 5 hovers
+right around the stellar/substellar boundary.
+Figure 36 shows the spectral energy distribution of
+Hα 5. At wavelengths out to 5 µm it follows a Planck
+curve, but the WISE 12 and 22 µm data points show a
+strong mid-infrared excess. The indication is that Hα 5
+is having circumstellar material, but is missing an inner
+disk, thus resembling a transitional disk. Reipurth &
+Clarke (2001) suggested that brown dwarfs ejected in
+a triple interaction would lose some of their disks in
+
+4000
+HH24-Ha5
+3000
+Counts
+2000
+1000
+12000
+HH24-Ha2
+10000
+8000
+Counts
+6000
+4000
+2000
+6500
+7000
+7500
+8000
+8500
+9000
+9500
+Wavelength [A]75"32
+Reipurth et al.
+Figure 35.
+The borderline brown dwarf Hα 5 moves away from the SSV 63 multiple system with a tangential velocity of about
+26 km s−1. At this speed it was ∼5800 yr ago close to the NE source, from which it was likely ejected in a triple interaction.
+The dotted lines represent a 2σ error on the Gaia measurement. The image is a sum of an Hα and a [Sii] exposure with the
+Subaru telescope.
+Figure 36.
+The energy distribution of Hα 5 obtained with
+the Vizier Photometry Viewer. The majority of data points
+are from SDSS, PanSTARRS, 2MASS, WISE, and Spitzer.
+The distribution is a clean Planck curve out to 5 µm, but
+the WISE 12 and 22 µm data points show a steeply rising
+infrared excess from circumstellar material. The abscissa is
+wavelength in microns.
+the process, ending up with truncated disks, which was
+confirmed in a detailed numerical study by Umbreit et
+al.
+(2011), see also Steinhausen et al.
+(2012).
+It is
+conceivable that the disk around Hα 5 is in the process of
+re-assembling after being perturbed during the ejection.
+8.2. Other Hα Emission Stars and Infrared Sources
+Gaia EDR3 proper motions for the other 4 Hα emit-
+ters are given in Table 9. As can be seen, none of the
+Table 9. Gaia EDR3 Proper Motions for Hα 1-5
+Star
+PM(α)
+PM(δ)
+Vtan
+a
+PAa
+mas/yr
+mas/yr
+km s−1
+deg
+Hα 1
+-0.711 ±1.255
+-0.556 ±0.901
+0.5 ±2.9
+313.9
+Hα 2
+1.175 ±0.302
+-0.048 ±0.249
+3.5 ±0.7
+67.8
+Hα 3
+0.544 ±0.535
+-0.392 ±0.438
+2.1 ±1.3
+71.8
+Hα 4
+-3.438 ±0.437
+-3.094 ±0.368
+7.1 ±1.1
+231.1
+Hα 5
+11.176 ±0.560
+-7.949 ±0.476
+26.1 ±1.4
+121.6
+Note—a: For calculation of space motion and position angle,
+the Gaia EDR3 proper motions listed in this table were cor-
+rected for the bulk motion of the L1630 cloud (α -0.519, δ
+-0.741) determined from Gaia proper motions of 129 YSOs
+associated with the cloud.
+objects have particularly high velocities, and none are
+pointing directly away from the SSV 63 multiple system.
+Thus none are runaway or walkaway stars. However, the
+SSV 63 cloud core is the nearest high-density region to
+these young stars, so they could have been born in the
+core and drifted away, perhaps nudged along by the more
+massive stars. Assuming an approximate projected sep-
+aration of about 100′′ from SSV 63 and a mass of stars
+and cloud core of about 10 M⊙, the orbital speed of a
+bound object is around 0.5 km s−1, so at least some of
+these Hα emission stars may be weakly bound to the
+SSV 63 system. That the velocity vectors do not point
+away from SSV 63 could be due to the highly irregular
+mass distribution of stars and gas in the region. Future
+
+IRS
+I pc
+6000 yr
+N
+NE
+4000 yr
+Eb
+Wb
+Wa
+Ea
+2000 yr
+Halpha 510e-14
+10e-15
+vF(v) (W.m2)
+10e-16
+10e-17
+HH24-Ha5
+10e-1g
+1
+10The HH 24 Star Forming Complex
+33
+Figure 37.
+The faint curved HH 1200 jet emanating from source Hα 1 as seen on a deep Hα image obtained at the Subaru
+telescope. The distance between knots D and G is 172 arcsec, corresponding to a projected separation of 0.33 pc. North is up
+and east is left.
+Gaia releases will improve on the accuracy of proper
+motions for these very faint objects. Two are worthy of
+some comments.
+Hα 1 is associated with a very faint, but highly col-
+limated HH flow, here called HH 1200.
+Figure 37 is
+a part of our deep Subaru Hα image and shows that
+HH 1200 is a bent jet, with two symmetric lobes, the
+eastern (containing knots A,B,C, D) with a length of
+81 arcsec (0.16 pc) and the western (knots E, F, G)
+with a length of 93 arcsec (0.18 pc). The eastern lobe
+terminates in knot G, which has a clear bow shock mor-
+phology. HH 1200 is much brighter in Hα than in [Sii],
+and is thus a high-excitation flow.
+Hα 2 has a spectral type of M7, and for an assumed
+age of ≤1 Myr, its spectral type indicates that it is a very
+young brown dwarf (see Figure 33). It is also very bright
+at mid-infrared wavelengths, suggesting the presence of
+circumstellar material. Hα 2 has been detected as an
+X-ray source with Chandra by Simon et al. (2004, their
+source #16), whereas none of the other 4 Hα emission
+stars were detected.
+Among the numerous near- and mid-infrared sources
+detected in 2MASS, WISE, and Spitzer images in L1630,
+two sources close to SSV 63 should be mentioned. IRS 1
+is a faint optically visible star, classified as a disk-
+bearing star in Megeath et al.
+(2012), but bright at
+near-infrared wavelengths (Figures 32 and 35). As we
+speculated in Section 6.4 it is potentially the driving
+source of two of the shocks in the G-jet. IRS 2, marked
+in Figure 32, also has a steeply rising energy distribu-
+tion and is classified as a young star by Megeath et al.
+(2012). We note that it is a binary with a fainter com-
+panion 0.8′′ distant at PA = 325◦.
+9. CORE MASS AND STAR FORMATION
+EFFICIENCY
+The SSV 63 multiple system is located in a cloud core
+that is part of a north-south molecular ridge active in
+star formation in the Orion-B cloud.
+The region has
+been studied in various transitions including CO, C18O,
+CS, and HCO+ by Gibb & Heaton (1993), Gibb et al.
+(1995), and Gibb & Little (1998). Sub-mm dust contin-
+uum observations of the region have been reported by
+Chini et al. (1993), Lis et al. (1999), and Kirk et al.
+(2016a,b). The molecular ridge has been sculpted by the
+many molecular outflows in the region (see Figure 1).
+The cloud core in which SSV 63 resides is being torn
+apart by multiple jets, as seen at optical and infrared
+wavelengths in Figures 2 and 4, where the remnant of
+the core and associated outflow cavities are seen illumi-
+nated by the embedded sources. The core has also been
+significantly churned by the random motions of the stars
+in the non-hierarchical multiple system. If they are mov-
+ing with characteristic velocities around 1 km s−1, stars
+like Ea and NE with 2 M⊙ will have a Bondi radius
+of ∼1800 AU and core crossing times of the order of
+40,000 yr. Hence the stars will have traversed the core
+maybe a dozen times or more since their formation.
+K¨onyves et al. (2020) used the Herschel Gould Belt
+Survey of the Orion B cloud to study the numerous cores
+in this complex. By combining PACS 70 and 160 µm
+and SPIRE 250, 350, and 500 µm data they were able
+to derive not only column densities but also dust tem-
+peratures. Their core #1025 corresponds to the HH 24
+core for which they determine a mean core radius of
+0.019 pc (diameter ∼20 arcsec), a dust temperature of
+16.3 K, and a core mass of 2.31 M⊙.
+
+G
+HH 1200
+F
+E
+Ha
+A
+CB
+D
+60"
+Ha 2
+Ha 334
+Reipurth et al.
+The 850 µm map of the SSV 63 cloud core by Kirk
+et al. (2016a,b), see Figure 34, shows clearly that the
+core is better described as an ellipse, which we fit with
+semi-minor and semi-major axes of 12.4′′ × 31.6′′ at a
+PA=70◦. This area produces a 850 µm flux of 1.737 Jy.
+Using the Tdust = 16.3 K of K¨onives et al. and using
+the mass formula of Lane et al.
+(2016, their Eqn 1)
+then yields a current mass of 3.3 M⊙, which we adopt
+here. Given the various uncertainties involved, this is
+probably accurate to within a factor of two.
+Assuming that the masses of all the components of
+SSV 63 stars adds up to roughly 7 M⊙ (see Section 10),
+we can in principle estimate the star formation efficiency
+of the cloud core. If we further assume that the original
+core mass is the current mass plus the mass of the stars
+born in the core, that is, of the order of 10 M⊙, we obtain
+a very high star formation efficiency. It makes little dif-
+ference that the mass lost in outflows from the stars has
+not been included, as it is relatively small. But, more
+importantly, the core is not isolated from the surround-
+ings and, as will be shown in Section 11.8, it appears
+that the core is being continually fed gas from its envi-
+ronment. One possible scenario is that the initial small
+starburst that has taken place in the HH 24 core may
+have been triggered by infall of gas onto the core, and
+has continued at the rate that gas has become available,
+with source Eb being the most recent member of the
+small cluster. Whether star formation has proceeded in
+a static or a dynamic scenario, it appears that gas has
+been converted into stars at a high efficiency.
+Eventually, as will be discussed later, the sources Ea
+and NE will emerge as young late-type Herbig Ae stars
+surrounded by a halo of loosely bound lower mass stars,
+as is frequently seen around Herbig Ae stars (Hillen-
+brand 1995, Hillenbrand et al. 1995). Testi et al. (1997)
+found that the clustering of YSOs around Herbig Ae/Be
+stars depends on their mass, with Be stars having sig-
+nificantly richer environments than Ae stars; in their
+sample of 6 Herbig Ae stars the mean number of com-
+ponents was 4.
+10. ALMA 1.3 MM OBSERVATIONS OF
+CIRCUMSTELLAR DISKS
+10.1. Continuum emission
+Six continuum compact sources were detected with
+our ALMA observations at 1.3 mm (Figure 38). These
+are the five sources Ea, Eb, Wa, Wb, and NE, as well
+as the new source N (Section 5.4). Source S was not de-
+tected by ALMA. A two-dimensional Gaussian function
+was fitted to each continuum compact source, and the
+center, integrated flux, and deconvolved size were mea-
+sured (Table 10). Only source N was not resolved. The
+total fluxes of the residuals after subtracting the fitted
+Gaussian functions from the observed maps are compa-
+rable to or less than the uncertainties of the fitted fluxes,
+although the observed continuum intensity distributions
+in source NE, Ea, Eb, and Wb cannot be well repro-
+duced with a Gaussian function. It is noteworthy that
+the major axis of these resolved continuum sources is al-
+most precisely perpendicular to the jets associated with
+them. In addition, in the sources NE, Ea, Eb, and Wb,
+the compact C18O emission coincident with the com-
+pact continuum emission is observed and shows a clear
+velocity gradient along the major axis of the continuum
+emission (Section 10.2). Thus, these compact continuum
+components likely trace the circumstellar disks around
+the protostars. The inclination angles of the circumstel-
+lar disks were estimated from the ratio of the major and
+minor axes of the continuum emission.
+The same region was also observed with ALMA at 0.9
+mm in Tobin et al. (2020). Source N was not detected
+at 0.9 mm, and the other sources were detected and
+resolved with the ALMA 0.9 mm observations. The de-
+convolved orientations and sizes measured at 1.3 mm are
+consistent with those at 0.9 mm within the uncertainties.
+The spectral indices of these continuum sources between
+0.9 and 1.3 mm were computed. Except for source Eb,
+all the continuum sources have spectral indices ≲2, sug-
+gesting that the continuum emission is optically thick.
+The 1.3 mm continuum emission in source Eb is likely
+optically thin, and the total (dust+gas) mass (M1.3mm)
+of the circumstellar material around source Eb is esti-
+Figure 38.
+An ALMA self-calibrated continuum 1.3mm
+image showing the principal submm sources of the SSV 63
+multiple system. All except source S are detected.
+
+ALMAI.3mmcont
+N
+NE
+Wb
+Eb
+Wa
+Ea
+2000AUThe HH 24 Star Forming Complex
+35
+Table 10. Gaussian fitting of the 1.3 mm continuum emission
+Source
+RA
+Dec
+Flux
+PA
+Major
+Minor
+Residual
+i
+α
+(ICRS)
+(ICRS)
+(mJy)
+(◦)
+(mas)
+(mas)
+(mJy)
+NE
+05:46:08.921
+−00:09:56.11
+13.0±1.4
+129.3±1.2
+141±3
+48±4
+−0.3
+70.2±1.5
+0.0±0.8
+Ea
+05:46:08.485
+−00:10:03.04
+48.9±0.7
+58.1±0.5
+109±1
+66±1
+−1.7
+52.9±0.4
+1.7±0.3
+Eb
+05:46:08.427
+−00:10:00.50
+11.7±0.7
+238.7±2.4
+440±12
+279±14
+1.9
+50.7±1.9
+3.1±0.3
+Wa
+05:46:07.854
+−00:10:01.30
+14.2±1.0
+74.9±1.4
+96±2
+42±2
+−0.2
+63.9±1.3
+1.7±0.5
+Wb
+05:46:07.836
+−00:09:59.59
+49.2±0.7
+223.1±0.3
+244±1
+98±1
+0.4
+66.4±0.3
+1.8±0.3
+N
+05:46:08.457
+−00:09:54.80
+0.9±0.1
+· · ·
+· · ·
+· · ·
+−0.07
+· · ·
+Note—PA is the position angle of the major axis from north to east. Major and minor axes are the deconvolved
+FWHM widths. The fluxes in the residual maps were computed in an area of approximately twice of the apparent
+size of the continuum emission. i is the inclination angle to the plane of the sky computed from the ratio of the major
+and minor axes. α is the spectral index between 1.3 and 0.9 mm. Source N is not resolved and not detected at 0.9
+mm. The uncertainty of α includes the uncertainty of the absolute flux calibration of 10%.
+Figure 39. Integrated intensity map of the C18O emission
+in the HH 24 region obtained with the ALMA observations.
+The integrated velocity range is 8.5 to 11.5 km s−1.
+The
+map is centered at source Eb.
+mated as
+M1.3mm =
+D2Fν
+κBν(Td),
+(1)
+where D is the distance, Fν is the continuum flux at
+1.3 mm, κ is the dust mass opacity, and Bν(Td) is the
+Planck function at a temperature Td. κ at 1.3 mm is
+adopted to be 0.019 g−1 cm2 (Beckwith et al. 1990),
+which includes a gas-to-dust mass ratio of 100. Td is
+assumed to be 20–94 K. Td of 94 K was estimated from
+the stellar luminosity, which can be considered as an
+upper limit because the protostellar source was resolved
+to be a multiple system (Tobin et al. 2020). M1.3mm in
+source Eb was estimated to be 3–18 MJupiter.
+10.2. C18O (2–1) emission
+Extended C18O emission associated with the large-
+scale clouds is detected at VLSR ∼ 8.5–11.5 km s−1 (Fig-
+ure 39). At higher velocities relative to the cloud veloc-
+ity, compact C18O emission is seen around sources NE,
+Ea, Eb, and Wb. In these four sources, the high-velocity
+blue- and redshifted C18O emission is well aligned along
+the major axis of the continuum emission (Figure 40a,
+41a, 42a, and 43a), which likely traces the disk rotation.
+We constructed kinematical models of a geometrically-
+thin Keplerian disk and performed fitting to the high-
+velocity C18O emission in sources NE, Ea, Eb, and
+Wb to measure stellar mass (M⋆) and systemic veloc-
+ity (Vsys).
+Two disk models with different intensity profiles,
+Gaussian and power-law functions, were adopted. For
+each source, the center, orientation and inclination an-
+gle of the model disks were adopted from the continuum
+results (Table 10) and were fixed in our disk models.
+Thus, the free parameters in our disk models are M⋆,
+Vsys, and additional parameters to describe the inten-
+sity profiles (three and two parameters for the power-
+law and Gaussian profiles, respectively).
+The fitting
+was performed with the velocity channel maps, and only
+the velocity channels without significant extended C18O
+emission were included in the fitting. The velocity range
+for the fitting of each source is listed in Table 12. We
+generated velocity channel maps of the disk models, and
+convolved the model channel maps to the same beam
+sizes as the observed maps. Then, the residuals were
+calculated within a 1′′ region centered at the contin-
+uum peak after subtracting the model maps from the
+observed maps.
+We searched for the best-fit parame-
+ters by minimizing the residuals. We did not simulate
+ALMA observations and sample the uv coverage on the
+model channel maps because the disk sizes are smaller
+than the maximum recoverable angular scale of the ob-
+servations.
+
+15
+43.45
+10
+36.70
+(arcsec
+5
+29.96
+S
+mJy/beam*km/s
+offset
+0
+23.22
+Dec
+-5
+16.48
+-10
+9.74
+-15
+3.00
+1.5
+10
+5
+-5
+-10
+-15
+RA offset (arcsec)36
+Reipurth et al.
+Table 11. Disk properties and stellar masses
+Source
+Mdisk
+Rdust
+Rgas
+M⋆
+Vlsr
+(MJ)
+(au)
+(au)
+(M⊙)
+(km s−1)
+NE
+· · ·
+51±1
+245+12
+−17
+2.1+0.2
+−0.1
+9.6±0.1
+Ea
+· · ·
+39±1
+161+3
+−14
+2.0±0.1
+9.6±0.1
+Eb
+3–18
+159±4
+332+23
+−3
+1.3±0.1
+10.8±0.1
+Wa
+· · ·
+35±1
+· · ·
+· · ·
+· · ·
+Wb
+· · ·
+81±1
+492+4
+−12
+0.9±0.1
+9.3±0.1
+Note—Except for Source Eb, the continuum disks are
+optically thick at 1.3 mm, so the disk mass cannot be
+estimated. The C18O fitting results with the Gaussian
+intensity profile are adopted here for comparison with the
+continuum disk size. The disk radius is defined as twice
+the 1σ width of the best-fit Gaussian profile.
+Figure 40. (a) Integrated intensity maps for source NE of the blue- and redshifted high-velocity C18O emission (blue and
+red contours) overlaid on the 1.3 mm continuum map of source NE. The integrated velocity ranges of the blue- and redshifted
+high-velocity C18O emission are listed in Table 12, where the velocity ranges adopted in the model fitting are listed. The contour
+levels start from 4σ in steps of 4σ to 20σ and then in steps of 10σ, where 1σ is 1.2 mJy beam−1 km s−1. (b) Total integrated
+intensity map of the C18O emission in the disk. A Keplerian mask generated based on our best-fit disk model was applied
+to the C18O velocity channel maps to minimize the contamination from the cloud emission. A white ellipse shows the beam
+size. (c) Azimuthally averaged intensity profiles of the C18O emission in the disk (data points) extracted from (b). Blue and
+red dashed lines present the intensity profiles extracted from the maps of the model disks with the power-law and Gaussian
+intensity profiles, respectively. (d) and (e) PV diagrams of the C18O emission along the major axis of the disk (gray scale) in
+comparison with those extracted from the best-fit disk models (red contours) with the power-law and Gaussian intensity profiles,
+respectively. The contour levels start from 2σ in steps of 1σ, where 1σ is 1.7 mJy beam−1.
+
+mJy/bedm
+mJy/beam=km/s
+0.18
+1.37
+2.56
+3.75
+4:94
+6.13
+7.32
+2.999.0615:132120272733.343941
+(a)
+(b)
+(c)40
+NE
+0.5
+0.5
+(s/us+ru)
+30
+(arcsee)
+0.0
+Dec offset
+Q.0
+20
+Intenstty
+10F
+-0.5
+-0,5
+10.5
+0.0
+0.5
+0.5
+0.0
+-0.5
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+RA offset (arcsed)
+RArofiset(arcsec)
+Radius(oresee)
+1.0
+1.0
+(d)
+(e)
+0
+0.5
+0.5
+(arcsec)
+(55510)
+0.0
+0.0
+Offset
+10.5F
+-0.5
+1.00
+10
+4
+6
+8
+10
+12
+1:4
+6
+8
+12
+14
+Velocity (km: s)
+Velocity (km s)The HH 24 Star Forming Complex
+37
+Figure 41. Same as Figure 40 but for Source Ea. In (a), 1σ is 1.3 mJy beam−1 km s−1. In (d) and (e), the contour levels start
+from 2σ in steps of 3σ.
+Figure 42. Same as Figure 40 but for Source Eb. In (a), 1σ is 1 mJy beam−1 km s−1. In (d) and (e), the contour levels start
+from 2σ in steps of 3σ.
+
+muy/beam
+mJy/beam+km/s
+0:13
+4182
+9.51
+14.21
+18,90
+23.60
+28,29
+2.06142926.53 38.76509963.227545
+(a)
+(b)
+(c)
+Ea
+015
+0.5
+(s/wy+kru)
+60
+(arcsec)
+0.0
+0.0
+40
+offset
+Intensity
+Dec
+20
+-0.5
+=0.5
+Q
+0.5
+0.0
+-0.5
+0.5
+0.0
+-0.5
+0.0
+0.2
+0.4
+0.6
+0.8.
+1.0
+RAoffset (arcsec)
+RA ofiset (arcsec)
+Radius (arcsec)
+1.01
+1.00
+(d)
+(e)
+0.5
+0.5
+D.
+0.0
+0.0
+Offset
+-0.5
+-0.5F
+1.0
+5
+10
+15
+5
+10
+15
+Velocity (km s-")
+Velocity (kmi s)mJy/beam
+muy/beamkm/s
+0.1:3
+0.28
+0.44
+0.59
+0:75
+06'0
+1.05
+20117.3832.75:48:126349:78.86:94:23
+100
+(a)
+(b)
+(c)
+Eb
+0.5
+0.5
+80
+(s/u+knw)
+(aresec)
+(aresec)
+60
+0.0
+Decoffset
+0
+Intensity
+40
+Dec
+-0.5
+-0.15
+20
+10
+0.5:
+0.0
+-0.5
+0.5
+0.0
+-0.5
+0.0
+0.2
+0.4
+016
+0.8
+1.0
+RA offset (arcsec)
+RA offset (orcsec)
+Radius: (oresec)
+1.0
+(d)
+(e)
+0.5
+05
+(orasec)
+(aresee)
+0.0
+Offset
+-0.5
+-0.5
+-0.0L
+1.0
+6
+8
+10
+12
+14
+6
+8
+10:
+12
+14
+Velocity (km) s)
+Velocity(kms")38
+Reipurth et al.
+The best-fit parameters are listed in Table 12.
+We
+found that for source Ea, the outer radius of the disk
+model with a power-law intensity profile (Rout) could
+not be constrained with our fitting, so it was fixed to
+be 0.′′4. We confirmed that the best-fit M⋆ and Vsys of
+source Ea are not sensitive to the choice of the fixed
+outer radius, and that the results remain unchanged
+when the outer radius is adopted to be 0.′′3 or 0.′′6. The
+uncertainties in the disk orientation and inclination are
+included in the error propagation in our fitting, although
+they are not free parameters in our disk models. We
+note that the uncertainty of M⋆ in Table 12 does not
+include the uncertainty due to the geometrically thin
+approximation in our disk models. There could be an
+additional uncertainty in M⋆ of 10%–20% if the C18O
+emission traces a flared disk, especially when the disk
+is highly inclined (e.g., Braun et al. 2021).
+Nonethe-
+less, the mass estimates clearly show that both source
+NE and Ea, with masses of about 2 M⊙, are much more
+massive than a T Tauri star, and in fact will later emerge
+from the cloud core as young Herbig Ae stars. Sources
+Eb and Wb will become observable as massive T Tauri
+stars. Given that the sources may still experience signif-
+icant accretion, these could be conservative estimates.
+To reveal the distributions of the C18O emission in the
+disks with least contamination from an ambient enve-
+lope or cloud emission, we constructed Keplerian masks
+based on our best-fit disk models and applied them to
+the observed velocity channel maps.
+The total inte-
+grated intensity maps of the C18O emission after ap-
+plying the Keplerian masks are shown in Figures 40b,
+41b, 42b, and 43b, but diffuse emission can still be seen
+in source Ea, Eb, and Wb. We extracted azimuthally
+averaged intensity profiles of the C18O emission from the
+Keplerian masked maps. The observed intensity profiles
+in source NE and source Ea could be fitted with our
+simple disk models (Figures 40c and 41c), while those
+in source Eb and Wb could not be fully explained with
+simple Gaussian or power-law functions (Figures 42c and
+43c). In source Eb and Wb, the power-law disk models
+fit the central and outer intensity profiles better, and
+the Gaussian disk models describe the intensity profiles
+at intermediate radii better. Nevertheless, the best-fit
+M⋆ and Vsys of all the sources are not sensitive to the
+intensity profiles assumed in the disk models. The best-
+fit M⋆ and Vsys from the fitting with the Gaussian and
+power-law intensity profiles are consistent within the un-
+certainty. In panel (d) and (e) in Figures 40–43, the ob-
+served position–velocity (PV) diagrams along the disk
+major axes are compared with those extracted from the
+best-fit disk models. The observed velocity structures of
+the compact C18O emission around source NE, Ea, Eb,
+and Wb indeed can be explained with Keplerian rota-
+tion, and significant extended emission associated with
+the ambient envelopes or clouds is also seen in the PV
+diagrams.
+10.3. Summary of source properties
+Table 11 compares the disk sizes, M⋆ and Vsys in our
+targets in the HH 24 region. The best-fit parameters
+of the C18O disk models with Gaussian intensity pro-
+files are adopted here for comparison with the contin-
+uum results which were also fitted with the Gaussian
+functions. The disk radius is defined as twice the 1σ
+width of the fitted Gaussian function, the same as that
+in Tobin et al. (2020). The radii of the gaseous disks
+traced by the C18O emission are two to six times larger
+than those of the dusty disks traced by the continuum
+emission. This is similar to the observations of several
+T Tauri disks (e.g., Sanchis et al. 2021). Nevertheless,
+the significant cloud and/or envelope contamination is
+seen in the C18O emission in our data, so the disk com-
+ponents cannot be fully separated from the ambient gas
+(e.g., panel (b) in Figures 40–43), which introduces an
+uncertainty in our estimated radii of the gaseous disks.
+Observations at higher resolutions and sensitivity and
+more detailed models are needed to fully separate the
+disk and envelope components.
+11. CORE KINEMATICS AND MOLECULAR
+OUTFLOWS
+Our ALMA data also includes observations of the
+J=2-1 transitions of 12CO, 13CO, and C18O, the J=5-
+4 transition of SiO, and the 3(0,3)-2(0,2) transition of
+H2CO (Table 2). To study the core and outflows, we
+used our ALMA data from the compact figuration ob-
+servations of these molecular lines (with a synthesized
+beam of about 0.5′′ ×0.8′′) as these data are more sen-
+sitive to extended structures; the higher resolution data
+over-resolved some of the outflow features. Figure 44
+shows an outline of the primary beam of the ALMA ob-
+servations superimposed on the HST [Feii] image. The
+locations of the five brightest 1.3 mm continuum sources
+detected in the ALMA pipeline products are marked.
+11.1. Overview of ALMA line data
+In nearby clouds, the 12CO lines provide one of the
+best and most commonly used tracers of molecular out-
+flows. 12CO emission is sensitive to molecular gas with
+a density n(H2) > 102 cm−3.
+Figure 45 contains six
+panels showing the velocity structure of 12CO emission
+optimized to show emission produced by outflows. Each
+
+The HH 24 Star Forming Complex
+39
+Figure 43. Same as Figure 40 but for Source Wb. In (a), 1σ is 1.3 mJy beam−1 km s−1. In (d) and (e), the contour levels
+start from 2σ in steps of 3σ.
+panel shows both a redshifted and a blueshifted velocity
+range indicated by the cyan and red labels at the top.
+At the largest red and blueshifted velocities (top-left),
+compact flows are seen to be associated with the sources
+Eb and Wb. These show radial velocities of more than
+15 km s−1 with respect to the velocity of the SSV 63
+cloud core in both lobes.
+For velocities closer to the
+9 to 10 km s−1 cloud velocity, the 12CO emission be-
+comes impacted by the high optical depth of the 12CO
+line and the loss of large-scale structure resolved out by
+the ALMA interferometer. Gas associated with outflows
+close to the core radial velocity tends to be hidden be-
+hind the 12CO photosphere.
+Figure 46 is similar to Figure 45, but for the 13CO
+line, with each panel showing both a redshifted and a
+blueshifted velocity range. with the red- and blueshifted
+emission from the highest speeds (left panel) to the low-
+est speeds (right panel) with respect to the 13CO line
+center. This figure shows that also in the lower opacity
+13CO line, low velocity flows and cavity walls associated
+with the outflows powered by the HH 24 YSOs become
+apparent.
+13CO emission is a tracer of molecular gas with a den-
+sity n(H2)> 103 cm−3. Figure 47 shows the 13CO emis-
+sion in the SSV 63 core covering the radial velocity range
+from 4.98 to 12.38 km s−1. Each panel shows three ad-
+jacent velocity ranges in blue, green, and red indicated
+by the corresponding colored labels at the top of each
+panel.
+C18O emission is expected to be optically thin, thus
+displaying the kinematic structure of those small-scale
+features with a density n(H2)> 103 cm−3 that are not
+resolved out by the interferometer. Figure 48 shows the
+C18O data cube as three adjacent velocity channels in
+blue, green, and red from Vlsr = 8.22 to 12.14 km s−1.
+Formaldehyde (H2CO) emission traces gas one to two
+orders of magnitude denser than that traced by C18O,
+13CO, and 12CO. Figure 49 shows the H2CO data cube
+as a mosaic where each panel shows three adjacent ve-
+locity channels in blue, green, and red from Vlsr = 7.98
+to 12.35 km s−1.
+11.2. The MO1 Outflow from Source Eb
+The diffuse continuum source Eb powers a compact,
+arc-second-scale bipolar 12CO outflow we label as Molec-
+ular Outflow 1 (MO1). MO1 can be traced ∼2′′ (800
+AU) from its source (Figure 50).
+The red lobe is lo-
+cated north-northwest of Eb, while the blue lobe is to
+the south-southeast of the source. The molecular out-
+flow axis is perpendicular to the diffuse disk surrounding
+Eb shown in Figure 38. The position-velocity diagram
+(Figure 51) shows large velocity spikes at red and blue
+velocities displaced by less than 1′′ from the position of
+Eb. Given the compact nature of the outflow lobes, we
+do not see any other clear velocity structure (i.e., de-
+pendence on distance from source) in the p-v diagram.
+The ALMA SiO data cube shows only one feature in
+the primary beam, a compact knot of SiO emission as-
+
+muy/beam
+ry/beomiks
+0.15
+2.62
+5.09
+75510.0212491495
+17914.7927.7940.7853.78667779.77
+80
+(a)
+(b)
+(c)
+Wb
+0.5
+0.5
+60
+(arcsec)
+(228010)
+offset
+0:0
+Dec offset
+0.0
+40
+Intensity
+Bec
+20
+-0.5
+-0.5
+0
+0.5
+0.0
+-0.5
+0.5
+0:0
+-0.5
+D.0
+0.2
+0.4
+0.6
+80
+1.9
+RA offset (arcsec)
+RA offset (aresed)
+Rodlusloreseo)
+1.Q
+1.0
+D
+(d)
+(e)
+0
+0.51
+0.5
+9.0
+0.0
+0.5
+0.5
+10
+1.0
+15
+5
+10
+15
+Vetoaity (km s")
+Veloaity (km s")40
+Reipurth et al.
+Table 12. Fitting of the C18O emission with kinematical disk models
+Power-law intensity profile
+Source
+Rout
+M⋆
+Vlsr
+log I0
+p
+Velocity ranges
+(mas)
+(M⊙)
+(km s−1)
+(Jy)
+NE
+701+63
+−59
+2.1+0.2
+−0.1
+9.6±0.1
+−3.44±0.03
+−2.0±0.1
+4.9–8.3 & 10.9–14.5
+Ea
+400a
+1.9±0.1
+9.6±0.1
+−3.56±0.03
+−2.0±0.1
+4.5–8.1 & 10.5–14.5
+Eb
+701+24
+−17
+1.3±0.1
+10.7±0.1
+−3.14±0.01
+−1.3±0.1
+7.3–9.5 & 11.5–14.3
+Wb
+853+38
+−17
+0.9±0.1
+9.3±0.1
+−3.05±0.01
+−1.3±0.1
+4.9–8.5 & 10.1–14.1
+Gaussian intensity profile
+Source
+σR
+M⋆
+Vlsr
+log I0
+Velocity ranges
+(mas)
+(M⊙)
+(km s−1)
+(Jy)
+NE
+287+14
+−20
+2.0+0.2
+−0.1
+9.6±0.1
+−3.1±0.05
+4.9–8.3 & 10.9–14.5
+Ea
+188+3
+−16
+2.0±0.1
+9.7±0.1
+−2.79+0.04
+−0.01
+4.5–8.1 & 10.5–14.5
+Eb
+388+27
+−4
+1.3±0.1
+10.8±0.1
+−2.94+0.01
+−0.04
+7.3–9.5 & 11.5–14.3
+Wb
+576+5
+−14
+0.9±0.1
+9.3±0.1
+−3.11±0.01
+4.9–8.5 & 10.1–14.1
+a Rout for source Ea could not be constrained by model fitting and was fixed at 400 mas.
+Note—The intensity profile of the model disks is adopted to be power-law or Gaussian
+functions. The power-law function is described with a power-law index p, an outer radius
+Rout, and the intensity at a radius of 100 au in a logarithmic scale log I0. The Gaussian
+function is described with the 1σ width σR and the peak intensity in a logarithmic scale
+log I0. M⋆ and Vsys are stellar mass and systemic velocity, respectively. V ranges are the
+velocity ranges included in the fitting. The velocity channel maps at velocities close to
+Vsys were excluded in the fitting to avoid cloud contamination. The uncertainty does not
+include the systematic uncertainty due to the geometrically thin assumption. If the C18O
+emitting surface is flared with a scale height (h/r) larger than 0.1, there is an additional
+uncertainty in M⋆ of 10%–20%, especially when the disk is more inclined.
+Figure 44. The ALMA primary-beam field of view overlaid on the HST [Feii] image. The center of the ALMA observations is
+at 5:46:08.35 -00:10:01.7 (2000) and the radius of the field is 20 arcsec, corresponding to where the sensitivity decreases to 20%
+of that of the phase center. The six sources detected by ALMA at 1.3mm continuum are marked with red circles.
+
+Dec. (J2000)
+R.A. (J2000)
+5.46:10.0
+09.5
+09.0
+08.5
+08.0
+07.5
+07.0The HH 24 Star Forming Complex
+41
+Figure 45.
+12CO mosaic of outflows in the HH 24 core region as observed with ALMA in the range -6.7 < Vlsr < 30 km s−1,
+with the most extreme blue- and red-shifted velocities in the upper left panel, and the velocities closest to the core emission in
+the lower right panel. The observations were done with the 12m array and have a spatial resolution of about 0.5 arcsec.
+Figure 46. 13CO mosaic of outflows in the HH 24 core region as observed with ALMA in the range 4.07 < Vlsr < 14.04 km s−1,
+with the highest blue- and red-shifted velocities in the left panel, and the velocities closest to the core emission in the right
+panel. The observations were done with the 12m array and have a spatial resolution of about 0.5 arcsec.
+
+CO
+Vist 6.7.1
+3010
+km/s
+CO
+Visr-
+335
+km/s
+co
+Visr
+9.6451
+45.0
+km/s
+45.0
+45.0
+09:50.0
+09:50.0
+09:50.0
+55.0
+-0:10:00.0 55.0
+15.0
+15.0
+09.5
+5:46:09.0
+08.5
+H08.0
+07.5
+09.5
+5:46:09.0
+08.5
+08.0
+07.5
+09.5
+5:46:09.0
+08.5
+08.0
+07.5
+CO
+Visr=
+5.26.7
+1328148
+km/s
+CO
+Vsr=
+6.8083
+1a0
+km/s
+45.0
+CO1
+VIsr =
+45.0
+45.0
+89
+km/s
+09:50.0
+:50.0
+60
+-0:10:00.0 55.0
+105.0
+10.0
+15.0
+09.5
+5:46:09.0
+08.5
+08.0
+07.5
+09.5
+5:46:0910
+08.5
+09.5
+5:46:09.0
+08.0
+07.5
+08.0
+07.5
+08.56.657.39
+0以0155
+km/s
+7.488.23
+km/s
+8.3189.08
+749.89
+km/s
+09.6
+5:46209.0
+07.5
+09.5
+5:46:09.0
+07.5
+09.5
+05:46:09.0
+085
+08.0
+07.5
+09.5
+5:46:09.0
+085
+08.0
+07.542
+Reipurth et al.
+Figure 47.
+ALMA 13CO channel maps of the HH 24 core region from Vlsr = 4.98 to Vlsr = 12.38 km s−1, with a velocity
+spacing between the panels of ∼1.25 km s−1. Each panel shows three velocities, in blue, green, and red as listed in each frame.
+The observations were done with the 12m array and have a spatial resolution of about 0.5 arcsec.
+sociated with the northwest end of the redshifted lobe
+of the MO1 flow.
+The SiO is confined to a 1.6′′ by
+2.8′′ region extending from the source to 5:46:08.317,
+-0:09:59.68.
+The SiO emission peaks at Vlsr = 10.7
+km s−1 at this location (thick red circle in Figure 50).
+A secondary peak at this velocity nearly coincides with
+the source (thinner red circle in Figure 50). Between
+these two low-velocity peaks, the SiO spectrum shows a
+fainter tail of emission extending to 19.3 km s−1.
+The minor axis of the source Eb disk and the compact
+12CO outflow is misaligned with respect to the promi-
+nent C and E jets. Furthermore, the CO emission has
+the opposite parity in Doppler shifts: while the C jet
+north-northwest of the SSV 63 core is blueshifted and
+the E jet south-southeast of the core is red-shifted, the
+compact 12CO flow from source Eb has the opposite
+Doppler shifts. Thus, there is no obvious connection be-
+tween molecular outflow MO1 with the E/C jet pair or
+any other Herbig-Haro object or near-infrared emission
+line feature in the SSV 63 core.
+This 12CO outflow exhibits the lowest and highest ra-
+dial velocities with respect to the SSV 63 cloud core in
+the entire ALMA field and is the only source powering
+SiO emission. The SiO emission suggests that very re-
+cent outflow activity may be impacting dense gas in the
+immediate surroundings of this YSO. The lack of obvi-
+ous jets, HH objects or MHOs suggests that accretion
+and outflow activity may have been very weak or absent
+in recent past, say within the last few hundred or few
+thousand years.
+11.3. The MO2 Outflow from Source Wb
+The molecular outflow associated with source Wb, la-
+beled MO2, is the second most prominent molecular
+outflow from the SSV 63 sources.
+MO2 has a signif-
+icantly more extended morphology than that of MO1
+and exhibits red- and blue-shifted velocities to the south-
+east and northwest of Wb, respectively (see Figure 52).
+The axis of MO2 is approximately perpendicular to the
+Wb circumstellar disk major axis.
+The morphology
+and kinematics of MO2 are similar to those expected
+from a molecular outflow formed by entrainment by a
+wide-angle wind (as described in Lee et al. 2000). At
+the highest velocities relative to the cloud rest-velocity
+(upper-left panel in Figure 45) there is a compact cone
+of redshifted 12CO emission extending to the southeast,
+
+4.98532
+2
+km/s
+6266
+6.655.98
+km/s
+7878
+Km/s
+45.0
+45.0
+45.0
+50.0
+009
+090
+10.0
+10.0
+OOL
+15.0
+15.0
+15.0
+20.0
+20.0
+20.0
+960
+0:60
+08.5
+5:46:08.0
+07/5
+07.0
+09.5
+0'60
+08.5
+5:46:08.0
+07.5
+10120
+09.5
+0910
+08.5
+5:46:08.0
+0715
+070
+2:00
+872元9.06
+9
+h
+krm/s
+8
+26'6
+10.30
+10.391072
+中Bekm/s
+2155
+11.97
+1209
+12.9.8
+km/s
+45.0
+45.0
+45.0
+009
+0'09
+0'09
+05.0-0:10:00.055.0
+05.0
+10.0
+10.0
+10.0
+15.0
+15.0
+15.0
+20.0
+09.5
+09.0
+08.5
+5:46:08.0
+07.5
+020
+09.5
+09.0
+08.5
+5.46:08.0
+07.5
+07.0
+09.5
+09.0
+08.5
+5:46:08.0
+07.5
+07.0The HH 24 Star Forming Complex
+43
+Figure 48.
+ALMA C18O channel maps of the HH 24 core region from Vlsr = 8.22 to Vlsr = 12.14 km s−1. The velocity
+spacing between the panels is ∼0.25 km s−1. Each panel shows three velocities, in blue, green, and red as listed in each frame.
+The observations were done with the 12m array and have a spatial resolution of about 0.5 arcsec.
+and a more open cone of blueshifted emission extending
+towards the northwest (Figure 52). The axes of sym-
+metry of these small-scale 12CO lobes is closely aligned
+with the orientation and parity of the optical jet J. How-
+ever, the 12CO Doppler shifts are more than an order-
+of-magnitude lower than the tangential velocities of the
+jet J knots, and the spatial extent of 12CO emission
+that can be related to an outflow from source Wb is
+at least two orders-of-magnitude smaller. The channel
+maps show discrete emission (i.e., blobs) with higher
+velocity at larger distances from the source, and the p-
+v diagram along the axis of MO2 shows parabola-like
+structures (see Figure 53).
+11.4. The MO3 Outflow from Source N
+
+.22
+6.79
+loma
+00
+00
+09.5
+59.0
+055
+CED
+5
+05
+OmA
+09:5
+07-6
+5:608:0
+07
+:5
+5:40:.0
+DT5
+333
+0
+omPa
+mte
+00
+588:30.00
+E4609U
+08#
+07$
+00.5
+07.5
+095
+4
+2.0
+025
+1347
+Bun
+/e
+Q:97
+09,5
+17.5
+09.5
+8.5
+504E0-0
+n44
+Reipurth et al.
+Figure 49. ALMA H2CO channel maps of the HH 24 core region from Vlsr = 7.98 to Vlsr = 12.35 km s−1. The velocity
+spacing between the panels is ∼0.5 km s−1. Each panel shows three velocities, in blue, green, and red as listed in each frame.
+The observations were done with the 12m array and have a spatial resolution of about 0.5 arcsec.
+A third, clearly defined, compact molecular outflow is
+powered by source N. This compact molecular outflow
+(denoted MO3) is relatively collimated but asymmetric.
+There is clear redshifted emission associated with molec-
+ular outflow from about 1.5′′ out to about 5′′ (2000 AU)
+from the source, whereas the blue lobe extends from
+the source out to only about 1.5′′ (see Figure 54). The
+position-velocity diagram (Figure 55) shows a velocity
+structure in the redshifted lobe commonly known as a
+“Hubble-wedge” and usually seen in molecular outflows
+formed through jet bow shock entrainment of ambient
+gas (see, e.g., Lee et al. 2000; Arce & Goodman 2001).
+On the other hand, the velocity structure of the blue
+lobe is not as clearly defined as that of the red lobe.
+
+85
+krns
+8.05
+-2
+km/s
+09:A
+798
+849
+B.9B
+9.16
+krm/s
+45.0
+45.0
+0:09
+15.0
+09.5
+5:46:0907
+08.0
+075
+09.5
+5:46:09.0
+08.5
+08:0
+07.5
+09.5
+5:46:09.0
+QALS
+08:0
+07.5
+8
+9.49
+966
+km/s
+10.00
+106
+km/s
+10.50
+10187
+km/s
+45.0
+50.0
+0'09
+55.0
+0190
+05.0
+10.0
+16.0
+16.0
+09.5
+6:46:09.0
+0815
+08:0
+075
+09.5
+5/46:09.0
+0B.5
+075
+09.5
+6:46:09.0
+0BU5
+075
+11:00
+11.17
+km/s
+11.61
+11.67
+km/s
+80
+12.01
+12.18
+km/s
+45.0
+50.0
+50.0
+0:10:00.0550
+0:10:00.055
+0.90
+0390
+10.0
+15.0
+15.0
+15.0
+09.5
+5:46:09.0
+08.5
+06.0
+07.5
+09.5
+5:46:09.8
+08.5
+05.0
+07.5
+09.5
+5:46:09.0
+04.0
+07.5The HH 24 Star Forming Complex
+45
+Figure 50.
+The compact 12CO molecular outflow MO1
+from source Eb. Blue contours show the integrated inten-
+sity emission over −3.0 ≤ VLSR ≤ 4.9 km s−1 (with first
+contour and contour steps of 0.06 Jy beam−1 km s−1), and
+red contours show the integrated intensity emission over
+16.3 ≤ VLSR ≤ 27.1 km s−1 (with first contour and con-
+tour steps of 0.1 and 0.09 Jy beam−1 km s−1, respectively).
+The dashed black line shows the direction along which the
+position-velocity diagram shown in Figure 51 is taken. The
+flow is perpendicular to the axis of the disk around source
+Eb.
+The large red ellipse marks the primary peak of SiO
+emission, and the smaller circle marks the secondary SiO
+peak.
+Figure 51.
+Position-velocity diagram of
+12CO emission
+along the axis of the molecular outflow MO1 from source Eb.
+Figure 52. The 12CO molecular outflow MO2 from Wb.
+Blue contours show the integrated intensity emission over
+−12.6 ≤ VLSR ≤ −0.3 km s−1 (with first contour and con-
+tour steps of 0.045 and 0.02 Jy beam−1 km s−1, respectively),
+and red contours show the integrated intensity emission over
+11.3 ≤ VLSR ≤ 27.1 km s−1 (with first contour and con-
+tour steps of 0.2 and 0.3 Jy beam−1 km s−1, respectively).
+The dashed black line shows the direction along which the
+position-velocity diagram in Figure 53 is extracted.
+Figure 53.
+Position-velocity diagram of
+12CO emission
+along the molecular outflow axis of the molecular outflow
+MO2 from Wb.
+
+-0°09'59"
+J2000
+-10'00"
+Eb
+Declination
+-10'01
+-10'02"
+5h46m08.5s
+08.4s
+08.3s
+RightAscension
+(J2000)20
+LSR Velocity [km/s]
+10
+0
+-4"-2″0″
+2″4"
+Angular
+Offset-0°09'56
+(J2000
+-09'58
+Wb
+Declination
+-10'00°
+Wa
+-10'02
+-10'04"
+5h46m08.2s
+08.0s
+07.8s
+07.6s
+Right Ascension
+(J2000)20
+LSR Velocity [km/s]
+0
+-6"-4"-2"0″ 2″4" 6
+Angular
+:Offset46
+Reipurth et al.
+Figure 54.
+The 12CO molecular outflow from source N.
+Blue contours show the integrated intensity emission over
+4.9 ≤ VLSR ≤ 7.9 km s−1 (with first contour and contour
+steps of 0.05 Jy beam−1 km s−1), and red contours show
+the integrated intensity emission over 12.9 ≤ VLSR ≤ 17.3
+km s−1 (with first contour and contour steps of 0.17 and
+0.07 Jy beam−1 km s−1, respectively).
+The dashed black
+line shows the direction along which the position-velocity
+diagram shown in Figure 55 is taken.
+Figure 55.
+Position-velocity diagram of
+12CO emission
+along the axis of the molecular outflow MO3 from source N.
+There are no obvious connections of MO3 to any Herbig-
+Haro objects or near-IR emission line features.
+The low millimeter flux of source N, the non-detection
+of this YSO at visual, IR, or radio wavelengths, com-
+bined with the presence of a compact, low-velocity
+molecular outflow, suggests that it may be a sub-stellar
+object. It could be the youngest of the active accretors
+in the SSV 63 cloud core.
+11.5. Outflow from Source Ea?
+Most of the low-velocity blueshifted 12CO emission
+in the ALMA field is concentrated in the southern half
+of the field and extends from VLSR ∼1 to ∼8 km s−1,
+thus blueshifted relative to the cloud velocity and, re-
+markably, opposite to the redshifted radial velocity of
+the optical jet E emerging from source Ea. The most
+intense emission in this radial velocity range is concen-
+trated south of source Ea, where within about 5′′ of
+this source the emission resembles a clumpy, low-velocity
+flow, see Figure 45 and Figure 56.
+The blueshift of the 12CO emission south of source
+Ea suggests, in light of the much faster redshifted ve-
+locities of the optical jet E, that the CO emission here
+represents gas that has been deflected towards us by
+either a wide-angle wind surrounding the jet, or ma-
+terial was ejected at right angles from the axis.
+As
+faster ejecta in a velocity-variable jet overtakes slower
+material in the jet beam, material can be ejected to the
+side. Over time, the pressure of such sideways moving
+ejecta or a wide-angle wind can create a wide-angle cav-
+ity whose near-side walls would be expanding towards
+the observer. As discussed in Section 6.1.1, the dimin-
+ishing ratio of [Feii]/[Sii] as jet E moves away from its
+source indicates a strong decline in extinction towards
+the observer. The middle panel in Figure 56 illustrates
+the decline in the [Feii]/[Sii] ratio.
+We conclude that source Ea is not driving a major
+molecular outflow as it emerges from the cloud core, but
+shows kinematic evidence for either entrained or side-
+ways splashing gas at blueshifted velocities.
+It should be noted that close to, and southwest of,
+source Ea we also detect faint redshifted 12CO emis-
+sion at VLSR ∼ 16 to 18 km s−1(middle upper panel
+of Figure 45). At these velocities the emission is com-
+pact, extending to the southwest only out to 1′′ to 2′′
+from Ea. We note that VLA X-band maps of source Ea
+shows evidence for a stubby extension perpendicular to
+the axis of the E-jet, which is unlikely to be from the
+circumstellar disk, since it is uncommon to detect disks
+at the relatively low frequency of 10 GHz, so it is prob-
+ably another bipolar jet, indicating that Ea most likely
+is a close binary (Figure 10).
+11.6. Low-velocity Features and Outflow Cavities
+11.6.1. The Region between Source Ea and Eb
+Between source Ea and source Eb there is a redshifted
+triangular feature seen at around Vlsr∼11 to 14 in both
+12CO and 13CO (Figures 45 and 46). At slightly lower
+velocities Vlsr∼10.0 to 11.6 km s−1 (central two pan-
+els in Figure 46) there appears to be wide-angle, U-
+shaped cavity walls opening up from source Eb towards
+
+-0°09'52
+Declination(J2000)
+-53"
+-54"
+N
+-55"
+-56″
+5h46m08.8s
+08.6s
+08.4s
+08.2s
+Right Ascension (J2000)15
+LSR Velocity [km/s]
+10
+5
+0"
+2"
+4"
+Angular
+OffsetThe HH 24 Star Forming Complex
+47
+Figure 56. (left) Low-velocity 12CO possibly associated with the walls of a cavity surrounding the C and E jets from source
+Ea plotted on top of the HST WFC3 (F164N filter) image of the region. Blue contours show the integrated intensity emission
+over 6.5 ≤ VLSR ≤ 7.1 km s−1 (with first contour and contour steps of 0.04 and 0.05 Jy beam−1 km s−1, respectively), and red
+contours show the integrated intensity emission over 10.6 ≤ VLSR ≤ 14.4 km s−1 (with first contour and contour steps of 0.3 Jy
+beam−1 km s−1). Only emission south of declination -00:09:57 (J2000) is shown. Emission that does not extend beyond 3′′ of
+the map edge is not shown as it is most likely noise from the low-sensitivity edge of the map. Crosses show the position of the
+continuum sources. (right) The 13CO outflow cavity walls plotted on top of the HST WFC3 (F164N filter) image of the region.
+Contours show the integrated intensity emission over 10.0 ≤ VLSR ≤ 11.8 km s−1 (with first contour and contour steps of 0.052
+and 0.07 Jy beam−1 km s−1, respectively). The dashed circle shows the field-of-view of the ALMA map, given by the distance
+from the center where the sensitivity decreases to 20% of that of the phase center. Emission within 6′′ of the map edge is not
+shown as it is most likely noise from the low-sensitivity edge of the map. Crosses show the position of the continuum sources.
+(center insert) The HH 24 E jet has a dramatic change in the ratio of [Feii] and [Sii] emission. As discussed in the text, this
+primarily reflects changes in extinction. The insert shows the ratio [Feii]/[Sii] of the HST images, such that black is [Feii] strong
+and white is [Sii] strong. It is clear that the blueshifted 12CO emission is associated with high extinction.
+the northwest at PA ∼330◦. At slightly higher veloci-
+ties between 11.6 and 14 km s−1, this U-shaped feature
+disappears.
+The triangular redshifted feature northwest of source
+Ea and its U-shaped extension (Figure 56-left) may trace
+the receding, far-side of a wide angle cavity excavated
+over time by either a wide angle wind or sideways splash-
+ing material surrounding the C-jet ejected by source Ea.
+Support for this scenario comes from the detection of
+both the blue- and red-shifted gas at 13CO (Figure 46).
+Figure 56-right illustrates the relationship between the
+C and E jets emerging from source Ea and the low-
+velocity cavity walls traced by 13CO. At LSR velocities
+between 10.0 and 11.8 km s−1 (i.e., very low redshifted
+velocities), the 13CO emission is concentrated in the cen-
+ter of the ALMA field.
+The emission peaks close to
+source Eb and shows narrow, curved extensions to the
+north, south, east and west of Eb that trace a pair of
+parabolic structures that open to the northwest and the
+southeast. The axis of symmetry of these structures is
+close to the orientations of the C and E jets. The apex
+of the south-facing feature coincides with the redshifted
+CO emission close to Ea and thus likely traces the walls
+of the outflow cavity associated with jet E. The base
+(and center) of the northern parabola is approximately
+at the position of Eb and its axis is coincident with that
+of jet C. Therefore, this structure likely traces the walls
+of the cavity evacuated by the outflow associated with
+jet C.
+The compact MO1 outflow and redshifted SiO emis-
+sion northwest of and driven by source Eb has an axis
+aimed more to the southeast and northwest, and appears
+to be unrelated to the cavity walls discussed above.
+11.6.2. Source Wa
+Near-infrared HST images show a bright compact re-
+flection nebulosity located about 1 arcsec south-east of
+source Wa which may trace an outflow cavity (Figure 6).
+If so, source Wa may also contribute to the generation
+
+0°0940"
+-09'50
+(J2000)
+10'00"
+Declination
+-10°10"
+-10/20"
+5h46m09.5s
+09.03
+08.53
+08.0s
+$S20
+07.0s
+5h46m09.5s
+09.03
+08.53
+08.0s
+07.0s
+Right Ascension (J2000)
+Right Ascension (J2000)48
+Reipurth et al.
+Figure 57. A low-velocity formaldehyde flow stretches to-
+wards the north-east, seemingly following the base of the
+optical G-jet emanating from source NE. The contours are
+integrated over Vlsr from 8.6 to 9.7 km s−1.
+of blueshifted 12CO emission in the southern part of
+the ALMA field. A filamentary knot complex known as
+HH 24B (Herbig 1974) is located a few arc-seconds south
+of source Wa which may trace shocks where a wide-angle
+wind impacts the southern part of the SSV 63 cloud core,
+see Figures 12 ([Sii]) and 8 (H2). The ALMA 12CO map
+of outflow MO2 from source Wb (Figure 52) shows a
+wing of redshifted 12CO emission south of source Wa.
+This may trace the redshifted side of a wide-angle cav-
+ity surrounding the reflection nebulosity and filamentary
+H2 and [Feii] emission south of source Wa.
+11.7. Formaldehyde Kinematics
+At low blueshifted velocities (from about 8.6 km s−1
+to 9.7 km s−1) the H2CO emission is concentrated in a
+6′′ to 7′′ wide structure extending from the sources Ea
+and Eb and to the east-northeast up to the edge of the
+ALMA primary beam (Figure 57).
+Figure 49 shows a clear velocity gradient, of about 2.1
+km s−1 pc−1, along the structure towards the northeast
+with decreasing velocity (i.e. greater blueshifted veloci-
+ties away from the central cloud velocity) at increasing
+distances from the field’s center. This is especially evi-
+dent in the upper right frame in Figure 49. The feature
+shown there appears centered on source NE and exhibits
+U-shaped cavities facing away from this source along the
+axis of jet G propagating towards the northeast. At the
+edge of the H2CO flow, faint 13CO emission is detected
+at about Vlsr ∼ 9.2 km s−1 which appears to trace the
+walls of the structure seen in H2CO. Faint C18O emis-
+sion is detected along the center of the H2CO flow, at low
+redshifted velocities (from about 10.2 to 10.7 km s−1).
+The C18O emission shows a velocity gradient where we,
+in contrast, see higher redshifted velocities the further
+away from the center of the field.
+The interpretation of this formaldehyde flow is diffi-
+cult. On morphological grounds, it appears to be as-
+sociated with the cavity of the wide G-jet driven by
+source NE. The increase in velocity of the formalde-
+hyde flow with increasing distance (a ’Hubble-flow’)
+from source NE could be caused by an explosion in this
+source. But it could also simply reflect geometry of the
+background cavity wall, which might be curving towards
+us.
+The projection into our line-of-sight of the flow-
+vectors along such a curve could produce the observed
+velocity field.
+11.8. An Infalling Streamer?
+At VLSR from 8.2 to 9.8 km s−1 we see a filamen-
+tary structure, in both the 13CO and C18O maps, that
+extends from the field center out to the edge of the
+field (see Figure 58). This structure, referred to as the
+streamer, shows a velocity gradient in which the gas
+at larger radii have, on average, lower blueshifted ve-
+locities compared to the gas closer to the center of the
+field (see Figure 59). This could be interpreted as infall
+from the far-side of the SSV 63 core feeding its center.
+The streamer is aimed at source Eb in the center of the
+SSV 63 cloud core.
+As an order-of-magnitude estimate, the total C18O
+emission of the streamer is roughly 5% of the total C18O
+emission seen in the ALMA data. The mass of the HH 24
+core has been measured as ∼2.3 M⊙ by K¨onives et al.
+(2020) (see Section 9), indicating that the streamer has a
+mass of roughly 0.12 M⊙. However, because ALMA re-
+solves out most of the extended background emission,
+this is an upper bound on the mass of the infalling
+streamer.
+Assuming an infall speed of 2 km s−1, the infall time
+from 7,200 AU, corresponding to the angular radius of
+the ALMA field-of-view, is tin ∼17,000 years. Thus, a
+rough upper limit to the mass accretion rate into the
+center is ∼ 7 × 10−6 M⊙yr−1.
+11.9. Interpretation of ALMA Data
+The ALMA observations reveal several ultra-compact,
+bipolar molecular outflows emerging from YSOs embed-
+ded in the SSV 63 cloud core. The detected flows emerge
+from the sources Eb (MO1), Wb (MO2), and N (MO3).
+The CO emission from these flows range in size from
+∼2′′ to ∼10′′ (∼800 to 4,000 AU), one to two orders-of-
+magnitude shorter than the chains of HH objects and
+
+-0°09'40"
+-09'50"
+Declination(J2000)
+-10'00"
+-10°10"
+-10'20"
+5h46m09.5s
+09.09
+08.58
+08.0s
+07.58
+07.08
+Right Ascension
+(J2000)The HH 24 Star Forming Complex
+49
+Figure 58. C18O emission integrated over blueshifted ve-
+locities shows a streamer feature towards the southwest of
+the field. The dashed white line shows the direction along
+which the position-velocity diagram in Figure 59 is taken.
+Figure 59.
+Position-velocity diagram of C18O emission
+along the major axis of the C18O streamer (see Figure 58).
+The center and the edge of the ALMA field is to the left and
+right, respectively.
+MHOs which trace the parsec-scale regions impacted by
+the jets emerging from the SSV 63 core. Blue- and red-
+shifted low radial-velocity, “perturbations” to the 12CO
+and 13CO and the H2CO line wings in the SSV 63 cloud
+core appear to be linked to outflow activity from sources
+Ea, Wa, and NE. The radial velocities of these 12CO
+and 13CO outflows are one to two orders-of-magnitude
+slower than the proper motions and radial velocities of
+the visual and near-IR wavelength jets, with detectable
+molecular emission reaching a maximum Vlsr of 15 to
+20 km s−1 compared to the Vlsr of the core. As with
+many other highly evolved Herbig-Haro outflows, asso-
+ciated 12CO outflows are confined to the size-scale of the
+remnant parent cloud core. These relatively low-velocity
+outflow components are likely to be swept-up gas from
+the parent cloud by the action of velocity-variable jets
+or wide-angle winds that may surround the jets and be
+confined to outflow cavity walls.
+The association of specific jets with individual sources
+constrains the evolutionary stages of the driving YSOs.
+The C and E jets are located at the base of the largest
+parsec-scale chain of HHs and MHOs emerging from the
+SSV 63 core.
+This giant flow consists of the MHOs
+SSE2-east and SSE2-west located ∼14′ (1.65 pc) south
+of source Ea and the HH 20, 21 and NNW shocks ∼13′
+(1.45 pc) to the north. Comparison of the ALMA and
+HST images shows that the northwestern base of jet
+E coincides with the position of source Ea to within
+0.1′′. This implies that the southern lobe of this parsec-
+scale flow, powered by the redshifted jet E, emerges from
+source Ea which has a mass 1.9 - 2.0 M⊙, the second
+most massive YSO in the SSV 63 core.
+Assuming a
+steady, average mass accretion rate of 10−5 M⊙yr−1, it
+would take 2 × 105 years to accumulate Ea’s mass, the
+second most massive YSO in the core. Thus Ea may be
+the oldest or second oldest YSO formed in this core; it
+continues to drive active atomic and ionized jets indi-
+cating continuing accretion and stellar growth.
+The most massive YSO is source NE that likely pow-
+ers the G jet and the associated bow shock located ∼90′′
+(0.17 pc) northeast of the SSV 63 core. The association
+of the G jet with source NE is supported by the orienta-
+tion of the NE disk, that has a minor axis closely aligned
+with this flow. There is no evidence for a larger, parsec-
+scale flow from source NE, indicating that the recent
+outflow activity responsible for the G jet and associated
+shocks followed an extended period of no outflow ac-
+tivity by source NE prior to the launch of the G jet.
+Assuming a jet speed of 100 km s−1, the dynamical age
+of the most distant detected bow shock at the head of
+the G jet is only ∼1,700 years.
+12. DISCUSSION
+12.1. The Formation of Jets
+In the 70 years since the Herbig-Haro phenomenon was
+discovered (Herbig 1950,1951, Haro 1952,1953) the fun-
+damental physical processes involved have been gradu-
+ally established (Schwartz 1983, Reipurth & Bally 2001),
+as well as the properties of the molecular outflows that
+result from entrainment by the jets of the surrounding
+molecular clouds (Bachiller 1996, Bally 2016). There is
+general agreement that jets are launched when accreted
+
+-0°0940"
+-09'50"
+十
+(J2000)
+Declination
+-10'00
+-10'10
+-10'20"
+5h46m09.5s
+s0'60
+08.5s
+08.0s
+07.5s
+07.0s
+Right Ascension
+(J2000)12
+LSR Velocity [km/s]
+10
+8
+6
+0"
+5"
+Angular Offset50
+Reipurth et al.
+matter interacts with magnetic fields within a few AU
+in the star-disk region, although the specific details of
+models vary greatly, see, e.g., Frank et al. (2014) for a
+review. In common for all these models is the issue of
+what triggers the accretion of matter to the central zone.
+A number of disk instability mechanisms have been iden-
+tified that will lead to accretion with a concomitant out-
+flow. Reipurth (2000) postulated that the giant, parsec-
+scale HH jets are driven by disk-instabilities induced by
+close periastron passages during the chaotic motions of
+the components of newborn non-hierarchical stellar sys-
+tems, thus force-feeding the jet engine. This is in con-
+trast to many small jets seen from single stars, which
+may result from internal disk instabilities.
+12.2. Breakup of the SSV 63 Multiple System
+The SSV 63 stellar group is a prototypical multiple
+system in a non-hierarchical configuration. It is an ex-
+ample of the exceedingly high stellar densities that can
+be associated with stellar birth: the stellar density of
+the HH 24 sources is estimated at about 4 × 105 pc−3,
+which is a factor of roughly 1000 times the stellar density
+in the center of globular clusters. This naturally leads to
+powerful dynamical interactions, and consequently such
+systems break up on timescales of about 100 crossing
+times (e.g., Valtonen & Mikkola 1991). Numerical sim-
+ulations show that half of all break-ups occur during the
+embedded phase (Reipurth et al. 2010), lasting about
+500,000 yr (Evans et al. 2009), which we then adopt as
+the upper limit for the age of the SSV 63 system.
+The discovery that a low-mass young object, the bor-
+derline brown dwarf SSV 63 Hα 5, has been ejected from
+the SSV 63 multiple system about 5800 yr ago demon-
+strates directly the dynamical nature of this little group
+of protostars. With an upper limit of, say, 500,000 yr for
+the age of the SSV 63 multiple system, it is remarkable
+that we find a runaway star precisely during the last
+∼1% of the age of the system. Either this is plain luck,
+or the ejection of low-mass members of the system is a
+more commonly occurring phenomenon. The top-heavy
+distribution of masses in SSV 63 might be an indica-
+tor that many other very low mass objects have been
+ejected during the lifetime of the system. Our search for
+runaway stars was limited to a small area about 10 ar-
+cmin around SSV 63. But if an object had been ejected
+500,000 yr ago with a velocity of 25 km s−1 then in
+principle it could by now have travelled more than 4 de-
+grees. Once Gaia DR4 is released, the proper motion
+uncertainties will be sufficiently low that a meaningful
+association with more distant objects can be established.
+The escape speed from the SSV 63 system and its core
+is about 1.5 km s−1. Objects ejected with a lower speed
+will remain loosely tethered to the system, and will after
+a while return to the system, where numerical simula-
+tions suggest that they will be ejected again, until they
+eventually are kicked out with a velocity higher than the
+escape speed. Such almost-escapers can travel substan-
+tial distances before falling back.
+Given the ejection
+of Hα 5 within the very recent past, it appears likely
+that there could be a number of other both escaping
+and returning bodies that were once members of the
+SSV 63 multiple system. The ejection of low-mass clus-
+ter members has also been observed in regions of high
+mass star formation (Orion BN/KL, G´omez et al. 2008;
+W49 North, Rodr´ıguez et al. 2020).
+The energy for an ejection from an unstable triple sys-
+tem is acquired by shrinking the separation of two mem-
+bers. Usually the lowest mass member is ejected, and
+the two remaining members become bound into an ec-
+centric binary.
+But occasionally a low-mass binary is
+ejected leaving behind a more massive member. If the
+triple is part of a larger multi-body system, the recoil of
+the remaining binary (or single) will add to the veloc-
+ity dispersion of the system, and thus facilitate further
+break-up.
+It follows that several of the SSV 63 components are
+likely to be close binaries. This is then consistent with
+the observation that a number of collimated jets are em-
+anating from SSV 63 as a result of the inspiraling of bi-
+naries. Also we note the presence of what appears to
+be a quadrupolar radio continuum jet from source Ea,
+indicating that Ea is a close binary system. A similar
+quadrupolar radio morphology was found for HH 111
+(Reipurth et al. 1999).
+12.3. The Fate of the SSV 63 Multiple System
+The non-hierarchical configuration of the SSV 63 mul-
+tiple system implies that the system will inevitably un-
+dergo a dynamical transformation towards a hierarchical
+configuration, in the process likely losing several of its
+present members.
+There is evidently no way to pre-
+dict the details of such a highly stochastic process, but
+one can approach the issue in a statistical manner. We
+have carried out numerical simulations using the N-body
+code described in detail by Reipurth & Mikkola (2012,
+2015), except that a cloud core and accretion were not
+included. We model the SSV 63 system in an XYZ co-
+ordinate system, where XY is the plane of the sky, and
+we have assumed that the multiple system is as deep
+along the Z line-of-sight as it is across the XY-plane,
+that is, about 6000 AU. We fix the six bodies9 at the
+9 The simulations were performed before the seventh member, N,
+was discovered with ALMA
+
+The HH 24 Star Forming Complex
+51
+observed XY positions and randomly assign Z-values to
+each of the components in the range ±3000 AU. We
+assume that the individual components have randomly
+oriented velocity vectors of 1 km s−1 corresponding to
+the velocity dispersion in a typical turbulent cloud. This
+is supported by the radial velocity differences of the stars
+measured by ALMA (Table 12). All bodies are assumed
+to have equal masses. We then run the code 1000 times
+for 100 Myr and review the end products at 1, 10, and
+100 Myr. The results are the same within the uncer-
+tainties at 1, 10, and 100 Myr. For 1 Myr the values are
+as follows: Single bodies: 2919 (69.3%); Binaries: 958
+(22.7%); Triples: 319 (7.6%); Quadruples: 19 (0.4%);
+Higher-order systems: none. The following conclusions
+can be drawn from these numbers:
+(1): Since no system with an order higher than 4 sur-
+vives, and even those are very rare, it follows that the
+sextuple SSV 63 system is almost certainly doomed to
+disintegrate.
+(2): We note that 1000 simulations of six stars should
+lead to 6000 classifications in the above system cate-
+gories, but the numbers do not add up to 6000, i.e.
+some stars are unaccounted for. While the simulations
+are very precise, in about 10% of the cases the anal-
+ysis code that classifies the outcome cannot determine
+whether a nearby pair of stars are bound or not. For ex-
+ample two stars may be ejected in separate events and
+move close to each other, but it is not clear if the pair
+is bound or will become bound as the result of passing
+close to a third star. Such cases are not counted by the
+analysis software.
+(3): A comparison between these simulations and ob-
+servations of multiplicity (e.g., Raghavan et al. 2010)
+shows that in our simulations singles are overrepresented
+and triples are underrepresented. This is not surprising
+since our simulations do not include the molecular envi-
+ronment and the related dissipative processes that tend
+to bind pairs of stars into binaries and triples.
+(4): The virtually unchanged numbers of singles, bina-
+ries, triples, and quadruples at 1, 10 and 100 Myr shows
+that the dynamical evolution is essentially complete
+within the first million years. It follows that the SSV 63
+system is presently in a highly dynamical and unstable
+situation, as expected from its multi-component non-
+hierarchical configuration.
+Similar results are obtained when running the code for
+higher-order systems. An example of an 8-body system
+is shown in Figure 60, in which a system with dimensions
+comparable to SSV 63 completely disintegrates within a
+million years.
+SSV 63 is a specific case illustrating the dynamical
+evolution of small multiple systems.
+On a more gen-
+Figure 60. An example of a numerical simulation of an un-
+stable eight-body equal-mass system illustrating the chaotic
+nature of the interactions.
+The decay products are single
+stars as well as a close and a wide binary. The tickmarks are
+in AU, and the angular scale assumes a distance of 400 pc.
+eral level, since numerical simulations show that about
+half of all ejections occur during the embedded phase
+while stars are still building their masses (Reipurth et
+al. 2010), it follows that dynamical interactions in small
+multiple systems play an important role in setting the
+masses of stars. Early ejections will in some cases lead
+to the formation of brown dwarfs (Reipurth & Clarke
+2001), and later ejections at random times will play an
+important role in shaping the initial mass function (e.g.,
+Bate & Bonnell 2005).
+12.4. Flybys and Disk Structure
+It has been known for some time that dynamical inter-
+actions in young binaries can have profound effects on
+circumstellar disks, as recognized in the seminal work
+of Clarke & Pringle (1993).
+Similarly, flybys in clus-
+ters can warp and truncate disks (e.g., Pfalzner 2003,
+Pfalzner & Govind 2021). Additionally, small embed-
+ded clusters are subject to ram pressure stripping from
+their passages through the ambient medium (Wijnen et
+al. 2017). Such effects are particularly pronounced in
+small non-hierarchical multiple systems still embedded
+in cloud cores, where stars chaotically move around each
+other on short time scales. With modern smoothed par-
+ticle dynamical simulations such perturbations can be
+studied in great detail.
+Recent simulations by Cuello
+et al. (2020a,b) illustrate the various effects in detail.
+Among the observable signatures of such dynamical in-
+teractions are spiral arms, disk warping, diffuse halos of
+
+3000
+Single
+2000
+Spectroscopic binary
+Wide binary
+1000
+0
+-1000
+Single
+-2000
+5 arcsec
+-3000
+-3000
+-2000
+-1000
+0
+1000
+2000
+300052
+Reipurth et al.
+Figure 61. A 1.3 mm map made with ALMA of the Eb
+source. The disk is clearly irregular, with an arm protruding
+to the east. The color scale starts from 1.5 σ [Eb-disk] and
+goes up to 50% of the maximum intensity.
+material pulled from disks, and disk truncation. High-
+resolution observations with ALMA, like the DSHARP
+project (Andrews et al. 2018), are able to detect such
+features, and they have been seen in several multiple
+systems (e.g., Kurtovic et al. 2018).
+With the 0.′′12 angular resolution of the extended
+ALMA configuration the circumstellar disks of four of
+the sources in SSV 63 (Ea, Eb, Wb, and NE) are re-
+solved, but at a distance of 400 pc finer structure of the
+disks is not discernable. However, disk radii can be es-
+timated in both dust and C18O gas (Table 11). As is
+commonly seen, the dust disks are significantly smaller
+than the gaseous disks. For NE, Ea, Eb, Wa, and Wb
+we find dust radii of 51, 39, 159, 35, and 81 AU. We
+can compare this to the results of Tobin et al. (2020),
+who used ALMA to carry out a major 0.87 mm contin-
+uum survey of 328 protostars in Orion with similar an-
+gular resolution. For the subset of Class I non-multiple
+sources they find a median dust radius of 37 AU. How-
+ever, it should be noted that the majority of protostars
+observed by Tobin et al. will arrive on the main sequence
+as M-dwarfs, whereas the SSV 63 components will be-
+come G, F, and A stars. It is well known that there is a
+clear correlation between dust radius and stellar mass,
+and Andrews (2020) suggests the relation Rmm ∝ M0.9
+∗ .
+Thus, it appears that the dust disks in SSV 63 are on av-
+erage a factor 2 smaller than expected, which could be a
+signature that they have been truncated. However, the
+radius-stellar mass relation has significant scatter, and
+combined with the small number statistics we cannot be
+certain that the SSV 63 disks have suffered dynamically
+induced truncation.
+The disks of sources Ea, Wb, and NE are almost per-
+fectly symmetric, with no indication of recent perturba-
+tions. In contrast, the disk of Eb is asymmetric, with a
+diffuse halo or wing stretching towards the NNE (Fig-
+ure 61). The length of this elongation is almost 0.5 arc-
+sec, that is, about 200 AU in projected extent. Such an
+appearance is indicative of a recent interaction. How-
+ever, because Eb is deeply embedded, it is conceivable
+that its diffuse appearance is related to an infalling en-
+velope.
+Our current data cannot distinguish between
+these two possibilities.
+13. SUMMARY AND CONCLUSIONS
+We have performed a detailed observational study at
+optical, infrared, mm and cm wavelengths of the HH 24
+jet complex and the multiple system SSV 63 that drives
+the various jets in order to better understand the nature
+of low- to intermediate-mass star formation in such a
+small system. We here summarize the main results:
+1:
+The SSV 63 system is embedded in a cloud
+core, and the known components are the wide binaries
+Wa/Wb and Ea/Eb plus the NE source. All are likely
+Class I sources, but both NE and Eb are deeply embed-
+ded and only detected at mid-infrared and longer wave-
+lengths, and may be borderline Class 0 sources.
+Our
+deep near-IR images have identified an additional faint
+source, S, and ALMA maps have discovered another
+deeply embedded source, N. Thus the cloud core, which
+is elliptical with dimensions of about 5,000 × 12,500 AU,
+contains at least 7 sources. The five main sources are all
+detected by the VLA, and source Wb has a secondary
+component.
+2:
+The most prominent jet among the outflows is
+the finely collimated HH 24E jet.
+Multi-epoch HST
+images show the jet to be very bright in the [Feii]
+1.64 µm transition, to have a transverse velocity of
+around 250 km s−1 away from the driving source Ea,
+and expand with an opening angle of ∼2.6◦. Spectra
+show the jet to be redshifted, and to have an angle of
+∼35◦ to the plane of the sky. Our VLA maps show a
+bipolar radio continuum jet from source Ea along the
+axis of the E-jet, with a smaller bipolar jet at right an-
+gles, indicating that source Ea is an unresolved binary.
+3: The counter jet HH 24C displays a chaotic jumble
+of knots, likely the result of it having burrowed through
+the cloud core.
+High tangential velocities of about
+300 km s−1 combined with a radial velocity around -
+200 km s−1 indicates that the jet is moving towards us
+at an angle of about 35◦ to the plane of the sky. A major
+new knot appeared at visual wavelengths from behind a
+cloud edge between 2006 and 2014.
+
+1.0
+0.63
+0.54
+0.5
+(arcsec
+0.44
+/beam
+offset
+0.0
+0.35
+mJy/
+Dec
+0.25
+-0.5
+0.16
+-1.0
+0.06
+1.0
+0.5
+0.0
+-0.5
+-1.0
+RA offset (arcsec)The HH 24 Star Forming Complex
+53
+4: The HH 24G jet has an unusual morphology, with
+fragments of a collimated jet surrounded by a tubular
+cavity with a diameter of ∼5000 AU and walls outlined
+by shocks. Its driving source is SSV 63 NE. Near the
+base of the jet is a bright and highly variable reflec-
+tion nebulosity, indicating motion of shadowing material
+close to the source.
+5: At large distances from HH 24, a group of HH
+objects, including HH 19, 20, and 21, is found to the
+NW; another, HH 27, is found to the SE. Proper motion
+measurements confirm previous suggestions that HH 19
+and HH 27 form distant bow shocks from the faint jet
+HH 24J driven by the Wb source. The total extent of
+this giant bipolar flow is 1.39 pc in projection.
+6: The group of objects HH 20 and 21 form part of a
+giant fractured working surface driven by the HH 24C
+jet. We have searched for further distant bow shocks
+along the well-defined flow axis and found an object,
+HH 24NNW, 1.45 pc from source Ea and along its flow
+axis.
+To the SE we have found several distant bow
+shocks, at distances of 0.98 and 1.67 pc from source Ea.
+The total extent of the E/C jet pair is thus 3.2 pc in pro-
+jection, or 3.8 pc at an inclination of 35◦ to the plane of
+the sky.
+7: The deeply embedded Class 0 VLA source HH 24-
+MMS, located ∼40 arcsec south of SSV 63, is shifted by
+0.8 arcsec (320 AU) from its location observed in 2000.
+Possible explanations include variability in a binary, mo-
+tion of the source, or dust heated through a lighthouse
+effect, none of which are without problems. Our H2 im-
+ages reveal an extended series of shocks from the nearby
+Class 0 source HOPS 317.
+8:
+The brightest shock in the HH 24 complex,
+HH 24A, is structurally and kinematically complex, with
+knots on its eastern side moving along the axis of the
+E-jet, while the central bright part is essentially station-
+ary, and may represent a shock in the counterflow from
+the nearby source HOPS 317.
+9: We have searched for additional YSOs near SSV 63,
+and have found five Hα-emission stars and brown dwarfs
+in the vicinity of SSV 63, with spectral types between
+M3.5 and M7. They are 1.5 to 2 arcmin from SSV 63,
+far outside the dense molecular core. Proper motions
+from Gaia show that one of these, SSV 63 Hα 5, moves
+straight away from the embedded sources with a tan-
+gential velocity of 26 km s−1. The object has a spectral
+type of M5.5, and is a borderline brown dwarf. Hα 5
+was very close to the Class 0/I NE protostellar source
+about 5800 yr ago, and we assume NE is the source from
+which Hα 5 was dynamically ejected. Such an ejection
+requires that either NE or Hα 5 must be a close binary.
+If Hα 5 was ejected from a protostellar system it follows
+that it is itself protostellar, and hence it falls into the
+category of orphaned protostars (Reipurth et al. 2010).
+None of the other four Hα emission stars have signifi-
+cant motions, and their origin is unclear. Among these,
+Hα 1 drives a faint highly collimated jet, HH 1200, and
+Hα 2 is a young M7 brown dwarf.
+10: Our 12CO observations with ALMA have revealed
+a few small molecular outflows. A bipolar one, labeled
+MO1, is centered on the deeply embedded source Eb
+and is perpendicular to the well-defined disk axis. The
+flow has a total extent of only about 2 arcsec, and is
+the only one that is also associated with SiO emission.
+Another bipolar flow, MO2, lies along the axis of the
+jet HH 24J driven by source Wb.
+The third bipolar
+outflow, MO3, is associated with the mm continuum
+source N. Surprisingly, the major bipolar E/C jet from
+source Ea does not show evidence of a molecular outflow,
+although some low-velocity emission may be associated
+with gas flowing along cavity walls.
+11: A peculiar formaldehyde flow, 6′′-7′′ wide centered
+on source NE, is detected at low blueshifted velocities
+partly along the wide G-jet. Its velocity is increasing
+with distance from NE, and could be caused by an ex-
+plosion, or be a flow gliding along a curved background
+cavity wall.
+12: ALMA detects a large filamentary structure in
+13CO and C18O extending from the edge of the field to
+its center with a slight 1.6 km s−1 gradient. This may be
+interpreted as a streamer of infalling material for which
+we estimate a rough upper limit to the mass feeding the
+core of ∼ 7 × 10−6 M⊙yr−1. Thus star formation in the
+core may be continously fed with fresh gas.
+13: We have derived stellar masses of the four sources
+Ea, Eb, Wb, and NE assuming Keplerian rotation of
+their disks detected with ALMA. The masses are 2.0,
+1.3, 0.9, and 2.1 M⊙, with estimated uncertainties of
+about 0.1 M⊙. The masses of Ea and NE indicate that
+they are proto-Herbig Ae stars. Eb and Wb have masses
+on the high end of T Tauri stars, but since both stars are
+heavily extincted and detectable only at mid-IR wave-
+lengths, they may still gain a significant amount of gas.
+14: The five dominant sources, Ea, Eb, Wa, Wb, and
+NE, display circumstellar disks in the ALMA observa-
+tions, with major axes oriented almost precisely perpen-
+dicular to the prominent jets they drive. For four of the
+sources, Ea, Eb, Wb, and NE, disk radii are derived for
+the gas and the dust.
+On average, they are about a
+factor 2 smaller than inferred from a disk radius-stellar
+mass correlation. This might be the result of trunca-
+tion in this dynamically active system, but due to the
+large scatter of the correlation and the small number of
+sources observed, a firm conclusion is premature. The
+
+54
+Reipurth et al.
+disk of Eb is irregular with a larger eastern lobe that
+might be the result of a close encounter with another of
+the sources.
+15: We determine a mass of ∼3.3 M⊙ for the cloud
+core in which the SSV 63 multiple system resides based
+on the 850 µm data of Kirk et al. (2016a,b). A lower
+limit to the total stellar mass of the multiple system is
+roughly 7 M⊙.
+A filamentary structure in the region
+which may be an infalling streamer of gas, suggests that
+the core may be continously forming stars as its gas
+content is replenished.
+16: SSV 63 is an excellent example of a protostel-
+lar multiple system of at least 7 embedded sources and
+one low-mass runaway borderline brown dwarf. With
+a non-hierarchical configuration, the system is unsta-
+ble with the stars moving chaotically among each other.
+This will eventually lead to the breakup of the system,
+in the process ejecting a number of the members, prefer-
+entially those with lowest mass. Numerical simulations
+indicate that the system will almost completely disinte-
+grate within less than 1 million years. As the stars are
+ejected from their feeding zones their masses are set,
+and dynamical interactions in small protostellar multi-
+ple systems are thus an important factor in defining the
+initial mass function.
+14. ACKNOWLEDGEMENTS
+We thank an anonymous referee for an insight-
+ful report,
+which improved this paper.
+We also
+thank Helen Kirk for providing Figure 34,
+G¨oran
+Sandell for help with the Herschel data, and Isabel
+Baraffe for advice on the BHAC15 models.
+B.R. ac-
+knowledges support by NASA through grant HST-
+GO-13485.
+J.B. acknowledges support by the Na-
+tional Science Foundation through grant AST-1910393.
+H.-W.Y. acknowledges support from Ministry of Sci-
+ence and Technology (MOST) in Taiwan through the
+grant MOST 110-2628-M-001-003-MY3 and from the
+Academia Sinica Career Development Award (AS-
+CDA-111-M03).
+H.G.A. acknowledges support from
+the National Science Foundation award AST-1714710.
+L.F.R. acknowledges the financial support of DGAPA
+(UNAM) IN105617, IN101418, N110618 and IN112417
+and CONACyT 238631 and 280775. A.C.R. acknowl-
+edges support by DGAPA (UNAM) grant IG100422.
+This paper makes use of the following ALMA data:
+ADS/JAO.ALMA#2018.1.01194.S. ALMA is a part-
+nership of ESO (representing its member states),
+NSF (USA) and NINS (Japan), together with NRC
+(Canada), MOST and ASIAA (Taiwan), and KASI (Re-
+public of Korea), in cooperation with the Republic of
+Chile.
+The Joint ALMA Observatory is operated by
+ESO, AUI/NRAO and NAOJ. The National Radio As-
+tronomy Observatory is a facility of the National Science
+Foundation operated under cooperative agreement by
+Associated Universities, Inc. Based in part on data col-
+lected at the Subaru Telescope, which is operated by the
+National Astronomical Observatory of Japan (NAOJ).
+Thanks are due to the Subaru staff, in particular Miki
+Ishii and Hisanori Furusawa for excellent and dedicated
+support during the observations.
+We are grateful to
+Nobunari Kashikawa for permission to use his [Sii] fil-
+ter.
+Based in part on observations (GN-2010A-Q-10,
+GN-2013B-Q-77) obtained at the international Gemini
+Observatory, a program of NSF’s NOIRLab, which is
+managed by the Association of Universities for Research
+in Astronomy (AURA) under a cooperative agreement
+with the National Science Foundation on behalf of the
+Gemini Observatory partnership: the National Science
+Foundation (United States), National Research Council
+(Canada), Agencia Nacional de Investigaci´on y Desar-
+rollo (Chile), Ministerio de Ciencia, Tecnolog´ıa e Inno-
+vaci´on (Argentina), Minist´erio da Ciˆencia, Tecnologia,
+Inova¸c˜oes e Comunica¸c˜oes (Brazil), and Korea Astron-
+omy and Space Science Institute (Republic of Korea).
+We are thankful to Richard McDermid for help with the
+Gemini Phase II submission. This research is based in
+part on observations made with the NASA/ESA Hub-
+ble Space Telescope obtained from the Space Telescope
+Science Institute, which is operated by the Association
+of Universities for Research in Astronomy, Inc., under
+NASA contract NAS 5-26555. The VLA observations
+were part of our project 19A-012, made with the NSF’s
+Karl G. Jansky Very Large Array (VLA) of the Na-
+tional Radio Astronomy Observatory, which is a facil-
+ity of the National Science Foundation operated under
+cooperative agreement by Associated Universities, Inc.
+Observations were obtained with the Apache Point Ob-
+servatory 3.5-meter telescope, which is owned and oper-
+ated by the Astrophysical Research Corporation.
+We
+thank the APO Observing Specialists for their assis-
+tance during the observations.
+This work is based in
+part on observations made with the Spitzer Space Tele-
+scope, which is operated by the Jet Propulsion Labo-
+ratory, California Institute of Technology under a con-
+tract with NASA, and by Herschel, which is an ESA
+space observatory with science instruments provided by
+European-led Principal Investigator consortia and with
+important praticipation from NASA. This publication
+makes use of data products from the Two Micron All
+Sky Survey, which is a joint project of the University of
+Massachusetts and the Infrared Processing and Analy-
+sis Center/California Institute of Technology, funded by
+the National Aeronautics and Space Administration and
+
+The HH 24 Star Forming Complex
+55
+the National Science Foundation. Based on observations
+collected at the European Organisation for Astronomi-
+cal Research in the Southern Hemisphere and extracted
+from the ESO archives.
+This material is based upon
+work supported by the National Aeronautics and Space
+Administration through the NASA Astrobiology Insti-
+tute under Cooperative Agreement No. NNA09DA77A
+issued through the Office of Space Science. This research
+has made use of the SIMBAD database, operated at
+CDS, Strasbourg, France, and of NASA’s Astrophysics
+Data System Bibliographic Services.
+Facilities:
+Gemini (GMOS,GNIRS), Spitzer, Sub-
+aru
+(SuprimeCam,IRCS),
+Herschel,
+ALMA,
+VLA,
+HST (WFC3,ACS), Apache Point Observatory 3.5m
+(ARCES, ARCTIC, NICFPS), VLT (NACO)
+REFERENCES
+Andrews, S.M. 2020, ARAA, 58, 483
+Andrews, S.M., Huang, J., P´erez, L.M. et al. 2018, ApJL,
+869, L41
+Anglada, G., Rodr´ıguez, L.F., Carrasco-Gonz´alez, C. 2018,
+Astron. Astrophys. Rev. 26, 3
+Anosova, J.P. 1986, Ap&SS, 124, 217
+Anthony-Twarog, B.J. 1982, AJ, 87, 1213
+Arce, H.G. & Goodman, A.A. 2001, ApJ, 551, L17
+Armitage, P.J. & Clarke, C.J. 1997, MNRAS, 285, 540
+Bacciotti, F. & Eisl¨offel, J. 1999, A&A, 342, 717
+Bachiller, R. 1996, ARAA, 34, 111
+Bally, J. 2016, ARAA, 54, 491
+Bally, J. & Reipurth, B. 2001, ApJ, 546, 299
+Bally, J., O’Dell, C.R., McCaughrean, M.J. 2000, AJ, 119,
+2919
+Bate, M.R. 2009, MNRAS, 392, 590
+Bate, M.R. 2012, MNRAS, 419, 3115
+Bate, M.R. & Bonnell, I.A. 2005, MNRAS, 356, 1201
+Bate, M.R., Bonnell, I.A., & Bromm, V. 2002, MNRAS,
+336, 705
+Beckwith, S. V. W., Sargent, A. I., Chini, R. S., et al. 1990,
+AJ, 99, 924
+Benedettini, M., Giannini, T., Nisini, B., Tommasi, E.,
+Lorenzetti, D., Di Giorgio, A. M., Saraceno, P., Smith, H.
+A., & White, G. J. 2000, A&A, 359, 148
+Bieging, J.H., Cohen, M., & Schwartz, P.R. 1984, ApJ, 282,
+699
+Bontemps, S., Andr´e, P., & Ward-Thompson, D. 1995,
+A&A, 297, 98
+Bontemps, S., Ward-Thompson, D., & Andre, P. 1996,
+A&A, 314, 477
+B¨ohm, K.-H., Noriega-Crespo, A., Solf, J., & Brugel, E.W.
+1992, PASP, 104, 251
+Braun, T. A. M., Yen, H.-W., Koch, P. M., et al. 2021,
+ApJ, 908, 46
+Briggs, D.S. 1995, PhD dissertation, The New Mexico
+Institute of Mining and Technology, Socorro, New Mexico
+Brugel, E.W., B¨ohm, K.-H., & Mannery, E. 1981, ApJS, 47,
+117
+Chandler, C.J., Koerner, D.W., Sargent, A.L., & Wood,
+D.O.S. 1995 ApJ 449, L139 (erratum ApJ 455, L93)
+Chen, X., Arce, H.G., Zhang, Q. et al. 2013, AJ, 768, 110
+Chini, R., Kr¨ugel, E., Haslam, C.G.T., Kreysa, E., Lemke,
+R., Reipurth, B., Sievers, A., Ward-Thompson, D. 1993,
+A&A, 272, L5
+Clarke, C.J. & Pringle, J.E. 1993, MNRAS, 261, 190
+Cohen, M. & Schwartz, R.D. 1987, ApJ, 316, 311
+Connelley, M.S., Reipurth, B., Tokunaga, A.T. 2008a, AJ,
+135, 2496
+Connelley, M.S., Reipurth, B., Tokunaga, A.T. 2008b, AJ,
+135, 2526
+Cuello, N., Dipierro, G., Mentiplay, D. et al. 2019, MNRAS,
+483, 4114
+Cuello, N., Louvet, F., Mentiplay, D. et al. 2020, MNRAS,
+491, 504
+Dahm, S.E. & Hillenbrand, L.A. 2017, AJ, 154, A177
+Davis, C.J., Ray, T.P., Eisl¨offel, J., & Corcoran, D. 1997,
+A&A, 324, 263
+Davis, C.J., Gell, R., Khanzadyan, T. et al. 2010, A&A,
+511, A24
+Delgado-Donate, E.J., Clarke, C.J., Bate M.R., Hodgkin,
+S.T. 2004, MNRAS, 351, 617
+Dopita, M. 1978, ApJS, 37, 117
+Duchˆene, G. & Kraus, A. 2013, ARA&A, 51, 269
+Erkal, J., Nisini, B., Coffey, D. et al. 2021, ApJ, 919, 23
+Eisl¨offel, J. & Mundt, R. 1997, AJ, 114, 280
+Evans, N.J., Dunham, M.M., Jørgensen, J.K. et al. 2009,
+ApJS, 181, 321
+Fang, M., van Boekel, R., Wang, W. et al. 2009, A&A, 504,
+461
+Furlan, E., Fischer, W.J., Ali, B. et al. 2016, ApJS, 224:A5
+Gibb, A.G. 2008, in Handbook of Star Forming Regions Vol.
+I, Ed. Bo Reipurth, ASP, p. 693
+Gibb, A.G., Heaton, B.D. 1993, A&A, 276, 511
+Gibb, A.G. & Little, L.T. 1998, MNRAS, 295, 299
+Gibb, A.G., Little, L.T., Heaton, B.D., & Lehtinen, K.K.
+G´omez, L., Rodr´ıguez, L.F., Loinard, L. et ak. 2008, ApJ,
+685, 333
+Graham, J.A. & Phillips, A.C. 1987, PASP, 99, 91
+
+56
+Reipurth et al.
+Hartigan, P. 1989, ApJ, 339, 987
+Hartigan, P., Heathcote, S., Morse, J.A. et al. 2005, AJ,
+130, 2197
+Hartigan, P., Frank, A., Foster, J.M. et al. 2011, ApJ, 736,
+29
+Heathcote, S., Morse, J.A., Hartigan, P. et al. 1996, AJ,
+112, 1141
+Herbig, G.H. 1974, Lick Obs. Bull., Vol. 658, p.1
+Herbig, G.H. & Kuhi, L.V. 1963, ApJ, 137, 398
+Hillenbrand, L.A., 1995, PhD thesis, Univ. of Massachusetts
+Hillenbrand, L.A., Meyer, M.R., Strom, S.E., Skrutskie,
+M.F. 1995, AJ, 109, 280
+Ho, P. T. P., Moran, J. M., & Lo, K. Y. 2004, ApJL, 616,
+L1
+Hodapp, K.-W. 1994, ApJS, 94, 615
+Hoyle, F. 1953, ApJ, 118, 513
+Hsieh, C.-H., Arce, H.G., Mardones, D. et al. 2021, ApJ,
+980, A92
+Hubble, E.P. 1917, ApJ., 45, 351
+Jones, B.F., Cohen, M., Wehinger, P.A., & Gehren, T.
+1987, AJ, 94, 1260
+Kang, M., Choi, M., Ho, P.T.P., & Lee, Y. 2008, ApJ, 683,
+267
+Kirk, H., Di Francesco, J., Johnstone, D. et al. 2016, ApJ,
+817, A167
+Kounkel, M., Hartmann, L., Loinard, L. et al. 2017, ApJ,
+834, A142
+Knox-Shaw, H. 1916, MNRAS, 76, 646
+Kratter, K.M. & Matzner, C.D. 2006, MNRAS, 373, 1563
+Kr¨ugel, E., Chini, R. 1994, A&A, 287, 947
+K¨onyves, V., Andr´e, Ph., Arzoumanian, D. et al. 2020,
+A&A, 635, A34
+Kurtovic, N.T., P´erez, L.M., Benisty, M. et al. 2018, ApJL,
+869, L44
+Lada, E.A., Bally, J., Stark, A.A. 1991, ApJ, 368, 432
+Lane, J., Kirk, H., Johnstone, D., et al. 2016, ApJ, 833, A44
+Larson, R.B. 1972, MNRAS, 156, 437
+Lee, C.-F., Mundy, L.G., Reipurth, B., Ostriker, E.C. et al.
+2000, ApJ, 542, 925
+Lee, M. G., B¨ohm, K. H., Temple, S. D., et al. 1988, ApJ,
+334, 229
+Leggett, S.K., Hawarden, T.G., Currie, M.J. et al. 2003,
+MNRAS 345, 144
+Lenzen, R., Hartung, M., Brandner, W. et al. 2003, SPIE,
+4841, 944
+Leinert, Ch., Zinnecker, H., Weitzel, N. et al. 1993, A&A,
+278, 129
+Lis, D.C, Menten, K.M., & Zylka, R. 1999, ApJ, 527, 856
+Little, L. T., Davies, S. R., Riley, P. W., Matthews, N.,
+MacDonald, G. H., Vizard, D. R., Ellison, B. N., &
+Nyman, L.-A. 1985, A&A, 142, 378
+Lombardi, M., Alves, J., Lada, C.J. 2011, A&A, 535, A16
+Mamajek, E.E., Kenworthy, M.A., Hinz, P.M., and Meyer,
+M.R. 2010, AJ, 139, 919
+Matthews, N. & Little, L.T. 1983, MNRAS, 205, 123
+McBride, A. & Kounkel, M. 2019, ApJ, 884:6
+McMullin, J.P., Waters, B., Schiebel, D. et al. 2007, ASPC
+vol. 376, eds. R.A. Shaw, F. Hill, D.J. Bell, p.127
+Megeath, S.T., Gutermuth, R., Muzerolle, J. et al. 2012,
+AJ, 144:192
+Mitchell, G.F., Johnstone, D., Moriarty-Schieven, G., Fich,
+M., & Tothill, N.F.H. 2001, ApJ, 556, 215
+Moneti, A. & Reipurth, B. 1995, A&A, 301, 721
+Moro-Martin, A., Noriega-Crespo, A., B¨ohm, K.-H., &
+Raga, A.C. 1996, Rev. Mex. Astron. Astrofis., 32, 75
+Mundt, R., B¨uhrke, T., Fried, J.W. et al. 1984, A&A 140,
+17
+Mundt, R., Ray, T.P., & Raga, A.C. 1991, A&A, 252, 740
+Offner, S.S.R., Moe, M., Kratter, K.M. et al. 2022,
+Protostars and Planets VII, arXiv:2203.10066
+Ozawa, H., Nagase, F., Ueda, Y., Dotani, T., & Ishida, M.
+1999, ApJ, 523, L81
+Persson, S.E., Murphy, D.C., Krzeminski, W. et al. 1998,
+AJ, 116, 2475
+Pfalzner, S. 2003, ApJ, 592, 986
+Pfalzner, S. & Govind, A. 2021, ApJ, 921:90
+Phillips, R.R., Gibb, A.G., & Little, L.T. 2001, MNRAS
+326, 927
+Principe, D.A., Kastner, J.H., Grosso, N., Hamaguchi, K.,
+Richmond, M. et al. 2014, ApJS, 213, A4
+Raga, A.C., Esquivel, A., Vel´azquez, Canto, J., et al. 2009a,
+ApJ, 707, L6
+Raga, A.C., Cant´o, J., Rodr´ıguez-Gonz´alez, A., Esquivel,
+A. 2009b, A&A, 493, 115
+Raga, A.C. & Noriega-Crespo, A. 2013, RMxAA, 49, 363
+Raga, A.C., Reipurth, B., Velazquez, P.F. et al. 2016a, AJ,
+152:186
+Raga, A.C., Reipurth, B., A. Esquivel, Bally, J. 2016b, AJ,
+151:113
+Raghavan, D., McAlister, H.A., Henry, T.J. et al. 2010,
+ApJS, 190, 1
+Reipurth, B. 2000, AJ, 120, 3177
+Reipurth, B. & Bally, J. 1986, Nature, 320, 336
+Reipurth, B. & Bally, J. 2001, ARAA, 39, 403
+Reipurth, B. & Clarke, C.J. 2001, AJ, 122, 432
+Reipurth, B. & Heathcote, S. 1992, A&A, 257, 693
+Reipurth, B. & Mikkola, S. 2012, Nature, 492, 221
+Reipurth, B. & Mikkola, S. 2015, AJ, 149:A145
+
+The HH 24 Star Forming Complex
+57
+Reipurth, B. & Zinnecker, H. 1993, A&A,, 278, 81
+Reipurth, B., Yu, K.C., Rodr´ıguez, L.F. et al. 1999, A&A,
+352, L83
+Reipurth, B., Heathcote, S., Yu, K.C. et al. 2000, ApJ, 534,
+317
+Reipurth, B., Heathcote, S., Morse, J. et al. 2002a, AJ, 123,
+362
+Reipurth, B., Rodr´ıguez, L.F., Anglada, G., & Bally, J.
+2002b, AJ, 124, 1045
+Reipurth, B., Rodr´ıguez, L.F., Anglada, G., & Bally, J.
+2004, AJ, 127, 1736
+Reipurth, B., Mikkola, S., Connelley, M., & Valtonen, M.
+2010, ApJ, 725, L56
+Reipurth, B., Clarke, C.J., Boss, A.P. et al. 2014, in
+Protostars and Planets VI, eds. H. Beuther et al., Univ.
+Arizona Press, p. 267
+Riaz, B. & Bally, J. 2021, MNRAS, 504, 6049
+Rodr´ıguez, L.F., Anglada, G., Curiel, S. 1999, ApJS, 125,
+427)
+Rodr´ıguez, L.F., Galv´an-Madrid, R., Sanchez-Bermudez, J.
+et al. 2020, ApJ, 890:165
+Rousset, G., Lacombe, F., Puget, P. et al. 2003, SPIE 4839,
+140
+Sanchis, E., Testi, L., Natta, A., et al. 2021, A&A, 649, A19
+Scarrott, S.M., Gledhill, T.M., & Warren-Smith, R.F. 1987,
+MNRAS, 227, 1065
+Schmidt, G.D. & Miller, J.S. 1979, ApJ, 234, L191
+Schoettler, C., de Bruijne, J., Vaher, E, Parker, R.J. 2020,
+MNRAS, 495, 3104
+Simon, T. Andrews, S.M., Rayner, J.T., & Drake, S.A.
+2004, ApJ, 611, 940
+Skinner, C. J., et al. 1998, Proc. SPIE, 3354, 2
+Snell, R.L. & Edwards, S. 1982, ApJ, 259, 668
+Solf, J. 1987, A&A, 184, 322
+Spezzi, L., Petr-Gotzens, M.G., Alcal´a, J.M. et al. 2015,
+A&A, 581:A140
+Sadavoy, S.I. & Stahler, S.W. 2017, MNRAS 469, 3881
+Stahler, S.W. 2010, MNRAS, 402, 1758
+Stanke, T., Arce, H. G., Bally, J., et al. 2022, A&A, 658,
+A178
+Steinhausen, M., Olczak, C., Pfalzner, S. 2012, A&A, 538,
+A10
+Sterzik, M.F. & Durisen, R.H. 1998, A&A, 339, 95
+Strom, S.E., Grasdalen, G.L., & Strom, K.M. 1974a, ApJ,
+191, 111
+Strom, K.M., Strom, S.E., Kinman, T.D. 1974b, ApJ, 191,
+L93
+Strom, K.M., Strom, S.E., & Vrba, F.J. 1976, AJ, 81, 308
+Strom, K.M., Strom, S.E., Wolff, S.C., Morgan, J., & Wenz,
+M. 1986, ApJS, 62, 39
+Terquem, C., Eisl¨offel, J., Papaloizou, J.C.B., & Nelson,
+R.P. 1999, ApJ, 512, L131
+Testi, L., Palla, F., Prusti, T. et al. 1997, A&A, 320, 159
+Tobin, J.J., Looney, L.W., Li, Z.-Y. et al. 2016, Nature,
+538, 483
+Tobin, J.J., Looney, L.W., Li, Z.-Y. et al. 2018, ApJ, 867,
+43
+Tobin, J.J., Sheehan, P.D., Megeath, S.T., et al. 2020, ApJ,
+890, 130
+Tobin, J.J., Offner, S.S.R., Kratter, K.M. et al. 2022, ApJ,
+925:39
+Thompson, R. I., Rieke, M., Schneider, G., Hines, D. C., &
+Corbin, M. R. 1998, ApJ, 492, L95
+Umbreit, S., Spurzem, R., Henning, Th. et al. 2011, ApJ,
+743:106
+Valtonen, M. & Mikkola, S. 1991, Ann. Rev. Astron.
+Astrophys., 29, 9
+Ward-Thompson, D., Chini, R., Kr¨ugel, E., Andr´e, P.,
+Bontemps, S. 1995, MNRAS, 274, 1219
+Whitworth, A., Bate, M.R., Nordlund, A., Reipurth, B., &
+Zinnecker, H. 2007, in Protostars and Planets V, eds. B.
+Reipurth, D. Jewitt, & K. Keil, Univ. of Arizona Press,
+459
+Wijnen, T.P.G., Pols, O.R., Pelupessy, F.I., Portegies
+Zwart, S. 2017, A&A, 604, A91
+Wright, M. C. H., & Sault, R. J. 1993, ApJ, 402, 546
+Zealey, W.J., Williams, P.M., Sandell, G., Taylor, K.N.R.,
+& Ray, T.P. 1992, A&A, 262, 570
+Zucker, C., Speagle, J.S., Schafly, E.F. et al. 2019, ApJ,
+879:125
+
diff --git a/ZdAzT4oBgHgl3EQf2P7l/content/tmp_files/load_file.txt b/ZdAzT4oBgHgl3EQf2P7l/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..5541ae8802afaadf9de4f4bf4546d92f667518cd
--- /dev/null
+++ b/ZdAzT4oBgHgl3EQf2P7l/content/tmp_files/load_file.txt
@@ -0,0 +1,3974 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf,len=3973
+page_content='Draft version January 6, 2023 Typeset using LATEX twocolumn style in AASTeX631 The HH 24 Complex: Jets, Multiple Star Formation, and Orphaned Protostars Bo Reipurth,1 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Bally,2 Hsi-Wei Yen,3 H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Arce,4 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Rodr´ıguez,5 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Raga,6 T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Geballe,7 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Rao,8 F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Comer´on,9 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Mikkola,10 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Aspin,1 and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Walawender11 1Institute for Astronomy, University of Hawaii, 640 North A’Ohoku Place, Hilo, HI 96720, USA 2Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309, USA 3Academia Sinica Institute of Astronomy and Astrophysics, 11F of Astro-Math Bldg, 1, Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 4, Roosevelt Rd, Taipei 10617, Taiwan 4Department of Astronomy, Yale University, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Box 208101, New Haven, CT 06520-8101, USA 5Instituto de Radioastronom´ıa y Astrof´ısica, Universidad Nacional Aut´onoma de M´exico, Apdo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Postal 3-72 (Xangari), 58089 Morelia, Michoac´an, M´exico and Mesoamerican Center for Theoretical Physics, Universidad Aut´onoma de Chiapas, Carretera Emiliano Zapata km.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 4, Real del Bosque (Ter´an).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 29050 Tuxtla Guti´errez, Chiapas, M´exico 6Instituto de Ciencias Nucleares, Universidad Nacional Aut´onoma de M´exico, Ap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 70-543, 04510 D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', M´exico 7Gemini Observatory/NSF’s NOIRLab, 670 N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Aohoku Place, Hilo, HI 96720, USA 8Submillimeter Array, Academia Sinica Institute of Astronomy and Astrophysics, 645 N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' A’ohoku Place, Hilo, HI 96720, USA 9European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei M¨unchen, Germany 10University of Turku, Dept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' of Physics and Astronomy, Vesilinnantie 5, FIN-20014, Finland 11W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Keck Observatory, 65-1120 Mamalahoa Hwy, Kamuela, HI 96743, USA ABSTRACT The HH 24 complex harbors five collimated jets emanating from a small protostellar multiple system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We have carried out a multi-wavelength study of the jets, their driving sources, and the cloud core hosting the embedded stellar system, based on data from the HST, Gemini, Subaru, APO 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5m, VLA, and ALMA telescopes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The data show that the multiple system, SSV 63, contains at least 7 sources, ranging in mass from the hydrogen-burning limit to proto-Herbig Ae stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The stars are in an unstable non-hierarchical configuration, and one member, a borderline brown dwarf, is moving away from the protostellar system with 25 km s−1, after being ejected ∼5,800 yr ago as an orphaned protostar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Five of the embedded sources are surrounded by small, possibly truncated, disks resolved at 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 mm with ALMA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Proper motions and radial velocities imply jet speeds of 200-300 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The two main HH 24 jets, E and C, form a bipolar jet system which traces the innermost portions of parsec-scale chains of Herbig-Haro and H2 shocks with a total extent of at least 3 parsec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' H2CO and C18O observations show that the core has been churned and continuously fed by an infalling streamer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 13CO and 12CO trace compact, low-velocity, cavity walls carved by the jets and an ultra-compact molecular outflow from the most embedded object.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Chaotic N-body dynamics likely will eject several more of these objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The ejection of stars from their feeding zones sets their masses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Dynamical decay of non-hierarchical systems can thus be a major contributor to establishing the initial mass function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Keywords: Herbig-Haro objects (722) — Multiple stars (1081) — Young stellar objects (1834) — Cir- cumstellar disks (235) — Protostars (1302) — Herbig Ae/Be stars (723) — Star formation (1569) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' INTRODUCTION Evidence is mounting that stars rarely form in isola- tion as single objects, but rather as binaries or small multiple systems (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Duchˆene & Kraus 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Small multiple systems are produced through fragmentation of prestellar cores, as first studied by Hoyle (1953) and Larson (1972).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' In modern terms, the two principal pathways for fragmentation are turbulent fragmenta- tion, which tends to operate on larger scales (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2019), and disk fragmentation, which operates on small scales in massive protostellar disks (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='g, Kratter & Matzner 2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Most multiple systems form in non- hierarchical configurations, but soon undergo dynamical interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Over about a hundred crossing times such systems tend to rearrange into hierarchical configura- tions consisting of compact binaries and members that arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01813v1 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='SR] 4 Jan 2023 2 Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' either are ejected into a distant bound orbit, or escape (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Anosova 1986, Delgado-Donate et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Half of all such escapes occur during the embedded phase, leading to the ejection and exposure of orphaned proto- stars, some of which did not have time to gain enough mass to become hydrogen burning stars (Reipurth & Clarke 2001, Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This competition between accretion and ejection was shown by Bate & Bonnell (2005) to be the key driver in shaping the ini- tial mass function at all masses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The reconfiguring of a non-hierarchical triple system occurs after a close triple approach, when three bodies can exchange energy and momentum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' After an ejection the remaining binary has a high eccentricity, leading to disk-disk interactions during periastron passages, and a gradual inspiral of the binary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The periastron passages lead to disk disturbances and accretion events, with en- suing outflow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The stellar magnetohydrodynamic jet en- gines are thus force-fed, resulting in spectacular giant Herbig-Haro (HH) flows (Reipurth 2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Large-scale numerical simulations have offered insight into the formation of multiple systems and their dynam- ical interactions (Bate 2009, 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Such dynamical in- teractions can help to bind components into tighter bi- naries, but to produce the observed frequency of close bi- naries, dissipative interactions are needed, during which the presence of gas serves to transport angular momen- tum and dissipate energy in star-disk and disk-disk in- teractions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' While any non-hierarchical system will even- tually always evolve into a hierarchical configuration on dynamical grounds alone, the presence of gas plays an important role in the subsequent orbital evolution of the binary and its mass-ratio (Bate et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Evidently significant dynamical evolution is expected to occur during early stellar evolution, as borne out by observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Early optical surveys of T Tauri stars showed an excess of companions relative to field stars (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Reipurth & Zinnecker 1993, Leinert et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1993).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This was further demonstrated with near-infrared obser- vations of Class I protostars, which revealed not only an excess of companions, but also a bimodal distribution of the separation distribution function with a second peak at several thousand AU (Connelley et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2008a,b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This population of distant companions decreases for the more evolved Class I sources, suggesting that the com- panions dynamically evolve and become unbound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Most recently, ALMA and VLA observations of Class 0 and Class I sources have yielded insights into the high mul- tiplicity of the youngest protostars (Tobin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2016, 2018, 2022) and have confirmed the existence of the bi- modal binary separation distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Overview of the HH 24 Complex Jet PA Orient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Giant Bow-Shocksa Source C 333◦ Blue HH 20/21/37/70 Ea E 149◦ Red Ea A Red Ea/HOPS317 G 39◦ Blue NE J 311◦ Blueb HH 19/27 Wb L 38◦ HOPS317 X 143◦ S(?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=') B Blue Wa Note—a: Additional very distant bow shocks exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' b: De- duced from the blue-shift of HH 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' For reviews of multiple systems and their dynamical evolution, see Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2014) and Offner et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' In this paper we present a detailed study of the HH 24 jet complex and the compact multiple system that drives these jets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This is a complex region of star formation, in which a small multiple system has formed within a cloud core and through dynamical interactions has triggered disk disturbances that have lead to massive accretion events and ensuing outflow activity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This has resulted in the highest concentration of finely collimated HH jets known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' An overview of the region is shown in Figure 1 and some of the general properties of the outflows are given in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The paper is organized as follows: In Section 2 we present a summary of key results obtained in previous studies, and in Section 3 a description of the observa- tions obtained for this study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This is followed by an overview of the HH 24 complex in Section 4, and a sum- mary of the properties of the multiple system in Sec- tion 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Section 6 contains a discussion of the individ- ual jets and shocks, and Section 7 presents an analy- sis of the neighboring protostar HH 24 MMS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The dis- covery of a low-mass runaway borderline brown dwarf that was ejected 5,800 yr ago from the multiple system is discussed in Section 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' After that the star forma- tion efficiency is derived in Section 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Details of our ALMA observations are presented in Section 10 and Sec- tion 11, where the individual disks and the large-scale cloud structures, respectively, are studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Finally Sec- tion 12 and Section 13 contain a detailed discussion and a summary of our results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The HH 24 Star Forming Complex 3 Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Deep Hα+[Sii] image obtained at the Subaru 8m telescope shows the central part of L1630 with identifications of objects discussed in the text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' HH 24 is the cluster of jets emanating from the multiple system SSV 63, while HH 19, 20, 21, 27, 37, and 70 are distant bow shocks related to the HH 24 jets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' HH 22 is driven by an embedded source and HH 23 possibly by V1647 Ori.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' HH 25 and 26 are driven by embedded sources south of SSV 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The height of the figure corresponds to approximately 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 pc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Star formation occurs along a narrow ridge oriented N-S with a length of ∼1 pc and a total mass around 230 M⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Coordinates are equinox 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 02:00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 HH20 HH23 04:00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 HH 22A HH 21 HH 22 06:00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content="0 HH 70 HH37 HH19 V1647 Ori 061 HH' 08:00." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 0:10:00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 HH24 SSV 63 12:00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 SSV 61 HH25 14:00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 HH 27 HH 26 : 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 5:46:00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 45:50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='04 Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' PREVIOUS WORK HH 24 is located in the L1630 cloud (aka Orion B), in a dense core that is part of a chain of north-south oriented cores detected in both millimeter line emission and sub- millimeter continuum (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Gibb & Heaton 1993, Lis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1999, Mitchell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2001, Kirk et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2016a, Hsieh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The driving source of HH 24 was detected in a near-infrared survey by Strom et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1976).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This source, SSV 63, was later found to be a multiple proto- stellar system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We here assume HH 24 and the L1630 cloud to be at a distance of ∼400 pc (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Anthony- Twarog 1982), a distance supported by the more recent studies of Lombardi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2011) [398±12 pc], Kounkel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2017) [388±10 pc], and Zucker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2019) [423±21 pc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' For an overview of star formation in L1630, see the review by Gibb (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The HH 24 complex was discovered by Herbig & Kuhi (1963) in their search for Hα emission stars in L16301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Subsequently HH 24 has been the subject of numerous studies, a selection of which are listed here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Schmidt & Miller (1979) and Scarrott et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1987) used polarimet- ric observations to infer that the HH 24 nebulosity is a mixture of emission from shocks and reflected light from embedded sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' HH 24 has been imaged optically by Herbig (1974), Strom et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1974a), Jones et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1987) and Mundt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1991).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Two of the knots in HH 24 were detected in H2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='122 µm emission by Davis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Optical or ultraviolet spectroscopy of various components in HH 24 has been presented by Strom et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1974), Brugel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1981), Jones et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1987), Solf (1987), and B¨ohm et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1992).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Some of the HH 24 jets are associated with distant bow shocks, as noted by Jones et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1987) and Eisloeffel & Mundt (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' For the following detailed discussion of the HH 24 complex, it is important to have clear definitions of the nomenclature of the multitude of shocks in the region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Unfortunately, the existing knot designations were de- veloped over a number of years by many different re- searchers, and along the way a number of mistakes oc- curred, so that it is difficult to compare various studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' HH 24 was discovered by George Herbig, but besides the brief mention in Herbig & Kuhi (1964), he did not pro- vide further information until his HH catalog appeared, in which he identified four components A,B,C,D (Herbig 1974).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Simultaneously Strom et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1974a,b) labeled five knots A-E, but used E for knot D in Herbig’s no- 1 The first mention of HH 24 is in a letter from George Herbig to Jesse Greenstein dated August 9, 1952 in which Herbig specu- lates that the faint nebulous emission-line objects he found on his photographic plates of the HH 24 region might be similar to the recently discovered objects HH 1 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' tation, a knot that was later shown to be an Hα-strong reflection nebula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Schmidt & Miller (1979) adopted the Strom et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1974a,b) nomenclature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Solf (1987) added the label F, which simultaneously was labeled E by Jones et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1987), who also introduced more detailed desig- nations of knots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' In this paper we follow and extend the consistent designations by Herbig (1974), Jones et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1987), Mundt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1991), and Eisloeffel & Mundt (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' OBSERVATIONS 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' HST WFC3 The HH 24 complex was observed with HST under program GO-13485 (PI: Reipurth) in an Hα (F656N) fil- ter on UT 2014-03-10 with a total exposure time of 5578 sec, in a [Sii] (F673N) filter on UT 2014-02-26 for 5578 sec, in a [Feii] (F164N) filter on UT 2014-02-18 for two exposures of 3596 sec and 1798 sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Parallel observations of HH 19 were made with ACS in Hα on UT 2014-03- 10 for 5165 sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Two years later, on UT 2016-02-03, a second-epoch [Feii] image of HH 24 was obtained under program GO-14344 with an exposure time of 5395 sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Subaru SuprimeCam images The Subaru 8m telescope was used to observe HH 24 with SuprimeCam (field of view 34′ × 27′ and scale 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='′′20/pxl) on UT 2006-01-05 using a [Sii] filter (N-A- L671, FWHM 130 ˚A, transmission 88%) with 5×12 min dithered exposures;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' the sky was clear and seeing varied between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='51 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='70 arcsec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' On UT 2006-01-06 HH 24 was observed using an Hα filter (N-A-L659, FWHM 99 ˚A, transmission 88%) with 5×12 min dithered ex- posures through intermittent light cirrus and seeing be- tween 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='57 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='67 arcsec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The pixel scale was 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='20 arc- sec/pxl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Second-epoch observations with 5×6 min were similarly acquired on UT 2015-12-17 in a [Sii] filter in seeing of ∼0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9 arcsec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Gemini observations Several observing runs were carried out at the Gemini- North Frederick C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Gillett 8m telescope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' GMOS was used on 2010-03-13 and 2010-03-16 under program GN- 2010A-Q-10 to obtain g, r, i, Hα, and [Sii] images and multi-slit spectra of the SSV 63 region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' At the time of these observations GMOS had a 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5’×7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='4’ field of view with 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0727′′ pixels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Three exposures of 60 sec were ob- tained through the broadband filters and three 5 min exposures in the narrowband filters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The R400 grat- ing with a dispersion of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0673 nm/pxl was used for 6 exposures of 20 min using slitless spectroscopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' NIRI was used on 2009-12-26 and 2010-02-09 to obtain near- infrared images in the J, H, K’, H2, and [Feii] filters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The HH 24 Star Forming Complex 5 Eighteen 30 sec exposures were obtained in the two nar- rowband filters and in nearby continuum filters, 9 × 25 sec exposures were obtained in the J-filter and 9 × 10 sec exposures in H and K’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Near-infrared spectroscopy was obtained with GNIRS under program GN-2013B- Q-77 in cross-dispersed SXD mode using the 32 l/mm grating and a 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 arcsec slit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Source Wb was observed on 2014-03-19 for 2400 sec in 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='87′′ seeing, and Ea on 2014-03-20 for 1200 sec in 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='62′′ seeing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Subsequently near-infrared imaging of SSV 63 using NIRI and Gem- ini’s adaptive optics module ALTAIR with a laser guide star was performed on 2013-12-15 in J, H, K’ filters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Apache Point Observatory Radial velocities of various knots and features in the HH 24 field were measured using the ARCES echelle spectrograph on the APO 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 meter telescope on UT 2018-11-19 and on UT 2021-02-27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' ARCES captures the entire spectrum between 3200-10000 ˚A with a resolution (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 pixels) of about R∼32,000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The ARCES entrance aperture is a small slit 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6′′ by 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2′′ in extent on the sky.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' A one pixel interval near the Hα and red [Sii] doublet lines corresponds to a Doppler shift of ∼4 km s−1 per pixel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The ARCES spectrograph was also used to obtain spectra of the new knot in HH24 jet C on UT 2022-01- 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' A set of five 300 second exposures was combined for the final spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' All ARCES velocities reported here are referenced to the mean Hα radial velocity of the Orion Nebula in the vicinity of the Trapezium cluster which is assumed to have a heliocentric radial velocity of 21 km s−1, corre- sponding to Vlsr = +2 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This reference frame is within a few km s−1 of the radial velocity of the Orion B cloud in which HH 24 is embedded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The Orion Neb- ula is located within 5◦ of HH 24, making the relative correction between the observatory reference frame and heliocentric (or LSR) reference frame smaller than the errors in radial velocity determinations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The measure- ment errors in the spectral line profiles are dominated by the large observed line-widths and low signal-to-noise ratios and are estimated to be between 5 to 10 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' [Sii] images of the HH 24 outflow were obtained with a new [Sii] filter having a passband of 78 Angstroms and providing full illumination of the 8′ field of view of the ARCTIC CCD camera on UT 2021-12-01 with the APO 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 meter reflector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' A dithered set of three to six 300 second exposures were acquired at four different pointings to cover the entire HH 24 outflow complex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Near-infrared observations were obtained with the NICFPS camera on the APO 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 meter telescope on UT 2018-11-19, 2018-12-23, 2022-01-25, and 2022-01-27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The pixel scale of this instrument is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='273′′ per pixel with a field of view 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='58′ on a side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Dithered images with 300 second exposures were obtained in the 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='122 µm S(1) line of H2 using a narrow-band filter (FWHM=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='4% of the central wavelength) plus identical separate sky frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Atmospheric seeing produced 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2′′ FWHM stellar im- ages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' VLT An unpublished data set of images of SSV 63 in the Ks and L’ band obtained with NACO, the adaptive optics- assisted infrared imager and spectrograph at the Very Large Telescope (Lenzen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', 2003, Rousset et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', 2003), was retrieved from the ESO Science Archive Fa- cility together with its relevant calibration frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The data set consists of 33 individual frames through the Ks filter obtained on the night of 20/21 December 2007, with a total exposure time of 30 minutes, and 82 images through the L’ filter obtained on the night of 31 De- cember 2007 / 1 January 2008, with total exposure time of 41 minutes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The Ks- and L’-band images were flux calibrated using respectively the standard stars S252- D (Persson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1998) and S842-E (Leggett et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Data reduction was carried out using IRAF- based scripts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' ALMA The Atacama Large Millimeter Array (ALMA) was used to observe molecular line and dust thermal con- tinuum emission from the HH 24 region in the 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 mm region of the spectrum (ALMA Band 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The obser- vations, part of the Cycle 6 project 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01194 (PI: Reipurth), included one spectral configuration that al- lowed simultaneously observations of a 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='875 GHz-wide band of continuum emission, centered at 232.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6 GHz, and the following spectral lines: 12CO(2-1), 13CO(2-1), C18O(2-1), H2CO(30,3-20,2), and SiO(5-4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The (single) pointing of the ALMA 12 m array observations was cen- tered at 05:46:08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='35, -00:10:01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 (2000), which was cho- sen to be able to cover, well within the 25′′ Half-Power Beam Width (HPBW) of the primary beam at the ob- served frequency, the circumstellar environment of the previously known protostars in the HH 24 region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The goal of the observations was to study the link be- tween the small scale structure (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', disks), with sizes of about 50 to 100 AU, and the larger structures with scales of ∼1000 AU (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', circumstellar envelopes, out- flows).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' As such, a range of baselines was needed to be sensitive to this range of scales and therefore the obser- vations were done using two array configurations (named C43-3 and C43-6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The more compact configuration (C43-3) consisted of baselines ranging from about 15 to 500 m, while the more extended configuration (C43- 6) contained baselines of up to approximately 3070 m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 6 Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The HH 24 complex (top) and SSV 61 reflection nebula (bottom) as seen in a color mosaic from Gemini composed of g′ (blue), r′ (cyan), i′ (orange), Hα (red) and [Sii] (blue).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Color figure prepared by Travis Rector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The figure is ∼4×5 arcminutes, corresponding to about 1/2 pc wide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' North is up and east is left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 60 arcsecThe HH 24 Star Forming Complex 7 The angular resolution and maximum recoverable scale of the compact configuration was about 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7′′ and 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5′′, while for the extended configuration these were 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='12′′ and 2′′, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The data from the C43-3 configu- ration were taken with three execution blocks, obtained in December 2018 and April 2019, while the three execu- tion blocks with the C43-6 configuration were observed in September 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The Common Astronomy Software Application Pack- age (CASA, McMullin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2007) was used to reduce the data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Version 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='4 of the CASA pipeline was used to calibrate the raw visibility data taken in configura- tion C43-3, while version 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6 was used for data taken in configuration C43-6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We combined the calibrated data from both configurations to study the dust contin- uum and C18O emission at small (disk) scales and used CASA version 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7 for self-calibration of the continuum data and imaging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We iteratively performed phase-only self-calibration with a minimum solution interval of 10 s, and then applied the solution to both the continuum and C18O data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' These were subsequently imaged using the tclean task in CASA, with the multi-scale deconvolver with scales of 0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='′′3, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='′′7, and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='′′1 for the continuum im- age and 0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='′′5, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='′′1, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='′′3, and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='′′2 for the C18O line map (which approximately correspond to 0, 2, 5, and 10–20 times the beam sizes), and using Briggs weighting with robust parameters of −1 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' In order to study the gas structure and kinematics at larger scales (∼1000 AU) we used the 12CO, 13CO, C18O and H2CO line maps obtained with the C43-3 configu- ration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' These were all imaged with version 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='4 of the CASA pipeline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Imaging of the visibility data was done using the tclean task in CASA with a robust parame- ter of -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The continuum was subtracted from all the molecular line maps using the CASA task uvcontsub.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Primary beam correction was applied to all maps, ex- cept for the high-resolution C18O map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The synthesized beam and rms noise of the resulting images are shown in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' VLA The observations were part of our VLA project 19A- 012, made with the NSF’s Karl G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Jansky Very Large Array (VLA) of NRAO2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The observations were ob- tained in the A configuration, those at 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 GHz (Q band) on UT 2019-8-19 and those at 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 GHz (X band) 2 The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agree- ment by Associated Universities, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Annotated Hα–[Sii] image obtained at the Sub- aru telescope showing the individual jets from SSV 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The labels preserve and expand existing nomenclature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The mul- tiple system is shown as red circles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' White is [Sii]-strong, black is Hα-strong.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' North is up and east is left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' on UT 2019-8-24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' These are the deepest observations of the HH 24 region obtained to date in those bands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The flux and bandpass calibrator was J0542+4951 (=3C147) and the phase calibrator was J0552+0313.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The digital correlator of the VLA was configured in spectral win- dows of 128 MHz width, each divided in 64 channels of spectral resolution of 2 MHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The total bandwidths were 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 and 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 GHz for the X band and Q band ob- servations, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The data were processed and analyzed in the standard manner using the CASA pack- age of NRAO and the pipeline provided for VLA3 ob- servations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Maps were made using a robust weighting (Briggs 1995) of 2 in order to optimize the sensitivity at the expense of losing some angular resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' THE HH 24 JET COMPLEX In the following we study in detail the complex struc- ture of the HH 24 jet group, based on Gemini, Subaru, and HST images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We discuss all the individual jets in the HH 24 complex based on new ultradeep high spatial resolution groundbased images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' These reveal numerous new previously unseen or unresolved knots, which allow 3 https://science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='nrao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='edu/facilities/vla/data-processing/pipeline G C NE Wb Wa Ea knot A E knot B X8 Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' HST multi-filter image with the protostellar components of the SSV 63 multiple system superposed (red circles).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The red circle at the bottom of the figure marks the location of the embedded source HOPS 317, which illuminates an outflow cavity and drives the HH 24L flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The filters used are: F814W (I-band) as blue, F814W+F160W as green, F160W (H-band) as orange, and F164N ([Feii]) as red.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This mixture of narrowband and wideband images render jets, clouds, and outflow cavities particularly well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Color image courtesy Judy Schmidt/NASA/ESA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The F814W image is from HST programs 9160 (PI D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Padgett) and the F160W image from program 11548 (PI S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Megeath).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The [Feii] image is from this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 20"The HH 24 Star Forming Complex 9 Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' ALMA Observations Map Configurationsa Beam Size Beam P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' ∆V b rmsc [arcsec] [deg E of N] [km s-1] [mJy beam-1] Continuum C43-3 + C43-6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='13 × 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='08 87 — 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='038 C18O(2-1) C43-3 + C43-6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='24 × 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='21 70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='4 12CO(2-1) C43-3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='78 × 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='52 86 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='16 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 13CO(2-1) C43-3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='81 × 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='54 87 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='08 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 C18O(2-1) C43-3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='82 × 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='54 87 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='08 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 H2CO(30,3-20,2) C43-3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='83 × 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='53 87 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='17 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8 Note— aALMA configurations used to make map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' bVelocity resolution of molecular line maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' crms per velocity channel at the quoted velocity resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Triptych of WFC3 HST images showing the HH 24 jet E and jet C in the Hα 6563 ˚A, [Sii] 6717/31 ˚A, and [Feii] 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='644 ˚A lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' North is up and east is left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Ha [S] [Fell]10 Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (top) H2 HST image of the SSV 63 multiple sys- tem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The deeply embedded mid-infrared source Eb is not de- tectable at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 µm, but is marked with an asterisk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Archival image obtained with NICMOS (Program 11205, PI Muze- rolle).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (bottom) A color composite of an HST [Feii] image, an HST H-band image (Program 11548, PI Megeath), and an ALMA 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3mm continuum image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The circumstellar disks are clearly resolved, and it is seen that the near-infrared source Wb is not a star, but the compact NW lobe of a bipolar reflection nebula on either side of a silhouette disk (marked with white lines).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' North is up and east is left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Spitzer 8 µm image of the SSV 63 multiple sys- tem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The source Eb is clearly resolved from Ea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The figure is about 40 arcsec across.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' North is up and east is left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' a better understanding of the multiple flow structures in the HH 24 complex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We introduce a new flow, HH 24X, and extend current knot nomenclature for the principal jets C and E, see Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The environment of HH 24 in a ∼6′×10′ field is shown in Figure 1, which is the sum of deep (1 hour) expo- sures in Hα and [Sii] obtained with SuprimeCam at the Subaru 8m telescope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' HH 24 is located in a highly Figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' An H2 image obtained at the Gemini-N telescope showing the faint source S just south of the E and W binaries together with a weak detection of the embedded source NE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Together with the ALMA-detected source N, SSV 63 thus constitutes at least a septuple stellar system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' A complex of H2 knots is seen between knots Wa and Ea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' North is up and east is left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' structured N-S oriented cloud filament studied at mm- wavelengths by, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Lada et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1991), and in the sub- mm by, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Kirk et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 2 shows more detail of the jets in an optical color-figure based on the broadband and narrowband Gemini images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The figure shows how the group of jets that constitute HH 24 is emanating from a dense cloud core and in the process is tearing apart the cloud environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 3 shows a difference image between Hα and [Sii] displayed such that Hα dominant regions are black and [Sii]-dominant regions are white.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The figure is annotated with desig- nations for the individual jets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We have also obtained HST images using WFC3 with Hα, [Sii], and [Feii] filters, see Section 3 for full details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 4 shows a color image based on our narrow-band filter HST images and archival broadband HST images, which provides a more detailed overview of the region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The individual narrow-band images of the E- and C-jets are shown in Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' These images do not have the same field-of-view as the Subaru and Gemini images, but offer higher resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' In Section 6 we discuss the properties of the HH 24 jet complex based on these and other data sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' THE SSV 63 MULTIPLE SYSTEM In this section we consider the multiple system that drives the cluster of jets discussed above, and we at- tempt to associate specific jets with individual sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' SSV 63 Wb Eb Wa Ea 5"SSV63 8 micron NE Eb Wa EaSSV 63 NE Wb Wa Ea 5" S 2000AUThe HH 24 Star Forming Complex 11 Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' GNIRS spectra of SSV63 Ea and Wb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Source Ea shows a heavily reddened continuum with a few emission lines and the CO-bands in emission and no absorption fea- tures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' In contrast, source Wb shows little reddening but a forest of molecular and atomic hydrogen lines, together with [Feii], indicative of shocked outflow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Spectral regions with poor atmospheric transmission are omitted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Strom et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1976) detected a near-infrared source as- sociated with HH 24 in a survey of L1630.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' It was subse- quently detected in the 6 cm radio continuum (Bieging et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1984) and later at mid- and far-infrared wave- lengths as IRAS 05436-0011 (Cohen & Schwartz 1987) and with Herschel as HOPS 387 (Furlan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' SSV 63 was resolved as a binary source with ∼10′′ sep- aration by Zealey et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1992) and Moneti & Reipurth (1995) and in the radio continuum by Bontemps et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Subsequently, Davis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1997) found that SSV 63W is itself a binary with a separation we mea- sure as 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='95′′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2002) found yet another source, SSV 63NE, further to the north-east at 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6 cm, which was detected at mid-infrared wavelengths by Hue- lamo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' In the same study, Huelamo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' found a new source at mid-infrared wavelengths, labeled Eb, located about 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6′′ NNW of source E, henceforth Ea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Source Eb was also detected by Tobin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2020) in their large-scale sub-mm and radio continuum survey of Orion protostars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 6 shows an archival H2 image obtained with NICMOS on HST (PI Muzerolle, Program 11205) which demonstrates that SSV 63 is a non-hierarchical quadru- ple system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Such systems are unstable and will eventu- ally break apart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This is further discussed in Section 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Source Eb appears prominently in a Spitzer 8 µm image where it is well separated from Ea (Figure 7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Properties of these and other sources are listed in Ta- ble 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Additional photometry with adaptive optics is listed in Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Near-IR Imaging and Spectroscopy None of the three sources Wa, Wb, and Ea are visible at optical wavelengths, and at near-infrared wavelengths the dominant source is Wa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' At longer wavelengths, the Ea and Eb sources are dominant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' From their energy distributions, all the five main components of SSV 63 are likely Class I sources as determined by Furlan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2016), who used near-, mid-, and far-infrared data to study the sources (under the designations HOPS 386 and HOPS 387).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We note that Eb is highly obscured and detectable only at mid-infrared and longer wavelengths, so it is likely a borderline Class 0 source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' One additional source is found in the region on a deep K-band image from the Gemini-N 8m telescope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Fig- ure 8 shows this image, with the new very faint source, marked S, identified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The source is midway between and slightly to the south of the prominent Wa and Ea sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' It is faint, with K∼16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2, and it is not detected at shorter wavelengths, most likely due to extinction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' In the L’-band it is much brighter, L∼13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7, see Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Since the source is not seen in Spitzer images it is un- likely to be as luminous as the other sources, nor to be a background red giant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Given its location towards a dense cloud core, we assume that the source is a deeply embedded very low-mass star or brown dwarf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 9 shows the Gemini/GNIRS spectra of SSV 63 Ea and Wb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Source Ea shows a steeply rising continuum devoid of absorption lines with the CO bands as well as the Bracket hydrogen series in emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' In contrast, source Wb is much less reddened but sufficiently veiled to wash out absorption features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Its spectrum displays prominently a forest of molecular and atomic lines, as well as lines of [Feii], indicative of a shocked outflow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' A planned spectrum of Wa was weathered out, but Simon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2004) have presented a K-band spectrum of this 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='002 [Fell] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0018 H2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0016 Br-delta [Fell] Br-gamma 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0014 Flux Pa-beta 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0012 Relative F 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0008 H2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0006 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0004 SSV-63Wb 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0002 10000 12000 14000 16000 18000 20000 22000 24000 Wavelength0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='018 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='016 CO 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='014 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='012 Flux Relative F 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01 Br-gamma 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='008 Br-delta 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='006 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='004 SSV-63 Ea Br 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='002 0 16000 18000 20000 22000 24000 Wavelenath12 Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Coordinates and 2MASS-, SPITZER-, and WISE-Photometry of HH 24 Sources and Hα emission stars Object α(2000)a δ(2000)a J H K W1 I1 I2 W2 I3 I4 W3 W4 M1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='65 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8 8 12 22 24 IRS 1b 05:46:07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='77 –00:09:38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='12 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='60 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='59 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='09 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='76 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='81 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='33 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='47 – 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='07 – HH24-Wb 05:46:07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='84 –00:09:59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 HH24-Wa 05:46:07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='86 –00:10:01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='20 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='46 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='94 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='32 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='93 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='60 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='52 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='63 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='62 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='73 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='03 HH24-S 05:46:08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='16 –00:10:05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 HH24-Eb 05:46:08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='40 –00:10:00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6 HH24-Ea 05:46:08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='49 –00:10:03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='86 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='16 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='16 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='40 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='10 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='69 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='49 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='57 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='39 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='86 –0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='00 – .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='12 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01 HOPS 317 05:46:08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='53 –00:10:39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='79 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='79 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='13 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='80 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='31 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='65 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='20 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='39 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='31 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='19 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='57 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='59 – – .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='02 HH24-Nc 05:46:08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='46 –00:09:54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8 HH24-NE 05:46:08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='92 –00:09:56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='63 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='33 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='87 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='97 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='07 HH24-Hα1 05:46:11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='34 –00:07:55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='61 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='86 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='15 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='85 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='10 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='72 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='83 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='06 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='28 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='14 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='06 HH24-Hα2 05:46:12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='27 –00:08:07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='63 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='94 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='51 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='70 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='72 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='32 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='07 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='91 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='10 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='06 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='83 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='21 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='03 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='02 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='07 HH24-Hα3 05:46:12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='99 –00:08:14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='55 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='63 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='98 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='45 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='32 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='59 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='63 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='73 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='90 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='83 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='35 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='32 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='11 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='11 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='02 HH24-Hα4 05:46:13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='17 –00:09:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='34 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='39 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='34 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='09 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='74 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='36 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='81 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='10 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='09 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='06 – – IRS 2 05:46:13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='47 –00:08:56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='68 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='95 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='54 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='25 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='71 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='04 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='94 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='55 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='53 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='49 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='00 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='72 – .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='15 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='02 HH24-Hα5 05:46:13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='58 –00:10:34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='66 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='08 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='69 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='09 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='88 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='38 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='86 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='13 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='20 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='23 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='07 – – Note— a Coordinates for HH24-Ea, -Wa, -NE, and MMS-VLA1 are 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6 cm VLA astrometry from Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2002), for HH24-N from ALMA (this paper), for MMS-HOPS317 from 2MASS, for IRS 1 from WISE, for IRS 2 from Spitzer I1-image, for SSV63-Eb from Spitzer I4-image, and for the rest they are from 2MASS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The Spitzer photometry is from Megeath et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Note that a few sources that are close to brighter sources or surrounded by bright reflection nebulae can be seen in Spitzer images, but meaningful photometry cannot be extracted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' b IRS 2 is not in the 2MASS catalog, even though it is optically visible, presumably due to confusion from its proximity to the knots in the C-jet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' c HH24-N is a submm source only detected by ALMA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' VLT Photometry of SSV 63 Components Star Ks L’ Wb >16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='34±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='04 Wa 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='79±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='03 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='64±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='03 Eb >16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='19±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='03 Ea 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='70±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='03 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='32±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='03 S 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='16±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='22 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='67±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='06 NE >16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='21±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='03 Note— These adaptive optics data from the ESO archive were obtained with NACO at the ESO VLT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' source which shows a red continuum with a prominent Brγ emission line and some weaker H2 lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Spitzer Imaging Spitzer observed the L1630 cloud and Megeath et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2012) compiled a catalog of all young stellar objects in the region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' SSV 63 Wa, Ea, and NE are detected in all bands, whereas Wb is only weakly seen at 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6 µm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' As mentioned earlier, the Spitzer images reveal a new source, SSV 63 Eb, located just 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8 arcsec (∼1100 AU) NNW of what is now labeled Ea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' At 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6 µm, Eb is seen as an extension to Ea, increasing in brightness at longer wavelengths, and at 8 µm it is nearly as bright as Ea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' At 24 µm the pair is blended, but it appears that Eb has become the dominant source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' VLA Observations SSV 63 was detected in the 6 cm radio continuum by Bieging et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1984) and at 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6 cm by Bontemps The HH 24 Star Forming Complex 13 Figure 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' VLA X-band maps of the 5 main sources of SSV 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' A possible companion to Wb is seen, as well as filamentary structure linked to Wa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The Ea source shows a radio jet along the axis of the E/C jet pair, and an orthogonal stubby bipolar structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Positions and flux densities are given in Table 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' North is up and east is left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1995), who resolved the SSV 63 E-W binary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2002) carried out a 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6 cm study in the A-configuration which detected a new source, labeled SSV 63 NE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Most recently, Tobin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2020) observed the SSV 63 region as part of the large VANDAM proto- stellar survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='4 We have carried out a deep high-resolution study of SSV 63 with the JVLA in the X-band (∼3 cm, see Sec- tion 2 for details of the observations).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The five dom- inant sources in the SSV 63 multiple system, Ea, Eb, Wa, Wb, and NE, are detected, and Table 5 lists the VLA coordinates and total flux density for each YSO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Source Ea is by far the brightest in the radio contin- uum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Extended structure is seen around the sources, see Figure 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Noteworthy is what appears to be a faint companion to Wb at a separation of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6 arcsec and a position angle of 43◦ (α2000 = 5:46:07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='866, δ2000 = – 00:09:59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='18).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' However, more observations are needed to confirm its stellar nature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Source Wa exhibits what appears to be an almost 2 arcsec long wiggling outflow towards the NNE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Alternatively the extended emission may be thermal emission from a ridge of dust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Source Ea displays a prominent bipolar radio continuum jet along the axis of jet E, with evidence for another weaker out- flow perpendicular to the first, suggesting that source Ea is a close binary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' A similar quadrupolar structure is seen around the prominent jet source HH 111 VLA-1 (Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' There is also a weak extension from Source NE towards the HH 24 G flow, although it should be noted that the source extension in that direc- tion almost coincides with the direction of the slightly elongated beam profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Perhaps the more surprising result is that source Eb, which is so prominent in the mid-infrared, is the weakest of the sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' ALMA Observations We have observed the SSV 63 multiple system with ALMA in the 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 mm continuum, see Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The sources Ea, Eb, Wa, Wb, and NE were all detected, and additionally a new source, here labeled N, was detected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Source S discussed in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 was not detected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The ALMA observations of these sources are discussed in detail in Section 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' X-ray Observations 4 Tobin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2020) use the following nomenclature for the 5 main sources in SSV 63: Ea = HOPS 386A, Eb = HOPS 386B, NE = HOPS 386C, Wb = HOPS 387A, Wa = HOPS 387B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Wb Wa Eb Ea 0 0 NE 014 Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Table 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Parameters of the Radio Sources in the SSV 63 Region X Banda Q bandb Spectral Source α(2000)c δ(2000)c S(µJy)d α(2000)c δ(2000)c S(µJy)d Index Wb 07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='s836 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='s001 09′ 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='′′59 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='′′02 51±6 07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='s837 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='s001 09′ 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='′′60 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='′′02 1578±60 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 Wa 07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='s855 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='s001 10′ 01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='′′29 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='′′03 119±11 07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='s855 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='s001 10′ 01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='′′30 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='′′01 376±60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 Ea 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='s485 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='s001 10′ 03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='′′04 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='′′01 203±9 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='s485 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='s001 10′ 03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='′′04 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='′′01 1181±90 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 Eb 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='s426 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='s001 10′ 00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='′′54 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='′′02 15±2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' ≤50 ≤0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8 NE 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='s922 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='s001 09′ 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='′′12 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='′′01 83±6 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='s922 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='s001 09′ 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='′′11 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='′′02 315±80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2 HH 24 MMS 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='s380 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='s004 10′ 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='′′71 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='′′05 141±15 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='s381 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='s002 10′ 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='′′70 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='′′02 10750±120 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 a 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 GHz b 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 GHz c α(2000) = 05h 46m;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' δ(2000) = −00◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' d Total flux density in µJy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' SSV 63 has been observed several times at X-ray wave- lengths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Ozawa et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1999) obtained a 30 ks exposure with ASCA, but were not able to fully resolve SSV 63 from the bright X-ray source SSV 61 (HBC 502) to the south (see Figure 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Simon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2004) used Chandra to resolve SSV 63 into Ea, Wa, and NE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The companion Wb was not detected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' All three components have hard X-ray spectral indices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Spectral modeling of the bright- est X-ray source, Wa, suggested a visible extinction of roughly 48 mag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' However, they found that the depth of the 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='08 µm ice band indicated only 10-20 mag of extinction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Principe et al (2014) did a very deep X-ray study of the L1630 region and also detected these three sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' In none of these X-ray studies was HH 24 MMS detected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Reflection Nebulae The HH 24 complex contains several bright reflection nebulae.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The early polarization studies by Strom et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1974b), Schmidt & Miller (1979) and Scarrott et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1987) demonstrated that the source of illumination is associated with SSV 63, but the angular resolution was too low to identify any specific source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The principal reflection nebulosity, labeled knot D by Herbig (1974), is seen towards the base of the G-jet, see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' It is likely, at least in part, to originate from the NE source, which is obscured by a dense core of gas and dust (Figure 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This is corroborated by comparing the optical Hα and [Sii] images with an infrared image, see Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' These reflection nebulae are variable, as can be seen when comparing images from the two epochs of HST observations (Figure 11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Such variability of reflection nebulosity around a young star was first seen by Hubble (1917) and Knox-Shaw (1917) and can be caused by light escaping from a partly embedded source (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Reipurth & Bally 1986, Dahm & Hillenbrand 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Such varia- tions are shadowing effects from material moving close to the illuminating star (Graham & Phillips 1987).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Ad- ditional compact reflection nebulae are located around the sources Ea/b and Wa/b (Figure 8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Association of Jets and Sources As discussed above, there are at least five sources in the SSV 63 multiple system, and together with source S and the additional companions suggested by the VLA observations as well as yet another component (source N) detected by ALMA (see Section 10), the sys- tem contains at least 7 components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We here attempt to sort out the connection between the multiple jets and the individual sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The most eye-catching of the many jets in HH 24 is the E/C pair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Jet E is evidently launched by source Ea, as clearly seen in the HST and VLA images (Figures 4 and 10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Jet C lies within just a few degrees of a line through jet E, and it is blueshifted whereas jet E is red- shifted, and hence it would be reasonable to assume that they form one bipolar pair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' However, the two jets have rather different morphologies, with jet E being perfectly collimated whereas jet C has an irregular and wobbling appearance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Also, with the discovery of the embedded source Eb on the line connecting jets E and C, there is a potential different source to drive jet C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' However, our ALMA observations (Section 11) show that there is almost no high-velocity emission associated with Eb, and the little there is forms a stubby bipolar outflow along an axis inclined by roughly 20◦ to the axis of jet E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Moreover, the southeastern lobe of this microflow is blueshifted and the northwestern is redshifted, oppo- site to that of jets E and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We conclude that source Eb The HH 24 Star Forming Complex 15 Figure 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Difference between the 2014 (black) and 2016 (white) HST [Feii] images, showing the motion of the jet knots, seen especially clearly in the E and C jets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Note the ∼5◦ change in position angle of the southeastern portion of the E-jet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Substantial variability in the reflection nebulae appears as black and white pairs of nebulosity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Three paral- lel line-segments running from upper left to lower right are artifacts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' North is up and east is left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The figure is about 55′′ wide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' is not related to the C-jet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This leaves open the question of why the E and C jets have such different morpholo- gies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' One possibility is that the C jet is forcing its way through the dense core in which the two sources Ea and Eb have formed, and through internal deflections in the core is losing an initial high collimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Jet G has an unusual structure, as discussed in Sec- tion 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Despite its morphology it does have a well de- fined axis, and SSV63 NE lies precisely along this axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Our VLA observations show that the source is elongated along this axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Jet J consists of a series of [Sii]-dominated knots lo- cated on a very well defined line that passes directly through the Wb source, which is likely the driving source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This alignment shows that jet J is not driven by the nearby bright source Wa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' VLA observations sug- Figure 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Jet J in a [Sii] image taken with HST and WFC3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The jet emanates from the source Wb which is deeply embedded and only detected at mm and cm wave- lengths, the object seen at optical and infrared light is a combination of shocks and reflected light.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The source drives a very faint but highly collimated jet towards the NW and pointing to the large HH 19 bow shock.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The SE lobe is bent slightly southwards, and points to the bright HH 27 bow shock.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The location of the embedded sources Wb and Wa are marked with red lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' North is up and east is left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' gest that Wb may be a binary with 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6′′ separation, and either of the two sources could be driving the jet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' There is a bit of emission just to the SE of Wb, the rest of the jet is only seen in the NW lobe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' HH 19 is a distant bow shock driven by source Wb (Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 12 shows the inner region of jet J around the driving source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The precise location of the source de- rived from ALMA data reveals that the optical knot is not the driving source, but a compact reflection nebula mixed with shocked emission (see also Figure 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Jet X is an inconspicuous slightly wobbly chain of faint [Sii]-dominant knots (Figure 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' It points directly away from the very faint source S, which is likely a brown dwarf seen through significant extinction (see Sec- tion 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' An increasing number of outflows have been found from very young brown dwarfs, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Riaz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2017), Riaz & Bally (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Jet L is not driven by any of the sources in the SSV 63 multiple system, but by the nearby source HOPS 317 or by the embedded Class 0 source HH 24 MMS further to the south.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This is discussed in detail in Section 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' In summary, the SSV 63 multiple system is found to consist of at least 7 sources: Ea, Eb, Wa, Wb, NE, S, and N within an ellipse of roughly 10′′× 20′′(4000 AU × 8000 AU).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Additionally the VLA observations suggest that Ea is an unresolved binary driving a quadrupolar HH24 J jet Wb Wa 5" HH24 B16 Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' jet, and Wb appears to have a faint companion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' These sources are likely Class I sources, but the lack of near- infrared emission and X-ray emission from Eb and Wb suggest that they could be Class 0 sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' However, blending at longer wavelengths precludes a more precise classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The very low luminosity of sources S and N suggest that they may be very low-mass stars or brown dwarfs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' INDIVIDUAL JETS AND SHOCKS 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' HH 24 Jet E As is evident in Figure 4, jet E is the most promi- nent of the multiple jets in the HH 24 complex, and is remarkable for its highly collimated appearance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' It is very weak in Hα and strong in [Sii], indicating a series of very weak shocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The near-infrared [Feii] and H2 images at the Gemini-N telescope reveal that jet E is very bright in [Feii].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' In contrast, jet E is not emitting in H2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Structure and Excitation The perfect collimation of jet E is seen well in the new HST images, and is particularly evident in the [Feii] image in Figure 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' However, beyond the large shock A, the jet slightly shifts course towards the southeast, as if it was deflected by an angle of ∼5◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The nature of shock A is further discussed in Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 5 shows that the E-jet has a different appear- ance in the three filters transmitting Hα, [Sii], and [Feii].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Since Hα and [Sii] have similar wavelengths, they are affected similarly by extinction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Hence the ratio between the two relates to intrinsic properties of the shocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Hα is much weaker, and it follows that jet E is a very low-excitation flow, and hence has low-velocity shocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' In contrast, the [Feii]/[Sii] ratio is heavily af- fected by extinction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Because the [Feii] 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='64 µm and [Sii] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='67 µm lines have similar energies of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8 eV above ground, and Fei and Si atoms have comparable ionization potentials of 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='87 and 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='36 eV, respectively, it follows that the intensity ratio of the two transitions is a good indicator of extinction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Whereas jet E can be traced all the way to the source in [Feii], the first knot that is (barely) visible in the [Sii] image is E6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' In projection this is 1000 AU from source Ea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' But there is still some extinction out to a projected distance of about 3000 AU from Ea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' From the bright knot E13 and outwards, the [Feii]/[Sii] ratio is essentially constant, in- dicating that the jet has broken out of the cloud core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This situation is very similar to the case of the HH 1 jet, which undergoes two abrupt steps in extinction at 1400 and 3000 AU (Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We discuss the Figure 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Structure of the E jet, based on the HST [Feii] image in two cuts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 5 arcsec corresponds to 2000 AU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The panel shows jet E emanating from the Ea source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Knot A is the large bright knot at the bottom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Individual knots in the E jet are numbered, see text for details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1 20" 5" A m SSV 63 忆记 45 2 456789The HH 24 Star Forming Complex 17 Figure 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Proper motions based on two epochs of HST images superposed on an Hα HST image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The 300 km s−1 velocity vector is about 11′′ long and shows the motion in about 75 yr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' cloud core in more detail in Section 11, and interpret the [Feii]/[Sii] ratio in Section 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Proper Motions and Radial Velocities Our two HST images of the HH 24 complex in the [Feii] 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='644 µm line are separated by 744 days.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' As is evident in Figure 11 the motion of the jets is readily visible, allowing us to measure the proper motions of the shocked outflows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We have used a code that convolves the images with wavelet functions of chosen width, see Raga et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2016b) for details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Jet E shows pronounced motion, as illustrated in Figure 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The slight deviations of some vectors from the well defined direction of the jet are likely due to slight changes in the structure of the knots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Especially near the source, such deviations can have significant impact on the angles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The mean tangential velocity of the knots between the source and HH 24A is about 250 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This is comparable to other HH jets, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', the HH 1 jet has a proper motion of ∼280 km s−1 (Bally et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2002) and the HH 34 jet ∼190 km s−1 (Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2002a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' In our medium-resolution spectroscopy of jet E with the Apache Point 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5m telescope, the [Sii] 6717/6731 lines are the brightest and have heliocentric velocities from about +170 to 200 km s−1 with a peak around +170 to 180 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' If the bulk radial motion is Figure 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (top) A tracing of the HH 24E-jet from the [Feii] HST image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Knots are identified with the nomenclature de- fined in Figure 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (bottom) The FWHM of the individual knots of the E-jet within the first 20 arcsec (8000 AU) of the source were calculated by subtracting in quadrature the point-spread function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' about +175 km s−1, and we adopt a proper motion of 250 km s−1, then it follows that jet E moves away from the observer at an angle of roughly 35◦ to the plane of the sky with a total space velocity of ∼300 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Ejection Variability The [Feii] emission along the HH 24E jet is divided into three main groups of peaks: one at distances x = 2′′ → 5′′, the second 5′′ → 10′′ and the third 10′′ → 15′′ from the outflow source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 13 provides a detailed view of the jet, with individual knots numbered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Selecting the points of highest intensity within each of the three groups, we obtain a mean separation between the groups of knots < ∆x >1= 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7′′ ± 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6′′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Together with a mean proper motion velocity vpm = 250 km s−1, this gives a timescale τ1 =< ∆x >1 /vpm = (33±16) yr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Similarly, if we take all of the intensity peaks in the top frame of Figure 13, we obtain a mean knot separation < ∆x >2= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='93′′ ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='36′′, which for vpm = 250 km s−1 gives a timescale τ2 = (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8) yr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Conceivably, τ1 and τ2 could correspond to two modes of a quasi-periodic, time-dependent ejection variability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 300 km s-15 20 15 1018 Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Also, the ejections could be non-periodic with a char- acteristic timescale of ∼ 7 yr (corresponding to the timescale deduced including the fainter intensity peaks along the jet, see above), and with the brighter knots corresponding to mergers of the fainter knots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' There is at least partial evidence that such knot mergers occur in the HH 34 jet (see Raga & Noriega-Crespo 2013), for which more detailed observations have been made.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Jet Expansion It has been found in several well collimated HH jets that the knots widen as they move away from the source, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', the HH 1 and HH 34 jets (Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2000, 2002a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' It is clear from Figure 13 that this is also the case for the HH 24E jet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The knots are well resolved in the HST images, and Figure 15 shows a gradual expan- sion of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7 arcsec in total width along the first 20 arc- sec until it enters the complex region around the bright knot A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This corresponds to a full opening angle of the jet of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6◦, which is comparable to the opening angles measured for other jets (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Erkal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' A jet velocity of 300 km s−1 implies that a half-angle of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3◦ corresponds to knots spreading orthogonally to the jet axis with a velocity of 7 km s−1, comparable to the sound speed expected in the post-shock cooling layers where [Sii] emission originates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' If the plasma is fully ionized (µ ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6), the temperature of this region is about 3,500 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' For mostly neutral gas (µ ≈ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3) the temperature is ∼8000 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The HH 24A Shock The two jets HH 24E and C are located in the interior of a pair of low-extinction cavities, north and south of the SSV 63 core, that are rendered visible in the near- infrared by scattered light (Figure 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' These cavities may have been excavated by the long-term action of the SSV 63 jets and outflows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Two pillars facing the SSV 63 region are located along the south wall of the southern cavity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The HH 24A shock is located 25′′ (10,000 AU) south of SSV 63 Ea and about 2′′ south of the tip of the largest pillar in the cloud wall at the southern end of jet E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' It is the brightest shock in the HH 24 complex, and has long been assumed to be a working surface for the HH 24E jet, possibly interacting with the cloud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Spectra of the brightest part of the HH 24A shock show peak velocities ranging from +30 to +40 km s−1, much less than the radial velocity of the HH 24E jet, and thus supporting the above picture that HH 24A is a shock driven into a stationary cloud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The [Sii] 6717/6731 ratio is ∼0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='68, indicating an electron density of 2400 cm−3 for a temperature of 10,000 K (or 1800 at 5,000 K).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Jones et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1987) present low-resolution spectra in which [Oiii] is detected, thus showing that at Figure 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (top) Detail of Figure 4 showing the bright bow shock HH 24A, located at the intersection of two flows orig- inating from the embedded sources Ea and HOPS 317.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The well collimated jet HH 24E launched from the Class I source Ea impacts a cloud edge (seen well in Figure 4) and partly burrows through the cloud to re-emerge further down in a slightly different direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (bottom) An Hα-[Sii] difference image of HH 24A, with Hα black and [Sii] white.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The little group of faint [SII]-bright knots to the left of the red dashed line move approximately along the jet-E axis towards the SSE with about 40-50 km s−1 and evidently form part of this outflow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The bright central region of HH 24A is station- ary, while the western extension is either stationary or has at most a slight motion towards the west.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The dotted arrow indicates the direction from HOPS 317.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' North is up and east is left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' HH24E HH24Z 5” Spray HH24A Cloud edge Cloud edge Jet burrowing HOPS317 HH24E Halpha black Iarcsec [SI] white sixe HOPS317The HH 24 Star Forming Complex 19 least some part of HH 24A has a high excitation, very different from the very low excitation of the HH 24E jet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Jet E disappears at the pillar tip near the HH 24A shock, but re-appears about 8′′ farther south, bent to- wards the east by about 5◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' One possible interpretation is that jet E impacts the back-side of the pillar, and is deflected towards the east by the interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 At right angles to jet E, HH 24A extends about 2′′ farther west than the western edge of the jet (Figure 16-top).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Fig- ure 16-bottom shows an HST Hα-[Sii] difference image of HH 24A, which reveals a two-shock structure of the main body of HH 24A, with an Hα-strong part facing north and a southern side that is [Sii]-bright.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' HH 24A is located only about 22′′ from the Class 0 source HH 24 MMS (see Section 7), and Bontemps et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1996) suggested that HH 24A may be a separate shock from a flow originating in this embedded source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' HH 24 MMS is located just outside the lower right corner of Figure 16-top.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' That image shows a conical outflow cavity of another source, the Class 0 source HOPS 317, which is located even closer, only 17′′, to HH 24A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This reflection nebula is opening up towards the southwest, suggesting that the blueshifted lobe of outflow L is lo- cated southwest of this YSO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' HH 24A, which is red- shifted, is located along the expected counterflow direc- tion of outflow L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' A line from HOPS 317 to HH 24A is aligned with the outflow cavity of HOPS 317 as well as the molecular hydrogen outflow (HH 24L) extending SW from HOPS 317 (see Section 7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 17 shows that this lobe of the L-counterflow also contains shock- excited 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='12 µm H2 emission connecting HOPS 317 to HH 24A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' In addition, to the NE of HH 24A a new faint shock, here called HH 24Z, is found (Figure 16-top), which could be part of the outflow driven by HOPS 317.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' It thus appears, on morphological grounds, that HH 24A might be a bow shock powered by HOPS 317.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Ideally, proper motions should resolve the issue of the origin of the HH 24A bow shock.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Unfortunately, the 2- yr time interval between our two epochs of [Feii] HST images are not sufficient to show any motion reliably, but adding an archival wideband image including the [Feii] 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='64 µm line does show some rather slow motions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 16-bottom shows two areas of HH 24A sepa- rated by a red dashed line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The [SII]-bright knots to the left of the line have motions towards the SSE with about 40-50 km s−1, roughly along the direction defined 5 It should be noted that the little jet X associated with source S (see Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7) is pointing straight towards the deflected part of the HH 24E jet so, at least in principle, it cannot be excluded that this deflected part of the jet could have an origin different from source Ea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' A superposition of an Hα (blue), a [Sii] (green), and a 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='12 µm molecular hydrogen (red) image of the HH 24 complex obtained at the APO 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5m telescope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The figure is 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5’ wide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' by jet E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' They are slightly displaced from the axis of jet E, either because the jet has been disturbed by bur- rowing through the cloud, similar to jet C, or they may be shocks from a wider angle wind interacting with a flow cavity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The central part of HH 24A to the right of the red line is essentially stationary, indicating that the shock is ramming into the cloud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The western wing may have a slow tangential motion of 20-30±15 km s−1 approxi- mately due west.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' HH 24A shows a classical two-shock structure, with an Hα-strong and a [Sii]-strong compo- nent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The dashed arrow shows the direction from the HOPS 317 source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The data available do not allow a definite conclusion on the origin of HH 24A, it could originate from either source Ea or HOPS 317.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' If the gentle westward mo- tion of the wesstern wing is real it would in both cases represent gas squirting sideways along the wing of the bow shock.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' If the bright part of the HH 24A shock comes from HOPS 317 then both flows from Ea and HOPS 317 interact with the pillar, but not necessarily with each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The high-surface brightness of HH 24A and de- tection of [Oiii] suggests that it is interacting with the front side of the pillar while the cloud interaction with 20 Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Structure of the C jet, based on the HST [Feii] image in two cuts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 5 arcsec corresponds to 2000 AU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' jet E occurs mainly within or on the back side of the pillar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' HH 24 Jet C 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Structure and Excitation Figure 18 shows the detailed structure of jet C as seen in the HST [Feii] image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Although it appears to be a counter-jet to jet E, it does not share the perfect colli- mation of jet E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Another puzzling fact is that while jet E can be traced directly back to the source even though it is red-shifted, in contrast jet C only becomes visible (in the 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='644 µm [Feii] line) about 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 arcsec north of the source Ea (see below).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 3 shows that near the outflow source, jet C is strong in [Sii] and is surrounded by Hα-strong shocks sitting on the ’shoulders’ of the individual knots that protrude to either side of the main jet axis, in a very similar fashion to what is seen in the equally wiggling HH 46/47 jet (Heathcote et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' These Hα arcs Figure 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The C jet in two groundbased [Sii] images taken in 2006 at Subaru and in 2021 at Apache Point Observatory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The emergence of two bright knots from behind a cloud edge, indicated by the dotted line, is clearly seen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The motion of the jet during the 15 years between exposures is indicated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' are deflection shocks or spur shocks, caused by knots glancing off the side of a mostly-evacuated cavity, and they are seen in several other prominent jets, like HH 1, 34, and 47 (Heathcote et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1996, Hartigan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2005, 2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Further out along the flow axis a series of bow shocks are seen, which show a clear double-shock struc- ture, with an inner [Sii]-strong shock and an outer Hα- strong envelope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This is as expected from a heavy jet pushing through a tenuous ambient medium, either sta- tionary or co-moving, which will produce a double-shock working surface, with a weak jet-shock and a stronger bow shock (Hartigan 1989, Reipurth & Heathcote 1992).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Proper Motions and Radial Velocities Jones et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1987) measured the proper motion of part of the C-jet and derived a tangential velocity of about 320 km s−1 to the NNW away from SSV 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Our proper motion study concurs with this result, indicating motion of about 300 km s−1 away from the Ea/Eb pair (Figure 14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Our spectra along the C-jet show blue- shifted emission across the velocity range -180 to -230 km s−1 with a peak radial velocity of -200 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' If we adopt these two numbers, then we find that jet C is moving towards us at an angle to the plane of the sky of roughly 34◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This is comparable to the angle of ∼35◦ for the redshifted jet E, and although these angles have uncertainties of at least several degrees, their similarity supports the interpretation that the two jets form one bipolar outflow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 19 shows two groundbased [Sii] images, one taken in 2006 at the Subaru telescope and a new taken in 2021 at the Apache Point Observatory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' A new knot has appeared, emerging from behind a dense cloud edge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This new knot is also seen in the Hα and [Sii] images ob- tained with HST in 2014 (Figure 5), narrowing the inter- IRSI2006 2021 Jet CThe HH 24 Star Forming Complex 21 val during which it appeared to between 2006 and 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Our spectra yield a [Sii] ratio 6717/6731 of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='63, indi- cating an electron density of 2300 - 3000 (T=10,000 K).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The knot is blueshifted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Origin of Jet C Given that jets C and E are almost perfectly aligned with each other, and the fact that jet C is blueshifted while jet E is redshifted (Solf 1987) with the same an- gle to the plane of the sky, it appears evident that they form parts of a single bipolar outflow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' However, as was discussed in Section 5, there are two sources between the two jets, Ea and Eb, so in principle the jets could arise from separate sources, which would make it easier to understand the curious difference in morphology of jets C and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' However, if jets C and E were driven by two separate sources, then we would expect that each source would also have a counterjet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Given the limited size of the SSV 63 cloud core, such counterjets should be readily visible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Also, the VLA observations of Ea clearly show a bipolar radio continuum jet along the common E/C jet axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' It thus seems well established that jets C and E form opposite sides of a bipolar out- flow from source Ea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The slight mis-alignment of the C and E jets could be explained if source Ea moves to- wards the southwest through the SSV 63 cloud core with a speed of ∼2 km s−1, consistent with the expected mo- tion of stars within the gravitational potential of the core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' In this scenario, source Eb does not drive any jet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Our ALMA data shows that source Eb does drive an ultra-compact arcsecond-scale molecular flow along a northwest-southeast axis with the redshifted lobe ori- ented to the northwest (Section 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Wiggling of Jet C As already mentioned, jet C shows pronounced wig- gling, which might suggest that the source is either a binary or the jet is anchored in a precessing disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Raga et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2009a) have made models of precessing accre- tion disks around a star in a binary system, and find that it leads to a reflection-symmetric spiraling outflow on small scales from the orbital motion together with a reflection-symmetric spiral on large scales due to the precessing disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' On closer examination, however, this interpretation runs into difficulties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' If we estimate the ratio between a typical extent of one of the wiggles (d∼10′′ or ∼4000 AU) and its sideways displacement (h∼1′′), together with the measured jet velocity vj = 250 km/s the or- biting jet model then yields an estimate for the orbital velocity: vo =vj × h/d = 25 km/s Also, the orbital period is: to = d/vj= 76 yr corresponding to an orbital radius ro = vo to / (2 π) = 64 AU which is uncomfortably large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' For a binary with two stars of equal mass M in circular orbits, the mass of one of the two stars can be obtained as: M = 2 vo2 ro/G = 180 M⊙ which clearly is unrealistic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' No matter what tweaks are made to the above numbers the resulting mass is far too large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' There are HH jets with a wiggling that is convincingly interpreted as the result of binary motion, but the wiggles here are more irregular and are spread over longer distances along the jet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This may be due to unknown density perturbations that accompany the ve- locity differences along the jet, and when material runs into itself new knots will come and go.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Another possible explanation for the difference in mor- phology of the E/C jet pair could be that, while source Ea is located at the edge of the cloud core and launching jet E unhindered, jet C is burrowing through the cloud core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Shear might excite Kelvin-Helmholtz instabilities along the cavity walls, and the jet could be slighly de- flected by these ripples in a quasi-periodic fashion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' HH 24 Jet G Jet G has an unusual morphology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 20 shows two cuts of a deep image from the Subaru 8m telescope, which reveals four main features of the jet, (1) a cen- tral axis with fragments of a long collimated flow which we denote Ga1-a5 (see Figure 21), (2) an envelope sur- rounding the entire flow, (3) several knots that are off- center from the main axis, in particular the pair of knots labeled Gb and Gc in Figure 21, which shows a 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='644 µm [Feii] HST image, and (4) a large bright and diffuse S- shaped region at the base of the jet, which corresponds to Herbig’s knot D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Knot D was observed spectroscopically by Jones et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1987) who found that it is mainly a reflected continuum with Hα and Hβ in emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Polarimetry by Strom et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1974a,b), Schmidt & Miller (1979), and Scarrott (1987) suggested that SSV 63 is a likely source of the reflected light (see Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6), but Jones et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1987) argued that another embedded source should exist on the axis of the G flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Their proposed position is only 3 arcsec from the NE radio continuum source found later by Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2002), and lying on the axis of the G outflow (see Figure 21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The linear chain of knots denoted a1-a5 in Figure 21 includes a fragment (a5) of a jet near the source NE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' While this appearance is similar to many other ill- defined jets, an unusual feature is the envelope that sur- 22 Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Jet G in the optical in two different cuts, illus- trating the brighter interior and fainter exterior structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Each figure is the sum of deep Hα and [Sii] images obtained at the Subaru 8m telescope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The vertical dimension is 84 arc- sec corresponding to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='16 pc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The apex of the jet is denoted a1, and more features are labeled in Figure 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' rounds the jet, seen well in Figure 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The distance from the tip of the jet to source NE is 75 arcsec, corre- sponding to 30,000 AU in projection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The width of the envelope at its widest is about 14 arcsec, corresponding to 5600 AU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Near its base, much of this envelope near its base is illuminated by light from source NE, and there appears to be several rings or corrugations in its lower part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Presumably this is an outflow cavity originating from source NE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The two brightest knots in Jet G are located off the axis of the Ga knot chain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' HST near-infrared [Feii] image of the HH 24 jet G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The tip of the jet (a1) falls outside the WFC3 field, but is seen as the top of the jet in Figure 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This com- plex outflow consists of a central collimated jet (a1-a5) and two bright bow shocks (b and c) all wrapped within a wide outflow cavity whose sides are outlined in [Feii] emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Knot D was originally so designated by Herbig (1974), but has turned out to be an Hα-bright reflection nebula illumi- nated by the embedded VLA source NE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The bright lower part of the figure is shown with a different cut.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The height of the figure is about 70′′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Unique among the HH 24 jets, jet G has a bright com- ponent of H2 emission, see Figure 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The apex of jet G, labeled a1, is dominant in H2, and closer to the source, around a3, prominent wings of H2 indicate the presence of low-velocity shocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Jones et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1987) obtained long-slit spectroscopy of the central a1 - a5 knots, and found very high blueshifted heliocentric velocities of -130 to -140 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We have 3 alb a2 c a3 a4 Jet G a5 "Knot D" × NEThe HH 24 Star Forming Complex 23 obtained spectra of the off-axis Gb-knot, and find a low velocity of ∼0 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Our proper motion measure- ments of the a-knots indicate motions of 100-200 km s−1, but the b and c off-axis-knots are stationary within the errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' They are both very bright in [Sii], indicating that they are low-excitation shocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' They seem to be oriented towards the north-east, and when tracing a line backwards one finds the near-IR YSO IRS 1 (see Section 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' However, the lack of measurable proper motions makes it impossible to establish a possible as- sociation with this source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Other Jets In addition to the above major shocked outflows, there are three additional rather inconspicuous flows, J, X, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The two first are discussed in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7 and the third in Section 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Parsec-scale Outflows Many well-collimated HH jets are associated with dis- tant bow shocks that can be more than one parsec from their driving sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Such giant jets provide fossil records of the mass loss and accretion histories of their driving sources (Reipurth, Bally, and Devine 1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The formation of these giant terminal working surfaces is dis- cussed in Section 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The HH 24 jet complex is not an exception to this.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Several distant shocks, found by Herbig (1974, HH 19,20,21), Strom et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1986, HH 37), and Reipurth & Graham (1988, HH 70), are located to the north of the HH 24 complex (Figure 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' In their study of the HH objects in this region, Jones et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1987) recognized the probable relation of these objects to the HH 24 jets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Ba- sic properties of the various distant components of these giant flows, known as well as new, are given in Table 6, and are discussed in more detail below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' HH 19 HH 19 is a bright and highly structured object, with the appearance of a large fractured bow shock (Fig- ure 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Between HH 19 and SSV 63 is a faint group of knots, labeled HH 19-O by Eisloeffel & Mundt (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The faint but well collimated jet J points within a few degrees towards HH 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This jet is launched by source Wb, which is therefore also the likely driving source of HH 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This identification was supported by the proper motion measurements of Jones et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1987), who found tangential velocity vectors of the HH 19 complex of 60- 90 km s−1 directed away, to within a few degrees, from the SSV 63 multiple system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The distance of HH 19 from source Wb is ∼400 arcsec, corresponding to a projected distance of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='77 pc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The two fractured giant bow shocks driven by the two jets C (axis shown in green) and J (axis blue) shown in an Hα–[Sii] image obtained with the Subaru telescope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Black is Hα-strong and white is [Sii]-strong.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The two arrows mark defects in the CCD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The box indicates the area shown in Figure 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' North is up and east is left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Distant bow shocks HH 19, HH 21, and HH 37 from an Hα image obtained with the HST as a parallel ACS observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The annotation of HH 19 is from Mundt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1984).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' North is up and east is left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 22 shows an Hα–[Sii] difference image includ- ing HH 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' While some HH working surfaces have clean morphologies, with Hα-strong bow shocks and weaker [Sii] jet shocks (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', HH 34, Reipurth & Heathcote 1992), HH 19’s highly fractured structure does not show 60" HH20 HH21 HH2least HH19 HH 37 HH70HH 21 61 HH D HH 37 30"24 Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' such simple patterns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The complexity of the individ- ual shocks in HH 19 is further illustrated in Figure 23, which shows an Hα image that was fortuitously obtained in parallel-mode with ACS while the HH 24 jets were imaged with WFC3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Some features appear to have for- ward facing bow-shapes, while others are backward fac- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' These latter structures tend to show little or no proper motion while the forward facing shocks exhibit the fastest motions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' It seems that some ejecta asso- ciated with jet J are overrunning either stationary, or slowly moving, dense globules of material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Our measurements indicate a mean tangential velocity of HH 19 around 100 km s−1 but with large internal variations, and directed straight away from the SSV 63 core along the axis of jet J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Assuming that this velocity is representative of the motion of HH 19 since it was launched, it indicates an age of ∼8,000 yr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Our spectra show that HH 19 is blueshifted, as already noted by Jones et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1987), with velocities ranging from -100 to +29 km s−1 and with a peak around -15 to 20 km s−1 in the Orion reference frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This suggests that the flow is moving close to the plane of the sky, at an angle of roughly 10◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' HH 27 On the opposite side of source Wb, along the axis of the J-jet and at a distance of ∼320 arcsec (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='62 pc), is the bright compact HH object HH 27 (Figure 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Based on this location, it appears highly likely that HH 19 and HH 27 form opposite working surfaces in a giant outflow with a combined projected extent of ∼1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='4 pc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Whereas HH 19 is blueshifted, HH 27 is redshifted, showing a broad Hα line profile with a peak velocity in the Orion Nebula rest frame of about +32 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='15 pc difference in extent of the blue- and red-shifted lobes may be related to HH 19 moving out of the L1630 cloud, whereas HH 27 may still be closely associated with the cloud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This is supported by Jones et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1987) who found HH 27 to be the highest extinction object in the region, with an Av∼3, based on measurements of Balmer decrements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Despite the presence of bright, compact knots in HH 27, the absence of nearby reference stars means that only an upper bound on its tangential velocity of VP M <60 km s−1 could be measured, a limit consistent with the object moving into a cloud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Extensions of HH 24C The shocks in the HH 24C jet grow fainter and wider as they move to the NNW of source Ea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Several working surfaces with Hα-bright bow shocks sitting as shoulders on [Sii]-rich jet shocks are evident in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Beyond those, the flow appears as a very faint and diffuse fil- igreed bubble of shocks reaching as far as 140 arcsec (55,000 AU = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='27 pc in projection) from source Ea (Figure 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Such a structure may result from a wider outflow interacting with the surface of the L1630 cloud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' HH 20, 21, 37, 70, NNW Further downstream there is what appears to be a gi- ant fractured bow shock encompassing HH 20, 21, 37, and 70, see Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Our spectra show that HH 20 is blueshifted, with line profiles peaking at a velocity of about -120 km s−1, confirming the early work of Jones et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1987).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The most distant shock in the HH 20 complex is ∼530 arcsec (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='02 pc in projection) from source Ea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We concur with Jones et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1987) and Eisloeffel & Mundt (1997) that these distant shocks are likely driven by SSV 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The tangential velocities of the components of the HH 20 complex are on average around 130 km s−1, indicating a dynamical age of 6800 yr, again assuming a constant velocity over time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' How- ever, there is a large dispersion in motion among the various features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' For HH 21, 37 and 70 the motions are so slow that no measurable proper motions could be de- termined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' For HH 20, tangential velocities are in the range ∼50-100 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The north-south oriented fil- ament, HH 21 east shows coherent motion towards the north with a speed larger than 100 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' However, the northern-most knot exhibits apparent motion towards PA∼-24 deg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This may be due to fading of one part of the shock and brightening of another part towards the west.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We have obtained widefield images to the NNW and SSE of HH 24 in search of further shocks, and have iden- tified several along the E/C jet axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 24 shows the sum of our deep Hα and [Sii] images with Suprime- Cam where we identify yet another faint shock, dubbed HH24-NNW, along the E/C jet axis, at a distance of 750 arcsec, or 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='46 pc in projection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The object is too diffuse for proper motion to be measured.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' While within 1′ of source Ea, knots in the jets C and E exhibit tangential motions of about 250 to 300 km s−1, the various HH objects located farther away from the SSV 63 core show a systematic decline of the proper motions with increasing distance from the SSV 63 core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This behavior is similar to what is observed in other parsec-scale protostellar outflows and indicates deceler- ation of the ejecta as they interact with slower moving or stationary media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' HH 24 SSE, SSE2e, SSE2w The HH 24 Star Forming Complex 25 Table 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Giant Bow Shocksa Shock α2000 δ2000 Assoc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Jet Source Pos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='Angle Sep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='[′′] Length [pc]b HH 19 5:45:49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6 00:05:11 Jet J Wb 317 398 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='77 HH 20 5:45:55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6 00:02:47 Jet C Ea 336 477 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='92 HH 21 5:45:55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7 00:04:27 Jet C Ea 330 387 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='75 HH 21east 5:45:59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8 00:04:46 Jet C Ea 338 343 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='67 HH 27 5:46:22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9 00:13:44 Jet J Wb 135 319 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='62 HH 37 5:45:56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 00:05:32 Jet C Ea 325 330 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='64 HH 70 5:46:02.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 00:05:36 Jet C Ea 341 283 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='55 HH 24 NNW 5:45:51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 +00:01:41 Jet C Ea 340 750 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='45 HH 24 SSE 5:46:28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6 00:17:53 Jet E Ea 147 503 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='98 HH 24 SSE2e 5:46:35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 00:22:47 Jet E Ea 152 863 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='67 HH 24 SSE2w 5:46:31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 00:23:04 Jet E Ea 157 851 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='65 Note—a: All objects are very extended;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' coordinates refer to bright features or the geometric center of an object.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' All objects were measured on optical images except HH 24 SSE2e and HH 24 SSE2w, which were measured on Spitzer IRAC2 images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' b: Projected length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Table 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Images used for Proper Motions of Giant Bow Shocks Date MJD Instrument & Filter 18 December 2001 52261 CTIO 4m Mosaic Hα, [Sii] 06 January 2006 53741 Subaru Suprimecam Hα, [Sii] 18 February 2014 56706 HST WFC3/ACS [Feii], Hα , [Sii] 03 February 2016 57421 HST WFC3/ACS [Feii], Hα 01 December 2021 59549 APO ARCTIC [Sii] In the southern part of the HH 24 complex we have dis- covered three more distant knots, labeled SSE, SSE2e, and SSE2w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' They are shown on Figure 25, which is a composite from Spitzer IRAC1 (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6 µm) and IRAC2 (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 µm) images, where these distant shocks are more pronounced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The projected distance of SSE from source Ea is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='98 pc, and from our optical images we determine a tangential motion of roughly 150 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Assuming a constant velocity the age of this knot is ∼8200 yr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The projected distance of the SSE2 pair from source Ea is 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='66 pc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Thus, the total extent of the HH 24 E/C flow is 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 pc, making it among the largest HH flows known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 26 shows optical close-ups of the individual NNW and SSE shocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The NNW shock has a very large ex- tent of >40,000 AU, and is likely the northern terminal bow shock for the HH 24 E/C jet pair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' In contrast, the SSE shock just consists of two knots, located well be- hind the two most distant shocks, SSE1 and 2, which likely together form the southern terminus of the E/C jet pair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We discuss how these multiple working surfaces have been formed in Section 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Proper Motions of Distant Bow Shocks We have three epochs of groundbased optical images spanning from 2001 to 2021 that cover parts of these parsec-scale shocks surrounding the HH 24 complex (see Table 7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Images obtained with the Blanco 4-meter tele- scope at CTIO in 2001, the Subaru 8-meter telescope in 2006, and the Apache Point Observatory (APO) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5- meter in 2021 were used for proper motion measure- ments of these distant HH objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The time interval between the 2001 and 2021 images was 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='95 years Table 8 lists the positions and proper motions of fea- tures measured on the 2001 Blanco 4m, the 2006 Sub- aru, and 2021 APO images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' At a distance of 400 pc, a displacement of 1′′ in a time interval of 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='95 years cor- responds to a speed of 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The uncertainties of the tangential velocities vary from about 20 to as much as 60 km s−1 owing to the diffuse structure of some of the features, residual distortions in the images, and the lack of close-by field stars to use for image registration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Parsec-scale CO Outflows Stanke et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2022) have mapped the entire Orion B molecular cloud in the J=3-2 CO transition at 346 GHz with the APEX telescope (the ALCOHOLS sur- vey).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The beam size of this survey is ∼19′′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 27 shows ‘high-velocity’ CO emission in the vicinity of the SSV 63 cloud core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Towards NNW, there is a low-radial velocity counterpart to jet J, also blueshifted as the HH objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We find that a clumpy, low velocity bubble ap- pears to surround the various distant HH objects likely powered by jet C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Faint, redshifted emission is associ- ated with the counterflows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The impact of the SSV 63 outflows on the Orion B cloud has been very significant, and not only in the immediate vicinity of the sources, 26 Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Table 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Parsec-Scale Components & Proper Motions R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' & Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' PMa Va PA Comments (J2000) (mas yr−1) (km s−1) (deg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=') 5:46:35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2 -0:22:43 HH 24 SSE2-east.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' South terminus 5:46:30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6 -0:23:06 HH 24 SSE2-west.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' South terminus 5:46:28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8 -0:18:05 61 156 115 HH 24 SSE1 5:46:22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7 -0:13:43 <30 <60 HH 27 5:45:56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2 -0:07:18 83 157 43 jet J;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' faint bow 5:45:49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6 -0:05:11 46 87 23 jet J;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' HH 19 S 5:45:49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 -0:04:53 54 102 25 jet J;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' HH 19 N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Northwest terminus 5:45:69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 -0:04:32 57 108 24 HH 21east 5:45:59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8 -0:05:02 49 93 3 HH 21east E1 (Hα) 5:45:59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8 -0:04:55 74 140 7 HH 21east E2 (Hα) 5:45:59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8 -0:04:31 131 248 5 HH 21east E3 (Hα) 5:45:69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 -0:04:28 132 250 11 HH 21east N-tip (Hα) 5:45:55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7 -0:04:26 <30 <60 HH 21 5:45:58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 -0:03:22 55 104 9 HH 20 S 5:45:55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 -0:03:02 92 175 16 HH 20 NW1 5:45:55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6 -0:02:47 59 112 22 HH 20 NW2 5:45:54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2 -0:02:01 73 139 0 HH 20 N 5:45:51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 +0:01:42 <30 <60 HH24 NNW.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' North terminus Note—a: no motion detected is marked as – where cavities have been blown out (Figure 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' A de- tailed analysis of these giant molecular outflows is, how- ever, beyond the scope of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' A number of smaller, and presumably younger bipolar outflows are also seen in this part of the Orion B cloud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' THE CLASS 0 SOURCE HH 24 MMS Forty arcsec south of the SSV 63 complex lies a very bright submm source, HH 24 MMS, discovered at 1300 µm by Chini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1993).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Bontemps et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1995) and Chandler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1995) detected a VLA source to- wards HH 24 MMS at 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6 cm and 7 mm, respectively, both in C/D configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Ward-Thompson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1995) obtained an improved position at 350 µm, show- ing that the VLA source is coincident with the submm source, and identified it as a deeply embedded Class 0 source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2002b) detected the source at 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6 cm with the VLA-A and provided a more accu- rate position for HH 24 MMS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Two additional nearby faint sources were detected with high-resolution VLA- C/D observations at 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9 mm by Kang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Near HH 24 MMS, Furlan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2016) identified on Herschel images a cool source, HOPS 317, which was previously discovered with Spitzer and identified as the near-infrared source 2MASS-J05460852–0010390.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' They concluded that it is a Class 0 source with a total luminos- ity of 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6 L⊙, a bolometric temperature of Tbol=47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 K, and an extinction AV =41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 mag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' However, examina- tion of the Herschel images show that HH 24 MMS and HOPS 317 are two separate sources, ∼5 arcsec apart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' While the two sources are just resolved at 70 µm, with HOPS 317 being the dominant source, at 160 µm they are blended, see Figure 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Hsieh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2021) observed the region with ALMA and in addition to separating HOPS 317 and HH 24 MMS, they found a third source about 12′′ to the northwest, which they dub HH24mms- NW (their Figure 3b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' It could be that HH 24 MMS forms a small multiple system, possibly non-hierarchical, and if so unstable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 29 shows an infrared image obtained with WFC3 on HST through a [Feii] 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='64 µm filter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The image shows an illuminated outflow cavity with a bright apex opening out from HOPS 317 and several emission- line knots, the brightest of which is an optically visi- ble Herbig-Haro knot here designated HH 24L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The HH object is located 9′′ from HOPS 317, which at a dis- tance of 400 pc corresponds to a projected separation of 3600 AU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' If the flow moves with a tangential velocity of about 100 km s−1, typical of HH flows, then it was ejected from this source ∼170 years ago.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 30 is an image in the H2 1-0 S(1) line at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='12 µm of the same region, which shows that the HH 24L flow from HOPS 317 is much more pronounced in H2 near the source, showing a chain of small nested bow shocks and a series of more distant knots, with additional knots apparent in Figure 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The molecular hydrogen flow em- anating from HOPS 317 is known as MHO 323 and we here extend the notation to the four fainter outflow com- The HH 24 Star Forming Complex 27 Figure 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' A large complex of shocks is found north of HH 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The group HH 20, 21, 37, 70 forms a giant fractured bow shock.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Further north, a distant faint shock is detected, here labeled NNW.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The projected distance from source EA to the most distant shock HH 24 NNW is 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='45 pc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' These shocks are associated with the HH 24C jet that is pointing towards them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' HH 19 is a giant bow shock associated with the HH 24J jet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure based on Hα (black) and [Sii] (white) Subaru images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The HH 27 shock is a counterpart to the HH 19 terminal bow shock for the HH 24J jet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Further south, a filamentary shock, here labeled HH 24 SSE, is located.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Even further south, two faint nebulosities, labeled HH 24 SSE2e and SSE2w, are found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The figure is a composite from Spitzer IRAC1 and IRAC2 images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' HIH124NNW HH20 HH21east HH70 H37 H21 19 3 arcmin 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='35pcH22 HH27 HH24SSE HH26 HH24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='SSE2-eant HH21east HH70 HH24NNW HH37 十H21 HH24 SSE2-West Banomute0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='58po HH1928 Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Optical images of distant shocks in the HH 24 complex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Top: HH 24 NNW, which is a low-excitation object, in a [Sii] image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Bottom: HH 24 SSE, which is a high-excitation object, in Hα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' North is up and east is left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' ponents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6 It is noteworthy that the position angles of the four outermost knots steadily increase with distance from HOPS 317, suggesting precession of the source and indicative of a close binary companion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Alternatively the flow may be deflected near knot 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' In the opposite direction, several H2 knots are seen along the principal flow axis, including a bow shaped H2 structure that is intertwined with the bright HH 24A knot located on the HH 24E flow axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' As discussed in Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2, it appears that HH 24A represents, at least partially, the collision of a flow from HOPS 317 with a stationary cloud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We have carried out the hitherto deepest and highest resolution observations of the HH 24 MMS region with the Karl G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Jansky Very Large Array at 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 GHz (X band) and 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 GHz (Q band), see Section 2 for details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 31 shows the Band-X map revealing an extended highly structured nebula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The VLA position obtained by Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2002b), marked with a cross and labeled VLA-1A, is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8 arcsec from the peak of the new observations, labeled VLA-1B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' These observations can be understood in several ways: 6 The MHO catalog is maintained by Dirk Froebrich and is avail- able at http://astro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='kent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='uk/∼df/MHCat and is described in Davis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2010) Figure 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Three-color image showing ‘high-velocity’ J=3-2 CO emission associated with the parsec-scale outflows from the SSV 63 cloud core and the HH 24 jets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Vlsr = 0 to 5 km s−1 is shown in blue;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Vlsr = 5 to 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 km s−1 is shown in green;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Vlsr= 15 to 20 km s−1 is shown in red.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The var- ious HH objects that may be associated with the extended outflows from SSV 63 are marked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Dashed blue lines show the blueshifted HH components associated with jets C and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Dashed red lines show redshifted components associated with their counterflows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' North is up and east is left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Data from Stanke et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' a: The morphology seen in Figure 31 is reminiscent of a bow shock pointing back towards the SSV 63W sources about 40 arcsec to the NNW.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' If the radio continuum emission is due to shocks it is most likely free-free emis- sion (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Rodr´ıguez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1999), in which case the shift of the peak emission from 2000 to 2019 could be flick- ering of the shocks, as seen in many HH objects (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Raga et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2016a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' However, if the shock originates in SSV 63W, it would be a remarkable coincidence that it happens to coincide with a bright embedded submm source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' b: Alternatively, the shocks may be local, driven by outflow from the submm source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' However, the extended emission has a spectral index between 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 and 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 GHz of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2, which seems too steep for free-free emission, in particular because for diffuse emission one expects an HH24 NNW 25 arcsec 10000 AUHH24 SSE 25 arcsec 10000 AUHH24 NNW HH20 HH23 HH21 HH21 east HH22 HH19 HH70 HH37 SSV63 HH27 HH24SSE1 5arc-minuteS0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='58pc HH24 SSE2-east HH24SSE2WestThe HH 24 Star Forming Complex 29 Figure 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Herschel 70 µm image of the HH 24 source SSV 63 and HH 24 MMS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' At 70 µm the two sources HOPS 317 and MMS VLA 1 are just resolved, but at 160 µm the two sources are unresolved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The width of the figure is 85′′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' HST near-infrared image of the HH 24 MMS region obtained with WFC3 in the [Feii] 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='644 µm line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The knot MHO 323-1c is an optically visible HH object here la- beled HH 24L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The protostar HOPS 317 is seen to illumi- nate an outflow cavity which contains several objects in the HH 24L flow (see Figure 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' It is evident that the VLA source(s), associated with HH 24 MMS, and HOPS 317 are separate sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The labels VLA-1A and VLA-1B refer to the positions marked in Figure 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' optically-thin flat spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The index between 10 and 44 GHz has a value of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1, confirming the steepness (Table 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' c: The shift in position may be due to motion of the source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The two positions are measured 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='75 years apart, indicating a projected velocity of 15 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Such a high velocity would require the source to have been ejected from a small multiple system, but no other Figure 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' An H2 image of the HH 24 MMS region obtained with NIRI on the Gemini-N telescope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The HH 24L flow is very extended at near-IR wavelengths, and further H2 knots beyond knot 5 can be seen in Figure 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' A VLA X-band image of the HH 24 MMS region from 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The position of the earlier epoch observation from 2000 of Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2002b) is shown as a cross and labeled VLA-1A, while the current position is labeled VLA- 1B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Right ascension is in seconds at 5h 46m, declination is in arcseconds at -00◦10’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' sources are found near HH 24 MMS from the presumed direction of motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' d: It is conceivable that HH 24 MMS is a binary with a separation of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8 arcsec, corresponding to a projected separation of 320 AU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Such binaries are common among young stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' If so, the components could be variable, as is sometimes seen in young radio continuum sources (Anglada et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' In 2000 the western source would have been the brighter of the two, while in 2019 the eastern source was brighter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' e: Finally, HH 24 MMS may be irradiating its near environment, and the extended 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6 cm emission could be dust heated by radiation from the submm source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Circumstellar material close to the source could obscure the light and create a lighthouse effect, and if the dust grains are small the heating and cooling would be rapid NE O Wa O Ea HOPS317 VLA-IHOPS317 MHO323-Ia VLA-IA VLA-IB MHO323-Ib MHO323-Ic = HH24L .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01H2 HH 24 Knot A HOPS317 MHO323 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0142 Band X 43 VLA-IA VLA-IB 44 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='45 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='40 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='35 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3030 Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' and thus variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The diffuse low-level emission seen in Figure 31 from the deep 2019 observations would seem to favor such an interpretation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' None of the above scenarios can be firmly rejected, although some are more unlikely than others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We con- clude that variable heating of dust is the most likely explanation of the observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' HOPS 317 and HH 24 MMS are separated by 5′′, cor- responding to 2000 AU in projection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' They are currently bound to their host core, but as they accrete mass and the core shrinks it is likely that they eventually become bound as a binary with a shrinking orbit due to dynami- cal friction (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Stahler 2010, Sadavoy & Stahler 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' It is conceivable that, in the future when the cloud dis- perses, HOPS 317 and HH 24 MMS will become bound to the SSV 63 multiple, thus forming a wide multiple system, not unlike the well known wide high-order mul- tiple system of Mizar and Alcor (Mamajek et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' KINEMATICS OF NEARBY LOW-MASS STARS AND BROWN DWARFS As we will discuss in Section 10, the stars in the SSV 63 system have significant masses, between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 M⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' With such massive members one would ex- pect to find a large number of low-mass objects if the initial mass function is close to normal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' However, the only potential low-mass objects are the components S (Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1) and N (Section 10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' In view of this dis- parity we have carried out a deep slitless grism survey using GMOS on the Gemini-N telescope to search for faint Hα emission stars in the area of SSV 63, for de- tails see Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Hα emission was detected in only 5 stars, marked as Hα 1-5 in Figure 32, and with coor- dinates and near- and mid-infrared photometry in Ta- ble 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Fang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2009) obtained low-resolution spectra of 4 of these sources, and our results concur with theirs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We find that Hα 1 is a CTTS with spectral type M3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5, Hα 2 is a strong-lined brown dwarf with spectral type M7, Hα 3 is a CTTS with spectral type M4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5, Hα 4 is a WTTS with spectral type M4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5, and Hα 5 is a WTTS borderline brown dwarf with spectral type M5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Spec- tra of the two objects with the latest spectral types are shown in Figure 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' All these five objects are optically faint red objects (Table 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7 7 Most of the sources discussed in this section, are listed as YSOs in Table 4 of Megeath et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2012) with the follow- ing IDs: Wa=#3168, Ea=#3167, NE=#3169, Hα 1=#3177, Hα 2=#3176, Hα 3=#3175, IRS 1=#3170, IRS 2=#3171.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The sources Wb and Eb are not listed, probably because they could not be resolved from Wa and Ea, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Hα 4 and Hα 5 are also not listed, probably because they are too faint for reliable photometry with Spitzer (they are, however, detected by WISE, see Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=') Figure 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Identification of the optical Hα 1-5 sources and additional infrared sources in the HH 24 region, marked on an Hα+[Sii] image from the Subaru telescope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' North is up and east is left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Hα 1 - 5 are located far from any of the dense cloud cores in the region (Figure 34), suggesting that they have traveled to their current locations from elsewhere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We have examined the Gaia EDR3 catalog, and find that Gaia has detected all of the five Hα emitters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The Runaway Borderline Brown Dwarf HH24-Hα5 One object, Hα 5, immediately stands out because it has a very large, well determined proper motion de- termined in Gaia DR3 as 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7839±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0420 mas/yr in a reference frame determined by the motion of 129 YSOs in L1630 from Fang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This corresponds to a tangential velocity of vtan = 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='4 km s−1 at the assumed distance of 400 pc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Recently a number of such low-mass runaway and walkaway stars have been found near the ONC (McBride & Kounkel 2019, Schoet- tler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2020), who estimate that 1-2% of the cluster members they studied are runaway stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' What is par- ticularly interesting about Hα 5 is that its proper mo- tion vector, with a position angle of 121◦, points directly away from the HH 24 cloud core (Figure 35).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' One mem- Hal Ha2 Ha3 IRS2 Ha4 IRSI NE Wa/b Ea/b Ha5 HOPS317 MMSThe HH 24 Star Forming Complex 31 Figure 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Optical spectra of the M5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 borderline brown dwarf Hα 5 and the M7 brown dwarf Hα 2 obtained with GMOS on Gemini-N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' ber of the SSV 63 multiple system, source NE, is located within a 2σ uncertainty cone around the Hα 5 trajectory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' It therefore appears very likely that Hα 5 was ejected from source NE about 5800 yr ago.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' If so, it implies that either NE or Hα 5 is a close binary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8 Source NE is a protostellar object, so if Hα 5 was once part of a triple system including NE, it follows that it is itself also a protostellar object.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2010) posited that dynamical breakups during the embedded phase could produce optically visible low-mass orphaned protostars drifting away from their birthsites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Hα 5 ap- pears to be a fine case of such an orphaned protostar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The escape velocity from a ∼10 M⊙ core of gas and stars (see Section 9) is about 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 km s−1, and it follows that Hα 5 is escaping from the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The spectral class to effective temperature conversion established by Herczeg & Hillenbrand (2014) indicates that a spectral type of M5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 corresponds to an effective temperature of about 2900 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The evolutionary mod- els of Baraffe et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2015) show that this is very close to the temperature for a 1 million year old object at the hydrogen-burning limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' So is Hα 5 a brown dwarf?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 8 It should be noted that there is another, more distant, star marginally within the uncertainty cone, namely the source la- beled IRS 1 in Figure 35, also known as WISE J054607.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='76- 000937.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' It is a highly extincted YSO showing a mid-infrared excess.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The cloud core in which the HH 24 multiple system is embedded and its surroundings are seen here in a 850 µm dust continuum image from SCUBA2, courtesy He- len Kirk (see Kirk et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2016a,b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The components Wa/b, Ea/b, and NE are marked in red, as is HH 24 MMS to the south, while the five optically visible Hα emission stars are marked in green.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Note how the multiple system is associated with a very dense core, while the Hα emission stars are lo- cated far from any dense cloud cores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The dimensions of the figure are 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='46 × 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='51 pc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' North is up and east is left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Unfortunately the uncertainties involved are too large to allow a firm answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' First, even though both our spec- trum and that of Fang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2009) agree on the spectral classification, a much higher spectral resolution would be needed for a more accurate classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Second, for models at 1 Myr or younger, the sensitivity to initial conditions is significant, and the accretion history of an object adds further uncertainty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Third, the temperature of about 2900 K determined for a 1 Myr old object at the hydrogen burning limit is model dependent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Taken together, the best that can be said is that Hα 5 hovers right around the stellar/substellar boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 36 shows the spectral energy distribution of Hα 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' At wavelengths out to 5 µm it follows a Planck curve, but the WISE 12 and 22 µm data points show a strong mid-infrared excess.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The indication is that Hα 5 is having circumstellar material, but is missing an inner disk, thus resembling a transitional disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Reipurth & Clarke (2001) suggested that brown dwarfs ejected in a triple interaction would lose some of their disks in 4000 HH24-Ha5 3000 Counts 2000 1000 12000 HH24-Ha2 10000 8000 Counts 6000 4000 2000 6500 7000 7500 8000 8500 9000 9500 Wavelength [A]75"32 Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The borderline brown dwarf Hα 5 moves away from the SSV 63 multiple system with a tangential velocity of about 26 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' At this speed it was ∼5800 yr ago close to the NE source, from which it was likely ejected in a triple interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The dotted lines represent a 2σ error on the Gaia measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The image is a sum of an Hα and a [Sii] exposure with the Subaru telescope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The energy distribution of Hα 5 obtained with the Vizier Photometry Viewer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The majority of data points are from SDSS, PanSTARRS, 2MASS, WISE, and Spitzer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The distribution is a clean Planck curve out to 5 µm, but the WISE 12 and 22 µm data points show a steeply rising infrared excess from circumstellar material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The abscissa is wavelength in microns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' the process, ending up with truncated disks, which was confirmed in a detailed numerical study by Umbreit et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2011), see also Steinhausen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' It is conceivable that the disk around Hα 5 is in the process of re-assembling after being perturbed during the ejection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Other Hα Emission Stars and Infrared Sources Gaia EDR3 proper motions for the other 4 Hα emit- ters are given in Table 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' As can be seen, none of the Table 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Gaia EDR3 Proper Motions for Hα 1-5 Star PM(α) PM(δ) Vtan a PAa mas/yr mas/yr km s−1 deg Hα 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='711 ±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='255 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='556 ±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='901 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 ±2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9 313.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9 Hα 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='175 ±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='302 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='048 ±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='249 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 ±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8 Hα 3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='544 ±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='535 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='392 ±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='438 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 ±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8 Hα 4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='438 ±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='437 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='094 ±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='368 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 ±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 231.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 Hα 5 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='176 ±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='560 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='949 ±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='476 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 ±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='4 121.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6 Note—a: For calculation of space motion and position angle, the Gaia EDR3 proper motions listed in this table were cor- rected for the bulk motion of the L1630 cloud (α -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='519, δ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='741) determined from Gaia proper motions of 129 YSOs associated with the cloud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' objects have particularly high velocities, and none are pointing directly away from the SSV 63 multiple system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Thus none are runaway or walkaway stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' However, the SSV 63 cloud core is the nearest high-density region to these young stars, so they could have been born in the core and drifted away, perhaps nudged along by the more massive stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Assuming an approximate projected sep- aration of about 100′′ from SSV 63 and a mass of stars and cloud core of about 10 M⊙, the orbital speed of a bound object is around 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 km s−1, so at least some of these Hα emission stars may be weakly bound to the SSV 63 system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' That the velocity vectors do not point away from SSV 63 could be due to the highly irregular mass distribution of stars and gas in the region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Future IRS I pc 6000 yr N NE 4000 yr Eb Wb Wa Ea 2000 yr Halpha 510e-14 10e-15 vF(v) (W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='m2) 10e-16 10e-17 HH24-Ha5 10e-1g 1 10The HH 24 Star Forming Complex 33 Figure 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The faint curved HH 1200 jet emanating from source Hα 1 as seen on a deep Hα image obtained at the Subaru telescope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The distance between knots D and G is 172 arcsec, corresponding to a projected separation of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='33 pc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' North is up and east is left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Gaia releases will improve on the accuracy of proper motions for these very faint objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Two are worthy of some comments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Hα 1 is associated with a very faint, but highly col- limated HH flow, here called HH 1200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 37 is a part of our deep Subaru Hα image and shows that HH 1200 is a bent jet, with two symmetric lobes, the eastern (containing knots A,B,C, D) with a length of 81 arcsec (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='16 pc) and the western (knots E, F, G) with a length of 93 arcsec (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='18 pc).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The eastern lobe terminates in knot G, which has a clear bow shock mor- phology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' HH 1200 is much brighter in Hα than in [Sii], and is thus a high-excitation flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Hα 2 has a spectral type of M7, and for an assumed age of ≤1 Myr, its spectral type indicates that it is a very young brown dwarf (see Figure 33).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' It is also very bright at mid-infrared wavelengths, suggesting the presence of circumstellar material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Hα 2 has been detected as an X-ray source with Chandra by Simon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2004, their source #16), whereas none of the other 4 Hα emission stars were detected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Among the numerous near- and mid-infrared sources detected in 2MASS, WISE, and Spitzer images in L1630, two sources close to SSV 63 should be mentioned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' IRS 1 is a faint optically visible star, classified as a disk- bearing star in Megeath et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2012), but bright at near-infrared wavelengths (Figures 32 and 35).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' As we speculated in Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='4 it is potentially the driving source of two of the shocks in the G-jet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' IRS 2, marked in Figure 32, also has a steeply rising energy distribu- tion and is classified as a young star by Megeath et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We note that it is a binary with a fainter com- panion 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8′′ distant at PA = 325◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' CORE MASS AND STAR FORMATION EFFICIENCY The SSV 63 multiple system is located in a cloud core that is part of a north-south molecular ridge active in star formation in the Orion-B cloud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The region has been studied in various transitions including CO, C18O, CS, and HCO+ by Gibb & Heaton (1993), Gibb et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1995), and Gibb & Little (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Sub-mm dust contin- uum observations of the region have been reported by Chini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1993), Lis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1999), and Kirk et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2016a,b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The molecular ridge has been sculpted by the many molecular outflows in the region (see Figure 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The cloud core in which SSV 63 resides is being torn apart by multiple jets, as seen at optical and infrared wavelengths in Figures 2 and 4, where the remnant of the core and associated outflow cavities are seen illumi- nated by the embedded sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The core has also been significantly churned by the random motions of the stars in the non-hierarchical multiple system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' If they are mov- ing with characteristic velocities around 1 km s−1, stars like Ea and NE with 2 M⊙ will have a Bondi radius of ∼1800 AU and core crossing times of the order of 40,000 yr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Hence the stars will have traversed the core maybe a dozen times or more since their formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' K¨onyves et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2020) used the Herschel Gould Belt Survey of the Orion B cloud to study the numerous cores in this complex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' By combining PACS 70 and 160 µm and SPIRE 250, 350, and 500 µm data they were able to derive not only column densities but also dust tem- peratures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Their core #1025 corresponds to the HH 24 core for which they determine a mean core radius of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='019 pc (diameter ∼20 arcsec), a dust temperature of 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 K, and a core mass of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='31 M⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' G HH 1200 F E Ha A CB D 60" Ha 2 Ha 334 Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The 850 µm map of the SSV 63 cloud core by Kirk et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2016a,b), see Figure 34, shows clearly that the core is better described as an ellipse, which we fit with semi-minor and semi-major axes of 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='4′′ × 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6′′ at a PA=70◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This area produces a 850 µm flux of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='737 Jy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Using the Tdust = 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 K of K¨onives et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' and using the mass formula of Lane et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2016, their Eqn 1) then yields a current mass of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 M⊙, which we adopt here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Given the various uncertainties involved, this is probably accurate to within a factor of two.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Assuming that the masses of all the components of SSV 63 stars adds up to roughly 7 M⊙ (see Section 10), we can in principle estimate the star formation efficiency of the cloud core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' If we further assume that the original core mass is the current mass plus the mass of the stars born in the core, that is, of the order of 10 M⊙, we obtain a very high star formation efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' It makes little dif- ference that the mass lost in outflows from the stars has not been included, as it is relatively small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' But, more importantly, the core is not isolated from the surround- ings and, as will be shown in Section 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8, it appears that the core is being continually fed gas from its envi- ronment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' One possible scenario is that the initial small starburst that has taken place in the HH 24 core may have been triggered by infall of gas onto the core, and has continued at the rate that gas has become available, with source Eb being the most recent member of the small cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Whether star formation has proceeded in a static or a dynamic scenario, it appears that gas has been converted into stars at a high efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Eventually, as will be discussed later, the sources Ea and NE will emerge as young late-type Herbig Ae stars surrounded by a halo of loosely bound lower mass stars, as is frequently seen around Herbig Ae stars (Hillen- brand 1995, Hillenbrand et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Testi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (1997) found that the clustering of YSOs around Herbig Ae/Be stars depends on their mass, with Be stars having sig- nificantly richer environments than Ae stars;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' in their sample of 6 Herbig Ae stars the mean number of com- ponents was 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' ALMA 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 MM OBSERVATIONS OF CIRCUMSTELLAR DISKS 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Continuum emission Six continuum compact sources were detected with our ALMA observations at 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 mm (Figure 38).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' These are the five sources Ea, Eb, Wa, Wb, and NE, as well as the new source N (Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Source S was not de- tected by ALMA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' A two-dimensional Gaussian function was fitted to each continuum compact source, and the center, integrated flux, and deconvolved size were mea- sured (Table 10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Only source N was not resolved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The total fluxes of the residuals after subtracting the fitted Gaussian functions from the observed maps are compa- rable to or less than the uncertainties of the fitted fluxes, although the observed continuum intensity distributions in source NE, Ea, Eb, and Wb cannot be well repro- duced with a Gaussian function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' It is noteworthy that the major axis of these resolved continuum sources is al- most precisely perpendicular to the jets associated with them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' In addition, in the sources NE, Ea, Eb, and Wb, the compact C18O emission coincident with the com- pact continuum emission is observed and shows a clear velocity gradient along the major axis of the continuum emission (Section 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Thus, these compact continuum components likely trace the circumstellar disks around the protostars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The inclination angles of the circumstel- lar disks were estimated from the ratio of the major and minor axes of the continuum emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The same region was also observed with ALMA at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9 mm in Tobin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Source N was not detected at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9 mm, and the other sources were detected and resolved with the ALMA 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9 mm observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The de- convolved orientations and sizes measured at 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 mm are consistent with those at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9 mm within the uncertainties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The spectral indices of these continuum sources between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 mm were computed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Except for source Eb, all the continuum sources have spectral indices ≲2, sug- gesting that the continuum emission is optically thick.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 mm continuum emission in source Eb is likely optically thin, and the total (dust+gas) mass (M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3mm) of the circumstellar material around source Eb is esti- Figure 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' An ALMA self-calibrated continuum 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3mm image showing the principal submm sources of the SSV 63 multiple system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' All except source S are detected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' ALMAI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3mmcont N NE Wb Eb Wa Ea 2000AUThe HH 24 Star Forming Complex 35 Table 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Gaussian fitting of the 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 mm continuum emission Source RA Dec Flux PA Major Minor Residual i α (ICRS) (ICRS) (mJy) (◦) (mas) (mas) (mJy) NE 05:46:08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='921 −00:09:56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='11 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='4 129.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2 141±3 48±4 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8 Ea 05:46:08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='485 −00:10:03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='04 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 109±1 66±1 −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 Eb 05:46:08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='427 −00:10:00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='50 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7 238.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7±2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='4 440±12 279±14 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 Wa 05:46:07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='854 −00:10:01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='30 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='4 96±2 42±2 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 Wb 05:46:07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='836 −00:09:59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='59 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7 223.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 244±1 98±1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='4 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='4±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 N 05:46:08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='457 −00:09:54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 · · · · · · −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='07 · · Note—PA is the position angle of the major axis from north to east.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Major and minor axes are the deconvolved FWHM widths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The fluxes in the residual maps were computed in an area of approximately twice of the apparent size of the continuum emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' i is the inclination angle to the plane of the sky computed from the ratio of the major and minor axes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' α is the spectral index between 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9 mm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Source N is not resolved and not detected at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9 mm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The uncertainty of α includes the uncertainty of the absolute flux calibration of 10%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Integrated intensity map of the C18O emission in the HH 24 region obtained with the ALMA observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The integrated velocity range is 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 to 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The map is centered at source Eb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' mated as M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3mm = D2Fν κBν(Td), (1) where D is the distance, Fν is the continuum flux at 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 mm, κ is the dust mass opacity, and Bν(Td) is the Planck function at a temperature Td.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' κ at 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 mm is adopted to be 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='019 g−1 cm2 (Beckwith et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1990), which includes a gas-to-dust mass ratio of 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Td is assumed to be 20–94 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Td of 94 K was estimated from the stellar luminosity, which can be considered as an upper limit because the protostellar source was resolved to be a multiple system (Tobin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3mm in source Eb was estimated to be 3–18 MJupiter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' C18O (2–1) emission Extended C18O emission associated with the large- scale clouds is detected at VLSR ∼ 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5–11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 km s−1 (Fig- ure 39).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' At higher velocities relative to the cloud veloc- ity, compact C18O emission is seen around sources NE, Ea, Eb, and Wb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' In these four sources, the high-velocity blue- and redshifted C18O emission is well aligned along the major axis of the continuum emission (Figure 40a, 41a, 42a, and 43a), which likely traces the disk rotation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We constructed kinematical models of a geometrically- thin Keplerian disk and performed fitting to the high- velocity C18O emission in sources NE, Ea, Eb, and Wb to measure stellar mass (M⋆) and systemic veloc- ity (Vsys).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Two disk models with different intensity profiles, Gaussian and power-law functions, were adopted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' For each source, the center, orientation and inclination an- gle of the model disks were adopted from the continuum results (Table 10) and were fixed in our disk models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Thus, the free parameters in our disk models are M⋆, Vsys, and additional parameters to describe the inten- sity profiles (three and two parameters for the power- law and Gaussian profiles, respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The fitting was performed with the velocity channel maps, and only the velocity channels without significant extended C18O emission were included in the fitting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The velocity range for the fitting of each source is listed in Table 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We generated velocity channel maps of the disk models, and convolved the model channel maps to the same beam sizes as the observed maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Then, the residuals were calculated within a 1′′ region centered at the contin- uum peak after subtracting the model maps from the observed maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We searched for the best-fit parame- ters by minimizing the residuals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We did not simulate ALMA observations and sample the uv coverage on the model channel maps because the disk sizes are smaller than the maximum recoverable angular scale of the ob- servations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 15 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='45 10 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='70 (arcsec 5 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='96 S mJy/beam*km/s offset 0 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='22 Dec 5 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='48 10 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='74 15 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 10 5 5 10 15 RA offset (arcsec)36 Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Table 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Disk properties and stellar masses Source Mdisk Rdust Rgas M⋆ Vlsr (MJ) (au) (au) (M⊙) (km s−1) NE · · 51±1 245+12 −17 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 Ea · · 39±1 161+3 −14 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 Eb 3–18 159±4 332+23 −3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 Wa · · 35±1 · · · · · · Wb · · 81±1 492+4 −12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 Note—Except for Source Eb, the continuum disks are optically thick at 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 mm, so the disk mass cannot be estimated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The C18O fitting results with the Gaussian intensity profile are adopted here for comparison with the continuum disk size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The disk radius is defined as twice the 1σ width of the best-fit Gaussian profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (a) Integrated intensity maps for source NE of the blue- and redshifted high-velocity C18O emission (blue and red contours) overlaid on the 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 mm continuum map of source NE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The integrated velocity ranges of the blue- and redshifted high-velocity C18O emission are listed in Table 12, where the velocity ranges adopted in the model fitting are listed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The contour levels start from 4σ in steps of 4σ to 20σ and then in steps of 10σ, where 1σ is 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2 mJy beam−1 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (b) Total integrated intensity map of the C18O emission in the disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' A Keplerian mask generated based on our best-fit disk model was applied to the C18O velocity channel maps to minimize the contamination from the cloud emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' A white ellipse shows the beam size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (c) Azimuthally averaged intensity profiles of the C18O emission in the disk (data points) extracted from (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Blue and red dashed lines present the intensity profiles extracted from the maps of the model disks with the power-law and Gaussian intensity profiles, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (d) and (e) PV diagrams of the C18O emission along the major axis of the disk (gray scale) in comparison with those extracted from the best-fit disk models (red contours) with the power-law and Gaussian intensity profiles, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The contour levels start from 2σ in steps of 1σ, where 1σ is 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7 mJy beam−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' mJy/bedm mJy/beam=km/s 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='18 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='37 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='56 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='75 4:94 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='13 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='32 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0615:132120272733.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='343941 (a) (b) (c)40 NE 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 (s/us+ru) 30 (arcsee) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 Dec offset Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 20 Intenstty 10F 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 0,5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 RA offset (arcsed) RArofiset(arcsec) Radius(oresee) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 (d) (e) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 (arcsec) (55510) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 Offset 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5F 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='00 10 4 6 8 10 12 1:4 6 8 12 14 Velocity (km: s) Velocity (km s)The HH 24 Star Forming Complex 37 Figure 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Same as Figure 40 but for Source Ea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' In (a), 1σ is 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 mJy beam−1 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' In (d) and (e), the contour levels start from 2σ in steps of 3σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Same as Figure 40 but for Source Eb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' In (a), 1σ is 1 mJy beam−1 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' In (d) and (e), the contour levels start from 2σ in steps of 3σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' muy/beam mJy/beam+km/s 0:13 4182 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='51 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='21 18,90 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='60 28,29 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='06142926.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='53 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='76509963.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='227545 (a) (b) (c) Ea 015 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 (s/wy+kru) 60 (arcsec) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 40 offset Intensity Dec 20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 Q 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 RAoffset (arcsec) RA ofiset (arcsec) Radius (arcsec) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='00 (d) (e) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 Offset 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5F 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 5 10 15 5 10 15 Velocity (km s-") Velocity (kmi s)mJy/beam muy/beamkm/s 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1:3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='28 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='44 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content="59 0:75 06'0 1." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='05 20117.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3832.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='75:48:126349:78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='86:94:23 100 (a) (b) (c) Eb 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 80 (s/u+knw) (aresec) (aresec) 60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 Decoffset 0 Intensity 40 Dec 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='15 20 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='4 016 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 RA offset (arcsec) RA offset (orcsec) Radius: (oresec) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 (d) (e) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 05 (orasec) (aresee) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 Offset 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0L 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 6 8 10 12 14 6 8 10: 12 14 Velocity (km) s) Velocity(kms")38 Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The best-fit parameters are listed in Table 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We found that for source Ea, the outer radius of the disk model with a power-law intensity profile (Rout) could not be constrained with our fitting, so it was fixed to be 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='′′4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We confirmed that the best-fit M⋆ and Vsys of source Ea are not sensitive to the choice of the fixed outer radius, and that the results remain unchanged when the outer radius is adopted to be 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='′′3 or 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='′′6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The uncertainties in the disk orientation and inclination are included in the error propagation in our fitting, although they are not free parameters in our disk models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We note that the uncertainty of M⋆ in Table 12 does not include the uncertainty due to the geometrically thin approximation in our disk models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' There could be an additional uncertainty in M⋆ of 10%–20% if the C18O emission traces a flared disk, especially when the disk is highly inclined (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Braun et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Nonethe- less, the mass estimates clearly show that both source NE and Ea, with masses of about 2 M⊙, are much more massive than a T Tauri star, and in fact will later emerge from the cloud core as young Herbig Ae stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Sources Eb and Wb will become observable as massive T Tauri stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Given that the sources may still experience signif- icant accretion, these could be conservative estimates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' To reveal the distributions of the C18O emission in the disks with least contamination from an ambient enve- lope or cloud emission, we constructed Keplerian masks based on our best-fit disk models and applied them to the observed velocity channel maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The total inte- grated intensity maps of the C18O emission after ap- plying the Keplerian masks are shown in Figures 40b, 41b, 42b, and 43b, but diffuse emission can still be seen in source Ea, Eb, and Wb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We extracted azimuthally averaged intensity profiles of the C18O emission from the Keplerian masked maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The observed intensity profiles in source NE and source Ea could be fitted with our simple disk models (Figures 40c and 41c), while those in source Eb and Wb could not be fully explained with simple Gaussian or power-law functions (Figures 42c and 43c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' In source Eb and Wb, the power-law disk models fit the central and outer intensity profiles better, and the Gaussian disk models describe the intensity profiles at intermediate radii better.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Nevertheless, the best-fit M⋆ and Vsys of all the sources are not sensitive to the intensity profiles assumed in the disk models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The best- fit M⋆ and Vsys from the fitting with the Gaussian and power-law intensity profiles are consistent within the un- certainty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' In panel (d) and (e) in Figures 40–43, the ob- served position–velocity (PV) diagrams along the disk major axes are compared with those extracted from the best-fit disk models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The observed velocity structures of the compact C18O emission around source NE, Ea, Eb, and Wb indeed can be explained with Keplerian rota- tion, and significant extended emission associated with the ambient envelopes or clouds is also seen in the PV diagrams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Summary of source properties Table 11 compares the disk sizes, M⋆ and Vsys in our targets in the HH 24 region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The best-fit parameters of the C18O disk models with Gaussian intensity pro- files are adopted here for comparison with the contin- uum results which were also fitted with the Gaussian functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The disk radius is defined as twice the 1σ width of the fitted Gaussian function, the same as that in Tobin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The radii of the gaseous disks traced by the C18O emission are two to six times larger than those of the dusty disks traced by the continuum emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This is similar to the observations of several T Tauri disks (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Sanchis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Nevertheless, the significant cloud and/or envelope contamination is seen in the C18O emission in our data, so the disk com- ponents cannot be fully separated from the ambient gas (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', panel (b) in Figures 40–43), which introduces an uncertainty in our estimated radii of the gaseous disks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Observations at higher resolutions and sensitivity and more detailed models are needed to fully separate the disk and envelope components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' CORE KINEMATICS AND MOLECULAR OUTFLOWS Our ALMA data also includes observations of the J=2-1 transitions of 12CO, 13CO, and C18O, the J=5- 4 transition of SiO, and the 3(0,3)-2(0,2) transition of H2CO (Table 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' To study the core and outflows, we used our ALMA data from the compact figuration ob- servations of these molecular lines (with a synthesized beam of about 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5′′ ×0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8′′) as these data are more sen- sitive to extended structures;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' the higher resolution data over-resolved some of the outflow features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 44 shows an outline of the primary beam of the ALMA ob- servations superimposed on the HST [Feii] image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The locations of the five brightest 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 mm continuum sources detected in the ALMA pipeline products are marked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Overview of ALMA line data In nearby clouds, the 12CO lines provide one of the best and most commonly used tracers of molecular out- flows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 12CO emission is sensitive to molecular gas with a density n(H2) > 102 cm−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 45 contains six panels showing the velocity structure of 12CO emission optimized to show emission produced by outflows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Each The HH 24 Star Forming Complex 39 Figure 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Same as Figure 40 but for Source Wb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' In (a), 1σ is 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 mJy beam−1 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' In (d) and (e), the contour levels start from 2σ in steps of 3σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' panel shows both a redshifted and a blueshifted velocity range indicated by the cyan and red labels at the top.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' At the largest red and blueshifted velocities (top-left), compact flows are seen to be associated with the sources Eb and Wb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' These show radial velocities of more than 15 km s−1 with respect to the velocity of the SSV 63 cloud core in both lobes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' For velocities closer to the 9 to 10 km s−1 cloud velocity, the 12CO emission be- comes impacted by the high optical depth of the 12CO line and the loss of large-scale structure resolved out by the ALMA interferometer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Gas associated with outflows close to the core radial velocity tends to be hidden be- hind the 12CO photosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 46 is similar to Figure 45, but for the 13CO line, with each panel showing both a redshifted and a blueshifted velocity range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' with the red- and blueshifted emission from the highest speeds (left panel) to the low- est speeds (right panel) with respect to the 13CO line center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This figure shows that also in the lower opacity 13CO line, low velocity flows and cavity walls associated with the outflows powered by the HH 24 YSOs become apparent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 13CO emission is a tracer of molecular gas with a den- sity n(H2)> 103 cm−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 47 shows the 13CO emis- sion in the SSV 63 core covering the radial velocity range from 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='98 to 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='38 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Each panel shows three ad- jacent velocity ranges in blue, green, and red indicated by the corresponding colored labels at the top of each panel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' C18O emission is expected to be optically thin, thus displaying the kinematic structure of those small-scale features with a density n(H2)> 103 cm−3 that are not resolved out by the interferometer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 48 shows the C18O data cube as three adjacent velocity channels in blue, green, and red from Vlsr = 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='22 to 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='14 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Formaldehyde (H2CO) emission traces gas one to two orders of magnitude denser than that traced by C18O, 13CO, and 12CO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 49 shows the H2CO data cube as a mosaic where each panel shows three adjacent ve- locity channels in blue, green, and red from Vlsr = 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='98 to 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='35 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The MO1 Outflow from Source Eb The diffuse continuum source Eb powers a compact, arc-second-scale bipolar 12CO outflow we label as Molec- ular Outflow 1 (MO1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' MO1 can be traced ∼2′′ (800 AU) from its source (Figure 50).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The red lobe is lo- cated north-northwest of Eb, while the blue lobe is to the south-southeast of the source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The molecular out- flow axis is perpendicular to the diffuse disk surrounding Eb shown in Figure 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The position-velocity diagram (Figure 51) shows large velocity spikes at red and blue velocities displaced by less than 1′′ from the position of Eb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Given the compact nature of the outflow lobes, we do not see any other clear velocity structure (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', de- pendence on distance from source) in the p-v diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The ALMA SiO data cube shows only one feature in the primary beam, a compact knot of SiO emission as- muy/beam ry/beomiks 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='15 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='62 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='09 75510.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0212491495 17914.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7927.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7940.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7853.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='78667779.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='77 80 (a) (b) (c) Wb 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 60 (arcsec) (228010) offset 0:0 Dec offset 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 40 Intensity Bec 20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 0:0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6 80 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9 RA offset (arcsec) RA offset (aresed) Rodlusloreseo) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='Q 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 D (d) (e) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='51 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 10 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 15 5 10 15 Vetoaity (km s") Veloaity (km s")40 Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Table 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Fitting of the C18O emission with kinematical disk models Power-law intensity profile Source Rout M⋆ Vlsr log I0 p Velocity ranges (mas) (M⊙) (km s−1) (Jy) NE 701+63 −59 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 −3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='44±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='03 −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9–8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 & 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9–14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 Ea 400a 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 −3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='56±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='03 −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5–8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 & 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5–14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 Eb 701+24 −17 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 −3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='14±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01 −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3–9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 & 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5–14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 Wb 853+38 −17 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 −3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='05±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01 −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9–8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 & 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1–14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 Gaussian intensity profile Source σR M⋆ Vlsr log I0 Velocity ranges (mas) (M⊙) (km s−1) (Jy) NE 287+14 −20 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 −3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='05 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9–8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 & 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9–14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 Ea 188+3 −16 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='79+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='04 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5–8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 & 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5–14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 Eb 388+27 −4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='94+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='04 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3–9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 & 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5–14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 Wb 576+5 −14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 −3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='11±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9–8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 & 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1–14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 a Rout for source Ea could not be constrained by model fitting and was fixed at 400 mas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Note—The intensity profile of the model disks is adopted to be power-law or Gaussian functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The power-law function is described with a power-law index p, an outer radius Rout, and the intensity at a radius of 100 au in a logarithmic scale log I0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The Gaussian function is described with the 1σ width σR and the peak intensity in a logarithmic scale log I0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' M⋆ and Vsys are stellar mass and systemic velocity, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' V ranges are the velocity ranges included in the fitting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The velocity channel maps at velocities close to Vsys were excluded in the fitting to avoid cloud contamination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The uncertainty does not include the systematic uncertainty due to the geometrically thin assumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' If the C18O emitting surface is flared with a scale height (h/r) larger than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1, there is an additional uncertainty in M⋆ of 10%–20%, especially when the disk is more inclined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The ALMA primary-beam field of view overlaid on the HST [Feii] image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The center of the ALMA observations is at 5:46:08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='35 -00:10:01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7 (2000) and the radius of the field is 20 arcsec, corresponding to where the sensitivity decreases to 20% of that of the phase center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The six sources detected by ALMA at 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3mm continuum are marked with red circles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (J2000) R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (J2000) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='46:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0The HH 24 Star Forming Complex 41 Figure 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 12CO mosaic of outflows in the HH 24 core region as observed with ALMA in the range -6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7 < Vlsr < 30 km s−1, with the most extreme blue- and red-shifted velocities in the upper left panel, and the velocities closest to the core emission in the lower right panel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The observations were done with the 12m array and have a spatial resolution of about 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 arcsec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 13CO mosaic of outflows in the HH 24 core region as observed with ALMA in the range 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='07 < Vlsr < 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='04 km s−1, with the highest blue- and red-shifted velocities in the left panel, and the velocities closest to the core emission in the right panel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The observations were done with the 12m array and have a spatial resolution of about 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 arcsec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' CO Vist 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 3010 km/s CO Visr- 335 km/s co Visr 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6451 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 km/s 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 09:50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 09:50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 09:50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 0:10:00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 5:46:09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 H08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 5:46:09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 5:46:09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 CO Visr= 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7 1328148 km/s CO Vsr= 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8083 1a0 km/s 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 CO1 VIsr = 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 89 km/s 09:50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 :50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 60 0:10:00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 5:46:09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 5:46:0910 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 5:46:09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='657.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='39 0以0155 km/s 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='488.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='23 km/s 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3189.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='08 749.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='89 km/s 09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6 5:46209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 5:46:09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 05:46:09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 085 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 5:46:09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 085 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='542 Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' ALMA 13CO channel maps of the HH 24 core region from Vlsr = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='98 to Vlsr = 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='38 km s−1, with a velocity spacing between the panels of ∼1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='25 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Each panel shows three velocities, in blue, green, and red as listed in each frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The observations were done with the 12m array and have a spatial resolution of about 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 arcsec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' sociated with the northwest end of the redshifted lobe of the MO1 flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The SiO is confined to a 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6′′ by 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8′′ region extending from the source to 5:46:08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='317, 0:09:59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The SiO emission peaks at Vlsr = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7 km s−1 at this location (thick red circle in Figure 50).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' A secondary peak at this velocity nearly coincides with the source (thinner red circle in Figure 50).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Between these two low-velocity peaks, the SiO spectrum shows a fainter tail of emission extending to 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The minor axis of the source Eb disk and the compact 12CO outflow is misaligned with respect to the promi- nent C and E jets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Furthermore, the CO emission has the opposite parity in Doppler shifts: while the C jet north-northwest of the SSV 63 core is blueshifted and the E jet south-southeast of the core is red-shifted, the compact 12CO flow from source Eb has the opposite Doppler shifts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Thus, there is no obvious connection be- tween molecular outflow MO1 with the E/C jet pair or any other Herbig-Haro object or near-infrared emission line feature in the SSV 63 core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This 12CO outflow exhibits the lowest and highest ra- dial velocities with respect to the SSV 63 cloud core in the entire ALMA field and is the only source powering SiO emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The SiO emission suggests that very re- cent outflow activity may be impacting dense gas in the immediate surroundings of this YSO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The lack of obvi- ous jets, HH objects or MHOs suggests that accretion and outflow activity may have been very weak or absent in recent past, say within the last few hundred or few thousand years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The MO2 Outflow from Source Wb The molecular outflow associated with source Wb, la- beled MO2, is the second most prominent molecular outflow from the SSV 63 sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' MO2 has a signif- icantly more extended morphology than that of MO1 and exhibits red- and blue-shifted velocities to the south- east and northwest of Wb, respectively (see Figure 52).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The axis of MO2 is approximately perpendicular to the Wb circumstellar disk major axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The morphology and kinematics of MO2 are similar to those expected from a molecular outflow formed by entrainment by a wide-angle wind (as described in Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' At the highest velocities relative to the cloud rest-velocity (upper-left panel in Figure 45) there is a compact cone of redshifted 12CO emission extending to the southeast, 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='98532 2 km/s 6266 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='655.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='98 km/s 7878 Km/s 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 009 090 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 OOL 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 960 0:60 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 5:46:08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 07/5 07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content="5 0'60 08." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 5:46:08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 10120 09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 0910 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 5:46:08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 0715 070 2:00 872元9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content="06 9 h krm/s 8 26'6 10." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='30 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='391072 中Bekm/s 2155 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='97 1209 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8 km/s 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content="0 009 0'09 0'09 05." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0-0:10:00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='055.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 5:46:08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 020 09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='46:08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 5:46:08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0The HH 24 Star Forming Complex 43 Figure 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' ALMA C18O channel maps of the HH 24 core region from Vlsr = 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='22 to Vlsr = 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='14 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The velocity spacing between the panels is ∼0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='25 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Each panel shows three velocities, in blue, green, and red as listed in each frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The observations were done with the 12m array and have a spatial resolution of about 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 arcsec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' and a more open cone of blueshifted emission extending towards the northwest (Figure 52).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The axes of sym- metry of these small-scale 12CO lobes is closely aligned with the orientation and parity of the optical jet J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' How- ever, the 12CO Doppler shifts are more than an order- of-magnitude lower than the tangential velocities of the jet J knots, and the spatial extent of 12CO emission that can be related to an outflow from source Wb is at least two orders-of-magnitude smaller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The channel maps show discrete emission (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', blobs) with higher velocity at larger distances from the source, and the p- v diagram along the axis of MO2 shows parabola-like structures (see Figure 53).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The MO3 Outflow from Source N .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='22 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='79 loma 00 00 09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 055 CED 5 05 OmA 09:5 07-6 5:608:0 07 :5 5:40:.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 DT5 333 0 omPa mte 00 588:30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='00 E4609U 08# 07$ 00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 095 4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 025 1347 Bun /e Q:97 09,5 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 504E0-0 n44 Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' ALMA H2CO channel maps of the HH 24 core region from Vlsr = 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='98 to Vlsr = 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='35 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The velocity spacing between the panels is ∼0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Each panel shows three velocities, in blue, green, and red as listed in each frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The observations were done with the 12m array and have a spatial resolution of about 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 arcsec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' A third, clearly defined, compact molecular outflow is powered by source N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This compact molecular outflow (denoted MO3) is relatively collimated but asymmetric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' There is clear redshifted emission associated with molec- ular outflow from about 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5′′ out to about 5′′ (2000 AU) from the source, whereas the blue lobe extends from the source out to only about 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5′′ (see Figure 54).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The position-velocity diagram (Figure 55) shows a velocity structure in the redshifted lobe commonly known as a “Hubble-wedge” and usually seen in molecular outflows formed through jet bow shock entrainment of ambient gas (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2000;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Arce & Goodman 2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' On the other hand, the velocity structure of the blue lobe is not as clearly defined as that of the red lobe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 85 krns 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='05 2 km/s 09:A 798 849 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9B 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='16 krm/s 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 0:09 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 5:46:0907 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 075 09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 5:46:09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 08:0 07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 5:46:09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 QALS 08:0 07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 8 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='49 966 km/s 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='00 106 km/s 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='50 10187 km/s 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content="0 0'09 55." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 0190 05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 6:46:09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 0815 08:0 075 09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 5/46:09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 0B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 075 09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 6:46:09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 0BU5 075 11:00 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='17 km/s 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='61 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='67 km/s 80 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='18 km/s 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 0:10:00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0550 0:10:00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='055 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='90 0390 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 5:46:09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 06.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 5:46:09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 5:46:09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5The HH 24 Star Forming Complex 45 Figure 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The compact 12CO molecular outflow MO1 from source Eb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Blue contours show the integrated inten- sity emission over −3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 ≤ VLSR ≤ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9 km s−1 (with first contour and contour steps of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='06 Jy beam−1 km s−1), and red contours show the integrated intensity emission over 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 ≤ VLSR ≤ 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 km s−1 (with first contour and con- tour steps of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='09 Jy beam−1 km s−1, respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The dashed black line shows the direction along which the position-velocity diagram shown in Figure 51 is taken.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The flow is perpendicular to the axis of the disk around source Eb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The large red ellipse marks the primary peak of SiO emission, and the smaller circle marks the secondary SiO peak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Position-velocity diagram of 12CO emission along the axis of the molecular outflow MO1 from source Eb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The 12CO molecular outflow MO2 from Wb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Blue contours show the integrated intensity emission over −12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6 ≤ VLSR ≤ −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 km s−1 (with first contour and con- tour steps of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='045 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='02 Jy beam−1 km s−1, respectively), and red contours show the integrated intensity emission over 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 ≤ VLSR ≤ 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 km s−1 (with first contour and con- tour steps of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 Jy beam−1 km s−1, respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The dashed black line shows the direction along which the position-velocity diagram in Figure 53 is extracted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Position-velocity diagram of 12CO emission along the molecular outflow axis of the molecular outflow MO2 from Wb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 0°09\'59" J2000 10\'00" Eb Declination 10\'01 10\'02" 5h46m08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5s 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='4s 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3s RightAscension (J2000)20 LSR Velocity [km/s] 10 0 4"-2″0″ 2″4" Angular Offset-0°09\'56 (J2000 09\'58 Wb Declination 10\'00° Wa 10\'02 10\'04" 5h46m08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2s 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0s 07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8s 07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6s Right Ascension (J2000)20 LSR Velocity [km/s] 0 6"-4"-2"0″ 2″4" 6 Angular :Offset46 Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The 12CO molecular outflow from source N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Blue contours show the integrated intensity emission over 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9 ≤ VLSR ≤ 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9 km s−1 (with first contour and contour steps of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='05 Jy beam−1 km s−1), and red contours show the integrated intensity emission over 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9 ≤ VLSR ≤ 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 km s−1 (with first contour and contour steps of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='17 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='07 Jy beam−1 km s−1, respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The dashed black line shows the direction along which the position-velocity diagram shown in Figure 55 is taken.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Position-velocity diagram of 12CO emission along the axis of the molecular outflow MO3 from source N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' There are no obvious connections of MO3 to any Herbig- Haro objects or near-IR emission line features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The low millimeter flux of source N, the non-detection of this YSO at visual, IR, or radio wavelengths, com- bined with the presence of a compact, low-velocity molecular outflow, suggests that it may be a sub-stellar object.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' It could be the youngest of the active accretors in the SSV 63 cloud core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Outflow from Source Ea?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Most of the low-velocity blueshifted 12CO emission in the ALMA field is concentrated in the southern half of the field and extends from VLSR ∼1 to ∼8 km s−1, thus blueshifted relative to the cloud velocity and, re- markably, opposite to the redshifted radial velocity of the optical jet E emerging from source Ea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The most intense emission in this radial velocity range is concen- trated south of source Ea, where within about 5′′ of this source the emission resembles a clumpy, low-velocity flow, see Figure 45 and Figure 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The blueshift of the 12CO emission south of source Ea suggests, in light of the much faster redshifted ve- locities of the optical jet E, that the CO emission here represents gas that has been deflected towards us by either a wide-angle wind surrounding the jet, or ma- terial was ejected at right angles from the axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' As faster ejecta in a velocity-variable jet overtakes slower material in the jet beam, material can be ejected to the side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Over time, the pressure of such sideways moving ejecta or a wide-angle wind can create a wide-angle cav- ity whose near-side walls would be expanding towards the observer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' As discussed in Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1, the dimin- ishing ratio of [Feii]/[Sii] as jet E moves away from its source indicates a strong decline in extinction towards the observer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The middle panel in Figure 56 illustrates the decline in the [Feii]/[Sii] ratio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We conclude that source Ea is not driving a major molecular outflow as it emerges from the cloud core, but shows kinematic evidence for either entrained or side- ways splashing gas at blueshifted velocities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' It should be noted that close to, and southwest of, source Ea we also detect faint redshifted 12CO emis- sion at VLSR ∼ 16 to 18 km s−1(middle upper panel of Figure 45).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' At these velocities the emission is com- pact, extending to the southwest only out to 1′′ to 2′′ from Ea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We note that VLA X-band maps of source Ea shows evidence for a stubby extension perpendicular to the axis of the E-jet, which is unlikely to be from the circumstellar disk, since it is uncommon to detect disks at the relatively low frequency of 10 GHz, so it is prob- ably another bipolar jet, indicating that Ea most likely is a close binary (Figure 10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Low-velocity Features and Outflow Cavities 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The Region between Source Ea and Eb Between source Ea and source Eb there is a redshifted triangular feature seen at around Vlsr∼11 to 14 in both 12CO and 13CO (Figures 45 and 46).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' At slightly lower velocities Vlsr∼10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 to 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6 km s−1 (central two pan- els in Figure 46) there appears to be wide-angle, U- shaped cavity walls opening up from source Eb towards 0°09\'52 Declination(J2000) 53" 54" N 55" 56″ 5h46m08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8s 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6s 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='4s 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2s Right Ascension (J2000)15 LSR Velocity [km/s] 10 5 0" 2" 4" Angular OffsetThe HH 24 Star Forming Complex 47 Figure 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (left) Low-velocity 12CO possibly associated with the walls of a cavity surrounding the C and E jets from source Ea plotted on top of the HST WFC3 (F164N filter) image of the region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Blue contours show the integrated intensity emission over 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 ≤ VLSR ≤ 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 km s−1 (with first contour and contour steps of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='04 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='05 Jy beam−1 km s−1, respectively), and red contours show the integrated intensity emission over 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6 ≤ VLSR ≤ 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='4 km s−1 (with first contour and contour steps of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 Jy beam−1 km s−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Only emission south of declination -00:09:57 (J2000) is shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Emission that does not extend beyond 3′′ of the map edge is not shown as it is most likely noise from the low-sensitivity edge of the map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Crosses show the position of the continuum sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (right) The 13CO outflow cavity walls plotted on top of the HST WFC3 (F164N filter) image of the region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Contours show the integrated intensity emission over 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 ≤ VLSR ≤ 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8 km s−1 (with first contour and contour steps of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='052 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='07 Jy beam−1 km s−1, respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The dashed circle shows the field-of-view of the ALMA map, given by the distance from the center where the sensitivity decreases to 20% of that of the phase center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Emission within 6′′ of the map edge is not shown as it is most likely noise from the low-sensitivity edge of the map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Crosses show the position of the continuum sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (center insert) The HH 24 E jet has a dramatic change in the ratio of [Feii] and [Sii] emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' As discussed in the text, this primarily reflects changes in extinction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The insert shows the ratio [Feii]/[Sii] of the HST images, such that black is [Feii] strong and white is [Sii] strong.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' It is clear that the blueshifted 12CO emission is associated with high extinction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' the northwest at PA ∼330◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' At slightly higher veloci- ties between 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6 and 14 km s−1, this U-shaped feature disappears.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The triangular redshifted feature northwest of source Ea and its U-shaped extension (Figure 56-left) may trace the receding, far-side of a wide angle cavity excavated over time by either a wide angle wind or sideways splash- ing material surrounding the C-jet ejected by source Ea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Support for this scenario comes from the detection of both the blue- and red-shifted gas at 13CO (Figure 46).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 56-right illustrates the relationship between the C and E jets emerging from source Ea and the low- velocity cavity walls traced by 13CO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' At LSR velocities between 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 and 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8 km s−1 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', very low redshifted velocities), the 13CO emission is concentrated in the cen- ter of the ALMA field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The emission peaks close to source Eb and shows narrow, curved extensions to the north, south, east and west of Eb that trace a pair of parabolic structures that open to the northwest and the southeast.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The axis of symmetry of these structures is close to the orientations of the C and E jets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The apex of the south-facing feature coincides with the redshifted CO emission close to Ea and thus likely traces the walls of the outflow cavity associated with jet E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The base (and center) of the northern parabola is approximately at the position of Eb and its axis is coincident with that of jet C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Therefore, this structure likely traces the walls of the cavity evacuated by the outflow associated with jet C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The compact MO1 outflow and redshifted SiO emis- sion northwest of and driven by source Eb has an axis aimed more to the southeast and northwest, and appears to be unrelated to the cavity walls discussed above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Source Wa Near-infrared HST images show a bright compact re- flection nebulosity located about 1 arcsec south-east of source Wa which may trace an outflow cavity (Figure 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' If so, source Wa may also contribute to the generation 0°0940" 09\'50 (J2000) 10\'00" Declination 10°10" 10/20" 5h46m09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5s 09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='03 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='53 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0s $S20 07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0s 5h46m09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5s 09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='03 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='53 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0s 07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0s Right Ascension (J2000) Right Ascension (J2000)48 Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' A low-velocity formaldehyde flow stretches to- wards the north-east, seemingly following the base of the optical G-jet emanating from source NE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The contours are integrated over Vlsr from 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6 to 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' of blueshifted 12CO emission in the southern part of the ALMA field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' A filamentary knot complex known as HH 24B (Herbig 1974) is located a few arc-seconds south of source Wa which may trace shocks where a wide-angle wind impacts the southern part of the SSV 63 cloud core, see Figures 12 ([Sii]) and 8 (H2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The ALMA 12CO map of outflow MO2 from source Wb (Figure 52) shows a wing of redshifted 12CO emission south of source Wa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This may trace the redshifted side of a wide-angle cav- ity surrounding the reflection nebulosity and filamentary H2 and [Feii] emission south of source Wa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Formaldehyde Kinematics At low blueshifted velocities (from about 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6 km s−1 to 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7 km s−1) the H2CO emission is concentrated in a 6′′ to 7′′ wide structure extending from the sources Ea and Eb and to the east-northeast up to the edge of the ALMA primary beam (Figure 57).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 49 shows a clear velocity gradient, of about 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 km s−1 pc−1, along the structure towards the northeast with decreasing velocity (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' greater blueshifted veloci- ties away from the central cloud velocity) at increasing distances from the field’s center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This is especially evi- dent in the upper right frame in Figure 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The feature shown there appears centered on source NE and exhibits U-shaped cavities facing away from this source along the axis of jet G propagating towards the northeast.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' At the edge of the H2CO flow, faint 13CO emission is detected at about Vlsr ∼ 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2 km s−1 which appears to trace the walls of the structure seen in H2CO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Faint C18O emis- sion is detected along the center of the H2CO flow, at low redshifted velocities (from about 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2 to 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7 km s−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The C18O emission shows a velocity gradient where we, in contrast, see higher redshifted velocities the further away from the center of the field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The interpretation of this formaldehyde flow is diffi- cult.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' On morphological grounds, it appears to be as- sociated with the cavity of the wide G-jet driven by source NE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The increase in velocity of the formalde- hyde flow with increasing distance (a ’Hubble-flow’) from source NE could be caused by an explosion in this source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' But it could also simply reflect geometry of the background cavity wall, which might be curving towards us.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The projection into our line-of-sight of the flow- vectors along such a curve could produce the observed velocity field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' An Infalling Streamer?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' At VLSR from 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2 to 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8 km s−1 we see a filamen- tary structure, in both the 13CO and C18O maps, that extends from the field center out to the edge of the field (see Figure 58).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This structure, referred to as the streamer, shows a velocity gradient in which the gas at larger radii have, on average, lower blueshifted ve- locities compared to the gas closer to the center of the field (see Figure 59).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This could be interpreted as infall from the far-side of the SSV 63 core feeding its center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The streamer is aimed at source Eb in the center of the SSV 63 cloud core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' As an order-of-magnitude estimate, the total C18O emission of the streamer is roughly 5% of the total C18O emission seen in the ALMA data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The mass of the HH 24 core has been measured as ∼2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 M⊙ by K¨onives et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2020) (see Section 9), indicating that the streamer has a mass of roughly 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='12 M⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' However, because ALMA re- solves out most of the extended background emission, this is an upper bound on the mass of the infalling streamer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Assuming an infall speed of 2 km s−1, the infall time from 7,200 AU, corresponding to the angular radius of the ALMA field-of-view, is tin ∼17,000 years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Thus, a rough upper limit to the mass accretion rate into the center is ∼ 7 × 10−6 M⊙yr−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Interpretation of ALMA Data The ALMA observations reveal several ultra-compact, bipolar molecular outflows emerging from YSOs embed- ded in the SSV 63 cloud core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The detected flows emerge from the sources Eb (MO1), Wb (MO2), and N (MO3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The CO emission from these flows range in size from ∼2′′ to ∼10′′ (∼800 to 4,000 AU), one to two orders-of- magnitude shorter than the chains of HH objects and 0°09\'40" 09\'50" Declination(J2000) 10\'00" 10°10" 10\'20" 5h46m09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5s 09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='09 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='58 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0s 07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='58 07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='08 Right Ascension (J2000)The HH 24 Star Forming Complex 49 Figure 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' C18O emission integrated over blueshifted ve- locities shows a streamer feature towards the southwest of the field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The dashed white line shows the direction along which the position-velocity diagram in Figure 59 is taken.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Position-velocity diagram of C18O emission along the major axis of the C18O streamer (see Figure 58).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The center and the edge of the ALMA field is to the left and right, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' MHOs which trace the parsec-scale regions impacted by the jets emerging from the SSV 63 core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Blue- and red- shifted low radial-velocity, “perturbations” to the 12CO and 13CO and the H2CO line wings in the SSV 63 cloud core appear to be linked to outflow activity from sources Ea, Wa, and NE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The radial velocities of these 12CO and 13CO outflows are one to two orders-of-magnitude slower than the proper motions and radial velocities of the visual and near-IR wavelength jets, with detectable molecular emission reaching a maximum Vlsr of 15 to 20 km s−1 compared to the Vlsr of the core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' As with many other highly evolved Herbig-Haro outflows, asso- ciated 12CO outflows are confined to the size-scale of the remnant parent cloud core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' These relatively low-velocity outflow components are likely to be swept-up gas from the parent cloud by the action of velocity-variable jets or wide-angle winds that may surround the jets and be confined to outflow cavity walls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The association of specific jets with individual sources constrains the evolutionary stages of the driving YSOs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The C and E jets are located at the base of the largest parsec-scale chain of HHs and MHOs emerging from the SSV 63 core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This giant flow consists of the MHOs SSE2-east and SSE2-west located ∼14′ (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='65 pc) south of source Ea and the HH 20, 21 and NNW shocks ∼13′ (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='45 pc) to the north.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Comparison of the ALMA and HST images shows that the northwestern base of jet E coincides with the position of source Ea to within 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1′′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This implies that the southern lobe of this parsec- scale flow, powered by the redshifted jet E, emerges from source Ea which has a mass 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9 - 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 M⊙, the second most massive YSO in the SSV 63 core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Assuming a steady, average mass accretion rate of 10−5 M⊙yr−1, it would take 2 × 105 years to accumulate Ea’s mass, the second most massive YSO in the core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Thus Ea may be the oldest or second oldest YSO formed in this core;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' it continues to drive active atomic and ionized jets indi- cating continuing accretion and stellar growth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The most massive YSO is source NE that likely pow- ers the G jet and the associated bow shock located ∼90′′ (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='17 pc) northeast of the SSV 63 core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The association of the G jet with source NE is supported by the orienta- tion of the NE disk, that has a minor axis closely aligned with this flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' There is no evidence for a larger, parsec- scale flow from source NE, indicating that the recent outflow activity responsible for the G jet and associated shocks followed an extended period of no outflow ac- tivity by source NE prior to the launch of the G jet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Assuming a jet speed of 100 km s−1, the dynamical age of the most distant detected bow shock at the head of the G jet is only ∼1,700 years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' DISCUSSION 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The Formation of Jets In the 70 years since the Herbig-Haro phenomenon was discovered (Herbig 1950,1951, Haro 1952,1953) the fun- damental physical processes involved have been gradu- ally established (Schwartz 1983, Reipurth & Bally 2001), as well as the properties of the molecular outflows that result from entrainment by the jets of the surrounding molecular clouds (Bachiller 1996, Bally 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' There is general agreement that jets are launched when accreted 0°0940" 09\'50" 十 (J2000) Declination 10\'00 10\'10 10\'20" 5h46m09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content="5s s0'60 08." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5s 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0s 07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5s 07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0s Right Ascension (J2000)12 LSR Velocity [km/s] 10 8 6 0" 5" Angular Offset50 Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' matter interacts with magnetic fields within a few AU in the star-disk region, although the specific details of models vary greatly, see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Frank et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2014) for a review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' In common for all these models is the issue of what triggers the accretion of matter to the central zone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' A number of disk instability mechanisms have been iden- tified that will lead to accretion with a concomitant out- flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Reipurth (2000) postulated that the giant, parsec- scale HH jets are driven by disk-instabilities induced by close periastron passages during the chaotic motions of the components of newborn non-hierarchical stellar sys- tems, thus force-feeding the jet engine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This is in con- trast to many small jets seen from single stars, which may result from internal disk instabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Breakup of the SSV 63 Multiple System The SSV 63 stellar group is a prototypical multiple system in a non-hierarchical configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' It is an ex- ample of the exceedingly high stellar densities that can be associated with stellar birth: the stellar density of the HH 24 sources is estimated at about 4 × 105 pc−3, which is a factor of roughly 1000 times the stellar density in the center of globular clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This naturally leads to powerful dynamical interactions, and consequently such systems break up on timescales of about 100 crossing times (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Valtonen & Mikkola 1991).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Numerical sim- ulations show that half of all break-ups occur during the embedded phase (Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2010), lasting about 500,000 yr (Evans et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2009), which we then adopt as the upper limit for the age of the SSV 63 system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The discovery that a low-mass young object, the bor- derline brown dwarf SSV 63 Hα 5, has been ejected from the SSV 63 multiple system about 5800 yr ago demon- strates directly the dynamical nature of this little group of protostars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' With an upper limit of, say, 500,000 yr for the age of the SSV 63 multiple system, it is remarkable that we find a runaway star precisely during the last ∼1% of the age of the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Either this is plain luck, or the ejection of low-mass members of the system is a more commonly occurring phenomenon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The top-heavy distribution of masses in SSV 63 might be an indica- tor that many other very low mass objects have been ejected during the lifetime of the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Our search for runaway stars was limited to a small area about 10 ar- cmin around SSV 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' But if an object had been ejected 500,000 yr ago with a velocity of 25 km s−1 then in principle it could by now have travelled more than 4 de- grees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Once Gaia DR4 is released, the proper motion uncertainties will be sufficiently low that a meaningful association with more distant objects can be established.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The escape speed from the SSV 63 system and its core is about 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Objects ejected with a lower speed will remain loosely tethered to the system, and will after a while return to the system, where numerical simula- tions suggest that they will be ejected again, until they eventually are kicked out with a velocity higher than the escape speed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Such almost-escapers can travel substan- tial distances before falling back.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Given the ejection of Hα 5 within the very recent past, it appears likely that there could be a number of other both escaping and returning bodies that were once members of the SSV 63 multiple system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The ejection of low-mass clus- ter members has also been observed in regions of high mass star formation (Orion BN/KL, G´omez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' W49 North, Rodr´ıguez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The energy for an ejection from an unstable triple sys- tem is acquired by shrinking the separation of two mem- bers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Usually the lowest mass member is ejected, and the two remaining members become bound into an ec- centric binary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' But occasionally a low-mass binary is ejected leaving behind a more massive member.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' If the triple is part of a larger multi-body system, the recoil of the remaining binary (or single) will add to the veloc- ity dispersion of the system, and thus facilitate further break-up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' It follows that several of the SSV 63 components are likely to be close binaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This is then consistent with the observation that a number of collimated jets are em- anating from SSV 63 as a result of the inspiraling of bi- naries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Also we note the presence of what appears to be a quadrupolar radio continuum jet from source Ea, indicating that Ea is a close binary system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' A similar quadrupolar radio morphology was found for HH 111 (Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The Fate of the SSV 63 Multiple System The non-hierarchical configuration of the SSV 63 mul- tiple system implies that the system will inevitably un- dergo a dynamical transformation towards a hierarchical configuration, in the process likely losing several of its present members.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' There is evidently no way to pre- dict the details of such a highly stochastic process, but one can approach the issue in a statistical manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We have carried out numerical simulations using the N-body code described in detail by Reipurth & Mikkola (2012, 2015), except that a cloud core and accretion were not included.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We model the SSV 63 system in an XYZ co- ordinate system, where XY is the plane of the sky, and we have assumed that the multiple system is as deep along the Z line-of-sight as it is across the XY-plane, that is, about 6000 AU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We fix the six bodies9 at the 9 The simulations were performed before the seventh member, N, was discovered with ALMA The HH 24 Star Forming Complex 51 observed XY positions and randomly assign Z-values to each of the components in the range ±3000 AU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We assume that the individual components have randomly oriented velocity vectors of 1 km s−1 corresponding to the velocity dispersion in a typical turbulent cloud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This is supported by the radial velocity differences of the stars measured by ALMA (Table 12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' All bodies are assumed to have equal masses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We then run the code 1000 times for 100 Myr and review the end products at 1, 10, and 100 Myr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The results are the same within the uncer- tainties at 1, 10, and 100 Myr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' For 1 Myr the values are as follows: Single bodies: 2919 (69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3%);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Binaries: 958 (22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='7%);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Triples: 319 (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6%);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Quadruples: 19 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='4%);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Higher-order systems: none.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The following conclusions can be drawn from these numbers: (1): Since no system with an order higher than 4 sur- vives, and even those are very rare, it follows that the sextuple SSV 63 system is almost certainly doomed to disintegrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2): We note that 1000 simulations of six stars should lead to 6000 classifications in the above system cate- gories, but the numbers do not add up to 6000, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' some stars are unaccounted for.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' While the simulations are very precise, in about 10% of the cases the anal- ysis code that classifies the outcome cannot determine whether a nearby pair of stars are bound or not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' For ex- ample two stars may be ejected in separate events and move close to each other, but it is not clear if the pair is bound or will become bound as the result of passing close to a third star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Such cases are not counted by the analysis software.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (3): A comparison between these simulations and ob- servations of multiplicity (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Raghavan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2010) shows that in our simulations singles are overrepresented and triples are underrepresented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This is not surprising since our simulations do not include the molecular envi- ronment and the related dissipative processes that tend to bind pairs of stars into binaries and triples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (4): The virtually unchanged numbers of singles, bina- ries, triples, and quadruples at 1, 10 and 100 Myr shows that the dynamical evolution is essentially complete within the first million years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' It follows that the SSV 63 system is presently in a highly dynamical and unstable situation, as expected from its multi-component non- hierarchical configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Similar results are obtained when running the code for higher-order systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' An example of an 8-body system is shown in Figure 60, in which a system with dimensions comparable to SSV 63 completely disintegrates within a million years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' SSV 63 is a specific case illustrating the dynamical evolution of small multiple systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' On a more gen- Figure 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' An example of a numerical simulation of an un- stable eight-body equal-mass system illustrating the chaotic nature of the interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The decay products are single stars as well as a close and a wide binary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The tickmarks are in AU, and the angular scale assumes a distance of 400 pc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' eral level, since numerical simulations show that about half of all ejections occur during the embedded phase while stars are still building their masses (Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2010), it follows that dynamical interactions in small multiple systems play an important role in setting the masses of stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Early ejections will in some cases lead to the formation of brown dwarfs (Reipurth & Clarke 2001), and later ejections at random times will play an important role in shaping the initial mass function (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Bate & Bonnell 2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Flybys and Disk Structure It has been known for some time that dynamical inter- actions in young binaries can have profound effects on circumstellar disks, as recognized in the seminal work of Clarke & Pringle (1993).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Similarly, flybys in clus- ters can warp and truncate disks (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Pfalzner 2003, Pfalzner & Govind 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Additionally, small embed- ded clusters are subject to ram pressure stripping from their passages through the ambient medium (Wijnen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Such effects are particularly pronounced in small non-hierarchical multiple systems still embedded in cloud cores, where stars chaotically move around each other on short time scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' With modern smoothed par- ticle dynamical simulations such perturbations can be studied in great detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Recent simulations by Cuello et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2020a,b) illustrate the various effects in detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Among the observable signatures of such dynamical in- teractions are spiral arms, disk warping, diffuse halos of 3000 Single 2000 Spectroscopic binary Wide binary 1000 0 1000 Single 2000 5 arcsec 3000 3000 2000 1000 0 1000 2000 300052 Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Figure 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' A 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 mm map made with ALMA of the Eb source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The disk is clearly irregular, with an arm protruding to the east.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The color scale starts from 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 σ [Eb-disk] and goes up to 50% of the maximum intensity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' material pulled from disks, and disk truncation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' High- resolution observations with ALMA, like the DSHARP project (Andrews et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2018), are able to detect such features, and they have been seen in several multiple systems (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Kurtovic et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' With the 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='′′12 angular resolution of the extended ALMA configuration the circumstellar disks of four of the sources in SSV 63 (Ea, Eb, Wb, and NE) are re- solved, but at a distance of 400 pc finer structure of the disks is not discernable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' However, disk radii can be es- timated in both dust and C18O gas (Table 11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' As is commonly seen, the dust disks are significantly smaller than the gaseous disks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' For NE, Ea, Eb, Wa, and Wb we find dust radii of 51, 39, 159, 35, and 81 AU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We can compare this to the results of Tobin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2020), who used ALMA to carry out a major 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='87 mm contin- uum survey of 328 protostars in Orion with similar an- gular resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' For the subset of Class I non-multiple sources they find a median dust radius of 37 AU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' How- ever, it should be noted that the majority of protostars observed by Tobin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' will arrive on the main sequence as M-dwarfs, whereas the SSV 63 components will be- come G, F, and A stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' It is well known that there is a clear correlation between dust radius and stellar mass, and Andrews (2020) suggests the relation Rmm ∝ M0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9 ∗ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Thus, it appears that the dust disks in SSV 63 are on av- erage a factor 2 smaller than expected, which could be a signature that they have been truncated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' However, the radius-stellar mass relation has significant scatter, and combined with the small number statistics we cannot be certain that the SSV 63 disks have suffered dynamically induced truncation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The disks of sources Ea, Wb, and NE are almost per- fectly symmetric, with no indication of recent perturba- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' In contrast, the disk of Eb is asymmetric, with a diffuse halo or wing stretching towards the NNE (Fig- ure 61).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The length of this elongation is almost 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 arc- sec, that is, about 200 AU in projected extent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Such an appearance is indicative of a recent interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' How- ever, because Eb is deeply embedded, it is conceivable that its diffuse appearance is related to an infalling en- velope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Our current data cannot distinguish between these two possibilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' SUMMARY AND CONCLUSIONS We have performed a detailed observational study at optical, infrared, mm and cm wavelengths of the HH 24 jet complex and the multiple system SSV 63 that drives the various jets in order to better understand the nature of low- to intermediate-mass star formation in such a small system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We here summarize the main results: 1: The SSV 63 system is embedded in a cloud core, and the known components are the wide binaries Wa/Wb and Ea/Eb plus the NE source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' All are likely Class I sources, but both NE and Eb are deeply embed- ded and only detected at mid-infrared and longer wave- lengths, and may be borderline Class 0 sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Our deep near-IR images have identified an additional faint source, S, and ALMA maps have discovered another deeply embedded source, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Thus the cloud core, which is elliptical with dimensions of about 5,000 × 12,500 AU, contains at least 7 sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The five main sources are all detected by the VLA, and source Wb has a secondary component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2: The most prominent jet among the outflows is the finely collimated HH 24E jet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Multi-epoch HST images show the jet to be very bright in the [Feii] 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='64 µm transition, to have a transverse velocity of around 250 km s−1 away from the driving source Ea, and expand with an opening angle of ∼2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Spectra show the jet to be redshifted, and to have an angle of ∼35◦ to the plane of the sky.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Our VLA maps show a bipolar radio continuum jet from source Ea along the axis of the E-jet, with a smaller bipolar jet at right an- gles, indicating that source Ea is an unresolved binary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 3: The counter jet HH 24C displays a chaotic jumble of knots, likely the result of it having burrowed through the cloud core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' High tangential velocities of about 300 km s−1 combined with a radial velocity around - 200 km s−1 indicates that the jet is moving towards us at an angle of about 35◦ to the plane of the sky.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' A major new knot appeared at visual wavelengths from behind a cloud edge between 2006 and 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='63 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='54 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 (arcsec 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='44 /beam offset 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='35 mJy/ Dec 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='16 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='06 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0 RA offset (arcsec)The HH 24 Star Forming Complex 53 4: The HH 24G jet has an unusual morphology, with fragments of a collimated jet surrounded by a tubular cavity with a diameter of ∼5000 AU and walls outlined by shocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Its driving source is SSV 63 NE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Near the base of the jet is a bright and highly variable reflec- tion nebulosity, indicating motion of shadowing material close to the source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 5: At large distances from HH 24, a group of HH objects, including HH 19, 20, and 21, is found to the NW;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' another, HH 27, is found to the SE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Proper motion measurements confirm previous suggestions that HH 19 and HH 27 form distant bow shocks from the faint jet HH 24J driven by the Wb source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The total extent of this giant bipolar flow is 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='39 pc in projection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 6: The group of objects HH 20 and 21 form part of a giant fractured working surface driven by the HH 24C jet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We have searched for further distant bow shocks along the well-defined flow axis and found an object, HH 24NNW, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='45 pc from source Ea and along its flow axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' To the SE we have found several distant bow shocks, at distances of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='98 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='67 pc from source Ea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The total extent of the E/C jet pair is thus 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='2 pc in pro- jection, or 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8 pc at an inclination of 35◦ to the plane of the sky.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 7: The deeply embedded Class 0 VLA source HH 24- MMS, located ∼40 arcsec south of SSV 63, is shifted by 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='8 arcsec (320 AU) from its location observed in 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Possible explanations include variability in a binary, mo- tion of the source, or dust heated through a lighthouse effect, none of which are without problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Our H2 im- ages reveal an extended series of shocks from the nearby Class 0 source HOPS 317.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 8: The brightest shock in the HH 24 complex, HH 24A, is structurally and kinematically complex, with knots on its eastern side moving along the axis of the E-jet, while the central bright part is essentially station- ary, and may represent a shock in the counterflow from the nearby source HOPS 317.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 9: We have searched for additional YSOs near SSV 63, and have found five Hα-emission stars and brown dwarfs in the vicinity of SSV 63, with spectral types between M3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 and M7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' They are 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5 to 2 arcmin from SSV 63, far outside the dense molecular core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Proper motions from Gaia show that one of these, SSV 63 Hα 5, moves straight away from the embedded sources with a tan- gential velocity of 26 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The object has a spectral type of M5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5, and is a borderline brown dwarf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Hα 5 was very close to the Class 0/I NE protostellar source about 5800 yr ago, and we assume NE is the source from which Hα 5 was dynamically ejected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Such an ejection requires that either NE or Hα 5 must be a close binary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' If Hα 5 was ejected from a protostellar system it follows that it is itself protostellar, and hence it falls into the category of orphaned protostars (Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' None of the other four Hα emission stars have signifi- cant motions, and their origin is unclear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Among these, Hα 1 drives a faint highly collimated jet, HH 1200, and Hα 2 is a young M7 brown dwarf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 10: Our 12CO observations with ALMA have revealed a few small molecular outflows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' A bipolar one, labeled MO1, is centered on the deeply embedded source Eb and is perpendicular to the well-defined disk axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The flow has a total extent of only about 2 arcsec, and is the only one that is also associated with SiO emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Another bipolar flow, MO2, lies along the axis of the jet HH 24J driven by source Wb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The third bipolar outflow, MO3, is associated with the mm continuum source N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Surprisingly, the major bipolar E/C jet from source Ea does not show evidence of a molecular outflow, although some low-velocity emission may be associated with gas flowing along cavity walls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 11: A peculiar formaldehyde flow, 6′′-7′′ wide centered on source NE, is detected at low blueshifted velocities partly along the wide G-jet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Its velocity is increasing with distance from NE, and could be caused by an ex- plosion, or be a flow gliding along a curved background cavity wall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 12: ALMA detects a large filamentary structure in 13CO and C18O extending from the edge of the field to its center with a slight 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='6 km s−1 gradient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This may be interpreted as a streamer of infalling material for which we estimate a rough upper limit to the mass feeding the core of ∼ 7 × 10−6 M⊙yr−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Thus star formation in the core may be continously fed with fresh gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 13: We have derived stellar masses of the four sources Ea, Eb, Wb, and NE assuming Keplerian rotation of their disks detected with ALMA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The masses are 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='9, and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 M⊙, with estimated uncertainties of about 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 M⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The masses of Ea and NE indicate that they are proto-Herbig Ae stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Eb and Wb have masses on the high end of T Tauri stars, but since both stars are heavily extincted and detectable only at mid-IR wave- lengths, they may still gain a significant amount of gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 14: The five dominant sources, Ea, Eb, Wa, Wb, and NE, display circumstellar disks in the ALMA observa- tions, with major axes oriented almost precisely perpen- dicular to the prominent jets they drive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' For four of the sources, Ea, Eb, Wb, and NE, disk radii are derived for the gas and the dust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' On average, they are about a factor 2 smaller than inferred from a disk radius-stellar mass correlation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This might be the result of trunca- tion in this dynamically active system, but due to the large scatter of the correlation and the small number of sources observed, a firm conclusion is premature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The 54 Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' disk of Eb is irregular with a larger eastern lobe that might be the result of a close encounter with another of the sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 15: We determine a mass of ∼3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='3 M⊙ for the cloud core in which the SSV 63 multiple system resides based on the 850 µm data of Kirk et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' (2016a,b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' A lower limit to the total stellar mass of the multiple system is roughly 7 M⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' A filamentary structure in the region which may be an infalling streamer of gas, suggests that the core may be continously forming stars as its gas content is replenished.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 16: SSV 63 is an excellent example of a protostel- lar multiple system of at least 7 embedded sources and one low-mass runaway borderline brown dwarf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' With a non-hierarchical configuration, the system is unsta- ble with the stars moving chaotically among each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This will eventually lead to the breakup of the system, in the process ejecting a number of the members, prefer- entially those with lowest mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Numerical simulations indicate that the system will almost completely disinte- grate within less than 1 million years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' As the stars are ejected from their feeding zones their masses are set, and dynamical interactions in small protostellar multi- ple systems are thus an important factor in defining the initial mass function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' ACKNOWLEDGEMENTS We thank an anonymous referee for an insight- ful report, which improved this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We also thank Helen Kirk for providing Figure 34, G¨oran Sandell for help with the Herschel data, and Isabel Baraffe for advice on the BHAC15 models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' ac- knowledges support by NASA through grant HST- GO-13485.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' acknowledges support by the Na- tional Science Foundation through grant AST-1910393.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' acknowledges support from Ministry of Sci- ence and Technology (MOST) in Taiwan through the grant MOST 110-2628-M-001-003-MY3 and from the Academia Sinica Career Development Award (AS- CDA-111-M03).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' acknowledges support from the National Science Foundation award AST-1714710.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' acknowledges the financial support of DGAPA (UNAM) IN105617, IN101418, N110618 and IN112417 and CONACyT 238631 and 280775.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' acknowl- edges support by DGAPA (UNAM) grant IG100422.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This paper makes use of the following ALMA data: ADS/JAO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='ALMA#2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='01194.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' ALMA is a part- nership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan), and KASI (Re- public of Korea), in cooperation with the Republic of Chile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The National Radio As- tronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Based in part on data col- lected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan (NAOJ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Thanks are due to the Subaru staff, in particular Miki Ishii and Hisanori Furusawa for excellent and dedicated support during the observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We are grateful to Nobunari Kashikawa for permission to use his [Sii] fil- ter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Based in part on observations (GN-2010A-Q-10,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' GN-2013B-Q-77) obtained at the international Gemini Observatory,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' a program of NSF’s NOIRLab,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation on behalf of the Gemini Observatory partnership: the National Science Foundation (United States),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' National Research Council (Canada),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Agencia Nacional de Investigaci´on y Desar- rollo (Chile),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Ministerio de Ciencia,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Tecnolog´ıa e Inno- vaci´on (Argentina),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Minist´erio da Ciˆencia,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Tecnologia,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Inova¸c˜oes e Comunica¸c˜oes (Brazil),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' and Korea Astron- omy and Space Science Institute (Republic of Korea).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We are thankful to Richard McDermid for help with the Gemini Phase II submission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This research is based in part on observations made with the NASA/ESA Hub- ble Space Telescope obtained from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', under NASA contract NAS 5-26555.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' The VLA observations were part of our project 19A-012, made with the NSF’s Karl G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Jansky Very Large Array (VLA) of the Na- tional Radio Astronomy Observatory, which is a facil- ity of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Observations were obtained with the Apache Point Ob- servatory 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5-meter telescope, which is owned and oper- ated by the Astrophysical Research Corporation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' We thank the APO Observing Specialists for their assis- tance during the observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This work is based in part on observations made with the Spitzer Space Tele- scope, which is operated by the Jet Propulsion Labo- ratory, California Institute of Technology under a con- tract with NASA, and by Herschel, which is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important praticipation from NASA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analy- sis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and The HH 24 Star Forming Complex 55 the National Science Foundation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Based on observations collected at the European Organisation for Astronomi- cal Research in the Southern Hemisphere and extracted from the ESO archives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This material is based upon work supported by the National Aeronautics and Space Administration through the NASA Astrobiology Insti- tute under Cooperative Agreement No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' NNA09DA77A issued through the Office of Space Science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France, and of NASA’s Astrophysics Data System Bibliographic Services.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Facilities: Gemini (GMOS,GNIRS), Spitzer, Sub- aru (SuprimeCam,IRCS), Herschel, ALMA, VLA, HST (WFC3,ACS), Apache Point Observatory 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='5m (ARCES, ARCTIC, NICFPS), VLT (NACO) REFERENCES Andrews, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2020, ARAA, 58, 483 Andrews, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Huang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', P´erez, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2018, ApJL, 869, L41 Anglada, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Rodr´ıguez, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Carrasco-Gonz´alez, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2018, Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 26, 3 Anosova, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1986, Ap&SS, 124, 217 Anthony-Twarog, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1982, AJ, 87, 1213 Arce, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' & Goodman, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2001, ApJ, 551, L17 Armitage, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' & Clarke, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1997, MNRAS, 285, 540 Bacciotti, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' & Eisl¨offel, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1999, A&A, 342, 717 Bachiller, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1996, ARAA, 34, 111 Bally, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2016, ARAA, 54, 491 Bally, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' & Reipurth, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2001, ApJ, 546, 299 Bally, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', O’Dell, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', McCaughrean, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2000, AJ, 119, 2919 Bate, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2009, MNRAS, 392, 590 Bate, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2012, MNRAS, 419, 3115 Bate, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' & Bonnell, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2005, MNRAS, 356, 1201 Bate, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Bonnell, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', & Bromm, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2002, MNRAS, 336, 705 Beckwith, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Sargent, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Chini, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1990, AJ, 99, 924 Benedettini, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Giannini, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Nisini, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Tommasi, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Lorenzetti, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Di Giorgio, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Saraceno, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Smith, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', & White, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2000, A&A, 359, 148 Bieging, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Cohen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', & Schwartz, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1984, ApJ, 282, 699 Bontemps, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Andr´e, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', & Ward-Thompson, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1995, A&A, 297, 98 Bontemps, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Ward-Thompson, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', & Andre, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1996, A&A, 314, 477 B¨ohm, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Noriega-Crespo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Solf, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', & Brugel, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1992, PASP, 104, 251 Braun, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Yen, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Koch, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2021, ApJ, 908, 46 Briggs, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1995, PhD dissertation, The New Mexico Institute of Mining and Technology, Socorro, New Mexico Brugel, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', B¨ohm, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', & Mannery, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1981, ApJS, 47, 117 Chandler, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Koerner, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Sargent, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', & Wood, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1995 ApJ 449, L139 (erratum ApJ 455, L93) Chen, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Arce, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Zhang, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2013, AJ, 768, 110 Chini, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Kr¨ugel, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Haslam, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Kreysa, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Lemke, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Reipurth, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Sievers, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Ward-Thompson, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1993, A&A, 272, L5 Clarke, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' & Pringle, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1993, MNRAS, 261, 190 Cohen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' & Schwartz, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1987, ApJ, 316, 311 Connelley, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Reipurth, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Tokunaga, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2008a, AJ, 135, 2496 Connelley, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Reipurth, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Tokunaga, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2008b, AJ, 135, 2526 Cuello, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Dipierro, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Mentiplay, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2019, MNRAS, 483, 4114 Cuello, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Louvet, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Mentiplay, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2020, MNRAS, 491, 504 Dahm, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' & Hillenbrand, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2017, AJ, 154, A177 Davis, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Ray, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Eisl¨offel, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', & Corcoran, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1997, A&A, 324, 263 Davis, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Gell, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Khanzadyan, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2010, A&A, 511, A24 Delgado-Donate, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Clarke, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Bate M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Hodgkin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2004, MNRAS, 351, 617 Dopita, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1978, ApJS, 37, 117 Duchˆene, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' & Kraus, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2013, ARA&A, 51, 269 Erkal, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Nisini, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Coffey, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2021, ApJ, 919, 23 Eisl¨offel, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' & Mundt, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1997, AJ, 114, 280 Evans, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Dunham, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Jørgensen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2009, ApJS, 181, 321 Fang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', van Boekel, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Wang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2009, A&A, 504, 461 Furlan, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Fischer, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Ali, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2016, ApJS, 224:A5 Gibb, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2008, in Handbook of Star Forming Regions Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' I, Ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Bo Reipurth, ASP, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 693 Gibb, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Heaton, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1993, A&A, 276, 511 Gibb, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' & Little, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1998, MNRAS, 295, 299 Gibb, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Little, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Heaton, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', & Lehtinen, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' G´omez, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Rodr´ıguez, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Loinard, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et ak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2008, ApJ, 685, 333 Graham, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' & Phillips, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1987, PASP, 99, 91 56 Reipurth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Hartigan, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1989, ApJ, 339, 987 Hartigan, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Heathcote, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Morse, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2005, AJ, 130, 2197 Hartigan, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Frank, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Foster, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2011, ApJ, 736, 29 Heathcote, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Morse, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Hartigan, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1996, AJ, 112, 1141 Herbig, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1974, Lick Obs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Bull.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 658, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='1 Herbig, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' & Kuhi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1963, ApJ, 137, 398 Hillenbrand, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', 1995, PhD thesis, Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' of Massachusetts Hillenbrand, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Meyer, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Strom, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Skrutskie, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1995, AJ, 109, 280 Ho, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Moran, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', & Lo, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2004, ApJL, 616, L1 Hodapp, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1994, ApJS, 94, 615 Hoyle, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1953, ApJ, 118, 513 Hsieh, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Arce, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Mardones, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2021, ApJ, 980, A92 Hubble, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1917, ApJ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', 45, 351 Jones, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Cohen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Wehinger, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', & Gehren, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1987, AJ, 94, 1260 Kang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Choi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Ho, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', & Lee, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2008, ApJ, 683, 267 Kirk, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Di Francesco, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Johnstone, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2016, ApJ, 817, A167 Kounkel, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Hartmann, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Loinard, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2017, ApJ, 834, A142 Knox-Shaw, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1916, MNRAS, 76, 646 Kratter, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' & Matzner, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2006, MNRAS, 373, 1563 Kr¨ugel, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Chini, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1994, A&A, 287, 947 K¨onyves, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Andr´e, Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Arzoumanian, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2020, A&A, 635, A34 Kurtovic, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', P´erez, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Benisty, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2018, ApJL, 869, L44 Lada, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Bally, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Stark, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1991, ApJ, 368, 432 Lane, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Kirk, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Johnstone, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2016, ApJ, 833, A44 Larson, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1972, MNRAS, 156, 437 Lee, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Mundy, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Reipurth, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Ostriker, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2000, ApJ, 542, 925 Lee, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', B¨ohm, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Temple, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1988, ApJ, 334, 229 Leggett, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Hawarden, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Currie, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2003, MNRAS 345, 144 Lenzen, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Hartung, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Brandner, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2003, SPIE, 4841, 944 Leinert, Ch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Zinnecker, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Weitzel, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1993, A&A, 278, 129 Lis, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='C, Menten, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', & Zylka, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1999, ApJ, 527, 856 Little, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Davies, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Riley, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Matthews, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', MacDonald, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Vizard, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Ellison, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', & Nyman, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1985, A&A, 142, 378 Lombardi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Alves, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Lada, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2011, A&A, 535, A16 Mamajek, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Kenworthy, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Hinz, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', and Meyer, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2010, AJ, 139, 919 Matthews, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' & Little, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1983, MNRAS, 205, 123 McBride, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' & Kounkel, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2019, ApJ, 884:6 McMullin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Waters, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Schiebel, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2007, ASPC vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 376, eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Shaw, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Hill, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Bell, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='127 Megeath, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Gutermuth, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Muzerolle, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2012, AJ, 144:192 Mitchell, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Johnstone, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Moriarty-Schieven, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Fich, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', & Tothill, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2001, ApJ, 556, 215 Moneti, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' & Reipurth, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1995, A&A, 301, 721 Moro-Martin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Noriega-Crespo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', B¨ohm, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', & Raga, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1996, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Mex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Astrofis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', 32, 75 Mundt, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', B¨uhrke, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Fried, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1984, A&A 140, 17 Mundt, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Ray, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', & Raga, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1991, A&A, 252, 740 Offner, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Moe, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Kratter, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2022, Protostars and Planets VII, arXiv:2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='10066 Ozawa, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Nagase, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Ueda, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Dotani, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', & Ishida, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1999, ApJ, 523, L81 Persson, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Murphy, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Krzeminski, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1998, AJ, 116, 2475 Pfalzner, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2003, ApJ, 592, 986 Pfalzner, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' & Govind, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2021, ApJ, 921:90 Phillips, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Gibb, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', & Little, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2001, MNRAS 326, 927 Principe, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Kastner, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Grosso, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Hamaguchi, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Richmond, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2014, ApJS, 213, A4 Raga, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Esquivel, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Vel´azquez, Canto, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2009a, ApJ, 707, L6 Raga, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Cant´o, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Rodr´ıguez-Gonz´alez, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Esquivel, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2009b, A&A, 493, 115 Raga, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' & Noriega-Crespo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2013, RMxAA, 49, 363 Raga, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Reipurth, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Velazquez, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2016a, AJ, 152:186 Raga, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Reipurth, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Esquivel, Bally, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2016b, AJ, 151:113 Raghavan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', McAlister, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Henry, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2010, ApJS, 190, 1 Reipurth, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2000, AJ, 120, 3177 Reipurth, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' & Bally, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1986, Nature, 320, 336 Reipurth, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' & Bally, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2001, ARAA, 39, 403 Reipurth, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' & Clarke, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2001, AJ, 122, 432 Reipurth, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' & Heathcote, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1992, A&A, 257, 693 Reipurth, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' & Mikkola, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2012, Nature, 492, 221 Reipurth, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' & Mikkola, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2015, AJ, 149:A145 The HH 24 Star Forming Complex 57 Reipurth, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' & Zinnecker, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1993, A&A,, 278, 81 Reipurth, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Yu, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Rodr´ıguez, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1999, A&A, 352, L83 Reipurth, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Heathcote, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Yu, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2000, ApJ, 534, 317 Reipurth, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Heathcote, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Morse, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2002a, AJ, 123, 362 Reipurth, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Rodr´ıguez, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Anglada, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', & Bally, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2002b, AJ, 124, 1045 Reipurth, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Rodr´ıguez, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Anglada, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', & Bally, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2004, AJ, 127, 1736 Reipurth, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Mikkola, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Connelley, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', & Valtonen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2010, ApJ, 725, L56 Reipurth, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Clarke, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Boss, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2014, in Protostars and Planets VI, eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Beuther et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Arizona Press, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 267 Riaz, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' & Bally, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2021, MNRAS, 504, 6049 Rodr´ıguez, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Anglada, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Curiel, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1999, ApJS, 125, 427) Rodr´ıguez, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Galv´an-Madrid, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Sanchez-Bermudez, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2020, ApJ, 890:165 Rousset, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Lacombe, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Puget, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2003, SPIE 4839, 140 Sanchis, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Testi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Natta, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2021, A&A, 649, A19 Scarrott, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Gledhill, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', & Warren-Smith, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1987, MNRAS, 227, 1065 Schmidt, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' & Miller, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1979, ApJ, 234, L191 Schoettler, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', de Bruijne, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Vaher, E, Parker, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2020, MNRAS, 495, 3104 Simon, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Andrews, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Rayner, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', & Drake, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2004, ApJ, 611, 940 Skinner, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1998, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' SPIE, 3354, 2 Snell, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' & Edwards, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1982, ApJ, 259, 668 Solf, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1987, A&A, 184, 322 Spezzi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Petr-Gotzens, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Alcal´a, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2015, A&A, 581:A140 Sadavoy, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' & Stahler, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2017, MNRAS 469, 3881 Stahler, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2010, MNRAS, 402, 1758 Stanke, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Arce, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Bally, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2022, A&A, 658, A178 Steinhausen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Olczak, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Pfalzner, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2012, A&A, 538, A10 Sterzik, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' & Durisen, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1998, A&A, 339, 95 Strom, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Grasdalen, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', & Strom, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1974a, ApJ, 191, 111 Strom, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Strom, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Kinman, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1974b, ApJ, 191, L93 Strom, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Strom, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', & Vrba, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1976, AJ, 81, 308 Strom, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Strom, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Wolff, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Morgan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', & Wenz, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1986, ApJS, 62, 39 Terquem, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Eisl¨offel, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Papaloizou, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', & Nelson, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1999, ApJ, 512, L131 Testi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Palla, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Prusti, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1997, A&A, 320, 159 Tobin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Looney, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2016, Nature, 538, 483 Tobin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Looney, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2018, ApJ, 867, 43 Tobin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Sheehan, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Megeath, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2020, ApJ, 890, 130 Tobin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Offner, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Kratter, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2022, ApJ, 925:39 Thompson, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Rieke, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Schneider, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Hines, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', & Corbin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1998, ApJ, 492, L95 Umbreit, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Spurzem, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Henning, Th.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2011, ApJ, 743:106 Valtonen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' & Mikkola, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1991, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', 29, 9 Ward-Thompson, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Chini, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Kr¨ugel, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Andr´e, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Bontemps, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1995, MNRAS, 274, 1219 Whitworth, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Bate, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Nordlund, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Reipurth, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', & Zinnecker, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2007, in Protostars and Planets V, eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Reipurth, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Jewitt, & K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' Keil, Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' of Arizona Press, 459 Wijnen, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Pols, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Pelupessy, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Portegies Zwart, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2017, A&A, 604, A91 Wright, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', & Sault, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1993, ApJ, 402, 546 Zealey, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Williams, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Sandell, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Taylor, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', & Ray, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 1992, A&A, 262, 570 Zucker, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Speagle, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=', Schafly, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
+page_content=' 2019, ApJ, 879:125' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdAzT4oBgHgl3EQf2P7l/content/2301.01813v1.pdf'}
diff --git a/_dFQT4oBgHgl3EQfLDXt/content/tmp_files/2301.13263v1.pdf.txt b/_dFQT4oBgHgl3EQfLDXt/content/tmp_files/2301.13263v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..c1c0ebcc704c5c2e52a8b7b37d07f4dc4887fbd6
--- /dev/null
+++ b/_dFQT4oBgHgl3EQfLDXt/content/tmp_files/2301.13263v1.pdf.txt
@@ -0,0 +1,1154 @@
+arXiv:2301.13263v1 [gr-qc] 30 Jan 2023
+Structure Formation in Gauss-Bonnet Gravity
+Bita Farsi1, ∗ and Ahmad Sheykhi1, 2, †
+1Department of Physics, College of Sciences, Shiraz University, Shiraz 71454, Iran
+2Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454, Iran
+We explore the influences of the higher order Gauss-Bonnet (GB) correction terms on the growth
+of perturbations at the early stage of the universe. We consider a Friedmann-Robertson-Walker
+(FRW) background in the presence a cosmological constant, and study the linear perturbations by
+adopting the spherically symmetric collapse (SC) formalism. We disclose the role of the GB coupling
+parameter α, as well as the extra dimension on the growth of perturbations. We find that the matter
+density contrast starts growing at the early stages of the universe and, as the universe expands, it
+grows faster compared to the Einstein gravity. Besides, in the framework of GB gravity, the growth
+of matter perturbations in higher dimensions is faster than four-dimensions. Further, the growth of
+perturbations increases with increasing the GB coupling parameter α. This is an expected result,
+since the higher order GB correction terms increase the strength of the gravity and thus support the
+growth of perturbations. Finally, we explore the behavior of the density abundance, the deceleration
+parameter and jerk parameter of this model.
+I.
+INTRODUCTION
+Up to now, general relativity (GR) is believed to be
+the most successful gravity theory to describe the phys-
+ical and cosmological phenomena over a large range of
+energies from large scales to small scales [1]. However,
+it is not a perfect theory based on observational limi-
+tations and theoretical considerations. Specifically, two
+dark clouds of modern physics, dark matter (DM) [2]
+and dark energy (DE) [3–5] can not be well explained in
+the framework of GR plus Λ-cold DM (ΛCDM). This
+implies that the underlying gravity theory governing the
+gravitational dynamics of the universe may not be GR
+and could be an alternative gravitational scenario, which
+can help understand the dark sector better at least. This
+motivates physicists to pay attention to modified the-
+ories of gravity.
+These alternatives to GR are intro-
+duced for a variety of mathematical, philosophical and
+observational reasons, but almost all have the common
+function of generalizing the theory that Einstein initially
+proposed. Holding a special place amongst this zoo of
+possibilities is the gravity theory, initially proposed by
+Lanczos [6, 7], and subsequently generalized by Lovelock
+[8, 9]. A special class of Lovelock theory is the second or-
+der in Lanczos-Lovelock gravity Lagrangian density, the
+so-called Einstein-GB (EGB) gravity which satisfies the
+properties in Lovelock’s theorem, including the ghost-
+free[10], natural generalization with Einstein, and cos-
+mological terms [11]. For the applications to higher di-
+mensional cosmology, one can refer to [12–14]. Although
+there is an obvious interest in studying gravity in four
+dimensions, the EGB extension of GR was for a long
+time thought to be trivial in this case.
+This changed
+in 2020, when Glavan and Lin proposed a re-scaling of
+the coupling constant of the EGB theory that potentially
+∗Electronic address: Bita.Farsi@shirazu.ac.ir
+†Electronic address: asheykhi@shirazu.ac.ir
+allowed for the consequences of the EGB to be noticed
+even in the four-dimensional case [15]. The theories that
+resulted from this idea have come to be known as four-
+dimensional EGB (4DEGB) gravity, and have a num-
+ber of interesting properties. In order to circumvent the
+stringent requirements of Lovelock’s theory, and in an at-
+tempt to introduce the GB term in 4D gravity directly,
+Glavan and Lin proposed re-scaling the coupling constant
+such that α −→ α/(D − 4) [15]. In this way a number of
+enhanced symmetry D = 4 metrics were obtained, each
+carrying an imprint of higher-curvature corrections inher-
+ited from their higher-dimensional counterparts. These
+include spherical black holes [15–19], cosmological solu-
+tions [20, 21], star-like solutions [22], radiating solutions
+[23], collapsing solutions [24] all for GB gravity, with ex-
+tensions to more higher-curvature Lovelock theories [25–
+27]. To be less exhaustive, there is an interesting work
+in cosmology adopting this model with the observational
+constraints which can resolve the coincidence problem
+[64] and also indicate that the re-scaling coupling con-
+stant of the model still needs the help of the cosmologi-
+cal constant to explain the accelerated expansion. For a
+review on the model, one may refer to [29].
+Both our everyday experience and the experiments in
+particle and space physics clearly demonstrate that there
+are only three spatial.
+So that to bring together the
+extra-dimensional theories and the experiment, we need
+to explain where are these extra dimensions. The com-
+monly accepted answer is that the extra dimensions are
+compactified within a very small scale. But this answer,
+in its turn, gives rise to another question: how comes
+that they became compact? The answer to this question
+is not simple.
+First attempts to answer this question
+involve solution known as spontaneous compactification
+[30, 31]. Similar solutions but more relevant to cosmology
+were proposed in [32, 33]. More natural way to achieve
+compactified extra dimensions is a dynamical cementifi-
+cation. The works in this direction involves different ap-
+proaches and different setups [34–37].
+In fact, there is no concrete a priori reason the space-
+
+2
+time we live in should have precisely three spatial di-
+mensions and one time dimension (for overviews of di-
+verse theories with extra dimensions and their physi-
+cal consequences see e.g.,[38–41]).
+Instead, theoretical
+physicists hope that a fundamental theory of nature will
+be able to predict the number of dimensions of space-
+time. In string theory, for example, consistency requires
+additional spatial dimensions.
+It has been established
+for a long time that extra-dimensional theories can, in
+the appropriate limit, behave like a conventional four-
+dimensional spacetime with additional field content de-
+rived from the influence of the extra dimensions. Extra
+dimensions, as well as being of general interest in the-
+oretical physics, have particular applications and conse-
+quences in the context of cosmology. Questions on the
+nature of DM and DE could potentially have resolutions
+in theories of matter existing in hidden extra dimen-
+sions, or of extra-dimensional effects on the dynamics of
+the observed four-dimensional universe. Similarly early-
+universe phenomena such as inflation could be driven by
+extra-dimensional effects, or at least occur in the pres-
+ence of extra-dimensions. For work in these directions,
+see [42–50]. Recently the static extra dimensions in EGB
+gravity has been investigated in various scenarios [51–
+53]. In [54] it has been studied some aspects of dynami-
+cal compactification scenario where stabilization of extra
+dimensions occurs due to presence the GB term and non-
+zero spatial curvature. Our work differs from [17] in that
+instead of using the Newtonian gauge, we use SC formal-
+ism [55] to examine the evolution of perturbations, which
+is an appropriate approach to investigate the growth of
+perturbations and structure formation. In this approach
+one considers a uniform and spherical symmetric pertur-
+bation in an expanding background and describes the
+growth of perturbations in a spherical region using the
+same Friedmann equations for the underlying theory of
+gravity [56–60]. Our work also differs from [61] in that
+the authors of [61] considered a varying cosmological con-
+stant in 4D GB gravity, while we consider the growth of
+perturbations in higher dimensional GB gravity.
+The outline of this paper is as follows.
+In Sec.
+II,
+we provide a review on GB gravity and derive the corre-
+sponding Friedmann equations in the context of (n+1)-
+dimensional GB cosmology. In Sec. III, using the spheri-
+cally collapse approach, we explore the growth of matter
+perturbation in the background of the (n+1)-dimensional
+GB cosmology. The last section is devoted to the conclu-
+sions and discussions.
+II.
+MODIFIED FRIEDMANN EQUATIONS
+HIGHER-DIMENSIONAL GB COSMOLOGY
+The action of the GB gravity in (n + 1)-dimensional
+spacetime, and in the presence of cosmological constant
+Λ, can be written as [62]
+SEGB =
+1
+2κ2
+n+1
+�
+dn+1x√−g (R − 2Λ + αLGB) + Sm,(1)
+where α is called the GB coupling constant which has di-
+mension [length]2, LGB = R2 − 4RµνRµν + RµνγδRµνγδ
+is the GB Lagrangian, and Sm denotes the action of mat-
+ter. The field equations can be derived by varying the
+above action with respect to the metric. One finds [62]
+κ2
+n+1Tµν = Rµν − 1
+2gµνR + Λgµν − α
+�1
+2gµνLGB
+−2RRµν + 4RµγRγ
+ν + 4RγδRγ δ
+µ ν − 2RµγδλR γδλ
+ν
+�
+.
+(2)
+In what follows we work in the units where ℏ = c =
+κn+1
+= 1.
+In a spatially flat (n + 1)-dimensional
+Friedmann-Robertson-Walker (FRW) universe, the line
+elements of the metric is given by
+ds2 = −dt2 + a2(t)
+�
+dr2 + r2dΩ2
+n−1
+�
+.
+(3)
+Substituting metric (3) in the gravitational field equa-
+tions (2), and assuming the matter content of the uni-
+verse is in the form of perfect fluid, one get the corre-
+sponding Friedmann equations as [63]
+H2 + ˜αH4 =
+2
+n(n − 1) (ρm + Λ) ,
+(4)
+�
+1 + 2˜αH2� ˙H = −
+1
+n − 1ρm,
+(5)
+where ˜α = (n − 2)(n − 3)α, H ≡ ˙a/a is the Hubble
+parameter, ρm is the energy density of both baryonic and
+DM. Notice that in the limiting case where n = 3, α = 0,
+Eqs. (4) and (5) reduce to the Friedmann equations in
+standard cosmology. Moreover, the continuity equation
+in (n + 1)-dimensions can be written as
+˙ρm + nH(ρm + pm) = 0.
+(6)
+The energy density of the pressureless matter (pm = 0)
+can be obtained as ρm = ρm,0a−n. Therefore, with the
+following dimensionless parameters:
+β ≡ αH2
+0,
+(7)
+˜β ≡ ˜αH2
+0 = (n − 2)(n − 3)β,
+(8)
+Ωm =
+2ρm
+n(n − 1)H2 ,
+(9)
+ΩΛ =
+2Λ
+n(n − 1)H2 .
+(10)
+One can rewrite Eq. (4) as
+E2(z) + ˜βE4(z) = Ωm,0(1 + z)n + ΩΛ,0,
+(11)
+where E(z) = H(z)/H0. This equation governs the evo-
+lution of the homogeneous universe in the context of an
+
+3
+(n+1)-dimensional GB gravity. Moreover, at the present-
+time(z = 0), Eq. (11), reduces to
+Ωm,0 + ΩΛ,0 = 1 + ˜β.
+(12)
+Notice that when ˜β → 0, the standard equation is re-
+covered. We have strong evidence that our universe is
+spatially flat, and the total density parameter is Ω ≡
+Ωm + ΩΛ = 1. So the value of the dimensionless cou-
+pling parameter, ˜β, should be very small.
+There are
+a variety of cosmological constraints on 4DEGB gravity
+[64–66]. In [64] with using the joint constraint from cos-
+mic microwave background, baryon acoustic oscillations,
+Type Ia supernovae, cosmic chronometers and redshift
+space distortions, the authors obtained ˜α = 2αH2
+0 =
+(1.2±5.2)×10−17, namely α = (2.69±11.67)×1048 ev−2
+and we use these results in our study.
+Solving Eq. (11) with respect to E(z) at a given red-
+shift z, and considering the branch where we have a real
+value of E(z), yields
+E2(z) = H2(z)
+H2
+0
+= 1
+2 ˜β
+��
+X(z) − 1
+�
+,
+(13)
+where
+X(z) ≡ 1 + 4 ˜β [Ωm,0(1 + z)n + ΩΛ,0] .
+(14)
+In general for any z we have:
+Ωm(z) + ΩΛ(z) = 1 + ˜βE2(z).
+(15)
+The Hubble expansion rate can be obtained via Eqs. (9),
+(10) ,(13), (14). We find
+H2(z) = H2
+0
+2 ˜β
+��
+X(z) − 1
+�
+=
+2
+n(n − 1)(ρm + Λ)
+�
+1 −
+2˜α
+n(n − 1)(ρm + Λ)
+�
+(16)
+where we have expanded X(z) and only kept the linear
+term of ˜β, since ˜β ≪ 1 is very small.
+The evolution of the normalized Hubble parameter
+versus z for different values of n is plotted in Fig.
+1.
+As we can see, in GB cosmology the Hubble parameter
+with higher dimensions are larger than lower dimensions
+model, implying that in lower dimensions model, our Uni-
+verse expands slower. Also we have plotted this normal-
+ized Hubble parameter for different values of β in Fig. 2.
+As we can see, in GB cosmology the Hubble parameter
+decreases with increasing the parameter β in higher di-
+mensions. In Fig. 3, we have plotted the evolution of the
+density abundance Ωm, defined as
+Ωm ≡
+2ρm
+n(n − 1)H2 = 2 ˜β(1 + ˜β − ΩΛ,0)(1 + z)n
+��
+X(z) − 1
+�
+.(17)
+As we can see from Fig.
+3, the matter density abun-
+dance with different dimensions has the same behavior,
+0
+0.2
+0.4
+0.6
+0.8
+1
+0
+0.5
+1
+1.5
+2
+2.5
+3
+n=3
+n=4
+n=5
+FIG. 1: The behavior of the normalized Hubble rate E(z) for
+different values of n in GB cosmology, where we have taken
+β = 10−6.
+FIG. 2: The behavior of the normalized Hubble rate E(z) for
+different values of β in 5-dimensional (n = 4) GB cosmology,
+where the solid-line for β = 10−6 , dashed-line for β = 10−9,
+and dash-dotted line for β = 6 × 10−10.
+i.e., all graphs are reduced by decreasing z. In addition
+for higher dimensions (n parameter), the density abun-
+dance drops faster. Also we can see, the matter density
+abundance increases with increasing the parameter β in
+higher dimensions.
+In a similar way, the evolution of the density abundance
+ΩΛ is given by
+ΩΛ ≡
+2Λ
+n(n − 1)H2 =
+2 ˜βΩΛ,0
+��
+X(z) − 1
+�.
+(18)
+In Figs. 4-5 we plot the evolution of the DE density
+
+4
+Ω
+0
+0.2
+0.4
+0.6
+0.8
+1
+0
+0.2
+0.4
+0.6
+0.8
+1
+n=3
+n=4
+n=5
+FIG. 3: The evolution of the matter density abundance as a
+function of redshift z for different values of n, where we have
+taken β = 10−6.
+ΩΛ
+0
+0.2
+0.4
+0.6
+0.8
+1
+0
+0.2
+0.4
+0.6
+0.8
+1
+n=3
+n=4
+n=5
+FIG. 4: The evolution of the DE density abundance as a
+function of redshift z for different values of n, where we have
+taken β = 10−6.
+abundance in various dimensions and for different values
+of ΩΛ,0 parameter. It is seen that the DE density abun-
+dance ΩΛ increases by decreasing z. From Fig. 4, we see
+that for a fixed value of redshift parameter z, the value
+of the density abundance decreases with increasing the
+spacetime dimensions.
+The deceleration parameter in terms of the redshift can
+be written as
+q = −1 −
+˙H
+H2 = −1 + (1 + z)
+H(z)
+dH(z)
+dz
+= −1 +
+n ˜β
+�
+X(z)
+(1 + z)n(1 + ˜β − ΩΛ,0)
+��
+X(z) − 1
+�
+.
+(19)
+ΩΛ
+0
+0.2
+0.4
+0.6
+0.8
+1
+0
+0.2
+0.4
+0.6
+0.8
+1
+ΩΛ,0=0.68
+ΩΛ,0=0.7
+ΩΛ,0=0.72
+FIG. 5: The evolution of the DE density abundance as a
+function of redshift z for different values of ΩΛ,0, where we
+have taken n = 5.
+0
+0.2
+0.4
+0.6
+0.8
+1
+1.2
+1.4
+1.6
+1.8
+2
+-0.48
+0.02
+0.52
+1.02
+1.52
+n=3
+n=4
+n=5
+FIG. 6: The behavior of the deceleration parameter q(z) as
+a function of redshift for different n.
+Here we have taken
+β = 10−6.
+We have plotted the behavior of the deceleration param-
+eter q(z) for different dimensions in Fig. 6. We observe
+that for lower dimensions the universe experiences a tran-
+sition from a decelerating phase (q > 0) to an accelerating
+phase (q < 0), at redshift around z = ztr. It is seen that
+ztr depends on the spacetime dimension and decreases
+with increasing n.
+Another quantity which is helpful in understanding the
+phase transitions of the universe is called the jerk param-
+eter. This is a dimensionless quantity obtained by taking
+the third derivative of the scale factor with respect to
+the cosmic time, provides a comparison between differ-
+ent DE models and the ΛCDM (j = 1) model. The jerk
+
+5
+0
+0.5
+1
+1.5
+2
+0.02
+2.02
+4.02
+6.02
+n=3
+n=4
+n=5
+FIG. 7: The evolution of jerk parameter with respect to red-
+shift for different values of n parameter, Here we have taken
+β = 10−6.
+parameter is defined as
+j =
+1
+aH3
+d3a
+dt3 = q(2q + 1) + (1 + z)dq
+dz .
+(20)
+For the ΛCDM model, the value of j is always unity. A
+non-ΛCDM model occurs if there is any deviation from
+the value of j = 1. From Fig. 7 we observe that in the
+context of GB cosmology, the jerk parameter is larger
+than ΛCDM in higher dimensions.
+III.
+GROWTH OF PERTURBATIONS IN GB
+COSMOLOGY
+We consider a universe filled with pressureless matter,
+(pm = 0). In this case Eq.(6) reads
+˙ρm + nHρm = 0,
+(21)
+which has a solution of the form ρm = ρm,0a−n, where
+ρm,0 is the energy density at the present time.
+In or-
+der to study the growth of perturbations, we consider
+a spherically symmetric perturbed cloud of radius ap,
+and with a homogeneous energy density ρc
+m.
+The SC
+model describes a spherical region with a top-hat profile
+and uniform density so that at any time t, we can write
+ρc
+m(t) = ρm(t)+δρm[58]. If δρm > 0 this spherical region
+will eventually collapse under its own gravitational force
+and if δρm < 0 it will expand faster than the average
+Hubble expansion rate, thus generating a void. In other
+words, δρm is positive in overdense region and it is neg-
+ative in underdense regions. In fact, when the universe
+is in the matter dominated era, denser regions expand
+slower than the entire universe. Therefore if their den-
+sity is enough large, they eventually collapse and create
+gravitational constraints systems like clusters [67]. Sim-
+ilar to Eq. (21), the conservation equation for spherical
+perturbed region can be written as
+˙ρc
+m + nhρc
+m = 0,
+(22)
+where h = ˙ap/ap is the local expansion rate of the spher-
+ical perturbed region of radius ap (subscript p refers to
+the perturbed). In order to study the evolution of per-
+turbations, we define a useful and dimensionless quantity
+called density contrast as [67]
+δm = ρc
+m
+ρm
+− 1 = δρm
+ρm
+,
+(23)
+where ρc
+m is the energy density of spherical perturbed
+cloud and ρm is the background density.
+Taking the
+derivative of Eq.(23) with respect to the cosmic time and
+using Eq.(21) and Eq.(22), we obtain
+˙δm = n(1 + δm)(H − h),
+(24)
+¨δm = n( ˙H − ˙h)(1 + δm) +
+˙δ2
+m
+1 + δm
+,
+(25)
+where the dot denotes the derivative with respect to time.
+Combining Eqs. (4), (16), and expanding X(z) (only to
+the linear term of ˜β), we arrive at
+¨a
+a =
+(2 − n)
+n(n − 1)ρm +
+4˜α
+n2(n − 1)ρ2
+m + 4˜α(n − 2)
+n2(n − 1)2 ρmΛ
++
+2
+n(n − 1)Λ −
+4˜α
+n2(n − 1)2 Λ2.
+(26)
+According to SC model, a homogeneous sphere of uniform
+density with radius ap can itself be modeled using the
+same equations that govern the evolution of the universe,
+with scale factor a [68]. Therefore, we can write for the
+spherical perturbed cloud with radius ap, an equation
+similar to Eq.(26), namely
+¨ap
+ap
+=
+(2 − n)
+n(n − 1)ρc
+m +
+4˜α
+n2(n − 1)(ρc
+m)2 + 4˜α(n − 2)
+n2(n − 1)2 ρc
+mΛ
++
+2
+n(n − 1)Λ −
+4˜α
+n2(n − 1)2 Λ2.
+(27)
+In general, one may expect ˜α differ inside and outside
+of the spherical region. However, for simplicity here we
+propose they are similar, namely ˜αc = ˜α.
+Combining Eqs. (23), (26) and (27), yields
+˙H − ˙h =
+(2 − n)
+n(n − 1)ρmδm −
+8˜α
+n2(n − 1)ρ2
+mδm
+− 4˜α(n − 2)
+n2(n − 1)2 ρmΛδm − H2 + h2,
+(28)
+where we have expanded the second term and only kept
+the linear term of δm. This is due to the fact that we
+work in the linear regime where δm < 1.
+
+6
+Substituting Eq.
+(28) into Eq.
+(25) and using Eq.
+(24), we can find the second order differential equation
+for the density contrast δm in the linear regime as
+¨δm + 2H ˙δm − (n − 2)
+(n − 1)ρmδm
++
+8˜α
+n(n − 1)ρ2
+mδm + 4˜α(n − 2)
+n(n − 1)2 ρmΛδm = 0.
+(29)
+In order to study the evolution of the density contrast
+δm in terms of the redshift parameter, 1 + z = 1/a, we
+first replace the time derivatives with the derivatives with
+respect to the scale factor a. It is a matter of calculations
+to show that
+˙δm = δ′
+maH,
+¨δm = δ′′
+ma2H2 + a
+�
+H2 + ˙H
+�
+δ′
+m,
+(30)
+where the prime stands for the derivative respect to the
+scale factor a. Using Eqs.(16) and (26), we get
+˙H = −
+1
+n − 1ρm +
+4˜αΛ
+n2(n − 1)2
++
+4˜α
+n(n − 1)2 ρ2
+m +
+4˜α
+n2(n − 1)Λρm.
+(31)
+Therefore Eq. (29), after using Eqs. (30) and (31), can
+be written as
+δ′′
+m + 3
+2aδ′
+m − (n2 − 4˜αΛ)
+n2(n − 1)
+ρm
+aH2 δ′
+m +
+4˜αΛ
+n2(n − 1)2
+1
+aH2 δ′
+m
++
+4˜α
+n(n − 1)2
+ρ2
+m
+aH2 δ′
+m − (n2 − n − 4˜αΛ)(n − 2)
+n(n − 1)2
+ρm
+a2H2 δm
++
+8˜α
+n(n − 1)
+ρ2
+m
+a2H2 δm = 0.
+(32)
+Since we are working in the linear regime, we neglect
+O(δ2
+m) and O(δ′
+m
+2). Combining Eqs.(16) and (32), we
+arrive at
+δ′′
+m + 3
+aδ′
+m −
+1
+a Γ
+�
+(n2 − 4˜αΛ)ρm
+2n
+−
+2˜αΛ
+n(n − 1)
+− 2˜αρ2
+m
+(n − 1)
+�
+δ′
+m −
+1
+a2 Γ
+�
+(n2 − n − 4˜αΛ)(n − 2)ρm
+2(n − 1)
+−(4˜αρ2
+m)
+�
+δm = 0.
+(33)
+where
+Γ = (ρm + Λ)
+�
+1 −
+2˜α
+n(n − 1)(ρm + Λ)
+�
+.
+(34)
+It should be noted that in the limiting case where n = 3
+and Λ = 0, Eq. (33) reduces to
+δ′′
+m + 3
+2aδ′
+m − 3δm
+2a2 = 0,
+(35)
+FIG. 8: The evolution of the matter density contrast for dif-
+ferent values of β in 5D. We have chosen δm(zi) = 0.0001
+, zi = 400 and H0 = 10−61tp, where dashed-line for β =
+2 × 10−7, solid-line for β = 10−7, and dash-dotted line for
+β = 0.
+which is the result obtained in standard cosmology [55].
+In other words, in the absence of the GB term, the per-
+turbed equation for the density contrast, δm, in the lin-
+ear regime, coincides with the corresponding equation in
+standard cosmology.
+In Fig. 8, we plot the matter density contrasts as a
+function of redshift for different values of β parameter
+and for redshifts 10 < z < 100. We observe that in the
+framework of GB gravity in 5D, the density contrast of
+matter starts growing from its initial value and, as the
+universe expands, the matter density contrast grows up
+faster and deviates from the standard model in 5D. In-
+deed, the growth of matter perturbations in 5D universe
+is faster comparing to standard model of this model. Also
+we can see that with increasing β parameter the matter
+perturbations grows faster, as expected.
+In Fig.9 we plot the behavior of the matter density con-
+trast in various dimensions. We can see that the growth
+of perturbations increases with increasing n parameter,
+which reveals the influences of higher dimensions in GB
+cosmology. This means that in a universe with extra di-
+mensions, the structures forms sooner.
+We can investigate the growth rate of matter pertur-
+bations which is given by the growth function as [68]
+f(a) = dlnD
+dlna ,
+D(a) =
+δm(a)
+δm(a = 1).
+(36)
+Let us note that in the absence of the GB term (˜α = 0),
+the growth function is a constant of unity. In Fig. 10 we
+have plotted the growth function in terms of the redshift
+parameter.
+We observe that in the framework of GB
+gravity, the growth function in higher dimensions grows
+
+7
+FIG. 9: The evolution of the matter density contrast for dif-
+ferent values of n and for β = 10−7, where dashed-line for
+n = 5, dash-dotted line for n = 4 and solid-line for n = 3.
+FIG. 10: The evolution of the growth function for different
+values of n parameter, where long dashed-line for n = 3, solid-
+line for n = 4 and dash-dotted-line for n = 5 , and β = 10−4.
+faster than 4-dimensional GB and the growth function
+increases with increasing n.
+From Fig.
+11, we can see that the growth function
+increases
+with
+increasing
+β
+parameter
+in
+higher-
+dimensional GB cosmology.
+IV.
+CONCLUSION AND DISCUSSION
+The growth of perturbations at the early stages of the
+universe and the formation of galaxies and structures,
+FIG. 11: The evolution of the growth function for different
+values of β parameter in 5D, where solid-line for β = 10−3,
+long dashed-line for β = 10−4 and dash-dotted-line for β =
+10−6.
+due to the gravitational collapse, is still an open ques-
+tion in modern cosmology. It is instructive to explore
+how this phenomena occurs in different gravity theories.
+In the present work, we have explored the gravitational
+collapse of matter at the early universe when the higher
+order corrections on the gravity side are present in the
+action. We have investigated the evolution of the mat-
+ter perturbations in the context of GB gravity in a flat
+universe filled with DM and DE (cosmological constant)
+for different values of the model parameters. We have
+employed the SC formalism in order to examine the per-
+turbations and worked in the linear regime for the matter
+density contrasts δm as well as the GB coupling β = αH2
+0.
+We observe that the density contrast has similar behavior
+for different values of β parameter; that is, it starts from
+its initial value and then the growth of perturbations in-
+creases with increasing β parameter, which reveals the
+influences of β in GB cosmology. Interestingly enough,
+we found that the growth of perturbations increases with
+increasing α. This is an expected result, since the higher
+order GB correction terms increase the strength of the
+gravity and thus support the growth of perturbations.
+Besides, the matter density contrast δm in small redshifts
+grows faster in higher dimensions. Physically, this means
+that the structures form faster in a universe with extra di-
+mensional spacetime. We have also studied the evolution
+of the density parameters. We observed that the evolu-
+tion of the matter density abundance (Ωm) and DE den-
+sity abundance (ΩΛ) for different values of β decrease at
+low redshifts. We found out that the density abundance
+of matter, consist of baryonic and DM, drops slower for
+smaller values of β in higher dimensional GB cosmology.
+From the evolution of the deceleration parameter, we see
+that the universe experiences a phase transition from de-
+celerated phase to an accelerated phase around redshift
+
+8
+ztr.
+We saw that ztr is smaller in higher dimensions,
+which means that our universe experiences this phase
+transition later in higher dimensions. Also we observed
+that in the framework of GB gravity, the growth func-
+tion increases in higher dimensions, and also increases
+with increasing β parameter in higher-dimensional GB
+cosmology.
+It is interesting to constrain the model presented here
+by using observational data, such as observations from
+type Ia supernova and baryon acoustic oscillations. We
+leave this issue for future investigations.
+[1] C. M. Will, The Confrontation between General Rela-
+tivity and Experiment, Living Rev.Rel 09, 03 (2005)
+[arXiv:gr-qc/0510072].
+[2] B. L. Young, A survey of dark matter and related topics
+in cosmology, Front. Phys 12, 121201 (2017).
+[3] S. Weinberg, The cosmological constant problem, Rev.
+Mod. Phys 61, 1 (1989) [arXiv:astro-ph/0005265].
+[4] A. G. Riess et al, Observational Evidence from Super-
+novae for an Accelerating Universe and a Cosmologi-
+cal Constant, Astron. J 116, 1009 (1998) [arXiv:astro-
+ph/9805201].
+[5] S. Perlmutter et al. Measurements of Ω and Λ from 42
+High-Redshift Supernovae, Astrophys. J 517, 565 (1999)
+[arXiv:astro-ph/9812133].
+[6] C. Lanczos, Elektromagnetismus als naturliche Eigen-
+schaft der Riemannschen
+Geometrie,
+Zeitschrift
+fur
+Physik 73, 147 (1932).
+[7] C. Lanczos, A remarkable property of the riemann-
+christoffel tensor in four dimensions, Annals of Math-
+ematics 39, 842 (1938).
+[8] D. Lovelock, Divergence-free tensorial concomitants, Ae-
+quationes mathematicae 4, 127 (1970).
+[9] D. Lovelock, The Einstein tensor and its generalizations
+J. Math. Phys 12, 498 (1971).
+[10] B. Zumino,
+Gravity Theories in More Than Four-
+Dimensions, Phys. Rept 137, 109 (1986).
+[11] B. Zwiebach, Curvature Squared Terms and String The-
+ories, Phys. Lett. B 156, 315 (1985).
+[12] D. Lorenz-Petzold, Higher Dimensional Gauss-Bonnet
+Cosmologies, Mod. Phys. Lett. A 3, 827 (1988).
+[13] K. Andrew, B. Bolen and C. A. Middleton, Solutions
+of Higher Dimensional Gauss-Bonnet FRW Cosmology,
+Gen. Rel. Grav 39, 2061 (2007) [arXiv:0708.0373 [gr-qc]].
+[14] K. Atmjeet, I. Pahwa, T. R. Seshadri and K. Sub-
+ramanian,
+Cosmological Magnetogenesis From Extra-
+dimensional Gauss Bonnet Gravity, Phys. Rev. D 89,
+063002 (2014) [arXiv:1312.5815 [astro-ph.CO]].
+[15] D. Glavan and C. Lin, Einstein-Gauss-Bonnet gravity in
+four-dimensional spacetime, Phys. Rev. Lett 124, 081301
+(2020) [arXiv:1905.03601].
+[16] A. Kumar and R. Kumar, Bardeen black holes in the
+novel 4D Einstein-Gauss-Bonnet gravity, Universe 8 4,
+232 (2022) [arXiv:2003.13104].
+[17] P. G. Fernandes, Charged Black Holes in AdS Spaces in
+4D Einstein Gauss-Bonnet Gravity, Physics Letters B
+805, 135468 (2020) [arXiv:2003.05491].
+[18] R. Kumar and S. G. Ghosh, Rotating black holes in the
+novel 4D Einstein-Gauss-Bonnet gravity, JCAP, 2020,
+053 (2020) [arXiv:2003.08927].
+[19] A. Kumar and S. G. Ghosh, Nonsingular black holes in
+the novel 4D Einstein-Gauss-Bonnet gravity, Universe 8
+4, 244 (2022) [arXiv:2004.01131].
+[20] S.L. Li,
+P. Wu and H. Yu,
+Stability of the Ein-
+stein Static Universe in 4D Gauss-Bonnet Gravity,
+[arXiv:2004.02080].
+[21] T.
+Kobayashi,
+Effective
+scalar-tensor
+description
+of
+regularized
+Lovelock
+gravity
+in
+four
+dimensions,
+[arXiv:2003.12771].
+[22] D. D. Doneva and S. S. Yazadjiev, Relativistic stars in
+4D Einstein-Gauss-Bonnet gravity, [arXiv:2003.10284].
+[23] S. G. Ghosh and S. D. Maharaj, Radiating black holes in
+the novel 4D Einstein-Gauss-Bonnet gravity, Phys. Dark
+Univ 30, 100687 (2020) [arXiv:2003.09841].
+[24] D. Malafarina, B. Toshmatov and N. Dadhich, Dust col-
+lapse in 4D Einstein-Gauss-Bonnet gravity, Physics of
+the Dark Universe 30, 100598 (2020) [arXiv:2004.07089].
+[25] A. Casalino, A. Colleaux, M. Rinaldi and S. Vicentini,
+Regularized Lovelock gravity, Physics of the Dark Uni-
+verse 31, 100770 (2021) [arXiv:2003.07068].
+[26] R. Konoplya and A. Zhidenko, Black holes in the four-
+dimensional Einstein-Lovelock gravity,Phys. Rev. D 101,
+084038 (2020) [arXiv:2003.07788].
+[27] R. Konoplya and A. Zhidenko, 4D Einstein-Lovelock
+black holes: Hierarchy of orders in curvature, Phys. Lett.
+B 807, 135607 (2020) [arXiv:2005.02225].
+[28] D.
+Wang
+and
+D.
+Mota,
+4D
+Gauss-Bonnet
+grav-
+ity:
+Cosmological constraints,
+H0 tension and large
+scale structure, Phys. Dark Univ 32, 100813 (2021)
+[arXiv:2103.12358 [astro-ph.CO]].
+[29] P. G. S. Fernandes, P. Carrilho, T. Clifton and D. J.
+Mulryne, The 4D Einstein-Gauss-Bonnet theory of grav-
+ity:
+a review, Class. Quant. Grav 39, 063001 (2022)
+[arXiv:2202.13908 [gr-qc]].
+[30] F. Muller-Hoissen, Spontaneous compactification with
+quadratic and cubic curvature terms,Phys. Lett. B 163,
+106 (1985).
+[31] N. Deruelle and L. Farina-Busto, The Lovelock Gravita-
+tional Field Equations in Cosmology, Phys. Rev. D 41,
+3696 (1990).
+[32] F. Muller-Hoissen, Dimensionally continued Euler forms:
+Kaluza-Klein
+cosmology
+and
+dimensional
+reduction,
+Class. Quant. Grav 3, 665 (1986).
+[33] S.A. Pavluchenko, General features of Bianchi-I cosmo-
+logical models in Lovelock gravity, Phys. Rev. D 80,
+107501 (2009).
+[34] G. A. Mena Marugan, Perturbative formalism of Lovelock
+gravity, Phys. Rev. D 46, 4340 (1992)
+[35] E. Elizalde, A.N. Makarenko, V.V. Obukhov, K.E. Os-
+etrin, and A.E. Filippov, Stationary vs. singular points
+in an accelerating FRW cosmology derived from six-
+dimensional Einstein-Gauss-Bonnet gravity, Phys. Lett.
+B 644, 1 (2007) [arXiv:hep-th/0611213].
+[36] K.I. Maeda and N. Ohta, Inflation from superstring/M-
+theory compactification with higher order corrections,
+Phys. Rev. D 71, 063520 (2005) [arXiv:hepth/0411093].
+[37] K.I. Maeda and N. Ohta, Cosmic acceleration with a neg-
+
+9
+ative cosmological constant in higher dimensions, JHEP
+2014, 095 (2014) [arXiv:1404.0561].
+[38] B. Zumino,
+Gravity Theories in More Than Four-
+Dimensions, Phys. Rept 137, 109 (1986).
+[39] J. M. Overduin and P. S. Wesson, Kaluza-Klein gravity,
+Phys. Rept 283, 303 (1997), [arXiv:gr-qc/9805018].
+[40] V. A. Rubakov, Large and infinite extra dimensions,
+Phys. Usp 44, 871 (2001) [arXiv:hep-ph/0104152].
+[41] P. Brax and C. van de Bruck, Cosmology and brane
+worlds: A Review, Class. Quant. Grav 20, 201 (2003)
+[arXiv:hep-th/0303095].
+[42] P.
+Kanti,
+R.
+Gannouji,
+and
+N.
+Dadhich,
+Gauss-
+Bonnet Inflation, Phys. Rev. D 92,
+041302 (2015)
+[arXiv:1503.01579].
+[43] P. Wongjun, Casimir Dark Energy, Stabilization of the
+Extra Dimensions and Gauss-Bonnet Term, Eur. Phys.
+J. C 75, 6 (2015) [arXiv:1308.4802].
+[44] S. Nojiri, S. D. Odintsov, and M. Sasaki, Gauss-Bonnet
+dark energy, Phys. Rev. D 71, 123509 (2005) [arXiv:hep-
+th/0504052].
+[45] L. Amendola, C. Charmousis, and S. C. Davis, Con-
+straints on Gauss-Bonnet gravity in dark energy cosmolo-
+gies, JCAP 0612, 020 (2006) [arXiv:hep-th/0506137].
+[46] L. Amendola, C. Charmousis, and S. C. Davis, Solar
+System Constraints on Gauss-Bonnet Mediated Dark En-
+ergy, JCAP 0710, 004 (2007) [arXiv:0704.0175].
+[47] T. Koivisto and D. F. Mota, Gauss-Bonnet Quintessence:
+Background Evolution, Large Scale Structure and Cos-
+mological Constraints, Phys. Rev. D 75, 023518 (2007)
+[arXiv:hep-th/0609155].
+[48] I. P. Neupane, On compatibility of string effective action
+with an accelerating universe, Class. Quant. Grav. 23,
+7493 (2006) [arXiv:hep-th/0602097].
+[49] B. M. Leith and I. P. Neupane, Gauss-Bonnet cosmolo-
+gies:
+Crossing the phantom divide and the transition
+from matter dominance to dark energy, JCAP 0705, 019
+(2007) [arXiv:hep-th/0702002].
+[50] S. D. Odintsov and V. K. Oikonomou, Viable Inflation
+in Scalar-Gauss-Bonnet Gravity and Reconstruction from
+Observational Indices, Phys. Rev. D 98, 044039 (2018)
+[arXiv:1808.05045].
+[51] Dmitry
+Chirkov,
+Alex
+Giacomini,
+Sergey
+A.
+Pavluchenko,
+Alexey
+Toporensky,
+Cosmological
+so-
+lutions in Einstein-Gauss-Bonnet gravity with static
+curved extra dimensions, [arXiv:2012.03517].
+[52] M. Sadjadi, On cosmic acceleration in four-dimensional
+Einstein-Gauss-Bonnet gravity, Phys. Dark Univ 30,
+100728 (2020) [arxiv: 2005.10024].
+[53] Bilguun Bayarsaikhan, Sunly Khimphun, Phearun Rithy,
+and Gansukh Tumurtushaa, Dynamical analysis in reg-
+ularized 4D Einstein-Gauss-Bonnet gravity with non-
+minimal coupling, [arXiv:2210.06717].
+[54] Dmitry Chirkov,
+Sergey A. Pavluchenko,
+Some as-
+pects of the cosmological dynamics in Einstein-Gauss-
+Bonnet gravity, Mod. Phys. Lett. A 36, 2150092 (2021)
+[arxiv:2101.12066].
+[55] R. Abramo, R. Batista, L. Liberato and R.Rosenfeld,
+Struture formation in the presene of dark energy pertur-
+bations, JCAP 11, 012 (2007) [arXiv:0707.2882].
+[56] S. Planelles, D. Schleicher, A. Bykov, Large- scale struc-
+ture formation:
+from the first non-linear objects to
+massive galaxy clusters, Space Sci. Rev 51, 93 (2016)
+[arXiv:1404.3956].
+[57] A. Ziaie, H. Shabani, S. Ghaffari, Effects of Rastall
+parameter
+on
+perturbation
+of
+dark
+sectors
+of
+the
+Universe,
+Mod. Phys. Lett. A 36,
+2150082 (2021)
+[arXiv:1909.12085].
+[58] A. H. Ziaie, H. Moradpour, H. Shabani, Structure For-
+mation in Generalized Rastall Gravity, Eur. Phys. J. Plus
+135, 916 (2020), [arXiv:2002.12757].
+[59] B.
+Farsi
+and
+A.
+Sheykhi,
+Structure
+formation
+in
+mimetic gravity, Phys. Rev. D 106, 024053 (2022),
+[arXiv:2205.04138].
+[60] A. Sheykhi and B. Farsi, Growth of perturbations in Tsal-
+lis and Barrow cosmology, Eur. Phys. J. C 82, 1111
+(2022), [arXiv:].
+[61] N. Ahmed, A. Alfreedi, A. Alzulaibani, Some cosmolog-
+ical features of 4D Gauss-Bonnet gravity with varying
+cosmological constant International Journal of Geometric
+Methods in Modern Physics (2022) [arXiv:2205.01096v2].
+[62] R.G. Cai, Gauss-Bonnet Black Holes in AdS Spaces,
+Phys. Rev. D 65, 084014, (2002) [arXiv:hep-th/0109133].
+[63] R.G. Cai,
+S.P. Kim,
+First Low of Thermodynam-
+ics and Friedmann Equations of Friedmann-Robertson-
+Walker Universe, JHEP 0502, 050 (2005) [arXiv:hep-
+th/0501055].
+[64] D. Wang, D. Mota, 4D Gauss-Bonnet gravity: cosmo-
+logical constraints, H0 tension and large scale struc-
+ture, Physics of the Dark Universe 32, 100813 (2021)
+[arXiv:2103.12358].
+[65] J. Feng, B. Gu, F. Shu, Theorical and observational con-
+straints on regularized 4D Einstein-Gauss-Bonnet grav-
+ity, Phys. Rev. D 103, 064002 (2021) [arXiv:2006.16751
+v2].
+[66] M. Garacia and A. Hernandez, Einstein-Gauss-Bonnet
+gravity:
+is
+it
+compatible
+with
+modern
+cosmology?,
+[arXiv:2007.06730].
+[67] B. Ryden, Introduction to Cosmology (Addison-Wesley
+Press) , San Francisco (2003).
+[68] P. Peebles, Principles of Physical Cosmology (Princeton
+University Press), Princeton, NJ (1993).
+
diff --git a/_dFQT4oBgHgl3EQfLDXt/content/tmp_files/load_file.txt b/_dFQT4oBgHgl3EQfLDXt/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..bd92cfdfa270e2f7c17cbd30061e9fd346c05fc0
--- /dev/null
+++ b/_dFQT4oBgHgl3EQfLDXt/content/tmp_files/load_file.txt
@@ -0,0 +1,643 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf,len=642
+page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='13263v1 [gr-qc] 30 Jan 2023 Structure Formation in Gauss-Bonnet Gravity Bita Farsi1, ∗ and Ahmad Sheykhi1, 2, † 1Department of Physics, College of Sciences, Shiraz University, Shiraz 71454, Iran 2Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454, Iran We explore the influences of the higher order Gauss-Bonnet (GB) correction terms on the growth of perturbations at the early stage of the universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' We consider a Friedmann-Robertson-Walker (FRW) background in the presence a cosmological constant, and study the linear perturbations by adopting the spherically symmetric collapse (SC) formalism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' We disclose the role of the GB coupling parameter α, as well as the extra dimension on the growth of perturbations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' We find that the matter density contrast starts growing at the early stages of the universe and, as the universe expands, it grows faster compared to the Einstein gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Besides, in the framework of GB gravity, the growth of matter perturbations in higher dimensions is faster than four-dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Further, the growth of perturbations increases with increasing the GB coupling parameter α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' This is an expected result, since the higher order GB correction terms increase the strength of the gravity and thus support the growth of perturbations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Finally, we explore the behavior of the density abundance, the deceleration parameter and jerk parameter of this model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' INTRODUCTION Up to now, general relativity (GR) is believed to be the most successful gravity theory to describe the phys- ical and cosmological phenomena over a large range of energies from large scales to small scales [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' However, it is not a perfect theory based on observational limi- tations and theoretical considerations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Specifically, two dark clouds of modern physics, dark matter (DM) [2] and dark energy (DE) [3–5] can not be well explained in the framework of GR plus Λ-cold DM (ΛCDM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' This implies that the underlying gravity theory governing the gravitational dynamics of the universe may not be GR and could be an alternative gravitational scenario, which can help understand the dark sector better at least.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' This motivates physicists to pay attention to modified the- ories of gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' These alternatives to GR are intro- duced for a variety of mathematical, philosophical and observational reasons, but almost all have the common function of generalizing the theory that Einstein initially proposed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Holding a special place amongst this zoo of possibilities is the gravity theory, initially proposed by Lanczos [6, 7], and subsequently generalized by Lovelock [8, 9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' A special class of Lovelock theory is the second or- der in Lanczos-Lovelock gravity Lagrangian density, the so-called Einstein-GB (EGB) gravity which satisfies the properties in Lovelock’s theorem, including the ghost- free[10], natural generalization with Einstein, and cos- mological terms [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' For the applications to higher di- mensional cosmology, one can refer to [12–14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Although there is an obvious interest in studying gravity in four dimensions, the EGB extension of GR was for a long time thought to be trivial in this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' This changed in 2020, when Glavan and Lin proposed a re-scaling of the coupling constant of the EGB theory that potentially ∗Electronic address: Bita.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='Farsi@shirazu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='ir †Electronic address: asheykhi@shirazu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='ir allowed for the consequences of the EGB to be noticed even in the four-dimensional case [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' The theories that resulted from this idea have come to be known as four- dimensional EGB (4DEGB) gravity, and have a num- ber of interesting properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' In order to circumvent the stringent requirements of Lovelock’s theory, and in an at- tempt to introduce the GB term in 4D gravity directly, Glavan and Lin proposed re-scaling the coupling constant such that α −→ α/(D − 4) [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' In this way a number of enhanced symmetry D = 4 metrics were obtained, each carrying an imprint of higher-curvature corrections inher- ited from their higher-dimensional counterparts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' These include spherical black holes [15–19], cosmological solu- tions [20, 21], star-like solutions [22], radiating solutions [23], collapsing solutions [24] all for GB gravity, with ex- tensions to more higher-curvature Lovelock theories [25– 27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' To be less exhaustive, there is an interesting work in cosmology adopting this model with the observational constraints which can resolve the coincidence problem [64] and also indicate that the re-scaling coupling con- stant of the model still needs the help of the cosmologi- cal constant to explain the accelerated expansion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' For a review on the model, one may refer to [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Both our everyday experience and the experiments in particle and space physics clearly demonstrate that there are only three spatial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' So that to bring together the extra-dimensional theories and the experiment, we need to explain where are these extra dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' The com- monly accepted answer is that the extra dimensions are compactified within a very small scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' But this answer, in its turn, gives rise to another question: how comes that they became compact?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' The answer to this question is not simple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' First attempts to answer this question involve solution known as spontaneous compactification [30, 31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Similar solutions but more relevant to cosmology were proposed in [32, 33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' More natural way to achieve compactified extra dimensions is a dynamical cementifi- cation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' The works in this direction involves different ap- proaches and different setups [34–37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' In fact, there is no concrete a priori reason the space- 2 time we live in should have precisely three spatial di- mensions and one time dimension (for overviews of di- verse theories with extra dimensions and their physi- cal consequences see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=',[38–41]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Instead, theoretical physicists hope that a fundamental theory of nature will be able to predict the number of dimensions of space- time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' In string theory, for example, consistency requires additional spatial dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' It has been established for a long time that extra-dimensional theories can, in the appropriate limit, behave like a conventional four- dimensional spacetime with additional field content de- rived from the influence of the extra dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Extra dimensions, as well as being of general interest in the- oretical physics, have particular applications and conse- quences in the context of cosmology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Questions on the nature of DM and DE could potentially have resolutions in theories of matter existing in hidden extra dimen- sions, or of extra-dimensional effects on the dynamics of the observed four-dimensional universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Similarly early- universe phenomena such as inflation could be driven by extra-dimensional effects, or at least occur in the pres- ence of extra-dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' For work in these directions, see [42–50].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Recently the static extra dimensions in EGB gravity has been investigated in various scenarios [51– 53].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' In [54] it has been studied some aspects of dynami- cal compactification scenario where stabilization of extra dimensions occurs due to presence the GB term and non- zero spatial curvature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Our work differs from [17] in that instead of using the Newtonian gauge, we use SC formal- ism [55] to examine the evolution of perturbations, which is an appropriate approach to investigate the growth of perturbations and structure formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' In this approach one considers a uniform and spherical symmetric pertur- bation in an expanding background and describes the growth of perturbations in a spherical region using the same Friedmann equations for the underlying theory of gravity [56–60].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Our work also differs from [61] in that the authors of [61] considered a varying cosmological con- stant in 4D GB gravity, while we consider the growth of perturbations in higher dimensional GB gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' The outline of this paper is as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' In Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' II, we provide a review on GB gravity and derive the corre- sponding Friedmann equations in the context of (n+1)- dimensional GB cosmology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' In Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' III, using the spheri- cally collapse approach, we explore the growth of matter perturbation in the background of the (n+1)-dimensional GB cosmology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' The last section is devoted to the conclu- sions and discussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' MODIFIED FRIEDMANN EQUATIONS HIGHER-DIMENSIONAL GB COSMOLOGY The action of the GB gravity in (n + 1)-dimensional spacetime, and in the presence of cosmological constant Λ, can be written as [62] SEGB = 1 2κ2 n+1 � dn+1x√−g (R − 2Λ + αLGB) + Sm,(1) where α is called the GB coupling constant which has di- mension [length]2, LGB = R2 − 4RµνRµν + RµνγδRµνγδ is the GB Lagrangian, and Sm denotes the action of mat- ter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' The field equations can be derived by varying the above action with respect to the metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' One finds [62] κ2 n+1Tµν = Rµν − 1 2gµνR + Λgµν − α �1 2gµνLGB −2RRµν + 4RµγRγ ν + 4RγδRγ δ µ ν − 2RµγδλR γδλ ν � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' (2) In what follows we work in the units where ℏ = c = κn+1 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' In a spatially flat (n + 1)-dimensional Friedmann-Robertson-Walker (FRW) universe, the line elements of the metric is given by ds2 = −dt2 + a2(t) � dr2 + r2dΩ2 n−1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' (3) Substituting metric (3) in the gravitational field equa- tions (2), and assuming the matter content of the uni- verse is in the form of perfect fluid, one get the corre- sponding Friedmann equations as [63] H2 + ˜αH4 = 2 n(n − 1) (ρm + Λ) , (4) � 1 + 2˜αH2� ˙H = − 1 n − 1ρm, (5) where ˜α = (n − 2)(n − 3)α, H ≡ ˙a/a is the Hubble parameter, ρm is the energy density of both baryonic and DM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Notice that in the limiting case where n = 3, α = 0, Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' (4) and (5) reduce to the Friedmann equations in standard cosmology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Moreover, the continuity equation in (n + 1)-dimensions can be written as ˙ρm + nH(ρm + pm) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' (6) The energy density of the pressureless matter (pm = 0) can be obtained as ρm = ρm,0a−n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Therefore, with the following dimensionless parameters: β ≡ αH2 0, (7) ˜β ≡ ˜αH2 0 = (n − 2)(n − 3)β, (8) Ωm = 2ρm n(n − 1)H2 , (9) ΩΛ = 2Λ n(n − 1)H2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' (10) One can rewrite Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' (4) as E2(z) + ˜βE4(z) = Ωm,0(1 + z)n + ΩΛ,0, (11) where E(z) = H(z)/H0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' This equation governs the evo- lution of the homogeneous universe in the context of an 3 (n+1)-dimensional GB gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Moreover, at the present- time(z = 0), Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' (11), reduces to Ωm,0 + ΩΛ,0 = 1 + ˜β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' (12) Notice that when ˜β → 0, the standard equation is re- covered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' We have strong evidence that our universe is spatially flat, and the total density parameter is Ω ≡ Ωm + ΩΛ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' So the value of the dimensionless cou- pling parameter, ˜β, should be very small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' There are a variety of cosmological constraints on 4DEGB gravity [64–66].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' In [64] with using the joint constraint from cos- mic microwave background, baryon acoustic oscillations, Type Ia supernovae, cosmic chronometers and redshift space distortions, the authors obtained ˜α = 2αH2 0 = (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='2±5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='2)×10−17, namely α = (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='69±11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='67)×1048 ev−2 and we use these results in our study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Solving Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' (11) with respect to E(z) at a given red- shift z, and considering the branch where we have a real value of E(z), yields E2(z) = H2(z) H2 0 = 1 2 ˜β �� X(z) − 1 � , (13) where X(z) ≡ 1 + 4 ˜β [Ωm,0(1 + z)n + ΩΛ,0] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' (14) In general for any z we have: Ωm(z) + ΩΛ(z) = 1 + ˜βE2(z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' (15) The Hubble expansion rate can be obtained via Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' (9), (10) ,(13), (14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' We find H2(z) = H2 0 2 ˜β �� X(z) − 1 � = 2 n(n − 1)(ρm + Λ) � 1 − 2˜α n(n − 1)(ρm + Λ) � (16) where we have expanded X(z) and only kept the linear term of ˜β, since ˜β ≪ 1 is very small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' The evolution of the normalized Hubble parameter versus z for different values of n is plotted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' As we can see, in GB cosmology the Hubble parameter with higher dimensions are larger than lower dimensions model, implying that in lower dimensions model, our Uni- verse expands slower.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Also we have plotted this normal- ized Hubble parameter for different values of β in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' As we can see, in GB cosmology the Hubble parameter decreases with increasing the parameter β in higher di- mensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' 3, we have plotted the evolution of the density abundance Ωm, defined as Ωm ≡ 2ρm n(n − 1)H2 = 2 ˜β(1 + ˜β − ΩΛ,0)(1 + z)n �� X(z) − 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' (17) As we can see from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' 3, the matter density abun- dance with different dimensions has the same behavior, 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='8 1 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='5 3 n=3 n=4 n=5 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' 1: The behavior of the normalized Hubble rate E(z) for different values of n in GB cosmology, where we have taken β = 10−6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' 2: The behavior of the normalized Hubble rate E(z) for different values of β in 5-dimensional (n = 4) GB cosmology, where the solid-line for β = 10−6 , dashed-line for β = 10−9, and dash-dotted line for β = 6 × 10−10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=', all graphs are reduced by decreasing z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' In addition for higher dimensions (n parameter), the density abun- dance drops faster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Also we can see, the matter density abundance increases with increasing the parameter β in higher dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' In a similar way, the evolution of the density abundance ΩΛ is given by ΩΛ ≡ 2Λ n(n − 1)H2 = 2 ˜βΩΛ,0 �� X(z) − 1 �.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' (18) In Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' 4-5 we plot the evolution of the DE density 4 Ω 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='8 1 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='8 1 n=3 n=4 n=5 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' 3: The evolution of the matter density abundance as a function of redshift z for different values of n, where we have taken β = 10−6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' ΩΛ 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='8 1 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='8 1 n=3 n=4 n=5 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' 4: The evolution of the DE density abundance as a function of redshift z for different values of n, where we have taken β = 10−6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' abundance in various dimensions and for different values of ΩΛ,0 parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' It is seen that the DE density abun- dance ΩΛ increases by decreasing z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' From Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' 4, we see that for a fixed value of redshift parameter z, the value of the density abundance decreases with increasing the spacetime dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' The deceleration parameter in terms of the redshift can be written as q = −1 − ˙H H2 = −1 + (1 + z) H(z) dH(z) dz = −1 + n ˜β � X(z) (1 + z)n(1 + ˜β − ΩΛ,0) �� X(z) − 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' (19) ΩΛ 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='8 1 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='8 1 ΩΛ,0=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='68 ΩΛ,0=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='7 ΩΛ,0=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='72 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' 5: The evolution of the DE density abundance as a function of redshift z for different values of ΩΛ,0, where we have taken n = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='8 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='8 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='48 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='52 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='02 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='52 n=3 n=4 n=5 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' 6: The behavior of the deceleration parameter q(z) as a function of redshift for different n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Here we have taken β = 10−6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' We have plotted the behavior of the deceleration param- eter q(z) for different dimensions in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' We observe that for lower dimensions the universe experiences a tran- sition from a decelerating phase (q > 0) to an accelerating phase (q < 0), at redshift around z = ztr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' It is seen that ztr depends on the spacetime dimension and decreases with increasing n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Another quantity which is helpful in understanding the phase transitions of the universe is called the jerk param- eter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' This is a dimensionless quantity obtained by taking the third derivative of the scale factor with respect to the cosmic time, provides a comparison between differ- ent DE models and the ΛCDM (j = 1) model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' The jerk 5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='5 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='02 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='02 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='02 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='02 n=3 n=4 n=5 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' 7: The evolution of jerk parameter with respect to red- shift for different values of n parameter, Here we have taken β = 10−6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' parameter is defined as j = 1 aH3 d3a dt3 = q(2q + 1) + (1 + z)dq dz .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' (20) For the ΛCDM model, the value of j is always unity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' A non-ΛCDM model occurs if there is any deviation from the value of j = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' From Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' 7 we observe that in the context of GB cosmology, the jerk parameter is larger than ΛCDM in higher dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' GROWTH OF PERTURBATIONS IN GB COSMOLOGY We consider a universe filled with pressureless matter, (pm = 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' In this case Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' (6) reads ˙ρm + nHρm = 0, (21) which has a solution of the form ρm = ρm,0a−n, where ρm,0 is the energy density at the present time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' In or- der to study the growth of perturbations, we consider a spherically symmetric perturbed cloud of radius ap, and with a homogeneous energy density ρc m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' The SC model describes a spherical region with a top-hat profile and uniform density so that at any time t, we can write ρc m(t) = ρm(t)+δρm[58].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' If δρm > 0 this spherical region will eventually collapse under its own gravitational force and if δρm < 0 it will expand faster than the average Hubble expansion rate, thus generating a void.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' In other words, δρm is positive in overdense region and it is neg- ative in underdense regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' In fact, when the universe is in the matter dominated era, denser regions expand slower than the entire universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Therefore if their den- sity is enough large, they eventually collapse and create gravitational constraints systems like clusters [67].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Sim- ilar to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' (21), the conservation equation for spherical perturbed region can be written as ˙ρc m + nhρc m = 0, (22) where h = ˙ap/ap is the local expansion rate of the spher- ical perturbed region of radius ap (subscript p refers to the perturbed).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' In order to study the evolution of per- turbations, we define a useful and dimensionless quantity called density contrast as [67] δm = ρc m ρm − 1 = δρm ρm , (23) where ρc m is the energy density of spherical perturbed cloud and ρm is the background density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Taking the derivative of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' (23) with respect to the cosmic time and using Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' (21) and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' (22), we obtain ˙δm = n(1 + δm)(H − h), (24) ¨δm = n( ˙H − ˙h)(1 + δm) + ˙δ2 m 1 + δm , (25) where the dot denotes the derivative with respect to time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Combining Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' (4), (16), and expanding X(z) (only to the linear term of ˜β), we arrive at ¨a a = (2 − n) n(n − 1)ρm + 4˜α n2(n − 1)ρ2 m + 4˜α(n − 2) n2(n − 1)2 ρmΛ + 2 n(n − 1)Λ − 4˜α n2(n − 1)2 Λ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' (26) According to SC model, a homogeneous sphere of uniform density with radius ap can itself be modeled using the same equations that govern the evolution of the universe, with scale factor a [68].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Therefore, we can write for the spherical perturbed cloud with radius ap, an equation similar to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' (26), namely ¨ap ap = (2 − n) n(n − 1)ρc m + 4˜α n2(n − 1)(ρc m)2 + 4˜α(n − 2) n2(n − 1)2 ρc mΛ + 2 n(n − 1)Λ − 4˜α n2(n − 1)2 Λ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' (27) In general, one may expect ˜α differ inside and outside of the spherical region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' However, for simplicity here we propose they are similar, namely ˜αc = ˜α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Combining Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' (23), (26) and (27), yields ˙H − ˙h = (2 − n) n(n − 1)ρmδm − 8˜α n2(n − 1)ρ2 mδm − 4˜α(n − 2) n2(n − 1)2 ρmΛδm − H2 + h2, (28) where we have expanded the second term and only kept the linear term of δm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' This is due to the fact that we work in the linear regime where δm < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' 6 Substituting Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' (28) into Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' (25) and using Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' (24), we can find the second order differential equation for the density contrast δm in the linear regime as ¨δm + 2H ˙δm − (n − 2) (n − 1)ρmδm + 8˜α n(n − 1)ρ2 mδm + 4˜α(n − 2) n(n − 1)2 ρmΛδm = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' (29) In order to study the evolution of the density contrast δm in terms of the redshift parameter, 1 + z = 1/a, we first replace the time derivatives with the derivatives with respect to the scale factor a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' It is a matter of calculations to show that ˙δm = δ′ maH, ¨δm = δ′′ ma2H2 + a � H2 + ˙H � δ′ m, (30) where the prime stands for the derivative respect to the scale factor a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Using Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' (16) and (26), we get ˙H = − 1 n − 1ρm + 4˜αΛ n2(n − 1)2 + 4˜α n(n − 1)2 ρ2 m + 4˜α n2(n − 1)Λρm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' (31) Therefore Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' (29), after using Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' (30) and (31), can be written as δ′′ m + 3 2aδ′ m − (n2 − 4˜αΛ) n2(n − 1) ρm aH2 δ′ m + 4˜αΛ n2(n − 1)2 1 aH2 δ′ m + 4˜α n(n − 1)2 ρ2 m aH2 δ′ m − (n2 − n − 4˜αΛ)(n − 2) n(n − 1)2 ρm a2H2 δm + 8˜α n(n − 1) ρ2 m a2H2 δm = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' (32) Since we are working in the linear regime, we neglect O(δ2 m) and O(δ′ m 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Combining Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' (16) and (32), we arrive at δ′′ m + 3 aδ′ m − 1 a Γ � (n2 − 4˜αΛ)ρm 2n − 2˜αΛ n(n − 1) − 2˜αρ2 m (n − 1) � δ′ m − 1 a2 Γ � (n2 − n − 4˜αΛ)(n − 2)ρm 2(n − 1) −(4˜αρ2 m) � δm = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' (33) where Γ = (ρm + Λ) � 1 − 2˜α n(n − 1)(ρm + Λ) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' (34) It should be noted that in the limiting case where n = 3 and Λ = 0, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' (33) reduces to δ′′ m + 3 2aδ′ m − 3δm 2a2 = 0, (35) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' 8: The evolution of the matter density contrast for dif- ferent values of β in 5D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' We have chosen δm(zi) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='0001 , zi = 400 and H0 = 10−61tp, where dashed-line for β = 2 × 10−7, solid-line for β = 10−7, and dash-dotted line for β = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' which is the result obtained in standard cosmology [55].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' In other words, in the absence of the GB term, the per- turbed equation for the density contrast, δm, in the lin- ear regime, coincides with the corresponding equation in standard cosmology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' 8, we plot the matter density contrasts as a function of redshift for different values of β parameter and for redshifts 10 < z < 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' We observe that in the framework of GB gravity in 5D, the density contrast of matter starts growing from its initial value and, as the universe expands, the matter density contrast grows up faster and deviates from the standard model in 5D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' In- deed, the growth of matter perturbations in 5D universe is faster comparing to standard model of this model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Also we can see that with increasing β parameter the matter perturbations grows faster, as expected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='9 we plot the behavior of the matter density con- trast in various dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' We can see that the growth of perturbations increases with increasing n parameter, which reveals the influences of higher dimensions in GB cosmology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' This means that in a universe with extra di- mensions, the structures forms sooner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' We can investigate the growth rate of matter pertur- bations which is given by the growth function as [68] f(a) = dlnD dlna , D(a) = δm(a) δm(a = 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' (36) Let us note that in the absence of the GB term (˜α = 0), the growth function is a constant of unity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' 10 we have plotted the growth function in terms of the redshift parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' We observe that in the framework of GB gravity, the growth function in higher dimensions grows 7 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' 9: The evolution of the matter density contrast for dif- ferent values of n and for β = 10−7, where dashed-line for n = 5, dash-dotted line for n = 4 and solid-line for n = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' 10: The evolution of the growth function for different values of n parameter, where long dashed-line for n = 3, solid- line for n = 4 and dash-dotted-line for n = 5 , and β = 10−4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' faster than 4-dimensional GB and the growth function increases with increasing n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' From Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' 11, we can see that the growth function increases with increasing β parameter in higher- dimensional GB cosmology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' CONCLUSION AND DISCUSSION The growth of perturbations at the early stages of the universe and the formation of galaxies and structures, FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' 11: The evolution of the growth function for different values of β parameter in 5D, where solid-line for β = 10−3, long dashed-line for β = 10−4 and dash-dotted-line for β = 10−6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' due to the gravitational collapse, is still an open ques- tion in modern cosmology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' It is instructive to explore how this phenomena occurs in different gravity theories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' In the present work, we have explored the gravitational collapse of matter at the early universe when the higher order corrections on the gravity side are present in the action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' We have investigated the evolution of the mat- ter perturbations in the context of GB gravity in a flat universe filled with DM and DE (cosmological constant) for different values of the model parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' We have employed the SC formalism in order to examine the per- turbations and worked in the linear regime for the matter density contrasts δm as well as the GB coupling β = αH2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' We observe that the density contrast has similar behavior for different values of β parameter;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' that is, it starts from its initial value and then the growth of perturbations in- creases with increasing β parameter, which reveals the influences of β in GB cosmology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Interestingly enough, we found that the growth of perturbations increases with increasing α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' This is an expected result, since the higher order GB correction terms increase the strength of the gravity and thus support the growth of perturbations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Besides, the matter density contrast δm in small redshifts grows faster in higher dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Physically, this means that the structures form faster in a universe with extra di- mensional spacetime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' We have also studied the evolution of the density parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' We observed that the evolu- tion of the matter density abundance (Ωm) and DE den- sity abundance (ΩΛ) for different values of β decrease at low redshifts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' We found out that the density abundance of matter, consist of baryonic and DM, drops slower for smaller values of β in higher dimensional GB cosmology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' From the evolution of the deceleration parameter, we see that the universe experiences a phase transition from de- celerated phase to an accelerated phase around redshift 8 ztr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' We saw that ztr is smaller in higher dimensions, which means that our universe experiences this phase transition later in higher dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Also we observed that in the framework of GB gravity, the growth func- tion increases in higher dimensions, and also increases with increasing β parameter in higher-dimensional GB cosmology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' It is interesting to constrain the model presented here by using observational data, such as observations from type Ia supernova and baryon acoustic oscillations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' We leave this issue for future investigations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [1] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Will, The Confrontation between General Rela- tivity and Experiment, Living Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='Rel 09, 03 (2005) [arXiv:gr-qc/0510072].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [2] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Young, A survey of dark matter and related topics in cosmology, Front.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Phys 12, 121201 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [3] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Weinberg, The cosmological constant problem, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Phys 61, 1 (1989) [arXiv:astro-ph/0005265].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [4] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Riess et al, Observational Evidence from Super- novae for an Accelerating Universe and a Cosmologi- cal Constant, Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' J 116, 1009 (1998) [arXiv:astro- ph/9805201].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [5] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Perlmutter et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Measurements of Ω and Λ from 42 High-Redshift Supernovae, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' J 517, 565 (1999) [arXiv:astro-ph/9812133].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [6] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Lanczos, Elektromagnetismus als naturliche Eigen- schaft der Riemannschen Geometrie, Zeitschrift fur Physik 73, 147 (1932).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [7] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Lanczos, A remarkable property of the riemann- christoffel tensor in four dimensions, Annals of Math- ematics 39, 842 (1938).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [8] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Lovelock, Divergence-free tensorial concomitants, Ae- quationes mathematicae 4, 127 (1970).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [9] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Lovelock, The Einstein tensor and its generalizations J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Phys 12, 498 (1971).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [10] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Zumino, Gravity Theories in More Than Four- Dimensions, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Rept 137, 109 (1986).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [11] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Zwiebach, Curvature Squared Terms and String The- ories, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' B 156, 315 (1985).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [12] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Lorenz-Petzold, Higher Dimensional Gauss-Bonnet Cosmologies, Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' A 3, 827 (1988).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [13] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Andrew, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Bolen and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Middleton, Solutions of Higher Dimensional Gauss-Bonnet FRW Cosmology, Gen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Rel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Grav 39, 2061 (2007) [arXiv:0708.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='0373 [gr-qc]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [14] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Atmjeet, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Pahwa, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Seshadri and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Sub- ramanian, Cosmological Magnetogenesis From Extra- dimensional Gauss Bonnet Gravity, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' D 89, 063002 (2014) [arXiv:1312.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='5815 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='CO]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [15] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Glavan and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Lin, Einstein-Gauss-Bonnet gravity in four-dimensional spacetime, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Lett 124, 081301 (2020) [arXiv:1905.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='03601].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [16] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Kumar and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Kumar, Bardeen black holes in the novel 4D Einstein-Gauss-Bonnet gravity, Universe 8 4, 232 (2022) [arXiv:2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='13104].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [17] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Fernandes, Charged Black Holes in AdS Spaces in 4D Einstein Gauss-Bonnet Gravity, Physics Letters B 805, 135468 (2020) [arXiv:2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='05491].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [18] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Kumar and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Ghosh, Rotating black holes in the novel 4D Einstein-Gauss-Bonnet gravity, JCAP, 2020, 053 (2020) [arXiv:2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='08927].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [19] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Kumar and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Ghosh, Nonsingular black holes in the novel 4D Einstein-Gauss-Bonnet gravity, Universe 8 4, 244 (2022) [arXiv:2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='01131].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [20] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Li, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Wu and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Yu, Stability of the Ein- stein Static Universe in 4D Gauss-Bonnet Gravity, [arXiv:2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='02080].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [21] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Kobayashi, Effective scalar-tensor description of regularized Lovelock gravity in four dimensions, [arXiv:2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='12771].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [22] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Doneva and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Yazadjiev, Relativistic stars in 4D Einstein-Gauss-Bonnet gravity, [arXiv:2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='10284].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [23] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Ghosh and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Maharaj, Radiating black holes in the novel 4D Einstein-Gauss-Bonnet gravity, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Dark Univ 30, 100687 (2020) [arXiv:2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='09841].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [24] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Malafarina, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Toshmatov and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Dadhich, Dust col- lapse in 4D Einstein-Gauss-Bonnet gravity, Physics of the Dark Universe 30, 100598 (2020) [arXiv:2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='07089].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [25] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Casalino, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Colleaux, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Rinaldi and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Vicentini, Regularized Lovelock gravity, Physics of the Dark Uni- verse 31, 100770 (2021) [arXiv:2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='07068].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [26] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Konoplya and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Zhidenko, Black holes in the four- dimensional Einstein-Lovelock gravity,Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' D 101, 084038 (2020) [arXiv:2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='07788].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [27] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Konoplya and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Zhidenko, 4D Einstein-Lovelock black holes: Hierarchy of orders in curvature, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' B 807, 135607 (2020) [arXiv:2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='02225].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [28] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Wang and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Mota, 4D Gauss-Bonnet grav- ity: Cosmological constraints, H0 tension and large scale structure, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Dark Univ 32, 100813 (2021) [arXiv:2103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='12358 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='CO]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [29] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Fernandes, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Carrilho, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Clifton and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Mulryne, The 4D Einstein-Gauss-Bonnet theory of grav- ity: a review, Class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Quant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Grav 39, 063001 (2022) [arXiv:2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='13908 [gr-qc]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [30] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Muller-Hoissen, Spontaneous compactification with quadratic and cubic curvature terms,Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' B 163, 106 (1985).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [31] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Deruelle and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Farina-Busto, The Lovelock Gravita- tional Field Equations in Cosmology, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' D 41, 3696 (1990).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [32] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Muller-Hoissen, Dimensionally continued Euler forms: Kaluza-Klein cosmology and dimensional reduction, Class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Quant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Grav 3, 665 (1986).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [33] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Pavluchenko, General features of Bianchi-I cosmo- logical models in Lovelock gravity, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' D 80, 107501 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [34] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Mena Marugan, Perturbative formalism of Lovelock gravity, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' D 46, 4340 (1992) [35] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Elizalde, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Makarenko, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Obukhov, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Os- etrin, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Filippov, Stationary vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' singular points in an accelerating FRW cosmology derived from six- dimensional Einstein-Gauss-Bonnet gravity, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' B 644, 1 (2007) [arXiv:hep-th/0611213].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [36] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Maeda and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Ohta, Inflation from superstring/M- theory compactification with higher order corrections, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' D 71, 063520 (2005) [arXiv:hepth/0411093].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [37] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Maeda and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Ohta, Cosmic acceleration with a neg- 9 ative cosmological constant in higher dimensions, JHEP 2014, 095 (2014) [arXiv:1404.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='0561].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [38] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Zumino, Gravity Theories in More Than Four- Dimensions, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Rept 137, 109 (1986).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [39] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Overduin and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Wesson, Kaluza-Klein gravity, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Rept 283, 303 (1997), [arXiv:gr-qc/9805018].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [40] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Rubakov, Large and infinite extra dimensions, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Usp 44, 871 (2001) [arXiv:hep-ph/0104152].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [41] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Brax and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' van de Bruck, Cosmology and brane worlds: A Review, Class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Quant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Grav 20, 201 (2003) [arXiv:hep-th/0303095].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [42] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Kanti, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Gannouji, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Dadhich, Gauss- Bonnet Inflation, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' D 92, 041302 (2015) [arXiv:1503.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='01579].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [43] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Wongjun, Casimir Dark Energy, Stabilization of the Extra Dimensions and Gauss-Bonnet Term, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' C 75, 6 (2015) [arXiv:1308.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='4802].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [44] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Nojiri, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Odintsov, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Sasaki, Gauss-Bonnet dark energy, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' D 71, 123509 (2005) [arXiv:hep- th/0504052].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [45] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Amendola, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Charmousis, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Davis, Con- straints on Gauss-Bonnet gravity in dark energy cosmolo- gies, JCAP 0612, 020 (2006) [arXiv:hep-th/0506137].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [46] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Amendola, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Charmousis, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Davis, Solar System Constraints on Gauss-Bonnet Mediated Dark En- ergy, JCAP 0710, 004 (2007) [arXiv:0704.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='0175].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [47] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Koivisto and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Mota, Gauss-Bonnet Quintessence: Background Evolution, Large Scale Structure and Cos- mological Constraints, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' D 75, 023518 (2007) [arXiv:hep-th/0609155].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [48] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Neupane, On compatibility of string effective action with an accelerating universe, Class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Quant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Grav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' 23, 7493 (2006) [arXiv:hep-th/0602097].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [49] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Leith and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Neupane, Gauss-Bonnet cosmolo- gies: Crossing the phantom divide and the transition from matter dominance to dark energy, JCAP 0705, 019 (2007) [arXiv:hep-th/0702002].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [50] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Odintsov and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Oikonomou, Viable Inflation in Scalar-Gauss-Bonnet Gravity and Reconstruction from Observational Indices, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' D 98, 044039 (2018) [arXiv:1808.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='05045].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [51] Dmitry Chirkov, Alex Giacomini, Sergey A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Pavluchenko, Alexey Toporensky, Cosmological so- lutions in Einstein-Gauss-Bonnet gravity with static curved extra dimensions, [arXiv:2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='03517].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [52] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Sadjadi, On cosmic acceleration in four-dimensional Einstein-Gauss-Bonnet gravity, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Dark Univ 30, 100728 (2020) [arxiv: 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='10024].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [53] Bilguun Bayarsaikhan, Sunly Khimphun, Phearun Rithy, and Gansukh Tumurtushaa, Dynamical analysis in reg- ularized 4D Einstein-Gauss-Bonnet gravity with non- minimal coupling, [arXiv:2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='06717].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [54] Dmitry Chirkov, Sergey A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Pavluchenko, Some as- pects of the cosmological dynamics in Einstein-Gauss- Bonnet gravity, Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' A 36, 2150092 (2021) [arxiv:2101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='12066].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [55] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Abramo, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Batista, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Liberato and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='Rosenfeld, Struture formation in the presene of dark energy pertur- bations, JCAP 11, 012 (2007) [arXiv:0707.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='2882].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [56] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Planelles, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Schleicher, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Bykov, Large- scale struc- ture formation: from the first non-linear objects to massive galaxy clusters, Space Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Rev 51, 93 (2016) [arXiv:1404.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='3956].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [57] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Ziaie, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Shabani, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Ghaffari, Effects of Rastall parameter on perturbation of dark sectors of the Universe, Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' A 36, 2150082 (2021) [arXiv:1909.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='12085].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [58] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Ziaie, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Moradpour, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Shabani, Structure For- mation in Generalized Rastall Gravity, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Plus 135, 916 (2020), [arXiv:2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='12757].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [59] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Farsi and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Sheykhi, Structure formation in mimetic gravity, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' D 106, 024053 (2022), [arXiv:2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='04138].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [60] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Sheykhi and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Farsi, Growth of perturbations in Tsal- lis and Barrow cosmology, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' C 82, 1111 (2022), [arXiv:].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [61] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Ahmed, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Alfreedi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Alzulaibani, Some cosmolog- ical features of 4D Gauss-Bonnet gravity with varying cosmological constant International Journal of Geometric Methods in Modern Physics (2022) [arXiv:2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='01096v2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [62] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Cai, Gauss-Bonnet Black Holes in AdS Spaces, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' D 65, 084014, (2002) [arXiv:hep-th/0109133].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [63] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Cai, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Kim, First Low of Thermodynam- ics and Friedmann Equations of Friedmann-Robertson- Walker Universe, JHEP 0502, 050 (2005) [arXiv:hep- th/0501055].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [64] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Wang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Mota, 4D Gauss-Bonnet gravity: cosmo- logical constraints, H0 tension and large scale struc- ture, Physics of the Dark Universe 32, 100813 (2021) [arXiv:2103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='12358].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [65] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Feng, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Gu, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Shu, Theorical and observational con- straints on regularized 4D Einstein-Gauss-Bonnet grav- ity, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' D 103, 064002 (2021) [arXiv:2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='16751 v2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [66] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Garacia and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Hernandez, Einstein-Gauss-Bonnet gravity: is it compatible with modern cosmology?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=', [arXiv:2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content='06730].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [67] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Ryden, Introduction to Cosmology (Addison-Wesley Press) , San Francisco (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' [68] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
+page_content=' Peebles, Principles of Physical Cosmology (Princeton University Press), Princeton, NJ (1993).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dFQT4oBgHgl3EQfLDXt/content/2301.13263v1.pdf'}
diff --git a/adAyT4oBgHgl3EQfv_mu/vector_store/index.faiss b/adAyT4oBgHgl3EQfv_mu/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..da50d8f31ccfc3ff2d42d60a9922f987affc4759
--- /dev/null
+++ b/adAyT4oBgHgl3EQfv_mu/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:5f9eb98ab4ce6f63f6bf2d1f4aab064c4379732d4622d8b806846b2ee1d25f86
+size 4325421
diff --git a/adAyT4oBgHgl3EQfv_mu/vector_store/index.pkl b/adAyT4oBgHgl3EQfv_mu/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..d5d0da9e6dd0c219b06b53b2f702d13859a5f116
--- /dev/null
+++ b/adAyT4oBgHgl3EQfv_mu/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:037b3d5262c4e575339198c7ee8e521f79b2dfbcec5faa5b5c8c8c045b0f03cf
+size 162952
diff --git a/cNAyT4oBgHgl3EQfwfkz/content/2301.00648v1.pdf b/cNAyT4oBgHgl3EQfwfkz/content/2301.00648v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..5efee05889026770f9fa75243659dd6911be57c5
--- /dev/null
+++ b/cNAyT4oBgHgl3EQfwfkz/content/2301.00648v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:bc4e1b229d05e275c77959276a04faa03c96e1c902dd64e3290dd91b655aa5f9
+size 816168
diff --git a/cdAzT4oBgHgl3EQfZvzP/vector_store/index.faiss b/cdAzT4oBgHgl3EQfZvzP/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..68e975441205bc1d04ae0dac55abdb6c96f6bdee
--- /dev/null
+++ b/cdAzT4oBgHgl3EQfZvzP/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:74a7077a4894b21a2dc9c23a1f5e8e90b2aeb4f41477ef55b3133d701acfb52e
+size 2883629
diff --git a/ctFQT4oBgHgl3EQfijaX/content/2301.13350v1.pdf b/ctFQT4oBgHgl3EQfijaX/content/2301.13350v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..dc47c057cd0b84825f9a64510e3bac0fed3f2ea3
--- /dev/null
+++ b/ctFQT4oBgHgl3EQfijaX/content/2301.13350v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:826569073c873b5e680a953b859bb41291e80cd2045da35bf57a31830455da3f
+size 2096763
diff --git a/ctFQT4oBgHgl3EQfijaX/vector_store/index.pkl b/ctFQT4oBgHgl3EQfijaX/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..adfa50e36ae90a65af357f58b5318678063cb60d
--- /dev/null
+++ b/ctFQT4oBgHgl3EQfijaX/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:fb42583eb48bcd2b2765fdf12fb39c1a7bd2f6c1efbbf7aceb4f4cf0f2f81309
+size 344715
diff --git a/dNE0T4oBgHgl3EQf5QJM/content/tmp_files/2301.02748v1.pdf.txt b/dNE0T4oBgHgl3EQf5QJM/content/tmp_files/2301.02748v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..581fa5f14a2a687578bdf4d22fc01dabc7200c01
--- /dev/null
+++ b/dNE0T4oBgHgl3EQf5QJM/content/tmp_files/2301.02748v1.pdf.txt
@@ -0,0 +1,1777 @@
+Conditional Generation of Paired Antibody Chain
+Sequences through Encoder-Decoder Language
+Model
+Simon K.S. Chu∗
+University of California Davis
+Davis, CA 95616
+kschu@ucdavis.edu
+Kathy Y. Wei
+Therapeutic Discovery, Amgen Research, Amgen Inc.
+South San Francisco, CA 94080
+kwei@amgen.com
+Abstract
+Protein language models (LMs) have been successful in sequence, structural and
+functional predictions. However, currently, protein LMs are limited to encoder- or
+decoder-only architectures for single sequences while many biological contexts
+involve protein-protein interactions. Here, we introduce pAbT5, which models anti-
+body chain pairing as forward- and back-translations using a T5-based architecture.
+We show that pAbT5 accurately reflects chain pairing through sequence genera-
+tion and mispairing as unsupervised and supervised classifications. Our protein
+LM generates variable-length sequences and its next-word prediction probability
+agrees with position-specific scoring matrix from sequence alignment. Like other
+works in protein LM, pAbT5 performs state-of-the-art unsupervised prediction
+on experimental measurements. To the best of our knowledge, pAbT5 is the first
+encoder-decoder protein LM for protein-protein interactions.
+1
+Introduction
+Protein language models (LMs) have found tremendous popularity among protein scientists. Remark-
+ably, despite being pretrained only on sequence-related tasks, protein LMs are capable of predicting
+secondary structure and cellular localization [1–4], function annotation and design [5–18], and even
+protein structure prediction [19–22]. Evolutionary information stored in large sequence databases
+can be harnessed for sequence, structural and functional predictions through protein LMs.
+Most protein LMs are designed to model only single-chain sequences in encoder- or decoder-only
+architecture. However, many biological contexts involve protein-protein interactions where multiple
+sequences interact simultaneously. For instance, antibodies consist of paired heavy and light chains.
+Modeling heavy and light chains independently is inadequate to reflect their heterodimeric nature
+and sacrifices their co-evolutionary information. Given the technical difficulties in sequencing paired
+antibody heavy and light chains, understanding antibody pairing has the potential to identify which
+heavy and light chains pair without the need to sequence.
+We propose an encoder-decoder architecture to learn antibody heavy and light chain pairing, which
+we called paired Antibody T5 (pAbT5). The conditional generation of heavy chain from a light chain
+is modeled as forward-translation and from heavy to light chain as back-translation. To summarize,
+• We demonstrate that our encoder-decoder model captures antibody sequence and pairing
+contexts.
+• We show that pAbT5 captures variations in hypervariable regions in sequence-to-sequence
+generation.
+∗Work done as an intern at Therapeutic Discovery, Amgen Research, Amgen Inc.
+Preprint. Under review.
+arXiv:2301.02748v1 [q-bio.BM] 6 Jan 2023
+
+• We show that pAbT5 performs state-of-the-art zero-shot prediction on unseen experiments.
+Figure 1: Formalism of conditional generation on antibody heavy and light chain sequences. (Left)
+Variable regions of heavy and light chain on an antibody. Antibody consists of a heavy chain (blue)
+and a light chain (yellow), on each of which three CDR loops (pink) are hypervariable and responsible
+for antigen binding. (Right) Schematics of forward- and back-translations. Each pair of heavy and
+light chains is represented as forward- and back-translations in sequence-to-sequence generation.
+2
+Related Work
+2.1
+Attention-based protein language models
+The original transformer introduced by Vaswani et al. [23] consists of an encoder and a decoder. In
+2019, Devlin et al. [24] further introduced BERT as an encoder-only LM pretrained on masked and/or
+corrupted token recovery. Encoder-only protein LM was first shown to be superior to recurrent models
+by Rives et al. [2]. Since then, a variety of encoder-only protein LMs were published [1, 6, 9, 17, 18].
+Unlike encoder-only model, decoder-only models attend only to the previous tokens. Decoder-only
+models are typically pretrained on next-word prediction, enabling them to generate variable-length
+sequences recurrently. ProGen, ProteinGPT2, and ProGen2 were introduced for protein language
+modeling with a similar architecture to GPT2 [12, 13, 25]. Recently, Shuai et al. [26] developed span
+masking into their decoder-only model (IgLM) for unpaired antibody sequence modeling. Notably,
+both ProGen and IgLM generate sequences conditioned on prefix(es) at the beginning of the sentences
+to further constrain the generation.
+In parallel to encoder- and decoder-only models, T5 re-introduces the original transformer architecture
+with the intention to unify human LM tasks into text-to-text generation [27]. Elnaggar et al. [1]
+pretrained the first T5 protein LM, named ProtT5, on BERT-style task on single-chain sequences. To
+control protein secretion, Wu et al. [15] built a smaller encoder-decoder model on signal peptides at
+amino termini. To the best of the authors’ knowledge, there has yet to be an encoder-decoder protein
+LM for protein-protein interaction on two separate chains.
+2.2
+Relationship with protein structure
+Protein LM’s capability on unsupervised inter-residual contact prediction has hinted its potential in
+structure prediction [2]. In AlphaFold’s ablation study, multiple sequence alignment (MSA) is found
+to aim structure prediction [19]. Assisted with large pretrained protein LM, ESMFold and OmegaFold
+drop structural templates and MSA completely for end-to-end structure prediction [21, 22]. These
+are concrete examples where protein LMs can draw insight for protein structure prediction.
+The reverse of protein structure prediction is the inverse folding problem, which can also be considered
+as conditional sequence generation on predefined structures. Ingraham et al. [7] first proposed
+structure encoder and sequence decoder for inverse folding. SE(3)-equivariant graph neural networks
+(GNN) were later introduced to generate sequences independent of rotation and translation [28].
+Instead of symmetry-aware architecture, another approach is using internal coordinates as edge
+2
+
+ENCODER
+DECODER
+heavy chain
+light chain
+QVQLKQS..
+DIVMSQS..
+DECODER
+ENCODERfeatures to avoid absolute coordinates altogether [10, 14]. However, the common prerequisite of
+structure-conditioned models is a predefined target coordinate, which might not be known a priori.
+2.3
+Zero-shot functional prediction
+The emergence of protein function prediction from sequences alone can be traced back to conservation
+analysis. The idea is that residues detrimental to the function(s) of the protein should be conserved
+while other positions have more freedom to vary. Encoder-only protein LMs were shown to generalize
+Pott’s model [29], and outperform positional-specific scoring matrix (PSSM) with zero-shot prediction
+[8]. Similarly, the perplexity of decoder-only models is found to correlate with unseen experiment
+measurements [12], while the same log-likelihood analysis can also be replicated on conditional
+sequence generation in inverse folding [10, 28]. Zero-shot and few-shot predictions from language
+pretraining are not unique to protein LMs but arise generally from large-scale language modeling.
+3
+Method
+3.1
+Model
+We model the antibody pairing problem as conditional sequence-to-sequence (seq2seq) generation.
+We denote light-to-heavy-chain generation as forward-translation and heavy-to-light-chain as back-
+translation. We specify neither the translation direction nor any prefix related to input or target chain
+type, species, or family. By avoiding human annotation, the LM can generalize to more abstract
+conditions, discussed later in Section 5.
+Our model is finetuned from ProtT5-XL-UniRef50 [1]. ProtT5 follows standard T5 architecture. To
+the best of our knowledge, it was the only publicly available encoder-decoder transformer pretrained
+on large protein sequence database at the time of writing this manuscript. We choose ProtT5-XL over
+ProtT5-XXL due to limitations on computing resources and dataset size and leave the investigation of
+scaling between parameters and performance to the community. ProtT5-XL-UniRef50 was pretrained
+on BFD100 and then finetuned on UniRef50 with 3B parameters.
+3.2
+Dataset
+We obtain 160k pairs of antibody VH and VL sequences from the Observed Antibody Space (OAS)
+database [30]. Under the formalism of forward- and back-translations, each bi-directional pairing is
+represented by two uni-directional translations. The resulting dataset consists of 321k translation
+samples with 239k unique sequences from humans, rats, and mice.
+There are three options to split a protein-protein interaction network (shown in Figure 2). In our
+OAS dataset, each observed sequence can be represented by a node and each observed pairing an
+edge. The first option is to split directly per pairing. Another option is to split by node, include all
+edges involving training nodes as the training interactions, and leave the rest to the test set. Here, we
+opt for the third option of exclusive node split, in which neither test sequences nor pairing can be
+observed in the training set by removing a portion of pairing. We split all non-redundant sequences
+into approximately 90-5-5 ratio. The final pairing dataset consists of 260k, 828, and 802 translations
+in training, validation, and test set respectively.
+A comparison with training on clustered sequences is available in Section B. The results generally
+match with those on non-redundant sequences. However, training on clustered sequences results in a
+coarser resolution in gene recombination and sequence generation.
+3.3
+Optimization
+We follow the optimization scheme in ProtT5-XL pretraining in our finetuning for paired OAS dataset.
+We train only on the decoder and keep the encoder weights frozen, and find this approach results in a
+better encoder representation on sequences compared to finetuning the whole model. The machine
+translation task is trained on teacher forcing on cross-entropy loss with a local batch size of 8 and
+global batch size of 2048 in gradient accumulation. We use a learning rate of 5e-5 in AdaFactor
+optimizer with a gradient clipping of 1, patience of 5 epochs on validation loss, and a maximum of
+100 epochs in DDP. No weight decay is used. The model was trained on eight A100 on Amazon Web
+3
+
+Figure 2: Splitting for protein-protein interaction dataset. Each sequence and pairing is represented by
+a node and an edge respectively, colorized by train (blue) and test (orange) partitions. (A) Interaction
+split. Nodes are not partitioned and are therefore colorless. (B) Inclusive node split. (C) Exclusive
+node split. Edges between train and test nodes are dropped (dotted line). (D) Exclusive node splitting
+in detail. All non-redundant sequences in paired OAS database are first split into train, validation,
+and test partitions. Only pairings within each partition are included in the final dataset, i.e. all
+cross-pairings are dropped.
+Services P4de instance for 2 days. The implementation is on PyTorch and HuggingFace packages
+[31, 32].
+4
+Results
+4.1
+Antibody sequences are generated with meaningful representation
+To recognize virtually any antigen, human immune system generates a repertoire of antibodies through
+gene rearrangement. Each antibody sequence is transcribed from a C gene, V gene, J gene, and an
+additional D gene for heavy chain, from which libraries of these genes are stored in chromosome gene
+loci. Each gene corresponds to a segment of the whole antibody sequence. From the recombination
+of VDJ gene families, an estimated 106 combinations of heavy-light chain pairing are possible and
+are further diversified by somatic mutations [33].
+To assess the representation of antibody sequences of our model, we visualize the encoder hidden
+states of test set sequences at the resolution of chain type, gene loci, and V and J gene families.
+Indeed, as shown in Figure 3, heavy and light chain sequences cluster separately. Next, we test
+whether the encoder representation can recover patterns in gene loci and gene families in humans.
+Based on their gene loci, human light chains have two subtypes (λ and κ) while heavy chains only
+have H locus. These subtypes segregate into three discrete clusters in our t-SNE plot, indicating
+distinct representations between subtypes. Clustering at the level of gene families is found to be more
+challenging. Gene families form distinct but often overlapping clusters. This is consistent with the
+diminished signal from average pooling, where each gene constitutes only a short segment of the
+antibody sequence.
+In order to evaluate our model’s sequence-to-sequence generative performance, we test whether
+our model can recover the observed pairing in test set. Figure 5 illustrates the recovery rate at
+progressively fine levels of resolution on human antibodies. A target sequence is considered to be
+recovered if the generated sequence shares the same chain type, gene loci, V gene family, or the
+combination of V and J gene families. For chain types, our model always generates heavy chains
+from light chain inputs, and likewise for light chain generation. For gene loci on light chain, λ and κ
+loci are recovered at 48% and 56% of the time. As we approach finer resolutions, the recovery rate
+drops in V families and their combination with J families. This is consistent with the observation that
+antibody chain pairing is often degenerate. For instance, the heavy chain sequences from IGHV1
+gene family are observed to pair with multiple families in both λ and κ loci (Figure A.5). This sets
+4
+
+A
+B
+c
+D
+DIVMSQS...
+pairing
+OAS
+QVQLKQS....
+Train
+Val
+Train
+Val
+Test
+Testan upper bound on the recovery rate in antibody heavy and light chain pairing. A similar analysis has
+also been performed on the recovery of species (Figure A.3) and the exact figures of recovery rate
+can depend on the generative parameters, which are listed in Subsection A.1.
+Figure 3: t-SNE plot of encoder hidden states of test set sequences in progressively fine categories
+(chain types, human gene loci, and human IGHV gene families). Visualization of other gene families
+is located in Section A.1.
+Figure 4: Recovery rate of target chain type, gene loci, and gene families in sequence generation.
+Performance is represented in a hierarchical order, where parent classes are centered while children
+categories are on the periphery. On each rim, the arc lengths of categories are proportional to their
+populations in test set. Dark blue represents perfect recovery whereas white color implies low
+recovery rate.
+4.2
+Model learns antibody chain pairing with encoder-decoder architecture
+Since our model is trained on paired antibody sequences, we are curious whether it can identify
+antibody mispairing. Without publicly available antibody mispairing dataset, we generate two types
+of mispairing from OAS database, i.e. chain-type mispairing and species mispairing. For chain-
+type mispairing, we generate correct heavy-light pairing and mispaired heavy-heavy/light-light
+pairing for each translation in test set with the assumption that only heavy-light-chain pairings are
+permitted. A similar approach is used for species mispairing by assuming cross-species chain pairing
+5
+
+IGHV1
+IGHV11
+IGHV12
+IGHV15
+IGHV1S5
+IGHV2
+H
+IGHV3
+heavy chain
+IGHV4
+light chain
+IGHV91
+IGHJ1
+IGHJ2
+IGHJ5
+IGHJ4
+IGHJ6
+IGHJ2
+IGHJ3
+IGHJ3
+IGHJ1
+IGHJ6
+IGHJ5
+IGHJ4
+IGHV4
+IGHJ3
+IGHJ6
+0.8
+IGHJ5
+GHT
+H
+IGHV1
+IGHJ4
+IGHV3
+IGHJ3
+IGHJ5
+IGHJ4
+IGHV2
+heavy
+IGHJ3
+IGHJ4
+IGHJ6
+IGHV5
+IGHJ2
+0.6
+IGHJ4
+ICHIE
+IGHV8
+Recovery rate
+IGHJ2
+IGHV9
+IGHV6
+IGLV7
+IGLJ3
+IGLV6
+IGLI2
+IGLV8
+IGKJ4
+IGLJ7
+IGLJ3
+0.4
+IGLJ7
+IGLV2
+IGLJ2
+入
+IGLJ1
+light
+IGKV1
+IGKJ1
+IGLJ3
+IGLV1
+K
+IGKJ2
+IGLJ3
+IGLV3
+0.2
+IGKJ5
+IGKV2D
+IGKV4
+IGKV3
+IGKJ3
+IGLJ1
+IGKV2
+IGKJ1
+IGLJ2
+IGKJ2
+IGKJ4
+IGLJ3
+IGKJ3
+IGKJ1
+IGKJ3
+IGKJ4
+IGKJ5
+IGKJ1
+IGKJ4
+IGKJ2
+IGKJ5
+0is impermissible. Their detailed implementation is elaborated in Subsection A.2. Although these
+assumptions might break down in some cases, the assessment still provides some insights into our
+model’s understanding of mispairing.
+We propose two classification tasks (Figure 5). The first task considers two input sequences sharing
+the same target sequence and only one pairing is correct. Out of the two pairings, we assign the
+pairing with lower perplexity as correct and the other one as mispaired. Based on this assignment,
+we identify above 90% of the correct pairings from chain-type mispairing and close to 80% from
+species mispairing. The baseline of random assignment results in 50% accuracy. No classification
+model is trained.
+In a more typical experiment setting, the correct and mispaired antibody pairings might not share
+the same target sequence. In our second task, we consider a dataset by mixing and shuffling the
+correct and mispaired samples from the first task and classify whether the pairing is correct given two
+antibody sequences alone. Informed only by our language model’s perplexity, a logistic regression
+significantly outperforms the baseline of random assignment. The classifier is trained on the average
+perplexity of forward- and back-translations on validation set. All performance metrics are evaluated
+on test set.
+Figure 5: Schematics of two classification tasks considered for species mispairing. (Left) In the
+first classification task, the aim is to identify the correct and mispaired sequences sharing the same
+target. (Right) In the second classification task, the aim is to predict the likelihood of the pairing as a
+bidirectional translation. The tasks for chain-type mispairing are similar. No chain type nor species
+annotation is used in our prediction.
+First Classification Task
+Mispairing type
+Target chain
+Accuracy
+Chain type
+Light
+0.92
+Heavy
+0.91
+Species
+Light
+0.80
+Heavy
+0.79
+Second Classification Task
+Mispairing type
+Accuracy
+AUROC
+Chain type
+0.54
+0.70
+Species
+0.57
+0.60
+Table 1: Performance on first and second classification task on model perplexity alone. (Left) In
+the first classification task, mispairing assignment is based on the rank of perplexity without any
+parameterizable model. (Right) In the second classification task, instead of unidirectional translation,
+logistic regression is trained on the bidirectional average of translation perplexity in validation set,
+and evaluated on test set. Random assignment results in an accuracy of 0.5 in the first task, and an
+additional AUROC of 0.5 in the second task.
+6
+
+Human
+Human
+Human
+Human
+Mouse
+Human
+Mouse
+X
+Human
+Mouse
+Mouse
+Mouse
+Mouse4.3
+Variations in hypervariable domains are captured in model uncertainty
+Antibody displays tremendous variety in hypervariable domains for specific antigen binding. Three
+loop structures on each of the light and heavy chains, namely the CDR loops, are highly variable
+while other framework regions are relatively conserved. Among all CDR loops, the third CDR loop
+on heavy chain (CDRH3) has the highest variability. Here, we test whether our model can capture
+these patterns in next-word prediction and sequence generation.
+Illustrated in Figure 6, we first compare the probability of next-word prediction and position-specific
+scoring matrix. Our model is more confident at the relatively constant framework region of the heavy
+chain target while remaining highly uncertain at the hypervariable CDR loops. Next, we further
+assess the generative performance of our model by aligning the observed and generated sequences.
+We chose a paired heavy and light chain randomly in test set, and the alignment profile indicates that
+our model generates variable-length CDR (H3) loops while conserving residues before and after the
+hypervariable region. Similar variations are observed on light chain (Figure A.12). On average, the
+generated sequences share an average of about 60% whole-sequence identity with the target sequence
+(Table A.5), which shows that our model can capture patterns in antibody pairing while generating
+novel sequences simultaneously. A comprehensive breakdown of sequence identities and lengths by
+framework regions and CDR loops is available in Table A.3 and A.4.
+Figure 6: Comparison between observed and modeled alignment profiles on heavy chain in the
+framework regions (FRs) and CDR loops. (First row) Next-word probability in teacher-forcing.
+(Second row) Sequence conservation from position-specific scoring matrix. (Third row) Global
+alignment of generated sequences to (fourth row) the observed sequence. In general, generated
+sequences are more variable than next-word probability due to the cascade effect in iterative sampling,
+and might have different gene locus and/or families from the target sequence. The full-length
+alignment profiles of heavy and light chains together with four other output examples randomly
+drawn from test set are available in Figure A.13, A.14 and A.15.
+In addition to the assessment of alignment profiles, we benchmark our model prediction by overlaying
+these results onto predicted and known structures. We align predicted structures of generated
+sequences from DeepAb and indeed, the generated heavy and light chains maintain a structurally
+consistent low root-mean-square deviation (RMSD) framework region while reflecting variations
+at CDR loops (Figure 7). With the interest to test on unseen experiment structures, three structures
+with antibody bound to SARS-Cov2 spike protein [34, 35] from RCSB database are analyzed. As
+shown in Figure 8, the CDR loops constitute the most entropic regions on the antibody structure for
+all three structures. Similarly, our analysis of cross-attention also indicates that hypervariable regions
+are often ignored in generating the pairing partner (Figure A.17).
+7
+
+BVOLVESG
+YGM
+VAETRY
+D
+GSNKYY
+VAY
+OVELVESGLTFRS YEMVAFIRYD
+BWGOGTLVIVSS
+BYWGOGTEVITVSS
+FEGTWD
+20Figure 7: Structural models of example variable regions (Fv) with eight generated heavy chains given
+one input light chain. The generated heavy chains are colored in rainbow and the light chains are
+white.
+Figure 8: Next-word prediction entropy on antibody bound to SARS-Cov2 spike protein. Blue
+indicates low entropy regions and red indicates highly entropic areas. (A and B) Front and back view
+of antibody in PDB structure 6WPS. (C) Overview of PDB structure 6WPS. (D, E, and F) 6WPT,
+7TB8 chain D and E, and 7TB8 chain H and I. Entropy is capped for visualization purposes whereas
+uncapped visualizations are available in Subsection A.3.
+4.4
+Zero-shot prediction arises from paired antibody finetuning
+Benchmarked on antibody functional datasets, we show that our model has competitive results
+with the current state-of-the-art protein LMs. We benchmark our model on 13 antibody functional
+datasets on either stability, binding affinity or expression measurements [36–38] in Figure 9. Our
+encoder-decoder model achieves a similar performance as ProGen2 and is better than ProGen2-
+OAS, which is finetuned on the unpaired OAS dataset. The major architectural difference is that
+ProGen2 is a decoder-only model which requires joining heavy and light chain sequences with a
+GS linker, whereas our encoder-decoder model computes the average perplexity for forward- and
+back-translations. Nonetheless, ProGen2 and ProGen2-OAS have fewer parameters than our model,
+making model comparison difficult. In addition, we have also included pseudo-perplexity from
+encoder-only models (ESM) [8, 21] to highlight the difference in architecture.
+To further investigate the impact of each component in our model, we perform an ablation study on
+the need for an encoder-decoder architecture, bidirectional translations in evaluation, and pretraining.
+For any comparison with statistical significance (p-value < 0.05), our encoder-decoder model always
+outperforms ablations (Figure A.21).
+5
+Discussion
+Similar to prefix sequence generation, sequence-to-sequence generation is also a form of conditional
+generation. Unlike prefix conditioning, the encoder-decoder model learns the condition implicitly by
+extracting species, chain type, and other potential information from its input. For example, our model
+8
+
+Figure 9: Zero-shot prediction performance on antibody measurements of our model and state-of-the-
+art. x-axis represents the antibody functional datasets. (Top) The difference in absolute spearman
+rank correlation (SRC) between our model and state-of-the-art. (Bottom) Absolute SRC between
+model (pseudo-)perplexity and measurements. Error bars are estimated in standard deviation with
+1000 bootstrap samples.
+always generates a heavy chain sequence when provided with a light chain sequence without any
+prefix. The possibility of capturing patterns without human annotation opens up a versatile approach
+to understanding protein-protein interactions.
+Despite its ability to recognize pairing patterns, our protein LM does not elucidate the biophysical
+nature of antibody pairings. Similar to other protein LMs, our model learns patterns in sequences and
+pairings on the assumption that our dataset accurately reflects the biology of antibodies. Our model is
+also restricted only to the variable domain of heavy and light chains. Antigen-antibody and general
+protein-protein interactions are outside of the scope of our study.
+Additionally, the scaling between model size and performance remains unclear. We did not ex-
+plore other model sizes given the pretrained nature of our model and limitations on computing
+resources. While the original T5 paper has explored and concluded on the pretraining objectives and
+hyperparameters in human language, the same analysis is still open in the field of protein LM.
+6
+Conclusion
+Protein LM has made major impacts on protein sequence, function, and structure predictions. While
+currently most protein LMs are trained for single-chain sequences, an encoder-decoder architecture
+opens up a pathway to account for protein-protein interactions and accounts for abstract conditioning
+without human-annotated prefixes. Using paired heavy and light chain antibody sequences as an
+example, we hope to showcase the possibilities and advantages of encoder-decoder protein LMs.
+7
+Societal Impact
+Antibodies are important molecules for biomedicine. All generated antibody sequences should be
+validated experimentally before use in biomedical applications.
+Acknowledgments and Disclosure of Funding
+We give our special thanks to Ai Ching Lim and Christy Tinberg for their generous support of this
+project. We thank George Seegan for language model discussion. We thank Yi Zheng, Danyang
+Gong, and Austin Rice for helpful discussion on gene families and applications in antibodies. We
+thank Grant Keller for introducing ANARCI.
+9
+
+0.5
+0.0
+-0.5
+1.0
+pabt5
+Correlation
+progen2-oas
+0.8
+progen2-base
+esmlv
+0.6
+esm2 3B
+ Rank
+0.4
+0.2
+0.0
+Kd
+Tm
+Kd
+Tm
+Tm
+Kd
+Kd
+Kd
+Kd
+Tm
+_binding
+in_
+in_
+_enrichment
+REGN10987_T
+neg.
+g6_
+Hie2References
+[1] Ahmed Elnaggar, Michael Heinzinger, Christian Dallago, Ghalia Rehawi, Yu Wang, Llion
+Jones, Tom Gibbs, Tamas Feher, Christoph Angerer, Martin Steinegger, Debsindhu Bhowmik,
+and Burkhard Rost. ProtTrans: Towards Cracking the Language of Life’s Code Through Self-
+Supervised Learning. bioRxiv, 14(8), 2021. URL https://www.biorxiv.org/content/
+early/2021/05/04/2020.07.12.199554.
+[2] Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi
+Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, Rob Fergus, Joshua Meier, Demi Guo, Myle
+Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus.
+Biological structure and function
+emerge from scaling unsupervised learning to 250 million protein sequences. bioRxiv, 118(15):
+e2016239118, 4 2019. doi: 10.1101/622803. URL http://www.pnas.org/content/118/
+15/e2016239118.abstract.
+[3] Ethan C. Alley, Grigory Khimulya, Surojit Biswas, Mohammed AlQuraishi, and George M.
+Church. Unified rational protein engineering with sequence-based deep representation learn-
+ing.
+Nature Methods, 16(12):1315–1322, 12 2019.
+ISSN 15487105.
+doi: 10.1038/
+s41592-019-0598-1.
+[4] Roshan Rao, Nicholas Bhattacharya, Neil Thomas, Yan Duan, Xi Chen, John Canny, Pieter
+Abbeel, and Yun S Song. Evaluating Protein Transfer Learning with TAPE. Advances in Neu-
+ral Information Processing Systems, 32, 2019. URL https://github.com/songlab-cal/
+tape.
+[5] Adam J. Riesselman, John B. Ingraham, and Debora S. Marks. Deep generative models of
+genetic variation capture the effects of mutations. Nature Methods, 15(10):816–822, 2018.
+ISSN 15487105. doi: 10.1038/s41592-018-0138-4. URL http://dx.doi.org/10.1038/
+s41592-018-0138-4.
+[6] Sharrol Bachas, Goran Rakocevic, David Spencer, Anand V Sastry, Robel Haile, John M
+Sutton, George Kasun, Andrew Stachyra, Jahir M Gutierrez, Edriss Yassine, Borka Medjo,
+Vincent Blay, Christa Kohnert, Jennifer T Stanton, Alexander Brown, Nebojsa Tijanic, Cailen
+Mccloskey, Rebecca Viazzo, Rebecca Consbruck, Hayley Carter, Simon Levine, Shaheed
+Abdulhaqq, Jacob Shaul, Abigail B Ventura, Randal S Olson, Engin Yapici, Joshua Meier,
+Sean Mcclain, Matthew Weinstock, Gregory Hannum, Ariel Schwartz, Miles Gander, and
+Roberto Spreafico. Antibody optimization enabled by artificial intelligence predictions of
+binding affinity and naturalness. bioRxiv, 2022. doi: 10.1101/2022.08.16.504181. URL
+https://www.biorxiv.org/content/early/2022/08/17/2022.08.16.504181.
+[7] John Ingraham, Vikas K Garg, Regina Barzilay, and Tommi Jaakkola. Generative models
+for graph-based protein design. Advances in Neural Information Processing Systems, pages
+15820–15831, 2019.
+[8] Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu, and Alexan-
+der Rives.
+Language models enable zero-shot prediction of the effects of mu-
+tations
+on
+protein
+function.
+Advances
+in
+Neural
+Information
+Processing
+Sys-
+tems, 34:1–28, 2021.
+URL https://proceedings.neurips.cc/paper/2021/hash/
+f51338d736f95dd42427296047067694-Abstract.html.
+[9] Roshan Rao, Jason Liu, Robert Verkuil, Joshua Meier, John F Canny, Pieter Abbeel, Tom
+Sercu, and Alexander Rives. MSA Transformer. bioRxiv, page 2021.02.12.430858, 2021. URL
+https://doi.org/10.1101/2021.02.12.430858.
+[10] Kevin K Yang, Niccolò Zanichelli Eleutherai, and Hugh Yeh. Masked inverse folding with
+sequence transfer for protein representation learning. bioRxiv, 2022. doi: 10.1101/2022.05.25.
+493516. URL https://www.biorxiv.org/content/early/2022/05/28/2022.05.25.
+493516.
+[11] Thomas A. Hopf, John B. Ingraham, Frank J. Poelwijk, Charlotta P.I. Schärfe, Michael Springer,
+Chris Sander, and Debora S. Marks. Mutation effects predicted from sequence co-variation.
+Nature Biotechnology, 35(2):128–135, 2017. ISSN 15461696. doi: 10.1038/nbt.3769.
+10
+
+[12] Erik Nijkamp, Jeffrey Ruffolo, Eli N. Weinstein, Nikhil Naik, and Ali Madani. ProGen2:
+Exploring the Boundaries of Protein Language Models. arXiv, 6 2022. URL http://arxiv.
+org/abs/2206.13517.
+[13] Ali Madani, Bryan McCann, Nikhil Naik, Nitish Shirish Keskar, Namrata Anand, Raphael R.
+Eguchi, Po-Ssu Huang, and Richard Socher. ProGen: Language Modeling for Protein Genera-
+tion. arXiv, 3 2020. URL http://arxiv.org/abs/2004.03497.
+[14] J Dauparas, I Anishchenko, N Bennett, H Bai, R J Ragotte, L F Milles, B I M Wicky, A Courbet,
+R J De Haas, N Bethel, P J Y Leung, T F Huddy, S Pellock, D Tischer, F Chan, B Koepnick,
+H Nguyen, A Kang, B Sankaran, A K Bera, N P King, and D Baker. Robust deep learning-
+based protein sequence design using ProteinMPNN. Science, 378:49–56, 2022. URL https:
+//www.science.org.
+[15] Zachary Wu, Kevin K. Yang, Michael J. Liszka, Alycia Lee, Alina Batzilla, David Wernick,
+David P. Weiner, and Frances H. Arnold. Signal Peptides Generated by Attention-Based
+Neural Networks. ACS Synthetic Biology, 9(8):2154–2161, 8 2020. ISSN 21615063. doi:
+10.1021/acssynbio.0c00219.
+[16] Vladimir Gligorijevic, P. Douglas Renfrew, Tomasz Kosciolek, Julia Koehler Leman,
+Kyunghyun Cho, Tommi Vatanen, Daniel Berenberg, Bryn Taylor, Ian M. Fisk, Ramnik J.
+Xavier, Rob Knight, and Richard Bonneau. Structure-based function prediction using graph
+convolutional networks. Nature Communications, 2019. doi: 10.1101/786236.
+[17] Vladimir Gligorijevi´c, Daniel Berenberg, Stephen Ra, Andrew Watkins, Simon Kelow,
+Kyunghyun Cho, and Richard Bonneau. Function-guided protein design by deep manifold
+sampling. bioRxiv, 2021. doi: 10.1101/2021.12.22.473759. URL https://doi.org/10.
+1101/2021.12.22.473759.
+[18] Nadav Brandes, Dan Ofer, Yam Peleg, Nadav Rappoport, and Michal Linial. ProteinBERT:
+a universal deep-learning model of protein sequence and function. Bioinformatics, 38(8):
+2102–2110, 4 2022. ISSN 14602059. doi: 10.1093/bioinformatics/btac020.
+[19] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
+neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex
+Bridgland, Clemens Meyer, Simon A.A. A Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino
+Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen,
+David Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska,
+Tamas Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Se-
+nior, Koray Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis.
+Highly accurate pro-
+tein structure prediction with AlphaFold. Nature, 596(7873):583–589, 2021. ISSN 1476-
+4687. doi: 10.1038/s41586-021-03819-2. URL http://www.ncbi.nlm.nih.gov/pubmed/
+34265844http://dx.doi.org/10.1038/s41586-021-03819-2.
+[20] Richard Evans, Michael O’Neill, Alexander Pritzel, Natasha Antropova, Andrew Senior, Tim
+Green, Augustin Žídek, Russ Bates, Sam Blackwell, Jason Yim, Olaf Ronneberger, Sebastian
+Bodenstein, Michal Zielinski, Alex Bridgland, Anna Potapenko, Andrew Cowie, Kathryn Tun-
+yasuvunakool, Rishub Jain, Ellen Clancy, Pushmeet Kohli, John Jumper, and Demis Hassabis.
+Protein complex prediction with AlphaFold-Multimer. bioRxiv, 2022. ISSN 10643745. doi:
+10.1007/978-1-61779-361-5{\_}16.
+[21] Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan Dos,
+Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives, and Meta
+Ai. Language models of protein sequences at the scale of evolution enable accurate structure
+prediction. bioRxiv, 2022. doi: 10.1101/2022.07.20.500902. URL https://www.biorxiv.
+org/content/early/2022/10/31/2022.07.20.500902.
+[22] Ruidong Wu, Fan Ding, Rui Wang, Rui Shen, Xiwen Zhang, Shitong Luo, Chenpeng Su, Zuofan
+Wu, Qi Xie, Bonnie Berger, Jianzhu Ma, and Jian Peng. High-resolution de novo structure
+prediction from primary sequence. bioRxiv, 2022. doi: 10.1101/2022.07.21.500999. URL
+http://biorxiv.org/content/early/2022/07/22/2022.07.21.500999.abstract.
+11
+
+[23] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
+Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information
+Processing Systems, 2017-Decem(Nips):5999–6009, 2017. ISSN 10495258.
+[24] Jacob Devlin, Ming Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
+of deep bidirectional transformers for language understanding. NAACL HLT 2019 - 2019
+Conference of the North American Chapter of the Association for Computational Linguistics:
+Human Language Technologies - Proceedings of the Conference, 1(Mlm):4171–4186, 2019.
+[25] Noelia Ferruz, Steffen Schmidt, and Birte Höcker. ProtGPT2 is a deep unsupervised lan-
+guage model for protein design. Nature Communications, 13(1):4348, 12 2022. ISSN 2041-
+1723. doi: 10.1038/s41467-022-32007-7. URL https://www.nature.com/articles/
+s41467-022-32007-7.
+[26] Richard W Shuai, Jeffrey A Ruffolo, and Jeffrey J Gray. Generative Language Modeling for
+Antibody Design. bioRxiv, 2022. doi: 10.1101/2021.12.13.472419. URL https://doi.org/
+10.1101/2021.12.13.472419.
+[27] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
+Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the Limits of Transfer Learning with a Unified
+Text-to-Text Transformer. arXiv, 10 2019. URL http://arxiv.org/abs/1910.10683.
+[28] Chloe Hsu, Robert Verkuil, Jason Liu, Zeming Lin, Brian Hie, Tom Sercu, Adam Lerer, and
+Alexander Rives. Learning inverse folding from millions of predicted structures. bioRxiv, 2022.
+doi: 10.1101/2022.04.10.487779. URL https://doi.org/10.1101/2022.04.10.487779.
+[29] Justas Dauparas, Haobo Wang, Avi Swartz, Peter Koo, Mor Nitzan, and Sergey Ovchinnikov.
+Unified framework for modeling multivariate distributions in biological sequences. arXiv, 2019.
+URL http://arxiv.org/abs/1906.02598.
+[30] Tobias H. Olsen, Fergus Boyles, and Charlotte M. Deane. Observed Antibody Space: A diverse
+database of cleaned, annotated, and translated unpaired and paired antibody sequences. Protein
+Science, 31(1):141–146, 1 2022. ISSN 1469896X. doi: 10.1002/pro.4205.
+[31] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury Google, Gregory
+Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
+Andreas Köpf Xamla, Edward Yang, Zach Devito, Martin Raison Nabla, Alykhan Tejani,
+Sasank Chilamkurthy, Qure Ai, Benoit Steiner, Lu Fang Facebook, Junjie Bai Facebook, and
+Soumith Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning Library.
+In Advances in Neural Information Processing Systems, 2019.
+[32] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
+Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
+Patrick Von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
+Gugger, Mariama Drame, Quentin Lhoest, and Alexander M Rush. Transformers: State-of-
+the-Art Natural Language Processing. In Proceedings of the 2020 Conference on Empirical
+Methods in Natural Language Processing: System Demonstrations, pages 38–45. Association
+for Computational Linguistics, 2020. URL https://github.com/huggingface/.
+[33] Jeremy M Berg, John L Tymoczko, and Lubert Stryer. Biochemistry (Loose-Leaf). Macmillan,
+2007.
+[34] Dora Pinto, Young Jun Park, Martina Beltramello, Alexandra C. Walls, M. Alejandra Tortorici,
+Siro Bianchi, Stefano Jaconi, Katja Culap, Fabrizia Zatta, Anna De Marco, Alessia Peter,
+Barbara Guarino, Roberto Spreafico, Elisabetta Cameroni, James Brett Case, Rita E. Chen, Colin
+Havenar-Daughton, Gyorgy Snell, Amalio Telenti, Herbert W. Virgin, Antonio Lanzavecchia,
+Michael S. Diamond, Katja Fink, David Veesler, and Davide Corti. Cross-neutralization of
+SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature, 583(7815):290–295, 7
+2020. ISSN 14764687. doi: 10.1038/s41586-020-2349-y.
+[35] Tongqing Zhou, Lingshu Wang, John Misasi, Amarendra Pegu, Yi Zhang, Darcy R. Harris,
+Adam S. Olia, Chloe Adrienna Talana, Eun Sung Yang, Man Chen, Misook Choe, Wei Shi,
+I. Ting Teng, Adrian Creanga, Claudia Jenkins, Kwanyee Leung, Tracy Liu, Erik Stephane D.
+12
+
+Stancofski, Tyler Stephens, Baoshan Zhang, Yaroslav Tsybovsky, Barney S. Graham, John R.
+Mascola, Nancy J. Sullivan, and Peter D. Kwong. Structural basis for potent antibody neu-
+tralization of SARS-CoV-2 variants including B.1.1.529. Science, 376(6591), 4 2022. ISSN
+10959203. doi: 10.1126/science.abn8897.
+[36] Brian L. Hie, Duo Xu, Varun R. Shanker, Theodora U.J. Bruun, Payton A. Weidenbacher,
+Shaogeng Tang, and Peter S. Kim. Efficient evolution of human antibodies from general protein
+language models and sequence information alone. bioRxiv, page 2022.04.10.487811, 2022.
+URL https://www.biorxiv.org/content/10.1101/2022.04.10.487811v1%0Ahttps:
+//www.biorxiv.org/content/10.1101/2022.04.10.487811v1.abstract.
+[37] Patrick Koenig, Chingwei V. Lee, Benjamin T. Walters, Vasantharajan Janakiraman, Jeremy
+Stinson, Thomas W. Patapoff, and Germaine Fuh. Mutational landscape of antibody variable
+domains reveals a switch modulating the interdomain conformational dynamics and antigen
+binding. Proceedings of the National Academy of Sciences of the United States of America, 114
+(4):E486–E495, 2017. ISSN 10916490. doi: 10.1073/pnas.1613231114.
+[38] Shira Warszawski, Aliza Borenstein Katz, Rosalie Lipsh, Lev Khmelnitsky, Gili Ben Nissan,
+Gabriel Javitt, Orly Dym, Tamar Unger, Orli Knop, Shira Albeck, Ron Diskin, Deborah Fass,
+Michal Sharon, and Sarel J. Fleishman. Optimizing antibody affinity and stability by the
+automated design of the variable light-heavy chain interfaces. PLoS Computational Biology, 15
+(8):1–24, 2019. ISSN 15537358. doi: 10.1371/journal.pcbi.1007207.
+[39] James Dunbar and Charlotte M. Deane.
+ANARCI: Antigen receptor numbering and re-
+ceptor classification.
+Bioinformatics, 32(2):298–300, 1 2016.
+ISSN 14602059.
+doi:
+10.1093/bioinformatics/btv552.
+[40] M. A. Larkin, G. Blackshields, N. P. Brown, R. Chenna, P. A. Mcgettigan, H. McWilliam,
+F. Valentin, I. M. Wallace, A. Wilm, R. Lopez, J. D. Thompson, T. J. Gibson, and D. G. Higgins.
+Clustal W and Clustal X version 2.0. Bioinformatics, 23(21):2947–2948, 11 2007. ISSN
+13674803. doi: 10.1093/bioinformatics/btm404.
+[41] Peter J.A. Cock, Tiago Antao, Jeffrey T. Chang, Brad A. Chapman, Cymon J. Cox, Andrew
+Dalke, Iddo Friedberg, Thomas Hamelryck, Frank Kauff, Bartek Wilczynski, and Michiel J.L.
+De Hoon. Biopython: Freely available Python tools for computational molecular biology and
+bioinformatics. Bioinformatics, 25(11):1422–1423, 6 2009. ISSN 13674803. doi: 10.1093/
+bioinformatics/btp163.
+[42] Stephen F Altschup, Warren Gish, Webb Miller, Eugene W Myers, and David J Lipman. Basic
+Local Alignment Search Tool. J. Mol. Biol, 215:403–410, 1990.
+[43] Baris E. Suzek, Hongzhan Huang, Peter McGarvey, Raja Mazumder, and Cathy H. Wu. UniRef:
+Comprehensive and non-redundant UniProt reference clusters. Bioinformatics, 23(10):1282–
+1288, 5 2007. ISSN 13674803. doi: 10.1093/bioinformatics/btm098.
+[44] Ammar Tareen and Justin B Kinney. Logomaker: Beautiful Sequence Logos in Python. biorxiv,
+2019. doi: 10.1101/635029. URL https://doi.org/10.1101/635029.
+[45] Schrödinger, LLC. The PyMOL molecular graphics system, version 1.8. November 2015.
+[46] Jeffrey A. Ruffolo, Jeremias Sulam, and Jeffrey J. Gray. Antibody structure prediction using
+interpretable deep learning. Patterns, 3(2), 2 2022. ISSN 26663899. doi: 10.1016/j.patter.2021.
+100406.
+A
+Appendix
+A.1
+Antibody sequences are generated with meaningful representation
+We use ANARCI [39] for species, chain type, and gene family classification. Although OAS dataset
+indicates humans, mice, and rats as the source organisms, ANARCI identifies only the former two.
+For consistent comparison in both observed and generated antibody pairs, we opt for the definition
+13
+
+in ANARCI in all evaluations, including t-SNE, mispairing, and generation assessment. We only
+report V and J families in heavy and light chains as D families are not supported by ANARCI. In all
+species-specific analyses, pairings are included only when ANARCI identifies both heavy and light
+chains from the same species.
+We denote the encoder sequence as the input of the translation and decoder sequence as the target of
+the translation. We denote the encoder hidden state of the paired antibody in the translation order of
+input-to-target as the sequence embedding of the input sequence, or simply sequence embedding. For
+t-SNE visualization, we take the mean of the encoder hidden state over residues at the final layer.
+In the generative process, sequences are generated at a temperature of 1, top p of 0.9 with 10 returned
+sequences, determined from a grid search of temperature and top p. Experiment on beam search
+results in low diversity and regions of repetitive motifs. All co-occurrences of gene families are
+collected from test set.
+Figure A.1: t-SNE plot of sequence embeddings colorized by ANARCI annotated species
+(a) Light chain V gene
+(b) Heavy chain J gene
+(c) Light chain J gene
+Figure A.2: t-SNE plot of sequence embeddings colorized by ANARCI annotated gene families
+14
+
+human
+mouseIGKV1
+IGKV12
+IGKV16
+IGKV2
+IGKV4
+IGKV5
+IGKV6
+IGKV6D
+IGKV8
+IGKV9
+IGLV1
+IGLV10
+IGLV2
+IGLV3
+IGLV4
+O
+IGLV7O
+IGHJ1
+IGHJ2
+IGHJ3
+IGHJ5
+IGHJ6IGKJ1
+IGKJ2
+IGKJ3
+IGKJ4
+IGKJ5
+IGLJ1
+IGLJ6
+IGLJ7Figure A.3: Recovery rate on species by original species and translation direction.
+Figure A.4: Co-occurrence of V families in heavy and light chains colorized by relative frequency.
+Frequency is normalized by the total number of observed co-occurrence.
+15
+
+1.0
+human
+0.8
+0.94
+0.96
+0.6
+ Species
+0.4
+mouse
+0.72
+0.57
+- 0.2
+- 0.0
+heavy-to-light
+light-to-heavy
+Translation0.10
+0.08
+IGHV1
+IGHV11 :
+IGHV12 -
+0.06
+IGHV15 -
+IGHV1S5 -
+IGHV2 -
+IGHV3 -
+0.04
+IGHV4 -
+IGHV9 -
+IGKV1
+IGKV12
+6
+KV2
+KV4
+KV5
+IGKV6
+IGKV6D
+IGKV8
+iKV9
+LV10
+IGLV2
+LV3
+GLV4
+IGLV7
+0.02
+IGLV1
+KV1e
+G
+G
+G
+G
+-0.00Figure A.5: Co-occurrence of J families in heavy and light chains colorized by relative frequency.
+Frequency is normalized by the total number of observed co-occurrence.
+Figure A.6: Co-occurrence of V and J families in heavy chain colorized by relative frequency.
+Frequency is normalized by the total number of observed co-occurrence.
+16
+
+0.30
+IGHJ1
+0.25
+IGHJ3 IGHJ2
+0.20
+IGHJ51
+0.15
+- 0.10
+IGHJ6
+-0.05
+IGKJ1
+IGKJ2
+IGKJ3
+IGKJ4
+IGKJ5
+IGLJ1
+IGLJ6
+IGLJ7
+-0.00IGHV1
+0.4
+IGHV11
+IGHV12 -
+0.3
+IGHV15 -
+IGHV1S5 -
+0.2
+IGHV2
+IGHV3 -
+0.1
+IGHV4 -
+IGHV9
+- 0.0
+IGHJ1 IGHJ2 IGHJ3 IGHJ5 IGHJ6Figure A.7: Co-occurrence of V and J families in light chain colorized by relative frequency.
+Frequency is normalized by the total number of observed co-occurrence.
+Figure A.8: Co-occurrence of V families in heavy chain and J families in light chain colorized by
+relative frequency. Frequency is normalized by the total number of observed co-occurrence.
+17
+
+IGKV1 -
+0.14
+IGKV12 -
+IGKV16 -
+- 0.12
+IGKV2 -
+IGKV4 -
+0.10
+IGKV5 -
+IGKV6 -
+0.08
+IGKV6D -
+IGKV8 -
+0.06
+IGKV9 -
+IGLV1 -
+IGLV10 -
+- 0.04
+IGLV2 -
+IGLV3 -
+- 0.02
+IGLV4 -
+IGLV7 -
+- 0.00
+GKJ1
+IGKJ2
+3
+4
+5
+9
+9
+IGKJ
+IGKJ
+IGLJ
+G
+GIGHV1 -
+0.35
+IGHV11
+0.30
+IGHV12 .
+0.25
+IGHV15 -
+0.20
+IGHV1S5 -
+IGHV2 .
+-0.15
+IGHV3 -
+0.10
+IGHV4 -
+0.05
+IGHV9 -
+- 0.00
+IGKJ1 IGKJ2 IGKJ3 IGKJ4 IGKJ5 IGLJ1 IGLJ6IGLJ7Figure A.9: Co-occurrence of J families in heavy chain and J families in light chain colorized by
+relative frequency. Frequency is normalized by the total number of observed co-occurrence.
+A.2
+Model learns antibody chain pairing with encoder-decoder architecture
+We generate synthetic mispairings to test our model’s capability of learning chain pairing. The
+generation protocol for chain-type mispairing is as follows (algorithm 1). The generation protocol for
+species mispairing is similar (algorithm 2).
+Algorithm 1 Chain-type mispairing dataset generation
+1: Inputs: paired test dataset D
+2: Outputs: chain-type mispairing dataset D′
+3: initialize H, L and D′ as ∅
+4: for (u, v) in D do
+5:
+for s in (u, v) do
+6:
+if chaintype(s) = heavy then
+7:
+H.add(s)
+8:
+else if chaintype(s) = light then
+9:
+L.add(s)
+10:
+end if
+11:
+end for
+12: end for
+13: for (u, v) in D do
+14:
+if chaintype(u) = chaintype(v) then
+15:
+for s in (u, v) do
+16:
+if chaintype(s) = heavy then
+17:
+s′ ← random element in L
+18:
+else if chaintype(s) = light then
+19:
+s′ ← random element in H
+20:
+end if
+21:
+D′.add((s, s′))
+22:
+end for
+23:
+end if
+24: end for
+25: return D′
+18
+
+0.07
+0.06
+0.05
+IGHJ1 -
+IGHJ2 -
+- 0.04
+IGHJ3
+IGHJ5 -
+0.03
+IGHJ6 -
+IGKV1
+IGKV12
+IGKV16
+IGKV2
+IGKV4
+IGKV5
+IGKV6
+IGKV6D
+IGKV8
+IGKV9
+IGLV1
+IGLV10
+IGLV2
+IGLV3
+IGLV4
+IGLV7
+0.02
+- 0.01
+- 0.00Algorithm 2 Species mispairing dataset generation
+1: Inputs: paired test dataset D
+2: Outputs: species mispairing dataset D′
+3: initialize H, M and D′ as ∅
+4: for (u, v) in D do
+5:
+for s in (u, v) do
+6:
+if species(s) = human then
+7:
+H.add(s)
+8:
+else if species(s) = mouse then
+9:
+M.add(s)
+10:
+end if
+11:
+end for
+12: end for
+13: for (u, v) in D do
+14:
+if species(u) = species(v) then
+15:
+for s in (u, v) do
+16:
+if species(s) = human then
+17:
+s′ ← random element in M
+18:
+else if species(s) = mouse then
+19:
+s′ ← random element in H
+20:
+end if
+21:
+D′.add((s, s′))
+22:
+end for
+23:
+end if
+24: end for
+25: return D′
+We have considered two possible schemes for preparing correct pairings (Figure A.10), i.e. single-
+generation and double-generation. In single-generation, we keep the observed pairing from test
+set as the correct pairing. While it ensures that the correct pairing is experimentally validated,
+the comparison between an observed correct pairing and a synthetic mispairing creates a bias in
+perplexity.
+As such, we introduce double-generation where both pairings are generated and label the synthetically
+correct pairing in italic. Despite the lack of direct experiment validation, the comparison between
+correct and mispaired pairings is unbiased, is more challenging than single-generation, and provides
+some insights into whether our model learns antibody chain pairing. As indicated in Table A.1
+and A.2, the conclusion in Section 4.2 remains the same when switched from single-generation to
+double-generation.
+Figure A.10: Schematics of preparation of correct and mispaired sequences in species mispairing.
+The input sequence for correct pairing is in blue and that for mispairing is in yellow. (Left) Single-
+generation scheme: comparison between observed correct pairing and synthetic mispairing. (Right)
+Double-generation scheme: comparison between synthetic correct pairing and synthetic mispairing.
+A.3
+Variations in hypervariable domains are captured in model uncertainty
+We use clustalw [40] in Biopython [41] with default parameters to generate alignment profiles.
+Conservation analysis is generated by psiblast [42] in Biopython onto UniRef90 database [43]. To
+19
+
+input
+target
+input
+target
+(human) QVQLQESG...
+(human) EIVLTQS..
+(human) QVQLQESG...
+(human) EIVLTQS..
+[drawn from other human]
+(mouse) QIQLVQSG...
+(human) EIVLTQS...
+(mouse) QIQLVQSG...
+(human) EIVLTQS..Mispairing type
+Target chain
+Accuracy
+Chain type
+Light
+0.99
+Heavy
+0.96
+Species
+Light
+0.97
+Heavy
+0.96
+Table A.1: First classification task assignment accuracy by the perplexity rank between correct and
+mispaired antibody sequences in single-generation scheme.
+Mispairing type
+Accuracy
+AUROC
+Chain-type
+0.54
+0.72
+Species
+0.60
+0.70
+Table A.2: Second classification task performance in single-generation scheme
+compare model confidence and sequence conservation, we apply softmax to PSSM and compare with
+the probability in next-word prediction. We use Logomaker [44] for visualization of sequence and
+alignment profiles. CDR and framework regions are defined in aho antibody renumbering scheme.
+CDRs of light chains are from residue ID 32 to 42, 57 to 76, and 109 to 138 for CDR L1, L2, and L3
+respectively. CDRs of heavy chains are located from residue ID 24 to 42, 58 to 72, and 107 to 138.
+We overlay entropy and cross-attention per query residue onto antibody structures in PyMOL [45].
+Structural models are generated from DeepAb [46], and in the case with available crystal structures,
+we align the models to the crystal chains to standardize numbering and fill in missing residues. We
+cap the values of average entropy and cross-attention per query residue in structural overlay and
+normalize heavy and light chains together for visualization purposes. Detailed visualization of capped
+and uncapped figures are also available (Figure A.17, A.18, A.19, and A.20).
+Region
+Light
+Heavy
+FR1
+0.57±0.18
+0.63±0.21
+CDR1
+0.36±0.26
+0.41±0.22
+FR2
+0.77±0.13
+0.76±0.14
+CDR2
+0.38±0.21
+0.41±0.19
+FR3
+0.71±0.12
+0.63±0.18
+CDR3
+0.31±0.20
+0.22±0.14
+FR4
+0.76±0.18
+0.90±0.09
+whole sequence
+0.60±0.13
+0.59±0.14
+Table A.3: Sequence identities between generated and target sequences in test set by regions and
+target chain type.
+Heavy chain target
+Light chain target
+Human
+0.61±0.14
+0.60±0.14
+Mouse
+0.56±0.10
+0.62±0.10
+Table A.5: Sequence identities between generated and target sequences in test set by species and
+target chain type
+20
+
+Figure A.11: Comparison between observed and modeled alignment profiles on heavy chain in framework regions (FRs) CDR loops. (First row) Next-word
+probability in teacher-forcing. (Second row) Sequence conservation from position-specific scoring matrix. (Third row) Global alignment of generated sequences to
+(fourth row) the observed sequence. In general, generated sequences are more variable than next-word probability due to the cascade effect in iterative sampling, and
+might have different gene locus and/or families from the target sequence. The full-length alignment profiles of heavy and light chains together with four other output
+examples randomly drawn from test set are available in Figure A.13, A.14 and A.15.
+21
+
+BVOLVES
+VAEIRYI
+BWCOGTLVIVSS
+人M冬人
+VAY
+BVOLVES LTERE YEM VAFIRYB ERYENY
+HKN
+CARBX
+CAMATEGTWDFigure A.12: Comparison between observed and modeled alignment profiles on heavy chain in framework regions (FRs) CDR loops. (First row) Next word prediction
+probability. (Second row) Sequence conservation from position-specific scoring matrix. (Third row) Global alignment of generated sequences to (fourth row) the
+observed sequence. The heavy chain in Figure 6 and the light chain here originate from the same observed antibody chain pair.
+22
+
+WVEGGGTKETVE
+SSXLTOPA CTGISSRYGYNYVSWIYEVAKRP CESDCS(a) Next word prediction probability (top) versus position-specific scoring matrix (bottom)
+(b) Generated sequences (top) versus observed sequence (bottom)
+Figure A.13: Full-length alignment profile of heavy chain between model predictions, conservation profile and observed sequence in Figure 6.
+23
+
+(a) Next word prediction probability (top) versus position-specific scoring matrix (bottom)
+(b) Generated sequences (top) versus observed sequence (bottom)
+Figure A.14: Full-length alignment profile of light chain between model predictions, conservation profile and observed sequence in Figure A.12.
+24
+
+SXLTOPSASGSPSALTOSPPT
+LEVL
+ARREAMN(a) Next word prediction probability (top) versus position-specific scoring matrix (bottom)
+(b) Generated sequences (top) versus observed sequence (bottom)
+(c) Next word prediction probability (top) versus position-specific scoring matrix (bottom)
+(d) Generated sequences (top) versus observed sequence (bottom)
+(e) Next word prediction probability (top) versus position-specific scoring matrix (bottom)
+(f) Generated sequences (top) versus observed sequence (bottom)
+(g) Next word prediction probability (top) versus position-specific scoring matrix (bottom)
+(h) Generated sequences (top) versus observed sequence (bottom)
+Figure A.15: Four other examples of full-length alignment profile of light chain between model predictions, conservation profile and observed sequence. Examples
+are randomly drawn from all test set translations.
+25
+
+B8MTOSPSSLSASGGOGTKYEIKIVETOSPETEPSPGEPXTSCRSSYVETOIP'SLSVSRegion
+Light
+Heavy
+Observed
+Generated
+Observed
+Generated
+FR1
+22.75±0.43
+22.74±0.44
+28.91±1.45
+28.99±0.06
+FR2
+15.00±0.00
+15.00±0.00
+14.00±0.00
+14.00±0.00
+FR3
+32.02±0.20
+32.00±0.04
+32.00±0.00
+32.00±0.00
+FR4
+9.97±0.22
+10.00±0.03
+11.00±0.00
+10.96±0.33
+CDR1
+12.50±2.16
+12.54±2.14
+6.32±0.75
+6.22±0.62
+CDR2
+7.03±0.38
+7.02±0.25
+16.80±0.77
+16.82±0.66
+CDR3
+9.24±0.96
+9.44±1.01
+11.47±4.00
+12.29±4.16
+whole sequence
+108.51±2.38
+108.74±2.29
+120.45±4.57
+121.28±4.18
+Table A.4: Sequence length of observed and generated sequences in test set by regions and chain
+type.
+Figure A.16: Cross-attention map between target heavy chain and input light chain in Figure 6
+averaged throughout heads and layers. Hypervariable regions generally receive less attention from
+queries consistently throughout all paired antibodies in the test set.
+26
+
+query (heavy)
+key (light)Figure A.17: Structural overlay of capped average cross-attention from pairing partner onto each
+residue of SARS-Cov2-binding antibodies. Red color indicates regions with highly attended while
+blue is weakly attended areas. (Upper right) PDB 6WPT. (Lower Left) PDB 7TB8 chain D and E.
+(Lower Right) PDB 7TB8 chain H and I. Consistently for all PDB structures, the CDR loops receive
+the least attention. This reflects the random nature of CDR loop sequences.
+Figure A.18: Structural overlay of uncapped average cross-attention from pairing partner onto each
+residue of SARS-Cov2-binding antibodies. (Upper right) PDB 6WPT. (Lower Left) PDB 7TB8 chain
+D and E. (Lower Right) PDB 7TB8 chain H and I.
+27
+
+Figure A.19: Structural overlay of capped next word prediction entropy of SARS-Cov2-binding
+antibodies. (Upper left) PDB 6WPS. (Upper right) PDB 6WPT. (Lower Left) PDB 7TB8 chain D
+and E. (Lower Right) PDB 7TB8 chain H and I.
+Figure A.20: Structural overlay of uncapped next word prediction entropy of SARS-Cov2-binding
+antibodies. (Upper left) PDB 6WPS. (Upper right) PDB 6WPT. (Lower Left) PDB 7TB8 chain D
+and E. (Lower Right) PDB 7TB8 chain H and I.
+A.4
+Zero-shot prediction arises from paired antibody finetuning
+We evaluate the perplexity from the benchmarked models and calculate the absolute value of spearman
+rank correlation (SRC) with the experimental measurements. By default, we define a symmetric
+paired perplexity by taking the average of that in forward- and back-translations for zero-shot
+prediction. Since ProGen2 is a decoder-only model, we join the heavy and light chains by a GS
+28
+
+linker of GGGGSGGGGSGGGGS and parse the paired antibody as a single sequence. In the case of
+our decoder-only ablation, we train the model without an encoder but take the average of heavy and
+light chain perplexities. Our ablation on pretraining from ProtT5 shares the same hyperparameters in
+Section 3.3. The mean and standard deviation of SRC are estimated by bootstrapping 1000 samples.
+Figure A.21: Ablation study on zero-shot prediction on all datasets. x-axis represents datasets.
+(Top) The difference in absolute spearman rank correlation (SRC) between our model and ablation.
+(Bottom) Absolute SRC between model (pseudo-)perplexity and measurements. Error bars are
+estimated in standard deviation with 1000 bootstrap samples.
+B
+Sequence Clustering
+Contrary to using all non-redundant sequences in the dataset, one can cluster these sequences by an
+identity cutoff and include only the representative sequences of each cluster. This provides a few
+advantages. First, it reduces the dataset size and increases sparsity for efficient training. Second, it
+de-biases the database from heavily studied families. Third, it provides a better assessment of model
+generalizability by limiting the information shared between train and test sets.
+This section investigates the impact of sequence clustering on paired OAS dataset and our model
+performance. We argue that for our specific case, including all non-redundant sequences helps the
+model in three ways. While sequence clustering affects the performance evaluation, the impact is
+minor and does not affect conclusions.
+• Sequence clustering reduces the size of paired OAS dataset by at least 50%.
+• Fine-grained resolution in a subspace of protein universe helps resolve all antibodies and
+their pairings, in particular for learning gene families.
+• De-biasing might fail to reflect the preference(s) of antibody pairing.
+B.1
+Impact on Dataset Size
+We use linclust from mmseqs2 to cluster representative sequences with –min-seq-id to specify identity
+cutoff, and -c 0.8 and –cov-mode 1, and otherwise the default parameters. We do not observe any
+signs of truncation at the N- and C-termini on paired OAS dataset.
+As reported in Table B.1, the dataset reduces in size exponentially with the identity threshold in
+clustering. For each increment of 5%, the number of translations after clustering falls by about half.
+This impacts not only the training but also the statistical power of evaluation(s) given the size of the
+diminished test set.
+From here, we denote exclusive node split in Section 3.2 on clustered sequences as cluster split. We
+decide to repeat the analyses on cluster split with an identity cutoff of 95% and compare with that
+from training on non-redundant sequences.
+29
+
+0.5
+0.0
+-0.5
+1.0
+pabt5
+Correlationl
+decoder-only
+0.8
+no pretraining
+light-to-heavy
+0.6
+heavy-to-light
+ Rank
+0.4
+0.2
+0.0
+Kd
+Tm
+Kd
+Tm
+Tm
+Kd
+Kd
+Kd
+Tm
+_binding
+in_
+in_
+_enrichment
+REGN10987_T
+ neg.
+g6_
+e2022_R
+Hie2non-redundant
+95%
+90%
+85%
+Training set
+260062
+127904
+53814
+22266
+Validation set
+846
+356
+188
+74
+Test set
+802
+346
+178
+78
+Table B.1: Impact of identity threshold on dataset size in terms of number of translations
+B.2
+Impact on Results
+B.2.1
+Antibody sequences are generated with meaningful representation
+t-SNE plots on sequence representation are similar to those without sequence clustering (Figure B.1a,
+B.1b and B.1c). When comparing on recovery rate of target sequences, we found that cluster split
+leads to slightly stronger bias towards specific families (Figure B.3). Sequence recovery is similar to
+that without sequence clustering (Figure A.3 and B.4).
+(a) Heavy and light chains
+(b) Gene loci in human
+(c) IGHV gene families in human
+Figure B.1: t-SNE plot of encoder hidden states of test set sequences in progressively fine categories
+(chain types, gene loci, and gene families).
+Figure B.2: t-SNE plot of antibody embeddings colorized by ANARCI annotated species
+30
+
+00
+heavy chain
+light chainO
+H
+K
+入O
+IGHV1
+IGHV11
+IGHV15
+IGHV3
+IGHV4
+IGHV900
+0
+human
+mouseFigure B.3: Recovery rate of target chain type, gene loci, and gene families in sequence generation.
+Performance is represented in a hierarchical order, where parent classes are centered while children
+categories are on the periphery. On each rim, the arc lengths of categories are proportional to their
+populations in test set. Dark blue represents perfect recovery whereas white color implies low
+recovery rate.
+Figure B.4: Recovery rate on species by original species and translation direction.
+B.2.2
+Model learns antibody chain pairing with encoder-decoder architecture
+In double-random scheme, training and evaluation on clustered sequences result in higher accuracy
+in the first classification task but weaker in the second classification task. In both tasks, mispairing
+identification informed by model perplexity alone still outperforms the baseline. Similar observation
+31
+
+IGHJ3
+1
+IGHJ1
+IGHJ2
+IGHJ4
+IGHJ5
+IGHJ6
+IGHJ6
+IGHJ2
+IGHJ5
+IGHJ1
+IGHV4
+0.8
+IGHJ4
+IGHJ3
+H
+IGHV3
+IGHJ6
+IGHV1
+IGHJ5
+IGHJ4
+IGHJ4
+heavy
+IGHJ3
+IGHJ6
+IGHV5
+0.6
+IGHJ5
+IGHJ4
+Recovery rate
+IGHV6
+IGHJ5
+GHV
+IGHJ2
+IGL
+IGLVE
+IGLV4
+IGLJ3
+IGLJ1
+IGLJ2
+IGKJ4
+IGLV1
+0.4
+IGLJ3
+light
+IGKV1
+入
+IGKJ1
+IGLJ7
+K
+IGLJ3
+IGLV3
+IGLJ1
+IGKJ5
+0.2
+IGKJ3
+IGKJ2
+IGKV3
+IGLV2
+IGLJ2
+IGKV2
+IGKV4
+IGL
+IGKVAD
+IGKJ4
+IGLJ2
+IGKJ2
+IGKJ1
+IGKJ4
+IGKJ3
+IGLJ1
+IGKJ2
+IGKJ2
+IGKJ5
+GKJ5
+01.0
+human
+0.8
+0.96
+0.98
+0.6
+ Species
+0.4
+mouse
+0.73
+0.51
+- 0.2
+- 0.0
+heavy-to-light
+light-to-heavy
+Translationholds also in single-random scheme B.3 and B.4. Overall, the results are unaffected by sequence
+clustering.
+First Classification Task
+Mispairing type
+Target chain
+Accuracy
+Chain type
+Light
+0.98
+Heavy
+0.98
+Species
+Light
+0.85
+Heavy
+0.88
+Second Classification Task
+Mispairing type
+Accuracy
+AUROC
+Chain type
+0.55
+0.65
+Species
+0.55
+0.57
+Table B.2: Performance on first and second classification task on model perplexity alone. (Left) In
+the first classification task, mispairing assignment is based on the rank of perplexity without any
+parameterizable model. (Right) In the second classification task, instead of unidirectional translation,
+logistic regression is trained on the bidirectional average of translation perplexity in validation set,
+and evaluated on test set. Random assignment results in an accuracy of 0.5 in the first class, and an
+additional AUROC of 0.5 in the second task.
+Mispairing type
+Target chain
+Accuracy
+Chain type
+Light
+0.92
+Heavy
+1
+Species
+Light
+0.99
+Heavy
+0.98
+Table B.3: First classification task assignment accuracy by the perplexity rank between correct and
+mispaired antibody sequences in single-generation scheme.
+Mispairing type
+Accuracy
+AUROC
+Chain-type
+0.55
+0.62
+Species
+0.56
+0.62
+Table B.4: Second classification task performance in single-generation scheme
+B.2.3
+Variations in hypervariable domains are captured in model uncertainty
+Our model from cluster split still has high entropy and generates variable-length sequences at
+hypervariable domains. Results are largely unaffected by cluster split.
+Figure B.5: Comparison between observed and modeled alignment profiles in the framework regions
+(FRs) and CDR loops. (First row) Next-word prediction probability. (Second row) Sequence
+conservation from position-specific scoring matrix. (Third row) Global alignment of generated
+sequences to (fourth row) the observed sequence.
+32
+
+OVOLVEW
+LIGEINHS
+YBYWGOGTLVIVSS
+QVQLQ
+QVQLVSSG
+ARBR.Figure B.6: Cross-attention map between target heavy chain and input light chain in Figure 6 averaged
+throughout heads and layers. Hypervariable regions generally receive less attention from queries.
+Region
+Light
+Heavy
+FR1
+0.59±0.18
+0.60±0.21
+CDR1
+0.35±0.25
+0.38±0.20
+FR2
+0.78±0.13
+0.76±0.13
+CDR2
+0.39±0.22
+0.37±0.15
+FR3
+0.69±0.12
+0.58±0.15
+CDR3
+0.33±0.20
+0.24±0.15
+FR4
+0.79±0.19
+0.90±0.08
+whole sequence
+0.60±0.13
+0.56±0.12
+Table B.5: Sequence identities between generated and target sequences in test set by regions and
+target chain type.
+33
+
+query (heavy)
+key (light)Region
+Light
+Heavy
+Observed
+Generated
+Observed
+Generated
+FR1
+22.59±0.50
+22.37±0.48
+28.86±1.83
+29.00±0.00
+CDR1
+12.74±2.18
+12.87±1.41
+6.26±0.67
+6.03±0.25
+FR2
+15.00±0.00
+15.00±0.00
+14.00±0.00
+14.00±0.00
+CDR2
+7.05±0.43
+7.00±0.00
+16.74±0.63
+16.89±0.32
+FR3
+32.00±0.00
+32.00±0.00
+32.00±0.15
+32.00±0.00
+CDR3
+9.63±1.06
+9.95±0.81
+12.32±3.93
+16.51±3.97
+FR4
+9.94±0.36
+10.00±0.00
+11.00±0.00
+11.00±0.00
+whole sequence
+108.88±2.54
+109.19±1.58
+121.10±4.63
+125.43±4.10
+Table B.6: Sequence length of observed and generated sequences in test set by regions and chain
+type.
+B.3
+Zero-shot prediction arises from paired antibody finetuning
+Trained on clustered sequences, our model performs more weakly (p-value < 0.05) on one dataset.
+Results are largely unaffected by sequence clustering.
+Figure B.7: Zero-shot prediction performance on antibody measurements of our model and state-of-
+the-art on all datasets. x-axis represents datasets. (Top) The difference in absolute spearman rank
+correlation (SRC) between our model and state-of-the-art. (Bottom) Absolute SRC between model
+(pseudo-)perplexity and measurements. Error bars are estimated in standard deviation with 1000
+bootstrap samples.
+34
+
+0.5
+0.0
+-0.5
+1.0
+pabt5
+Correlation
+progen2-oas
+0.8
+progen2-base
+esmlv
+0.6
+esm2 3B
+ Rank
+0.4
+0.2
+0.0
+2
+Kd
+Tm
+Kd
+Tm
+Tm
+Kd
+Kd
+Kd
+m
+In.
+_enrichmen
+ neg_
+e2022_C143_K
+ neg_
+Hie2
+g6_
+e2022_R
+Hie2
+Hie2Figure B.8: Ablation study on zero-shot prediction on all datasets. x-axis represents datasets. (Top)
+The difference in absolute spearman rank correlation (SRC) between our model and ablation. (Bottom)
+Absolute SRC between model (pseudo-)perplexity and measurements. Error bars are estimated in
+standard deviation with 1000 bootstrap samples.
+35
+
+0.5
+0.0
+-0.5
+1.0
+pabt5
+Correlation
+decoder-only
+0.8
+no pretraining
+light-to-heavy
+0.6
+heavy-to-light
+ Rank
+0.4
+0.2
+0.0
+ Kd
+Tm
+Kd
+Tm
+Tm
+Kd
+Kd
+Kd
+Tm
+Hie2
\ No newline at end of file
diff --git a/dNE0T4oBgHgl3EQf5QJM/content/tmp_files/load_file.txt b/dNE0T4oBgHgl3EQf5QJM/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..ac41c7d4559b4b84c84e34bb72dfa68a83e4a67c
--- /dev/null
+++ b/dNE0T4oBgHgl3EQf5QJM/content/tmp_files/load_file.txt
@@ -0,0 +1,1369 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf,len=1368
+page_content='Conditional Generation of Paired Antibody Chain Sequences through Encoder-Decoder Language Model Simon K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Chu∗ University of California Davis Davis, CA 95616 kschu@ucdavis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='edu Kathy Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Wei Therapeutic Discovery, Amgen Research, Amgen Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' South San Francisco, CA 94080 kwei@amgen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='com Abstract Protein language models (LMs) have been successful in sequence, structural and functional predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' However, currently, protein LMs are limited to encoder- or decoder-only architectures for single sequences while many biological contexts involve protein-protein interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Here, we introduce pAbT5, which models anti- body chain pairing as forward- and back-translations using a T5-based architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' We show that pAbT5 accurately reflects chain pairing through sequence genera- tion and mispairing as unsupervised and supervised classifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Our protein LM generates variable-length sequences and its next-word prediction probability agrees with position-specific scoring matrix from sequence alignment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Like other works in protein LM, pAbT5 performs state-of-the-art unsupervised prediction on experimental measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' To the best of our knowledge, pAbT5 is the first encoder-decoder protein LM for protein-protein interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' 1 Introduction Protein language models (LMs) have found tremendous popularity among protein scientists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Remark- ably, despite being pretrained only on sequence-related tasks, protein LMs are capable of predicting secondary structure and cellular localization [1–4], function annotation and design [5–18], and even protein structure prediction [19–22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Evolutionary information stored in large sequence databases can be harnessed for sequence, structural and functional predictions through protein LMs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Most protein LMs are designed to model only single-chain sequences in encoder- or decoder-only architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' However, many biological contexts involve protein-protein interactions where multiple sequences interact simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' For instance, antibodies consist of paired heavy and light chains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Modeling heavy and light chains independently is inadequate to reflect their heterodimeric nature and sacrifices their co-evolutionary information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Given the technical difficulties in sequencing paired antibody heavy and light chains, understanding antibody pairing has the potential to identify which heavy and light chains pair without the need to sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' We propose an encoder-decoder architecture to learn antibody heavy and light chain pairing, which we called paired Antibody T5 (pAbT5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' The conditional generation of heavy chain from a light chain is modeled as forward-translation and from heavy to light chain as back-translation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' To summarize, We demonstrate that our encoder-decoder model captures antibody sequence and pairing contexts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' We show that pAbT5 captures variations in hypervariable regions in sequence-to-sequence generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' ∗Work done as an intern at Therapeutic Discovery, Amgen Research, Amgen Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Preprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Under review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='02748v1 [q-bio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='BM] 6 Jan 2023 We show that pAbT5 performs state-of-the-art zero-shot prediction on unseen experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Figure 1: Formalism of conditional generation on antibody heavy and light chain sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (Left) Variable regions of heavy and light chain on an antibody.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Antibody consists of a heavy chain (blue) and a light chain (yellow), on each of which three CDR loops (pink) are hypervariable and responsible for antigen binding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (Right) Schematics of forward- and back-translations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Each pair of heavy and light chains is represented as forward- and back-translations in sequence-to-sequence generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' 2 Related Work 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1 Attention-based protein language models The original transformer introduced by Vaswani et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [23] consists of an encoder and a decoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' In 2019, Devlin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [24] further introduced BERT as an encoder-only LM pretrained on masked and/or corrupted token recovery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Encoder-only protein LM was first shown to be superior to recurrent models by Rives et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Since then, a variety of encoder-only protein LMs were published [1, 6, 9, 17, 18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Unlike encoder-only model, decoder-only models attend only to the previous tokens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Decoder-only models are typically pretrained on next-word prediction, enabling them to generate variable-length sequences recurrently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' ProGen, ProteinGPT2, and ProGen2 were introduced for protein language modeling with a similar architecture to GPT2 [12, 13, 25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Recently, Shuai et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [26] developed span masking into their decoder-only model (IgLM) for unpaired antibody sequence modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Notably, both ProGen and IgLM generate sequences conditioned on prefix(es) at the beginning of the sentences to further constrain the generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' In parallel to encoder- and decoder-only models, T5 re-introduces the original transformer architecture with the intention to unify human LM tasks into text-to-text generation [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Elnaggar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [1] pretrained the first T5 protein LM, named ProtT5, on BERT-style task on single-chain sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' To control protein secretion, Wu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [15] built a smaller encoder-decoder model on signal peptides at amino termini.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' To the best of the authors’ knowledge, there has yet to be an encoder-decoder protein LM for protein-protein interaction on two separate chains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='2 Relationship with protein structure Protein LM’s capability on unsupervised inter-residual contact prediction has hinted its potential in structure prediction [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' In AlphaFold’s ablation study, multiple sequence alignment (MSA) is found to aim structure prediction [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Assisted with large pretrained protein LM, ESMFold and OmegaFold drop structural templates and MSA completely for end-to-end structure prediction [21, 22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' These are concrete examples where protein LMs can draw insight for protein structure prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' The reverse of protein structure prediction is the inverse folding problem, which can also be considered as conditional sequence generation on predefined structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Ingraham et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [7] first proposed structure encoder and sequence decoder for inverse folding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' SE(3)-equivariant graph neural networks (GNN) were later introduced to generate sequences independent of rotation and translation [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Instead of symmetry-aware architecture, another approach is using internal coordinates as edge 2 ENCODER DECODER heavy chain light chain QVQLKQS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='. DIVMSQS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='. DECODER ENCODERfeatures to avoid absolute coordinates altogether [10, 14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' However, the common prerequisite of structure-conditioned models is a predefined target coordinate, which might not be known a priori.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='3 Zero-shot functional prediction The emergence of protein function prediction from sequences alone can be traced back to conservation analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' The idea is that residues detrimental to the function(s) of the protein should be conserved while other positions have more freedom to vary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Encoder-only protein LMs were shown to generalize Pott’s model [29], and outperform positional-specific scoring matrix (PSSM) with zero-shot prediction [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Similarly, the perplexity of decoder-only models is found to correlate with unseen experiment measurements [12], while the same log-likelihood analysis can also be replicated on conditional sequence generation in inverse folding [10, 28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Zero-shot and few-shot predictions from language pretraining are not unique to protein LMs but arise generally from large-scale language modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' 3 Method 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1 Model We model the antibody pairing problem as conditional sequence-to-sequence (seq2seq) generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' We denote light-to-heavy-chain generation as forward-translation and heavy-to-light-chain as back- translation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' We specify neither the translation direction nor any prefix related to input or target chain type, species, or family.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' By avoiding human annotation, the LM can generalize to more abstract conditions, discussed later in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Our model is finetuned from ProtT5-XL-UniRef50 [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' ProtT5 follows standard T5 architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' To the best of our knowledge, it was the only publicly available encoder-decoder transformer pretrained on large protein sequence database at the time of writing this manuscript.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' We choose ProtT5-XL over ProtT5-XXL due to limitations on computing resources and dataset size and leave the investigation of scaling between parameters and performance to the community.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' ProtT5-XL-UniRef50 was pretrained on BFD100 and then finetuned on UniRef50 with 3B parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='2 Dataset We obtain 160k pairs of antibody VH and VL sequences from the Observed Antibody Space (OAS) database [30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Under the formalism of forward- and back-translations, each bi-directional pairing is represented by two uni-directional translations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' The resulting dataset consists of 321k translation samples with 239k unique sequences from humans, rats, and mice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' There are three options to split a protein-protein interaction network (shown in Figure 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' In our OAS dataset, each observed sequence can be represented by a node and each observed pairing an edge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' The first option is to split directly per pairing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Another option is to split by node, include all edges involving training nodes as the training interactions, and leave the rest to the test set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Here, we opt for the third option of exclusive node split, in which neither test sequences nor pairing can be observed in the training set by removing a portion of pairing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' We split all non-redundant sequences into approximately 90-5-5 ratio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' The final pairing dataset consists of 260k, 828, and 802 translations in training, validation, and test set respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' A comparison with training on clustered sequences is available in Section B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' The results generally match with those on non-redundant sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' However, training on clustered sequences results in a coarser resolution in gene recombination and sequence generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='3 Optimization We follow the optimization scheme in ProtT5-XL pretraining in our finetuning for paired OAS dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' We train only on the decoder and keep the encoder weights frozen, and find this approach results in a better encoder representation on sequences compared to finetuning the whole model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' The machine translation task is trained on teacher forcing on cross-entropy loss with a local batch size of 8 and global batch size of 2048 in gradient accumulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' We use a learning rate of 5e-5 in AdaFactor optimizer with a gradient clipping of 1, patience of 5 epochs on validation loss, and a maximum of 100 epochs in DDP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' No weight decay is used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' The model was trained on eight A100 on Amazon Web 3 Figure 2: Splitting for protein-protein interaction dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Each sequence and pairing is represented by a node and an edge respectively, colorized by train (blue) and test (orange) partitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (A) Interaction split.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Nodes are not partitioned and are therefore colorless.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (B) Inclusive node split.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (C) Exclusive node split.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Edges between train and test nodes are dropped (dotted line).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (D) Exclusive node splitting in detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' All non-redundant sequences in paired OAS database are first split into train, validation, and test partitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Only pairings within each partition are included in the final dataset, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' all cross-pairings are dropped.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Services P4de instance for 2 days.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' The implementation is on PyTorch and HuggingFace packages [31, 32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' 4 Results 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1 Antibody sequences are generated with meaningful representation To recognize virtually any antigen, human immune system generates a repertoire of antibodies through gene rearrangement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Each antibody sequence is transcribed from a C gene, V gene, J gene, and an additional D gene for heavy chain, from which libraries of these genes are stored in chromosome gene loci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Each gene corresponds to a segment of the whole antibody sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' From the recombination of VDJ gene families, an estimated 106 combinations of heavy-light chain pairing are possible and are further diversified by somatic mutations [33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' To assess the representation of antibody sequences of our model, we visualize the encoder hidden states of test set sequences at the resolution of chain type, gene loci, and V and J gene families.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Indeed, as shown in Figure 3, heavy and light chain sequences cluster separately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Next, we test whether the encoder representation can recover patterns in gene loci and gene families in humans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Based on their gene loci, human light chains have two subtypes (λ and κ) while heavy chains only have H locus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' These subtypes segregate into three discrete clusters in our t-SNE plot, indicating distinct representations between subtypes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Clustering at the level of gene families is found to be more challenging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Gene families form distinct but often overlapping clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' This is consistent with the diminished signal from average pooling, where each gene constitutes only a short segment of the antibody sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' In order to evaluate our model’s sequence-to-sequence generative performance, we test whether our model can recover the observed pairing in test set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Figure 5 illustrates the recovery rate at progressively fine levels of resolution on human antibodies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' A target sequence is considered to be recovered if the generated sequence shares the same chain type, gene loci, V gene family, or the combination of V and J gene families.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' For chain types, our model always generates heavy chains from light chain inputs, and likewise for light chain generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' For gene loci on light chain, λ and κ loci are recovered at 48% and 56% of the time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' As we approach finer resolutions, the recovery rate drops in V families and their combination with J families.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' This is consistent with the observation that antibody chain pairing is often degenerate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' For instance, the heavy chain sequences from IGHV1 gene family are observed to pair with multiple families in both λ and κ loci (Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' This sets 4 A B c D DIVMSQS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' pairing OAS QVQLKQS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='. Train Val Train Val Test Testan upper bound on the recovery rate in antibody heavy and light chain pairing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' A similar analysis has also been performed on the recovery of species (Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='3) and the exact figures of recovery rate can depend on the generative parameters, which are listed in Subsection A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Figure 3: t-SNE plot of encoder hidden states of test set sequences in progressively fine categories (chain types, human gene loci, and human IGHV gene families).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Visualization of other gene families is located in Section A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Figure 4: Recovery rate of target chain type, gene loci, and gene families in sequence generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Performance is represented in a hierarchical order, where parent classes are centered while children categories are on the periphery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' On each rim, the arc lengths of categories are proportional to their populations in test set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Dark blue represents perfect recovery whereas white color implies low recovery rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='2 Model learns antibody chain pairing with encoder-decoder architecture Since our model is trained on paired antibody sequences, we are curious whether it can identify antibody mispairing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Without publicly available antibody mispairing dataset, we generate two types of mispairing from OAS database, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' chain-type mispairing and species mispairing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' For chain- type mispairing, we generate correct heavy-light pairing and mispaired heavy-heavy/light-light pairing for each translation in test set with the assumption that only heavy-light-chain pairings are permitted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' A similar approach is used for species mispairing by assuming cross-species chain pairing 5 IGHV1 IGHV11 IGHV12 IGHV15 IGHV1S5 IGHV2 H IGHV3 heavy chain IGHV4 light chain IGHV91 IGHJ1 IGHJ2 IGHJ5 IGHJ4 IGHJ6 IGHJ2 IGHJ3 IGHJ3 IGHJ1 IGHJ6 IGHJ5 IGHJ4 IGHV4 IGHJ3 IGHJ6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='8 IGHJ5 GHT H IGHV1 IGHJ4 IGHV3 IGHJ3 IGHJ5 IGHJ4 IGHV2 heavy IGHJ3 IGHJ4 IGHJ6 IGHV5 IGHJ2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='6 IGHJ4 ICHIE IGHV8 Recovery rate IGHJ2 IGHV9 IGHV6 IGLV7 IGLJ3 IGLV6 IGLI2 IGLV8 IGKJ4 IGLJ7 IGLJ3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='4 IGLJ7 IGLV2 IGLJ2 入 IGLJ1 light IGKV1 IGKJ1 IGLJ3 IGLV1 K IGKJ2 IGLJ3 IGLV3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='2 IGKJ5 IGKV2D IGKV4 IGKV3 IGKJ3 IGLJ1 IGKV2 IGKJ1 IGLJ2 IGKJ2 IGKJ4 IGLJ3 IGKJ3 IGKJ1 IGKJ3 IGKJ4 IGKJ5 IGKJ1 IGKJ4 IGKJ2 IGKJ5 0is impermissible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Their detailed implementation is elaborated in Subsection A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Although these assumptions might break down in some cases, the assessment still provides some insights into our model’s understanding of mispairing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' We propose two classification tasks (Figure 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' The first task considers two input sequences sharing the same target sequence and only one pairing is correct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Out of the two pairings, we assign the pairing with lower perplexity as correct and the other one as mispaired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Based on this assignment, we identify above 90% of the correct pairings from chain-type mispairing and close to 80% from species mispairing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' The baseline of random assignment results in 50% accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' No classification model is trained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' In a more typical experiment setting, the correct and mispaired antibody pairings might not share the same target sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' In our second task, we consider a dataset by mixing and shuffling the correct and mispaired samples from the first task and classify whether the pairing is correct given two antibody sequences alone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Informed only by our language model’s perplexity, a logistic regression significantly outperforms the baseline of random assignment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' The classifier is trained on the average perplexity of forward- and back-translations on validation set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' All performance metrics are evaluated on test set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Figure 5: Schematics of two classification tasks considered for species mispairing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (Left) In the first classification task, the aim is to identify the correct and mispaired sequences sharing the same target.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (Right) In the second classification task, the aim is to predict the likelihood of the pairing as a bidirectional translation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' The tasks for chain-type mispairing are similar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' No chain type nor species annotation is used in our prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' First Classification Task Mispairing type Target chain Accuracy Chain type Light 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='92 Heavy 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='91 Species Light 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='80 Heavy 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='79 Second Classification Task Mispairing type Accuracy AUROC Chain type 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='54 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='70 Species 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='57 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='60 Table 1: Performance on first and second classification task on model perplexity alone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (Left) In the first classification task, mispairing assignment is based on the rank of perplexity without any parameterizable model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (Right) In the second classification task, instead of unidirectional translation, logistic regression is trained on the bidirectional average of translation perplexity in validation set, and evaluated on test set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Random assignment results in an accuracy of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='5 in the first task, and an additional AUROC of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='5 in the second task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' 6 Human Human Human Human Mouse Human Mouse X Human Mouse Mouse Mouse Mouse4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='3 Variations in hypervariable domains are captured in model uncertainty Antibody displays tremendous variety in hypervariable domains for specific antigen binding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Three loop structures on each of the light and heavy chains, namely the CDR loops, are highly variable while other framework regions are relatively conserved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Among all CDR loops, the third CDR loop on heavy chain (CDRH3) has the highest variability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Here, we test whether our model can capture these patterns in next-word prediction and sequence generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Illustrated in Figure 6, we first compare the probability of next-word prediction and position-specific scoring matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Our model is more confident at the relatively constant framework region of the heavy chain target while remaining highly uncertain at the hypervariable CDR loops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Next, we further assess the generative performance of our model by aligning the observed and generated sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' We chose a paired heavy and light chain randomly in test set, and the alignment profile indicates that our model generates variable-length CDR (H3) loops while conserving residues before and after the hypervariable region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Similar variations are observed on light chain (Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' On average, the generated sequences share an average of about 60% whole-sequence identity with the target sequence (Table A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='5), which shows that our model can capture patterns in antibody pairing while generating novel sequences simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' A comprehensive breakdown of sequence identities and lengths by framework regions and CDR loops is available in Table A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='3 and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Figure 6: Comparison between observed and modeled alignment profiles on heavy chain in the framework regions (FRs) and CDR loops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (First row) Next-word probability in teacher-forcing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (Second row) Sequence conservation from position-specific scoring matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (Third row) Global alignment of generated sequences to (fourth row) the observed sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' In general, generated sequences are more variable than next-word probability due to the cascade effect in iterative sampling, and might have different gene locus and/or families from the target sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' The full-length alignment profiles of heavy and light chains together with four other output examples randomly drawn from test set are available in Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='13, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='14 and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' In addition to the assessment of alignment profiles, we benchmark our model prediction by overlaying these results onto predicted and known structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' We align predicted structures of generated sequences from DeepAb and indeed, the generated heavy and light chains maintain a structurally consistent low root-mean-square deviation (RMSD) framework region while reflecting variations at CDR loops (Figure 7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' With the interest to test on unseen experiment structures, three structures with antibody bound to SARS-Cov2 spike protein [34, 35] from RCSB database are analyzed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' As shown in Figure 8, the CDR loops constitute the most entropic regions on the antibody structure for all three structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Similarly, our analysis of cross-attention also indicates that hypervariable regions are often ignored in generating the pairing partner (Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='17).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' 7 BVOLVESG YGM VAETRY D GSNKYY VAY OVELVESGLTFRS YEMVAFIRYD BWGOGTLVIVSS BYWGOGTEVITVSS FEGTWD 20Figure 7: Structural models of example variable regions (Fv) with eight generated heavy chains given one input light chain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' The generated heavy chains are colored in rainbow and the light chains are white.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Figure 8: Next-word prediction entropy on antibody bound to SARS-Cov2 spike protein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Blue indicates low entropy regions and red indicates highly entropic areas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (A and B) Front and back view of antibody in PDB structure 6WPS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (C) Overview of PDB structure 6WPS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (D, E, and F) 6WPT, 7TB8 chain D and E, and 7TB8 chain H and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Entropy is capped for visualization purposes whereas uncapped visualizations are available in Subsection A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='4 Zero-shot prediction arises from paired antibody finetuning Benchmarked on antibody functional datasets, we show that our model has competitive results with the current state-of-the-art protein LMs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' We benchmark our model on 13 antibody functional datasets on either stability, binding affinity or expression measurements [36–38] in Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Our encoder-decoder model achieves a similar performance as ProGen2 and is better than ProGen2- OAS, which is finetuned on the unpaired OAS dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' The major architectural difference is that ProGen2 is a decoder-only model which requires joining heavy and light chain sequences with a GS linker, whereas our encoder-decoder model computes the average perplexity for forward- and back-translations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Nonetheless, ProGen2 and ProGen2-OAS have fewer parameters than our model, making model comparison difficult.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' In addition, we have also included pseudo-perplexity from encoder-only models (ESM) [8, 21] to highlight the difference in architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' To further investigate the impact of each component in our model, we perform an ablation study on the need for an encoder-decoder architecture, bidirectional translations in evaluation, and pretraining.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' For any comparison with statistical significance (p-value < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='05), our encoder-decoder model always outperforms ablations (Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' 5 Discussion Similar to prefix sequence generation, sequence-to-sequence generation is also a form of conditional generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Unlike prefix conditioning, the encoder-decoder model learns the condition implicitly by extracting species, chain type, and other potential information from its input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' For example, our model 8 Figure 9: Zero-shot prediction performance on antibody measurements of our model and state-of-the- art.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' x-axis represents the antibody functional datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (Top) The difference in absolute spearman rank correlation (SRC) between our model and state-of-the-art.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (Bottom) Absolute SRC between model (pseudo-)perplexity and measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Error bars are estimated in standard deviation with 1000 bootstrap samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' always generates a heavy chain sequence when provided with a light chain sequence without any prefix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' The possibility of capturing patterns without human annotation opens up a versatile approach to understanding protein-protein interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Despite its ability to recognize pairing patterns, our protein LM does not elucidate the biophysical nature of antibody pairings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Similar to other protein LMs, our model learns patterns in sequences and pairings on the assumption that our dataset accurately reflects the biology of antibodies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Our model is also restricted only to the variable domain of heavy and light chains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Antigen-antibody and general protein-protein interactions are outside of the scope of our study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Additionally, the scaling between model size and performance remains unclear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' We did not ex- plore other model sizes given the pretrained nature of our model and limitations on computing resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' While the original T5 paper has explored and concluded on the pretraining objectives and hyperparameters in human language, the same analysis is still open in the field of protein LM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' 6 Conclusion Protein LM has made major impacts on protein sequence, function, and structure predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' While currently most protein LMs are trained for single-chain sequences, an encoder-decoder architecture opens up a pathway to account for protein-protein interactions and accounts for abstract conditioning without human-annotated prefixes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Using paired heavy and light chain antibody sequences as an example, we hope to showcase the possibilities and advantages of encoder-decoder protein LMs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' 7 Societal Impact Antibodies are important molecules for biomedicine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' All generated antibody sequences should be validated experimentally before use in biomedical applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Acknowledgments and Disclosure of Funding We give our special thanks to Ai Ching Lim and Christy Tinberg for their generous support of this project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' We thank George Seegan for language model discussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' We thank Yi Zheng, Danyang Gong, and Austin Rice for helpful discussion on gene families and applications in antibodies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' We thank Grant Keller for introducing ANARCI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' 9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='0 pabt5 Correlation progen2-oas 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='8 progen2-base esmlv 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='6 esm2 3B Rank 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='0 Kd Tm Kd Tm Tm Kd Kd Kd Kd Tm _binding in_ in_ _enrichment REGN10987_T neg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' g6_ Hie2References [1] Ahmed Elnaggar, Michael Heinzinger, Christian Dallago, Ghalia Rehawi, Yu Wang, Llion Jones, Tom Gibbs, Tamas Feher, Christoph Angerer, Martin Steinegger, Debsindhu Bhowmik, and Burkhard Rost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' ProtTrans: Towards Cracking the Language of Life’s Code Through Self- Supervised Learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' bioRxiv, 14(8), 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' URL https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='biorxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='org/content/ early/2021/05/04/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='199554.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [2] Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Lawrence Zitnick, Jerry Ma, Rob Fergus, Joshua Meier, Demi Guo, Myle Ott, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Lawrence Zitnick, Jerry Ma, and Rob Fergus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' bioRxiv, 118(15): e2016239118, 4 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1101/622803.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' URL http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='pnas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='org/content/118/ 15/e2016239118.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [3] Ethan C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Alley, Grigory Khimulya, Surojit Biswas, Mohammed AlQuraishi, and George M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Church.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Unified rational protein engineering with sequence-based deep representation learn- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Nature Methods, 16(12):1315–1322, 12 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' ISSN 15487105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1038/ s41592-019-0598-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [4] Roshan Rao, Nicholas Bhattacharya, Neil Thomas, Yan Duan, Xi Chen, John Canny, Pieter Abbeel, and Yun S Song.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Evaluating Protein Transfer Learning with TAPE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Advances in Neu- ral Information Processing Systems, 32, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' URL https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='com/songlab-cal/ tape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [5] Adam J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Riesselman, John B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Ingraham, and Debora S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Marks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Deep generative models of genetic variation capture the effects of mutations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Nature Methods, 15(10):816–822, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' ISSN 15487105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1038/s41592-018-0138-4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' URL http://dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1038/ s41592-018-0138-4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [6] Sharrol Bachas,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Goran Rakocevic,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' David Spencer,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Anand V Sastry,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Robel Haile,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' John M Sutton,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' George Kasun,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Andrew Stachyra,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Jahir M Gutierrez,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Edriss Yassine,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Borka Medjo,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Vincent Blay,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Christa Kohnert,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Jennifer T Stanton,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Alexander Brown,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Nebojsa Tijanic,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Cailen Mccloskey,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Rebecca Viazzo,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Rebecca Consbruck,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Hayley Carter,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Simon Levine,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Shaheed Abdulhaqq,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Jacob Shaul,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Abigail B Ventura,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Randal S Olson,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Engin Yapici,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Joshua Meier,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Sean Mcclain,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Matthew Weinstock,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Gregory Hannum,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Ariel Schwartz,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Miles Gander,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' and Roberto Spreafico.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Antibody optimization enabled by artificial intelligence predictions of binding affinity and naturalness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' bioRxiv, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1101/2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='504181.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' URL https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='biorxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='org/content/early/2022/08/17/2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='504181.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [7] John Ingraham, Vikas K Garg, Regina Barzilay, and Tommi Jaakkola.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Generative models for graph-based protein design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Advances in Neural Information Processing Systems, pages 15820–15831, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [8] Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu, and Alexan- der Rives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Language models enable zero-shot prediction of the effects of mu- tations on protein function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Advances in Neural Information Processing Sys- tems, 34:1–28, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' URL https://proceedings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='neurips.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='cc/paper/2021/hash/ f51338d736f95dd42427296047067694-Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='html.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [9] Roshan Rao, Jason Liu, Robert Verkuil, Joshua Meier, John F Canny, Pieter Abbeel, Tom Sercu, and Alexander Rives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' MSA Transformer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' bioRxiv, page 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='02.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='430858, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' URL https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1101/2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='02.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='430858.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [10] Kevin K Yang, Niccolò Zanichelli Eleutherai, and Hugh Yeh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Masked inverse folding with sequence transfer for protein representation learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' bioRxiv, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1101/2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' 493516.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' URL https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='biorxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='org/content/early/2022/05/28/2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' 493516.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [11] Thomas A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Hopf, John B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Ingraham, Frank J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Poelwijk, Charlotta P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Schärfe, Michael Springer, Chris Sander, and Debora S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Marks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Mutation effects predicted from sequence co-variation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Nature Biotechnology, 35(2):128–135, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' ISSN 15461696.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1038/nbt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='3769.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' 10 [12] Erik Nijkamp, Jeffrey Ruffolo, Eli N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Weinstein, Nikhil Naik, and Ali Madani.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' ProGen2: Exploring the Boundaries of Protein Language Models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' arXiv, 6 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' URL http://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' org/abs/2206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='13517.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [13] Ali Madani, Bryan McCann, Nikhil Naik, Nitish Shirish Keskar, Namrata Anand, Raphael R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Eguchi, Po-Ssu Huang, and Richard Socher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' ProGen: Language Modeling for Protein Genera- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' arXiv, 3 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' URL http://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='org/abs/2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='03497.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [14] J Dauparas, I Anishchenko, N Bennett, H Bai, R J Ragotte, L F Milles, B I M Wicky, A Courbet, R J De Haas, N Bethel, P J Y Leung, T F Huddy, S Pellock, D Tischer, F Chan, B Koepnick, H Nguyen, A Kang, B Sankaran, A K Bera, N P King, and D Baker.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Robust deep learning- based protein sequence design using ProteinMPNN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Science, 378:49–56, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' URL https: //www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='org.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [15] Zachary Wu, Kevin K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Yang, Michael J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Liszka, Alycia Lee, Alina Batzilla, David Wernick, David P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Weiner, and Frances H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Arnold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Signal Peptides Generated by Attention-Based Neural Networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' ACS Synthetic Biology, 9(8):2154–2161, 8 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' ISSN 21615063.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1021/acssynbio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='0c00219.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [16] Vladimir Gligorijevic, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Douglas Renfrew, Tomasz Kosciolek, Julia Koehler Leman, Kyunghyun Cho, Tommi Vatanen, Daniel Berenberg, Bryn Taylor, Ian M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Fisk, Ramnik J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Xavier, Rob Knight, and Richard Bonneau.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Structure-based function prediction using graph convolutional networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Nature Communications, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1101/786236.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [17] Vladimir Gligorijevi´c, Daniel Berenberg, Stephen Ra, Andrew Watkins, Simon Kelow, Kyunghyun Cho, and Richard Bonneau.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Function-guided protein design by deep manifold sampling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' bioRxiv, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1101/2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='473759.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' URL https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' 1101/2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='473759.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [18] Nadav Brandes, Dan Ofer, Yam Peleg, Nadav Rappoport, and Michal Linial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' ProteinBERT: a universal deep-learning model of protein sequence and function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Bioinformatics, 38(8): 2102–2110, 4 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' ISSN 14602059.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1093/bioinformatics/btac020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [19] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron- neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' A Kohl, Andrew J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Se- nior, Koray Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Highly accurate pro- tein structure prediction with AlphaFold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Nature, 596(7873):583–589, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' ISSN 1476- 4687.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1038/s41586-021-03819-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' URL http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='ncbi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='nlm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='nih.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='gov/pubmed/ 34265844http://dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1038/s41586-021-03819-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [20] Richard Evans, Michael O’Neill, Alexander Pritzel, Natasha Antropova, Andrew Senior, Tim Green, Augustin Žídek, Russ Bates, Sam Blackwell, Jason Yim, Olaf Ronneberger, Sebastian Bodenstein, Michal Zielinski, Alex Bridgland, Anna Potapenko, Andrew Cowie, Kathryn Tun- yasuvunakool, Rishub Jain, Ellen Clancy, Pushmeet Kohli, John Jumper, and Demis Hassabis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Protein complex prediction with AlphaFold-Multimer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' bioRxiv, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' ISSN 10643745.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1007/978-1-61779-361-5{\\_}16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [21] Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan Dos, Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives, and Meta Ai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Language models of protein sequences at the scale of evolution enable accurate structure prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' bioRxiv, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1101/2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='500902.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' URL https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='biorxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' org/content/early/2022/10/31/2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='500902.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [22] Ruidong Wu, Fan Ding, Rui Wang, Rui Shen, Xiwen Zhang, Shitong Luo, Chenpeng Su, Zuofan Wu, Qi Xie, Bonnie Berger, Jianzhu Ma, and Jian Peng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' High-resolution de novo structure prediction from primary sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' bioRxiv, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1101/2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='500999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' URL http://biorxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='org/content/early/2022/07/22/2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='500999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' 11 [23] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Gomez, Łukasz Kaiser, and Illia Polosukhin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Attention is all you need.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Advances in Neural Information Processing Systems, 2017-Decem(Nips):5999–6009, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' ISSN 10495258.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [24] Jacob Devlin, Ming Wei Chang, Kenton Lee, and Kristina Toutanova.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' BERT: Pre-training of deep bidirectional transformers for language understanding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' NAACL HLT 2019 - 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference, 1(Mlm):4171–4186, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [25] Noelia Ferruz, Steffen Schmidt, and Birte Höcker.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' ProtGPT2 is a deep unsupervised lan- guage model for protein design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Nature Communications, 13(1):4348, 12 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' ISSN 2041- 1723.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1038/s41467-022-32007-7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' URL https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='nature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='com/articles/ s41467-022-32007-7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [26] Richard W Shuai, Jeffrey A Ruffolo, and Jeffrey J Gray.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Generative Language Modeling for Antibody Design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' bioRxiv, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1101/2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='472419.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' URL https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='org/ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1101/2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='472419.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [27] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Liu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' arXiv, 10 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' URL http://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='org/abs/1910.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='10683.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [28] Chloe Hsu, Robert Verkuil, Jason Liu, Zeming Lin, Brian Hie, Tom Sercu, Adam Lerer, and Alexander Rives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Learning inverse folding from millions of predicted structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' bioRxiv, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1101/2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='487779.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' URL https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1101/2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='487779.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [29] Justas Dauparas, Haobo Wang, Avi Swartz, Peter Koo, Mor Nitzan, and Sergey Ovchinnikov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Unified framework for modeling multivariate distributions in biological sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' arXiv, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' URL http://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='org/abs/1906.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='02598.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [30] Tobias H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Olsen, Fergus Boyles, and Charlotte M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Deane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Observed Antibody Space: A diverse database of cleaned, annotated, and translated unpaired and paired antibody sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Protein Science, 31(1):141–146, 1 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' ISSN 1469896X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1002/pro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='4205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [31] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury Google, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf Xamla, Edward Yang, Zach Devito, Martin Raison Nabla, Alykhan Tejani, Sasank Chilamkurthy, Qure Ai, Benoit Steiner, Lu Fang Facebook, Junjie Bai Facebook, and Soumith Chintala.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' PyTorch: An Imperative Style, High-Performance Deep Learning Library.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' In Advances in Neural Information Processing Systems, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [32] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick Von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M Rush.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Transformers: State-of- the-Art Natural Language Processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 38–45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Association for Computational Linguistics, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' URL https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='com/huggingface/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [33] Jeremy M Berg, John L Tymoczko, and Lubert Stryer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Biochemistry (Loose-Leaf).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Macmillan, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [34] Dora Pinto, Young Jun Park, Martina Beltramello, Alexandra C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Walls, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Alejandra Tortorici, Siro Bianchi, Stefano Jaconi, Katja Culap, Fabrizia Zatta, Anna De Marco, Alessia Peter, Barbara Guarino, Roberto Spreafico, Elisabetta Cameroni, James Brett Case, Rita E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Chen, Colin Havenar-Daughton, Gyorgy Snell, Amalio Telenti, Herbert W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Virgin, Antonio Lanzavecchia, Michael S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Diamond, Katja Fink, David Veesler, and Davide Corti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Nature, 583(7815):290–295, 7 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' ISSN 14764687.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1038/s41586-020-2349-y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [35] Tongqing Zhou, Lingshu Wang, John Misasi, Amarendra Pegu, Yi Zhang, Darcy R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Harris, Adam S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Olia, Chloe Adrienna Talana, Eun Sung Yang, Man Chen, Misook Choe, Wei Shi, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Ting Teng, Adrian Creanga, Claudia Jenkins, Kwanyee Leung, Tracy Liu, Erik Stephane D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' 12 Stancofski, Tyler Stephens, Baoshan Zhang, Yaroslav Tsybovsky, Barney S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Graham, John R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Mascola, Nancy J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Sullivan, and Peter D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Kwong.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Structural basis for potent antibody neu- tralization of SARS-CoV-2 variants including B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='529.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Science, 376(6591), 4 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' ISSN 10959203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='abn8897.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [36] Brian L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Hie, Duo Xu, Varun R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Shanker, Theodora U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Bruun, Payton A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Weidenbacher, Shaogeng Tang, and Peter S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Kim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Efficient evolution of human antibodies from general protein language models and sequence information alone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' bioRxiv, page 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='487811, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' URL https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='biorxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='org/content/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1101/2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='487811v1%0Ahttps: //www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='biorxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='org/content/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1101/2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='487811v1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [37] Patrick Koenig, Chingwei V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Lee, Benjamin T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Walters, Vasantharajan Janakiraman, Jeremy Stinson, Thomas W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Patapoff, and Germaine Fuh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Mutational landscape of antibody variable domains reveals a switch modulating the interdomain conformational dynamics and antigen binding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Proceedings of the National Academy of Sciences of the United States of America, 114 (4):E486–E495, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' ISSN 10916490.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1073/pnas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1613231114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [38] Shira Warszawski, Aliza Borenstein Katz, Rosalie Lipsh, Lev Khmelnitsky, Gili Ben Nissan, Gabriel Javitt, Orly Dym, Tamar Unger, Orli Knop, Shira Albeck, Ron Diskin, Deborah Fass, Michal Sharon, and Sarel J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Fleishman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Optimizing antibody affinity and stability by the automated design of the variable light-heavy chain interfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' PLoS Computational Biology, 15 (8):1–24, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' ISSN 15537358.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1371/journal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='pcbi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1007207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [39] James Dunbar and Charlotte M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Deane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' ANARCI: Antigen receptor numbering and re- ceptor classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Bioinformatics, 32(2):298–300, 1 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' ISSN 14602059.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1093/bioinformatics/btv552.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [40] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Larkin, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Blackshields, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Brown, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Chenna, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Mcgettigan, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' McWilliam, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Valentin, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Wallace, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Wilm, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Lopez, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Thompson, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Gibson, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Higgins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Clustal W and Clustal X version 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Bioinformatics, 23(21):2947–2948, 11 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' ISSN 13674803.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1093/bioinformatics/btm404.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [41] Peter J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Cock, Tiago Antao, Jeffrey T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Chang, Brad A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Chapman, Cymon J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Cox, Andrew Dalke, Iddo Friedberg, Thomas Hamelryck, Frank Kauff, Bartek Wilczynski, and Michiel J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' De Hoon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Biopython: Freely available Python tools for computational molecular biology and bioinformatics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Bioinformatics, 25(11):1422–1423, 6 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' ISSN 13674803.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1093/ bioinformatics/btp163.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [42] Stephen F Altschup, Warren Gish, Webb Miller, Eugene W Myers, and David J Lipman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Basic Local Alignment Search Tool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Mol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Biol, 215:403–410, 1990.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [43] Baris E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Suzek, Hongzhan Huang, Peter McGarvey, Raja Mazumder, and Cathy H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Wu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' UniRef: Comprehensive and non-redundant UniProt reference clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Bioinformatics, 23(10):1282– 1288, 5 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' ISSN 13674803.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1093/bioinformatics/btm098.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [44] Ammar Tareen and Justin B Kinney.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Logomaker: Beautiful Sequence Logos in Python.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' biorxiv, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1101/635029.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' URL https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1101/635029.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [45] Schrödinger, LLC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' The PyMOL molecular graphics system, version 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' November 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' [46] Jeffrey A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Ruffolo, Jeremias Sulam, and Jeffrey J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Gray.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Antibody structure prediction using interpretable deep learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Patterns, 3(2), 2 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' ISSN 26663899.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='patter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' 100406.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' A Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1 Antibody sequences are generated with meaningful representation We use ANARCI [39] for species, chain type, and gene family classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Although OAS dataset indicates humans, mice, and rats as the source organisms, ANARCI identifies only the former two.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' For consistent comparison in both observed and generated antibody pairs, we opt for the definition 13 in ANARCI in all evaluations, including t-SNE, mispairing, and generation assessment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' We only report V and J families in heavy and light chains as D families are not supported by ANARCI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' In all species-specific analyses, pairings are included only when ANARCI identifies both heavy and light chains from the same species.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' We denote the encoder sequence as the input of the translation and decoder sequence as the target of the translation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' We denote the encoder hidden state of the paired antibody in the translation order of input-to-target as the sequence embedding of the input sequence, or simply sequence embedding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' For t-SNE visualization, we take the mean of the encoder hidden state over residues at the final layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' In the generative process, sequences are generated at a temperature of 1, top p of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='9 with 10 returned sequences, determined from a grid search of temperature and top p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Experiment on beam search results in low diversity and regions of repetitive motifs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' All co-occurrences of gene families are collected from test set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1: t-SNE plot of sequence embeddings colorized by ANARCI annotated species (a) Light chain V gene (b) Heavy chain J gene (c) Light chain J gene Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='2: t-SNE plot of sequence embeddings colorized by ANARCI annotated gene families 14 human mouseIGKV1 IGKV12 IGKV16 IGKV2 IGKV4 IGKV5 IGKV6 IGKV6D IGKV8 IGKV9 IGLV1 IGLV10 IGLV2 IGLV3 IGLV4 O IGLV7O IGHJ1 IGHJ2 IGHJ3 IGHJ5 IGHJ6IGKJ1 IGKJ2 IGKJ3 IGKJ4 IGKJ5 IGLJ1 IGLJ6 IGLJ7Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='3: Recovery rate on species by original species and translation direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='4: Co-occurrence of V families in heavy and light chains colorized by relative frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Frequency is normalized by the total number of observed co-occurrence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' 15 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='0 human 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='94 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='96 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='6 Species 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='4 mouse 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='72 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='57 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='0 heavy-to-light light-to-heavy Translation0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='08 IGHV1 IGHV11 : IGHV12 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='06 IGHV15 - IGHV1S5 - IGHV2 - IGHV3 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='04 IGHV4 - IGHV9 - IGKV1 IGKV12 6 KV2 KV4 KV5 IGKV6 IGKV6D IGKV8 iKV9 LV10 IGLV2 LV3 GLV4 IGLV7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='02 IGLV1 KV1e G G G G 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='5: Co-occurrence of J families in heavy and light chains colorized by relative frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Frequency is normalized by the total number of observed co-occurrence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='6: Co-occurrence of V and J families in heavy chain colorized by relative frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Frequency is normalized by the total number of observed co-occurrence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' 16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='30 IGHJ1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='25 IGHJ3 IGHJ2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='20 IGHJ51 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='10 IGHJ6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='05 IGKJ1 IGKJ2 IGKJ3 IGKJ4 IGKJ5 IGLJ1 IGLJ6 IGLJ7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00IGHV1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='4 IGHV11 IGHV12 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='3 IGHV15 - IGHV1S5 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='2 IGHV2 IGHV3 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1 IGHV4 - IGHV9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='0 IGHJ1 IGHJ2 IGHJ3 IGHJ5 IGHJ6Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='7: Co-occurrence of V and J families in light chain colorized by relative frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Frequency is normalized by the total number of observed co-occurrence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='8: Co-occurrence of V families in heavy chain and J families in light chain colorized by relative frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Frequency is normalized by the total number of observed co-occurrence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' 17 IGKV1 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='14 IGKV12 - IGKV16 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='12 IGKV2 - IGKV4 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='10 IGKV5 - IGKV6 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='08 IGKV6D - IGKV8 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='06 IGKV9 - IGLV1 - IGLV10 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='04 IGLV2 - IGLV3 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='02 IGLV4 - IGLV7 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00 GKJ1 IGKJ2 3 4 5 9 9 IGKJ IGKJ IGLJ G GIGHV1 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='35 IGHV11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='30 IGHV12 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='25 IGHV15 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='20 IGHV1S5 - IGHV2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='15 IGHV3 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='10 IGHV4 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='05 IGHV9 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00 IGKJ1 IGKJ2 IGKJ3 IGKJ4 IGKJ5 IGLJ1 IGLJ6IGLJ7Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='9: Co-occurrence of J families in heavy chain and J families in light chain colorized by relative frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Frequency is normalized by the total number of observed co-occurrence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='2 Model learns antibody chain pairing with encoder-decoder architecture We generate synthetic mispairings to test our model’s capability of learning chain pairing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' The generation protocol for chain-type mispairing is as follows (algorithm 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' The generation protocol for species mispairing is similar (algorithm 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Algorithm 1 Chain-type mispairing dataset generation 1: Inputs: paired test dataset D 2: Outputs: chain-type mispairing dataset D′ 3: initialize H, L and D′ as ∅ 4: for (u, v) in D do 5: for s in (u, v) do 6: if chaintype(s) = heavy then 7: H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='add(s) 8: else if chaintype(s) = light then 9: L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='add(s) 10: end if 11: end for 12: end for 13: for (u, v) in D do 14: if chaintype(u) = chaintype(v) then 15: for s in (u, v) do 16: if chaintype(s) = heavy then 17: s′ ← random element in L 18: else if chaintype(s) = light then 19: s′ ← random element in H 20: end if 21: D′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='add((s, s′)) 22: end for 23: end if 24: end for 25: return D′ 18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='07 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='05 IGHJ1 - IGHJ2 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='04 IGHJ3 IGHJ5 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='03 IGHJ6 - IGKV1 IGKV12 IGKV16 IGKV2 IGKV4 IGKV5 IGKV6 IGKV6D IGKV8 IGKV9 IGLV1 IGLV10 IGLV2 IGLV3 IGLV4 IGLV7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00Algorithm 2 Species mispairing dataset generation 1: Inputs: paired test dataset D 2: Outputs: species mispairing dataset D′ 3: initialize H, M and D′ as ∅ 4: for (u, v) in D do 5: for s in (u, v) do 6: if species(s) = human then 7: H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='add(s) 8: else if species(s) = mouse then 9: M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='add(s) 10: end if 11: end for 12: end for 13: for (u, v) in D do 14: if species(u) = species(v) then 15: for s in (u, v) do 16: if species(s) = human then 17: s′ ← random element in M 18: else if species(s) = mouse then 19: s′ ← random element in H 20: end if 21: D′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='add((s, s′)) 22: end for 23: end if 24: end for 25: return D′ We have considered two possible schemes for preparing correct pairings (Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='10), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' single- generation and double-generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' In single-generation, we keep the observed pairing from test set as the correct pairing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' While it ensures that the correct pairing is experimentally validated, the comparison between an observed correct pairing and a synthetic mispairing creates a bias in perplexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' As such, we introduce double-generation where both pairings are generated and label the synthetically correct pairing in italic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Despite the lack of direct experiment validation, the comparison between correct and mispaired pairings is unbiased, is more challenging than single-generation, and provides some insights into whether our model learns antibody chain pairing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' As indicated in Table A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1 and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='2, the conclusion in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='2 remains the same when switched from single-generation to double-generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='10: Schematics of preparation of correct and mispaired sequences in species mispairing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' The input sequence for correct pairing is in blue and that for mispairing is in yellow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (Left) Single- generation scheme: comparison between observed correct pairing and synthetic mispairing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (Right) Double-generation scheme: comparison between synthetic correct pairing and synthetic mispairing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='3 Variations in hypervariable domains are captured in model uncertainty We use clustalw [40] in Biopython [41] with default parameters to generate alignment profiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Conservation analysis is generated by psiblast [42] in Biopython onto UniRef90 database [43].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' To 19 input target input target (human) QVQLQESG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (human) EIVLTQS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='. (human) QVQLQESG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (human) EIVLTQS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='. [drawn from other human] (mouse) QIQLVQSG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (human) EIVLTQS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (mouse) QIQLVQSG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (human) EIVLTQS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='.Mispairing type Target chain Accuracy Chain type Light 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='99 Heavy 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='96 Species Light 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='97 Heavy 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='96 Table A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1: First classification task assignment accuracy by the perplexity rank between correct and mispaired antibody sequences in single-generation scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Mispairing type Accuracy AUROC Chain-type 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='54 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='72 Species 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='70 Table A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='2: Second classification task performance in single-generation scheme compare model confidence and sequence conservation, we apply softmax to PSSM and compare with the probability in next-word prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' We use Logomaker [44] for visualization of sequence and alignment profiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' CDR and framework regions are defined in aho antibody renumbering scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' CDRs of light chains are from residue ID 32 to 42, 57 to 76, and 109 to 138 for CDR L1, L2, and L3 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' CDRs of heavy chains are located from residue ID 24 to 42, 58 to 72, and 107 to 138.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' We overlay entropy and cross-attention per query residue onto antibody structures in PyMOL [45].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Structural models are generated from DeepAb [46], and in the case with available crystal structures, we align the models to the crystal chains to standardize numbering and fill in missing residues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' We cap the values of average entropy and cross-attention per query residue in structural overlay and normalize heavy and light chains together for visualization purposes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Detailed visualization of capped and uncapped figures are also available (Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='17, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='18, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='19, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='20).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Region Light Heavy FR1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='57±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='63±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='21 CDR1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='36±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='26 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='41±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='22 FR2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='77±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='76±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='14 CDR2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='38±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='21 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='41±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='19 FR3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='71±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='63±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='18 CDR3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='31±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='22±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='14 FR4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='76±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='90±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='09 whole sequence 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='60±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='59±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='14 Table A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='3: Sequence identities between generated and target sequences in test set by regions and target chain type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Heavy chain target Light chain target Human 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='61±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='60±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='14 Mouse 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='56±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='62±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='10 Table A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='5: Sequence identities between generated and target sequences in test set by species and target chain type 20 Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='11: Comparison between observed and modeled alignment profiles on heavy chain in framework regions (FRs) CDR loops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (First row) Next-word probability in teacher-forcing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (Second row) Sequence conservation from position-specific scoring matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (Third row) Global alignment of generated sequences to (fourth row) the observed sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' In general, generated sequences are more variable than next-word probability due to the cascade effect in iterative sampling, and might have different gene locus and/or families from the target sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' The full-length alignment profiles of heavy and light chains together with four other output examples randomly drawn from test set are available in Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='13, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='14 and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' 21 BVOLVES VAEIRYI BWCOGTLVIVSS 人M冬人 VAY BVOLVES LTERE YEM VAFIRYB ERYENY HKN CARBX CAMATEGTWDFigure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='12: Comparison between observed and modeled alignment profiles on heavy chain in framework regions (FRs) CDR loops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (First row) Next word prediction probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (Second row) Sequence conservation from position-specific scoring matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (Third row) Global alignment of generated sequences to (fourth row) the observed sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' The heavy chain in Figure 6 and the light chain here originate from the same observed antibody chain pair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' 22 WVEGGGTKETVE SSXLTOPA CTGISSRYGYNYVSWIYEVAKRP CESDCS(a) Next word prediction probability (top) versus position-specific scoring matrix (bottom) (b) Generated sequences (top) versus observed sequence (bottom) Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='13: Full-length alignment profile of heavy chain between model predictions, conservation profile and observed sequence in Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' 23 (a) Next word prediction probability (top) versus position-specific scoring matrix (bottom) (b) Generated sequences (top) versus observed sequence (bottom) Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='14: Full-length alignment profile of light chain between model predictions, conservation profile and observed sequence in Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='24 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='SXLTOPSASGSPSALTOSPPT ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='LEVL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='ARREAMN(a) Next word prediction probability (top) versus position-specific scoring matrix (bottom) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='(b) Generated sequences (top) versus observed sequence (bottom) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='(c) Next word prediction probability (top) versus position-specific scoring matrix (bottom) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='(d) Generated sequences (top) versus observed sequence (bottom) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='(e) Next word prediction probability (top) versus position-specific scoring matrix (bottom) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='(f) Generated sequences (top) versus observed sequence (bottom) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='(g) Next word prediction probability (top) versus position-specific scoring matrix (bottom) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='(h) Generated sequences (top) versus observed sequence (bottom) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='15: Four other examples of full-length alignment profile of light chain between model predictions, conservation profile and observed sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Examples are randomly drawn from all test set translations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=" 25 B8MTOSPSSLSASGGOGTKYEIKIVETOSPETEPSPGEPXTSCRSSYVETOIP'SLSVSRegion Light Heavy Observed Generated Observed Generated FR1 22." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='75±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='43 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='74±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='44 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='91±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='45 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='99±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='06 FR2 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00 FR3 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='02±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='20 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='04 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00 FR4 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='97±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='22 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='03 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='96±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='33 CDR1 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='50±2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='16 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='54±2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='14 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='32±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='75 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='22±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='62 CDR2 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='03±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='38 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='02±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='25 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='80±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='77 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='82±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='66 CDR3 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='24±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='96 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='44±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='01 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='47±4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='29±4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='16 whole sequence 108.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='51±2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='38 108.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='74±2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='29 120.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='45±4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='57 121.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='28±4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='18 Table A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='4: Sequence length of observed and generated sequences in test set by regions and chain type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='16: Cross-attention map between target heavy chain and input light chain in Figure 6 averaged throughout heads and layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Hypervariable regions generally receive less attention from queries consistently throughout all paired antibodies in the test set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' 26 query (heavy) key (light)Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='17: Structural overlay of capped average cross-attention from pairing partner onto each residue of SARS-Cov2-binding antibodies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Red color indicates regions with highly attended while blue is weakly attended areas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (Upper right) PDB 6WPT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (Lower Left) PDB 7TB8 chain D and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (Lower Right) PDB 7TB8 chain H and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Consistently for all PDB structures, the CDR loops receive the least attention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' This reflects the random nature of CDR loop sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='18: Structural overlay of uncapped average cross-attention from pairing partner onto each residue of SARS-Cov2-binding antibodies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (Upper right) PDB 6WPT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (Lower Left) PDB 7TB8 chain D and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (Lower Right) PDB 7TB8 chain H and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' 27 Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='19: Structural overlay of capped next word prediction entropy of SARS-Cov2-binding antibodies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (Upper left) PDB 6WPS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (Upper right) PDB 6WPT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (Lower Left) PDB 7TB8 chain D and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (Lower Right) PDB 7TB8 chain H and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='20: Structural overlay of uncapped next word prediction entropy of SARS-Cov2-binding antibodies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (Upper left) PDB 6WPS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (Upper right) PDB 6WPT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (Lower Left) PDB 7TB8 chain D and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (Lower Right) PDB 7TB8 chain H and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='4 Zero-shot prediction arises from paired antibody finetuning We evaluate the perplexity from the benchmarked models and calculate the absolute value of spearman rank correlation (SRC) with the experimental measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' By default, we define a symmetric paired perplexity by taking the average of that in forward- and back-translations for zero-shot prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Since ProGen2 is a decoder-only model, we join the heavy and light chains by a GS 28 linker of GGGGSGGGGSGGGGS and parse the paired antibody as a single sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' In the case of our decoder-only ablation, we train the model without an encoder but take the average of heavy and light chain perplexities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Our ablation on pretraining from ProtT5 shares the same hyperparameters in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' The mean and standard deviation of SRC are estimated by bootstrapping 1000 samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='21: Ablation study on zero-shot prediction on all datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' x-axis represents datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (Top) The difference in absolute spearman rank correlation (SRC) between our model and ablation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (Bottom) Absolute SRC between model (pseudo-)perplexity and measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Error bars are estimated in standard deviation with 1000 bootstrap samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' B Sequence Clustering Contrary to using all non-redundant sequences in the dataset, one can cluster these sequences by an identity cutoff and include only the representative sequences of each cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' This provides a few advantages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' First, it reduces the dataset size and increases sparsity for efficient training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Second, it de-biases the database from heavily studied families.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Third, it provides a better assessment of model generalizability by limiting the information shared between train and test sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' This section investigates the impact of sequence clustering on paired OAS dataset and our model performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' We argue that for our specific case, including all non-redundant sequences helps the model in three ways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' While sequence clustering affects the performance evaluation, the impact is minor and does not affect conclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Sequence clustering reduces the size of paired OAS dataset by at least 50%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Fine-grained resolution in a subspace of protein universe helps resolve all antibodies and their pairings, in particular for learning gene families.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' De-biasing might fail to reflect the preference(s) of antibody pairing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1 Impact on Dataset Size We use linclust from mmseqs2 to cluster representative sequences with –min-seq-id to specify identity cutoff, and -c 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='8 and –cov-mode 1, and otherwise the default parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' We do not observe any signs of truncation at the N- and C-termini on paired OAS dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' As reported in Table B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1, the dataset reduces in size exponentially with the identity threshold in clustering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' For each increment of 5%, the number of translations after clustering falls by about half.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' This impacts not only the training but also the statistical power of evaluation(s) given the size of the diminished test set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' From here, we denote exclusive node split in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='2 on clustered sequences as cluster split.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' We decide to repeat the analyses on cluster split with an identity cutoff of 95% and compare with that from training on non-redundant sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' 29 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='0 pabt5 Correlationl decoder-only 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='8 no pretraining light-to-heavy 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='6 heavy-to-light Rank 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='0 Kd Tm Kd Tm Tm Kd Kd Kd Tm _binding in_ in_ _enrichment REGN10987_T neg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' g6_ e2022_R Hie2non-redundant 95% 90% 85% Training set 260062 127904 53814 22266 Validation set 846 356 188 74 Test set 802 346 178 78 Table B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1: Impact of identity threshold on dataset size in terms of number of translations B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='2 Impact on Results B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1 Antibody sequences are generated with meaningful representation t-SNE plots on sequence representation are similar to those without sequence clustering (Figure B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1a, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1b and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' When comparing on recovery rate of target sequences, we found that cluster split leads to slightly stronger bias towards specific families (Figure B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Sequence recovery is similar to that without sequence clustering (Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='3 and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (a) Heavy and light chains (b) Gene loci in human (c) IGHV gene families in human Figure B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='1: t-SNE plot of encoder hidden states of test set sequences in progressively fine categories (chain types, gene loci, and gene families).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Figure B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='2: t-SNE plot of antibody embeddings colorized by ANARCI annotated species 30 00 heavy chain light chainO H K 入O IGHV1 IGHV11 IGHV15 IGHV3 IGHV4 IGHV900 0 human mouseFigure B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='3: Recovery rate of target chain type, gene loci, and gene families in sequence generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Performance is represented in a hierarchical order, where parent classes are centered while children categories are on the periphery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' On each rim, the arc lengths of categories are proportional to their populations in test set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Dark blue represents perfect recovery whereas white color implies low recovery rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Figure B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='4: Recovery rate on species by original species and translation direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='2 Model learns antibody chain pairing with encoder-decoder architecture In double-random scheme, training and evaluation on clustered sequences result in higher accuracy in the first classification task but weaker in the second classification task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' In both tasks, mispairing identification informed by model perplexity alone still outperforms the baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Similar observation 31 IGHJ3 1 IGHJ1 IGHJ2 IGHJ4 IGHJ5 IGHJ6 IGHJ6 IGHJ2 IGHJ5 IGHJ1 IGHV4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='8 IGHJ4 IGHJ3 H IGHV3 IGHJ6 IGHV1 IGHJ5 IGHJ4 IGHJ4 heavy IGHJ3 IGHJ6 IGHV5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='6 IGHJ5 IGHJ4 Recovery rate IGHV6 IGHJ5 GHV IGHJ2 IGL IGLVE IGLV4 IGLJ3 IGLJ1 IGLJ2 IGKJ4 IGLV1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='4 IGLJ3 light IGKV1 入 IGKJ1 IGLJ7 K IGLJ3 IGLV3 IGLJ1 IGKJ5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='2 IGKJ3 IGKJ2 IGKV3 IGLV2 IGLJ2 IGKV2 IGKV4 IGL IGKVAD IGKJ4 IGLJ2 IGKJ2 IGKJ1 IGKJ4 IGKJ3 IGLJ1 IGKJ2 IGKJ2 IGKJ5 GKJ5 01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='0 human 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='96 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='98 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='6 Species 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='4 mouse 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='73 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='51 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='0 heavy-to-light light-to-heavy Translationholds also in single-random scheme B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='3 and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Overall, the results are unaffected by sequence clustering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' First Classification Task Mispairing type Target chain Accuracy Chain type Light 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='98 Heavy 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='98 Species Light 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='85 Heavy 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='88 Second Classification Task Mispairing type Accuracy AUROC Chain type 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='65 Species 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='57 Table B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='2: Performance on first and second classification task on model perplexity alone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (Left) In the first classification task, mispairing assignment is based on the rank of perplexity without any parameterizable model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (Right) In the second classification task, instead of unidirectional translation, logistic regression is trained on the bidirectional average of translation perplexity in validation set, and evaluated on test set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Random assignment results in an accuracy of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='5 in the first class, and an additional AUROC of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='5 in the second task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Mispairing type Target chain Accuracy Chain type Light 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='92 Heavy 1 Species Light 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='99 Heavy 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='98 Table B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='3: First classification task assignment accuracy by the perplexity rank between correct and mispaired antibody sequences in single-generation scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Mispairing type Accuracy AUROC Chain-type 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='62 Species 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='56 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='62 Table B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='4: Second classification task performance in single-generation scheme B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='3 Variations in hypervariable domains are captured in model uncertainty Our model from cluster split still has high entropy and generates variable-length sequences at hypervariable domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Results are largely unaffected by cluster split.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Figure B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='5: Comparison between observed and modeled alignment profiles in the framework regions (FRs) and CDR loops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (First row) Next-word prediction probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (Second row) Sequence conservation from position-specific scoring matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (Third row) Global alignment of generated sequences to (fourth row) the observed sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' 32 OVOLVEW LIGEINHS YBYWGOGTLVIVSS QVQLQ QVQLVSSG ARBR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='Figure B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='6: Cross-attention map between target heavy chain and input light chain in Figure 6 averaged throughout heads and layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Hypervariable regions generally receive less attention from queries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Region Light Heavy FR1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='59±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='60±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='21 CDR1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='35±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='38±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='20 FR2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='78±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='76±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='13 CDR2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='39±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='22 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='37±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='15 FR3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='69±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='58±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='15 CDR3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='33±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='24±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='15 FR4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='79±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='19 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='90±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='08 whole sequence 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='60±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='56±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='12 Table B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='5: Sequence identities between generated and target sequences in test set by regions and target chain type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' 33 query (heavy) key (light)Region Light Heavy Observed Generated Observed Generated FR1 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='59±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='50 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='37±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='48 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='86±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='83 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00 CDR1 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='74±2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='18 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='87±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='41 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='26±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='67 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='03±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='25 FR2 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00 CDR2 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='05±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='43 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='74±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='63 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='89±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='32 FR3 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='15 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00 CDR3 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='63±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='06 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='95±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='81 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='32±3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='93 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='51±3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='97 FR4 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='94±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='36 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='00 whole sequence 108.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='88±2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='54 109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='19±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='58 121.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='10±4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='63 125.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='43±4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='10 Table B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='6: Sequence length of observed and generated sequences in test set by regions and chain type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='3 Zero-shot prediction arises from paired antibody finetuning Trained on clustered sequences, our model performs more weakly (p-value < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='05) on one dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Results are largely unaffected by sequence clustering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Figure B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='7: Zero-shot prediction performance on antibody measurements of our model and state-of- the-art on all datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' x-axis represents datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (Top) The difference in absolute spearman rank correlation (SRC) between our model and state-of-the-art.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (Bottom) Absolute SRC between model (pseudo-)perplexity and measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Error bars are estimated in standard deviation with 1000 bootstrap samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' 34 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='0 pabt5 Correlation progen2-oas 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='8 progen2-base esmlv 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='6 esm2 3B Rank 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='0 2 Kd Tm Kd Tm Tm Kd Kd Kd m In.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' _enrichmen neg_ e2022_C143_K neg_ Hie2 g6_ e2022_R Hie2 Hie2Figure B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='8: Ablation study on zero-shot prediction on all datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' x-axis represents datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (Top) The difference in absolute spearman rank correlation (SRC) between our model and ablation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' (Bottom) Absolute SRC between model (pseudo-)perplexity and measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' Error bars are estimated in standard deviation with 1000 bootstrap samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content=' 35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='0 pabt5 Correlation decoder-only 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='8 no pretraining light-to-heavy 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='6 heavy-to-light Rank 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
+page_content='0 Kd Tm Kd Tm Tm Kd Kd Kd Tm Hie2' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNE0T4oBgHgl3EQf5QJM/content/2301.02748v1.pdf'}
diff --git a/e9E1T4oBgHgl3EQfLwOl/content/tmp_files/2301.02981v1.pdf.txt b/e9E1T4oBgHgl3EQfLwOl/content/tmp_files/2301.02981v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..5e549cb1f01a7fca637ccea9ba157483bf868353
--- /dev/null
+++ b/e9E1T4oBgHgl3EQfLwOl/content/tmp_files/2301.02981v1.pdf.txt
@@ -0,0 +1,697 @@
+arXiv:2301.02981v1 [math.CO] 8 Jan 2023
+Toughness and normalized Laplacian
+eigenvalues of graphs
+Xueyi Huanga,b, Kinkar Chandra Dasb,∗ and Shunlai Zhua
+aSchool of Mathematics, East China University of Science and Technology,
+Shanghai 200237, P.R. China
+bDepartment of Mathematics, Sungkyunkwan University,
+Suwon 16419, Republic of Korea
+Abstract
+Given a connected graph G, the toughness τG is defined as the minimum
+value of the ratio |S|/ωG−S, where S ranges over all vertex cut sets of G, and
+ωG−S is the number of connected components in the subgraph G − S obtained
+by deleting all vertices of S from G. In this paper, we provide a lower bound for
+the toughness τG in terms of the maximum degree, minimum degree and normal-
+ized Laplacian eigenvalues of G. This can be viewed as a slight generalization of
+Brouwer’s toughness conjecture, which was confirmed by Gu (2021). Furthermore,
+we give a characterization of those graphs attaining the two lower bounds regard-
+ing toughness and Laplacian eigenvalues provided by Gu and Haemers (2022).
+Keywords: Toughness, Normalized Laplacian eigenvalue, Algebraic connectiv-
+ity.
+2010 MSC: 05C50, 05C42
+1. Introduction
+Let G be an undirected simple graph with vertex set VG (|VG| = n). For any v ∈ VG,
+we denote by dv the degree of v, that is, the number of vertices adjacent to v in G. In
+particular, let ∆G and δG denote the maximum degree and minimum degree of vertices
+of G, respectively. For any subset S of VG, we denote by νS = �
+v∈S dv the volume of
+∗Corresponding author.
+E-mail address: huangxymath@163.com (X. Huang), kinkardas2003@gmail.com (K. C. Das), zs-
+lkqds@163.com (S. Zhu).
+1
+
+S in G, G[S] the subgraph of G induced by S, and G − S the subgraph of G induced
+by VG \ S. For X, Y ⊆ VG, we denote by eX,Y the number of edges between X and Y
+(counting each edge with both ends in X ∩ Y twice), and eX the number of edges of
+which the both ends are contained in X. Clearly, eX,X = 2eX. Also, the join of two
+graphs G and H, denoted by G ∨ H, is the graph obtained from G ∪ H by connecting
+each vertex of G to all vertices of H.
+The adjacency matrix of G is the (0, 1)-matrix AG = (auv)u,v∈VG with auv = 1 if
+and only if u, v are distinct and adjacent. Let DG = diag{dv : v ∈ VG} denote the
+diagonal degree matrix of G. Then we call LG = DG − AG and LG = D−1/2
+G
+LGD−1/2
+G
+the Laplacian matrix and normalized Laplacian matrix of G, respectively.
+Here we
+always take (D−1/2
+G
+)vv = 0 if v is an isolated vertex of G. The eigenvalues of AG, LG
+and LG are called the adjacency eigenvalues, Laplacian eigenvalues and normalized
+Laplacian eigenvalues of G, and denoted by λG
+1 ≥ λG
+2 ≥ · · · ≥ λG
+n , µG
+1 ≥ µG
+2 ≥ · · · ≥ µG
+n
+and ξG
+1 ≥ ξG
+2 ≥ · · · ≥ ξG
+n , respectively. It is easy to see that µG
+n = ξG
+n = 0, and ξG
+1 ≤ 2
+with equality if and only if G contains at least one nontrivial bipartite component
+[6]. Additionally, µG
+1 and µG
+n−1 are called the Laplacian spectral radius and algebraic
+connectivity of G, respectively.
+In 1973, Chv´atal [8] proposed the concept of graph toughness. For a non-complete
+connected graph G, the toughness τG is defined as τG = minS⊆VG, ωG−S≥2 |S|/ωG−S,
+where ωG−S represents the number of connected components in G − S. For convention,
+we define the toughness of a complete graph Kn as τKn = ∞. In the original paper
+[8], Chv´atal proved that τG ≥ 1 if G is a hamiltonian graph. Over the past decades,
+toughness has been shown to be closely related to cycles, matchings, factors, spanning
+trees, and various structural parameters of graphs [2].
+In 1995, Alon [1] first introduced adjacency eigenvalues to the study of graph tough-
+ness. He proved that τG > (d2/(dλ + λ2) − 1)/3 if G is a connected d-regular graph,
+where λ = max{|λG
+2 |, |λG
+n |}. Almost at the same time, Brouwer [3, 4] showed that ev-
+ery connected d-regular graph G satisfies τG > d/λ − 2, and further conjectured that
+τG ≥ d/λ − 1, which is known as Brouwer’s toughness conjecture. After then, some
+efforts of several researchers were made for solving this conjecture [9, 10, 14]. Very
+recently, Gu [15] confirmed Brouwer’s toughness conjecture.
+In this paper, inspired by the work of Gu [15], we first consider to provide a lower
+bound for the toughness of general graphs in terms of the maximum degree, minimum
+degree and normalized Laplacian eigenvalues.
+Theorem 1.1 Let G be a connected graph on n vertices with ∆G = ∆ and δG = δ.
+Then
+τG ≥ max
+� 1
+∆, ∆ + δ
+∆n , δ(ξ + 1)
+∆ξ
+− 2
+�
+,
+where ξ = max{|1 − ξG
+1 |, |1 − ξG
+n−1|}.
+2
+
+If G is d-regular, then ∆ = δ = d and ξ = λ/d. By Theorem 1.1,
+τG ≥ δ(ξ + 1)
+∆ξ
+− 2 = 1
+ξ − 1 = d
+λ − 1,
+which coincides with the result of Brouwer’s toughness conjecture. This suggests that
+Theorem 1.1 can be viewed as a slight generalization of Brouwer’s toughness conjecture.
+Recently, Gu and Haemers [16] presented two lower bounds for the toughness of a
+graph by using Laplacian eigenvalues.
+Theorem 1.2 ([16]) Let G be a connected graph on n vertices with δG = δ. Then
+τG ≥
+µG
+1 µG
+n−1
+n(µG
+1 − δ)
+(1)
+and
+τG ≥
+µG
+n−1
+µG
+1 − µG
+n−1
+.
+(2)
+In the second part of this paper, we focus on giving a characterization of those
+graphs attaining the lower bounds of Theorem 1.2.
+Theorem 1.3 Let G be a connected graph of order n with δG = δ. Then each equality
+in (1) and (2) holds if and only if G ∼= H ∨ (n − δ)K1, where 1 ≤ δ ≤ n − 2 and H is
+any graph of order δ with µH
+δ−1 ≥ 2δ − n.
+According to (2) and Theorem 1.3, we obtain an upper bound for the algebraic
+connectivity of a graph in terms of the toughness and Laplacian spectral radius, and
+characterize the extremal graphs.
+Corollary 1.1 Let G be a connected graph on n vertices with Laplacian spectral radius
+µG
+1 and toughness τG. Then
+µG
+n−1 ≤
+τG
+τG + 1 µG
+1
+with equality if and only if G ∼= H ∨(n−δ)K1, where 1 ≤ δ ≤ n−2 and H is any graph
+of order δ with µH
+δ−1 ≥ 2δ − n.
+2. Preliminaries
+In this section, we review some basic lemmas for latter use.
+Lemma 2.1 ([5, 15]) Let n1, . . . , np be positive integers such that �p
+i=1 ni ≤ 2p − 1.
+Then for every integer ℓ with 0 ≤ ℓ ≤ �p
+i=1 ni, there exists some I ⊂ {1, . . . , p} such
+that �
+i∈I ni = ℓ.
+3
+
+Recall that νS(S) = �
+v∈S dv denotes the volume of S (S ⊆ VG) in G.
+Lemma 2.2 (Irregular Expander Mixing Lemma, [7]) Let G be a graph on n
+vertices. For any two subsets X and Y of V = VG, we have
+����eX,Y − νXνY
+νV
+���� ≤ ξ ·
+�
+νXνY
+�
+1 − νX
+νV
+� �
+1 − νY
+νV
+�
+,
+where ξ = max{|1 − ξG
+1 |, |1 − ξG
+n−1|}. In particular,
+����2eX − ν2
+X
+νV
+���� ≤ ξ · νX
+�
+1 − νX
+νV
+�
+.
+Let G be a graph. An independent set of G is a set of vertices which are pairwise
+non-adjacent.
+The independent number αG is the maximum cardinality among all
+independent sets of G. The following three lemmas provide different kinds of upper
+bounds for αG.
+Lemma 2.3 ([21], Theorem 3.2) Let G be a graph on n vertices with ∆G = ∆ and
+δG = δ. Then
+αG ≤
+n∆
+∆ + δ.
+Lemma 2.4 Let G be a graph on n vertices and m edges with δG = δ. Then
+αG ≤
+2mξ
+δ(ξ + 1),
+where ξ = max{|1 − ξG
+1 |, |1 − ξG
+n−1|}.
+Proof. Let I be a maximum independent set of G, that is, |I| = αG. Then eI = 0, and
+by Lemma 2.2,
+ν2
+I
+νV
+≤ ξ · νI
+�
+1 − νI
+νV
+�
+,
+which implies that
+νI ≤
+ξ
+ξ + 1 · νV .
+Combining this with νI ≥ δ|I| = δαG and νV = 2m yields that
+|I| ≤
+2mξ
+δ(ξ + 1).
+The result follows.
+□
+4
+
+Remark 2.1 It is worth mentioning that Lemma 2.4 can be also deduced from the
+main result of [18].
+Lemma 2.5 ([13, 20]) Let G be a graph on n vertices with at least one edge and
+δG = δ. Then
+αG ≤ n(µG
+1 − δ)
+µG
+1
+.
+(3)
+Furthermore, if I is an independent set of G such that the equality in (3) holds, then
+the bipartite subgraph G1 of G induced by those edges between I and VG \I is (δ, µG
+1 −δ)-
+semiregular, that is, each vertex of I has degree δ and each vertex of VG \ I has degree
+µG
+1 − δ in G1.
+The vertex connectivity κG of a non-complete graph G is the minimum cardinality
+of S (S ⊂ VG) such that G − S is disconnected. Clearly, κG ≤ δG. A well-known result
+of Fiedler [12] states that each non-complete connected graph G of order n satisfies
+µG
+n−1 ≤ κG.
+In [19], Kirkland, Molitierno, Neumann and Shader characterized the
+structure of the graphs satisfying µG
+n−1 = κG. From their proof, we can deduce the
+following result.
+Lemma 2.6 ([19], Theorem 2.1) Let G be a non-complete connected graph on n ver-
+tices.
+If µG
+n−1 = κG = κ, then for any vertex cut set S of size κ, we have G =
+G[S] ∨ (G − S) and µG[S]
+κ−1 ≥ 2κ − n. Conversely, if G is of the form G1 ∨ G2, where G1
+is a graph on κ vertices with µG1
+κ−1 ≥ 2κ − n and G2 is a disconnected graph on n − κ
+vertices, then µG
+n−1 = κG = κ.
+Lemma 2.7 ([11], Theorem 7.1.9) Let G be a graph of order n and H be a graph
+of order n′. Then the Laplacian eigenvalues of G ∨ H are n + n′, µG
+1 + n′, . . . , µG
+n−1 +
+n′, n + µH
+1 , . . . , n + µH
+n′−1, 0.
+Lemma 2.8 ([16, 17]) Let G be a graph of order n, and let S be a vertex cut set of
+G. Suppose that VG \ S = X ∪ Y with X ∩ Y = ∅ and |X| ≤ |Y |. Then
+|X| ≤ µG
+1 − µG
+n−1
+2µG
+1
+· n and |S| ≥
+2µG
+n−1
+µG
+1 − µG
+n−1
+· |X|,
+where each equality holds only if |X| = |Y |.
+3. Proof of Theorems 1.1 and 1.3
+Proof of Theorem 1.1. As τKn = ∞ by definition, we can assume that G ̸∼= Kn. Let S
+be a vertex cut set of G such that τG = |S|/ωG−S. Let τ = τG, ω = ωG−S and U = VG−S.
+5
+
+Then ω ≥ 2, |S| = τω ≤ n − 2 and |U| = n − τω. Clearly, ω ≤ eS,U ≤ |S| · ∆ = τω · ∆,
+we have
+τ ≥ 1
+∆.
+Also, by taking exactly one vertex from each component of G − S, we obtain an inde-
+pendent set of size ω. Then, by Lemma 2.3,
+ω ≤ αG ≤
+n∆
+∆ + δ,
+which gives that
+τ = |S|
+ω ≥ 1
+ω ≥ ∆ + δ
+n∆ .
+Thus it remains to prove that
+τ ≥ δ(ξ + 1)
+∆ξ
+− 2.
+If ξ ≥
+δ
+2∆ − δ, then δ(ξ + 1)
+∆ξ
+≤ 2 and there is nothing to prove. In what follows, we
+always assume that ξ <
+δ
+2∆ − δ, i.e., δ(ξ + 1)
+∆ξ
+> 2. By Lemma 2.4,
+ω ≤ αG ≤
+2mξ
+δ(ξ + 1) ≤
+n∆ξ
+δ(ξ + 1) < n
+2.
+(4)
+If |U| ≤
+2n∆ξ
+δ(ξ + 1), then from (4) we obtain
+τ = n − |U|
+ω
+≥
+�
+n −
+2n∆ξ
+δ(ξ + 1)
+�
+· δ(ξ + 1)
+n∆ξ
+= δ(ξ + 1)
+∆ξ
+− 2,
+as desired. Now suppose |U| >
+2n∆ξ
+δ(ξ + 1). Then it follows from (4) that
+|U| ≥ 2ω + 1.
+(5)
+Let U1, U2, . . . , Uω (|U1| ≤ |U2| ≤ · · · ≤ |Uω|) be the sets of vertices of the connected
+components of G − S. The following discussion is divided into two cases.
+Case 1. �ω−1
+i=1 |Ui| = ω − 1.
+In this situation, each Ui (1 ≤ i ≤ ω−1) contains only one vertex. Let W = ∪ω−1
+i=1 Ui.
+Then |W| = ω − 1 and eW,U = 0. By Lemma 2.2,
+νWνU
+νV
+≤ ξ ·
+�
+νWνU
+�
+1 − νW
+νV
+� �
+1 − νU
+νV
+�
+≤ ξ ·
+�
+νWνU
+�
+1 − νU
+νV
+�
+,
+6
+
+which leads to
+νWνU
+νV · ξ2 ≤ νV − νU = νS.
+(6)
+Note that νW ≥ δ|W|, νU ≥ δ|U|, νV ≤ ∆n and νS ≤ ∆|S| = ∆τω. According to (6),
+we obtain
+τ ≥ δ2|W||U|
+n∆2ξ2ω = ω − 1
+ω
+· δ2|U|
+n∆2ξ2 =
+�
+1 − 1
+ω
+�
+· δ2|U|
+n∆2ξ2 ≥
+δ2|U|
+2n∆2ξ2.
+Combining this with |U| >
+2n∆ξ
+δ(ξ + 1) yields that
+τ >
+δ2
+2n∆2ξ2 ·
+2n∆ξ
+δ(ξ + 1) = δ
+∆
+�1
+ξ −
+1
+ξ + 1
+�
+≥ δ
+∆
+�1
+ξ − 1
+�
+≥ δ
+∆
+�1
+ξ −
+�2∆
+δ − 1
+��
+= δ(ξ + 1)
+∆ξ
+− 2,
+as desired.
+Case 2. �ω−1
+i=1 |Ui| ≥ ω.
+By using the same method as in [15, Claim 2], we can obtain the following claim.
+For the purpose of review, we write the proof again.
+Claim 1 There exists some I ⊂ [ω] = {1, 2, · · · , ω} such that RI = ∪i∈IUi and TI =
+U \ RI = ∪i∈[ω]\IUi satisfy eRI,TI = 0 and |RI|, |TI| ≥ ω.
+Proof of Claim 1. We assert that |Uω| ≥ 3, since otherwise we have |U| ≤ 2ω, contrary
+to (5). Also, if |Uω| ≥ ω then we can take I = {1, . . . , ω − 1}, and the result follows
+immediately. Thus it remains to consider that 3 ≤ |Uω| ≤ ω−1. Let ℓ = ω−|Uω|. Then
+1 ≤ ℓ ≤ ω−3. If �ω−1
+i=1 |Ui| ≤ 2ω−3, by Lemma 2.1, there exists some I1 ⊂ {1, . . . , ω−1}
+such that �
+i∈I1 |Ui| = ℓ. Take I = I1 ∪ {ω}. Then we see that |RI| = ℓ + |Uω| = ω,
+|TI| = |U| −|RI| ≥ ω + 1 by (5), and eRI,TI = 0, as required. If �ω−1
+i=1 |Ui| > 2ω −3, let
+U′
+i be a nonempty subset of Ui (i = 1, . . . , ω − 1) such that �ω−1
+i=1 |U′
+i| = 2ω − 3. Again
+by Lemma 2.1, there exists some I1 ⊂ {1, . . . , ω −1} such that �
+i∈I1 |U′
+i| = ℓ. Let I =
+I1 ∪{ω}. Then we see that |RI| = �
+i∈I1 |Ui| + |Uω| ≥ �
+i∈I1 |U′
+i| + |Uω| = ℓ + |Uω| = ω,
+|TI| = �
+i∈[ω]\I |Ui| ≥ �
+i∈[ω]\I |U′
+i| = 2ω −3 −ℓ ≥ 2ω −3 −(ω −3) = ω, and eRI,TI = 0,
+as desired.
+□
+Let I be the subset of [ω] guaranteed by Claim 1, and let R = RI and T = TI.
+Since eR,T = 0, by Lemma 2.2, we have
+νRνT
+νV
+≤ ξ ·
+�
+νRνT
+�
+1 − νR
+νV
+� �
+1 − νT
+νV
+�
+,
+7
+
+or equivalently,
+νR νT ≤ ξ2(νV − νR) (νV − νT).
+(7)
+Without loss of generality, suppose that νR ≤ νT. Then (7) implies that
+ν2
+R ≤ ξ2(νV − νR)2,
+that is,
+νR ≤ ξ(νV − νR).
+Therefore,
+νR ≤
+ξ
+ξ + 1νV .
+(8)
+Note that νT = νV − νS − νR. Again by (7),
+νR(νV − νS − νR) ≤ ξ2(νV − νR)(νS + νR),
+which gives that
+νRνV ≤ (ξ2νV + (1 − ξ2)νR)(νS + νR).
+(9)
+By (8), we see that (1 − ξ2)νR ≤ ξ(1 − ξ)νV . Then from (9) we obtain
+νRνV ≤ ξ νV (νS + νR),
+which implies that
+νS ≥
+�1
+ξ − 1
+�
+νR.
+Combining this with νS ≤ ∆|S| and νR ≥ δ|R| yields that
+τω = |S| ≥
+�1
+ξ − 1
+� δ
+∆|R|.
+Hence,
+τ ≥
+�1
+ξ − 1
+� δ
+∆ · |R|
+ω ≥
+�1
+ξ − 1
+� δ
+∆ ≥
+�1
+ξ −
+�2∆
+δ − 1
+�� δ
+∆ = δ(ξ + 1)
+∆ξ
+− 2.
+Therefore, for all situations, we obtain
+τ ≥ δ(ξ + 1)
+∆ξ
+− 2,
+and the result follows.
+□
+We now prove Theorem 1.3.
+8
+
+Proof of Theorem 1.3. Let S be a vertex cut set of G such that τG = |S|/ωG−S. Let
+τ = τG, ω = ωG−S and κ = κG.
+If the equality in (1) holds, according to the proof of Theorem 1.2 in [16], we have
+|S| = κ = µG
+n−1 and ω = αG = n(µG
+1 − δ)/µG
+1 . Since µG
+n−1 = κ, by Lemma 2.6, G is
+of the form G[S] ∨ (G − S), where µG[S]
+κ−1 ≥ 2κ − n and 1 ≤ κ ≤ n − 2. Then µG
+1 = n
+by Lemma 2.7. Also, by taking exactly one vertex from each component of G − S,
+we obtain an independent set I of size ω = αG = n(µG
+1 − δ)/µG
+1 = n − δ. Then, by
+Lemma 2.5, the edges between I and ¯I = VG \I induce a (δ, n−δ)-semiregular bipartite
+graph. Considering that S ⊂ ¯I and ω ≥ 2, we claim that all components of G − S are
+singletons and δ = |S| = κ = n − ω. Thus G can be written as H ∨ (n − δ)K1, where
+H = G[S] has order δ (1 ≤ δ ≤ n − 2) and µH
+δ−1 ≥ 2δ − n. Conversely, suppose that
+G ∼= H ∨ (n − δ)K1 for some graph H of order δ (1 ≤ δ ≤ n − 2) with µH
+δ−1 ≥ 2δ − n.
+Then δG = δ, and it is easy to verify that µG
+n−1 = δ = κG, µG
+1 = n and
+τG =
+δ
+n − δ =
+µG
+1 µG
+n−1
+n(µG
+1 − δ),
+as desired.
+Now assume that the equality in (2) holds. We claim that all components of G − S
+must be singletons, that is, n − |S| = ω. In fact, if n − |S| ≥ ω + 1, according to the
+proof of Theorem 1.2 in [16], we see that the components of G − S can be partitioned
+into two disjoint sets X and Y such that |Y | ≥ |X| ≥ ω/2, and the equality in (2)
+implies that |X| = ω/2 and |S| = 2µG
+n−1/(µG
+1 − µG
+n−1) · |X|. Then, by Lemma 2.8, we
+must have |Y | = |X|, and so n − |S| = |X| + |Y | = ω, a contradiction. Therefore,
+τG =
+µG
+n−1
+µG
+1 − µG
+n−1
+= |S|
+ω = n − ω
+ω
+,
+with gives that
+ω = n(µG
+1 − µG
+n−1)
+µG
+1
+.
+(10)
+Also, by Lemma 2.5,
+ω ≤ αG ≤ n(µG
+1 − δ)
+µG
+1
+.
+(11)
+Combining (10) and (11), we obtain µG
+n−1 ≥ δ ≥ κ, and so µG
+n−1 = δ = κ because we
+have known that µG
+n−1 ≤ κ. By Lemma 2.6, G must be the join of two graphs. Then
+µG
+1 = n, and |S| = n − ω = κ = δ by (10). Thus, again by Lemma 2.6, G is of the
+form H ∨ (n − δ)K1, where H = G[S] has order δ (1 ≤ δ ≤ n − 2) and µH
+δ−1 ≥ 2δ − n.
+Conversely, if G ∼= H ∨ (n − δ)K1 for some graph H of order δ (1 ≤ δ ≤ n − 2) with
+µH
+δ−1 ≥ 2δ − n, then δG = δ, µG
+n−1 = δ = κG, µG
+1 = n, and
+τG =
+δ
+n − δ =
+µG
+n−1
+µG
+1 − µG
+n−1
+,
+9
+
+as desired.
+□
+Author Contributions
+Conceptualization, X.H., K.C.D.; investigation, X.H., K.C.D. and S.Z.; writing –
+original draft preparation, X.H., K.C.D. and S.Z.; writing – review and editing, X.H.,
+K.C.D.
+Declaration of competing interest
+The authors declared that they have no conflicts of interest to this work.
+Acknowledgements
+The authors are much grateful to two anonymous referees for their valuable com-
+ments on our paper, which have considerably improved the presentation of this paper.
+X. Huang is supported by the National Natural Science Foundation of China (Grant
+No.
+11901540).
+K. C. Das is supported by National Research Foundation funded
+by the Korean government (Grant No. 2021R1F1A1050646). S. Zhu is supported by
+the Undergraduate Training Program on Innovation and Entrepreneurship (Grant No.
+X202110251335).
+References
+[1] N. Alon, Tough Ramsey graphs without short cycles, J. Algebraic Combin. 4 (1995)
+189–195.
+[2] D. Bauer, H. J. Broersma, and E. Schmeichel, Toughness of graphs – a survey,
+Graphs Combin. 22 (2006) 1–35.
+[3] A. E. Brouwer, Toughness and spectrum of a graph, Linear Algebra Appl. 226/228
+(1995) 267–271.
+[4] A. E. Brouwer, Spectrum and connectivity of graphs, CWI Quarterly 9 (1996)
+37–40.
+[5] A. E. Brouwer, W. H. Haemers, Eigenvalues and perfect matchings, Linear Algebra
+Appl. 395 (2005) 155–162.
+[6] F. R. K. Chung, Spectral Graph Theory, Vol. 92 of CBMS Regional Conference
+Series in Mathematics, AMS Bookstore, 1997.
+10
+
+[7] F. Chung, Discrete Isoperimetric Inequalities, in: A. Grigor’yan, S. T. Yau (Eds.),
+Surveys in Differential Geometry: Eigenvalues of Laplacians and Other Geometric
+Operators, vol. IX, International Press, 2004, pp. 53–82.
+[8] V. Chv´atal, Tough graphs and hamiltonian circuits, Discrete Math. 5 (1973) 215–
+228.
+[9] S. M. Cioab˘a, X. Gu, Connectivity, toughness, spanning trees of bounded degrees,
+and spectrum of regular graphs, Czechoslovak Math. J. 66 (2016) 913–924.
+[10] S. M. Cioab˘a, W. Wong, The spectrum and toughness of regular graphs, Discrete
+Appl. Math. 176 (2014) 43–52.
+[11] D. M. Cvetkovi´c, P. Rowlinson, and S. K. Simi´c, An Introduction to the Theory of
+Graph Spectra, London Mathematical Society Student Texts 75, Cambridge Univ.
+Press, Cambridge, 2010.
+[12] M. Fiedler, Algebraic Connectivity of Graphs, Czechoslovak Math. J. 23 (1973)
+298–305.
+[13] C. D. Godsil, M. W. Newman, Eigenvalue bounds for independent sets, J. Combin.
+Theory Ser. B 98 (2008) 721–734.
+[14] X. Gu, Toughness in pseudo-random graphs, European J. Combin. 92 (2021)
+103255.
+[15] X. Gu, A proof of Brouwer’s toughness conjecture, SIAM J. Discrete Math. 35(2)
+(2021) 948–952.
+[16] X. Gu, W. H. Haemers, Graph toughness from Laplacian eigenvalues, Algebraic
+Combin. 5(1) (2022) 53–61.
+[17] X. Gu, M. Liu, A tight lower bound on the matching number of graphs via Lapla-
+cian eigenvalues, European J. Combin. 101 (2022) 103468.
+[18] J. Harant, S. Richter, A new eigenvalue bound for independent sets, Discrete Math.
+338 (10) (2015) 1763–1765.
+[19] S. Kirkland, J. J. Molitierno, M. Neumann, and B. L. Shader, On graphs with
+equal algebraic and vertex connectivity, Linear Algebra Appl. 341 (2002) 45–56.
+[20] M. Lu, H. Liu, and F. Tian, Laplacian spectral bounds for clique and independence
+numbers of graphs, J. Combin. Theory Ser. B 97 (2007) 726–732.
+11
+
+[21] S. O, Y. Shi, and Z. Taoqiu, Sharp upper bounds on the k-independence number
+in graphs with given minimum and maximum degree, Graphs Combin. 37 (2021)
+393–408.
+12
+
diff --git a/e9E1T4oBgHgl3EQfLwOl/content/tmp_files/load_file.txt b/e9E1T4oBgHgl3EQfLwOl/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..b3636ad5a99c3e0edde6f1388851dc29818e8361
--- /dev/null
+++ b/e9E1T4oBgHgl3EQfLwOl/content/tmp_files/load_file.txt
@@ -0,0 +1,402 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf,len=401
+page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='02981v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='CO] 8 Jan 2023 Toughness and normalized Laplacian eigenvalues of graphs Xueyi Huanga,b, Kinkar Chandra Dasb,∗ and Shunlai Zhua aSchool of Mathematics, East China University of Science and Technology, Shanghai 200237, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' China bDepartment of Mathematics, Sungkyunkwan University, Suwon 16419, Republic of Korea Abstract Given a connected graph G, the toughness τG is defined as the minimum value of the ratio |S|/ωG−S, where S ranges over all vertex cut sets of G, and ωG−S is the number of connected components in the subgraph G − S obtained by deleting all vertices of S from G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' In this paper, we provide a lower bound for the toughness τG in terms of the maximum degree, minimum degree and normal- ized Laplacian eigenvalues of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' This can be viewed as a slight generalization of Brouwer’s toughness conjecture, which was confirmed by Gu (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Furthermore, we give a characterization of those graphs attaining the two lower bounds regard- ing toughness and Laplacian eigenvalues provided by Gu and Haemers (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Keywords: Toughness, Normalized Laplacian eigenvalue, Algebraic connectiv- ity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' 2010 MSC: 05C50, 05C42 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Introduction Let G be an undirected simple graph with vertex set VG (|VG| = n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' For any v ∈ VG, we denote by dv the degree of v, that is, the number of vertices adjacent to v in G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' In particular, let ∆G and δG denote the maximum degree and minimum degree of vertices of G, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' For any subset S of VG, we denote by νS = � v∈S dv the volume of ∗Corresponding author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' E-mail address: huangxymath@163.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='com (X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Huang), kinkardas2003@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='com (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Das), zs- lkqds@163.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='com (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Zhu).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' 1 S in G, G[S] the subgraph of G induced by S, and G − S the subgraph of G induced by VG \\ S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' For X, Y ⊆ VG, we denote by eX,Y the number of edges between X and Y (counting each edge with both ends in X ∩ Y twice), and eX the number of edges of which the both ends are contained in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Clearly, eX,X = 2eX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Also, the join of two graphs G and H, denoted by G ∨ H, is the graph obtained from G ∪ H by connecting each vertex of G to all vertices of H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' The adjacency matrix of G is the (0, 1)-matrix AG = (auv)u,v∈VG with auv = 1 if and only if u, v are distinct and adjacent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Let DG = diag{dv : v ∈ VG} denote the diagonal degree matrix of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Then we call LG = DG − AG and LG = D−1/2 G LGD−1/2 G the Laplacian matrix and normalized Laplacian matrix of G, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Here we always take (D−1/2 G )vv = 0 if v is an isolated vertex of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' The eigenvalues of AG, LG and LG are called the adjacency eigenvalues, Laplacian eigenvalues and normalized Laplacian eigenvalues of G, and denoted by λG 1 ≥ λG 2 ≥ · · · ≥ λG n , µG 1 ≥ µG 2 ≥ · · · ≥ µG n and ξG 1 ≥ ξG 2 ≥ · · · ≥ ξG n , respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' It is easy to see that µG n = ξG n = 0, and ξG 1 ≤ 2 with equality if and only if G contains at least one nontrivial bipartite component [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Additionally, µG 1 and µG n−1 are called the Laplacian spectral radius and algebraic connectivity of G, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' In 1973, Chv´atal [8] proposed the concept of graph toughness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' For a non-complete connected graph G, the toughness τG is defined as τG = minS⊆VG, ωG−S≥2 |S|/ωG−S, where ωG−S represents the number of connected components in G − S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' For convention, we define the toughness of a complete graph Kn as τKn = ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' In the original paper [8], Chv´atal proved that τG ≥ 1 if G is a hamiltonian graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Over the past decades, toughness has been shown to be closely related to cycles, matchings, factors, spanning trees, and various structural parameters of graphs [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' In 1995, Alon [1] first introduced adjacency eigenvalues to the study of graph tough- ness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' He proved that τG > (d2/(dλ + λ2) − 1)/3 if G is a connected d-regular graph, where λ = max{|λG 2 |, |λG n |}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Almost at the same time, Brouwer [3, 4] showed that ev- ery connected d-regular graph G satisfies τG > d/λ − 2, and further conjectured that τG ≥ d/λ − 1, which is known as Brouwer’s toughness conjecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' After then, some efforts of several researchers were made for solving this conjecture [9, 10, 14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Very recently, Gu [15] confirmed Brouwer’s toughness conjecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' In this paper, inspired by the work of Gu [15], we first consider to provide a lower bound for the toughness of general graphs in terms of the maximum degree, minimum degree and normalized Laplacian eigenvalues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='1 Let G be a connected graph on n vertices with ∆G = ∆ and δG = δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Then τG ≥ max � 1 ∆, ∆ + δ ∆n , δ(ξ + 1) ∆ξ − 2 � , where ξ = max{|1 − ξG 1 |, |1 − ξG n−1|}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' 2 If G is d-regular, then ∆ = δ = d and ξ = λ/d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' By Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='1, τG ≥ δ(ξ + 1) ∆ξ − 2 = 1 ξ − 1 = d λ − 1, which coincides with the result of Brouwer’s toughness conjecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' This suggests that Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='1 can be viewed as a slight generalization of Brouwer’s toughness conjecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Recently, Gu and Haemers [16] presented two lower bounds for the toughness of a graph by using Laplacian eigenvalues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='2 ([16]) Let G be a connected graph on n vertices with δG = δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Then τG ≥ µG 1 µG n−1 n(µG 1 − δ) (1) and τG ≥ µG n−1 µG 1 − µG n−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' (2) In the second part of this paper, we focus on giving a characterization of those graphs attaining the lower bounds of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='3 Let G be a connected graph of order n with δG = δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Then each equality in (1) and (2) holds if and only if G ∼= H ∨ (n − δ)K1, where 1 ≤ δ ≤ n − 2 and H is any graph of order δ with µH δ−1 ≥ 2δ − n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' According to (2) and Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='3, we obtain an upper bound for the algebraic connectivity of a graph in terms of the toughness and Laplacian spectral radius, and characterize the extremal graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='1 Let G be a connected graph on n vertices with Laplacian spectral radius µG 1 and toughness τG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Then µG n−1 ≤ τG τG + 1 µG 1 with equality if and only if G ∼= H ∨(n−δ)K1, where 1 ≤ δ ≤ n−2 and H is any graph of order δ with µH δ−1 ≥ 2δ − n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Preliminaries In this section, we review some basic lemmas for latter use.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='1 ([5, 15]) Let n1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' , np be positive integers such that �p i=1 ni ≤ 2p − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Then for every integer ℓ with 0 ≤ ℓ ≤ �p i=1 ni, there exists some I ⊂ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' , p} such that � i∈I ni = ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' 3 Recall that νS(S) = � v∈S dv denotes the volume of S (S ⊆ VG) in G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='2 (Irregular Expander Mixing Lemma, [7]) Let G be a graph on n vertices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' For any two subsets X and Y of V = VG, we have ����eX,Y − νXνY νV ���� ≤ ξ · � νXνY � 1 − νX νV � � 1 − νY νV � , where ξ = max{|1 − ξG 1 |, |1 − ξG n−1|}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' In particular, ����2eX − ν2 X νV ���� ≤ ξ · νX � 1 − νX νV � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Let G be a graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' An independent set of G is a set of vertices which are pairwise non-adjacent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' The independent number αG is the maximum cardinality among all independent sets of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' The following three lemmas provide different kinds of upper bounds for αG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='3 ([21], Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='2) Let G be a graph on n vertices with ∆G = ∆ and δG = δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Then αG ≤ n∆ ∆ + δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='4 Let G be a graph on n vertices and m edges with δG = δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Then αG ≤ 2mξ δ(ξ + 1), where ξ = max{|1 − ξG 1 |, |1 − ξG n−1|}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Let I be a maximum independent set of G, that is, |I| = αG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Then eI = 0, and by Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='2, ν2 I νV ≤ ξ · νI � 1 − νI νV � , which implies that νI ≤ ξ ξ + 1 · νV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Combining this with νI ≥ δ|I| = δαG and νV = 2m yields that |I| ≤ 2mξ δ(ξ + 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' The result follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' □ 4 Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='1 It is worth mentioning that Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='4 can be also deduced from the main result of [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='5 ([13, 20]) Let G be a graph on n vertices with at least one edge and δG = δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Then αG ≤ n(µG 1 − δ) µG 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' (3) Furthermore, if I is an independent set of G such that the equality in (3) holds, then the bipartite subgraph G1 of G induced by those edges between I and VG \\I is (δ, µG 1 −δ)- semiregular, that is, each vertex of I has degree δ and each vertex of VG \\ I has degree µG 1 − δ in G1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' The vertex connectivity κG of a non-complete graph G is the minimum cardinality of S (S ⊂ VG) such that G − S is disconnected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Clearly, κG ≤ δG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' A well-known result of Fiedler [12] states that each non-complete connected graph G of order n satisfies µG n−1 ≤ κG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' In [19], Kirkland, Molitierno, Neumann and Shader characterized the structure of the graphs satisfying µG n−1 = κG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' From their proof, we can deduce the following result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='6 ([19], Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='1) Let G be a non-complete connected graph on n ver- tices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' If µG n−1 = κG = κ, then for any vertex cut set S of size κ, we have G = G[S] ∨ (G − S) and µG[S] κ−1 ≥ 2κ − n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Conversely, if G is of the form G1 ∨ G2, where G1 is a graph on κ vertices with µG1 κ−1 ≥ 2κ − n and G2 is a disconnected graph on n − κ vertices, then µG n−1 = κG = κ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='7 ([11], Theorem 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='9) Let G be a graph of order n and H be a graph of order n′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Then the Laplacian eigenvalues of G ∨ H are n + n′, µG 1 + n′, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' , µG n−1 + n′, n + µH 1 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' , n + µH n′−1, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='8 ([16, 17]) Let G be a graph of order n, and let S be a vertex cut set of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Suppose that VG \\ S = X ∪ Y with X ∩ Y = ∅ and |X| ≤ |Y |.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Then |X| ≤ µG 1 − µG n−1 2µG 1 n and |S| ≥ 2µG n−1 µG 1 − µG n−1 |X|, where each equality holds only if |X| = |Y |.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Proof of Theorems 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='1 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='3 Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' As τKn = ∞ by definition, we can assume that G ̸∼= Kn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Let S be a vertex cut set of G such that τG = |S|/ωG−S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Let τ = τG, ω = ωG−S and U = VG−S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' 5 Then ω ≥ 2, |S| = τω ≤ n − 2 and |U| = n − τω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Clearly, ω ≤ eS,U ≤ |S| · ∆ = τω · ∆, we have τ ≥ 1 ∆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Also, by taking exactly one vertex from each component of G − S, we obtain an inde- pendent set of size ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Then, by Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='3, ω ≤ αG ≤ n∆ ∆ + δ, which gives that τ = |S| ω ≥ 1 ω ≥ ∆ + δ n∆ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Thus it remains to prove that τ ≥ δ(ξ + 1) ∆ξ − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' If ξ ≥ δ 2∆ − δ, then δ(ξ + 1) ∆ξ ≤ 2 and there is nothing to prove.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' In what follows, we always assume that ξ < δ 2∆ − δ, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=', δ(ξ + 1) ∆ξ > 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' By Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='4, ω ≤ αG ≤ 2mξ δ(ξ + 1) ≤ n∆ξ δ(ξ + 1) < n 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' (4) If |U| ≤ 2n∆ξ δ(ξ + 1), then from (4) we obtain τ = n − |U| ω ≥ � n − 2n∆ξ δ(ξ + 1) � δ(ξ + 1) n∆ξ = δ(ξ + 1) ∆ξ − 2, as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Now suppose |U| > 2n∆ξ δ(ξ + 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Then it follows from (4) that |U| ≥ 2ω + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' (5) Let U1, U2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' , Uω (|U1| ≤ |U2| ≤ · · · ≤ |Uω|) be the sets of vertices of the connected components of G − S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' The following discussion is divided into two cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Case 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' �ω−1 i=1 |Ui| = ω − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' In this situation, each Ui (1 ≤ i ≤ ω−1) contains only one vertex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Let W = ∪ω−1 i=1 Ui.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Then |W| = ω − 1 and eW,U = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' By Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='2, νWνU νV ≤ ξ · � νWνU � 1 − νW νV � � 1 − νU νV � ≤ ξ · � νWνU � 1 − νU νV � , 6 which leads to νWνU νV · ξ2 ≤ νV − νU = νS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' (6) Note that νW ≥ δ|W|, νU ≥ δ|U|, νV ≤ ∆n and νS ≤ ∆|S| = ∆τω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' According to (6), we obtain τ ≥ δ2|W||U| n∆2ξ2ω = ω − 1 ω δ2|U| n∆2ξ2 = � 1 − 1 ω � δ2|U| n∆2ξ2 ≥ δ2|U| 2n∆2ξ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Combining this with |U| > 2n∆ξ δ(ξ + 1) yields that τ > δ2 2n∆2ξ2 · 2n∆ξ δ(ξ + 1) = δ ∆ �1 ξ − 1 ξ + 1 � ≥ δ ∆ �1 ξ − 1 � ≥ δ ∆ �1 ξ − �2∆ δ − 1 �� = δ(ξ + 1) ∆ξ − 2, as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Case 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' �ω−1 i=1 |Ui| ≥ ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' By using the same method as in [15, Claim 2], we can obtain the following claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' For the purpose of review, we write the proof again.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Claim 1 There exists some I ⊂ [ω] = {1, 2, · · · , ω} such that RI = ∪i∈IUi and TI = U \\ RI = ∪i∈[ω]\\IUi satisfy eRI,TI = 0 and |RI|, |TI| ≥ ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Proof of Claim 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' We assert that |Uω| ≥ 3, since otherwise we have |U| ≤ 2ω, contrary to (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Also, if |Uω| ≥ ω then we can take I = {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' , ω − 1}, and the result follows immediately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Thus it remains to consider that 3 ≤ |Uω| ≤ ω−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Let ℓ = ω−|Uω|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Then 1 ≤ ℓ ≤ ω−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' If �ω−1 i=1 |Ui| ≤ 2ω−3, by Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='1, there exists some I1 ⊂ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' , ω−1} such that � i∈I1 |Ui| = ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Take I = I1 ∪ {ω}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Then we see that |RI| = ℓ + |Uω| = ω, |TI| = |U| −|RI| ≥ ω + 1 by (5), and eRI,TI = 0, as required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' If �ω−1 i=1 |Ui| > 2ω −3, let U′ i be a nonempty subset of Ui (i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' , ω − 1) such that �ω−1 i=1 |U′ i| = 2ω − 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Again by Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='1, there exists some I1 ⊂ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' , ω −1} such that � i∈I1 |U′ i| = ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Let I = I1 ∪{ω}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Then we see that |RI| = � i∈I1 |Ui| + |Uω| ≥ � i∈I1 |U′ i| + |Uω| = ℓ + |Uω| = ω, |TI| = � i∈[ω]\\I |Ui| ≥ � i∈[ω]\\I |U′ i| = 2ω −3 −ℓ ≥ 2ω −3 −(ω −3) = ω, and eRI,TI = 0, as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' □ Let I be the subset of [ω] guaranteed by Claim 1, and let R = RI and T = TI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Since eR,T = 0, by Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='2, we have νRνT νV ≤ ξ · � νRνT � 1 − νR νV � � 1 − νT νV � , 7 or equivalently, νR νT ≤ ξ2(νV − νR) (νV − νT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' (7) Without loss of generality, suppose that νR ≤ νT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Then (7) implies that ν2 R ≤ ξ2(νV − νR)2, that is, νR ≤ ξ(νV − νR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Therefore, νR ≤ ξ ξ + 1νV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' (8) Note that νT = νV − νS − νR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Again by (7), νR(νV − νS − νR) ≤ ξ2(νV − νR)(νS + νR), which gives that νRνV ≤ (ξ2νV + (1 − ξ2)νR)(νS + νR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' (9) By (8), we see that (1 − ξ2)νR ≤ ξ(1 − ξ)νV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Then from (9) we obtain νRνV ≤ ξ νV (νS + νR), which implies that νS ≥ �1 ξ − 1 � νR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Combining this with νS ≤ ∆|S| and νR ≥ δ|R| yields that τω = |S| ≥ �1 ξ − 1 � δ ∆|R|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Hence, τ ≥ �1 ξ − 1 � δ ∆ · |R| ω ≥ �1 ξ − 1 � δ ∆ ≥ �1 ξ − �2∆ δ − 1 �� δ ∆ = δ(ξ + 1) ∆ξ − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Therefore, for all situations, we obtain τ ≥ δ(ξ + 1) ∆ξ − 2, and the result follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' □ We now prove Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' 8 Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Let S be a vertex cut set of G such that τG = |S|/ωG−S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Let τ = τG, ω = ωG−S and κ = κG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' If the equality in (1) holds, according to the proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='2 in [16], we have |S| = κ = µG n−1 and ω = αG = n(µG 1 − δ)/µG 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Since µG n−1 = κ, by Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='6, G is of the form G[S] ∨ (G − S), where µG[S] κ−1 ≥ 2κ − n and 1 ≤ κ ≤ n − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Then µG 1 = n by Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Also, by taking exactly one vertex from each component of G − S, we obtain an independent set I of size ω = αG = n(µG 1 − δ)/µG 1 = n − δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Then, by Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='5, the edges between I and ¯I = VG \\I induce a (δ, n−δ)-semiregular bipartite graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Considering that S ⊂ ¯I and ω ≥ 2, we claim that all components of G − S are singletons and δ = |S| = κ = n − ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Thus G can be written as H ∨ (n − δ)K1, where H = G[S] has order δ (1 ≤ δ ≤ n − 2) and µH δ−1 ≥ 2δ − n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Conversely, suppose that G ∼= H ∨ (n − δ)K1 for some graph H of order δ (1 ≤ δ ≤ n − 2) with µH δ−1 ≥ 2δ − n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Then δG = δ, and it is easy to verify that µG n−1 = δ = κG, µG 1 = n and τG = δ n − δ = µG 1 µG n−1 n(µG 1 − δ), as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Now assume that the equality in (2) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' We claim that all components of G − S must be singletons, that is, n − |S| = ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' In fact, if n − |S| ≥ ω + 1, according to the proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='2 in [16], we see that the components of G − S can be partitioned into two disjoint sets X and Y such that |Y | ≥ |X| ≥ ω/2, and the equality in (2) implies that |X| = ω/2 and |S| = 2µG n−1/(µG 1 − µG n−1) · |X|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Then, by Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='8, we must have |Y | = |X|, and so n − |S| = |X| + |Y | = ω, a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Therefore, τG = µG n−1 µG 1 − µG n−1 = |S| ω = n − ω ω , with gives that ω = n(µG 1 − µG n−1) µG 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' (10) Also, by Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='5, ω ≤ αG ≤ n(µG 1 − δ) µG 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' (11) Combining (10) and (11), we obtain µG n−1 ≥ δ ≥ κ, and so µG n−1 = δ = κ because we have known that µG n−1 ≤ κ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' By Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='6, G must be the join of two graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Then µG 1 = n, and |S| = n − ω = κ = δ by (10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Thus, again by Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='6, G is of the form H ∨ (n − δ)K1, where H = G[S] has order δ (1 ≤ δ ≤ n − 2) and µH δ−1 ≥ 2δ − n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Conversely, if G ∼= H ∨ (n − δ)K1 for some graph H of order δ (1 ≤ δ ≤ n − 2) with µH δ−1 ≥ 2δ − n, then δG = δ, µG n−1 = δ = κG, µG 1 = n, and τG = δ n − δ = µG n−1 µG 1 − µG n−1 , 9 as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' □ Author Contributions Conceptualization, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=', K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' investigation, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=', K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' writing – original draft preparation, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=', K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' writing – review and editing, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=', K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Declaration of competing interest The authors declared that they have no conflicts of interest to this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Acknowledgements The authors are much grateful to two anonymous referees for their valuable com- ments on our paper, which have considerably improved the presentation of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Huang is supported by the National Natural Science Foundation of China (Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' 11901540).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Das is supported by National Research Foundation funded by the Korean government (Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' 2021R1F1A1050646).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Zhu is supported by the Undergraduate Training Program on Innovation and Entrepreneurship (Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' X202110251335).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' References [1] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Alon, Tough Ramsey graphs without short cycles, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Algebraic Combin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' 4 (1995) 189–195.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' [2] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Bauer, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Broersma, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Schmeichel, Toughness of graphs – a survey, Graphs Combin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' 22 (2006) 1–35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' [3] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Brouwer, Toughness and spectrum of a graph, Linear Algebra Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' 226/228 (1995) 267–271.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' [4] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Brouwer, Spectrum and connectivity of graphs, CWI Quarterly 9 (1996) 37–40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' [5] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Brouwer, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Haemers, Eigenvalues and perfect matchings, Linear Algebra Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' 395 (2005) 155–162.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' [6] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Chung, Spectral Graph Theory, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' 92 of CBMS Regional Conference Series in Mathematics, AMS Bookstore, 1997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' 10 [7] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Chung, Discrete Isoperimetric Inequalities, in: A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Grigor’yan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Yau (Eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' ), Surveys in Differential Geometry: Eigenvalues of Laplacians and Other Geometric Operators, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' IX, International Press, 2004, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' 53–82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' [8] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Chv´atal, Tough graphs and hamiltonian circuits, Discrete Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' 5 (1973) 215– 228.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' [9] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Cioab˘a, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Gu, Connectivity, toughness, spanning trees of bounded degrees, and spectrum of regular graphs, Czechoslovak Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' 66 (2016) 913–924.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' [10] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Cioab˘a, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Wong, The spectrum and toughness of regular graphs, Discrete Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' 176 (2014) 43–52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' [11] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Cvetkovi´c, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Rowlinson, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Simi´c, An Introduction to the Theory of Graph Spectra, London Mathematical Society Student Texts 75, Cambridge Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Press, Cambridge, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' [12] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Fiedler, Algebraic Connectivity of Graphs, Czechoslovak Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' 23 (1973) 298–305.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' [13] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Godsil, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Newman, Eigenvalue bounds for independent sets, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Combin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Theory Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' B 98 (2008) 721–734.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' [14] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Gu, Toughness in pseudo-random graphs, European J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Combin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' 92 (2021) 103255.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' [15] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Gu, A proof of Brouwer’s toughness conjecture, SIAM J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Discrete Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' 35(2) (2021) 948–952.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' [16] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Gu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Haemers, Graph toughness from Laplacian eigenvalues, Algebraic Combin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' 5(1) (2022) 53–61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' [17] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Gu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Liu, A tight lower bound on the matching number of graphs via Lapla- cian eigenvalues, European J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Combin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' 101 (2022) 103468.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' [18] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Harant, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Richter, A new eigenvalue bound for independent sets, Discrete Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' 338 (10) (2015) 1763–1765.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' [19] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Kirkland, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Molitierno, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Neumann, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Shader, On graphs with equal algebraic and vertex connectivity, Linear Algebra Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' 341 (2002) 45–56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' [20] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Lu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Liu, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Tian, Laplacian spectral bounds for clique and independence numbers of graphs, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Combin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Theory Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' B 97 (2007) 726–732.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' 11 [21] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' O, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Shi, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' Taoqiu, Sharp upper bounds on the k-independence number in graphs with given minimum and maximum degree, Graphs Combin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' 37 (2021) 393–408.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
+page_content=' 12' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/e9E1T4oBgHgl3EQfLwOl/content/2301.02981v1.pdf'}
diff --git a/edFQT4oBgHgl3EQfkDbq/content/2301.13357v1.pdf b/edFQT4oBgHgl3EQfkDbq/content/2301.13357v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..510ceaa9ce5839845b1e097ba5b17555e07a3069
--- /dev/null
+++ b/edFQT4oBgHgl3EQfkDbq/content/2301.13357v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:0c87494eae3ab7a07eba76d437c6011343d361166bfe01238c3550e51ef5e7ba
+size 221484
diff --git a/edFQT4oBgHgl3EQfkDbq/vector_store/index.pkl b/edFQT4oBgHgl3EQfkDbq/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..1c0904b30ebea466c218211571ad98b225452ff1
--- /dev/null
+++ b/edFQT4oBgHgl3EQfkDbq/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f9697cb5556e295632664b23b7e90785e3cdc81090de94a4063d8fd21a3468ff
+size 84881
diff --git a/ftE4T4oBgHgl3EQfRQzA/vector_store/index.faiss b/ftE4T4oBgHgl3EQfRQzA/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..12cd24965baa5398f064d3d8c5466260dd490084
--- /dev/null
+++ b/ftE4T4oBgHgl3EQfRQzA/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:20ae7b5adebddb3efe1c4283aaa970c4ebd263750a6d87060aa0f4328d351a5a
+size 3276845
diff --git a/g9E0T4oBgHgl3EQfpQE0/content/tmp_files/2301.02536v1.pdf.txt b/g9E0T4oBgHgl3EQfpQE0/content/tmp_files/2301.02536v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..1f649b0eb691266c7d09e23a284513bf6bed521c
--- /dev/null
+++ b/g9E0T4oBgHgl3EQfpQE0/content/tmp_files/2301.02536v1.pdf.txt
@@ -0,0 +1,1804 @@
+arXiv:2301.02536v1 [math.DS] 6 Jan 2023
+Spectra based on
+Bohl exponents and Bohl dichotomy
+for nonautonomous difference equations
+Adam Czornik1, Konrad Kitzing2, and Stefan Siegmund2
+1Faculty of Automatic Control, Electronics and Computer Science,
+Silesian University of Technology, Gliwice, Poland
+2Institute of Analysis, Faculty of Mathematics, TU Dresden,
+Germany
+January 9, 2023
+Abstract
+For nonautonomous linear difference equations with bounded coeffi-
+cients on N which have a bounded inverse, we introduce two different no-
+tions of spectra and discuss their relation to the well-known exponential
+dichotomy spectrum. The first new spectral notion is called Bohl spec-
+trum and is based on an extended notion of the concept of Bohl exponents.
+The second new spectral notion is called Bohl dichotomy spectrum and
+is based on a relaxed version of exponential dichotomy called Bohl di-
+chotomy. We prove spectral theorems and show that the Bohl dichotomy
+spectrum is the closure of the Bohl spectrum and also a subset of the
+exponential dichotomy spectrum. We discuss the spectra of upper trian-
+gular systems and how they relate to the spectra of their diagonal entries.
+An example illustrates the subtle differences between the different notions
+of spectra.
+1
+Introduction
+Consider the system
+x(n + 1) = A(n)x(n),
+n ∈ N
+(1.1)
+with A(n) in the set GLd(R) of invertible d × d matrices for n ∈ N = {0, 1, . . .}.
+We denote the transition matrix of system (1.1) by ΦA(n, m), n, m ∈ N, i.e.
+ΦA(n, m) =
+
+
+
+
+
+A(n − 1) · · · A(m)
+for n > m,
+Id
+for n = m,
+Φ−1
+A (m, n)
+for n < m,
+1
+
+where Id denotes the identity matrix in Rd×d. Any solution (x(n))n∈N of (1.1)
+satisfies
+x(n) = ΦA(n, m)x(m),
+n, m ∈ N.
+For every k ∈ N and xk ∈ Rd the unique solution of (1.1) which satisfies the
+initial condition x(k) = xk is denoted by x(·, k, xk) and for short by x(·, x0) if
+k = 0. In particular,
+x(n, x0) = ΦA(n, 0)x0,
+n ∈ N.
+Throughout the paper we assume that A = (A(n))n∈N and A−1 := (A(n)−1)n∈N
+are bounded, i.e.
+A ∈ LLya(N, Rd×d) := {B ∈ L∞(N, Rd×d) :
+∀n ∈ N : B(n) ∈ GLd(R) ∧ B−1 ∈ L∞(N, Rd×d)}
+is a so-called Lyapunov sequence, where L∞(N, Rd×d) denotes the Banach space
+of bounded sequences B = (B(k))k∈N in Rd×d with norm ∥B∥∞ = supk∈N ∥B(k)∥
+and an arbitrary matrix norm ∥ · ∥ on Rd×d, see also Remark 4.
+A well-studied notion of hyperbolicity for system (1.1) is exponential dichotomy.
+Definition 1 (Exponential dichotomy). System (1.1) has an exponential di-
+chotomy (ED) if there exist subspaces L1, L2 ⊆ Rd with Rd = L1 ⊕ L2, α > 0
+and K > 0 such that
+∥x(n, x0)∥ ≤ Ke−α(n−m)∥x(m, x0)∥,
+x0 ∈ L1, n ≥ m,
+(1.2)
+∥x(n, x0)∥ ≥ K−1eα(n−m)∥x(m, x0)∥,
+x0 ∈ L2, n ≥ m.
+(1.3)
+Remark 2 (Alternative representation of exponential dichotomy). If P ∈ Rd×d
+is a projection with im P = L1 and ker P = L2 then (1.2), (1.3) can be written
+equivalently as
+∥ΦA(n, 0)PΦA(0, m)∥ ≤ Ke−α(n−m),
+n ≥ m,
+∥ΦA(n, 0)(I − P)ΦA(0, m)∥ ≤ Ke−α(n−m),
+m ≥ n,
+which is more commonly found in the literature on exponential dichotomy (see
+e.g. [1,2,13,15] and the references therein).
+Rearranging and applying the logarithm, (1.2) and (1.3) are equivalent to
+1
+n − m ln ∥x(n, x0)∥
+∥x(m, x0)∥ ≤ ln K
+n − m − α,
+x0 ∈ L1 \ {0}, n > m,
+1
+n − m ln ∥x(n, x0)∥
+∥x(m, x0)∥ ≥ ln K−1
+n − m + α,
+x0 ∈ L2 \ {0}, n > m.
+These estimates motivate to define the upper Bohl exponent and the lower Bohl
+exponent on a subspace L ⊆ Rd, L ̸= {0}, by
+βA(L) := inf
+N∈N
+sup
+n−m>N
+sup
+�
+1
+n − m ln ∥x(n, x0)∥
+∥x(m, x0)∥ : x0 ∈ L \ {0}
+�
+,
+(1.4)
+2
+
+βA(L) := sup
+N∈N
+inf
+n−m>N inf
+�
+1
+n − m ln ∥x(n, x0)∥
+∥x(m, x0)∥ : x0 ∈ L \ {0}
+�
+,
+(1.5)
+and βA({0}) := −∞, βA({0}) := +∞. In Section 2 we study these Bohl ex-
+ponents and their properties as a preparation to define the new notion of Bohl
+spectrum for equation (1.1) based on Bohl exponents
+ΣB(A) :=
+�
+L⊆Rd
+dim L=1
+�
+βA(L), βA(L)
+�
+in Section 3. The main result of Section 3 is the Bohl Spectral Theorem 13
+which states that the Bohl spectrum is the non-empty disjoint union of at most
+d bounded intervals with a corresponding filtration of subspaces consisting of
+initial values of solutions with corresponding growth rates. Section 4 is devoted
+to a new notion of spectrum based on Bohl dichotomy.
+Definition 3 (Bohl dichotomy). System (1.1) has a Bohl dichotomy (BD) if
+there exist subspaces L1, L2 ⊆ Rd with Rd = L1 ⊕ L2, α > 0 and functions
+C1, C2 : Rd → (0, ∞) such that
+∥x(n, x0)∥ ≤ C1(x0)e−α(n−m)∥x(m, x0)∥,
+x0 ∈ L1, n ≥ m,
+(1.6)
+∥x(n, x0)∥ ≥ C2(x0)eα(n−m)∥x(m, x0)∥,
+x0 ∈ L2, n ≥ m.
+(1.7)
+It is a hyperbolicity notion for (1.1) which is similar to exponential dichotomy
+but weaker in the sense that the constants C1, C2 in (1.6), (1.7) are allowed to
+depend on the solution x(·, x0) parametrized by x0 in L1 and L2, respectively.
+The main result of Section 4 is the Bohl Dichotomy Spectral Theorem 20 which
+states that the new notion of Bohl dichotomy spectrum
+ΣBD(A) :=
+�
+γ ∈ R : x(n + 1) = e−γA(n)x(n) has no Bohl dichotomy
+�
+is the non-empty disjoint union of at most d compact intervals with a corre-
+sponding filtration of subspaces consisting of initial values of solutions with
+corresponding growth rates. In Section 5 the new notions of Bohl spectrum
+and Bohl dichotomy spectrum are compared with each other and also with the
+well-known exponential dichotomy spectrum
+ΣED(A) :=
+�
+γ ∈ R : x(n + 1) = e−γA(n)x(n) has no exponential dichotomy
+�
+.
+In case the linear system (1.1) is the linearization of a nonlinear difference equa-
+tion x(n + 1) = f(n, x(n)) along a solution x∗, i.e. A(n) := ∂f
+∂x(n, x∗(n)), then
+the stability properties of x∗ are related to the spectral properties of its lin-
+earization (1.1). This problem and the related theorem of linearized asymptotic
+stability will be the topic of further research.
+3
+
+2
+Bohl exponents
+A reader who is experienced with characteristic numbers like the Bohl exponents
+βA(x0) := inf
+N∈N
+sup
+n−m>N
+1
+n − m ln ∥x(n, x0)∥
+∥x(m, x0)∥,
+(2.1)
+βA(x0) := sup
+N∈N
+inf
+n−m>N
+1
+n − m ln ∥x(n, x0)∥
+∥x(m, x0)∥,
+(2.2)
+for x0 ∈ Rd \ {0}, may also be aware of notational and technical challenges
+when it comes to comparing the existing literature (see also Remark 8). The
+characteristic numbers are often written as a limit superior and limit inferior
+(see [9] for a discussion in the continuous time case), respectively, for n−m → ∞
+βA(x0) = lim sup
+n−m→∞
+1
+n−m ln ∥x(n,x0)∥
+∥x(m,x0)∥
+and
+βA(x0) = lim inf
+n−m→∞
+1
+n−m ln ∥x(n,x0)∥
+∥x(m,x0)∥.
+Notationally this can be either accepted as an abbreviation of (2.1) and (2.2),
+or it can be understood as limit superior and limit inferior [12, p. 217]
+lim sup
+(n,m)∈D
+λ(n, m) :=
+inf
+(n0,m0)∈D sup{λ(n, m) : (n, m) ≥ (n0, m0)}
+lim inf
+(n,m)∈D λ(n, m) :=
+sup
+(n0,m0)∈D
+inf{λ(n, m) : (n, m) ≥ (n0, m0)}
+of the real-valued net
+λ(n, m) :=
+1
+n − m ln ∥x(n, x0)∥
+∥x(m, x0)∥,
+(n, m) ∈ D
+on the directed set (D, ≤) [12, Definition 2.1.8] with
+D := {(n, m) ∈ N2 : n > m}
+and preorder ≤ on D
+(n0, m0) ≤ (n, m)
+:⇔
+n0 − m0 ≤ n − m.
+(2.3)
+This can be seen e.g. for βA(x0) by using (2.1) and rewriting
+βA(x0) = inf
+N∈N sup{λ(n, m) : n − m > N}
+=
+inf
+(n0,m0)∈D sup{λ(n, m) : n − m ≥ n0 − m0}
+= lim sup
+(n,m)∈D
+λ(n, m).
+The concept of limit superior and limit inferior of a real-valued net also helps
+to understand an alternative representation of the Bohl exponent which also
+4
+
+can be found in the literature (see.g. the monograph [8, Chapter III] for the
+continuous time case) and where not only n − m → ∞ but also m → ∞
+βA(x0) = lim sup
+n−m→∞
+m→∞
+1
+n−m ln ∥x(n,x0)∥
+∥x(m,x0)∥
+and
+βA(x0) = lim inf
+n−m→∞
+m→∞
+1
+n−m ln ∥x(n,x0)∥
+∥x(m,x0)∥.
+If the preorder (2.3) is replaced by
+(n0, m0) ≤ (n, m)
+:⇔
+n0 − m0 ≤ n − m ∧ n0 − m0 ≤ m
+then
+lim sup
+(n,m)∈D
+λ(n, m) =
+inf
+(n0,m0)∈D sup{λ(n, m) : n − m ≥ n0 − m0, m ≥ n0 − m0}
+= inf
+N∈N sup{λ(n, m) : n − m > N, m > N} =: lim sup
+n−m→∞
+m→∞
+λ(n, m).
+The following lemma shows that the upper Bohl exponent βA(L) in (1.4) equals
+lim sup
+n−m→∞
+m→∞
+sup
+x0∈L\{0}
+1
+n − m ln ∥x(n, x0)∥
+∥x(m, x0)∥
+:= inf
+N∈N
+sup
+n−m>N
+m>N
+sup
+x0∈L\{0}
+1
+n − m ln ∥x(n, x0)∥
+∥x(m, x0)∥,
+and the lower Bohl exponent βA(L) in (1.5) equals
+lim inf
+n−m→∞
+m→∞
+inf
+x0∈L\{0}
+1
+n − m ln ∥x(n, x0)∥
+∥x(m, x0)∥
+:= sup
+N∈N
+inf
+n−m>N
+m>N
+inf
+x0∈L\{0}
+1
+n − m ln ∥x(n, x0)∥
+∥x(m, x0)∥,
+see also [9]. Also note, that above and in the definitons of the Bohl exponents
+(1.4) and (1.5) the supremum resp. infimum over N ∈ N can always replaced
+by limN→∞ by monotonicity. The fact that A is a Lyapunov sequence plays an
+important role as pointed out in the next remark.
+Remark 4 (Bounds on transition matrix of Lyapunov sequence). Let n, m ∈ N,
+x0 ∈ Rd. Without referencing, we use the estimates
+∥ΦA(n, m)∥ ≤ ∥A∥n−m
+∞
+for n ≥ m
+and
+∥ΦA(n, m)∥ ≤ ∥A−1∥n−m
+∞
+for n ≤ m.
+Moreover, ∥A∥∞ ≥ 1 or ∥A−1∥∞ ≥ 1, so that ln(max{∥A∥∞, ∥A−1∥∞}) ≥ 0.
+Lemma 5 (Alternative representations of Bohl exponents). Let L ⊆ Rd be a
+subspace. Then
+βA(L) = lim sup
+n−m→∞
+m→∞
+sup
+x0∈L\{0}
+1
+n − m ln ∥x(n, x0)∥
+∥x(m, x0)∥,
+βA(L) = lim inf
+n−m→∞
+m→∞
+inf
+x0∈L\{0}
+1
+n − m ln ∥x(n, x0)∥
+∥x(m, x0)∥.
+5
+
+Proof. For n, m ∈ N we set
+λ(n, m) :=
+sup
+x0∈L\{0}
+1
+n − m ln ∥x(n, x0)∥
+∥x(m, x0)∥.
+We prove the statement for βA(L). The statement for βA(L) follows similarly
+by studying λ(n, m) := infx0∈L\{0}
+1
+n−m ln ∥x(n,x0)∥
+∥x(m,x0)∥ instead of λ(n, m).
+For each N ∈ N it holds that
+sup
+n−m>N
+λ(n, m) ≥
+sup
+n−m>N
+m>N
+λ(n, m).
+Hence
+inf
+N∈N
+sup
+n−m>N
+λ(n, m) ≥ inf
+N∈N
+sup
+n−m>N
+m>N
+λ(n, m).
+For the converse inequality, we show that for C := max{∥A∥∞, ∥A−1∥∞} for
+each N ∈ N, N ≥ 3, and n, m ∈ N with n − m > N 2
+λ(n, m) ≤
+sup
+u−w>N
+w>N
+λ(u, w) + ln C
+N .
+(2.4)
+Then with (2.4) it follows for each N ∈ N, N ≥ 3, that
+sup
+n−m>N 2 λ(n, m) ≤
+sup
+n−m>N
+m>N
+λ(n, m) + ln C
+N .
+Then, letting N tend to infinity and noting that all limits exist
+inf
+N∈N
+sup
+n−m>N
+λ(n, m) = lim
+N→∞
+sup
+n−m>N 2 λ(n, m)
+≤ lim
+N→∞
+�
+sup
+n−m>N
+m>N
+λ(n, m) + ln C
+N
+�
+= inf
+N∈N
+sup
+n−m>N
+m>N
+λ(n, m),
+and the claim follows.
+To show (2.4), let N ∈ N, N ≥ 3, and n, m ∈ N with n − m > N 2. First we
+assume that m ≤ N. Then for x0 ∈ L \ {0}, noting that n − (N + 1) > N
+because N ≥ 3, we have
+1
+n − m ln ∥x(n, x0)∥
+∥x(m, x0)∥ =
+1
+n − m ln
+∥x(n, x0)∥
+∥ΦA(m, N + 1)x(N + 1, x0)∥
+≤
+1
+n − m ln ∥x(n, x0)∥ · ∥ΦA(N + 1, m)∥
+∥x(N + 1, x0)∥
+6
+
+≤
+1
+n − m ln
+∥x(n, x0)∥
+∥x(N + 1, x0)∥ +
+1
+n − m ln ∥ΦA(N + 1, m)∥
+≤
+1
+n − (N + 1) ln
+∥x(n, x0)∥
+∥x(N + 1, x0)∥ +
+1
+n − m ln CN−m
+≤ λ(n, N + 1) + N − m
+n − m ln C
+≤
+sup
+u−w>N
+w>N
+λ(u, w) + N
+N 2 ln C
+=
+sup
+u−w>N
+w>N
+λ(u, w) + ln C
+N ,
+i.e., in case m ≤ N, by taking the supremum over x0 ∈ L \ {0}
+λ(n, m) ≤
+sup
+u−w>N
+w>N
+λ(u, w) + ln C
+N .
+In case m > N, note that n − m > N 2 ≥ N, and hence also
+λ(n, m) ≤
+sup
+u−w>N
+w>N
+λ(u, w)
+≤
+sup
+u−w>N
+w>N
+λ(u, w) + ln C
+N ,
+proving (2.4).
+In the following lemma we formulate several properties of Bohl exponents which
+will be used throughout the paper.
+Lemma 6 (Properties of Bohl exponents). Let L, L1, L2 be subspaces of Rd.
+The Bohl exponents defined in (1.4) and (1.5) satisfy the following properties:
+(i) (Bounds) If L ̸= {0} then
+− ln ∥A−1∥∞ ≤ βA(L) ≤ βA(L) ≤ ln ∥A∥∞.
+Moreover, βA({0}) = ∞ and βA({0}) = −∞.
+(ii) (Monotonicity) If {0} ̸= L1 ⊆ L2 then
+[βA(L1), βA(L1)] ⊆ [βA(L2), βA(L2)].
+(iii) (Bohl exponents describe exponential growth on subspaces) Let L ⊆ Rd,
+L ̸= {0}, be a subspace and γ ∈ R. Then
+γ > βA(L)
+⇒
+∃K(γ) > 0 ∀x0 ∈ L ∀n > m :
+∥x(n, x0)∥ ≤ Keγ(n−m)∥x(m, x0)∥
+⇒
+γ ≥ βA(L)
+7
+
+and
+γ < βA(L)
+⇒
+∃K(γ) > 0 ∀x0 ∈ L ∀n > m :
+∥x(n, x0)∥ ≥ Keγ(n−m)∥x(m, x0)∥
+⇒
+γ ≤ βA(L).
+(iv) (Bohl exponents of one-dimensional subspaces) If dim L = 1 and x0 ∈ L\{0}
+then
+βA(x0) = βA(L)
+and
+βA(x0) = βA(L).
+In particular, for each α ∈ R \ {0}
+βA(x0) = βA(αx0)
+and
+βA(x0) = βA(αx0).
+(v) (Lower Bohl exponent for exponentially decaying solutions) Let x0, x1 ∈ Rd,
+with x0 + x1 ∈ Rd \ {0}. If βA(x0), βA(x1) < 0, then βA(x0 + x1) ≤ 0.
+(vi) (Lower Bohl exponent for exponentially decaying perturbations) Let x0 ∈
+Rd \ {0}, x1 ∈ Rd. Suppose that βA(x0) > 0 and βA(x1) < 0. Then
+βA(x0 + x1) ≥ βA(x0).
+Proof. (i) To show βA(L) ≤ βA(L), we compute
+βA(L) = lim
+N→∞
+inf
+n−m>N
+inf
+x0∈L\{0}
+1
+n − m ln ∥x(n, x0)∥
+∥x(m, x0)∥
+≤ lim
+N→∞
+sup
+n−m>N
+sup
+x0∈L\{0}
+1
+n − m ln ∥x(n, x0)∥
+∥x(m, x0)∥ = βA(L).
+To show βA(L) ≤ ln ∥A∥∞ and − ln ∥A−1∥∞ ≤ βA(L), we note that
+∥x(n, x0)∥
+∥x(m, x0)∥ = ∥ΦA(n, m)x(m, x0)∥
+∥x(m, x0)∥
+≤ ∥ΦA(n, m)∥ ≤ ∥A∥n−m
+∞
+,
+∥x(n, x0)∥
+∥x(m, x0)∥ =
+∥x(n, x0)∥
+∥ΦA(m, n)x(n, x0)∥ ≥ ∥ΦA(m, n)∥−1 ≥ ∥A−1∥−(n−m)
+∞
+.
+(ii) We prove that βA(L1) ≤ βA(L2). The estimate βA(L1) ≥ βA(L2) is shown
+similarly. Since L1 ⊆ L2, it follows for m, n ∈ N with n > m, that
+sup
+x0∈L1\{0}
+1
+n − m ln ∥x(n, x0)∥
+∥x(m, x0)∥ ≤
+sup
+x0∈L2\{0}
+1
+n − m ln ∥x(n, x0)∥
+∥x(m, x0)∥,
+and therefore for each N ∈ N
+sup
+n−m>N
+sup
+x0∈L1\{0}
+1
+n − m ln ∥x(n, x0)∥
+∥x(m, x0)∥ ≤
+sup
+n−m>N
+sup
+x0∈L2\{0}
+1
+n − m ln ∥x(n, x0)∥
+∥x(m, x0)∥,
+proving that
+β(L1) = lim
+N→∞
+sup
+n−m>N
+sup
+x0∈L1\{0}
+1
+n − m ln ∥x(n, x0)∥
+∥x(m, x0)∥
+8
+
+≤ lim
+N→∞
+sup
+n−m>N
+sup
+x0∈L2\{0}
+1
+n − m ln ∥x(n, x0)∥
+∥x(m, x0)∥ = β(L2).
+(iii) Let γ > βA(L). We show that
+∃K(γ) > 0 ∀x0 ∈ L ∀n > m : ∥x(n, x0)∥ ≤ Keγ(n−m)∥x(m, x0)∥
+(2.5)
+and then that (2.5) implies γ ≥ βA(L). The second statement follows similarly.
+Note that
+βA(L) = lim
+N→∞
+sup
+m,n∈N,
+n−m>N
+sup
+�
+1
+n − m ln
+�
+∥x(n, x0)∥
+∥x(m, x0)∥
+�
+: x0 ∈ L \ {0}
+�
+.
+Hence for ε := γ − βA(L) > 0, there is N ∈ N, such that
+sup
+m,n∈N,
+n−m>N
+sup
+�
+1
+n − m ln
+�
+∥x(n, x0)∥
+∥x(m, x0)∥
+�
+: x0 ∈ L \ {0}
+�
+− βA(L) ≤ ε.
+That is for m, n ∈ N, n − m > N and x0 ∈ L \ {0}
+1
+n − m ln ∥x(n, x0)∥
+∥x(m, x0)∥ ≤ ε + βA(L) = γ,
+respectively
+∥x(n, x0)∥ < eγ(n−m)∥x(m, x0)∥.
+Now let m, n ∈ N with 0 < n − m ≤ N. Let x0 ∈ L \ {0}. Using the estimates
+∥ΦA(m + N + 1, 0)x0∥ = ∥x(m + N + 1, x0)∥ ≤ eγ(N+1)∥x(m, x0)∥,
+∥A−1∥−(n−m)
+∞
+≤ max{1, ∥A−1∥N
+∞}
+and
+e−γ(n−m) ≤ max{1, e−γN},
+we get
+∥x(n, x0)∥ = ∥ΦA(n, m + N + 1)ΦA(m + N + 1, 0)x0∥
+≤ ∥A−1∥m+N+1−n
+∞
+eγ(N+1)∥x(m, x0)∥
+= ∥A−1∥N+1
+∞
+eγ(N+1)∥A−1∥−(n−m)
+∞
+e−γ(n−m)eγ(n−m)∥x(m, x0)∥
+≤ Keγ(n−m)∥x(m, x0)∥,
+with K := ∥A−1∥N+1
+∞
+eγ(N+1) max{1, ∥A−1∥N
+∞} max{1, e−γN}.
+Suppose now that there is K = K(γ) such that the estimate (2.5) holds. Then
+for x0 ∈ L \ {0}, it follows for n > m from inequality (2.5) that
+1
+n − m ln ∥x(n, x0)∥
+∥x(m, x0)∥ ≤
+K
+n − m + γ.
+9
+
+Hence for all N ∈ N, it holds that
+sup
+n−m>N
+sup
+x0∈L\{0}
+1
+n − m ln ∥x(n, x0)∥
+∥x(m, x0)∥ ≤ K
+N + γ.
+Letting N tend to infinity, acknowledging that all limits exist, it follows that
+βA(L) = lim
+N→∞
+sup
+n−m>N
+sup
+x0∈L\{0}
+1
+n − m ln ∥x(n, x0)∥
+∥x(m, x0)∥ ≤ lim
+N→∞
+�
+K
+N + γ
+�
+= γ.
+(iv) This follows from (1.4), (1.5), using the fact that x(·, αx0) = αx(·, x0).
+(v) The case if x0 = 0 or x1 = 0 is clear.
+Let x1, x2 ̸= 0.
+From (iii) we
+obtain lim
+n→∞ x(n, x0) =
+lim
+n→∞ x(n, x1) = 0. Hence lim
+n→∞ x(n, x0 + x1) = 0. If
+βA(x0 + x1) > 0, then (iii) would imply that lim
+n→∞ x(n, x0 + x1) = ∞. Hence
+βA(x0 + x1) ≤ 0.
+(vi) The case x1 = 0 is clear. Let x1 ̸= 0. Let γ > 0 with βA(x1) < −γ < 0. By
+(iii), there is K > 0, such that
+∥x(n, x1)∥ ≤ Ke−γ(n−m)∥x(m, x1)∥,
+n > m.
+Also by (iii), for �γ ∈ R with 0 < �γ < βA(x0) there is �K > 0 with
+∥x(n, x0)∥ ≥ �Ke�γ(n−m)∥x(m, x0)∥,
+n > m.
+Note that from the previous inequalities it follows that ∥x(n, x0)∥ resp. ∥x(n, x1)∥
+tends to infinity resp. zero. In particular, there is N ∈ N, such that
+�K∥x(n, x0)∥ − K∥x(n, x1)∥ ≥
+�K
+2 ∥x(n, x0)∥,
+n > N,
+∥x(n, x0 + x1)∥ ≤ ∥x(n, x0)∥ + ∥x(n, x1)∥ ≤ 2∥x(n, x0)∥,
+n > N.
+We compute for m, n ∈ N with m > N
+∥x(n, x0 + x1)∥ ≥ ∥x(n, x0)∥ − ∥x(n, x1)∥
+≥ �Ke�γ(n−m)∥x(m, x0)∥ − Ke−γ(n−m)∥x(m, x1)∥
+≥ e�γ(n−m)�
+�K∥x(m, x0)∥ − K∥x(m, x1)∥
+�
+≥ e�γ(n−m) �K
+2 ∥x(n, x0)∥
+≥
+�K
+4 e�γ(n−m)∥x(n, x0 + x1)∥.
+Rearranging the inequality and letting n−m and m tend to infinity using Lemma
+5, yields βA(x0 + x1) ≥ �γ. The fact that �γ ∈
+�
+0, βA(x0)
+�
+was chosen arbitrarily,
+yields βA(x0 + x1) ≥ 0.
+10
+
+The point of view of Bohl exponents as lim sup and lim inf of the net
+λ(n, m) =
+1
+n − m ln ∥x(n, x0)∥
+∥x(m, x0)∥,
+(n, m) ∈ D
+on the directed set (D, ≤) is also useful in reinterpreting the following lemma
+as the statement that every element of a Bohl interval [βA(x0), βA(x0)] is an
+accumulation point of the net and can be realized as a limit of a subnet.
+Lemma 7 (Bohl interval as limits of subsequences). Let x0 ∈ Rd \ {0}. Each
+element in [βA(x0), βA(x0)] can be realized as a limit, more precisely,
+[βA(x0), βA(x0)] =
+
+
+
+λ ∈ R : there exist (nk)k∈N, (mk)k∈N in N with
+nk − mk → ∞ and
+λ = limk→∞
+1
+nk−mk ln ∥x(nk,x0)∥
+∥x(mk,x0)∥
+
+
+
+=
+
+
+
+λ ∈ R : there exist (nk)k∈N, (mk)k∈N in N with
+nk − mk → ∞, mk → ∞ and
+λ = limk→∞
+1
+nk−mk ln ∥x(nk,x0)∥
+∥x(mk,x0)∥
+
+
+ .
+Proof. Let x0 ∈ Rd \ {0}. For n, m ∈ N with n > m we set
+λ(n, m) :=
+1
+n − m ln ∥x(n, x0)∥
+∥x(m, x0)∥,
+denote the second and third set in the equality of Lemma 7 by
+M2 :=
+
+
+
+λ ∈ R : there exist (nk)k∈N, (mk)k∈N in N with
+nk − mk → ∞ and
+λ = limk→∞ λ(nk, mk)
+
+
+ ,
+M3 :=
+
+
+
+λ ∈ R : there exist (nk)k∈N, (mk)k∈N in N with
+nk − mk → ∞, mk → ∞ and
+λ = limk→∞ λ(nk, mk)
+
+
+ ,
+and show that M3 ⊆ M2 ⊆ [βA(x0), βA(x0)] ⊆ M3.
+The first inclusion M3 ⊆ M2 is obvious.
+To show that M2 ⊆ [βA(x0), βA(x0)], let λ ∈ M2 and (nk)k∈N, (mk)k∈N be
+sequences in N with
+nk > mk,
+lim
+k→∞(nk − mk) = ∞
+and
+λ = lim
+k→∞ λ(nk, mk).
+For N ∈ N let kN ∈ N be such that nkN − mkN > N. Then
+βA(x0) = lim
+N→∞
+inf
+n−m>N λ(n, m)
+≤ lim
+N→∞ λ(nkN , mkN)
+11
+
+≤ lim
+N→∞
+sup
+n−m>N
+λ(n, m) = βA(x0).
+Since limN→∞ λ(nkN , mkN ) = λ, it follows that βA(x0) ≤ λ ≤ βA(x0).
+To show the last inequality [βA(x0), βA(x0)] ⊆ M3, let λ ∈
+�
+βA(x0), βA(x0)
+�
+.
+The case λ = βA(x0) resp. λ = βA(x0) is clear. Let λ ∈
+�
+βA(x0), βA(x0)
+�
+.
+Using the representation
+βA(x0) = lim
+N→∞
+inf
+n−m>N
+m>N
+λ(n, m),
+and the fact that λ > βA(x0), the sequences (mℓ)ℓ∈N, (nℓ)ℓ∈N,
+mℓ := min
+�
+q ∈ N | ∃p ∈ N : p − q ≥ ℓ ∧ q ≥ ℓ ∧ λ(p, q) < λ
+�
+,
+nℓ := min
+�
+p ∈ N | p − mℓ ≥ ℓ ∧ λ(p, mℓ) < λ
+�
+,
+are well-defined. Similarly the sequences ( �mℓ)ℓ∈N, (�nℓ)ℓ∈N,
+�mℓ := min
+�
+q ∈ N | ∃p ∈ N : p − q ≥ ℓ ∧ q ≥ ℓ ∧ λ(p, q) > λ
+�
+,
+�nℓ := min
+�
+p ∈ N | p − mℓ ≥ ℓ ∧ λ(p, mℓ) > λ
+�
+,
+are well-defined. It holds that
+mℓ, �mℓ ≥ ℓ
+and
+nℓ, �nℓ ≥ 2ℓ,
+ℓ ∈ N.
+We show that there exists no ℓ1 ∈ N such that
+mℓ = ℓ, nℓ = 2ℓ
+and
+�mℓ = ℓ, �nℓ = 2ℓ,
+ℓ ≥ ℓ1.
+Assume to the contrary that there exists such an ℓ1 ∈ N. Then
+λ(nℓ, mℓ) < λ
+and
+λ(�nℓ, �mℓ) > λ,
+ℓ ≥ ℓ1,
+which is a contradiction because nℓ = �nℓ and mℓ = �mℓ. As a consequence, there
+are four cases to consider:
+(i) There exists a subsequence (nℓk)k∈N of (nℓ)ℓ∈N with nℓk > 2ℓk, k ∈ N.
+(ii) There exists a subsequence (�nℓk)k∈N of (�nℓ)ℓ∈N with �nℓk > 2ℓk, k ∈ N.
+(iii) There exists a subsequence (mℓk)k∈N of (mℓ)ℓ∈N with mℓk > ℓk, k ∈ N.
+(iv) There exists a subsequence ( �mℓk)k∈N of ( �mℓ)ℓ∈N with �mℓk > ℓk, k ∈ N.
+We elaborate the details for case (i), the other cases can be discussed in a similar
+way. Since λ(nℓk, mℓk) < λ, it follows that
+lim sup
+k→∞
+λ(nℓk, mℓk) ≤ λ.
+We now show
+lim inf
+k→∞ λ(nℓk, mℓk) ≥ λ,
+12
+
+proving that limk→∞ λ(nℓk, mℓk) = λ. To this end, we use the definition of nℓk
+together with the fact that
+�
+nℓk − 1
+�
+− mℓk ≥ ℓk, k ∈ N, to conclude that
+λ(nℓk − 1, mℓk) ≥ λ.
+Then
+lim inf
+k→∞ λ(nℓk, mℓk) =
+= lim inf
+k→∞
+1
+nℓk − mℓk
+ln ∥x(nℓk, x0)∥
+∥x(mℓk, x0)∥
+= lim inf
+k→∞
+1
+nℓk − mℓk
+ln ∥A(nℓk − 1)−1∥ · ∥x(nℓk, x0)∥
+∥A(nℓk − 1)−1∥ · ∥x(mℓk, x0)∥
+≥ lim inf
+k→∞
+1
+nℓk − mℓk
+ln
+∥x(nℓk − 1, x0)∥
+∥A−1∥∞ · ∥x(mℓk, x0)∥
+= lim inf
+k→∞
+nℓk − 1 − mℓk
+nℓk − mℓk
+1
+nℓk − 1 − mℓk
+ln
+∥x(nℓk − 1, x0)∥
+∥A−1∥∞ · ∥x(mℓk, x0)∥
+= lim inf
+k→∞
+1
+nℓk − 1 − mℓk
+ln ∥x(nℓk − 1, x0)∥
+∥x(mℓk, x0)∥
+= lim inf
+k→∞ λ(nℓk − 1, mℓk) ≥ λ.
+We denote the subsequences (nℓk)k∈N, (mℓk)k∈N again by (nk)k∈N, (mk)k∈N,
+respectively, to conclude the proof.
+Remark 8 (Bohl exponents in the literature). Upper Bohl exponents for solu-
+tions and sets of solutions of linear differential equations where introduced by
+Bohl in his paper [7]. In the context of linear difference equations the concept
+and name of Bohl exponents appeared later, e.g. in [6], where the quantities
+κ+ (L) = lim
+j→∞
+�
+sup
+n∈N, x∈L\{0}
+�∥ΦA (n + j, 0) x∥
+∥ΦA (n, 0) x∥
+�1/j�
+and
+κ− (L) = lim
+j→∞
+�
+inf
+n∈N, x∈L\{0}
+�∥ΦA (n + j, 0) x∥
+∥ΦA (n, 0) x∥
+�1/j�
+,
+are introduced for a subspace L of Rd (see also the review [4]). They are related
+to the upper and lower Bohl exponents (1.4), (1.5) by
+ln κ+ (L) = βA (L) and ln κ− (L) = βA (L) .
+For L = Rd sometimes (see e.g. [10] and the references therein) a different
+notation is used for the Bohl exponents βA (L) and βA (L), respectively.
+Ω(A) = βA
+�
+Rd�
+and
+ω(A) = βA
+�
+Rd�
+are called e.g. general exponents [4] or singular exponents [11].
+13
+
+3
+Bohl spectrum
+We define a new notion of spectrum of (1.1) based on Bohl intervals formed by
+Bohl exponents and prove a spectral theorem.
+Definition 9 (Bohl spectrum). The Bohl spectrum of (1.1) is defined as
+ΣB(A) :=
+�
+x0∈Rd\{0}
+[βA(x0), βA(x0)].
+Its complement ̺B(A) := R \ ΣB(A) is called the resolvent of (1.1).
+Remark 10 (Bohl spectrum is bounded). By Lemma 6(i),
+− ln ∥A−1∥∞ ≤ βA(x0) ≤ βA(x0) ≤ ln ∥A∥∞
+for x0 ∈ Rd \ {0}. Hence ΣB(A) ⊆
+�
+− ln ∥A−1∥∞, ln ∥A∥∞
+�
+.
+To prepare the formulation and proof of the Bohl spectral theorem, we introduce
+a γ-dependent set of initial conditions with upper Bohl exponent less than γ.
+Conceptually this set corresponds to the sum of the generalized eigenspaces
+of a constant matrix A which correspond to eigenvalues with a modulus less
+than γ. In the nonautonomous case (1.1) such a set needs to be characterized
+dynamically by prescribing the growth rates of solutions with initial values in
+that set.
+Definition 11 (γ-exponentially stable set Mγ). For γ ∈ R the set
+Mγ := {x0 ∈ Rd \ {0} : βA(x0) < γ} ∪ {0}
+is called γ-exponentially stable set of (1.1).
+That Mγ turns out to be a subspace for γ ∈ ̺B(A) and other important prop-
+erties of Mγ, is the content of the following lemma:
+Lemma 12 (Properties of Mγ).
+(i) (Monotonicity) Mγ is monotone
+Mγ1 ⊆ Mγ2,
+γ1 ≤ γ2,
+and eventually constant
+Mγ =
+�
+{0},
+for γ ∈ (−∞, − ln ∥A−1∥∞),
+Rd,
+for γ ∈ (ln ∥A∥∞, ∞).
+(3.1)
+(ii) (Mγ is a subspace on resolvent intervals)
+γ ∈ ̺B(A)
+⇒
+Mγ is a linear subspace of Rd.
+14
+
+(iii) (Mγ is constant on resolvent intervals) Let γ1, γ2 ∈ ̺B(A) with γ1 < γ2.
+Then exactly one of the following two alternatives holds and the statements in
+each alternative are equivalent:
+Alternative I
+Alternative II
+(A) [γ1, γ2] ⊆ ̺B(A).
+(A’) There exists ζ ∈ (γ1, γ2) ∩ ΣB(A).
+(B) Mγ1 = Mγ2.
+(B’) dim Mγ1 < dim Mγ2.
+Proof. (i) Follows with Remark 10.
+(ii) Let γ ∈ ̺B(A) and x0, x′
+0 ∈ Mγ, α, β ∈ R. We show αx0+βx′
+0 ∈ Mγ and only
+consider the case x0, x′
+0, αx0 +βx′
+0 ̸= 0. Since [βA(αx0 +βx′
+0), βA(αx0 +βx′
+0)] ⊆
+ΣB(A) and γ ∈ ̺B(A), it follows that
+γ < βA(αx0 + βx′
+0)
+or
+βA(αx0 + βx′
+0) < γ.
+Since x0, x′
+0 ∈ Mγ, βA(x0) < γ and βA(x′
+0) < γ, and hence
+max{βA(x0), βA(x′
+0)} < γ.
+Using the fact that span{x0}, span{x′
+0} ⊆ span{x0, x′
+0}⟩, Lemma 6(ii) implies
+that
+max
+�
+βA(x0), βA(x′
+0)
+�
+∈
+�
+βA(αx0 + βx′
+0), βA(αx0 + βx′
+0)
+�
+.
+Therefore βA(αx0 + βx′
+0) < γ, and thus we have αx0 + βx′
+0 ∈ Mγ.
+(iii) (A) ⇒ (B). That Mγ1 ⊆ Mγ2 holds by (i). Let x0 ∈ Mγ2 \ Mγ1, i.e.
+βA(x0) ≥ γ1
+and
+βA(x0) < γ2
+and consequently
+[βA(x0), βA(x0)] ∩ [γ1, γ2] ̸= ∅,
+contradicting [γ1, γ2] ⊆ ̺B(A).
+(B) ⇒ (A). Since γ2 ∈ ̺B(A),
+Mγ2 ∪ {x0 ∈ Rd \ {0} : γ2 < βA(x0)} = Rd.
+Using the assumption Mγ1 = Mγ2, it follows that
+βA(x0) < γ1
+or
+γ2 < βA(x0)
+for each x0 ∈ Rd \ {0}.
+As a consequence [γ1, γ2] ⊆ ̺B(A).
+(A′) ⇔ (B′). Obviously (A′) is the opposite of (A). Using (i) and (ii), it follows
+that (B′) is the opposite of (B).
+We are now in a position to formulate and prove the main result of this section.
+15
+
+Theorem 13 (Bohl Spectral Theorem). The Bohl spectrum ΣB(A) of system
+(1.1) is the nonempty disjoint union of at most d bounded intervals
+ΣB(A) = I1 ∪ · · · ∪ Iℓ,
+where ℓ ∈ {1, . . ., d}, sup Ii ≤ inf Ii+1 and [sup Ii, inf Ii+1] ∩ ̺B(A) ̸= ∅ for
+i ∈ {1, . . ., ℓ − 1} .
+Moreover, setting I0 = Iℓ+1 := ∅ and inf ∅ := +∞ and sup ∅ := −∞, there exists
+a corresponding filtration
+{0} = V0 ⊊ V1 ⊊ · · · ⊊ Vℓ = Rd
+defined for i ∈ {0, . . . , ℓ} and γ ∈ [sup Ii, inf Ii+1] ∩ ̺B(A) by
+Vi := {x0 ∈ Rd \ {0} : βA(x0) < γ} ∪ {0}.
+The definition of Vi does not depend on the choice of γ ∈ [sup Ii, inf Ii+1]∩̺B(A).
+Proof. Let d0 < d1 < · · · < dℓ be the elements of the set
+{dim(Mγ) : γ ∈ ̺B(A)}.
+It is clear that ℓ ≤ d. For i ∈ {0, ..., ℓ}, define
+Ji := {γ ∈ ̺B(A) : dim(Mγ) = di}
+and note that ̺B(A) = J0 ∪ · · · ∪ Jℓ, where the union is disjoint.
+We show that Ji is an interval. To this end let γ1 < γ2 be two elements of
+Ji. Since γ1, γ2 ∈ ̺B(A) and dim(Mγ1) = dim(Mγ2), Lemma 12(iii) applies and
+yields Alternative I, proving that [γ1, γ2] ⊆ Ji.
+Using (4.4), d0 = 0, dℓ = d, and (−∞, − ln a) ⊆ J0, (ln a, ∞) ⊆ Jℓ. Therefore
+the complement ΣB(A) of ̺B(A) = J0 ∪ · · · ∪ Jℓ is the disjoint union of ℓ ∈
+{1, . . ., d} bounded intervals I1, . . . , Iℓ with sup Ii ≤ inf Ii+1.
+Now [sup Ii, inf Ii+1] ∩ ̺B(A) = Ji ̸= ∅ for i ∈ {1, . . ., ℓ − 1}. Using Alter-
+native I of Lemma 12(iii), Vi := Mγi is well-defined for γ0 ∈ (−∞, inf I1),
+γi ∈ [sup Ii, inf Ii+1] ∩ ̺B(A) for i ∈ {1, . . ., ℓ − 1}, and γℓ ∈ (sup Iℓ, ∞) and
+satisfies {0} = V0 ⊊ V1 ⊊ · · · ⊊ Vℓ = Rd.
+4
+Bohl dichotomy spectrum
+In this section we introduce a new spectrum based on the notion of Bohl di-
+chotomy and prove a spectral theorem.
+Similarly as for the exponential di-
+chotomy spectrum one associates to system (1.1) a parametrized family of
+nonautonomous difference equations which are exponentially weighted versions
+of (1.1) by considering for γ ∈ R the γ-shifted system
+x(n + 1) = e−γA(n)x(n)
+(4.1)
+16
+
+Note that the transition matrix Φe−γA of (4.1) satisfies
+Φe−γA(n, m) = e−γ(n−m)ΦA(n, m)
+for n, m ∈ N.
+For convenience we denote the solution Φe−γA(n, 0)x0 of (4.1) by xγ(·, x0). Then
+xγ(n, x0) = e−γnx(n, x0)
+for n ∈ N
+with the solution x(·, x0) of (1.1).
+To introduce a spectral notion based on the Bohl dichotomy we discuss whether
+(4.1) admits a Bohl dichotomy, i.e. if there exist subspaces L1, L2 ⊆ Rd with
+Rd = L1 ⊕ L2, α > 0, and functions C1, C2 : Rd → (0, ∞) such that
+∥xγ(n, x0)∥ ≤ C1(x0)e−α(n−m)∥xγ(m, x0)∥,
+x0 ∈ L1, n ≥ m,
+(4.2)
+∥xγ(n, x0)∥ ≥ C2(x0)eα(n−m)∥xγ(m, x0)∥,
+x0 ∈ L2, n ≥ m.
+(4.3)
+Definition 14 (Bohl dichotomy spectrum). The Bohl dichotomy spectrum of
+(1.1) is defined as
+ΣBD(A) :=
+�
+γ ∈ R : x(n + 1) = e−γA(n)x(n) has no Bohl dichotomy
+�
+.
+Its complement ̺BD(A) := R \ ΣBD(A) is called the resolvent of (1.1).
+Remark 15 (Bohl dichotomy spectrum is bounded).
+ΣBD(A) ⊆
+�
+− ln ∥A−1∥∞, ln ∥A∥∞
+�
+.
+This follows from the fact that A ∈ LLya(N, Rd×d) is a Lyapunov sequence, and
+the following estimate for m, n ∈ N with n ≥ m and x0 ∈ Rd,
+∥xγ(n, x0)∥ = ∥e−γ(n−m)ΦA(n, m)e−γmΦA(m, 0)x0∥
+≤ e−γ(n−m)e(n−m) ln ∥A∥∞∥xγ(m, x0)∥
+proving that for γ > ln ∥A∥∞, the γ-shifted system (4.1) has a Bohl dichotomy
+with L1 = Rd and L2 = {0}. Similarly the estimate for m ≥ n
+∥xγ(m, x0)∥ = ∥eγ(n−m)ΦA(m, n)e−γnΦA(n, 0)x0∥
+≤ eγ(n−m)e(n−m) ln ∥A−1∥∞∥xγ(n, x0)∥.
+shows that for γ < − ln ∥A−1∥∞, system (4.1) has a Bohl dichotomy with L1 =
+{0} and L2 = Rd.
+Remark 16 (Bohl dichotomy resolvent is open). ̺BD(A) is open, since for any
+γ ∈ ̺BD(A) the estimates
+∥x(n, x0)∥ ≤ C1(x0)e(γ−α)(n−m)∥x(m, x0)∥,
+x0 ∈ L1, n ≥ m,
+∥x(n, x0)∥ ≥ C2(x0)e(γ+α)(n−m)∥x(m, x0)∥,
+x0 ∈ L2, n ≥ m,
+hold and for ε := α/2 and ζ ∈ (γ − ε, γ + ε), using the fact that ζ − ε > γ − α
+and ζ + ε < γ + α, they imply
+∥x(n, x0)∥ ≤ C1(x0)e(ζ−ε)(n−m)∥x(m, x0)∥,
+x0 ∈ L1, n ≥ m,
+∥x(n, x0)∥ ≥ C2(x0)e(ζ+ε)(n−m)∥x(m, x0)∥,
+x0 ∈ L2, n ≥ m.
+17
+
+Similarly as for the Bohl spectrum in Definition 11 in the last section, we intro-
+duce a family of sets of initial conditions of solutions with prescribed asymptotic
+behavior.
+Definition 17 (γ-attractive subset Sγ). For γ ∈ R the set
+Sγ := {x0 ∈ Rd : lim
+n→∞ xγ(n, x0) = 0}
+is called γ-attractive subset of (1.1).
+The sets Sγ and their properties will play a crucial role in the formulation and
+proof of the Bohl dichotomy spectral theorem below (cp. also Lemma 12).
+Lemma 18 (Properties of Sγ).
+(i) (Subspace) Sγ is a linear subspace of Rd for each γ ∈ R.
+(ii) (Bohl dichotomy space) Sγ is the Bohl dichotomy space L1 on resolvent
+intervals.
+γ ∈ ̺BD(A) ∧ x(n + 1) = e−γA(n)x(n)
+has a Bohl dichotomy on L1 ⊕ L2 = Rd
+�
+⇒
+L1 = Sγ.
+(iii) (Monotonicity) Sγ is monotone
+Sγ1 ⊆ Sγ2,
+γ1 ≤ γ2,
+and eventually constant
+Sγ =
+�
+{0},
+for γ ∈ (−∞, − ln ∥A−1∥∞),
+Rd,
+for γ ∈ (ln ∥A∥∞, ∞).
+(4.4)
+(iv) (Sγ is constant on resolvent intervals) Let γ1, γ2 ∈ ̺BD(A) with γ1 < γ2.
+Then exactly one of the following two alternatives holds and the statements in
+each alternative are equivalent:
+Alternative I
+Alternative II
+(A) [γ1, γ2] ⊆ ̺BD(A).
+(A’) There exists ζ ∈ (γ1, γ2) ∩ ΣBD(A).
+(B) Sγ1 = Sγ2.
+(B’) dim Sγ1 < dim Sγ2.
+Proof. (i) This follows from the fact that (1.1) is a linear equation.
+(ii) Suppose that γ ∈ ̺B(A) and system (4.1) has a Bohl dichotomy (4.2), (4.3),
+on a splitting L1 ⊕ L2 = Rd w.r.t. γ. The inclusion L1 ⊆ Sγ is clear. To show
+that also Sγ ⊆ L1, let x0 /∈ L1. We show that xγ(·, x0) is not a null-sequence.
+Let x0 = x1 + x2, with x1 ∈ L1 and x2 ∈ L2 \ {0}. Then by (4.3)
+∥xγ(n, x0)∥ = ∥xγ(n, x1) + xγ(n, x2)∥ ≥
+��∥xγ(n, x1)∥ − ∥xγ(n, x2)∥
+��
+≥
+��∥xγ(n, x1)∥ − C2(x2)eαn∥x2∥
+��.
+18
+
+The right-hand side tends to infinity, for n to infinity and the assertion follows.
+In particular, if (4.1) has a Bohl dichotomy on a splitting L1 ⊕ L2 = Rd then
+L1 is unique.
+(iii) This is a consequence of Remark 15 and (ii).
+(iv) (A) ⇒ (B). Assume that Sγ1 ̸= Sγ2 and define
+ζ0 := sup{ζ ∈ [γ1, γ2] : Sζ = Sγ1} ∈ ̺BD(A).
+By Remark 16 there exists ε > 0 such that Sζ = Sζ0 for ζ ∈ (ζ0 − ε, ζ0 + ε)
+which contradicts the definition of ζ0.
+(B) ⇒ (A). For γ1 ∈ ̺BD(A) the first dichotomy estimate
+∥x(n, x0)∥ ≤ C1(x0)e(γ1−α1)(n−m)∥x(m, x0)∥,
+x0 ∈ L1, n ≥ m,
+holds with α1 > 0 on L1, and by (ii) L1 = Sγ1. For γ2 ∈ ̺BD(A) the second
+dichotomy estimate
+∥x(n, x0)∥ ≥ C2(x0)e(γ2+α2)(n−m)∥x(m, x0)∥,
+x0 ∈ L2, n ≥ m,
+holds with an α2 > 0 on a subspace L2 which by (ii) has the property that
+Sγ2 ⊕ L2 = Rd. Since Sγ2 = Sγ1 = L1, we get L1 ⊕ L2 = Rd. With α :=
+min{α1, α2} it follows that
+∥x(n, x0)∥ ≤ C1(x0)e(γ1−α)(n−m)∥x(m, x0)∥,
+x0 ∈ L1, n ≥ m,
+∥x(n, x0)∥ ≥ C2(x0)e(γ2+α)(n−m)∥x(m, x0)∥,
+x0 ∈ L2, n ≥ m.
+As a consequence also γ ∈ ̺BD(A) for each γ ∈ [γ1, γ2].
+(A′) ⇔ (B′). Obviously (A′) is the opposite of (A). Using the fact that Sγ1 ⊆
+Sγ2, also (B′) is the opposite of (B). Since (A) ⇔ (B), also (A′) ⇔ (B′).
+Remark 19 (Bohl Dichotomy Subspaces). (a) Suppose that system (1.1) has a
+Bohl dichotomy on a decomposition L1⊕L2 and �L1⊕ �L2 of Rd. Then by Lemma
+18(ii) L1 = Sγ = �L1.
+(b) If system (1.1) has a Bohl dichotomy on a decomposition L1 ⊕ L2, then
+system (1.1) has a Bohl dichotomy on any decomposition of the form L1 ⊕ �L2
+of Rd.
+The following theorem is the main result of this section.
+Theorem 20 (Bohl Dichotomy Spectral Theorem). The Bohl dichotomy spec-
+trum ΣBD(A) of system (1.1) is the nonempty disjoint union of at most d com-
+pact intervals
+ΣBD(A) = [α1, β1] ∪ · · · ∪ [αℓ, βℓ],
+where α1 ≤ β1 < α2 ≤ β2 < · · · < αℓ ≤ βℓ and ℓ ∈ {1, . . . , d}.
+Moreover, there exists a corresponding filtration
+{0} = V0 ⊊ V1 ⊊ · · · ⊊ Vℓ = Rd
+(4.5)
+19
+
+satisfying the following characterization for i ∈ {0, . . ., ℓ}
+Vi = {x0 ∈ Rd : lim
+n→∞ x(n, x0)e−γn = 0}
+for each γ ∈ (βi, αi+1),
+with β0 := −∞ and αℓ+1 := ∞.
+Proof. For k ∈ {0, . . . , d} the sets {γ ∈ ̺BD(A) : dim Sγ = k} are intervals by
+Lemma 18(iv), open by Remark 16, disjoint by definition, and for k = 0 and
+k = d unbounded to the left and right, respectively, by Remark 15. Since
+̺BD(A) =
+d�
+k=0
+{γ ∈ ̺BD(A) : dim Sγ = k},
+its complement ΣBD(A) is the disjoint union of ℓ ∈ {1, . . ., d} closed intervals
+[α1, β1], . . . [αℓ, βℓ] with α1 ≤ β1 < α2 ≤ β2 < · · · < αℓ ≤ βℓ and ℓ ∈ {1, . . ., d}.
+For i ∈ {1, . . ., ℓ − 1} there exists a k ∈ {0, . . . , d} with
+(βi, αi+1) = {γ ∈ ̺BD(A) : dim Sγ = k}.
+For γ1, γ2 ∈ (βi, αi+1) with γ1 < γ2, the fact that dim Sγ1 = dim Sγ2 and
+Sγ1 ⊆ Sγ2 implies that Sγ1 = Sγ2, proving that
+Vi := Sγ = {x0 ∈ Rd : lim
+n→∞ x(n, x0)e−γn = 0}
+is well-defined for γ ∈ (βi, αi+1).
+5
+Relation between the Bohl, Bohl dichotomy
+and exponential dichotomy spectra
+We recall the notion of exponential dichotomy spectrum, some of its proper-
+ties and the exponential dichotomy spectral theorem from [2, 13] with slightly
+adjusted notation.
+Definition 21 (Exponential dichotomy spectrum). The exponential dichotomy
+spectrum of (1.1) is defined as
+ΣED(A) :=
+�
+γ ∈ R : x(n + 1) = e−γA(n)x(n) has no exponential dichotomy
+�
+.
+Its complement ̺ED(A) := R \ ΣED(A) is called the resolvent of (1.1).
+Theorem 22 (Exponential Dichotomy Spectral Theorem). The exponential
+dichotomy spectrum ΣED(A) of system (1.1) is the nonempty disjoint union of
+at most d compact intervals
+ΣED(A) = [α1, β1] ∪ · · · ∪ [αℓ, βℓ],
+where α1 ≤ β1 < α2 ≤ β2 < · · · < αℓ ≤ βℓ and ℓ ∈ {1, . . . , d}.
+20
+
+Moreover, there exists a corresponding filtration
+{0} = V0 ⊊ V1 ⊊ · · · ⊊ Vℓ = Rd
+(5.1)
+satisfying the following characterization for i ∈ {0, . . ., ℓ}
+Vi = {x0 ∈ Rd : lim
+n→∞ x(n, x0)e−γn = 0}
+for each γ ∈ (βi, αi+1),
+with β0 := −∞ and αℓ+1 := ∞.
+Proof. See e.g. [2,13,15].
+Remark 23 (Minimum and maximum of ΣED(A) are Bohl exponents).
+min ΣED(A) = βA(Rd)
+and
+max ΣED(A) = βA(Rd).
+To show that max ΣED(A) ≥ βA(Rd), let γ > max ΣED(A). Then
+lim
+n→∞ x(n, x0)e−γn = 0
+for each x0 ∈ Rd
+by Theorem 22. Using the fact that γ ∈ ̺ED(A), it follows that there exists
+K > 0, α > 0, such that
+∥x(n, x0)∥ ≤ Ke(γ−α)(n−m)∥x(m, x0)∥,
+x0 ∈ Rd, n ≥ m.
+By Lemma 6(iii), γ ≥ βA(Rd). To show that max ΣED(A) ≤ βA(Rd), let γ >
+βA(Rd) choose α ∈ (0, γ −βA(Rd)). Then γ −α > βA(Rd) and again by Lemma
+6(iii) there exists a K > 0 such that
+∥x(n, x0)∥ ≤ Ke(γ−α)(n−m)∥x(m, x0)∥,
+x0 ∈ Rd, n ≥ m,
+i.e. γ ∈ ̺ED(A) and by Theorem 22, also γ > max ΣED(A), proving that
+max ΣED(A) = βA(Rd).
+The equality min ΣED(A) = βA(Rd) follows similarly.
+Remark 24 (Exponential dichotomy spectrum for scalar and diagonal systems).
+(a) If d = 1 then system (1.1) is of the form x(n + 1) = a(n)x(n), n ∈ N, and
+then by Theorem 22 and Remark 23
+ΣED(a) =
+�
+βa(R), βa(R)
+�
+with
+βa(R) = lim inf
+n−m→∞
+1
+n−m ln
+n−1
+�
+k=m
+|a(k)|
+and
+βa(R) = lim sup
+n−m→∞
+1
+n−m ln
+n−1
+�
+k=m
+|a(k)|.
+(b) If system 1.1 is diagonal, i.e. A = diag(a11, . . . , add) then
+ΣED(A) =
+d�
+k=1
+ΣED(akk).
+For a proof see, e.g. [14, Corollary 3.25].
+21
+
+To discuss the relation between the Bohl spectrum, Bohl dichotomy spectrum
+and exponential dichotomy spectrum, we show two preparatory lemmas on char-
+acterizations of Bohl dichotomy and exponential dichotomy.
+Lemma 25 (Characterization of Bohl dichotomy). The following three state-
+ments are equivalent:
+(i) System (1.1) has a Bohl dichotomy.
+(ii) There exists a splitting L1 ⊕ L2 = Rd with
+sup
+x0∈L1\{0}
+βA(x0) < 0
+and
+inf
+x0∈L2\{0} βA(x0) > 0.
+(iii) There is α > 0, such that for all x0 ∈ Rd \ {0},
+βA(x0) ≤ −α
+or
+βA(x0) ≥ α.
+Proof. (i) ⇔ (ii):
+Suppose that system (1.1) has a Bohl dichotomy.
+Let
+L1, L2 ⊆ Rd be such that the inequalities (4.2) resp. (4.3) hold on L1 resp.
+L2 for α > 0. Then from Lemma 6(iii) it follows for x0 ∈ L1 \ {0} for which the
+inequality (4.2) holds, that −α ≥ βA(x0) and for x0 ∈ L2 \ {0} for which the
+inequality (4.3) holds, that α ≤ βA(x0).
+For the converse, let L1 and L2 be the subspaces, for which the inequality for
+the exponents hold. Then there is α > 0, such that
+sup
+x0∈L1\{0}
+βA(x0) < −α < 0 < α <
+inf
+x0∈L2\{0} βA(x0).
+For x0 ∈ L1 \ {0} it follows from βA(x0) < −α and Lemma 6(iii), that there is
+C(x0) > 0, such that for x0 the inequality (4.2) holds. Similarly, the inequality
+(4.3) for x0 ∈ L2 \ {0} can be shown.
+(i) ⇔ (iii): Suppose that system (1.1) has a Bohl dichotomy. By (ii) there are
+subspaces L1, L2 ⊆ Rd and α > 0, such that for x1 ∈ L1\{0}, we have βA(x1) ≤
+−α and if x2 ∈ L2 \ {0}, we have βA(x2) ≥ α. Now let x0 = x1 + x2 ∈ Rd \ {0}
+with x1 ∈ L1 and x2 ∈ L2. In case x2 = 0, we have βA(x0) = βA(x1) ≤ −α. In
+case x1 = 0, we have βA(x0) = βA(x2) ≥ α. Otherwise x1 ̸= 0 and x2 ̸= 0 and
+we conclude, using Lemma 6(vi),
+βA(x0) = βA(x1 + x2) ≥ βA(x2) ≥ α > 0.
+For the converse, suppose there is α > 0, such that for all x0 ∈ Rd \ {0},
+βA(x0) ≤ −α
+or
+βA(x0) ≥ α.
+We define
+L1 :=
+�
+x0 ∈ Rd \ {0} : βA(x0) ≤ −α
+�
+∪ {0},
+and show that L1 is a subspace of Rd. To this end let x1, x2 ∈ L1 and λ ∈ R.
+From Lemma 6(iv) it follows that βA(λx1) = βA(x1) ≤ −α i.e. λx1 ∈ L1.
+22
+
+By Lemma 6(v) it follows from βA(x0), βA(x1) < 0 that βA(x0 + x1) ≤ 0. By
+assumption it follows that βA(x0+x1) ≤ −α and we conclude that x1+x2 ∈ L1.
+Hence L1 is a subspace.
+Now let L2 ⊆ Rd be any subspace such that L1 ⊕ L2 = Rd. If x0 ∈ L2, then
+either x2 = 0 or x2 ̸∈ L1, i.e. βA(x0) > −α. By assumption it then follows that
+βA(x0) ≥ α, hence
+sup
+x0∈L1\{0}
+βA(x0) < 0
+and
+inf
+x0∈L2\{0} βA(x0) > 0
+and (ii) holds, which is equivalent to (i).
+Lemma 26 (Characterization of exponential dichotomy). The following state-
+ments are equivalent:
+(i) System (1.1) has an exponential dichotomy.
+(ii) There exists a splitting L1 ⊕ L2 = Rd with
+βA(L1) < 0
+and
+βA(L2) > 0.
+Proof. The proof is very similar to that of Lemma 25, so we omit the details.
+The following two theorems show that the Bohl dichotomy spectrum is the
+closure of the Bohl spectrum, as well as contained in the exponential dichotomy
+spectrum.
+Theorem 27 (Bohl dichotomy spectrum is closure of Bohl spectrum). It holds
+that
+cl ΣB(A) = ΣBD(A).
+Proof. cl ΣB(A) ⊆ ΣBD(A): We show that ΣB(A) ⊆ ΣBD(A). To this end, we
+show that ̺BD(A) ⊆ ̺B(A). Let γ ∈ ̺BD(A). Then by Lemma 25 there exists
+a splitting L1 ⊕ L2 = Rd, such that for x0 = x1 + x2 ∈ Rd \ {0} with x1 ∈ L1
+and x2 ∈ L2 it holds that
+βe−γA(x1) < 0
+and
+βe−γA(x2) > 0.
+Using Lemma 6(vi) for x(n + 1) = e−γA(n)x(n), it follows that
+βA(x0) < γ,
+if x2 = 0,
+βA(x0) = βA(x1 + x2) ≥ βA(x2) > γ,
+if x2 ̸= 0.
+Consequently γ /∈
+�
+βA(x0), βA(x0)
+�
+for all x0 ∈ Rd \ {0} and hence γ ∈ ̺B(A),
+proving that ΣB(A) ⊆ ΣBD(A). Since ΣBD(A) is closed by Theorem 20, the
+inclusion cl ΣB(A) ⊆ ΣBD(A) follows.
+cl ΣB(A) ⊇ ΣBD(A): Let γ ∈ ΣBD(A). To show that γ ∈ cl ΣB(A) we equiva-
+lently show that
+α := inf{|γ − β| : β ∈ ΣB(A)} = 0.
+23
+
+Assume to the contrary that α > 0. Then γ ∈ ̺B(A). We will apply Lemma
+25. To this end let x0 ∈ Rd \ {0}. Since
+�
+βA(x0), βA(x0)
+�
+⊆ ΣB(A), it follows
+that either
+(i)
+γ < βA(x0)
+or
+(ii)
+γ > βA(x0).
+It follows by definition of α in case (i), that α < βA(x0) − γ = βe−γA(x0) and
+in case (ii) that α < γ − βA(x0) = −βe−γA(x0). By Lemma 25 it follows that
+γ ∈ ̺BD(A) which is a contradiction to γ ∈ ΣBD(A).
+Theorem 28 (Exponential dichotomy spectrum contains Bohl dichotomy spec-
+trum). It holds that
+ΣBD(A) ⊆ ΣED(A).
+Proof. From the definition of both spectra, it easily follows that ̺ED(A) ⊆
+̺BD(A).
+We introduce a notion of transformation between difference equations of the
+form (1.1) and show that the spectra are preserved under transformations.
+Definition 29 (Dynamic equivalence). Let A, B ∈ LLya(N, Rd×d). The two
+systems
+x(n + 1) = A(n)x(n)
+and
+y(n + 1) = B(n)y(n),
+n ∈ N,
+(5.2)
+are called dynamically equivalent, if there exists T ∈ LLya(N, Rd×d) with
+B(n) = T (n + 1)−1A(n)T (n),
+n ∈ N.
+T is called Lyapunov transformation between the two systems (5.2). The two
+systems (5.2) are said to be dynamically equivalent via T .
+Remark 30 (Relation of solutions of dynamically equivalent systems). Using the
+fact that
+T (n)ΦB(n, m) = ΦA(n, m)T (m),
+n, m ∈ N,
+it follows for x0, y0 ∈ Rd that
+x(n, x0) = T (n)y(n, T (0)−1x0)
+and
+y(n, y0) = T (n)−1x(n, T (0)y0),
+n ∈ N.
+Lemma 31 (Invariance of Bohl exponents under dynamic equivalence). Let
+L ⊆ Rd. If the two system (5.2) are dynamically equivalent via T , then
+βA(L) = βB(T (0)−1L)
+and
+βA(L) = βB(T (0)−1L).
+Proof. By Remark 30,
+ΦB(n, 0) = T (n)−1ΦA(n, 0)T (0),
+n ∈ N.
+For y0 ∈ T (0)−1L \ {0}, and m, n ∈ N with n > m we compute
+1
+n − m ln ∥ΦB(n, 0)y0∥
+∥ΦB(m, 0)y0∥ =
+1
+n − m ln ∥T (n)−1ΦA(n, 0)T (0)y0∥
+∥T (m)−1ΦA(m, 0)T (0)y0∥
+24
+
+≤
+1
+n − m ln ∥T (n)−1∥ · ∥T (m)∥ · ∥ΦA(n, 0)T (0)y0∥
+∥ΦA(m, 0)T (0)y0∥
+≤ ln
+�
+∥T −1∥∞ · ∥T ∥∞
+�
+n − m
++
+1
+n − m ln ∥ΦA(n, 0)T (0)y0∥
+∥ΦA(m, 0)T (0)y0∥.
+Hence for N ∈ N, it holds that
+sup
+n−m>N
+sup
+y0∈T (0)−1L\{0}
+1
+n − m ln ∥ΦB(n, 0)y0∥
+∥ΦB(m, 0)y0∥
+≤
+sup
+n−m>N
+�
+ln
+�
+∥T −1∥∞ · ∥T ∥∞
+�
+n − m
++
+sup
+x0∈L\{0}
+1
+n − m ln ∥ΦA(n, 0)x0∥
+∥ΦA(m, 0)x0∥
+�
+≤ ln
+�
+∥T −1∥∞ · ∥T ∥∞
+�
+N + 1
++
+sup
+n−m>N
+sup
+x0∈L\{0}
+1
+n − m ln ∥ΦA(n, 0)x0∥
+∥ΦA(m, 0)x0∥.
+Letting N tend to infinity, it follows that
+βB(T (0)−1L) ≤ βA(L).
+Since A(n) = T (n + 1)B(n)T (n)−1, n ∈ N, it also follows that
+βA(L) ≤ βB(T (0)−1L),
+proving that βA(L) = βB(T (0)−1L). The equality βA(L) = βB(T (0)−1L) fol-
+lows similarly.
+Theorem 32 (Invariance of spectra under dynamic equivalence). If the two
+systems (5.2) are dynamically equivalent then
+ΣB(A) = ΣB(B),
+ΣBD(A) = ΣBD(B),
+ΣED(A) = ΣED(B).
+Proof. Let T be the Lyapunov transformation between the two systems (5.2).
+ΣB(A) = ΣB(B). This follows from Lemma 31 and the fact that T (0) is bijective,
+since
+�
+x0∈Rd\{0}
+�
+βA(x0), βA(x0)
+�
+=
+�
+x0∈Rd\{0}
+�
+βB(T (0)−1x0), βB(T (0)−1x0)
+�
+=
+�
+y0∈Rd\{0}
+�
+βB(y0), βB(y0)
+�
+.
+ΣBD(A) = ΣBD(B). We show that ̺BD(A) = ̺BD(B), using Lemmas 31 and
+25. To this end let γ ∈ ̺BD(A). By Lemma 25(ii), there are subspaces L1, L2
+with L1 ⊕ L2 = Rd and
+sup
+x0∈L1\{0}
+βe−γA(x0) < 0
+and
+inf
+x0∈L2\{0} βe−γA(x0) > 0.
+25
+
+Since T (0) is bijective and linear, we have T (0)−1L1 ⊕ T (0)−1L2 = Rd. More-
+over, the two systems
+x(n + 1) = e−γA(n)x(n)
+and
+y(n + 1) = e−γB(n)y(n),
+n ∈ N,
+are dynamically equivalent via T , since e−γB(n) = T (n + 1)−1e−γA(n)T (n),
+n ∈ N. By Lemma 31, we conclude
+sup
+y0∈T (0)−1L1\{0}
+βe−γB(y0) =
+sup
+x0∈L1\{0}
+βe−γA(x0) < 0,
+inf
+y0∈T (0)−1L2\{0} βe−γB(y0) =
+inf
+x0∈L2\{0} βe−γA(x0) > 0.
+Hence γ ∈ ̺BD(B) by Lemma 25(ii), that is ̺BD(A) ⊆ ̺BD(B). Similarly one
+can show that ̺BD(A) ⊇ ̺BD(B).
+ΣED(A) = ΣED(B). This follows similarly as the proof of ΣBD(A) = ΣBD(B)
+using Lemma 26.
+We now transform system (1.1) into upper triangular form A = (aij)i,j=1,...,d,
+aij = 0 for i > j, which by Theorem 32 has the same Bohl, Bohl dichotomy
+and exponential dichotomy spectra, respectively. We then compare its spectra
+with the spectra of its diagonal part x(n + 1) = Adiag(n)x(n) with Adiag :=
+diag(a11, . . . , add).
+Theorem 33 (Upper triangular normal form). Let A ∈ LLya(N, Rd×d). Then
+there is B ∈ LLya(N, Rd×d), such that B(n) is upper triangular for n ∈ N and
+such that the systems
+x(n + 1) = A(n)x(n)
+and
+y(n + 1) = B(n)y(n),
+n ∈ N,
+are dynamically equivalent via T ∈ LLya, whereby T (n) is orthonormal for n ∈
+N.
+Proof. For the proof, see [5, p. 52, Theorem 3.2.1]. Note that in the statement
+of [5, Theorem 3.2.1] the Lyapunov transformation is orthogonal. But from the
+proof it readily follows that it is orthonormal.
+Together with Theorems 27 and 28, the following theorem concludes the dis-
+cussion of general relations between the Bohl, Bohl dichotomy and exponential
+dichotomy spectrum.
+Theorem 34 (Spectra of upper triangular systems). Assume that system (1.1)
+is upper triangular. Then
+ΣB(A)
+⊆
+ΣBD(A)
+⊆
+ΣED(A)
+⊆
+⊆
+=
+ΣB(Adiag)
+=
+ΣBD(Adiag)
+=
+ΣED(Adiag)
+26
+
+Proof. That ΣB(A) ⊆ ΣBD(A) ⊆ ΣED(A) resp. ΣB(Adiag) ⊆ ΣBD(Adiag) ⊆
+ΣED(Adiag) has been shown in Theorem 27 and Theorem 28.
+ΣED(Adiag) ⊆ ΣB(Adiag): By Remark 24 it follows that ΣED(Adiag) is the union
+of the Bohl intervals
+�
+βAdiag(ek), βAdiag(ek)
+�
+,
+whereby e1, . . . , ed is the standard basis of Rd.
+ΣED(A) = ΣED(Adiag): For a proof, see e.g. [14] Corollary 3.25.
+ΣB(A) ⊆ ΣB(Adiag): This follows from ΣB(A) ⊆ ΣBD(A) ⊆ ΣED(A) = ΣB(Adiag).
+ΣBD(A) ⊆ ΣBD(Adiag): Follows from ΣBD(A) ⊆ ΣED(A) = ΣBD(Adiag).
+In the following remark we show that most inclusions in Theorem 34 might be
+strict inclusions.
+Remark 35 (Diagonal significance). The significance of the diagonal entries of an
+upper triangular matrix function A for the spectrum is an important question
+when it comes to the computation of the spectrum. In [3] an example A is
+constructed for which
+sup
+x0∈R2\{0}
+βA(x0) < 0,
+and
+βA(R2) > 0.
+The following relations result from the above inequalities
+ΣB(A)
+⊆
+ΣBD(A)
+⊊
+ΣED(A)
+⊊
+⊊
+=
+ΣB(Adiag)
+=
+ΣBD(Adiag)
+=
+ΣED(Adiag)
+In fact, since
+sup
+x0∈R2\{0}
+βA(x0) = sup ΣBD(A)
+and
+βA(R2) = sup ΣED(A),
+it follows that ΣBD(A) ⊊ ΣED(A). In Theorem 34 we have seen that
+ΣED(A) = ΣB(Adiag) = ΣBD(Adiag) = ΣED(Adiag).
+Using ΣB(A) ⊆ ΣBD(A), we conclude that ΣB(A) ⊊ ΣB(Adiag) and ΣBD(A) ⊊
+ΣBD(Adiag). It is an open question whether there exists a system (1.1) such
+that ΣB(A) ⊊ ΣBD(A).
+Acknowledgement
+The research of A. Czornik was supported by the Polish National Agency for
+Academic Exchange according to the decision PPN/BEK/2020/1/00188/UO/00001.
+27
+
+References
+[1] B. Aulbach, S. Siegmund, The dichotomy spectrum for noninvertible sys-
+tems of linear difference equations, J. Difference Equ. Appl., Vol. 7(6)
+(2001), 895–913.
+[2] B. Aulbach, S. Siegmund, A spectral theory for nonautonomous difference
+equations, Proceedings of the 5th Intern. Conference of Difference Eqns.
+and Application (Temuco, Chile, 2000). 2002, pp. 45-55.
+[3] A. Babiarz, A. Czornik, M. Niezabitowski, Relations between Bohl expo-
+nents and general exponent of discrete linear time-varying systems, J. Dif-
+ference Equ. Appl., Vol. 25(4) (2019), 560–572.
+[4] E.A. Barabanov, A.V. Konyukh, Bohl Exponents Of Linear Differential
+Systems, Mem. Differential Equations Math. Phys. 24 (2001), 151–158.
+[5] L. Barreira, Lyapunov exponents, Birkh¨auser/Springer, Cham, 2017.
+[6] A. Ben-Artzi, I. Gohberg, Dichotomy, discrete Bohl exponents, and spec-
+trum of block weighted shifts, Integral Equations Operator Theory, Vol.
+14(5) (1991), 613–677.
+[7] P. Bohl., ¨Uber Differentialgleichungen, J. Reine Angew. Math., 144 (1913),
+284–318.
+[8] Y.L. Daleckii, M.G. Krein, Stability of solutions of differential equations in
+Banach space, Translations of Mathematical Monographs Vol. 43,American
+Mathematical Society, Providence, RI, 1974.
+[9] T.S. Doan, K.J. Palmer, M. Rasmussen, The Bohl spectrum for linear
+nonautonomous differential equations, J. Dynam. Differential Equations,
+Vol. 29(4) (2017), 1459–1485.
+[10] D. Hinrichsen, A.J. Pritchard, Mathematical Systems Theory I, Springer-
+Verlag Berlin Heidelberg, 2005.
+[11] N.A. Izobov, Lyapunov Exponents and Stability, Cambridge Scientific Pub-
+lishers, 2012.
+[12] R.E. Megginson, An introduction to Banach space theory, Graduate Texts
+in Mathematics Vol. 183, Springer-Verlag, New York, 1998.
+[13] C. P¨otzsche, Geometric theory of discrete nonautonomous dynamical sys-
+tems. Springer, 2010.
+[14] C. P¨otzsche, Fine structure of the dichotomy spectrum, Integral Equations
+Operator Theory, Vol. 73(1) (2012), 107–151.
+[15] E. Russ, Dichotomy spectrum for difference equations in Banach spaces,
+Journal of Difference Equations and Applications 23 (2017), 574–617.
+28
+
diff --git a/g9E0T4oBgHgl3EQfpQE0/content/tmp_files/load_file.txt b/g9E0T4oBgHgl3EQfpQE0/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..d8cb0418dc15173220cb608fd23b90e6e3ce70fa
--- /dev/null
+++ b/g9E0T4oBgHgl3EQfpQE0/content/tmp_files/load_file.txt
@@ -0,0 +1,751 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf,len=750
+page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='02536v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='DS] 6 Jan 2023 Spectra based on Bohl exponents and Bohl dichotomy for nonautonomous difference equations Adam Czornik1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Konrad Kitzing2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' and Stefan Siegmund2 1Faculty of Automatic Control,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Electronics and Computer Science,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Silesian University of Technology,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Gliwice,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Poland 2Institute of Analysis,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Faculty of Mathematics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' TU Dresden,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Germany January 9,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' 2023 Abstract For nonautonomous linear difference equations with bounded coeffi- cients on N which have a bounded inverse,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' we introduce two different no- tions of spectra and discuss their relation to the well-known exponential dichotomy spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' The first new spectral notion is called Bohl spec- trum and is based on an extended notion of the concept of Bohl exponents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' The second new spectral notion is called Bohl dichotomy spectrum and is based on a relaxed version of exponential dichotomy called Bohl di- chotomy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' We prove spectral theorems and show that the Bohl dichotomy spectrum is the closure of the Bohl spectrum and also a subset of the exponential dichotomy spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' We discuss the spectra of upper trian- gular systems and how they relate to the spectra of their diagonal entries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' An example illustrates the subtle differences between the different notions of spectra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' 1 Introduction Consider the system x(n + 1) = A(n)x(n), n ∈ N (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) with A(n) in the set GLd(R) of invertible d × d matrices for n ∈ N = {0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' }.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' We denote the transition matrix of system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) by ΦA(n, m), n, m ∈ N, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' ΦA(n, m) = \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 A(n − 1) · · · A(m) for n > m, Id for n = m, Φ−1 A (m, n) for n < m, 1 where Id denotes the identity matrix in Rd×d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Any solution (x(n))n∈N of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) satisfies x(n) = ΦA(n, m)x(m), n, m ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' For every k ∈ N and xk ∈ Rd the unique solution of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) which satisfies the initial condition x(k) = xk is denoted by x(·, k, xk) and for short by x(·, x0) if k = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' In particular, x(n, x0) = ΦA(n, 0)x0, n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Throughout the paper we assume that A = (A(n))n∈N and A−1 := (A(n)−1)n∈N are bounded, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' A ∈ LLya(N, Rd×d) := {B ∈ L∞(N, Rd×d) : ∀n ∈ N : B(n) ∈ GLd(R) ∧ B−1 ∈ L∞(N, Rd×d)} is a so-called Lyapunov sequence, where L∞(N, Rd×d) denotes the Banach space of bounded sequences B = (B(k))k∈N in Rd×d with norm ∥B∥∞ = supk∈N ∥B(k)∥ and an arbitrary matrix norm ∥ · ∥ on Rd×d, see also Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' A well-studied notion of hyperbolicity for system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) is exponential dichotomy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Definition 1 (Exponential dichotomy).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' System (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) has an exponential di- chotomy (ED) if there exist subspaces L1, L2 ⊆ Rd with Rd = L1 ⊕ L2, α > 0 and K > 0 such that ∥x(n, x0)∥ ≤ Ke−α(n−m)∥x(m, x0)∥, x0 ∈ L1, n ≥ m, (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='2) ∥x(n, x0)∥ ≥ K−1eα(n−m)∥x(m, x0)∥, x0 ∈ L2, n ≥ m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='3) Remark 2 (Alternative representation of exponential dichotomy).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' If P ∈ Rd×d is a projection with im P = L1 and ker P = L2 then (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='2), (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='3) can be written equivalently as ∥ΦA(n, 0)PΦA(0, m)∥ ≤ Ke−α(n−m), n ≥ m, ∥ΦA(n, 0)(I − P)ΦA(0, m)∥ ≤ Ke−α(n−m), m ≥ n, which is more commonly found in the literature on exponential dichotomy (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' [1,2,13,15] and the references therein).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Rearranging and applying the logarithm, (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='2) and (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='3) are equivalent to 1 n − m ln ∥x(n, x0)∥ ∥x(m, x0)∥ ≤ ln K n − m − α, x0 ∈ L1 \\ {0}, n > m, 1 n − m ln ∥x(n, x0)∥ ∥x(m, x0)∥ ≥ ln K−1 n − m + α, x0 ∈ L2 \\ {0}, n > m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' These estimates motivate to define the upper Bohl exponent and the lower Bohl exponent on a subspace L ⊆ Rd, L ̸= {0}, by βA(L) := inf N∈N sup n−m>N sup � 1 n − m ln ∥x(n, x0)∥ ∥x(m, x0)∥ : x0 ∈ L \\ {0} � , (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='4) 2 βA(L) := sup N∈N inf n−m>N inf � 1 n − m ln ∥x(n, x0)∥ ∥x(m, x0)∥ : x0 ∈ L \\ {0} � , (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='5) and βA({0}) := −∞, βA({0}) := +∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' In Section 2 we study these Bohl ex- ponents and their properties as a preparation to define the new notion of Bohl spectrum for equation (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) based on Bohl exponents ΣB(A) := � L⊆Rd dim L=1 � βA(L), βA(L) � in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' The main result of Section 3 is the Bohl Spectral Theorem 13 which states that the Bohl spectrum is the non-empty disjoint union of at most d bounded intervals with a corresponding filtration of subspaces consisting of initial values of solutions with corresponding growth rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Section 4 is devoted to a new notion of spectrum based on Bohl dichotomy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Definition 3 (Bohl dichotomy).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' System (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) has a Bohl dichotomy (BD) if there exist subspaces L1, L2 ⊆ Rd with Rd = L1 ⊕ L2, α > 0 and functions C1, C2 : Rd → (0, ∞) such that ∥x(n, x0)∥ ≤ C1(x0)e−α(n−m)∥x(m, x0)∥, x0 ∈ L1, n ≥ m, (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='6) ∥x(n, x0)∥ ≥ C2(x0)eα(n−m)∥x(m, x0)∥, x0 ∈ L2, n ≥ m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='7) It is a hyperbolicity notion for (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) which is similar to exponential dichotomy but weaker in the sense that the constants C1, C2 in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='6), (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='7) are allowed to depend on the solution x(·, x0) parametrized by x0 in L1 and L2, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' The main result of Section 4 is the Bohl Dichotomy Spectral Theorem 20 which states that the new notion of Bohl dichotomy spectrum ΣBD(A) := � γ ∈ R : x(n + 1) = e−γA(n)x(n) has no Bohl dichotomy � is the non-empty disjoint union of at most d compact intervals with a corre- sponding filtration of subspaces consisting of initial values of solutions with corresponding growth rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' In Section 5 the new notions of Bohl spectrum and Bohl dichotomy spectrum are compared with each other and also with the well-known exponential dichotomy spectrum ΣED(A) := � γ ∈ R : x(n + 1) = e−γA(n)x(n) has no exponential dichotomy � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' In case the linear system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) is the linearization of a nonlinear difference equa- tion x(n + 1) = f(n, x(n)) along a solution x∗, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' A(n) := ∂f ∂x(n, x∗(n)), then the stability properties of x∗ are related to the spectral properties of its lin- earization (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' This problem and the related theorem of linearized asymptotic stability will be the topic of further research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' 3 2 Bohl exponents A reader who is experienced with characteristic numbers like the Bohl exponents βA(x0) := inf N∈N sup n−m>N 1 n − m ln ∥x(n, x0)∥ ∥x(m, x0)∥, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) βA(x0) := sup N∈N inf n−m>N 1 n − m ln ∥x(n, x0)∥ ∥x(m, x0)∥, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='2) for x0 ∈ Rd \\ {0}, may also be aware of notational and technical challenges when it comes to comparing the existing literature (see also Remark 8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' The characteristic numbers are often written as a limit superior and limit inferior (see [9] for a discussion in the continuous time case), respectively, for n−m → ∞ βA(x0) = lim sup n−m→∞ 1 n−m ln ∥x(n,x0)∥ ∥x(m,x0)∥ and βA(x0) = lim inf n−m→∞ 1 n−m ln ∥x(n,x0)∥ ∥x(m,x0)∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Notationally this can be either accepted as an abbreviation of (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='2), or it can be understood as limit superior and limit inferior [12, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' 217] lim sup (n,m)∈D λ(n, m) := inf (n0,m0)∈D sup{λ(n, m) : (n, m) ≥ (n0, m0)} lim inf (n,m)∈D λ(n, m) := sup (n0,m0)∈D inf{λ(n, m) : (n, m) ≥ (n0, m0)} of the real-valued net λ(n, m) := 1 n − m ln ∥x(n, x0)∥ ∥x(m, x0)∥, (n, m) ∈ D on the directed set (D, ≤) [12, Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='8] with D := {(n, m) ∈ N2 : n > m} and preorder ≤ on D (n0, m0) ≤ (n, m) :⇔ n0 − m0 ≤ n − m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='3) This can be seen e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' for βA(x0) by using (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) and rewriting βA(x0) = inf N∈N sup{λ(n, m) : n − m > N} = inf (n0,m0)∈D sup{λ(n, m) : n − m ≥ n0 − m0} = lim sup (n,m)∈D λ(n, m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' The concept of limit superior and limit inferior of a real-valued net also helps to understand an alternative representation of the Bohl exponent which also 4 can be found in the literature (see.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' the monograph [8, Chapter III] for the continuous time case) and where not only n − m → ∞ but also m → ∞ βA(x0) = lim sup n−m→∞ m→∞ 1 n−m ln ∥x(n,x0)∥ ∥x(m,x0)∥ and βA(x0) = lim inf n−m→∞ m→∞ 1 n−m ln ∥x(n,x0)∥ ∥x(m,x0)∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' If the preorder (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='3) is replaced by (n0, m0) ≤ (n, m) :⇔ n0 − m0 ≤ n − m ∧ n0 − m0 ≤ m then lim sup (n,m)∈D λ(n, m) = inf (n0,m0)∈D sup{λ(n, m) : n − m ≥ n0 − m0, m ≥ n0 − m0} = inf N∈N sup{λ(n, m) : n − m > N, m > N} =: lim sup n−m→∞ m→∞ λ(n, m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' The following lemma shows that the upper Bohl exponent βA(L) in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='4) equals lim sup n−m→∞ m→∞ sup x0∈L\\{0} 1 n − m ln ∥x(n, x0)∥ ∥x(m, x0)∥ := inf N∈N sup n−m>N m>N sup x0∈L\\{0} 1 n − m ln ∥x(n, x0)∥ ∥x(m, x0)∥, and the lower Bohl exponent βA(L) in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='5) equals lim inf n−m→∞ m→∞ inf x0∈L\\{0} 1 n − m ln ∥x(n, x0)∥ ∥x(m, x0)∥ := sup N∈N inf n−m>N m>N inf x0∈L\\{0} 1 n − m ln ∥x(n, x0)∥ ∥x(m, x0)∥, see also [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Also note, that above and in the definitons of the Bohl exponents (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='4) and (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='5) the supremum resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' infimum over N ∈ N can always replaced by limN→∞ by monotonicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' The fact that A is a Lyapunov sequence plays an important role as pointed out in the next remark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Remark 4 (Bounds on transition matrix of Lyapunov sequence).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Let n, m ∈ N, x0 ∈ Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Without referencing, we use the estimates ∥ΦA(n, m)∥ ≤ ∥A∥n−m ∞ for n ≥ m and ∥ΦA(n, m)∥ ≤ ∥A−1∥n−m ∞ for n ≤ m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Moreover, ∥A∥∞ ≥ 1 or ∥A−1∥∞ ≥ 1, so that ln(max{∥A∥∞, ∥A−1∥∞}) ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Lemma 5 (Alternative representations of Bohl exponents).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Let L ⊆ Rd be a subspace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Then βA(L) = lim sup n−m→∞ m→∞ sup x0∈L\\{0} 1 n − m ln ∥x(n, x0)∥ ∥x(m, x0)∥, βA(L) = lim inf n−m→∞ m→∞ inf x0∈L\\{0} 1 n − m ln ∥x(n, x0)∥ ∥x(m, x0)∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' 5 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' For n, m ∈ N we set λ(n, m) := sup x0∈L\\{0} 1 n − m ln ∥x(n, x0)∥ ∥x(m, x0)∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' We prove the statement for βA(L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' The statement for βA(L) follows similarly by studying λ(n, m) := infx0∈L\\{0} 1 n−m ln ∥x(n,x0)∥ ∥x(m,x0)∥ instead of λ(n, m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' For each N ∈ N it holds that sup n−m>N λ(n, m) ≥ sup n−m>N m>N λ(n, m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Hence inf N∈N sup n−m>N λ(n, m) ≥ inf N∈N sup n−m>N m>N λ(n, m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' For the converse inequality, we show that for C := max{∥A∥∞, ∥A−1∥∞} for each N ∈ N, N ≥ 3, and n, m ∈ N with n − m > N 2 λ(n, m) ≤ sup u−w>N w>N λ(u, w) + ln C N .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='4) Then with (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='4) it follows for each N ∈ N, N ≥ 3, that sup n−m>N 2 λ(n, m) ≤ sup n−m>N m>N λ(n, m) + ln C N .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Then, letting N tend to infinity and noting that all limits exist inf N∈N sup n−m>N λ(n, m) = lim N→∞ sup n−m>N 2 λ(n, m) ≤ lim N→∞ � sup n−m>N m>N λ(n, m) + ln C N � = inf N∈N sup n−m>N m>N λ(n, m), and the claim follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' To show (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='4), let N ∈ N, N ≥ 3, and n, m ∈ N with n − m > N 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' First we assume that m ≤ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Then for x0 ∈ L \\ {0}, noting that n − (N + 1) > N because N ≥ 3, we have 1 n − m ln ∥x(n, x0)∥ ∥x(m, x0)∥ = 1 n − m ln ∥x(n, x0)∥ ∥ΦA(m, N + 1)x(N + 1, x0)∥ ≤ 1 n − m ln ∥x(n, x0)∥ · ∥ΦA(N + 1, m)∥ ∥x(N + 1, x0)∥ 6 ≤ 1 n − m ln ∥x(n, x0)∥ ∥x(N + 1, x0)∥ + 1 n − m ln ∥ΦA(N + 1, m)∥ ≤ 1 n − (N + 1) ln ∥x(n, x0)∥ ∥x(N + 1, x0)∥ + 1 n − m ln CN−m ≤ λ(n, N + 1) + N − m n − m ln C ≤ sup u−w>N w>N λ(u, w) + N N 2 ln C = sup u−w>N w>N λ(u, w) + ln C N , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=', in case m ≤ N, by taking the supremum over x0 ∈ L \\ {0} λ(n, m) ≤ sup u−w>N w>N λ(u, w) + ln C N .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' In case m > N, note that n − m > N 2 ≥ N, and hence also λ(n, m) ≤ sup u−w>N w>N λ(u, w) ≤ sup u−w>N w>N λ(u, w) + ln C N , proving (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' In the following lemma we formulate several properties of Bohl exponents which will be used throughout the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Lemma 6 (Properties of Bohl exponents).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Let L, L1, L2 be subspaces of Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' The Bohl exponents defined in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='4) and (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='5) satisfy the following properties: (i) (Bounds) If L ̸= {0} then − ln ∥A−1∥∞ ≤ βA(L) ≤ βA(L) ≤ ln ∥A∥∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Moreover, βA({0}) = ∞ and βA({0}) = −∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (ii) (Monotonicity) If {0} ̸= L1 ⊆ L2 then [βA(L1), βA(L1)] ⊆ [βA(L2), βA(L2)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (iii) (Bohl exponents describe exponential growth on subspaces) Let L ⊆ Rd, L ̸= {0}, be a subspace and γ ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Then γ > βA(L) ⇒ ∃K(γ) > 0 ∀x0 ∈ L ∀n > m : ∥x(n, x0)∥ ≤ Keγ(n−m)∥x(m, x0)∥ ⇒ γ ≥ βA(L) 7 and γ < βA(L) ⇒ ∃K(γ) > 0 ∀x0 ∈ L ∀n > m : ∥x(n, x0)∥ ≥ Keγ(n−m)∥x(m, x0)∥ ⇒ γ ≤ βA(L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (iv) (Bohl exponents of one-dimensional subspaces) If dim L = 1 and x0 ∈ L\\{0} then βA(x0) = βA(L) and βA(x0) = βA(L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' In particular, for each α ∈ R \\ {0} βA(x0) = βA(αx0) and βA(x0) = βA(αx0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (v) (Lower Bohl exponent for exponentially decaying solutions) Let x0, x1 ∈ Rd, with x0 + x1 ∈ Rd \\ {0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' If βA(x0), βA(x1) < 0, then βA(x0 + x1) ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (vi) (Lower Bohl exponent for exponentially decaying perturbations) Let x0 ∈ Rd \\ {0}, x1 ∈ Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Suppose that βA(x0) > 0 and βA(x1) < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Then βA(x0 + x1) ≥ βA(x0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (i) To show βA(L) ≤ βA(L), we compute βA(L) = lim N→∞ inf n−m>N inf x0∈L\\{0} 1 n − m ln ∥x(n, x0)∥ ∥x(m, x0)∥ ≤ lim N→∞ sup n−m>N sup x0∈L\\{0} 1 n − m ln ∥x(n, x0)∥ ∥x(m, x0)∥ = βA(L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' To show βA(L) ≤ ln ∥A∥∞ and − ln ∥A−1∥∞ ≤ βA(L), we note that ∥x(n, x0)∥ ∥x(m, x0)∥ = ∥ΦA(n, m)x(m, x0)∥ ∥x(m, x0)∥ ≤ ∥ΦA(n, m)∥ ≤ ∥A∥n−m ∞ , ∥x(n, x0)∥ ∥x(m, x0)∥ = ∥x(n, x0)∥ ∥ΦA(m, n)x(n, x0)∥ ≥ ∥ΦA(m, n)∥−1 ≥ ∥A−1∥−(n−m) ∞ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (ii) We prove that βA(L1) ≤ βA(L2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' The estimate βA(L1) ≥ βA(L2) is shown similarly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Since L1 ⊆ L2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' it follows for m,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' n ∈ N with n > m,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' that sup x0∈L1\\{0} 1 n − m ln ∥x(n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' x0)∥ ∥x(m,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' x0)∥ ≤ sup x0∈L2\\{0} 1 n − m ln ∥x(n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' x0)∥ ∥x(m,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' x0)∥,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' and therefore for each N ∈ N sup n−m>N sup x0∈L1\\{0} 1 n − m ln ∥x(n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' x0)∥ ∥x(m,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' x0)∥ ≤ sup n−m>N sup x0∈L2\\{0} 1 n − m ln ∥x(n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' x0)∥ ∥x(m,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' x0)∥,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' proving that β(L1) = lim N→∞ sup n−m>N sup x0∈L1\\{0} 1 n − m ln ∥x(n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' x0)∥ ∥x(m,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' x0)∥ 8 ≤ lim N→∞ sup n−m>N sup x0∈L2\\{0} 1 n − m ln ∥x(n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' x0)∥ ∥x(m,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' x0)∥ = β(L2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (iii) Let γ > βA(L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' We show that ∃K(γ) > 0 ∀x0 ∈ L ∀n > m : ∥x(n, x0)∥ ≤ Keγ(n−m)∥x(m, x0)∥ (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='5) and then that (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='5) implies γ ≥ βA(L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' The second statement follows similarly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Note that βA(L) = lim N→∞ sup m,n∈N, n−m>N sup � 1 n − m ln � ∥x(n, x0)∥ ∥x(m, x0)∥ � : x0 ∈ L \\ {0} � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Hence for ε := γ − βA(L) > 0, there is N ∈ N, such that sup m,n∈N, n−m>N sup � 1 n − m ln � ∥x(n, x0)∥ ∥x(m, x0)∥ � : x0 ∈ L \\ {0} � − βA(L) ≤ ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' That is for m, n ∈ N, n − m > N and x0 ∈ L \\ {0} 1 n − m ln ∥x(n, x0)∥ ∥x(m, x0)∥ ≤ ε + βA(L) = γ, respectively ∥x(n, x0)∥ < eγ(n−m)∥x(m, x0)∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Now let m, n ∈ N with 0 < n − m ≤ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Let x0 ∈ L \\ {0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Using the estimates ∥ΦA(m + N + 1, 0)x0∥ = ∥x(m + N + 1, x0)∥ ≤ eγ(N+1)∥x(m, x0)∥, ∥A−1∥−(n−m) ∞ ≤ max{1, ∥A−1∥N ∞} and e−γ(n−m) ≤ max{1, e−γN}, we get ∥x(n, x0)∥ = ∥ΦA(n, m + N + 1)ΦA(m + N + 1, 0)x0∥ ≤ ∥A−1∥m+N+1−n ∞ eγ(N+1)∥x(m, x0)∥ = ∥A−1∥N+1 ∞ eγ(N+1)∥A−1∥−(n−m) ∞ e−γ(n−m)eγ(n−m)∥x(m, x0)∥ ≤ Keγ(n−m)∥x(m, x0)∥, with K := ∥A−1∥N+1 ∞ eγ(N+1) max{1, ∥A−1∥N ∞} max{1, e−γN}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Suppose now that there is K = K(γ) such that the estimate (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='5) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Then for x0 ∈ L \\ {0}, it follows for n > m from inequality (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='5) that 1 n − m ln ∥x(n, x0)∥ ∥x(m, x0)∥ ≤ K n − m + γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' 9 Hence for all N ∈ N, it holds that sup n−m>N sup x0∈L\\{0} 1 n − m ln ∥x(n, x0)∥ ∥x(m, x0)∥ ≤ K N + γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Letting N tend to infinity, acknowledging that all limits exist, it follows that βA(L) = lim N→∞ sup n−m>N sup x0∈L\\{0} 1 n − m ln ∥x(n, x0)∥ ∥x(m, x0)∥ ≤ lim N→∞ � K N + γ � = γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (iv) This follows from (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='4), (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='5), using the fact that x(·, αx0) = αx(·, x0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (v) The case if x0 = 0 or x1 = 0 is clear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Let x1, x2 ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' From (iii) we obtain lim n→∞ x(n, x0) = lim n→∞ x(n, x1) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Hence lim n→∞ x(n, x0 + x1) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' If βA(x0 + x1) > 0, then (iii) would imply that lim n→∞ x(n, x0 + x1) = ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Hence βA(x0 + x1) ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (vi) The case x1 = 0 is clear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Let x1 ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Let γ > 0 with βA(x1) < −γ < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' By (iii), there is K > 0, such that ∥x(n, x1)∥ ≤ Ke−γ(n−m)∥x(m, x1)∥, n > m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Also by (iii), for �γ ∈ R with 0 < �γ < βA(x0) there is �K > 0 with ∥x(n, x0)∥ ≥ �Ke�γ(n−m)∥x(m, x0)∥, n > m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Note that from the previous inequalities it follows that ∥x(n, x0)∥ resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' ∥x(n, x1)∥ tends to infinity resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' In particular, there is N ∈ N, such that �K∥x(n, x0)∥ − K∥x(n, x1)∥ ≥ �K 2 ∥x(n, x0)∥, n > N, ∥x(n, x0 + x1)∥ ≤ ∥x(n, x0)∥ + ∥x(n, x1)∥ ≤ 2∥x(n, x0)∥, n > N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' We compute for m, n ∈ N with m > N ∥x(n, x0 + x1)∥ ≥ ∥x(n, x0)∥ − ∥x(n, x1)∥ ≥ �Ke�γ(n−m)∥x(m, x0)∥ − Ke−γ(n−m)∥x(m, x1)∥ ≥ e�γ(n−m)� �K∥x(m, x0)∥ − K∥x(m, x1)∥ � ≥ e�γ(n−m) �K 2 ∥x(n, x0)∥ ≥ �K 4 e�γ(n−m)∥x(n, x0 + x1)∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Rearranging the inequality and letting n−m and m tend to infinity using Lemma 5, yields βA(x0 + x1) ≥ �γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' The fact that �γ ∈ � 0, βA(x0) � was chosen arbitrarily, yields βA(x0 + x1) ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' 10 The point of view of Bohl exponents as lim sup and lim inf of the net λ(n, m) = 1 n − m ln ∥x(n, x0)∥ ∥x(m, x0)∥, (n, m) ∈ D on the directed set (D, ≤) is also useful in reinterpreting the following lemma as the statement that every element of a Bohl interval [βA(x0), βA(x0)] is an accumulation point of the net and can be realized as a limit of a subnet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Lemma 7 (Bohl interval as limits of subsequences).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Let x0 ∈ Rd \\ {0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Each element in [βA(x0), βA(x0)] can be realized as a limit, more precisely, [βA(x0), βA(x0)] = \uf8f1 \uf8f2 \uf8f3 λ ∈ R : there exist (nk)k∈N, (mk)k∈N in N with nk − mk → ∞ and λ = limk→∞ 1 nk−mk ln ∥x(nk,x0)∥ ∥x(mk,x0)∥ \uf8fc \uf8fd \uf8fe = \uf8f1 \uf8f2 \uf8f3 λ ∈ R : there exist (nk)k∈N, (mk)k∈N in N with nk − mk → ∞, mk → ∞ and λ = limk→∞ 1 nk−mk ln ∥x(nk,x0)∥ ∥x(mk,x0)∥ \uf8fc \uf8fd \uf8fe .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Let x0 ∈ Rd \\ {0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' For n, m ∈ N with n > m we set λ(n, m) := 1 n − m ln ∥x(n, x0)∥ ∥x(m, x0)∥, denote the second and third set in the equality of Lemma 7 by M2 := \uf8f1 \uf8f2 \uf8f3 λ ∈ R : there exist (nk)k∈N, (mk)k∈N in N with nk − mk → ∞ and λ = limk→∞ λ(nk, mk) \uf8fc \uf8fd \uf8fe , M3 := \uf8f1 \uf8f2 \uf8f3 λ ∈ R : there exist (nk)k∈N, (mk)k∈N in N with nk − mk → ∞, mk → ∞ and λ = limk→∞ λ(nk, mk) \uf8fc \uf8fd \uf8fe , and show that M3 ⊆ M2 ⊆ [βA(x0), βA(x0)] ⊆ M3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' The first inclusion M3 ⊆ M2 is obvious.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' To show that M2 ⊆ [βA(x0), βA(x0)], let λ ∈ M2 and (nk)k∈N, (mk)k∈N be sequences in N with nk > mk, lim k→∞(nk − mk) = ∞ and λ = lim k→∞ λ(nk, mk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' For N ∈ N let kN ∈ N be such that nkN − mkN > N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Then βA(x0) = lim N→∞ inf n−m>N λ(n, m) ≤ lim N→∞ λ(nkN , mkN) 11 ≤ lim N→∞ sup n−m>N λ(n, m) = βA(x0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Since limN→∞ λ(nkN , mkN ) = λ, it follows that βA(x0) ≤ λ ≤ βA(x0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' To show the last inequality [βA(x0), βA(x0)] ⊆ M3, let λ ∈ � βA(x0), βA(x0) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' The case λ = βA(x0) resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' λ = βA(x0) is clear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Let λ ∈ � βA(x0), βA(x0) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Using the representation βA(x0) = lim N→∞ inf n−m>N m>N λ(n, m), and the fact that λ > βA(x0), the sequences (mℓ)ℓ∈N, (nℓ)ℓ∈N, mℓ := min � q ∈ N | ∃p ∈ N : p − q ≥ ℓ ∧ q ≥ ℓ ∧ λ(p, q) < λ � , nℓ := min � p ∈ N | p − mℓ ≥ ℓ ∧ λ(p, mℓ) < λ � , are well-defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Similarly the sequences ( �mℓ)ℓ∈N, (�nℓ)ℓ∈N, �mℓ := min � q ∈ N | ∃p ∈ N : p − q ≥ ℓ ∧ q ≥ ℓ ∧ λ(p, q) > λ � , �nℓ := min � p ∈ N | p − mℓ ≥ ℓ ∧ λ(p, mℓ) > λ � , are well-defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' It holds that mℓ, �mℓ ≥ ℓ and nℓ, �nℓ ≥ 2ℓ, ℓ ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' We show that there exists no ℓ1 ∈ N such that mℓ = ℓ, nℓ = 2ℓ and �mℓ = ℓ, �nℓ = 2ℓ, ℓ ≥ ℓ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Assume to the contrary that there exists such an ℓ1 ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Then λ(nℓ, mℓ) < λ and λ(�nℓ, �mℓ) > λ, ℓ ≥ ℓ1, which is a contradiction because nℓ = �nℓ and mℓ = �mℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' As a consequence, there are four cases to consider: (i) There exists a subsequence (nℓk)k∈N of (nℓ)ℓ∈N with nℓk > 2ℓk, k ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (ii) There exists a subsequence (�nℓk)k∈N of (�nℓ)ℓ∈N with �nℓk > 2ℓk, k ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (iii) There exists a subsequence (mℓk)k∈N of (mℓ)ℓ∈N with mℓk > ℓk, k ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (iv) There exists a subsequence ( �mℓk)k∈N of ( �mℓ)ℓ∈N with �mℓk > ℓk, k ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' We elaborate the details for case (i), the other cases can be discussed in a similar way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Since λ(nℓk, mℓk) < λ, it follows that lim sup k→∞ λ(nℓk, mℓk) ≤ λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' We now show lim inf k→∞ λ(nℓk, mℓk) ≥ λ, 12 proving that limk→∞ λ(nℓk, mℓk) = λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' To this end, we use the definition of nℓk together with the fact that � nℓk − 1 � − mℓk ≥ ℓk, k ∈ N, to conclude that λ(nℓk − 1, mℓk) ≥ λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Then lim inf k→∞ λ(nℓk, mℓk) = = lim inf k→∞ 1 nℓk − mℓk ln ∥x(nℓk, x0)∥ ∥x(mℓk, x0)∥ = lim inf k→∞ 1 nℓk − mℓk ln ∥A(nℓk − 1)−1∥ · ∥x(nℓk, x0)∥ ∥A(nℓk − 1)−1∥ · ∥x(mℓk, x0)∥ ≥ lim inf k→∞ 1 nℓk − mℓk ln ∥x(nℓk − 1, x0)∥ ∥A−1∥∞ · ∥x(mℓk, x0)∥ = lim inf k→∞ nℓk − 1 − mℓk nℓk − mℓk 1 nℓk − 1 − mℓk ln ∥x(nℓk − 1, x0)∥ ∥A−1∥∞ · ∥x(mℓk, x0)∥ = lim inf k→∞ 1 nℓk − 1 − mℓk ln ∥x(nℓk − 1, x0)∥ ∥x(mℓk, x0)∥ = lim inf k→∞ λ(nℓk − 1, mℓk) ≥ λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' We denote the subsequences (nℓk)k∈N, (mℓk)k∈N again by (nk)k∈N, (mk)k∈N, respectively, to conclude the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Remark 8 (Bohl exponents in the literature).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Upper Bohl exponents for solu- tions and sets of solutions of linear differential equations where introduced by Bohl in his paper [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' In the context of linear difference equations the concept and name of Bohl exponents appeared later, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' in [6], where the quantities κ+ (L) = lim j→∞ � sup n∈N, x∈L\\{0} �∥ΦA (n + j, 0) x∥ ∥ΦA (n, 0) x∥ �1/j� and κ− (L) = lim j→∞ � inf n∈N, x∈L\\{0} �∥ΦA (n + j, 0) x∥ ∥ΦA (n, 0) x∥ �1/j� , are introduced for a subspace L of Rd (see also the review [4]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' They are related to the upper and lower Bohl exponents (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='4), (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='5) by ln κ+ (L) = βA (L) and ln κ− (L) = βA (L) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' For L = Rd sometimes (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' [10] and the references therein) a different notation is used for the Bohl exponents βA (L) and βA (L), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Ω(A) = βA � Rd� and ω(A) = βA � Rd� are called e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' general exponents [4] or singular exponents [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' 13 3 Bohl spectrum We define a new notion of spectrum of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) based on Bohl intervals formed by Bohl exponents and prove a spectral theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Definition 9 (Bohl spectrum).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' The Bohl spectrum of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) is defined as ΣB(A) := � x0∈Rd\\{0} [βA(x0), βA(x0)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Its complement ̺B(A) := R \\ ΣB(A) is called the resolvent of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Remark 10 (Bohl spectrum is bounded).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' By Lemma 6(i), − ln ∥A−1∥∞ ≤ βA(x0) ≤ βA(x0) ≤ ln ∥A∥∞ for x0 ∈ Rd \\ {0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Hence ΣB(A) ⊆ � − ln ∥A−1∥∞, ln ∥A∥∞ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' To prepare the formulation and proof of the Bohl spectral theorem, we introduce a γ-dependent set of initial conditions with upper Bohl exponent less than γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Conceptually this set corresponds to the sum of the generalized eigenspaces of a constant matrix A which correspond to eigenvalues with a modulus less than γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' In the nonautonomous case (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) such a set needs to be characterized dynamically by prescribing the growth rates of solutions with initial values in that set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Definition 11 (γ-exponentially stable set Mγ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' For γ ∈ R the set Mγ := {x0 ∈ Rd \\ {0} : βA(x0) < γ} ∪ {0} is called γ-exponentially stable set of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' That Mγ turns out to be a subspace for γ ∈ ̺B(A) and other important prop- erties of Mγ, is the content of the following lemma: Lemma 12 (Properties of Mγ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (i) (Monotonicity) Mγ is monotone Mγ1 ⊆ Mγ2, γ1 ≤ γ2, and eventually constant Mγ = � {0}, for γ ∈ (−∞, − ln ∥A−1∥∞), Rd, for γ ∈ (ln ∥A∥∞, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) (ii) (Mγ is a subspace on resolvent intervals) γ ∈ ̺B(A) ⇒ Mγ is a linear subspace of Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' 14 (iii) (Mγ is constant on resolvent intervals) Let γ1, γ2 ∈ ̺B(A) with γ1 < γ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Then exactly one of the following two alternatives holds and the statements in each alternative are equivalent: Alternative I Alternative II (A) [γ1, γ2] ⊆ ̺B(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (A’) There exists ζ ∈ (γ1, γ2) ∩ ΣB(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (B) Mγ1 = Mγ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (B’) dim Mγ1 < dim Mγ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (i) Follows with Remark 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (ii) Let γ ∈ ̺B(A) and x0, x′ 0 ∈ Mγ, α, β ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' We show αx0+βx′ 0 ∈ Mγ and only consider the case x0, x′ 0, αx0 +βx′ 0 ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Since [βA(αx0 +βx′ 0), βA(αx0 +βx′ 0)] ⊆ ΣB(A) and γ ∈ ̺B(A), it follows that γ < βA(αx0 + βx′ 0) or βA(αx0 + βx′ 0) < γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Since x0, x′ 0 ∈ Mγ, βA(x0) < γ and βA(x′ 0) < γ, and hence max{βA(x0), βA(x′ 0)} < γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Using the fact that span{x0}, span{x′ 0} ⊆ span{x0, x′ 0}⟩, Lemma 6(ii) implies that max � βA(x0), βA(x′ 0) � ∈ � βA(αx0 + βx′ 0), βA(αx0 + βx′ 0) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Therefore βA(αx0 + βx′ 0) < γ, and thus we have αx0 + βx′ 0 ∈ Mγ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (iii) (A) ⇒ (B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' That Mγ1 ⊆ Mγ2 holds by (i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Let x0 ∈ Mγ2 \\ Mγ1, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' βA(x0) ≥ γ1 and βA(x0) < γ2 and consequently [βA(x0), βA(x0)] ∩ [γ1, γ2] ̸= ∅, contradicting [γ1, γ2] ⊆ ̺B(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (B) ⇒ (A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Since γ2 ∈ ̺B(A), Mγ2 ∪ {x0 ∈ Rd \\ {0} : γ2 < βA(x0)} = Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Using the assumption Mγ1 = Mγ2, it follows that βA(x0) < γ1 or γ2 < βA(x0) for each x0 ∈ Rd \\ {0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' As a consequence [γ1, γ2] ⊆ ̺B(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (A′) ⇔ (B′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Obviously (A′) is the opposite of (A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Using (i) and (ii), it follows that (B′) is the opposite of (B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' We are now in a position to formulate and prove the main result of this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' 15 Theorem 13 (Bohl Spectral Theorem).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' The Bohl spectrum ΣB(A) of system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) is the nonempty disjoint union of at most d bounded intervals ΣB(A) = I1 ∪ · · · ∪ Iℓ, where ℓ ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=', d}, sup Ii ≤ inf Ii+1 and [sup Ii, inf Ii+1] ∩ ̺B(A) ̸= ∅ for i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=', ℓ − 1} .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Moreover, setting I0 = Iℓ+1 := ∅ and inf ∅ := +∞ and sup ∅ := −∞, there exists a corresponding filtration {0} = V0 ⊊ V1 ⊊ · · · ⊊ Vℓ = Rd defined for i ∈ {0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' , ℓ} and γ ∈ [sup Ii, inf Ii+1] ∩ ̺B(A) by Vi := {x0 ∈ Rd \\ {0} : βA(x0) < γ} ∪ {0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' The definition of Vi does not depend on the choice of γ ∈ [sup Ii, inf Ii+1]∩̺B(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Let d0 < d1 < · · · < dℓ be the elements of the set {dim(Mγ) : γ ∈ ̺B(A)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' It is clear that ℓ ≤ d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' For i ∈ {0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=', ℓ}, define Ji := {γ ∈ ̺B(A) : dim(Mγ) = di} and note that ̺B(A) = J0 ∪ · · · ∪ Jℓ, where the union is disjoint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' We show that Ji is an interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' To this end let γ1 < γ2 be two elements of Ji.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Since γ1, γ2 ∈ ̺B(A) and dim(Mγ1) = dim(Mγ2), Lemma 12(iii) applies and yields Alternative I, proving that [γ1, γ2] ⊆ Ji.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Using (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='4), d0 = 0, dℓ = d, and (−∞, − ln a) ⊆ J0, (ln a, ∞) ⊆ Jℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Therefore the complement ΣB(A) of ̺B(A) = J0 ∪ · · · ∪ Jℓ is the disjoint union of ℓ ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=', d} bounded intervals I1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' , Iℓ with sup Ii ≤ inf Ii+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Now [sup Ii, inf Ii+1] ∩ ̺B(A) = Ji ̸= ∅ for i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=', ℓ − 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Using Alter- native I of Lemma 12(iii), Vi := Mγi is well-defined for γ0 ∈ (−∞, inf I1), γi ∈ [sup Ii, inf Ii+1] ∩ ̺B(A) for i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=', ℓ − 1}, and γℓ ∈ (sup Iℓ, ∞) and satisfies {0} = V0 ⊊ V1 ⊊ · · · ⊊ Vℓ = Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' 4 Bohl dichotomy spectrum In this section we introduce a new spectrum based on the notion of Bohl di- chotomy and prove a spectral theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Similarly as for the exponential di- chotomy spectrum one associates to system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) a parametrized family of nonautonomous difference equations which are exponentially weighted versions of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) by considering for γ ∈ R the γ-shifted system x(n + 1) = e−γA(n)x(n) (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) 16 Note that the transition matrix Φe−γA of (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) satisfies Φe−γA(n, m) = e−γ(n−m)ΦA(n, m) for n, m ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' For convenience we denote the solution Φe−γA(n, 0)x0 of (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) by xγ(·, x0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Then xγ(n, x0) = e−γnx(n, x0) for n ∈ N with the solution x(·, x0) of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' To introduce a spectral notion based on the Bohl dichotomy we discuss whether (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) admits a Bohl dichotomy, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' if there exist subspaces L1, L2 ⊆ Rd with Rd = L1 ⊕ L2, α > 0, and functions C1, C2 : Rd → (0, ∞) such that ∥xγ(n, x0)∥ ≤ C1(x0)e−α(n−m)∥xγ(m, x0)∥, x0 ∈ L1, n ≥ m, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='2) ∥xγ(n, x0)∥ ≥ C2(x0)eα(n−m)∥xγ(m, x0)∥, x0 ∈ L2, n ≥ m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='3) Definition 14 (Bohl dichotomy spectrum).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' The Bohl dichotomy spectrum of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) is defined as ΣBD(A) := � γ ∈ R : x(n + 1) = e−γA(n)x(n) has no Bohl dichotomy � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Its complement ̺BD(A) := R \\ ΣBD(A) is called the resolvent of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Remark 15 (Bohl dichotomy spectrum is bounded).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' ΣBD(A) ⊆ � − ln ∥A−1∥∞, ln ∥A∥∞ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' This follows from the fact that A ∈ LLya(N, Rd×d) is a Lyapunov sequence, and the following estimate for m, n ∈ N with n ≥ m and x0 ∈ Rd, ∥xγ(n, x0)∥ = ∥e−γ(n−m)ΦA(n, m)e−γmΦA(m, 0)x0∥ ≤ e−γ(n−m)e(n−m) ln ∥A∥∞∥xγ(m, x0)∥ proving that for γ > ln ∥A∥∞, the γ-shifted system (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) has a Bohl dichotomy with L1 = Rd and L2 = {0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Similarly the estimate for m ≥ n ∥xγ(m, x0)∥ = ∥eγ(n−m)ΦA(m, n)e−γnΦA(n, 0)x0∥ ≤ eγ(n−m)e(n−m) ln ∥A−1∥∞∥xγ(n, x0)∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' shows that for γ < − ln ∥A−1∥∞, system (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) has a Bohl dichotomy with L1 = {0} and L2 = Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Remark 16 (Bohl dichotomy resolvent is open).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' ̺BD(A) is open, since for any γ ∈ ̺BD(A) the estimates ∥x(n, x0)∥ ≤ C1(x0)e(γ−α)(n−m)∥x(m, x0)∥, x0 ∈ L1, n ≥ m, ∥x(n, x0)∥ ≥ C2(x0)e(γ+α)(n−m)∥x(m, x0)∥, x0 ∈ L2, n ≥ m, hold and for ε := α/2 and ζ ∈ (γ − ε, γ + ε), using the fact that ζ − ε > γ − α and ζ + ε < γ + α, they imply ∥x(n, x0)∥ ≤ C1(x0)e(ζ−ε)(n−m)∥x(m, x0)∥, x0 ∈ L1, n ≥ m, ∥x(n, x0)∥ ≥ C2(x0)e(ζ+ε)(n−m)∥x(m, x0)∥, x0 ∈ L2, n ≥ m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' 17 Similarly as for the Bohl spectrum in Definition 11 in the last section, we intro- duce a family of sets of initial conditions of solutions with prescribed asymptotic behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Definition 17 (γ-attractive subset Sγ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' For γ ∈ R the set Sγ := {x0 ∈ Rd : lim n→∞ xγ(n, x0) = 0} is called γ-attractive subset of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' The sets Sγ and their properties will play a crucial role in the formulation and proof of the Bohl dichotomy spectral theorem below (cp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' also Lemma 12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Lemma 18 (Properties of Sγ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (i) (Subspace) Sγ is a linear subspace of Rd for each γ ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (ii) (Bohl dichotomy space) Sγ is the Bohl dichotomy space L1 on resolvent intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' γ ∈ ̺BD(A) ∧ x(n + 1) = e−γA(n)x(n) has a Bohl dichotomy on L1 ⊕ L2 = Rd � ⇒ L1 = Sγ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (iii) (Monotonicity) Sγ is monotone Sγ1 ⊆ Sγ2, γ1 ≤ γ2, and eventually constant Sγ = � {0}, for γ ∈ (−∞, − ln ∥A−1∥∞), Rd, for γ ∈ (ln ∥A∥∞, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='4) (iv) (Sγ is constant on resolvent intervals) Let γ1, γ2 ∈ ̺BD(A) with γ1 < γ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Then exactly one of the following two alternatives holds and the statements in each alternative are equivalent: Alternative I Alternative II (A) [γ1, γ2] ⊆ ̺BD(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (A’) There exists ζ ∈ (γ1, γ2) ∩ ΣBD(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (B) Sγ1 = Sγ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (B’) dim Sγ1 < dim Sγ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (i) This follows from the fact that (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) is a linear equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (ii) Suppose that γ ∈ ̺B(A) and system (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) has a Bohl dichotomy (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='2), (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='3), on a splitting L1 ⊕ L2 = Rd w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' The inclusion L1 ⊆ Sγ is clear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' To show that also Sγ ⊆ L1, let x0 /∈ L1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' We show that xγ(·, x0) is not a null-sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Let x0 = x1 + x2, with x1 ∈ L1 and x2 ∈ L2 \\ {0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Then by (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='3) ∥xγ(n, x0)∥ = ∥xγ(n, x1) + xγ(n, x2)∥ ≥ ��∥xγ(n, x1)∥ − ∥xγ(n, x2)∥ �� ≥ ��∥xγ(n, x1)∥ − C2(x2)eαn∥x2∥ ��.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' 18 The right-hand side tends to infinity, for n to infinity and the assertion follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' In particular, if (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) has a Bohl dichotomy on a splitting L1 ⊕ L2 = Rd then L1 is unique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (iii) This is a consequence of Remark 15 and (ii).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (iv) (A) ⇒ (B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Assume that Sγ1 ̸= Sγ2 and define ζ0 := sup{ζ ∈ [γ1, γ2] : Sζ = Sγ1} ∈ ̺BD(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' By Remark 16 there exists ε > 0 such that Sζ = Sζ0 for ζ ∈ (ζ0 − ε, ζ0 + ε) which contradicts the definition of ζ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (B) ⇒ (A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' For γ1 ∈ ̺BD(A) the first dichotomy estimate ∥x(n, x0)∥ ≤ C1(x0)e(γ1−α1)(n−m)∥x(m, x0)∥, x0 ∈ L1, n ≥ m, holds with α1 > 0 on L1, and by (ii) L1 = Sγ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' For γ2 ∈ ̺BD(A) the second dichotomy estimate ∥x(n, x0)∥ ≥ C2(x0)e(γ2+α2)(n−m)∥x(m, x0)∥, x0 ∈ L2, n ≥ m, holds with an α2 > 0 on a subspace L2 which by (ii) has the property that Sγ2 ⊕ L2 = Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Since Sγ2 = Sγ1 = L1, we get L1 ⊕ L2 = Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' With α := min{α1, α2} it follows that ∥x(n, x0)∥ ≤ C1(x0)e(γ1−α)(n−m)∥x(m, x0)∥, x0 ∈ L1, n ≥ m, ∥x(n, x0)∥ ≥ C2(x0)e(γ2+α)(n−m)∥x(m, x0)∥, x0 ∈ L2, n ≥ m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' As a consequence also γ ∈ ̺BD(A) for each γ ∈ [γ1, γ2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (A′) ⇔ (B′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Obviously (A′) is the opposite of (A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Using the fact that Sγ1 ⊆ Sγ2, also (B′) is the opposite of (B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Since (A) ⇔ (B), also (A′) ⇔ (B′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Remark 19 (Bohl Dichotomy Subspaces).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (a) Suppose that system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) has a Bohl dichotomy on a decomposition L1⊕L2 and �L1⊕ �L2 of Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Then by Lemma 18(ii) L1 = Sγ = �L1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (b) If system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) has a Bohl dichotomy on a decomposition L1 ⊕ L2, then system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) has a Bohl dichotomy on any decomposition of the form L1 ⊕ �L2 of Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' The following theorem is the main result of this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Theorem 20 (Bohl Dichotomy Spectral Theorem).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' The Bohl dichotomy spec- trum ΣBD(A) of system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) is the nonempty disjoint union of at most d com- pact intervals ΣBD(A) = [α1, β1] ∪ · · · ∪ [αℓ, βℓ], where α1 ≤ β1 < α2 ≤ β2 < · · · < αℓ ≤ βℓ and ℓ ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' , d}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Moreover, there exists a corresponding filtration {0} = V0 ⊊ V1 ⊊ · · · ⊊ Vℓ = Rd (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='5) 19 satisfying the following characterization for i ∈ {0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=', ℓ} Vi = {x0 ∈ Rd : lim n→∞ x(n, x0)e−γn = 0} for each γ ∈ (βi, αi+1), with β0 := −∞ and αℓ+1 := ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' For k ∈ {0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' , d} the sets {γ ∈ ̺BD(A) : dim Sγ = k} are intervals by Lemma 18(iv), open by Remark 16, disjoint by definition, and for k = 0 and k = d unbounded to the left and right, respectively, by Remark 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Since ̺BD(A) = d� k=0 {γ ∈ ̺BD(A) : dim Sγ = k}, its complement ΣBD(A) is the disjoint union of ℓ ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=', d} closed intervals [α1, β1], .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' [αℓ, βℓ] with α1 ≤ β1 < α2 ≤ β2 < · · · < αℓ ≤ βℓ and ℓ ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=', d}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' For i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=', ℓ − 1} there exists a k ∈ {0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' , d} with (βi, αi+1) = {γ ∈ ̺BD(A) : dim Sγ = k}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' For γ1, γ2 ∈ (βi, αi+1) with γ1 < γ2, the fact that dim Sγ1 = dim Sγ2 and Sγ1 ⊆ Sγ2 implies that Sγ1 = Sγ2, proving that Vi := Sγ = {x0 ∈ Rd : lim n→∞ x(n, x0)e−γn = 0} is well-defined for γ ∈ (βi, αi+1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' 5 Relation between the Bohl, Bohl dichotomy and exponential dichotomy spectra We recall the notion of exponential dichotomy spectrum, some of its proper- ties and the exponential dichotomy spectral theorem from [2, 13] with slightly adjusted notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Definition 21 (Exponential dichotomy spectrum).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' The exponential dichotomy spectrum of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) is defined as ΣED(A) := � γ ∈ R : x(n + 1) = e−γA(n)x(n) has no exponential dichotomy � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Its complement ̺ED(A) := R \\ ΣED(A) is called the resolvent of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Theorem 22 (Exponential Dichotomy Spectral Theorem).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' The exponential dichotomy spectrum ΣED(A) of system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) is the nonempty disjoint union of at most d compact intervals ΣED(A) = [α1, β1] ∪ · · · ∪ [αℓ, βℓ], where α1 ≤ β1 < α2 ≤ β2 < · · · < αℓ ≤ βℓ and ℓ ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' , d}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' 20 Moreover, there exists a corresponding filtration {0} = V0 ⊊ V1 ⊊ · · · ⊊ Vℓ = Rd (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) satisfying the following characterization for i ∈ {0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=', ℓ} Vi = {x0 ∈ Rd : lim n→∞ x(n, x0)e−γn = 0} for each γ ∈ (βi, αi+1), with β0 := −∞ and αℓ+1 := ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' See e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' [2,13,15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Remark 23 (Minimum and maximum of ΣED(A) are Bohl exponents).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' min ΣED(A) = βA(Rd) and max ΣED(A) = βA(Rd).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' To show that max ΣED(A) ≥ βA(Rd), let γ > max ΣED(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Then lim n→∞ x(n, x0)e−γn = 0 for each x0 ∈ Rd by Theorem 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Using the fact that γ ∈ ̺ED(A), it follows that there exists K > 0, α > 0, such that ∥x(n, x0)∥ ≤ Ke(γ−α)(n−m)∥x(m, x0)∥, x0 ∈ Rd, n ≥ m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' By Lemma 6(iii), γ ≥ βA(Rd).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' To show that max ΣED(A) ≤ βA(Rd), let γ > βA(Rd) choose α ∈ (0, γ −βA(Rd)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Then γ −α > βA(Rd) and again by Lemma 6(iii) there exists a K > 0 such that ∥x(n, x0)∥ ≤ Ke(γ−α)(n−m)∥x(m, x0)∥, x0 ∈ Rd, n ≥ m, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' γ ∈ ̺ED(A) and by Theorem 22, also γ > max ΣED(A), proving that max ΣED(A) = βA(Rd).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' The equality min ΣED(A) = βA(Rd) follows similarly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Remark 24 (Exponential dichotomy spectrum for scalar and diagonal systems).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (a) If d = 1 then system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) is of the form x(n + 1) = a(n)x(n), n ∈ N, and then by Theorem 22 and Remark 23 ΣED(a) = � βa(R), βa(R) � with βa(R) = lim inf n−m→∞ 1 n−m ln n−1 � k=m |a(k)| and βa(R) = lim sup n−m→∞ 1 n−m ln n−1 � k=m |a(k)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (b) If system 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1 is diagonal, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' A = diag(a11, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' , add) then ΣED(A) = d� k=1 ΣED(akk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' For a proof see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' [14, Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' 21 To discuss the relation between the Bohl spectrum, Bohl dichotomy spectrum and exponential dichotomy spectrum, we show two preparatory lemmas on char- acterizations of Bohl dichotomy and exponential dichotomy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Lemma 25 (Characterization of Bohl dichotomy).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' The following three state- ments are equivalent: (i) System (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) has a Bohl dichotomy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (ii) There exists a splitting L1 ⊕ L2 = Rd with sup x0∈L1\\{0} βA(x0) < 0 and inf x0∈L2\\{0} βA(x0) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (iii) There is α > 0, such that for all x0 ∈ Rd \\ {0}, βA(x0) ≤ −α or βA(x0) ≥ α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (i) ⇔ (ii): Suppose that system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) has a Bohl dichotomy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Let L1, L2 ⊆ Rd be such that the inequalities (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='2) resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='3) hold on L1 resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' L2 for α > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Then from Lemma 6(iii) it follows for x0 ∈ L1 \\ {0} for which the inequality (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='2) holds, that −α ≥ βA(x0) and for x0 ∈ L2 \\ {0} for which the inequality (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='3) holds, that α ≤ βA(x0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' For the converse, let L1 and L2 be the subspaces, for which the inequality for the exponents hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Then there is α > 0, such that sup x0∈L1\\{0} βA(x0) < −α < 0 < α < inf x0∈L2\\{0} βA(x0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' For x0 ∈ L1 \\ {0} it follows from βA(x0) < −α and Lemma 6(iii), that there is C(x0) > 0, such that for x0 the inequality (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='2) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Similarly, the inequality (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='3) for x0 ∈ L2 \\ {0} can be shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (i) ⇔ (iii): Suppose that system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) has a Bohl dichotomy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' By (ii) there are subspaces L1, L2 ⊆ Rd and α > 0, such that for x1 ∈ L1\\{0}, we have βA(x1) ≤ −α and if x2 ∈ L2 \\ {0}, we have βA(x2) ≥ α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Now let x0 = x1 + x2 ∈ Rd \\ {0} with x1 ∈ L1 and x2 ∈ L2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' In case x2 = 0, we have βA(x0) = βA(x1) ≤ −α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' In case x1 = 0, we have βA(x0) = βA(x2) ≥ α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Otherwise x1 ̸= 0 and x2 ̸= 0 and we conclude, using Lemma 6(vi), βA(x0) = βA(x1 + x2) ≥ βA(x2) ≥ α > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' For the converse, suppose there is α > 0, such that for all x0 ∈ Rd \\ {0}, βA(x0) ≤ −α or βA(x0) ≥ α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' We define L1 := � x0 ∈ Rd \\ {0} : βA(x0) ≤ −α � ∪ {0}, and show that L1 is a subspace of Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' To this end let x1, x2 ∈ L1 and λ ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' From Lemma 6(iv) it follows that βA(λx1) = βA(x1) ≤ −α i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' λx1 ∈ L1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' 22 By Lemma 6(v) it follows from βA(x0), βA(x1) < 0 that βA(x0 + x1) ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' By assumption it follows that βA(x0+x1) ≤ −α and we conclude that x1+x2 ∈ L1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Hence L1 is a subspace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Now let L2 ⊆ Rd be any subspace such that L1 ⊕ L2 = Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' If x0 ∈ L2, then either x2 = 0 or x2 ̸∈ L1, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' βA(x0) > −α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' By assumption it then follows that βA(x0) ≥ α, hence sup x0∈L1\\{0} βA(x0) < 0 and inf x0∈L2\\{0} βA(x0) > 0 and (ii) holds, which is equivalent to (i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Lemma 26 (Characterization of exponential dichotomy).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' The following state- ments are equivalent: (i) System (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) has an exponential dichotomy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' (ii) There exists a splitting L1 ⊕ L2 = Rd with βA(L1) < 0 and βA(L2) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' The proof is very similar to that of Lemma 25, so we omit the details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' The following two theorems show that the Bohl dichotomy spectrum is the closure of the Bohl spectrum, as well as contained in the exponential dichotomy spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Theorem 27 (Bohl dichotomy spectrum is closure of Bohl spectrum).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' It holds that cl ΣB(A) = ΣBD(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' cl ΣB(A) ⊆ ΣBD(A): We show that ΣB(A) ⊆ ΣBD(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' To this end, we show that ̺BD(A) ⊆ ̺B(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Let γ ∈ ̺BD(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Then by Lemma 25 there exists a splitting L1 ⊕ L2 = Rd, such that for x0 = x1 + x2 ∈ Rd \\ {0} with x1 ∈ L1 and x2 ∈ L2 it holds that βe−γA(x1) < 0 and βe−γA(x2) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Using Lemma 6(vi) for x(n + 1) = e−γA(n)x(n), it follows that βA(x0) < γ, if x2 = 0, βA(x0) = βA(x1 + x2) ≥ βA(x2) > γ, if x2 ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Consequently γ /∈ � βA(x0), βA(x0) � for all x0 ∈ Rd \\ {0} and hence γ ∈ ̺B(A), proving that ΣB(A) ⊆ ΣBD(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Since ΣBD(A) is closed by Theorem 20, the inclusion cl ΣB(A) ⊆ ΣBD(A) follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' cl ΣB(A) ⊇ ΣBD(A): Let γ ∈ ΣBD(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' To show that γ ∈ cl ΣB(A) we equiva- lently show that α := inf{|γ − β| : β ∈ ΣB(A)} = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' 23 Assume to the contrary that α > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Then γ ∈ ̺B(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' We will apply Lemma 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' To this end let x0 ∈ Rd \\ {0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Since � βA(x0), βA(x0) � ⊆ ΣB(A), it follows that either (i) γ < βA(x0) or (ii) γ > βA(x0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' It follows by definition of α in case (i), that α < βA(x0) − γ = βe−γA(x0) and in case (ii) that α < γ − βA(x0) = −βe−γA(x0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' By Lemma 25 it follows that γ ∈ ̺BD(A) which is a contradiction to γ ∈ ΣBD(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Theorem 28 (Exponential dichotomy spectrum contains Bohl dichotomy spec- trum).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' It holds that ΣBD(A) ⊆ ΣED(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' From the definition of both spectra, it easily follows that ̺ED(A) ⊆ ̺BD(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' We introduce a notion of transformation between difference equations of the form (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) and show that the spectra are preserved under transformations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Definition 29 (Dynamic equivalence).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Let A, B ∈ LLya(N, Rd×d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' The two systems x(n + 1) = A(n)x(n) and y(n + 1) = B(n)y(n), n ∈ N, (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='2) are called dynamically equivalent, if there exists T ∈ LLya(N, Rd×d) with B(n) = T (n + 1)−1A(n)T (n), n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' T is called Lyapunov transformation between the two systems (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' The two systems (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='2) are said to be dynamically equivalent via T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Remark 30 (Relation of solutions of dynamically equivalent systems).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Using the fact that T (n)ΦB(n, m) = ΦA(n, m)T (m), n, m ∈ N, it follows for x0, y0 ∈ Rd that x(n, x0) = T (n)y(n, T (0)−1x0) and y(n, y0) = T (n)−1x(n, T (0)y0), n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Lemma 31 (Invariance of Bohl exponents under dynamic equivalence).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Let L ⊆ Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' If the two system (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='2) are dynamically equivalent via T , then βA(L) = βB(T (0)−1L) and βA(L) = βB(T (0)−1L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' By Remark 30, ΦB(n, 0) = T (n)−1ΦA(n, 0)T (0), n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' For y0 ∈ T (0)−1L \\ {0}, and m, n ∈ N with n > m we compute 1 n − m ln ∥ΦB(n, 0)y0∥ ∥ΦB(m, 0)y0∥ = 1 n − m ln ∥T (n)−1ΦA(n, 0)T (0)y0∥ ∥T (m)−1ΦA(m, 0)T (0)y0∥ 24 ≤ 1 n − m ln ∥T (n)−1∥ · ∥T (m)∥ · ∥ΦA(n, 0)T (0)y0∥ ∥ΦA(m, 0)T (0)y0∥ ≤ ln � ∥T −1∥∞ · ∥T ∥∞ � n − m + 1 n − m ln ∥ΦA(n, 0)T (0)y0∥ ∥ΦA(m, 0)T (0)y0∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Hence for N ∈ N, it holds that sup n−m>N sup y0∈T (0)−1L\\{0} 1 n − m ln ∥ΦB(n, 0)y0∥ ∥ΦB(m, 0)y0∥ ≤ sup n−m>N � ln � ∥T −1∥∞ · ∥T ∥∞ � n − m + sup x0∈L\\{0} 1 n − m ln ∥ΦA(n, 0)x0∥ ∥ΦA(m, 0)x0∥ � ≤ ln � ∥T −1∥∞ · ∥T ∥∞ � N + 1 + sup n−m>N sup x0∈L\\{0} 1 n − m ln ∥ΦA(n, 0)x0∥ ∥ΦA(m, 0)x0∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Letting N tend to infinity, it follows that βB(T (0)−1L) ≤ βA(L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Since A(n) = T (n + 1)B(n)T (n)−1, n ∈ N, it also follows that βA(L) ≤ βB(T (0)−1L), proving that βA(L) = βB(T (0)−1L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' The equality βA(L) = βB(T (0)−1L) fol- lows similarly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Theorem 32 (Invariance of spectra under dynamic equivalence).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' If the two systems (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='2) are dynamically equivalent then ΣB(A) = ΣB(B), ΣBD(A) = ΣBD(B), ΣED(A) = ΣED(B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Let T be the Lyapunov transformation between the two systems (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' ΣB(A) = ΣB(B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' This follows from Lemma 31 and the fact that T (0) is bijective, since � x0∈Rd\\{0} � βA(x0), βA(x0) � = � x0∈Rd\\{0} � βB(T (0)−1x0), βB(T (0)−1x0) � = � y0∈Rd\\{0} � βB(y0), βB(y0) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' ΣBD(A) = ΣBD(B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' We show that ̺BD(A) = ̺BD(B), using Lemmas 31 and 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' To this end let γ ∈ ̺BD(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' By Lemma 25(ii), there are subspaces L1, L2 with L1 ⊕ L2 = Rd and sup x0∈L1\\{0} βe−γA(x0) < 0 and inf x0∈L2\\{0} βe−γA(x0) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' 25 Since T (0) is bijective and linear, we have T (0)−1L1 ⊕ T (0)−1L2 = Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' More- over, the two systems x(n + 1) = e−γA(n)x(n) and y(n + 1) = e−γB(n)y(n), n ∈ N, are dynamically equivalent via T , since e−γB(n) = T (n + 1)−1e−γA(n)T (n), n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' By Lemma 31, we conclude sup y0∈T (0)−1L1\\{0} βe−γB(y0) = sup x0∈L1\\{0} βe−γA(x0) < 0, inf y0∈T (0)−1L2\\{0} βe−γB(y0) = inf x0∈L2\\{0} βe−γA(x0) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Hence γ ∈ ̺BD(B) by Lemma 25(ii), that is ̺BD(A) ⊆ ̺BD(B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Similarly one can show that ̺BD(A) ⊇ ̺BD(B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' ΣED(A) = ΣED(B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' This follows similarly as the proof of ΣBD(A) = ΣBD(B) using Lemma 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' We now transform system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) into upper triangular form A = (aij)i,j=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=',d, aij = 0 for i > j, which by Theorem 32 has the same Bohl, Bohl dichotomy and exponential dichotomy spectra, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' We then compare its spectra with the spectra of its diagonal part x(n + 1) = Adiag(n)x(n) with Adiag := diag(a11, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' , add).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Theorem 33 (Upper triangular normal form).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Let A ∈ LLya(N, Rd×d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Then there is B ∈ LLya(N, Rd×d), such that B(n) is upper triangular for n ∈ N and such that the systems x(n + 1) = A(n)x(n) and y(n + 1) = B(n)y(n), n ∈ N, are dynamically equivalent via T ∈ LLya, whereby T (n) is orthonormal for n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' For the proof, see [5, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' 52, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Note that in the statement of [5, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1] the Lyapunov transformation is orthogonal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' But from the proof it readily follows that it is orthonormal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Together with Theorems 27 and 28, the following theorem concludes the dis- cussion of general relations between the Bohl, Bohl dichotomy and exponential dichotomy spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Theorem 34 (Spectra of upper triangular systems).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Assume that system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) is upper triangular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Then ΣB(A) ⊆ ΣBD(A) ⊆ ΣED(A) ⊆ ⊆ = ΣB(Adiag) = ΣBD(Adiag) = ΣED(Adiag) 26 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' That ΣB(A) ⊆ ΣBD(A) ⊆ ΣED(A) resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' ΣB(Adiag) ⊆ ΣBD(Adiag) ⊆ ΣED(Adiag) has been shown in Theorem 27 and Theorem 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' ΣED(Adiag) ⊆ ΣB(Adiag): By Remark 24 it follows that ΣED(Adiag) is the union of the Bohl intervals � βAdiag(ek), βAdiag(ek) � , whereby e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' , ed is the standard basis of Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' ΣED(A) = ΣED(Adiag): For a proof, see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' [14] Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' ΣB(A) ⊆ ΣB(Adiag): This follows from ΣB(A) ⊆ ΣBD(A) ⊆ ΣED(A) = ΣB(Adiag).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' ΣBD(A) ⊆ ΣBD(Adiag): Follows from ΣBD(A) ⊆ ΣED(A) = ΣBD(Adiag).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' In the following remark we show that most inclusions in Theorem 34 might be strict inclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Remark 35 (Diagonal significance).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' The significance of the diagonal entries of an upper triangular matrix function A for the spectrum is an important question when it comes to the computation of the spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' In [3] an example A is constructed for which sup x0∈R2\\{0} βA(x0) < 0, and βA(R2) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' The following relations result from the above inequalities ΣB(A) ⊆ ΣBD(A) ⊊ ΣED(A) ⊊ ⊊ = ΣB(Adiag) = ΣBD(Adiag) = ΣED(Adiag) In fact, since sup x0∈R2\\{0} βA(x0) = sup ΣBD(A) and βA(R2) = sup ΣED(A), it follows that ΣBD(A) ⊊ ΣED(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' In Theorem 34 we have seen that ΣED(A) = ΣB(Adiag) = ΣBD(Adiag) = ΣED(Adiag).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Using ΣB(A) ⊆ ΣBD(A), we conclude that ΣB(A) ⊊ ΣB(Adiag) and ΣBD(A) ⊊ ΣBD(Adiag).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' It is an open question whether there exists a system (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='1) such that ΣB(A) ⊊ ΣBD(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Acknowledgement The research of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Czornik was supported by the Polish National Agency for Academic Exchange according to the decision PPN/BEK/2020/1/00188/UO/00001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' 27 References [1] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Aulbach, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Siegmund, The dichotomy spectrum for noninvertible sys- tems of linear difference equations, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Difference Equ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=', Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' 7(6) (2001), 895–913.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' [2] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Aulbach, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Siegmund, A spectral theory for nonautonomous difference equations, Proceedings of the 5th Intern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Conference of Difference Eqns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' and Application (Temuco, Chile, 2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' 2002, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' 45-55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' [3] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Babiarz, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Czornik, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Niezabitowski, Relations between Bohl expo- nents and general exponent of discrete linear time-varying systems, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Dif- ference Equ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=', Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' 25(4) (2019), 560–572.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' [4] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Barabanov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Konyukh, Bohl Exponents Of Linear Differential Systems, Mem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Differential Equations Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' 24 (2001), 151–158.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' [5] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Barreira, Lyapunov exponents, Birkh¨auser/Springer, Cham, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' [6] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Ben-Artzi, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Gohberg, Dichotomy, discrete Bohl exponents, and spec- trum of block weighted shifts, Integral Equations Operator Theory, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' 14(5) (1991), 613–677.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' [7] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Bohl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=', ¨Uber Differentialgleichungen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Reine Angew.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=', 144 (1913), 284–318.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' [8] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Daleckii, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Krein, Stability of solutions of differential equations in Banach space, Translations of Mathematical Monographs Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' 43,American Mathematical Society, Providence, RI, 1974.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' [9] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Doan, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Palmer, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Rasmussen, The Bohl spectrum for linear nonautonomous differential equations, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Dynam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Differential Equations, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' 29(4) (2017), 1459–1485.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' [10] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Hinrichsen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Pritchard, Mathematical Systems Theory I, Springer- Verlag Berlin Heidelberg, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' [11] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Izobov, Lyapunov Exponents and Stability, Cambridge Scientific Pub- lishers, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' [12] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Megginson, An introduction to Banach space theory, Graduate Texts in Mathematics Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' 183, Springer-Verlag, New York, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' [13] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' P¨otzsche, Geometric theory of discrete nonautonomous dynamical sys- tems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Springer, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' [14] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' P¨otzsche, Fine structure of the dichotomy spectrum, Integral Equations Operator Theory, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' 73(1) (2012), 107–151.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' [15] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' Russ, Dichotomy spectrum for difference equations in Banach spaces, Journal of Difference Equations and Applications 23 (2017), 574–617.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
+page_content=' 28' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/g9E0T4oBgHgl3EQfpQE0/content/2301.02536v1.pdf'}
diff --git a/g9E3T4oBgHgl3EQfIQkV/vector_store/index.faiss b/g9E3T4oBgHgl3EQfIQkV/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..7f4c6c33ed595f0dabedd802876c78fc7e0f8671
--- /dev/null
+++ b/g9E3T4oBgHgl3EQfIQkV/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4556a3392c6fb8b00a42cb8fd30b60322a09c769440be0604eaa098a39d4c097
+size 3407917
diff --git a/g9E3T4oBgHgl3EQfIQkV/vector_store/index.pkl b/g9E3T4oBgHgl3EQfIQkV/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..47e1713a32f19cf698097bf750f8fb8edd60f147
--- /dev/null
+++ b/g9E3T4oBgHgl3EQfIQkV/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e016d46eac94796c2e48bea9507bd23fdcb325fa9ec0c2b302287f0bc2d88e3c
+size 130840
diff --git a/gdAzT4oBgHgl3EQfov0m/content/tmp_files/2301.01600v1.pdf.txt b/gdAzT4oBgHgl3EQfov0m/content/tmp_files/2301.01600v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..a5e23330b1d74cbda3ac019151cb4ea594f94cd8
--- /dev/null
+++ b/gdAzT4oBgHgl3EQfov0m/content/tmp_files/2301.01600v1.pdf.txt
@@ -0,0 +1,2193 @@
+5G on the Farm: Evaluating Wireless Network Capabilities for
+Agricultural Robotics⋆
+Tsvetan Zhivkova,∗,1 (Postdoctoral Researcher), Elizabeth I Sklara (Professor)
+aLincoln Institute for Agri-food Technology, University of Lincoln, Riseholme Park Campus, Lincoln, LN2 2LG, UK
+A R T I C L E I N F O
+Keywords:
+5G, agricultural technologies, robotics,
+agri-robotics
+A B S T R A C T
+Global food security is an issue that is fast becoming a critical matter in the world today. Global
+warming, climate change and a range of other impacts caused by humans, such as carbon emis-
+sions, sociopolitical and economical challenges (e.g. war), traditional workforce/labour decline
+and population growth are straining global food security. The need for high-speed and reliable
+wireless communication in agriculture is becoming more of a necessity rather than a technological
+demonstration or showing superiority in the field. Governments and industries around the world are
+seeing more urgency in establishing communication infrastructure to scale up agricultural activities
+and improve sustainability, by employing autonomous agri-robotics and agri-technologies. The work
+presented here evaluates the physical performance of 5G in an agri-robotics application, and the results
+are compared against 4G and WiFi6 (a newly emerging wireless communication standard), which
+are typically used in agricultural environments. In addition, a series of simulation experiments were
+performed to assess the “real-time” operational delay in critical tasks that may require a human-in-
+the-loop to support decision making. The results lead to the conclusion that 4G cannot be used in the
+agricultural domain for applications that require high throughput and reliable communication between
+robot and user. Moreover, a single wireless solution does not exist for the agricultural domain, but
+instead multiple solutions can be combined to meet the necessary telecommunications requirements.
+Finally, the results show that 5G greatly outperforms 4G in all performance metrics, and on average
+only 18.2ms slower than WiFi6 making it very reliable.
+1. Introduction
+The agricultural domain is currently experiencing in-
+creased focus on emerging technologies and robotic ap-
+plications, largely due to concerns about food security
+and responses to climate change. As a result, the inter-
+section of agricultural robotics (or agri-robotics) and sup-
+porting technologies, like telecommunications, has garnered
+international attention from governments and industries
+alike (gov.uk, 2022; DEFRA, 2022; Duckett et al., 2018;
+Zhivkov et al., 2021; Tang et al., 2021).
+Some of the key reasons behind the recent boom in
+agricultural robotics include increased negative impact on
+global food security derived from a range of sociopolitical
+and environmental factors. The current war between Russia
+and Ukraine is one example where sociopolitical events
+have stressed the food supply chain. Ukraine and Russia
+are estimated to account for 30% of the global wheat sup-
+ply (Lang and McKee, 2022; Rae, 2022). Another example
+is Brexit, where the UK leaving the single market has led
+to fewer seasonal workers entering the UK, traditionally
+from Eastern Europe, to support harvesting of fruits and
+vegetables (Partridge and Partington, 2021). The Covid-
+19 pandemic laid bare the impact of labour shortages on
+agricultural productivity in multiple countries (Washburn,
+⋆This document is the results of the research project funded by UKRI
+Research England under the Lincoln Agri-Robotics and by Ceres Agri-tech
+grants.
+∗Corresponding author
+tzhivkov@lincoln.ac.uk (T. Zhivkov); esklar@lincoln.ac.uk (E.I.
+Sklar)
+ORCID(s): XXXX-XXXX-XXXX-XXXX (T. Zhivkov); 0000-0002-6383-9407
+(E.I. Sklar)
+2020; Naik, 2020). Examples of environmental effects on
+agriculture go both ways. Climate change affects agriculture
+by causing unpredictable changes in patterns of rainfall,
+average temperatures, occurrence of heatwaves, prevalence
+of weeds, infestations of pests, etc., all of which can stress
+and damage crops (Raza et al., 2019; Webb et al., 2020).
+Another issue related to climate change that is producing
+significant negative impact on agriculture is soil erosion.
+While some amount of soil erosion occurs naturally because
+of environmental factors, it is more unpredictable and more
+likely to occur due to climate change (Borrelli et al., 2020).
+On the flip side, agriculture affects the environment nega-
+tively in multiple ways. For example, current intense farming
+practices cause soil compaction (Shaheb et al., 2021; Mil-
+lard et al., 2019) due to heavy farm vehicles continuously
+driving over farm fields. According to the UN’s Food and
+Agriculture Organisation, livestock account for significant
+percentage of the greenhouse gas (GHG) emissions caused
+by humans (FAO, 2022).
+One of the primary motivators for the research initiative
+on sustainable farming is population growth (Webb et al.,
+2020): current agricultural practises are not sustainable and
+are not viable for up-scaling to secure food for the predicted
+10.2 billion people by 2050 (Borsellino et al., 2020). Pre-
+cision agriculture (V.Stafford, 2000; Gebbers and Adam-
+chuk, 2010) encompasses a broad spectrum of intelligent
+technologies that allow growers to make decisions at the
+level of an individual plant, or group of contiguous plants,
+rather than an entire field. This means that resources, such
+as fertilisers and water, as well as herbicides and pesticides,
+can be targeted to specific plants or planted regions, rather
+T Zhivkov et al.: Preprint submitted to Elsevier
+Page 1 of 19
+arXiv:2301.01600v1 [cs.NI] 9 Dec 2022
+
+a5G on the Farm
+than applying across an entire field—which can be wasteful
+when only a portion of the field requires that treatment, as
+well as unnecessarily expensive and potentially damaging
+to the environment. Intelligent sensors, either mounted in
+static locations around fields or on mobile devices such
+as ground-based or aerial (UAV) robots, can feed precise
+location-specific information about plant growth (e.g. size,
+colour, shape) and the environment (e.g. temperature, mois-
+ture, humidity) to farmers, who can use that data to inform
+their timetables concerning when (or not) to spray, when to
+harvest, etc. In addition, specialised actuators can also be
+mounted on robots to allow the location-specific information
+to feed real-time decision making and trigger actuation such
+as spraying, mechanical weeding or harvesting, performed
+by robots in the field.
+From the intelligent robotics perspective, these types of
+tasks require a number of capabilities: (a) precise location
+of sensed information; (b) precise location for actuation;
+(c) path-planning for ground-based robots to minimise soil
+compaction and energy usage or flight planning for aerial
+robots to minimise energy usage; and (d) accurate analysis
+of sensed data. The joint desire for highly accurate position
+information and the ability to transmit sensor data from
+fields to farmers (or automated decision support systems)
+highlights the need for communications networks that can
+deliver both of these capabilities reliably and robustly. 5G
+telecommunications is anticipated to provide three key tech-
+nical advantages over existing 4G capabilities (Durisi et al.,
+2016): enhanced mobile broadband (eMBB) at high band-
+width, ultra reliable low-latency (URLLC) and massive ma-
+chine communications (mMTC) at low bandwidth high scale
+and within a sliced network architecture (Popovski et al.,
+2018). Taken together, eMBB and URLLC promise better
+performance for applications such as accurate and timely po-
+sitioning and faster sensor data transmission. However, 5G is
+not available everywhere and public installations, especially
+in rural communities where populations are sparse (i.e. the
+paying customer base is small), are not a high priority in
+many countries. Thus we are concerned with understanding
+the specific practical advantages of 5G within an agriculture
+application domain.
+In the work presented here, we explore three wireless
+network technologies (WiFi6, 5G and 4G) and evaluate
+their performance in an agri-robotics environment. More
+emphasis is placed on 5G and WiFi6, as these are new and
+emerging communication networks, whereas we consider
+4G as our baseline. Two separate experiments are conducted,
+a physical experiment and a simulation experiment. The
+physical experiment tests the application of two-way com-
+munication between an in-field robot streaming real-time
+video to a remote server, which performs detection of crops
+and weeds from the received video. The received video
+stream is converted to a stream of images that are passed
+on to an AI-driven detection system. The wireless network
+results for throughput and latency are compared. The sim-
+ulation experiment uses the average latency results from
+the physical experiment to compare “real-time” operational
+performance.
+The remainder of this paper is comprised of a litera-
+ture review (Section 2), exploring the current research and
+state-of-the-art; our methodology and testing environment
+(Section 3), discussing the three wireless networks and loca-
+tions where our experiments were conducted; our physical
+experiment (Section 4), analysing network throughput and
+latency; our simulation experiment (Section 5), investigating
+the performance of “real-time” operation and control; and
+finally a conclusion (Section 6).
+2. Related Work
+Agricultural environments hold many challenges for
+wireless networks, as they are unstructured and have nat-
+ural obstacles that cannot be penetrated by most forms of
+telecommunications. Alternatively, laying wired infrastruc-
+ture around farms is even more challenging and expen-
+sive (Rendon Schneir and Xiong, 2016). Because of the
+shear sizes and remote locations of farms, it is unrealistic to
+dig trenches or erect overhead structures and permanently
+place wiring or optical cables to provide communication
+across fields. In addition, farmers are prone to dig up land
+occasionally, which might offset or damage underground
+cables, as well as introduce pests (e.g. termites); and finally,
+heavy vehicles can cause soil compaction, especially in wet
+conditions, between 25 cm and 50 cm deep, which can move
+or damage cables. Fibre optic cables are usually placed 15
+cm to 20 cm underground, but can be laid much deeper
+with a significant increase in cost. Instead, smaller 5G cells
+can be used to deliver high-speed and reliable wireless
+communication to rural areas (Tang et al., 2021). Of course,
+the cost of 5G carrier and user equipment remains very high
+and such a 5G expanse is yet to arrive in rural areas.
+From all the challenges that come with wired infras-
+tructure, it is no wonder that the literature in communica-
+tion and networking for agriculture is mainly focused on
+wireless networks, Internet-of-Things (IoT), low-cost and
+low-power sensors (Adami et al., 2020; Kagan et al., 2022;
+Tao et al., 2021). The research looks at either multiple
+sensors on a single device (System-on-Chip), performing a
+specific function, or cloud/fog computing for data collec-
+tion (Karthikkumar et al., 2021; Bodunde et al., 2019; Tsipis
+et al., 2020). WiFi (Karthikkumar et al., 2021) and Hy-
+brid WiFi/Zigbee (Tsipis et al., 2020)-based communication
+infrastructure has been investigated, but is heavily limited
+in functionality and device support, as well as number of
+communicating devices. Little consideration is given to a
+more practical and permanent communication infrastructure
+supporting a wide range of devices, functionalities and robot
+operations in agricultural environments. However, 5G has
+not only the potential to support a large number of connected
+devices, but also a wide range of different devices (Zhivkov
+et al., 2021). Moreover, considering the growth and popu-
+larity of 3G and 4G as use cases, the number of devices that
+support 5G will continue to grow as the technology matures,
+T Zhivkov et al.: Preprint submitted to Elsevier
+Page 2 of 19
+
+5G on the Farm
+bringing cheaper and lower power devices to the market. The
+lack of such research has been noted with the emergence of
+5G (Tang et al., 2021; Maraveas and Bartzanas, 2021).
+The literature in robotics for agriculture shows that the
+right research questions are being investigated, however
+progress is much slower than expected, especially for agri-
+robotics. A divide can be seen between emerging robot
+applications in other fields such as warehouse robotics,
+human-robot interaction (HRI) and self-driving autonomous
+vehicles, which employ state-of-the-art research in planning,
+navigation, environment interaction and machine vision.
+Comparatively, research in the agri-robotics field is pro-
+gressing slower; for example, current high-end industrial
+tractors with RTK-GPS (Real-Time Kinematic positioning
+GPS) with basic autopilot and mission planner software
+features (Batte and Ehsani, 2006) can support much of
+the emerging research that is being shown off in the agri-
+robotics field (Panfilov and Mann, 2018). Agri-robotics is
+lagging behind other fields in incorporating up-and-coming
+novel deep-learning and machine-learning techniques, as
+well as not utilising bleeding-edge planning, navigation and
+machine vision systems to enable completely autonomous
+operation.
+The increased interest in 5G communication technol-
+ogy, in parallel with the negative sociopolitical and en-
+vironmental challenges mentioned earlier (e.g. war and
+Brexit) that have increased government funding in agri-
+culture, have started to shift the balance of agri-robotics
+and agri-technology onto the right track. Recent research
+in agriculture is making gains towards the bleeding edge,
+incorporating novel image detection and machine learning
+in agri-robotics applications (Gomez et al., 2021; Choi et al.,
+2021), performing novel fleet-management and navigation in
+agri-robots (Ponnambalam et al., 2020) and employing 5G
+networks (Zhivkov et al., 2021). These activities motivate
+and accelerate the need for superior telecommunications
+infrastructure and innovation in rural environments.
+Tang et al. (2021) present use cases and similar research
+to draw a hypothetical argument for the use of 5G in agri-
+culture and review outcomes based on expectations. But
+no actual results are shown of 5G-SA (Stand Alone) in an
+agricultural application, which is the motivation of the work
+we present here. To the best of our knowledge, no research
+exists in the agri-domain that evaluates and discusses the
+practical performance of 5G and compares general wireless
+technology in a rural environment with detailed performance
+metrics. Here, we present practical results from a physical
+experiment performed in two different fields, detailed in
+Section 4. In addition, simulated results are drawn from the
+collected data to further demonstrate the power of 5G in a
+rural environment, described in Section 5.
+3. Experiment Design
+This section describes the underpinning agri-robotics
+use case that serves as the basis for the experiments pre-
+sented here (Section 3.1), the image detection methodology
+we implemented for weed identification (Section 3.2), the
+locations where experiments were conducted (Section 3.3),
+the apparatus deployed (Section 3.4), the wireless network
+systems evaluated (Section 3.5), and finally how tunnelling
+was used to support 2-way 5G communication (Section 3.6).
+3.1. Agri-robotics use case
+The agri-robotics use case we employ for the experi-
+ments presented here has two overarching goals:
+(1) to develop a sprayer robot that can autonomously drive
+in a farm field performing real-time weed detection and spot
+spraying (Salazar-Gomez et al., 2022); and
+(2) to stream real-time video of detected weeds in order
+to support decision making with a human (e.g. farmer or
+agronomist) in the loop.
+The experimental results and discussion in Section 4,
+evaluate the performance of three wireless network tech-
+nologies to support goal (1). In addition, a proof-of-concept
+theoretical experiment is conducted in Section 5, in support
+of the real-time data transmission requirement for achieving
+goals (1) and (2). The theoretical experiment, Section 5, uses
+latency data obtained from Section 4. The basic setup can
+also be used for a range of other applications—not only spot
+spraying for weeds, but also pesticides, spot irrigation and
+for harvesting.
+Figure 1: Agricultural use case: detecting weeds and crops in
+a field
+The setup of the system is shown in Figure 1. Wire-
+less communication was established between a remote-
+controlled robot that was driven in a field, streaming video
+to a remote laptop with a dedicated GPU acting as a pseudo
+Mobile Edge Computer (MEC) (see Section 3.4), which in
+turn performed image analysis in real-time and displayed the
+results on a screen. Sample results are shown in Figure 2.
+The remote laptop was placed at a fixed location, depending
+on the type of wireless network being tested, as described in
+Section 3.5. As mentioned, the focus of this experiment was
+to evaluate if real-time weed detection was possible, which
+would allow a farmer to visualise the performance of the
+detector and help with their decision making. We achieve
+this by evaluating the performance of three different wireless
+communication networks, as explained below.
+T Zhivkov et al.: Preprint submitted to Elsevier
+Page 3 of 19
+
+processed images identifying weeds and crops
+user laptop
+GPU laptop
+acting as
+acting as MEC
+remote control
+motion
+robot
+tro
+Camera on robot
+capturing video stream
+of crops and weeds5G on the Farm
+Figure 2: Sample detection results of weeds and crop. The red
+boxes indicate crop (lettuce) and the blue boxes indicate weeds.
+A trained Yolov5m model was used to obtain these results, as
+described in Section 3.2.
+3.2. Image Detection
+In related work (Salazar-Gomez et al., 2022), we de-
+veloped a Machine Learning (ML) model designed to meet
+specific image resolution, processing speed and detection
+accuracy requirements:
+• To detect weeds accurately using this model, images
+must be in focus and with a resolution of at least
+640 × 360 pixels (푤푖푑푡ℎ × ℎ푒푖푔ℎ푡). The ML model
+benefits from higher resolution images as more detail
+is retained.
+• To achieve “real-time” performance, the image pro-
+cessing pipeline (including image capture and object
+detection) must be capable of running faster than
+a video stream of 30 Frames Per Second (FPS) or
+higher, which is ~33.3ms. This is to enable video
+footage to run uninterrupted at 30FPS with overhead
+for missed frames.
+• To provide practical utility for the spot-spraying task
+at hand, the model needs to achieve >80% accuracy in
+crop vs weed detection.
+In that work, seven different ML models were compared
+and out of those Yolov5m (Jocher et al., 2021) achieved the
+best results out of all requirements. Yolov5m achieved an
+accuracy of over 87% and could perform image inference at
+a rate of ~69FPS (Salazar-Gomez et al., 2022).
+The Yolov5m model was set up on the MEC and the
+remote-controlled robot streamed video images of the field
+at 30FPS to the MEC. The MEC then analysed the in-
+coming video stream, performed image inference using the
+learned model, created bounding boxes outlining the crops
+and weeds in each image, and finally displayed a live video
+feed with the detected weeds and crops to the user. Figure 2
+illustrates sample results running this model on images of
+lettuce and surrounding weeds in the field.
+3.3. Experiment Locations
+Experiments were conducted in two fields, which we
+refer to as the Vegetable Polytunnel and the Walled Garden.
+Our 5G network has a geographical advantage in the Veg-
+etable Polytunnel compared to the Walled Garden. The Veg-
+etable Polytunnel area has VLoS (Visual Line-of-Sight) with
+few obstacles blocking the signal and is at an approximate
+distance of 46 to 80 metres to the antenna, the closest and
+furthest points measured respectively. In contrast, the Walled
+Garden is important in testing the limitations of the 5G
+network because it contains regions with NVLoS (No Visual
+Line-of-Sight), which are either lightly or heavily obscured
+by a high tree line and a wall surrounding the field. Data
+collection points in the Walled Garden are at approximate
+distances of 122 to 154 metres, the closest and furthest points
+measured respectively. The two areas used for experiments
+are illustrated in Figures 7 and 8, in Section 4. The areas
+of operation and exact distances between data collection
+points, i.e., network access point (pseudo-MEC) to remote-
+controlled robot, are given in Section 4.
+3.4. Apparatus
+The setup of each of the three communications networks
+compared in this paper are detailed here. Our 5G system
+is a stand-alone (SA) network, using the emerging New
+Radio (NR) sub-6GHz band N77, that is privately owned
+by our research facility, making it easier to conduct con-
+trolled experiments and with fewer restrictions than a public
+network. We are able to adjust certain system parameters,
+within the constraints of our license agreement, in order
+to support different types of experimentation. WiFi, and by
+extension WiFi6, can be set up as either a private or public
+network, as it is not controlled by a regulatory body that
+requires a license to operate1. In the experiments reported
+here, WiFi6 with the 802.11ax standard was deployed and
+set up as a private network. The 4G network in these exper-
+iments is commonly used: a commercial, publicly available
+telecommunications system, with no parameters controlled
+by end users. The wireless networks’ configuration details
+and common parameters are discussed further in Section 3.5.
+Our 5G-SA system currently does not have a permanent
+Mobile Edge Compute (MEC) node installed2, which is typ-
+ically a powerful server-grade system that is used to perform
+fast computation on the “edge” (i.e. in the local environment)
+as opposed to sending data off to the “cloud”. In our setup,
+the server-grade MEC functionality is approximated by a
+temporary solution, a powerful GPU-driven laptop, which
+we refer to as our pseudo-MEC.
+All experiments were conducted using two laptops that
+have identical hardware and adequate compute power. The
+laptops are deemed to have “adequate” processing power if
+they have a dedicated GPU with at least 4GB or more of
+graphics RAM. Each laptop is an ASUS TUF Dash F153,
+with i7 11370H @4.8GHz (4 core, 8 thread) CPU, RTX 3060
+GPU with 6GB GDDR6 and 8GB DDR4 RAM. One laptop
+was used as the remote server, denoted as the pseudo-MEC,
+1WiFi6 frequency ranges marginally differ between countries.
+2Supply-chain issues have delayed acquisition and deployment of all
+components for the full system, due for completion in 2023.
+3https://www.asus.com/uk/Laptops/For-Gaming/TUF-Gaming/
+T Zhivkov et al.: Preprint submitted to Elsevier
+Page 4 of 19
+
+0.0
+0.0
+1.0.5G on the Farm
+and the other acted as a mobile client integrated on a remote-
+controlled robot in the field.
+3.5. Wireless Networks
+The network equipment, including the two laptops used
+for communication experiments, had different setups de-
+pending on the type of network being tested. We tried to
+keep the setups as similar as possible so that our comparisons
+of experimental results are valid. This section describes our
+three different network setups and configurations.
+Figure 3: Connection diagram for our 5G-SA network.
+• 5G Network: A connection diagram is illustrated
+in Figure 3. The pseudo-MEC, for the 5G network
+experiments is directly attached via Ethernet cable
+(cat6) to the receiving 5G mast. Moreover, all Ethernet
+wired cable connections use cat6 cabling, unless oth-
+erwise specified. The mobile client is connected via
+an external 5G CPE (Customer Premises Equipment)
+device, by Ethernet cable, to allow it to communicate
+with the 5G network. The 5G-CPE is a router using
+a pre-configured 5G SIM card, provided by BT4 and
+Nokia5.
+5G Network (N77) Configuration: The private 5G
+network system and relevant parameters are listed in
+Table 1. There are certain configuration limitations
+with our 5G system; the configuration listed in Ta-
+ble 1 illustrates what it is capable of achieving at the
+moment. For example, currently the Time Division
+Duplex (TDD) and carrier bandwidth is fixed, which
+itself is subject to Ofcom6 licensing limitations. DL
+and UL stand for download and upload, respectively,
+and are used typically to denote throughput speed or
+refer to modulation.
+• WiFi6 Network: A connection diagram is illustrated
+in Figure 4. The pseudo-MEC, for the WiFi6 network
+experiments is connected via Ethernet cable (cat6) to a
+WiFi6 enabled router. The mobile client on the remote
+controlled robot has an internal WiFi6 network card
+that allows it to communicate with the WiFi6 enabled
+router.
+4https://www.bt.com/
+5https://www.nokia.com/
+6https://www.ofcom.org.uk/home
+Specification
+Description
+5G Frequency Band N77
+3800MHz-4100MHz
+Carrier Bandwidth
+100MHz
+Modulation
+256(DL)/64(UL) QAM
+Transmit power
+5W per Tx path (4Tx
+paths)
+MIMO layers
+4x2 closed loop MIMO
+TDD (UL:DL) ratio
+3/7
+Table 1
+5G-SA N77 network configuration
+Figure 4: Connection diagram for the WiFi6 network.
+Specification
+Description
+5GHz
+Frequency
+Band
+(802.11ax)
+5160-5895MHz
+Carrier Bandwidth
+40-160MHz
+Modulation
+(up
+to)
+1024(DL/UL)
+QAM
+Transmit power
+1W
+TDD (UL:DL) ratio
+N/A
+Table 2
+WiFi6 central router configuration
+WiFi6 configuration: The WiFi6 network system
+and relevant parameters are listed in Table 2. Further
+details on the specific WiFi6 router used can be found
+on the manufacturer’s web site7. It should be noted
+that TDD is not a used feature in WiFi communica-
+tion networks and QoS (Quality of Service) groups
+are disabled (unassigned). For the ideal case (highest
+throughput and lowest latency), the QoS feature is left
+disabled.
+• 4G Network: Because we used a public 4G network,
+the pseudo-MEC could not be directly connected to a
+receiving 4G mast. Instead, the pseudo-MEC and mo-
+bile client analogy for the 4G experiments is replaced
+by a client-to-client analogy, illustrated in Figure 5.
+Both mobile clients used for 4G network experiments,
+connect to the network via external USB dongle de-
+vices. The external device used for 4G networking is
+the D-Link DWM-2228.
+7WiFi6 router - https://static.tp-link.com/2021/202103/20210311/
+ArcherAX6000(EU&US)2.0_Datasheet.pdf
+8D-Link
+(4G
+dongle)
+-
+https://www.dlink.com/en/products/
+dwm-222-4g-lte-usb-adapter
+T Zhivkov et al.: Preprint submitted to Elsevier
+Page 5 of 19
+
+5G Mast
+5G-Client/Robot
+5G-CPE
+Ethernet
+Ethernet
+5G Core
+pseudo-MEC
+Mobile clientWiFi Central System
+WiEi-Client/Robot
+Mobile client
+Ethernet
+WiFi
+router
+pseudo-MEC5G on the Farm
+Figure 5: Connection diagram for the 4G network.
+4G configuration: The D-Link DWM-222 sup-
+ports any UK commercial SIM card network carrier
+and connects to any device via USB2.0 connection.
+The maximum data rate of USB2.0 is 480Mbps,
+which is enough to test the maximum theoretical
+speed of 4G communication, which is 300Mbps DL
+and 150Mbps UL. However, actual 4G commercial
+download and upload speed is approximately 6%
+(18.4Mbps) and 10% (14.7Mbps) of the theoreti-
+cal maximums (achieved by EE9), respectively. The
+UL/DL data is aggregated from over 210,000 mobile
+phones across the UK (Ofcom, 2014). To demonstrate
+the maximum real-world 4G speed achieved in VLoS
+and within approximately 10m of a 4G mast, mea-
+surements were taken in London (UK) using Ookla10,
+which is a speed test application that downloads and
+uploads a short burst of data to measure throughput;
+results were 100Mbps DL and 20Mbps UL. In a
+normal usage scenario, it is extremely unlikely to
+achieve such 4G speeds, as this would require a user
+to be in close proximity, in VLoS and be able to
+predict low network traffic load for a particular public
+4G mast, and additionally know if the server of the
+service they want to use is spatially close (fewer hops
+between network nodes to reach the server) and that it
+employs state-of-the-art network capabilities. Table 3
+lists all the known parameters for the 4G network. It
+should be noted that the actual TDD ratio is unknown
+and usually dynamic depending on the 4G network
+carrier. However, the maximum theoretical speeds
+and real-world practical speeds are well known and
+documented for 4G, these are given in Table 3.
+3.6. Tunnelling 5G Communication
+Tunnelling is a network protocol that allows the secure
+transmission of private data over a public network. It is a
+9https://ee.co.uk/
+10Ookla internet speed test - https://www.speedtest.net/
+Specification
+Description
+LTE Frequency Band
+800MHz-2600MHz
+Carrier Bandwidth
+1-20MHz
+Modulation
+256(DL)/64(UL)QAM
+Transmit power
+0.2W
+UL:DL (in Mbps)
+150:300(theoretical)
+20:100(real-world)
+Table 3
+4G D-Link configuration (D-Link, 2020)
+way of giving users of a public network access to network
+resources that they would not otherwise be able to reach11. In
+some rare instances, tunnelling is used to enable unsupported
+network protocols and to bypass firewalls. The nature of
+the private 5G network and public 4G network experiments
+required us to use tunnelling for this purpose. The current
+5G network setup uses a network address translation (NAT)
+layer, which hides any connected devices’ IP for better
+security. For research use cases and experimentation, the
+NAT layer presents an issue as it makes direct communi-
+cation between connected devices impossible. The way of
+circumnavigating the issue is by creating a private tunnel
+connection between directly communicating devices, which
+is what has been done for the experiments described in
+Section 4. In the future, NAT forwarding will be enabled
+as a feature for the private 5G network to allow direct
+communication without the need for tunnelling. However,
+for public 4G network experiments, removing the NAT layer
+is not an option as it is controlled by the network carrier
+and security is a very important and concerning issue on
+public networks. Thus, it will always be necessary to bypass
+the security measures put on public networks and to enable
+certain network protocols to run between the pseudo-MEC
+(server) and remote-controlled robot (client). The public 4G
+network results presented in Sections 4 and 5 are used to
+demonstrate the best possible communication with current
+commercial technology in rural areas, which many farmers
+currently contend with12. 4G is used as the “benchmark to
+beat” for 5G, while WiFi6, although restrictive in its use case
+in agriculture, is used to show how close 5G gets to a state-
+of-the-art wireless local area network (WLAN). A simplified
+network diagram in Figure 6 shows how NAT works for the
+4G and 5G networks.
+Unlike mobile networks, e.g. 3G, 4G, 5G, etc., WiFi, and
+by extension WiFi6, routers do not need to hide wireless
+local devices’ IP addresses. The functionality of NAT is usu-
+ally required only when a device is connected to the internet
+(online), which is not always required by farmers. If a WiFi
+enabled network is required to upload data to the cloud or to
+an online server, this can be done without introducing NAT
+to the local wireless area network. However, introducing
+an online component to WLANs can cause bottlenecks to
+11https://www.cisco.com/c/en/us/products/ios-nx-os-
+software/tunneling/index.html
+12Depending on the location of farm fields and what type of mobile
+network is available.
+T Zhivkov et al.: Preprint submitted to Elsevier
+Page 6 of 19
+
+4G (public) mast
+4G-Client
+-
+4G-Client/Robot
+4G
+4G
+Dongle
+Dongle
+USB
+USB
+pseudo-MEC
+Mobile client5G on the Farm
+Figure 6: A simplified diagram showing how messages are
+handled by a router using NAT.
+occur due to low throughput capabilities of a specific internet
+service provider (ISP) or geographical area.
+To achieve bidirectional communication for 4G and 5G,
+a peer-to-peer tunnelling network service was created using
+WireGuard (Donenfeld, 2020). Network tunnelling can in-
+crease delay if the network path taken between communi-
+cating devices is not direct, i.e. requests have to be made to
+the virtual private network (VPN) or tunnelling service; in
+addition, communication paths can take unknown hops to
+reach a destination. However, the tunnelling network for the
+private 5G network is made up of only 2 end-point laptops,
+which means that there is minimal delay in the system.
+For example, Donenfeld (Donenfeld, 2020) performed tests
+using ideal conditions (2 end-point devices connected with
+an Ethernet cable), and WireGuard achieved the lowest ping
+time against all other tested applications, with a latency of
+~0.403ms. A WireGuard experiment over-the-air cannot be
+conducted accurately enough as dynamic environment con-
+ditions and distance to the 5G mast (14.5 m above ground)
+are hard to measure precisely and are highly variable. How-
+ever, from the latency results shown in Section 4.2, any delay
+introduced by WireGuard is considered insignificant.
+To allow for two devices to directly communicate over
+a public network, a different type of WireGuard service is
+required, i.e. server-client tunnelling network. For example,
+the public 4G network experiments were configured using
+a WireGuard server-client tunnelling network to bypass the
+ISP gateway (anonymity) that comes with standard public
+wireless communications. However, this means that there is
+an increase in WireGuard delay path routing and it is more
+complex to calculate true Round-Trip Time (RTT) latency.
+4. Physical Experiments: Network
+Throughput and Latency
+Wireless network experiments were conducted in four
+corners of two test environments, aforementioned in Sec-
+tion 3.3, the Vegetable Polytunnel and the Walled Garden.
+In total, experiments were conducted in 8 geographically
+different points and, at each point, an experiment lasted 30
+seconds and was repeated 5 times. This allows for results to
+be interpreted in two ways: firstly, by taking the results of
+each experiment run of 30 seconds separately; and secondly,
+Vegetable Polytunnel
+W3W Location
+Distance(m)
+5G
+WiFi
+P.R.L.
+49.1
+8.3
+M.V.F.
+61.5
+8.6
+R.W.P.
+72.0
+32.6
+D.L.F.
+81.4
+32.9
+Table 4
+The distance between 5G/WiFi access point and the data
+collection points in the Vegetable Polytunnel.
+Walled Garden
+W3W Location
+Distance(m)
+5G
+WiFi
+A.C.D.
+143.4
+14.0
+A.C.J.
+119.5
+32.2
+O.L.D.
+154.8
+14.4
+L.V.C.
+132.3
+33.2
+Table 5
+The distance between 5G/WiFi access point and the data
+collection points in the Walled Garden.
+by combining the results of 5 experiments over 30 seconds,
+which totals 2 minutes and 30 seconds of acquired data per
+location. The results presented in Section 4.2 are obtained
+using the first methodology. The commercial mapping tool
+What3Words (W3W)13 was used to identify and mark the 8
+data collection points where experiments were conducted,
+illustrated in Figures 7 and 8. For ease of visualising the
+results in Section 4.2, the points used for data collection
+are labelled with the first letter of each W3W specification,
+and the core network (access point) for 5G and WiFi6
+are labelled. The approximate distances between each data
+collection point and the access points (5G and WiFi6) are
+given in Tables 4 and 5. Finally, the physical experiments
+and results are briefly discussed in 4.3.
+4.1. Performance Metrics
+To test network stability and performance, different
+video streaming settings were used, namely 1-RGB, 4-RGB
+and 1-RGBD video streams14. The number at the start of
+RGB denotes the number of video streams, for example
+1-RGB denotes one RGB video stream. The in-field robot
+streams video data back to the pseudo-MEC. The 1-RGB
+video stream experiment tests realistic latency conditions in
+what can be considered typical or medium network load. The
+4-RGB video stream experiment is used to test how 4G, 5G
+and WiFi6 deal with multiple data streams communicating
+at the same time. Moreover, four video streams can be con-
+sidered heavy network load, which is expected to increase
+latency for all network types. Finally, the 1-RGBD stream
+experiment is used as a method to analyse how the different
+networks react to a single source of consistent heavy network
+13https://what3words.com
+14All video stream data in experiments was compressed.
+T Zhivkov et al.: Preprint submitted to Elsevier
+Page 7 of 19
+
+NAT
+Robot device 1
+I
+192.168.0.2
+I
+Robotdevice2
+Requestfrom
+192.168.0.3
+Request translated
+192.168.0.3
+Internet
+Router
+WAN:
+172.88.223.203
+Robot device n
+-
+192.168.0.0/24
+NAT5G on the Farm
+Figure 7: Satellite image showing the four experiment loca-
+tions, identified using abbreviated what3words, in the Veg-
+etable Polytunnel.
+Figure 8: Satellite image showing the four experiment loca-
+tions, identified using abbreviated what3words, in the Walled
+Garden.
+load. However, it is important to stress that it was never the
+intention of the authors to analyse maximum throughput
+or lowest latency, but rather to demonstrate the practical
+results and to evaluate the performance of state-of-the-art
+network systems, i.e., 5G and WiFi6, and a commonly used
+commercial network system, i.e., 4G.
+There were three independent variables in the network
+experiments: location, network type and video stream num-
+ber. There were two dependent variables, i.e. the raw data
+collected to assess performance: latency, measured in mi-
+croseconds (ms), and throughput, measured in Megabits per
+second (Mbps). The results are presented next.
+4.2. Results
+While a larger set of performance metrics were collected
+during the experiments described in this paper, a selected
+portion of the results that best illustrate our aims are re-
+ported here. For the two performance metrics, three statis-
+tics are presented: mean, standard deviation and minimum
+latency (ms) and mean, standard deviation and maximum
+throughput (Mbps).
+Throughput15 results are interpreted from the point of
+view of the in-field mobile robot, i.e., data sent. The data sent
+metric is much higher in proportion to the data received from
+the pseudo-MEC, which is negligible. This is because the
+mobile robot receives basic network telemetry data, video
+stream control messages to start and stop a stream, and co-
+ordinate information identifying weed locations in an image,
+as a consequence it is not investigated in this work.
+The data collection point (geographical point) with the
+best results for latency (lowest mean and minimal latency)
+and throughput (highest mean and maximum throughput)
+is selected for each of the two environments and shown in
+Table 616. Figure 9 and Figure 10 visually show the data
+from Table 6 for each of the environments, Walled Garden
+and Vegetable Polytunnel. The wireless networks’ latency
+results ordering, in Figure 9, remained the same throughout
+all data collection points in both test environments. It was
+always the case that WiFi6 had the lowest latency followed
+by 5G, whereas 4G had the highest latency which was ten
+times higher than the latter. The ordering of the wireless
+networks’ performance remained similar for throughput, as
+shown in Figure 10. In all instances WiFi6 outperformed 5G
+and greatly outperformed 4G. Whereas, 5G outperformed
+4G in all environments. Finally, the distance between the
+two environments from each access point is averaged and
+compared for 5G and WiFi6. The 5G mast is an average
+distance of 66.0 metres and 137.5 metres from the Vegetable
+Polytunnel and Walled Garden, respectively. Whereas, the
+WiFi6 router is an average distance of 20.6 metres and 23.5
+metres from the Vegetable Polytunnel and Walled Garden,
+respectively. A difference of 45.4 metres and 114.0 metres
+respectively, between the two corresponding environments
+and wireless networks.
+4.3. Discussion
+We show that commercially available public 4G is un-
+realistic to be used for high data rate and low-latency op-
+erations in the rural environment, rarely achieving below
+100ms latency and never managing to reach over 20Mbps
+data throughput. Though, it is promising that on average the
+public 4G network data rate is close to the actual commercial
+upload speeds of 14.7Mbps quoted by Ofcom (2014). It
+should be noted that the surrounding area was thoroughly
+evaluated for the best 4G signal and network provider to
+achieve these results. However, low throughput and high
+latency can result in poor performance of the in-field robot,
+misinterpreting and mislabelling plants or even robots caus-
+ing damage to plants. A strength of public 4G networks for
+agriculture is that if a rural area has any network coverage, it
+15Wherever “throughput” results are shown or discussed they depict
+“data sent” performance metric.
+16For a complete view of all data collection points covering the six key
+performance metrics, refer to Appendix A
+T Zhivkov et al.: Preprint submitted to Elsevier
+Page 8 of 19
+
+5G
+WiFi
+.R.L
+M.V.F
+R.W.P.
+D.L.F5G
+A.C.D
+A.C.J
+WiF
+O.L.D.
+L.V.C5G on the Farm
+Vegetable Polytunnel
+Network
+Latency (ms)
+Throughput (Mbps)
+Type
+Mean
+Min
+Loc-
+ation
+Mean
+Max
+Loc-
+ation
+4G
+94.9
+72.0
+DLF
+12.5
+16.5
+DLF
+WiFi6
+1.2
+1.0
+RWP
+144.2
+145.0
+PRL
+5G
+15.7
+10.9
+DLF
+57.1
+65.1
+PRL
+Walled Garden
+Network
+Latency (ms)
+Throughput (Mbps)
+Type
+Mean
+Min
+Loc-
+ation
+Mean
+Max
+Loc-
+ation
+4G
+187.2
+137.6
+LVC
+15.4
+17.8
+ACJ
+WiFi6
+1.3
+1.0
+OLD
+144.2
+149.5
+ACD
+5G
+23.1
+1.0
+OLD
+31.0
+33.8
+OLD
+Table 6
+The best results achieved in each environment for the different
+network types.
+is quick and easy to setup with little configuration required.
+However, this strength carries a weakness. Total control and
+availability of the network is at the discretion of the network
+carrier (ISP). Moreover, a network wide outage for the ISP
+means instant outage and complete disruption to normal
+operation on the farm.
+Public 5G, which is not evaluated in this work, is ex-
+pected to perform with lower latency and higher data rate
+than public 4G. Hence, it can be assumed that public 5G
+can support high data rate, low-latency agri-robotics and the
+future smart farm. However, this is not the case currently
+and it will remain so until public 5G fully matures, and even
+if it does, there is a chance that it will remain unrealistic
+like public 4G. It needs to be considered that commercial
+networks do not apply a balanced TDD, i.e., more emphasis
+on download speed and delivering services. Unlike a private
+network that can be configured to provide more balanced
+upload and download speeds and improve network coverage
+to more rural areas. If we take a look at real-world data pro-
+vided by Ookla (Fomon, 2021) for Q1-Q2 of 2021, the high-
+est 5G upload data achieved is 41.79Mbps by South Korea.
+South Korea have been the leader in network technology and
+internet infrastructure since the late 90s early 00s (Lee et al.,
+2003) and they are world leading in 5G as well (Massaro
+and Kim, 2022). Yet, the remaining bottleneck for public
+5G seems to be upload speed. Getting over the maturity and
+configuration hurdle, the lack of control over the network and
+relying on an ISP, as is the case for 4G, remains an issue.
+The private 5G available at the University of Lincoln
+has proved why it is better than public 5G, by showing
+greater upload speeds achieved in real-world experiments of
+57.1Mbps with VLoS and 31.0Mbps with NVLoS, Table 6.
+The slowest average upload speed is approximately double
+that of the UK average according to Fomon (2021). Upload
+speeds over 30Mbps can support at least one live video
+stream and bi-directional communication and 60Mbps can
+support two live streams and bi-directional communication.
+Moreover, the latter case can support multiple live streams,
+(a) Vegetable Polytunnel
+(b) Walled Garden
+Figure 9: Best network latency results, averaged over 5 ex-
+perimental runs gathered from a single “best” location (please
+refer to Table 6). The mean is the solid line in the centre of
+the shaded regions, which shows ± 1 standard deviation.
+however video streaming will not be real-time and will not
+be running at 30FPS. The private 5G 4-RGB streaming
+experiments showed significant reduction in video stream
+quality and speed, with some streams buffering for a few
+seconds before starting back up again. The fact that four
+video streams shared bandwidth meant that the system was
+trying to balance resources and all four streams were not
+running at the same speed, i.e. some smoother than oth-
+ers. Whereas, the 1-RGBD stream experiment experienced
+slowness or choppiness and was not running at 30FPS.
+The expected bandwidth requirement for live RGBD video
+streaming is ~145.0Mbps, 5G could support approximately
+half the required bandwidth.
+The private WiFi6 (local) network was evaluated as it
+has recently become commercially available and it is state-
+of-the-art in terms of network features and performance,
+introducing higher network speeds and very low-latency. It
+was expected that WiFi6 will beat 5G in data throughput, and
+in fact it leads 5G by ~2.5 times in upload data speeds. WiFi6
+unexpectedly beats 5G in latency time as well, by being as
+much as ~13 times lower. However, the distances at which
+T Zhivkov et al.: Preprint submitted to Elsevier
+Page 9 of 19
+
+WiFi
+4G
+300
+5G
+WiFi STD
+4G STD
+5G STD
+250
+Latency (ms)
+200
+150
+100
+50
+0
+0
+5
+10
+15
+20
+25
+30
+Time Sequence (seconds)WiFi
+4G
+300
+5G
+WiFi STD
+4G STD
+5G STD
+250 -
+Latency (ms)
+200
+150
+100
+50
+0
+0
+5
+10
+15
+20
+25
+30
+Time Sequence (seconds)5G on the Farm
+(a) Vegetable Polytunnel
+(b) Walled Garden
+Figure 10: Network throughput results, averaged over 5 ex-
+perimental runs gathered from a single “best” location (please
+refer to Table 6). The mean is the solid line in the centre of
+the shaded regions, which shows ± 1 standard deviation.
+these results are obtained are not the same as for 5G, and the
+NVLoS experienced by 5G is not present for WiFi6.
+The point with the greatest distance for WiFi6 is 33.2
+metres and for 5G is 154.8 metres, over 4.5 times greater for
+the latter. The attenuation of a WiFi signal is exponential
+and at a distance greater than 100 metres there would be
+no signal (communication) at all. High gain antenna could
+be used to boost WiFi signal, however such antennae do not
+exist commercially for WiFi6. Moreover, a license needs to
+be obtained to operate such antennae for the WiFi standard
+making it very likely the case that WiFi6 will also require
+license to operate signal boosting antennae.
+WiFi6 results are demonstrably better than 5G and at a
+completely different level compared to 4G, however there
+are many situations where WiFi6 is not the best option
+in agriculture. For example, the experiments conducted in
+this work used only the WiFi6 standard, and support was
+disabled for older WiFi standards. This forced all devices
+to use the latest standard for message transmission ensuring
+lowest possible latency and highest throughput. However,
+in practical environments (i.e., farm) it can be beneficial to
+enable multi-WiFi support, allowing certain sensors to use
+older standards, which may allow for greater compatibility,
+coverage and more robust signal-strength to distance drop
+off (better attenuation at greater distances). Moreover, not
+many discrete and low power WiFi6 network devices exist
+on the market. Most sensors used by agronomists or farmers
+for monitoring rainfall, soil moisture, light levels, etc., do not
+support WiFi6. Because of this, WiFi6 is less known and not
+many real world use cases and data exist yet.
+5. Simulation Experiments: Real-Time
+Operation and Control
+A future technology being introduced to 5G is ultra-
+reliable low-latency communication (URLLC) that will guar-
+antee ∼99.999% reliability of communication and real-time
+low-latency. This feature should have been available for FR1
+(Frequency range 1 - i.e., 5G N77 band) in early 2021, but
+its release has been delayed by most system providers, in-
+cluding the private 5G network at the University of Lincoln.
+URLLC (Sachs et al., 2018) is a 5G feature that has been
+marked to bring realisation to many technologies, one of
+which is V2X (Vehicle-to-Everything) networks, designed
+to provide real-time reliable communication to assist nav-
+igation in fully autonomous vehicles, traffic control and
+road safety protocols (Chen et al., 2017; Ali et al., 2021).
+Sachs et al. (2018) explain that the theoretical worst-case
+transmission latencies differ depending on network config-
+uration, showing that RTT latency can range from as low as
+~0.8ms to as high as ~6.3ms, depending on configuration.
+However, according to the official 3GPP technical specifi-
+cation (3GPP, 2017), the intended theoretical RTT latency
+target for URLLC is 1ms.
+To not convolute the simulated experiment results, a
+comparison and evaluation is given assuming the theoreti-
+cal URLLC value (1ms) given in the 3GPP (2017) report.
+Moreover, we do not evaluate the reliability of the wireless
+networks, as none of them, including the current private 5G
+network, have the URLLC feature available. URLLC is not
+a feature that exists for 4G or WiFi6, and as mentioned it is
+not available for most 5G systems. The results in this work
+are not intended to directly challenge or prove 5G URLLC,
+furthermore we do acknowledge that there are targeted use
+cases for this feature that 4G and WiFi6 cannot support,
+e.g. V2X, due to network and infrastructure limitations. This
+simulation strictly compares the RTT latency of the three
+wireless networks against the URLLC theoretical specifica-
+tion to primarily investigate the real-time speed-up of robot
+operation in the field and the improved performance.
+5.1. Experiment Design
+The objective of this experiment is to analyse the “real-
+time” delay in positional accuracy between the different
+network types. To perform these simulated experiments
+we used real world RTT mean latency results from two
+arbitrarily chosen data collection points, P.R.L. and R.W.P.
+in the Vegetable Polytunnel, as presented in Table 7. The
+T Zhivkov et al.: Preprint submitted to Elsevier
+Page 10 of 19
+
+WiFi
+4G
+140 -
+5G
+WiFi STD
+4G STD
+120
+5G STD
+(sd) dnol
+100
+80
+60
+40
+20
+0
+0
+5
+10
+15
+20
+25
+30
+Time Sequence (seconds)WiFi
+4G
+140
+5G
+WiFi STD
+4G STD
+120
+5G STD
+(sd) ndanol
+100
+80
+60
+40
+20
+0
+0
+5
+10
+15
+20
+25
+30
+Time Sequence (seconds)5G on the Farm
+Location
+Mean Latency (ms)
+5G
+WiFi6
+4G
+P.R.L.
+29.5
+1.2
+216.7
+R.W.P
+22.9
+1.3
+294.0
+Table 7
+The mean latency results for points P.R.L. and R.W.P. for each
+of the three wireless networks.
+5G and WiFi6 networks in the Vegetable Polytunnel have
+mostly VLoS with light obstructions, e.g., metal scaffolding.
+Whereas, the 4G network has some VLoS with moderate
+obstructions, e.g., tree lines, metal scaffolding and general
+RF interference that can occur over longer distance commu-
+nication.
+The approximate distance between point P.R.L. and
+R.W.P. is ~30 m. Overall, two separate simulation ex-
+periments are conducted. In each experiment the RTT
+mean latency result is taken from one of the points (i.e.
+P.R.L./R.W.P.) and it is used to simulate the accumulated
+delay experienced by the remote controlled robot for each
+metre of travel.
+To demonstrate real-time positional accuracy, for every
+metre that the simulated remote-controlled robot moves, its
+location is updated and sent to the pseudo-MEC (remote
+server) and a processed reply message is sent back. It is
+approximated that points P.R.L. and R.W.P. are 30 metres
+apart, therefore 30 location steps are generated as shown in
+Figure 11(a). The robot is set to move with a velocity of
+3 푚.푠−1, which means that every second, 3 location spaces
+are passed. At the same time, 3 location messages are sent
+to the pseudo-MEC and 3 command messages (e.g., spray,
+collision avoidance, GPS data, etc.) are received by the sim-
+ulated robot every second. We can ignore the payload (size)
+of location messages and command messages altogether as
+they are negligibly small. Moreover, we will conceptualise
+that the pseudo-MEC already has the most up-to-date image
+data stored for each location along the path of the remote
+controlled robot, which means that expensive image data
+is not transmitted during these experiments. Thus the most
+important element of the experiment is the transmission of
+messages. For every metre the robot moves, one location
+update message is sent and one weed location message
+(bounding box) is received, as described in Figure 11(b) and
+accompanying Table 8.
+The image processing pipeline described in Section 3.2
+can process images at speeds as fast as ~14.5ms per image.
+However, in this simulated experiment, to illustrate our point
+more clearly, it will be assumed that the pseudo-MEC will
+be processing more complex images. Therefore, the pseudo-
+MEC’s speed of processing will be taken to be the same
+as the average time it takes a human to react in real-time
+to a sudden change on screen. This processing (reaction)
+speed will make the simulation more conceptually easy to
+comprehend. This value is assumed fixed and independent
+of task type, and is set to 273ms, the median human hand-
+eye reaction time (humanbenchmark.com, 2021). To fur-
+ther simplify the simulated experiments, robot velocity is
+assumed fixed and other external factors contributing to
+latency are ignored. To prove that a wireless network can
+support real-time operation and control, the robot in the field
+needs to receive weed location messages while it has not
+yet transitioned to a new location space. This is vital for
+the correct operation of a weed spraying robot, as it needs
+to be able to spray the weeds correctly, while maintaining
+its speed. The calculation and performance metric used to
+determine if a robot is still within the location space is given
+in the next section.
+(a) Satellite image of the Vegetable Polytunnel (rotated 90°
+anti-clockwise).
+(b) Magnified overview of robot navigation and (instant)
+communication over a period of 1 second.
+Figure 11: Image (a) shows 30 location spaces each depicting
+1 metre, between data points P.R.L. and R.W.P., representing
+the simulated path of the robot. Image (b) shows the magnified
+operation of the simulated robot if it had instantaneous (ideal)
+communication.
+5.2. Performance Metrics and Rationale
+As mentioned previously, sent messages will be location
+messages, in the form of 2D coordinate data. Whereas,
+received messages can be a variety of different types of data,
+we will assume that it is bounding box pixel position data
+which identifies detected weeds in an image. Both types of
+T Zhivkov et al.: Preprint submitted to Elsevier
+Page 11 of 19
+
+1 Second
+P.R.L.
+R.W.P.Location
+P.R.L.
+Robot
+Navigation
+Distance (m)
+0
+1
+2
+3
+Sent messages
+Robot
+Received messages
+Communication
+Tin
+0
+0.33
+0.66
+1.05G on the Farm
+Fixed robot velocity
+3 푚.푠−1
+Location update time per meter
+0.333 s
+Sent/Received messages per second
+3 푚푠푔.푠−1
+Total messages per second
+6 푚푠푔.푠−1
+Table 8
+Robot Navigation and Communication Parameters
+messages are sent in the form of floating point numbers,
+however their size is so small that it is considered negligible
+in terms of data throughput compared to the image data sent
+in the experiments in Section 4. This is desirable as we want
+minimal load on the network to analyse latency only.
+From the start of the experiment, at point P.R.L., to the
+end of the experiment, at point R.W.P, 30 location messages
+are sent and 30 bounding box messages are received making
+a total of 60 messages. Henceforth, a sent message and
+the processed reply message are denoted as a pair. As we
+are making fixed assumptions for the processing time and
+ignoring uncertainty, the calculated cumulative delay time
+for a pair is simply the RTT latency time of the network at
+the given location plus the processing time, as demonstrated
+in Figure 12. The total cumulative delay time takes into
+account: (i) the time required to send a location message
+from the in-field remote controlled robot to the remote server
+(pseudo-MEC), (ii) plus the time required to process the
+message on the server and prepare a command message in
+response, (iii) plus the time taken to send the command
+message from the server back to the in-field robot (denoted
+cumulative delay time), (iv) finally, the total cumulative
+delay time is the result of cumulative delay time - location
+update time, multiplied by the number of sent messages.
+Therefore, total cumulative delay time provides the delay
+experienced by the received messages for the total duration
+of travel.
+Figure 12: Cumulative delay time metric.
+5.3. Results
+We have RTT latency for points P.R.L. and R.W.P. and
+no real world data for the points in-between, as such we
+cannot perform accurate evaluation of the cumulative delay
+time during the simulated navigation of our robot. However,
+we assume the trend lines in Figure 13a) are a good approxi-
+mation of the RTT delay time, therefore we can use the RTT
+P.R.L.
+Network
+Sent &
+Rec’vd
+(ms)
+Proc
+(ms)
+Cumu
+(ms)
+Cumu Δ
+(ms)
+Results using Processing delay similar to human reaction
+time humanbenchmark.com (2021)
+WiFi6
+1.2
+273.0
+274.2
++0.0 (-58.8)
+5G
+29.5
+273.0
+302.5
++0.0 (-30.5)
+4G
+216.7
+273.0
+489.7
++4701.0 (+156.7)
+Table 9
+Cumulative Delay Time latency at each step of message
+transmission and overall cumulative Δ time, showing individual
+message processing time (proc), cumulative (cumu) delay time
+and cumulative lead/lag time difference, or Δ, in milliseconds
+(ms).
+latency of P.R.L. and R.W.P. as the two extremes for each
+network, Table 7, to analyse how the cumulative delay time
+is affected.
+To demonstrate why URLLC is an important feature to
+5G it needs to be accurately applied in certain use cases. As
+processing time is unknown in many use cases it is important
+and required in the results obtained here, to demonstrate
+why URLLC can impact localisation and real-time control.
+To prove 5G is on track to provide real-time control, even
+without having URLLC as a feature yet, the robot sends 3
+location updates every metre and requires a response within
+0.333s (333.3ms) to allow it to carry out an operation while
+the location has not changed, i.e. in real-time. Calculating
+the delta time between the required response time and the
+cumulative delay time provides lead times for both WiFi and
+5G, but lag time for 4G, which is shown in Tables 5.3 and 5.3,
+and illustrated by the accompanying Figures 14 and 15. This
+result shows that if 4G was employed for communication, a
+robot would accumulate an overhead of between 4.7 seconds
+and 7.0 seconds (due to network lag) in just 10 seconds of
+travel, and therefore would not be able to operate within real-
+time.
+For further evaluation of the experiment results, we
+performed simple vertex form quadratic calculations to visu-
+alise trend lines and observe the expected RTT latency over
+the 30 metre path of the remote controlled robot, as shown
+in Figure 13. The evaluation was only performed for 4G and
+5G as WiFi6 barely observed any demonstrable change over
+the 30 metre path. Moreover, including WiFi6 to Figure 13a)
+greatly reduced the usefulness of the results and made them
+unclear as it skewed the y-axis in favour of WiFi6. The trend
+line for 5G reduces between point P.R.L. and R.W.P. even
+though the distance from the access point increases. This is
+because point R.W.P. has a more direct and open view of the
+central access point antenna, which is directly pointing at it
+and the signal does not have to go over the roof of a nearby
+building.
+T Zhivkov et al.: Preprint submitted to Elsevier
+Page 12 of 19
+
+Robot
+Pseudo-MEC
+Send message
+mess
+RTT
+Begin Processing
+Received ACK.
+Cumulative delay
+acknowledged
+Processing time
+time
+..... Send reply message
+Receive message
+:RTT
+acknowledged
+Received ACK5G on the Farm
+(a) Trend line for 4G and 5G (lower is better).
+(b) Trend line for 5G.
+Figure 13: Image (a) shows the trend line of RTT latency as
+the robot moves from data point P.R.L. to R.W.P.. Image (b)
+shows a closer inspection of only the trend line of RTT latency
+for the 5G network.
+R.W.P.
+Network
+Sent &
+Rec’vd
+(ms)
+Proc
+(ms)
+Cumu
+(ms)
+Cumu Δ
+(ms)
+Results using Processing delay similar to human reaction
+time humanbenchmark.com (2021)
+WiFi6
+1.3
+273.0
+274.3
++0.0 (-58.7)
+5G
+22.9
+273.0
+295.9
++0.0 (-37.1)
+4G
+294.0
+273.0
+567.0
++7020.0 (+234.0)
+Table 10
+Cumulative Delay Time latency at each step of message
+transmission and overall cumulative Δ time, showing individual
+message processing time (proc), cumulative (cumu) delay time
+and cumulative lead/lag time difference, or Δ, in milliseconds
+(ms).
+5.4. Discussion
+The distance to point P.R.L. is 49.1 m and mean RTT
+latency of 22.9 ms and R.W.P is 72.0 m and mean RTT
+latency of 63.9 ms, for the 5G network, which means that
+one-way communication latency is 11.5 ms and 32.0 ms,
+respectively. The latency is low enough to enable live 30FPS
+video streaming, but not low enough to allow for real-time
+tracking and control.
+Figure 14: Timeline of 1 second, showing the flow of sent
+location messages and the cumulative delay time experienced
+for data point P.R.L. in received commands by the robot using
+different wireless networks. The dashed vertical lines show the
+time of the command message being returned—the elapsed
+time being the total of: (i) the time required to send a location
+message, (ii) plus the time required to process the message and
+prepare a command message in response, (iii) plus the time
+taken to send the command message. If the vertical dashed
+line occurs before the next command (blue box) is sent (at
+time 0.333s), then the localisation will not lag behind. This is
+the case for WiFi6 and 5G, but not for 4G.
+6. Conclusion
+This work draws two important conclusions. Firstly, it
+evaluates the performance of a private 5G-SA telecom-
+munications network, a private WiFi6 network and public
+4G telecommunications network for the use case of high
+throughput and low latency operations. Experiments in Sec-
+tion 4 were conducted in the context of an agricultural use
+case: a robot capturing images in a field, streaming that
+video to an off-board edge computer for identifying weeds
+and sending actuation commands back to the robot or to a
+human user on another computer. The results demonstrated
+that public 4G cannot be used in agriculture to support
+high throughput and low latency operation. Further, in our
+controlled setting, we found that WiFi6 performed better
+T Zhivkov et al.: Preprint submitted to Elsevier
+Page 13 of 19
+
+300
+4G
+5G
+250
+(ms)
+200
+TT Latency (
+150
+100
+R
+50
+6
+4.
+Distance between points (m)5G
+29
+28
+RTT Latency (ms)
+24
+23
+01
+6
+5
+Distance between points (m)Location
+P.R.L.
+Robot
+Navigation
+Distance (m)
+0
+1
+2
+3
+Sent messages
+Robot WiFi6
+Received messages
+Communication
+Time (s)
+L
+0
+0.33
+0.66
+1.0
+Sent messages
+Robot 5G
+Received messages
+Communication
+Time (s)
+0
+0.33
+0.66
+1.0
+Sent messages
+Robot 4G
+Received messages
+Communication
+Time (s)
+0
+0.33
+0.66
+1.05G on the Farm
+Figure 15: Timeline of 1 second, showing the flow of sent
+location messages and the cumulative delay time experienced
+for data point R.W.P. in received commands by the robot using
+different wireless networks. The dashed vertical lines show the
+time of the command message being returned—the elapsed
+time being the total of: (i) the time required to send a location
+message, (ii) plus the time required to process the message and
+prepare a command message in response, (iii) plus the time
+taken to send the command message. If the vertical dashed
+line occurs before the next command (blue box) is sent (at
+time 0.333s), then the localisation will not lag behind. This is
+the case for WiFi6 and 5G, but not for 4G.
+than 5G. WiFi6 never saturated during throughput testing,
+whilst 5G saturated at approximately 60Mbps when testing
+1-RGBD video streaming. According to (Fomon, 2021), the
+achieved throughput is higher than leading countries’ public
+5G results from gathered data in Q1-Q2 of 2021. However,
+these results show a good outcome overall for 5G as it
+shows that the technology is still maturing. WiFi6 had a
+lower latency on average of 18.2ms compared to that of 5G.
+The 5G mast is further by 45.4 metres and 114.0 metres in
+the Vegetable Polytunnel and Walled Garden, respectively,
+compared to the WiFi6 router. The greater distance from the
+access point further contributes to the worse performance
+in the Walled Garden for the 5G network. However, this
+highlights the 5G network’s coverage over a greater distance
+and, a feature not tested, support for connecting a greater
+amount of devices. WiFi/WiFi6 routers can support a few
+devices, any increase in number of devices can greatly in-
+crease complexity. Whereas, the 5G network can inherently
+support a greater number of devices with gradual increase
+in complexity. It is worth noting that the obtained results are
+only a snapshot of the private 5G performance at the time
+of data collection. The 5G network is continuously being
+updated and improved, making it more robust and balancing
+the upload and download ratio for different use cases.
+Secondly, simulation experiments were conducted, in
+order to assess the viability of performing a more complex
+hypothetical variant of our agricultural use case using each
+of the three network setups. Specifically, these experiments
+analysed latency. As previously observed, these results reaf-
+firmed that 4G is too slow to be able to perform the task
+at hand. The WiFi6 and 5G produced sufficient speed to
+manage the job. Furthermore, the results showed that only
+in extreme cases, where the processing time is longer or the
+velocity of the robot is greater, will WiFi6 have advantage
+over 5G.
+In conclusion, the results in this body of work are
+significant for the agricultural domain. They clearly iden-
+tify strengths and weaknesses of current and state-of-the-
+art wireless network infrastructures in rural environments.
+Moreover, the results identify the fundamental requirements
+that the future smart farm will have for the telecommuni-
+cations industry. It is clear that 4G cannot support agricul-
+tural activities, and the lower coverage, higher attenuation
+and much slower commercial uptake of WiFi6 make it an
+impractical solution. Finally, this work highlights that there
+is no single wireless network that is best suited for agri-
+technology and agri-robotics, but using a mixture of the
+state-of-the-art can provide a better solution. For example,
+private 5G can be used to move data faster between longer
+distances connected to a WiFi6 (or multi-WiFi) wireless
+backhaul that extends to locally connected robots and sen-
+sors in a farm field.
+The next steps with this line of research involve testing
+more complex scenarios in a physical environment. This
+includes the hypothetical setup simulated in Section 5, as
+well as setups with multiple robots in the field, larger fields
+(where the distance to the network mast is greater) and
+more complex actuation messages going to the robot such
+that send and receive transmissions are more balanced than
+in the experiments presented here. As public 5G roll-out
+continues world-wide, having better understanding of the
+benefits in agriculture will help farmers make the case for
+rural deployments of such networks. The contribution of
+the work shared here helps to demonstrate that the wireless
+infrastructure of 5G is required to facilitate even the most
+basic precision agriculture use case.
+T Zhivkov et al.: Preprint submitted to Elsevier
+Page 14 of 19
+
+Location
+P.R.L.
+Robot
+Navigation
+Distance (m)
+0
+1
+2
+3
+Sent messages
+Robot WiFi6
+Received messages
+Communication
+HI
+Time (s)
+0
+0.33
+0.66
+1.0
+Sent messages
+Robot 5G
+Received messages
+Communication
+Time (s)
+0
+0.33
+0.66
+1.0
+Sent messages
+Robot 4G
+Received messages
+Communication
+Time (s)
+0
+0.33
+0.66
+1.05G on the Farm
+A. Appendix
+To give a complete visual picture of our findings and data
+collection from experiments in Section 4, we have collated
+and plotted all the data in simple and easy to read graphs.
+The data is split into two main figures, each figure represents
+one of the two main performance metrics being analysed, i.e.
+latency in Figure 16 and network throughput in Figure 17.
+Each figure contains 3 subplots and each subplot represents
+a wireless network, i.e. 4G, 5G, WiFi6. Finally, each subplot
+is split by a vertical line into three sections, highlighting the
+data stream network parameter, and bar colour represents
+one of the two locations where experiments were conducted.
+The public 4G latency performance in Figure 16 is poor
+throughout all streaming experiments and in all environ-
+ments. Unlike WiFi6 and the private 5G, for 4G it is difficult
+to analyse if the environment or the different streaming
+experiments cause an increase in latency, this is because
+the RF interference over a larger distance is impossible to
+predict. However, it can be confirmed that the latency is far
+too high for real-time video streaming, regardless of what
+type of streaming experiment is conducted.
+The latency for 5G in Figure 16 is extremely low, and it
+is close to WiFi6 in the Vegetable Polytunnel environment
+(orange coloured bars). However, in a distant environment,
+obstructed by tree cover and a wall, it suffers greatly and
+in certain parts of the environment the latency is as bad or
+worse than the public 4G (ACJ-4).
+The latency results in Figure 16 for WiFi6 standard
+deviation indicates negative latency, which is impossible.
+This is because the latency is so low and on occasion it can
+spike making the negative portion of the standard deviation
+dip below zero. This makes WiFi6’s standard deviation neg-
+ligible, it is kept for illustrative purposes. The main increase
+in latency for WiFi6 can be seen during the RGB-D data
+streaming experiments and when operating in an open field
+in the Walled Garden. This is expected for WiFi6 as signal
+loss in an open field is far greater than in an indoor space
+or a space with many walls and obstacles. The latency still
+remains extremely low.
+The public 4G throughput results in Figure 17 are in-
+teresting, as regardless of streaming experiment they hit a
+certain limit of throughput. As suggested, from our own
+experiments on public 4G and from the data obtained from
+Ofcom (2014), the maximum and mean throughput (upload
+speed) should be between 20Mbps and 14.7Mbps, which is
+what we see. Albeit, there are some experiment locations
+that have much lower throughput, which could be caused
+by many factors, e.g., RF interference, increased traffic load,
+traffic load optimisation, etc. Therefore, we can assume that
+we are saturating the upload speed of the public 4G network
+and we cannot expect much higher throughput.
+The 5G throughput results are impressive, and clearly
+much higher than 4G. However, if we examine the throught-
+put results between WiFi6 and 5G, specifically for the RGB-
+D streaming experiment, we can see that the 5G network has
+also saturated in terms of upload speed. We can assume that
+the 5G network maximum upload speed is close to 65Mbps.
+It was never the intention of this body of work to find the
+maximum upload speed of the particular configuration of
+the 5G network setup at the University of Lincoln. Because,
+the 5G network is continuously being improved, and for
+example UL/DL ration in the future can be configurable.
+For the current release of 5G-SA N77 it is not (at least
+not to our knowledge). Moreover, there are different 5G
+network technologies and different iterations of 5G that will
+perform completely differently to each other, we would not
+be contributing to the field by specifically finding the limits
+of our particular system, which itself is continually evolving.
+The WiFi6 throughput results are almost perfectly aligned
+with theoretical expectations. The RGB data stream is
+compressed and throughput increases only if movement is
+detected and there are many different colour changes in
+very fast succession in front of the camera, which does
+not occur in our green and brown images, the throughput
+is variable and unpredictable. However, for the RGB-D
+experiments, the data stream is still compressed, but at a
+static rate. This means that the data streamed should always
+be the exact same regardless of how fast the scene in front
+of the camera changes and regardless of colour changes.
+Theoretically, this value should be 144Mbps (or 18MBps),
+which is what WiFi6 approximately reaches during the
+RGB-D experiments. Clearly, WiFi6 can stream the data it
+is expected to, and we have no reached a saturation limit of
+upload or download. However, the latency results, which are
+excellent show the one weakness of WiFi6. In an outdoor
+open field environment the signal loss will be exponential.
+T Zhivkov et al.: Preprint submitted to Elsevier
+Page 15 of 19
+
+5G on the Farm
+MVF-1
+PRL-1
+DLF-1
+RWP-1
+ACD-1
+ACJ-1
+OLD-1
+LVC-1
+MVF-4
+PRL-4
+DLF-4
+RWP-4
+ACD-4
+ACJ-4
+OLD-4
+LVC-4
+MVF-1d
+PRL-1d
+DLF-1d
+RWP-1d
+ACD-1d
+ACJ-1d
+OLD-1d
+LVC-1d
+0
+500
+1000
+1500
+2000
+Latency (ms)
+Plot of 4G Latency
+MVF-1
+PRL-1
+DLF-1
+RWP-1
+ACD-1
+ACJ-1
+OLD-1
+LVC-1
+MVF-4
+PRL-4
+DLF-4
+RWP-4
+ACD-4
+ACJ-4
+OLD-4
+LVC-4
+PRL-1d
+DLF-1d
+RWP-1d
+ACD-1d
+ACJ-1d
+OLD-1d
+LVC-1d
+0
+500
+1000
+1500
+2000
+2500
+Latency (ms)
+Plot of 5G Latency
+MVF-1
+PRL-1
+DLF-1
+RWP-1
+ACD-1
+ACJ-1
+OLD-1
+LVC-1
+MVF-4
+PRL-4
+DLF-4
+RWP-4
+ACD-4
+ACJ-4
+OLD-4
+LVC-4
+MVF-1d
+PRL-1d
+DLF-1d
+RWP-1d
+ACD-1d
+ACJ-1d
+OLD-1d
+LVC-1d
+Location and stream number
+−5
+0
+5
+10
+15
+20
+25
+30
+Latency (ms)
+Plot of WiFi Latency
+Figure 16: Latency results across all performance metrics and parameters. The vertical lines separate the data stream type and
+the orange coloured bars represent the Vegetable Polytunnel and the blue coloured bars represent the Walled Garden.
+T Zhivkov et al.: Preprint submitted to Elsevier
+Page 16 of 19
+
+5G on the Farm
+MVF-1
+PRL-1
+DLF-1
+RWP-1
+ACD-1
+ACJ-1
+OLD-1
+LVC-1
+MVF-4
+PRL-4
+DLF-4
+RWP-4
+ACD-4
+ACJ-4
+OLD-4
+LVC-4
+MVF-1d
+PRL-1d
+DLF-1d
+RWP-1d
+ACD-1d
+ACJ-1d
+OLD-1d
+LVC-1d
+0
+2
+4
+6
+8
+10
+12
+14
+16
+Throughput (Mbps)
+Plot of 4G Throughput
+MVF-1
+PRL-1
+DLF-1
+RWP-1
+ACD-1
+ACJ-1
+OLD-1
+LVC-1
+MVF-4
+PRL-4
+DLF-4
+RWP-4
+ACD-4
+ACJ-4
+OLD-4
+LVC-4
+PRL-1d
+DLF-1d
+RWP-1d
+ACD-1d
+ACJ-1d
+OLD-1d
+LVC-1d
+0
+10
+20
+30
+40
+50
+60
+Throughput (Mbps)
+Plot of 5G Throughput
+MVF-1
+PRL-1
+DLF-1
+RWP-1
+ACD-1
+ACJ-1
+OLD-1
+LVC-1
+MVF-4
+PRL-4
+DLF-4
+RWP-4
+ACD-4
+ACJ-4
+OLD-4
+LVC-4
+MVF-1d
+PRL-1d
+DLF-1d
+RWP-1d
+ACD-1d
+ACJ-1d
+OLD-1d
+LVC-1d
+Location and stream number
+0
+20
+40
+60
+80
+100
+120
+140
+Throughput (Mbps)
+Plot of WiFi Throughput
+Figure 17: Throughtput results across all performance metrics and parameters. The vertical lines separate the data stream type
+and the orange coloured bars represent the Vegetable Polytunnel and the blue coloured bars represent the Walled Garden.
+T Zhivkov et al.: Preprint submitted to Elsevier
+Page 17 of 19
+
+5G on the Farm
+References
+gov.uk,
+£25
+million
+funding
+for
+high
+tech
+machinery
+on
+farms,
+2022.
+URL:
+https://www.gov.uk/government/news/
+25-million-funding-for-high-tech-machinery-on-farms.
+DEFRA, Tree planting, 2022. URL: https://committees.parliament.uk/
+publications/9364/documents/160849/default/.
+T. Duckett, S. Pearson, S. Blackmore, B. Grieve, W.-H. Chen, G. Cielniak,
+J. Cleaversmith, J. Dai, S. Davis, C. Fox, P. From, I. Georgilas, R. Gill,
+I. Gould, M. Hanheide, A. Hunter, F. Iida, L. Mihalyova, S. Nefti-
+Meziani, G. Neumann, P. Paoletti, T. Pridmore, D. Ross, M. Smith,
+M. Stoelen, M. Swainson, S. Wane, P. Wilson, I. Wright, G.-Z. Yang,
+Agricultural robotics: The future of robotic agriculture, 2018. URL:
+https://arxiv.org/abs/1806.06762. doi:10.48550/ARXIV.1806.06762.
+T. Zhivkov, A. Gomez, J. Gao, E. Sklar, S. Parsons, The need for speed:
+How 5g communication can support ai in the field,
+in: Proceedings
+of UKRAS21 Conference: Robotics at home, UK-RAS, 2021. doi:10.
+31256/On8Hj9U.
+Y. Tang, S. Dananjayan, C. Hou, Q. Guo, S. Luo, Y. He, A survey on the
+5g network and its impact on agriculture: Challenges and opportunities,
+Computers and Electronics in Agriculture 180 (2021) 105895.
+T. Lang, M. McKee,
+The reinvasion of ukraine threatens global food
+supplies, BMJ 376 (2022).
+M. Rae,
+The economic impact of the ukraine–russia war,
+in: SAGE
+Business Cases, SAGE Publications: SAGE Business Cases Originals,
+2022.
+J. Partridge, R. Partington, ‘The anxiety is off the scale’: UK farm sector
+worried by labour shortages, The Guardian (2021).
+K. Washburn,
+In California farm country, growers struggle with labor
+shortage, USA Today (2020).
+G. Naik, Global farming suffers from falling prices, labor shortages as virus
+spreads, S & P Global Market Intelligence (2020).
+A. Raza, A. Razzaq, S. S. Mehmood, X. Zou, X. Zhang, Y. Lv, J. Xu,
+Impact of climate change on crops adaptation and strategies to tackle
+its outcome: A review, Plants 8 (2019).
+P. Webb, T. G. Benton, J. Beddington, D. Flynn, N. M. Kelly, S. M. Thomas,
+The urgency of food system transformation is now irrefutable, Nature
+Food 1 (2020).
+P. Borrelli, D. A. Robinson, P. Panagos, E. Lugato, J. E. Yang, C. Alewell,
+D. Wuepper, L. Montanarella, C. Ballabio, Land use and climate change
+impacts on global soil erosion by water (2015-2070), Proceedings of the
+National Academy of Sciences 117 (2020) 21994–22001.
+M. R. Shaheb, R. Venkatesh, S. A. Shearer, A review on the effect of soil
+compaction and its management for sustainable crop production, Journal
+of Biosystems Engineering 46 (2021) 417–439.
+A. G. Millard, R. Ravikanna, R. Groß, D. Chesmore, Towards a swarm
+robotic system for autonomous cereal harvesting,
+in: K. Althoefer,
+J. Konstantinova, K. Zhang (Eds.), Towards Autonomous Robotic Sys-
+tems, Springer International Publishing, Cham, 2019, pp. 458–461.
+FAO, Global Livestock Environmental Assessment Model (GLEAM), Food
+and Agriculture Organisation of the United Nations, https://www.fao.
+org/gleam/results/en, 2022.
+V. Borsellino, E. Schimmenti, H. El Bilali,
+Agri-food markets towards
+sustainable patterns, Sustainability 12 (2020).
+J. V.Stafford,
+Implementing Precision Agriculture in the 21st Century,
+Journal of Agricultural Engineering Research 76 (2000) 267–275.
+R. Gebbers, V. I. Adamchuk,
+Precision agriculture and food security,
+Science 327 (2010) 828–831.
+G. Durisi, T. Koch, P. Popovski, Toward Massive, Ultrareliable, and Low-
+Latency Wireless Communication With Short Packets, Proc of the IEEE
+104 (2016).
+P. Popovski, K. F. Trillingsgaard, O. Simeone, G. Durisi,
+5G wireless
+network slicing for eMBB, URLLC, and mMTC: A communication-
+theoretic view, IEEE Access 6 (2018) 55765–55779.
+J. Rendon Schneir, Y. Xiong, A cost study of fixed broadband access net-
+works for rural areas, Telecommunications Policy 40 (2016) 755–773.
+Technological change and the provision, consumption and regulation of
+services: Papers from a European ITS regional conference.
+D. Adami, S. Giordano, M. Tamburello,
+A monitoring application for
+animal repelling devices in smart agriculture,
+in: 2020 IEEE 25th
+International Workshop on Computer Aided Modeling and Design of
+Communication Links and Networks (CAMAD), 2020, pp. 1–6. doi:10.
+1109/CAMAD50429.2020.9209316.
+C. R. Kagan, D. P. Arnold, D. J. Cappelleri, C. M. Keske, K. T. Turner,
+Special report: The internet of things for precision agriculture (iot4ag),
+Computers and Electronics in Agriculture 196 (2022) 106742.
+W. Tao, L. Zhao, G. Wang, R. Liang, Review of the internet of things com-
+munication technologies in smart agriculture and challenges, Computers
+and Electronics in Agriculture 189 (2021) 106352.
+T Zhivkov et al.: Preprint submitted to Elsevier
+Page 18 of 19
+
+5G on the Farm
+M. Karthikkumar, V. Premchandran, E. Sathish, An agricultural irrigatıon
+management system based on the internet of things with MQTT proto-
+col, IOP Conference Series: Materials Science and Engineering 1084
+(2021) 012118.
+O. Bodunde, U. Adie, O. Ikumapayi, J. Akinyoola, A. Aderoba,
+Ar-
+chitectural design and performance evaluation of a zigbee technology
+based adaptive sprinkler irrigation robot, Computers and Electronics in
+Agriculture 160 (2019) 168–178.
+A. Tsipis, A. Papamichail, G. Koufoudakis, G. Tsoumanis, S. E. Polykalas,
+K. Oikonomou, Latency-adjustable cloud/fog computing architecture
+for time-sensitive environmental monitoring in olive groves, AgriEngi-
+neering 2 (2020) 175–205.
+C. Maraveas, T. Bartzanas,
+Application of internet of things (iot) for
+optimized greenhouse environments, AgriEngineering 3 (2021) 954–
+970.
+M. T. Batte, M. R. Ehsani, The economics of precision guidance with auto-
+boom control for farmer-owned agricultural sprayers, Computers and
+Electronics in Agriculture 53 (2006) 28–44.
+I. Panfilov, D. D. Mann, The importance of real-time visual information
+for the remote supervision of an autonomous agricultural machine.,
+Canadian Biosystems Engineering 60 (2018) 2.11–2.18.
+A. S. Gomez, E. Aptoula, S. Parsons, P. Bosilj, Deep regression versus
+detection for counting in robotic phenotyping,
+IEEE Robotics and
+Automation Letters 6 (2021) 2902–2907.
+T. Choi, O. Would, A. S. Gomez, G. Cielniak, Self-supervised representa-
+tion learning for reliable robotic monitoring of fruit anomalies, CoRR
+abs/2109.10135 (2021).
+V. R. Ponnambalam, J. P. Fentanes, G. Das, G. Cielniak, J. G. O. Gjevestad,
+P. J. From, Agri-cost-maps-integration of environmental constraints into
+navigation systems for agricultural robots, in: 2020 6th International
+Conference on Control, Automation and Robotics (ICCAR), 2020, pp.
+214–220. doi:10.1109/ICCAR49639.2020.9108030.
+A. Salazar-Gomez, M. Darbyshire, J. Gao, E. I. Sklar, S. Parsons, Beyond
+mAP: Towards practical object detection for weed spraying in precision
+agriculture, in: Proceedings of IEEE/RSJ International Conference on
+Intelligent Robots and Systems (IROS), 2022.
+G. Jocher, A. Stoken, J. Borovec, NanoCode012, A. Chaurasia, TaoXie,
+L. Changyu, A. V, Laughing, tkianai, yxNONG, A. Hogan, loren-
+zomammana, AlexWang1900, J. Hajek, L. Diaconu, Marc, Y. Kwon,
+oleg, wanghaoyang0106, Y. Defretin, A. Lohia, ml5ah, B. Milanko,
+B. Fineran, D. Khromov, D. Yiwei, Doug, Durgesh, F. Ingham, ultra-
+lytics/yolov5: v5.0 - YOLOv5-P6 1280 models, AWS, Supervise.ly and
+YouTube integrations (2021).
+Ofcom, Ofcom publishes 4G and 3G mobile broadband speeds research,
+2014.
+URL:
+https://www.ofcom.org.uk/about-ofcom/latest/media/
+media-releases/2014/3g-4g-bb-speeds.
+D-Link, Dwm-222 4g lte usb adapter, 2020. URL: https://eu.dlink.com/
+uk/en/-/media/consumer_products/dwm/dwm-222/datasheet/dwm_222_a2_
+datasheet_en_eu.pdf.
+J. A. Donenfeld, Wireguard: Next generation kernel network tunnel, 2020.
+URL: https://www.wireguard.com/papers/wireguard.pdf.
+J. Fomon, The u.k. is ahead of european trade partners for 5g, can’t beat
+south korea and china, 2021. URL: https://www.ookla.com/articles/
+5g-united-kingdom-q1-q2-2021.
+H. Lee, R. M. O’Keefe, K. Yun, The growth of broadband and electronic
+commerce in south korea: Contributing factors, The Information Society
+19 (2003) 81–93.
+M. Massaro, S. Kim, Why is south korea at the forefront of 5g? insights
+from technology systems theory, Telecommunications Policy 46 (2022)
+102290.
+J. Sachs, G. Wikstrom, T. Dudda, R. Baldemair, K. Kittichokechai, 5g radio
+network design for ultra-reliable low-latency communication,
+IEEE
+Network 32 (2018) 24–31.
+S. Chen, J. Hu, Y. Shi, Y. Peng, J. Fang, R. Zhao, L. Zhao, Vehicle-to-
+everything (v2x) services supported by lte-based systems and 5g, IEEE
+Communications Standards Magazine 1 (2017) 70–76.
+R. Ali, Y. B. Zikria, A. K. Bashir, S. Garg, H. S. Kim, Urllc for 5g and
+beyond: Requirements, enabling incumbent technologies and network
+intelligence, IEEE Access 9 (2021) 67064–67095.
+3GPP, 5G; Study on scenarios and requirements for next generation ac-
+cess technologies, Technical Specification (TS) 38.913, 3rd Generation
+Partnership Project (3GPP), 2017. URL: https://www.etsi.org/deliver/
+etsi_tr/138900_138999/138913/14.03.00_60/tr_138913v140300p.pdf, ver-
+sion 14.3.0.
+humanbenchmark.com, Human benchmark: Reaction time test, 2021. URL:
+https://humanbenchmark.com/tests/reactiontime.
+T Zhivkov et al.: Preprint submitted to Elsevier
+Page 19 of 19
+
diff --git a/gdAzT4oBgHgl3EQfov0m/content/tmp_files/load_file.txt b/gdAzT4oBgHgl3EQfov0m/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..7f9ef2617efe533da1b68e6d81604c5baf0b0186
--- /dev/null
+++ b/gdAzT4oBgHgl3EQfov0m/content/tmp_files/load_file.txt
@@ -0,0 +1,1523 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf,len=1522
+page_content='5G on the Farm: Evaluating Wireless Network Capabilities for Agricultural Robotics⋆ Tsvetan Zhivkova,∗,1 (Postdoctoral Researcher), Elizabeth I Sklara (Professor) aLincoln Institute for Agri-food Technology, University of Lincoln, Riseholme Park Campus, Lincoln, LN2 2LG, UK A R T I C L E I N F O Keywords: 5G, agricultural technologies, robotics, agri-robotics A B S T R A C T Global food security is an issue that is fast becoming a critical matter in the world today.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Global warming, climate change and a range of other impacts caused by humans, such as carbon emis- sions, sociopolitical and economical challenges (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' war), traditional workforce/labour decline and population growth are straining global food security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The need for high-speed and reliable wireless communication in agriculture is becoming more of a necessity rather than a technological demonstration or showing superiority in the field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Governments and industries around the world are seeing more urgency in establishing communication infrastructure to scale up agricultural activities and improve sustainability, by employing autonomous agri-robotics and agri-technologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The work presented here evaluates the physical performance of 5G in an agri-robotics application, and the results are compared against 4G and WiFi6 (a newly emerging wireless communication standard), which are typically used in agricultural environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' In addition, a series of simulation experiments were performed to assess the “real-time” operational delay in critical tasks that may require a human-in- the-loop to support decision making.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The results lead to the conclusion that 4G cannot be used in the agricultural domain for applications that require high throughput and reliable communication between robot and user.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Moreover, a single wireless solution does not exist for the agricultural domain, but instead multiple solutions can be combined to meet the necessary telecommunications requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Finally, the results show that 5G greatly outperforms 4G in all performance metrics, and on average only 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='2ms slower than WiFi6 making it very reliable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Introduction The agricultural domain is currently experiencing in- creased focus on emerging technologies and robotic ap- plications, largely due to concerns about food security and responses to climate change.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' As a result, the inter- section of agricultural robotics (or agri-robotics) and sup- porting technologies, like telecommunications, has garnered international attention from governments and industries alike (gov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='uk, 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' DEFRA, 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Duckett et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Zhivkov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Tang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Some of the key reasons behind the recent boom in agricultural robotics include increased negative impact on global food security derived from a range of sociopolitical and environmental factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The current war between Russia and Ukraine is one example where sociopolitical events have stressed the food supply chain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Ukraine and Russia are estimated to account for 30% of the global wheat sup- ply (Lang and McKee, 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Rae, 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Another example is Brexit, where the UK leaving the single market has led to fewer seasonal workers entering the UK, traditionally from Eastern Europe, to support harvesting of fruits and vegetables (Partridge and Partington, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The Covid- 19 pandemic laid bare the impact of labour shortages on agricultural productivity in multiple countries (Washburn, ⋆This document is the results of the research project funded by UKRI Research England under the Lincoln Agri-Robotics and by Ceres Agri-tech grants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' ∗Corresponding author tzhivkov@lincoln.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='uk (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Zhivkov);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' esklar@lincoln.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='uk (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Sklar) ORCID(s): XXXX-XXXX-XXXX-XXXX (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Zhivkov);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 0000-0002-6383-9407 (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Sklar) 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Naik, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Examples of environmental effects on agriculture go both ways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Climate change affects agriculture by causing unpredictable changes in patterns of rainfall, average temperatures, occurrence of heatwaves, prevalence of weeds, infestations of pests, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', all of which can stress and damage crops (Raza et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Webb et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Another issue related to climate change that is producing significant negative impact on agriculture is soil erosion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' While some amount of soil erosion occurs naturally because of environmental factors, it is more unpredictable and more likely to occur due to climate change (Borrelli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' On the flip side, agriculture affects the environment nega- tively in multiple ways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' For example, current intense farming practices cause soil compaction (Shaheb et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Mil- lard et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', 2019) due to heavy farm vehicles continuously driving over farm fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' According to the UN’s Food and Agriculture Organisation, livestock account for significant percentage of the greenhouse gas (GHG) emissions caused by humans (FAO, 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' One of the primary motivators for the research initiative on sustainable farming is population growth (Webb et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', 2020): current agricultural practises are not sustainable and are not viable for up-scaling to secure food for the predicted 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='2 billion people by 2050 (Borsellino et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Pre- cision agriculture (V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='Stafford, 2000;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Gebbers and Adam- chuk, 2010) encompasses a broad spectrum of intelligent technologies that allow growers to make decisions at the level of an individual plant, or group of contiguous plants, rather than an entire field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' This means that resources, such as fertilisers and water, as well as herbicides and pesticides, can be targeted to specific plants or planted regions, rather T Zhivkov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' : Preprint submitted to Elsevier Page 1 of 19 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='01600v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='NI] 9 Dec 2022 a5G on the Farm than applying across an entire field—which can be wasteful when only a portion of the field requires that treatment, as well as unnecessarily expensive and potentially damaging to the environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Intelligent sensors, either mounted in static locations around fields or on mobile devices such as ground-based or aerial (UAV) robots, can feed precise location-specific information about plant growth (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' size, colour, shape) and the environment (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' temperature, mois- ture, humidity) to farmers, who can use that data to inform their timetables concerning when (or not) to spray, when to harvest, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' In addition, specialised actuators can also be mounted on robots to allow the location-specific information to feed real-time decision making and trigger actuation such as spraying, mechanical weeding or harvesting, performed by robots in the field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' From the intelligent robotics perspective, these types of tasks require a number of capabilities: (a) precise location of sensed information;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' (b) precise location for actuation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' (c) path-planning for ground-based robots to minimise soil compaction and energy usage or flight planning for aerial robots to minimise energy usage;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' and (d) accurate analysis of sensed data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The joint desire for highly accurate position information and the ability to transmit sensor data from fields to farmers (or automated decision support systems) highlights the need for communications networks that can deliver both of these capabilities reliably and robustly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 5G telecommunications is anticipated to provide three key tech- nical advantages over existing 4G capabilities (Durisi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', 2016): enhanced mobile broadband (eMBB) at high band- width, ultra reliable low-latency (URLLC) and massive ma- chine communications (mMTC) at low bandwidth high scale and within a sliced network architecture (Popovski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Taken together, eMBB and URLLC promise better performance for applications such as accurate and timely po- sitioning and faster sensor data transmission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' However, 5G is not available everywhere and public installations, especially in rural communities where populations are sparse (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' the paying customer base is small), are not a high priority in many countries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Thus we are concerned with understanding the specific practical advantages of 5G within an agriculture application domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' In the work presented here, we explore three wireless network technologies (WiFi6, 5G and 4G) and evaluate their performance in an agri-robotics environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' More emphasis is placed on 5G and WiFi6, as these are new and emerging communication networks, whereas we consider 4G as our baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Two separate experiments are conducted, a physical experiment and a simulation experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The physical experiment tests the application of two-way com- munication between an in-field robot streaming real-time video to a remote server, which performs detection of crops and weeds from the received video.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The received video stream is converted to a stream of images that are passed on to an AI-driven detection system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The wireless network results for throughput and latency are compared.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The sim- ulation experiment uses the average latency results from the physical experiment to compare “real-time” operational performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The remainder of this paper is comprised of a litera- ture review (Section 2), exploring the current research and state-of-the-art;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' our methodology and testing environment (Section 3), discussing the three wireless networks and loca- tions where our experiments were conducted;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' our physical experiment (Section 4), analysing network throughput and latency;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' our simulation experiment (Section 5), investigating the performance of “real-time” operation and control;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' and finally a conclusion (Section 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Related Work Agricultural environments hold many challenges for wireless networks, as they are unstructured and have nat- ural obstacles that cannot be penetrated by most forms of telecommunications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Alternatively, laying wired infrastruc- ture around farms is even more challenging and expen- sive (Rendon Schneir and Xiong, 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Because of the shear sizes and remote locations of farms, it is unrealistic to dig trenches or erect overhead structures and permanently place wiring or optical cables to provide communication across fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' In addition, farmers are prone to dig up land occasionally, which might offset or damage underground cables, as well as introduce pests (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' termites);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' and finally, heavy vehicles can cause soil compaction, especially in wet conditions, between 25 cm and 50 cm deep, which can move or damage cables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Fibre optic cables are usually placed 15 cm to 20 cm underground, but can be laid much deeper with a significant increase in cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Instead, smaller 5G cells can be used to deliver high-speed and reliable wireless communication to rural areas (Tang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Of course, the cost of 5G carrier and user equipment remains very high and such a 5G expanse is yet to arrive in rural areas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' From all the challenges that come with wired infras- tructure, it is no wonder that the literature in communica- tion and networking for agriculture is mainly focused on wireless networks, Internet-of-Things (IoT), low-cost and low-power sensors (Adami et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Kagan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Tao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The research looks at either multiple sensors on a single device (System-on-Chip), performing a specific function, or cloud/fog computing for data collec- tion (Karthikkumar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Bodunde et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Tsipis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' WiFi (Karthikkumar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', 2021) and Hy- brid WiFi/Zigbee (Tsipis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', 2020)-based communication infrastructure has been investigated, but is heavily limited in functionality and device support, as well as number of communicating devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Little consideration is given to a more practical and permanent communication infrastructure supporting a wide range of devices, functionalities and robot operations in agricultural environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' However, 5G has not only the potential to support a large number of connected devices, but also a wide range of different devices (Zhivkov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Moreover, considering the growth and popu- larity of 3G and 4G as use cases, the number of devices that support 5G will continue to grow as the technology matures, T Zhivkov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' : Preprint submitted to Elsevier Page 2 of 19 5G on the Farm bringing cheaper and lower power devices to the market.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The lack of such research has been noted with the emergence of 5G (Tang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Maraveas and Bartzanas, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The literature in robotics for agriculture shows that the right research questions are being investigated, however progress is much slower than expected, especially for agri- robotics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' A divide can be seen between emerging robot applications in other fields such as warehouse robotics, human-robot interaction (HRI) and self-driving autonomous vehicles, which employ state-of-the-art research in planning, navigation, environment interaction and machine vision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Comparatively, research in the agri-robotics field is pro- gressing slower;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' for example, current high-end industrial tractors with RTK-GPS (Real-Time Kinematic positioning GPS) with basic autopilot and mission planner software features (Batte and Ehsani, 2006) can support much of the emerging research that is being shown off in the agri- robotics field (Panfilov and Mann, 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Agri-robotics is lagging behind other fields in incorporating up-and-coming novel deep-learning and machine-learning techniques, as well as not utilising bleeding-edge planning, navigation and machine vision systems to enable completely autonomous operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The increased interest in 5G communication technol- ogy, in parallel with the negative sociopolitical and en- vironmental challenges mentioned earlier (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' war and Brexit) that have increased government funding in agri- culture, have started to shift the balance of agri-robotics and agri-technology onto the right track.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Recent research in agriculture is making gains towards the bleeding edge, incorporating novel image detection and machine learning in agri-robotics applications (Gomez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Choi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', 2021), performing novel fleet-management and navigation in agri-robots (Ponnambalam et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', 2020) and employing 5G networks (Zhivkov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' These activities motivate and accelerate the need for superior telecommunications infrastructure and innovation in rural environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Tang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' (2021) present use cases and similar research to draw a hypothetical argument for the use of 5G in agri- culture and review outcomes based on expectations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' But no actual results are shown of 5G-SA (Stand Alone) in an agricultural application, which is the motivation of the work we present here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' To the best of our knowledge, no research exists in the agri-domain that evaluates and discusses the practical performance of 5G and compares general wireless technology in a rural environment with detailed performance metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Here, we present practical results from a physical experiment performed in two different fields, detailed in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' In addition, simulated results are drawn from the collected data to further demonstrate the power of 5G in a rural environment, described in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Experiment Design This section describes the underpinning agri-robotics use case that serves as the basis for the experiments pre- sented here (Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='1), the image detection methodology we implemented for weed identification (Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='2), the locations where experiments were conducted (Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='3), the apparatus deployed (Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='4), the wireless network systems evaluated (Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='5), and finally how tunnelling was used to support 2-way 5G communication (Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Agri-robotics use case The agri-robotics use case we employ for the experi- ments presented here has two overarching goals: (1) to develop a sprayer robot that can autonomously drive in a farm field performing real-time weed detection and spot spraying (Salazar-Gomez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', 2022);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' and (2) to stream real-time video of detected weeds in order to support decision making with a human (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' farmer or agronomist) in the loop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The experimental results and discussion in Section 4, evaluate the performance of three wireless network tech- nologies to support goal (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' In addition, a proof-of-concept theoretical experiment is conducted in Section 5, in support of the real-time data transmission requirement for achieving goals (1) and (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The theoretical experiment, Section 5, uses latency data obtained from Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The basic setup can also be used for a range of other applications—not only spot spraying for weeds, but also pesticides, spot irrigation and for harvesting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Figure 1: Agricultural use case: detecting weeds and crops in a field The setup of the system is shown in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Wire- less communication was established between a remote- controlled robot that was driven in a field, streaming video to a remote laptop with a dedicated GPU acting as a pseudo Mobile Edge Computer (MEC) (see Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='4), which in turn performed image analysis in real-time and displayed the results on a screen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Sample results are shown in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The remote laptop was placed at a fixed location, depending on the type of wireless network being tested, as described in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' As mentioned, the focus of this experiment was to evaluate if real-time weed detection was possible, which would allow a farmer to visualise the performance of the detector and help with their decision making.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' We achieve this by evaluating the performance of three different wireless communication networks, as explained below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' T Zhivkov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' : Preprint submitted to Elsevier Page 3 of 19 processed images identifying weeds and crops user laptop GPU laptop acting as acting as MEC remote control motion robot tro Camera on robot capturing video stream of crops and weeds5G on the Farm Figure 2: Sample detection results of weeds and crop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The red boxes indicate crop (lettuce) and the blue boxes indicate weeds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' A trained Yolov5m model was used to obtain these results, as described in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Image Detection In related work (Salazar-Gomez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', 2022), we de- veloped a Machine Learning (ML) model designed to meet specific image resolution, processing speed and detection accuracy requirements: To detect weeds accurately using this model, images must be in focus and with a resolution of at least 640 × 360 pixels (푤푖푑푡ℎ × ℎ푒푖푔ℎ푡).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The ML model benefits from higher resolution images as more detail is retained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' To achieve “real-time” performance, the image pro- cessing pipeline (including image capture and object detection) must be capable of running faster than a video stream of 30 Frames Per Second (FPS) or higher, which is ~33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='3ms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' This is to enable video footage to run uninterrupted at 30FPS with overhead for missed frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' To provide practical utility for the spot-spraying task at hand, the model needs to achieve >80% accuracy in crop vs weed detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' In that work, seven different ML models were compared and out of those Yolov5m (Jocher et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', 2021) achieved the best results out of all requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Yolov5m achieved an accuracy of over 87% and could perform image inference at a rate of ~69FPS (Salazar-Gomez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The Yolov5m model was set up on the MEC and the remote-controlled robot streamed video images of the field at 30FPS to the MEC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The MEC then analysed the in- coming video stream, performed image inference using the learned model, created bounding boxes outlining the crops and weeds in each image, and finally displayed a live video feed with the detected weeds and crops to the user.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Figure 2 illustrates sample results running this model on images of lettuce and surrounding weeds in the field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Experiment Locations Experiments were conducted in two fields, which we refer to as the Vegetable Polytunnel and the Walled Garden.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Our 5G network has a geographical advantage in the Veg- etable Polytunnel compared to the Walled Garden.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The Veg- etable Polytunnel area has VLoS (Visual Line-of-Sight) with few obstacles blocking the signal and is at an approximate distance of 46 to 80 metres to the antenna, the closest and furthest points measured respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' In contrast, the Walled Garden is important in testing the limitations of the 5G network because it contains regions with NVLoS (No Visual Line-of-Sight), which are either lightly or heavily obscured by a high tree line and a wall surrounding the field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Data collection points in the Walled Garden are at approximate distances of 122 to 154 metres, the closest and furthest points measured respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The two areas used for experiments are illustrated in Figures 7 and 8, in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The areas of operation and exact distances between data collection points, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', network access point (pseudo-MEC) to remote- controlled robot, are given in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Apparatus The setup of each of the three communications networks compared in this paper are detailed here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Our 5G system is a stand-alone (SA) network, using the emerging New Radio (NR) sub-6GHz band N77, that is privately owned by our research facility, making it easier to conduct con- trolled experiments and with fewer restrictions than a public network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' We are able to adjust certain system parameters, within the constraints of our license agreement, in order to support different types of experimentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' WiFi, and by extension WiFi6, can be set up as either a private or public network, as it is not controlled by a regulatory body that requires a license to operate1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' In the experiments reported here, WiFi6 with the 802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='11ax standard was deployed and set up as a private network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The 4G network in these exper- iments is commonly used: a commercial, publicly available telecommunications system, with no parameters controlled by end users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The wireless networks’ configuration details and common parameters are discussed further in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Our 5G-SA system currently does not have a permanent Mobile Edge Compute (MEC) node installed2, which is typ- ically a powerful server-grade system that is used to perform fast computation on the “edge” (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' in the local environment) as opposed to sending data off to the “cloud”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' In our setup, the server-grade MEC functionality is approximated by a temporary solution, a powerful GPU-driven laptop, which we refer to as our pseudo-MEC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' All experiments were conducted using two laptops that have identical hardware and adequate compute power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The laptops are deemed to have “adequate” processing power if they have a dedicated GPU with at least 4GB or more of graphics RAM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Each laptop is an ASUS TUF Dash F153, with i7 11370H @4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='8GHz (4 core, 8 thread) CPU, RTX 3060 GPU with 6GB GDDR6 and 8GB DDR4 RAM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' One laptop was used as the remote server, denoted as the pseudo-MEC, 1WiFi6 frequency ranges marginally differ between countries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 2Supply-chain issues have delayed acquisition and deployment of all components for the full system, due for completion in 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 3https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='asus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='com/uk/Laptops/For-Gaming/TUF-Gaming/ T Zhivkov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' : Preprint submitted to Elsevier Page 4 of 19 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='5G on the Farm and the other acted as a mobile client integrated on a remote- controlled robot in the field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Wireless Networks The network equipment, including the two laptops used for communication experiments, had different setups de- pending on the type of network being tested.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' We tried to keep the setups as similar as possible so that our comparisons of experimental results are valid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' This section describes our three different network setups and configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Figure 3: Connection diagram for our 5G-SA network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 5G Network: A connection diagram is illustrated in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The pseudo-MEC, for the 5G network experiments is directly attached via Ethernet cable (cat6) to the receiving 5G mast.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Moreover, all Ethernet wired cable connections use cat6 cabling, unless oth- erwise specified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The mobile client is connected via an external 5G CPE (Customer Premises Equipment) device, by Ethernet cable, to allow it to communicate with the 5G network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The 5G-CPE is a router using a pre-configured 5G SIM card, provided by BT4 and Nokia5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 5G Network (N77) Configuration: The private 5G network system and relevant parameters are listed in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' There are certain configuration limitations with our 5G system;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' the configuration listed in Ta- ble 1 illustrates what it is capable of achieving at the moment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' For example, currently the Time Division Duplex (TDD) and carrier bandwidth is fixed, which itself is subject to Ofcom6 licensing limitations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' DL and UL stand for download and upload, respectively, and are used typically to denote throughput speed or refer to modulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' WiFi6 Network: A connection diagram is illustrated in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The pseudo-MEC, for the WiFi6 network experiments is connected via Ethernet cable (cat6) to a WiFi6 enabled router.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The mobile client on the remote controlled robot has an internal WiFi6 network card that allows it to communicate with the WiFi6 enabled router.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 4https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='bt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='com/ 5https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='nokia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='com/ 6https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ofcom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='org.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='uk/home Specification Description 5G Frequency Band N77 3800MHz-4100MHz Carrier Bandwidth 100MHz Modulation 256(DL)/64(UL) QAM Transmit power 5W per Tx path (4Tx paths) MIMO layers 4x2 closed loop MIMO TDD (UL:DL) ratio 3/7 Table 1 5G-SA N77 network configuration Figure 4: Connection diagram for the WiFi6 network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Specification Description 5GHz Frequency Band (802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='11ax) 5160-5895MHz Carrier Bandwidth 40-160MHz Modulation (up to) 1024(DL/UL) QAM Transmit power 1W TDD (UL:DL) ratio N/A Table 2 WiFi6 central router configuration WiFi6 configuration: The WiFi6 network system and relevant parameters are listed in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Further details on the specific WiFi6 router used can be found on the manufacturer’s web site7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' It should be noted that TDD is not a used feature in WiFi communica- tion networks and QoS (Quality of Service) groups are disabled (unassigned).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' For the ideal case (highest throughput and lowest latency), the QoS feature is left disabled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 4G Network: Because we used a public 4G network, the pseudo-MEC could not be directly connected to a receiving 4G mast.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Instead, the pseudo-MEC and mo- bile client analogy for the 4G experiments is replaced by a client-to-client analogy, illustrated in Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Both mobile clients used for 4G network experiments, connect to the network via external USB dongle de- vices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The external device used for 4G networking is the D-Link DWM-2228.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 7WiFi6 router - https://static.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='tp-link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='com/2021/202103/20210311/ ArcherAX6000(EU&US)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0_Datasheet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='pdf 8D-Link (4G dongle) https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='dlink.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='com/en/products/ dwm-222-4g-lte-usb-adapter T Zhivkov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' : Preprint submitted to Elsevier Page 5 of 19 5G Mast 5G-Client/Robot 5G-CPE Ethernet Ethernet 5G Core pseudo-MEC Mobile clientWiFi Central System WiEi-Client/Robot Mobile client Ethernet WiFi router pseudo-MEC5G on the Farm Figure 5: Connection diagram for the 4G network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 4G configuration: The D-Link DWM-222 sup- ports any UK commercial SIM card network carrier and connects to any device via USB2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 connection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The maximum data rate of USB2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 is 480Mbps, which is enough to test the maximum theoretical speed of 4G communication, which is 300Mbps DL and 150Mbps UL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' However, actual 4G commercial download and upload speed is approximately 6% (18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='4Mbps) and 10% (14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='7Mbps) of the theoreti- cal maximums (achieved by EE9), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The UL/DL data is aggregated from over 210,000 mobile phones across the UK (Ofcom, 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' To demonstrate the maximum real-world 4G speed achieved in VLoS and within approximately 10m of a 4G mast, mea- surements were taken in London (UK) using Ookla10, which is a speed test application that downloads and uploads a short burst of data to measure throughput;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' results were 100Mbps DL and 20Mbps UL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' In a normal usage scenario, it is extremely unlikely to achieve such 4G speeds, as this would require a user to be in close proximity, in VLoS and be able to predict low network traffic load for a particular public 4G mast, and additionally know if the server of the service they want to use is spatially close (fewer hops between network nodes to reach the server) and that it employs state-of-the-art network capabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Table 3 lists all the known parameters for the 4G network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' It should be noted that the actual TDD ratio is unknown and usually dynamic depending on the 4G network carrier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' However, the maximum theoretical speeds and real-world practical speeds are well known and documented for 4G, these are given in Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Tunnelling 5G Communication Tunnelling is a network protocol that allows the secure transmission of private data over a public network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' It is a 9https://ee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='co.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='uk/ 10Ookla internet speed test - https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='speedtest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='net/ Specification Description LTE Frequency Band 800MHz-2600MHz Carrier Bandwidth 1-20MHz Modulation 256(DL)/64(UL)QAM Transmit power 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='2W UL:DL (in Mbps) 150:300(theoretical) 20:100(real-world) Table 3 4G D-Link configuration (D-Link, 2020) way of giving users of a public network access to network resources that they would not otherwise be able to reach11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' In some rare instances, tunnelling is used to enable unsupported network protocols and to bypass firewalls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The nature of the private 5G network and public 4G network experiments required us to use tunnelling for this purpose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The current 5G network setup uses a network address translation (NAT) layer, which hides any connected devices’ IP for better security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' For research use cases and experimentation, the NAT layer presents an issue as it makes direct communi- cation between connected devices impossible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The way of circumnavigating the issue is by creating a private tunnel connection between directly communicating devices, which is what has been done for the experiments described in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' In the future, NAT forwarding will be enabled as a feature for the private 5G network to allow direct communication without the need for tunnelling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' However, for public 4G network experiments, removing the NAT layer is not an option as it is controlled by the network carrier and security is a very important and concerning issue on public networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Thus, it will always be necessary to bypass the security measures put on public networks and to enable certain network protocols to run between the pseudo-MEC (server) and remote-controlled robot (client).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The public 4G network results presented in Sections 4 and 5 are used to demonstrate the best possible communication with current commercial technology in rural areas, which many farmers currently contend with12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 4G is used as the “benchmark to beat” for 5G, while WiFi6, although restrictive in its use case in agriculture, is used to show how close 5G gets to a state- of-the-art wireless local area network (WLAN).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' A simplified network diagram in Figure 6 shows how NAT works for the 4G and 5G networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Unlike mobile networks, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 3G, 4G, 5G, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', WiFi, and by extension WiFi6, routers do not need to hide wireless local devices’ IP addresses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The functionality of NAT is usu- ally required only when a device is connected to the internet (online), which is not always required by farmers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' If a WiFi enabled network is required to upload data to the cloud or to an online server, this can be done without introducing NAT to the local wireless area network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' However, introducing an online component to WLANs can cause bottlenecks to 11https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='cisco.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='com/c/en/us/products/ios-nx-os- software/tunneling/index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='html 12Depending on the location of farm fields and what type of mobile network is available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' T Zhivkov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' : Preprint submitted to Elsevier Page 6 of 19 4G (public) mast 4G-Client 4G-Client/Robot 4G 4G Dongle Dongle USB USB pseudo-MEC Mobile client5G on the Farm Figure 6: A simplified diagram showing how messages are handled by a router using NAT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' occur due to low throughput capabilities of a specific internet service provider (ISP) or geographical area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' To achieve bidirectional communication for 4G and 5G, a peer-to-peer tunnelling network service was created using WireGuard (Donenfeld, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Network tunnelling can in- crease delay if the network path taken between communi- cating devices is not direct, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' requests have to be made to the virtual private network (VPN) or tunnelling service;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' in addition, communication paths can take unknown hops to reach a destination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' However, the tunnelling network for the private 5G network is made up of only 2 end-point laptops, which means that there is minimal delay in the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' For example, Donenfeld (Donenfeld, 2020) performed tests using ideal conditions (2 end-point devices connected with an Ethernet cable), and WireGuard achieved the lowest ping time against all other tested applications, with a latency of ~0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='403ms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' A WireGuard experiment over-the-air cannot be conducted accurately enough as dynamic environment con- ditions and distance to the 5G mast (14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='5 m above ground) are hard to measure precisely and are highly variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' How- ever, from the latency results shown in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='2, any delay introduced by WireGuard is considered insignificant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' To allow for two devices to directly communicate over a public network, a different type of WireGuard service is required, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' server-client tunnelling network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' For example, the public 4G network experiments were configured using a WireGuard server-client tunnelling network to bypass the ISP gateway (anonymity) that comes with standard public wireless communications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' However, this means that there is an increase in WireGuard delay path routing and it is more complex to calculate true Round-Trip Time (RTT) latency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Physical Experiments: Network Throughput and Latency Wireless network experiments were conducted in four corners of two test environments, aforementioned in Sec- tion 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='3, the Vegetable Polytunnel and the Walled Garden.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' In total, experiments were conducted in 8 geographically different points and, at each point, an experiment lasted 30 seconds and was repeated 5 times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' This allows for results to be interpreted in two ways: firstly, by taking the results of each experiment run of 30 seconds separately;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' and secondly, Vegetable Polytunnel W3W Location Distance(m) 5G WiFi P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='1 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='3 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='5 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='6 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='6 D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='4 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='9 Table 4 The distance between 5G/WiFi access point and the data collection points in the Vegetable Polytunnel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Walled Garden W3W Location Distance(m) 5G WiFi A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 143.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='4 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 119.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='5 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='2 O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 154.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='8 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='4 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 132.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='3 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='2 Table 5 The distance between 5G/WiFi access point and the data collection points in the Walled Garden.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' by combining the results of 5 experiments over 30 seconds, which totals 2 minutes and 30 seconds of acquired data per location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The results presented in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='2 are obtained using the first methodology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The commercial mapping tool What3Words (W3W)13 was used to identify and mark the 8 data collection points where experiments were conducted, illustrated in Figures 7 and 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' For ease of visualising the results in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='2, the points used for data collection are labelled with the first letter of each W3W specification, and the core network (access point) for 5G and WiFi6 are labelled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The approximate distances between each data collection point and the access points (5G and WiFi6) are given in Tables 4 and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Finally, the physical experiments and results are briefly discussed in 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Performance Metrics To test network stability and performance, different video streaming settings were used, namely 1-RGB, 4-RGB and 1-RGBD video streams14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The number at the start of RGB denotes the number of video streams, for example 1-RGB denotes one RGB video stream.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The in-field robot streams video data back to the pseudo-MEC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The 1-RGB video stream experiment tests realistic latency conditions in what can be considered typical or medium network load.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The 4-RGB video stream experiment is used to test how 4G, 5G and WiFi6 deal with multiple data streams communicating at the same time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Moreover, four video streams can be con- sidered heavy network load, which is expected to increase latency for all network types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Finally, the 1-RGBD stream experiment is used as a method to analyse how the different networks react to a single source of consistent heavy network 13https://what3words.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='com 14All video stream data in experiments was compressed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' T Zhivkov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' : Preprint submitted to Elsevier Page 7 of 19 NAT Robot device 1 I 192.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='168.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='2 I Robotdevice2 Requestfrom 192.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='168.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='3 Request translated 192.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='168.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='3 Internet Router WAN: 172.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='223.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='203 Robot device n 192.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='168.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0/24 NAT5G on the Farm Figure 7: Satellite image showing the four experiment loca- tions, identified using abbreviated what3words, in the Veg- etable Polytunnel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Figure 8: Satellite image showing the four experiment loca- tions, identified using abbreviated what3words, in the Walled Garden.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' load.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' However, it is important to stress that it was never the intention of the authors to analyse maximum throughput or lowest latency, but rather to demonstrate the practical results and to evaluate the performance of state-of-the-art network systems, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', 5G and WiFi6, and a commonly used commercial network system, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', 4G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' There were three independent variables in the network experiments: location, network type and video stream num- ber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' There were two dependent variables, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' the raw data collected to assess performance: latency, measured in mi- croseconds (ms), and throughput, measured in Megabits per second (Mbps).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The results are presented next.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Results While a larger set of performance metrics were collected during the experiments described in this paper, a selected portion of the results that best illustrate our aims are re- ported here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' For the two performance metrics, three statis- tics are presented: mean, standard deviation and minimum latency (ms) and mean, standard deviation and maximum throughput (Mbps).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Throughput15 results are interpreted from the point of view of the in-field mobile robot, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', data sent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The data sent metric is much higher in proportion to the data received from the pseudo-MEC, which is negligible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' This is because the mobile robot receives basic network telemetry data, video stream control messages to start and stop a stream, and co- ordinate information identifying weed locations in an image, as a consequence it is not investigated in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The data collection point (geographical point) with the best results for latency (lowest mean and minimal latency) and throughput (highest mean and maximum throughput) is selected for each of the two environments and shown in Table 616.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Figure 9 and Figure 10 visually show the data from Table 6 for each of the environments, Walled Garden and Vegetable Polytunnel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The wireless networks’ latency results ordering, in Figure 9, remained the same throughout all data collection points in both test environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' It was always the case that WiFi6 had the lowest latency followed by 5G, whereas 4G had the highest latency which was ten times higher than the latter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The ordering of the wireless networks’ performance remained similar for throughput, as shown in Figure 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' In all instances WiFi6 outperformed 5G and greatly outperformed 4G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Whereas, 5G outperformed 4G in all environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Finally, the distance between the two environments from each access point is averaged and compared for 5G and WiFi6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The 5G mast is an average distance of 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 metres and 137.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='5 metres from the Vegetable Polytunnel and Walled Garden, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Whereas, the WiFi6 router is an average distance of 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='6 metres and 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='5 metres from the Vegetable Polytunnel and Walled Garden, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' A difference of 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='4 metres and 114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 metres respectively, between the two corresponding environments and wireless networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Discussion We show that commercially available public 4G is un- realistic to be used for high data rate and low-latency op- erations in the rural environment, rarely achieving below 100ms latency and never managing to reach over 20Mbps data throughput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Though, it is promising that on average the public 4G network data rate is close to the actual commercial upload speeds of 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='7Mbps quoted by Ofcom (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' It should be noted that the surrounding area was thoroughly evaluated for the best 4G signal and network provider to achieve these results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' However, low throughput and high latency can result in poor performance of the in-field robot, misinterpreting and mislabelling plants or even robots caus- ing damage to plants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' A strength of public 4G networks for agriculture is that if a rural area has any network coverage, it 15Wherever “throughput” results are shown or discussed they depict “data sent” performance metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 16For a complete view of all data collection points covering the six key performance metrics, refer to Appendix A T Zhivkov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' : Preprint submitted to Elsevier Page 8 of 19 5G WiFi .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='L M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='F R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='F5G A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='D A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='J WiF O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='C5G on the Farm Vegetable Polytunnel Network Latency (ms) Throughput (Mbps) Type Mean Min Loc- ation Mean Max Loc- ation 4G 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='9 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 DLF 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='5 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='5 DLF WiFi6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 RWP 144.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='2 145.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 PRL 5G 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='7 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='9 DLF 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='1 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='1 PRL Walled Garden Network Latency (ms) Throughput (Mbps) Type Mean Min Loc- ation Mean Max Loc- ation 4G 187.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='2 137.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='6 LVC 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='4 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='8 ACJ WiFi6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 OLD 144.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='2 149.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='5 ACD 5G 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 OLD 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='8 OLD Table 6 The best results achieved in each environment for the different network types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' is quick and easy to setup with little configuration required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' However, this strength carries a weakness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Total control and availability of the network is at the discretion of the network carrier (ISP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Moreover, a network wide outage for the ISP means instant outage and complete disruption to normal operation on the farm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Public 5G, which is not evaluated in this work, is ex- pected to perform with lower latency and higher data rate than public 4G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Hence, it can be assumed that public 5G can support high data rate, low-latency agri-robotics and the future smart farm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' However, this is not the case currently and it will remain so until public 5G fully matures, and even if it does, there is a chance that it will remain unrealistic like public 4G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' It needs to be considered that commercial networks do not apply a balanced TDD, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', more emphasis on download speed and delivering services.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Unlike a private network that can be configured to provide more balanced upload and download speeds and improve network coverage to more rural areas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' If we take a look at real-world data pro- vided by Ookla (Fomon, 2021) for Q1-Q2 of 2021, the high- est 5G upload data achieved is 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='79Mbps by South Korea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' South Korea have been the leader in network technology and internet infrastructure since the late 90s early 00s (Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', 2003) and they are world leading in 5G as well (Massaro and Kim, 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Yet, the remaining bottleneck for public 5G seems to be upload speed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Getting over the maturity and configuration hurdle, the lack of control over the network and relying on an ISP, as is the case for 4G, remains an issue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The private 5G available at the University of Lincoln has proved why it is better than public 5G, by showing greater upload speeds achieved in real-world experiments of 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='1Mbps with VLoS and 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0Mbps with NVLoS, Table 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The slowest average upload speed is approximately double that of the UK average according to Fomon (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Upload speeds over 30Mbps can support at least one live video stream and bi-directional communication and 60Mbps can support two live streams and bi-directional communication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Moreover, the latter case can support multiple live streams, (a) Vegetable Polytunnel (b) Walled Garden Figure 9: Best network latency results, averaged over 5 ex- perimental runs gathered from a single “best” location (please refer to Table 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The mean is the solid line in the centre of the shaded regions, which shows ± 1 standard deviation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' however video streaming will not be real-time and will not be running at 30FPS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The private 5G 4-RGB streaming experiments showed significant reduction in video stream quality and speed, with some streams buffering for a few seconds before starting back up again.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The fact that four video streams shared bandwidth meant that the system was trying to balance resources and all four streams were not running at the same speed, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' some smoother than oth- ers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Whereas, the 1-RGBD stream experiment experienced slowness or choppiness and was not running at 30FPS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The expected bandwidth requirement for live RGBD video streaming is ~145.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0Mbps, 5G could support approximately half the required bandwidth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The private WiFi6 (local) network was evaluated as it has recently become commercially available and it is state- of-the-art in terms of network features and performance, introducing higher network speeds and very low-latency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' It was expected that WiFi6 will beat 5G in data throughput, and in fact it leads 5G by ~2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='5 times in upload data speeds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' WiFi6 unexpectedly beats 5G in latency time as well, by being as much as ~13 times lower.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' However, the distances at which T Zhivkov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' : Preprint submitted to Elsevier Page 9 of 19 WiFi 4G 300 5G WiFi STD 4G STD 5G STD 250 Latency (ms) 200 150 100 50 0 0 5 10 15 20 25 30 Time Sequence (seconds)WiFi 4G 300 5G WiFi STD 4G STD 5G STD 250 - Latency (ms) 200 150 100 50 0 0 5 10 15 20 25 30 Time Sequence (seconds)5G on the Farm (a) Vegetable Polytunnel (b) Walled Garden Figure 10: Network throughput results,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' averaged over 5 ex- perimental runs gathered from a single “best” location (please refer to Table 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The mean is the solid line in the centre of the shaded regions, which shows ± 1 standard deviation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' these results are obtained are not the same as for 5G, and the NVLoS experienced by 5G is not present for WiFi6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The point with the greatest distance for WiFi6 is 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='2 metres and for 5G is 154.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='8 metres, over 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='5 times greater for the latter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The attenuation of a WiFi signal is exponential and at a distance greater than 100 metres there would be no signal (communication) at all.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' High gain antenna could be used to boost WiFi signal, however such antennae do not exist commercially for WiFi6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Moreover, a license needs to be obtained to operate such antennae for the WiFi standard making it very likely the case that WiFi6 will also require license to operate signal boosting antennae.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' WiFi6 results are demonstrably better than 5G and at a completely different level compared to 4G, however there are many situations where WiFi6 is not the best option in agriculture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' For example, the experiments conducted in this work used only the WiFi6 standard, and support was disabled for older WiFi standards.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' This forced all devices to use the latest standard for message transmission ensuring lowest possible latency and highest throughput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' However, in practical environments (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', farm) it can be beneficial to enable multi-WiFi support, allowing certain sensors to use older standards, which may allow for greater compatibility, coverage and more robust signal-strength to distance drop off (better attenuation at greater distances).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Moreover, not many discrete and low power WiFi6 network devices exist on the market.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Most sensors used by agronomists or farmers for monitoring rainfall, soil moisture, light levels, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', do not support WiFi6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Because of this, WiFi6 is less known and not many real world use cases and data exist yet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Simulation Experiments: Real-Time Operation and Control A future technology being introduced to 5G is ultra- reliable low-latency communication (URLLC) that will guar- antee ∼99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='999% reliability of communication and real-time low-latency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' This feature should have been available for FR1 (Frequency range 1 - i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', 5G N77 band) in early 2021, but its release has been delayed by most system providers, in- cluding the private 5G network at the University of Lincoln.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' URLLC (Sachs et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', 2018) is a 5G feature that has been marked to bring realisation to many technologies, one of which is V2X (Vehicle-to-Everything) networks, designed to provide real-time reliable communication to assist nav- igation in fully autonomous vehicles, traffic control and road safety protocols (Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Ali et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Sachs et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' (2018) explain that the theoretical worst-case transmission latencies differ depending on network config- uration, showing that RTT latency can range from as low as ~0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='8ms to as high as ~6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='3ms, depending on configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' However, according to the official 3GPP technical specifi- cation (3GPP, 2017), the intended theoretical RTT latency target for URLLC is 1ms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' To not convolute the simulated experiment results, a comparison and evaluation is given assuming the theoreti- cal URLLC value (1ms) given in the 3GPP (2017) report.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Moreover, we do not evaluate the reliability of the wireless networks, as none of them, including the current private 5G network, have the URLLC feature available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' URLLC is not a feature that exists for 4G or WiFi6, and as mentioned it is not available for most 5G systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The results in this work are not intended to directly challenge or prove 5G URLLC, furthermore we do acknowledge that there are targeted use cases for this feature that 4G and WiFi6 cannot support, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' V2X, due to network and infrastructure limitations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' This simulation strictly compares the RTT latency of the three wireless networks against the URLLC theoretical specifica- tion to primarily investigate the real-time speed-up of robot operation in the field and the improved performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Experiment Design The objective of this experiment is to analyse the “real- time” delay in positional accuracy between the different network types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' To perform these simulated experiments we used real world RTT mean latency results from two arbitrarily chosen data collection points, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' in the Vegetable Polytunnel, as presented in Table 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The T Zhivkov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' : Preprint submitted to Elsevier Page 10 of 19 WiFi 4G 140 - 5G WiFi STD 4G STD 120 5G STD (sd) dnol 100 80 60 40 20 0 0 5 10 15 20 25 30 Time Sequence (seconds)WiFi 4G 140 5G WiFi STD 4G STD 120 5G STD (sd) ndanol 100 80 60 40 20 0 0 5 10 15 20 25 30 Time Sequence (seconds)5G on the Farm Location Mean Latency (ms) 5G WiFi6 4G P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='2 216.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='7 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='P 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='3 294.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 Table 7 The mean latency results for points P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' for each of the three wireless networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 5G and WiFi6 networks in the Vegetable Polytunnel have mostly VLoS with light obstructions, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', metal scaffolding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Whereas, the 4G network has some VLoS with moderate obstructions, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', tree lines, metal scaffolding and general RF interference that can occur over longer distance commu- nication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The approximate distance between point P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' is ~30 m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Overall, two separate simulation ex- periments are conducted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' In each experiment the RTT mean latency result is taken from one of the points (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='/R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=') and it is used to simulate the accumulated delay experienced by the remote controlled robot for each metre of travel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' To demonstrate real-time positional accuracy, for every metre that the simulated remote-controlled robot moves, its location is updated and sent to the pseudo-MEC (remote server) and a processed reply message is sent back.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' It is approximated that points P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' are 30 metres apart, therefore 30 location steps are generated as shown in Figure 11(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The robot is set to move with a velocity of 3 푚.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='푠−1, which means that every second, 3 location spaces are passed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' At the same time, 3 location messages are sent to the pseudo-MEC and 3 command messages (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', spray, collision avoidance, GPS data, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=') are received by the sim- ulated robot every second.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' We can ignore the payload (size) of location messages and command messages altogether as they are negligibly small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Moreover, we will conceptualise that the pseudo-MEC already has the most up-to-date image data stored for each location along the path of the remote controlled robot, which means that expensive image data is not transmitted during these experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Thus the most important element of the experiment is the transmission of messages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' For every metre the robot moves, one location update message is sent and one weed location message (bounding box) is received, as described in Figure 11(b) and accompanying Table 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The image processing pipeline described in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='2 can process images at speeds as fast as ~14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='5ms per image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' However, in this simulated experiment, to illustrate our point more clearly, it will be assumed that the pseudo-MEC will be processing more complex images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Therefore, the pseudo- MEC’s speed of processing will be taken to be the same as the average time it takes a human to react in real-time to a sudden change on screen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' This processing (reaction) speed will make the simulation more conceptually easy to comprehend.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' This value is assumed fixed and independent of task type, and is set to 273ms, the median human hand- eye reaction time (humanbenchmark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='com, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' To fur- ther simplify the simulated experiments, robot velocity is assumed fixed and other external factors contributing to latency are ignored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' To prove that a wireless network can support real-time operation and control, the robot in the field needs to receive weed location messages while it has not yet transitioned to a new location space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' This is vital for the correct operation of a weed spraying robot, as it needs to be able to spray the weeds correctly, while maintaining its speed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The calculation and performance metric used to determine if a robot is still within the location space is given in the next section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' (a) Satellite image of the Vegetable Polytunnel (rotated 90° anti-clockwise).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' (b) Magnified overview of robot navigation and (instant) communication over a period of 1 second.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Figure 11: Image (a) shows 30 location spaces each depicting 1 metre, between data points P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', representing the simulated path of the robot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Image (b) shows the magnified operation of the simulated robot if it had instantaneous (ideal) communication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Performance Metrics and Rationale As mentioned previously, sent messages will be location messages, in the form of 2D coordinate data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Whereas, received messages can be a variety of different types of data, we will assume that it is bounding box pixel position data which identifies detected weeds in an image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Both types of T Zhivkov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' : Preprint submitted to Elsevier Page 11 of 19 1 Second P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='Location P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Robot Navigation Distance (m) 0 1 2 3 Sent messages Robot Received messages Communication Tin 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='33 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='66 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='05G on the Farm Fixed robot velocity 3 푚.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='푠−1 Location update time per meter 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='333 s Sent/Received messages per second 3 푚푠푔.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='푠−1 Total messages per second 6 푚푠푔.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='푠−1 Table 8 Robot Navigation and Communication Parameters messages are sent in the form of floating point numbers, however their size is so small that it is considered negligible in terms of data throughput compared to the image data sent in the experiments in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' This is desirable as we want minimal load on the network to analyse latency only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' From the start of the experiment, at point P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', to the end of the experiment, at point R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='P, 30 location messages are sent and 30 bounding box messages are received making a total of 60 messages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Henceforth, a sent message and the processed reply message are denoted as a pair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' As we are making fixed assumptions for the processing time and ignoring uncertainty, the calculated cumulative delay time for a pair is simply the RTT latency time of the network at the given location plus the processing time, as demonstrated in Figure 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The total cumulative delay time takes into account: (i) the time required to send a location message from the in-field remote controlled robot to the remote server (pseudo-MEC),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' (ii) plus the time required to process the message on the server and prepare a command message in response,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' (iii) plus the time taken to send the command message from the server back to the in-field robot (denoted cumulative delay time),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' (iv) finally,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' the total cumulative delay time is the result of cumulative delay time - location update time,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' multiplied by the number of sent messages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Therefore, total cumulative delay time provides the delay experienced by the received messages for the total duration of travel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Figure 12: Cumulative delay time metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Results We have RTT latency for points P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' and no real world data for the points in-between, as such we cannot perform accurate evaluation of the cumulative delay time during the simulated navigation of our robot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' However, we assume the trend lines in Figure 13a) are a good approxi- mation of the RTT delay time, therefore we can use the RTT P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Network Sent & Rec’vd (ms) Proc (ms) Cumu (ms) Cumu Δ (ms) Results using Processing delay similar to human reaction time humanbenchmark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='com (2021) WiFi6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='2 273.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 274.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='2 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 (-58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='8) 5G 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='5 273.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 302.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='5 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 (-30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='5) 4G 216.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='7 273.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 489.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='7 +4701.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 (+156.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='7) Table 9 Cumulative Delay Time latency at each step of message transmission and overall cumulative Δ time, showing individual message processing time (proc), cumulative (cumu) delay time and cumulative lead/lag time difference, or Δ, in milliseconds (ms).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' latency of P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' as the two extremes for each network, Table 7, to analyse how the cumulative delay time is affected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' To demonstrate why URLLC is an important feature to 5G it needs to be accurately applied in certain use cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' As processing time is unknown in many use cases it is important and required in the results obtained here, to demonstrate why URLLC can impact localisation and real-time control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' To prove 5G is on track to provide real-time control, even without having URLLC as a feature yet, the robot sends 3 location updates every metre and requires a response within 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='333s (333.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='3ms) to allow it to carry out an operation while the location has not changed, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' in real-time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Calculating the delta time between the required response time and the cumulative delay time provides lead times for both WiFi and 5G, but lag time for 4G, which is shown in Tables 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='3 and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='3, and illustrated by the accompanying Figures 14 and 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' This result shows that if 4G was employed for communication, a robot would accumulate an overhead of between 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='7 seconds and 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 seconds (due to network lag) in just 10 seconds of travel, and therefore would not be able to operate within real- time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' For further evaluation of the experiment results, we performed simple vertex form quadratic calculations to visu- alise trend lines and observe the expected RTT latency over the 30 metre path of the remote controlled robot, as shown in Figure 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The evaluation was only performed for 4G and 5G as WiFi6 barely observed any demonstrable change over the 30 metre path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Moreover, including WiFi6 to Figure 13a) greatly reduced the usefulness of the results and made them unclear as it skewed the y-axis in favour of WiFi6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The trend line for 5G reduces between point P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' even though the distance from the access point increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' This is because point R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' has a more direct and open view of the central access point antenna, which is directly pointing at it and the signal does not have to go over the roof of a nearby building.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' T Zhivkov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' : Preprint submitted to Elsevier Page 12 of 19 Robot Pseudo-MEC Send message mess RTT Begin Processing Received ACK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Cumulative delay acknowledged Processing time time .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Send reply message Receive message :RTT acknowledged Received ACK5G on the Farm (a) Trend line for 4G and 5G (lower is better).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' (b) Trend line for 5G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Figure 13: Image (a) shows the trend line of RTT latency as the robot moves from data point P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' to R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='. Image (b) shows a closer inspection of only the trend line of RTT latency for the 5G network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Network Sent & Rec’vd (ms) Proc (ms) Cumu (ms) Cumu Δ (ms) Results using Processing delay similar to human reaction time humanbenchmark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='com (2021) WiFi6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='3 273.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 274.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='3 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 (-58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='7) 5G 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='9 273.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='9 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 (-37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='1) 4G 294.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 273.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 567.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 +7020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 (+234.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0) Table 10 Cumulative Delay Time latency at each step of message transmission and overall cumulative Δ time, showing individual message processing time (proc), cumulative (cumu) delay time and cumulative lead/lag time difference, or Δ, in milliseconds (ms).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Discussion The distance to point P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' is 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='1 m and mean RTT latency of 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='9 ms and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='P is 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 m and mean RTT latency of 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='9 ms, for the 5G network, which means that one-way communication latency is 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='5 ms and 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 ms, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The latency is low enough to enable live 30FPS video streaming, but not low enough to allow for real-time tracking and control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Figure 14: Timeline of 1 second, showing the flow of sent location messages and the cumulative delay time experienced for data point P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' in received commands by the robot using different wireless networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The dashed vertical lines show the time of the command message being returned—the elapsed time being the total of: (i) the time required to send a location message, (ii) plus the time required to process the message and prepare a command message in response, (iii) plus the time taken to send the command message.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' If the vertical dashed line occurs before the next command (blue box) is sent (at time 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='333s), then the localisation will not lag behind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' This is the case for WiFi6 and 5G, but not for 4G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Conclusion This work draws two important conclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Firstly, it evaluates the performance of a private 5G-SA telecom- munications network, a private WiFi6 network and public 4G telecommunications network for the use case of high throughput and low latency operations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Experiments in Sec- tion 4 were conducted in the context of an agricultural use case: a robot capturing images in a field, streaming that video to an off-board edge computer for identifying weeds and sending actuation commands back to the robot or to a human user on another computer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The results demonstrated that public 4G cannot be used in agriculture to support high throughput and low latency operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Further, in our controlled setting, we found that WiFi6 performed better T Zhivkov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' : Preprint submitted to Elsevier Page 13 of 19 300 4G 5G 250 (ms) 200 TT Latency ( 150 100 R 50 6 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Distance between points (m)5G 29 28 RTT Latency (ms) 24 23 01 6 5 Distance between points (m)Location P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Robot Navigation Distance (m) 0 1 2 3 Sent messages Robot WiFi6 Received messages Communication Time (s) L 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='33 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='66 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 Sent messages Robot 5G Received messages Communication Time (s) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='33 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='66 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 Sent messages Robot 4G Received messages Communication Time (s) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='33 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='66 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='05G on the Farm Figure 15: Timeline of 1 second, showing the flow of sent location messages and the cumulative delay time experienced for data point R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' in received commands by the robot using different wireless networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The dashed vertical lines show the time of the command message being returned—the elapsed time being the total of: (i) the time required to send a location message, (ii) plus the time required to process the message and prepare a command message in response, (iii) plus the time taken to send the command message.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' If the vertical dashed line occurs before the next command (blue box) is sent (at time 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='333s), then the localisation will not lag behind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' This is the case for WiFi6 and 5G, but not for 4G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' than 5G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' WiFi6 never saturated during throughput testing, whilst 5G saturated at approximately 60Mbps when testing 1-RGBD video streaming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' According to (Fomon, 2021), the achieved throughput is higher than leading countries’ public 5G results from gathered data in Q1-Q2 of 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' However, these results show a good outcome overall for 5G as it shows that the technology is still maturing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' WiFi6 had a lower latency on average of 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='2ms compared to that of 5G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The 5G mast is further by 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='4 metres and 114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 metres in the Vegetable Polytunnel and Walled Garden, respectively, compared to the WiFi6 router.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The greater distance from the access point further contributes to the worse performance in the Walled Garden for the 5G network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' However, this highlights the 5G network’s coverage over a greater distance and, a feature not tested, support for connecting a greater amount of devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' WiFi/WiFi6 routers can support a few devices, any increase in number of devices can greatly in- crease complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Whereas, the 5G network can inherently support a greater number of devices with gradual increase in complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' It is worth noting that the obtained results are only a snapshot of the private 5G performance at the time of data collection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The 5G network is continuously being updated and improved, making it more robust and balancing the upload and download ratio for different use cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Secondly, simulation experiments were conducted, in order to assess the viability of performing a more complex hypothetical variant of our agricultural use case using each of the three network setups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Specifically, these experiments analysed latency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' As previously observed, these results reaf- firmed that 4G is too slow to be able to perform the task at hand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The WiFi6 and 5G produced sufficient speed to manage the job.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Furthermore, the results showed that only in extreme cases, where the processing time is longer or the velocity of the robot is greater, will WiFi6 have advantage over 5G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' In conclusion, the results in this body of work are significant for the agricultural domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' They clearly iden- tify strengths and weaknesses of current and state-of-the- art wireless network infrastructures in rural environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Moreover, the results identify the fundamental requirements that the future smart farm will have for the telecommuni- cations industry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' It is clear that 4G cannot support agricul- tural activities, and the lower coverage, higher attenuation and much slower commercial uptake of WiFi6 make it an impractical solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Finally, this work highlights that there is no single wireless network that is best suited for agri- technology and agri-robotics, but using a mixture of the state-of-the-art can provide a better solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' For example, private 5G can be used to move data faster between longer distances connected to a WiFi6 (or multi-WiFi) wireless backhaul that extends to locally connected robots and sen- sors in a farm field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The next steps with this line of research involve testing more complex scenarios in a physical environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' This includes the hypothetical setup simulated in Section 5, as well as setups with multiple robots in the field, larger fields (where the distance to the network mast is greater) and more complex actuation messages going to the robot such that send and receive transmissions are more balanced than in the experiments presented here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' As public 5G roll-out continues world-wide, having better understanding of the benefits in agriculture will help farmers make the case for rural deployments of such networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The contribution of the work shared here helps to demonstrate that the wireless infrastructure of 5G is required to facilitate even the most basic precision agriculture use case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' T Zhivkov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' : Preprint submitted to Elsevier Page 14 of 19 Location P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Robot Navigation Distance (m) 0 1 2 3 Sent messages Robot WiFi6 Received messages Communication HI Time (s) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='33 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='66 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 Sent messages Robot 5G Received messages Communication Time (s) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='33 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='66 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 Sent messages Robot 4G Received messages Communication Time (s) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='33 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='66 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='05G on the Farm A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Appendix To give a complete visual picture of our findings and data collection from experiments in Section 4, we have collated and plotted all the data in simple and easy to read graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The data is split into two main figures, each figure represents one of the two main performance metrics being analysed, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' latency in Figure 16 and network throughput in Figure 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Each figure contains 3 subplots and each subplot represents a wireless network, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 4G, 5G, WiFi6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Finally, each subplot is split by a vertical line into three sections, highlighting the data stream network parameter, and bar colour represents one of the two locations where experiments were conducted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The public 4G latency performance in Figure 16 is poor throughout all streaming experiments and in all environ- ments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Unlike WiFi6 and the private 5G, for 4G it is difficult to analyse if the environment or the different streaming experiments cause an increase in latency, this is because the RF interference over a larger distance is impossible to predict.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' However, it can be confirmed that the latency is far too high for real-time video streaming, regardless of what type of streaming experiment is conducted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The latency for 5G in Figure 16 is extremely low, and it is close to WiFi6 in the Vegetable Polytunnel environment (orange coloured bars).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' However, in a distant environment, obstructed by tree cover and a wall, it suffers greatly and in certain parts of the environment the latency is as bad or worse than the public 4G (ACJ-4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The latency results in Figure 16 for WiFi6 standard deviation indicates negative latency, which is impossible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' This is because the latency is so low and on occasion it can spike making the negative portion of the standard deviation dip below zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' This makes WiFi6’s standard deviation neg- ligible, it is kept for illustrative purposes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The main increase in latency for WiFi6 can be seen during the RGB-D data streaming experiments and when operating in an open field in the Walled Garden.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' This is expected for WiFi6 as signal loss in an open field is far greater than in an indoor space or a space with many walls and obstacles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The latency still remains extremely low.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The public 4G throughput results in Figure 17 are in- teresting, as regardless of streaming experiment they hit a certain limit of throughput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' As suggested, from our own experiments on public 4G and from the data obtained from Ofcom (2014), the maximum and mean throughput (upload speed) should be between 20Mbps and 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='7Mbps, which is what we see.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Albeit, there are some experiment locations that have much lower throughput, which could be caused by many factors, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', RF interference, increased traffic load, traffic load optimisation, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Therefore, we can assume that we are saturating the upload speed of the public 4G network and we cannot expect much higher throughput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The 5G throughput results are impressive, and clearly much higher than 4G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' However, if we examine the throught- put results between WiFi6 and 5G, specifically for the RGB- D streaming experiment, we can see that the 5G network has also saturated in terms of upload speed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' We can assume that the 5G network maximum upload speed is close to 65Mbps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' It was never the intention of this body of work to find the maximum upload speed of the particular configuration of the 5G network setup at the University of Lincoln.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Because, the 5G network is continuously being improved, and for example UL/DL ration in the future can be configurable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' For the current release of 5G-SA N77 it is not (at least not to our knowledge).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Moreover, there are different 5G network technologies and different iterations of 5G that will perform completely differently to each other, we would not be contributing to the field by specifically finding the limits of our particular system, which itself is continually evolving.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The WiFi6 throughput results are almost perfectly aligned with theoretical expectations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The RGB data stream is compressed and throughput increases only if movement is detected and there are many different colour changes in very fast succession in front of the camera, which does not occur in our green and brown images, the throughput is variable and unpredictable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' However, for the RGB-D experiments, the data stream is still compressed, but at a static rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' This means that the data streamed should always be the exact same regardless of how fast the scene in front of the camera changes and regardless of colour changes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Theoretically, this value should be 144Mbps (or 18MBps), which is what WiFi6 approximately reaches during the RGB-D experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Clearly, WiFi6 can stream the data it is expected to, and we have no reached a saturation limit of upload or download.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' However, the latency results, which are excellent show the one weakness of WiFi6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' In an outdoor open field environment the signal loss will be exponential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' T Zhivkov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' : Preprint submitted to Elsevier ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='Page 15 of 19 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='5G on the Farm ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='MVF-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='PRL-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='DLF-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='RWP-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ACD-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ACJ-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='OLD-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='LVC-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='MVF-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='PRL-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='DLF-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='RWP-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ACD-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ACJ-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='OLD-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='LVC-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='MVF-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='PRL-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='DLF-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='RWP-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ACD-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ACJ-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='OLD-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='LVC-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='1000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='1500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='2000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='Latency (ms) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='Plot of 4G Latency ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='MVF-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='PRL-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='DLF-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='RWP-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ACD-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ACJ-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='OLD-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='LVC-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='MVF-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='PRL-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='DLF-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='RWP-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ACD-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ACJ-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='OLD-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='LVC-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='PRL-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='DLF-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='RWP-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ACD-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ACJ-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='OLD-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='LVC-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='1000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='1500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='2000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='2500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='Latency (ms) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='Plot of 5G Latency ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='MVF-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='PRL-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='DLF-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='RWP-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ACD-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ACJ-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='OLD-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='LVC-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='MVF-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='PRL-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='DLF-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='RWP-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ACD-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ACJ-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='OLD-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='LVC-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='MVF-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='PRL-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='DLF-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='RWP-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ACD-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ACJ-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='OLD-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='LVC-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='Location and stream number ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='−5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='Latency (ms) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='Plot of WiFi Latency ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='Figure 16: Latency results across all performance metrics and parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The vertical lines separate the data stream type and the orange coloured bars represent the Vegetable Polytunnel and the blue coloured bars represent the Walled Garden.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' T Zhivkov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' : Preprint submitted to Elsevier ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='Page 16 of 19 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='5G on the Farm ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='MVF-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='PRL-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='DLF-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='RWP-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ACD-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ACJ-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='OLD-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='LVC-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='MVF-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='PRL-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='DLF-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='RWP-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ACD-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ACJ-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='OLD-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='LVC-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='MVF-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='PRL-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='DLF-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='RWP-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ACD-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ACJ-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='OLD-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='LVC-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='Throughput (Mbps) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='Plot of 4G Throughput ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='MVF-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='PRL-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='DLF-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='RWP-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ACD-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ACJ-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='OLD-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='LVC-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='MVF-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='PRL-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='DLF-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='RWP-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ACD-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ACJ-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='OLD-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='LVC-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='PRL-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='DLF-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='RWP-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ACD-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ACJ-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='OLD-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='LVC-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='Throughput (Mbps) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='Plot of 5G Throughput ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='MVF-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='PRL-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='DLF-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='RWP-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ACD-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ACJ-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='OLD-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='LVC-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='MVF-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='PRL-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='DLF-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='RWP-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ACD-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ACJ-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='OLD-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='LVC-4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='MVF-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='PRL-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='DLF-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='RWP-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ACD-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ACJ-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='OLD-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='LVC-1d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='Location and stream number ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='120 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='140 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='Throughput (Mbps) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='Plot of WiFi Throughput ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='Figure 17: Throughtput results across all performance metrics and parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' The vertical lines separate the data stream type and the orange coloured bars represent the Vegetable Polytunnel and the blue coloured bars represent the Walled Garden.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' T Zhivkov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' : Preprint submitted to Elsevier Page 17 of 19 5G on the Farm References gov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='uk, £25 million funding for high tech machinery on farms, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' URL: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='gov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='uk/government/news/ 25-million-funding-for-high-tech-machinery-on-farms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' DEFRA, Tree planting, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' URL: https://committees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='parliament.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='uk/ publications/9364/documents/160849/default/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Duckett, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Pearson, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Blackmore, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Grieve, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Chen, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Cielniak, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Cleaversmith, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Dai, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Davis, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Fox, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' From, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Georgilas, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Gill, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Gould, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Hanheide, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Hunter, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Iida, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Mihalyova, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Nefti- Meziani, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Neumann, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Paoletti, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Pridmore, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Ross, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Smith, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Stoelen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Swainson, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Wane, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Wilson, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Wright, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='-Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Yang, Agricultural robotics: The future of robotic agriculture, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' URL: https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='org/abs/1806.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='06762.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='48550/ARXIV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='1806.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='06762.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Zhivkov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Gomez, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Gao, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Sklar, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Parsons, The need for speed: How 5g communication can support ai in the field, in: Proceedings of UKRAS21 Conference: Robotics at home, UK-RAS, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 31256/On8Hj9U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Tang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Dananjayan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Hou, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Guo, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Luo, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' He, A survey on the 5g network and its impact on agriculture: Challenges and opportunities, Computers and Electronics in Agriculture 180 (2021) 105895.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Lang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' McKee, The reinvasion of ukraine threatens global food supplies, BMJ 376 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Rae, The economic impact of the ukraine–russia war, in: SAGE Business Cases, SAGE Publications: SAGE Business Cases Originals, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Partridge, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Partington, ‘The anxiety is off the scale’: UK farm sector worried by labour shortages, The Guardian (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Washburn, In California farm country, growers struggle with labor shortage, USA Today (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Naik, Global farming suffers from falling prices, labor shortages as virus spreads, S & P Global Market Intelligence (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Raza, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Razzaq, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Mehmood, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Zou, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Zhang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Lv, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Xu, Impact of climate change on crops adaptation and strategies to tackle its outcome: A review, Plants 8 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Webb, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Benton, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Beddington, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Flynn, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Kelly, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Thomas, The urgency of food system transformation is now irrefutable, Nature Food 1 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Borrelli, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Robinson, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Panagos, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Lugato, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Yang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Alewell, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Wuepper, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Montanarella, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Ballabio, Land use and climate change impacts on global soil erosion by water (2015-2070), Proceedings of the National Academy of Sciences 117 (2020) 21994–22001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Shaheb, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Venkatesh, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Shearer, A review on the effect of soil compaction and its management for sustainable crop production, Journal of Biosystems Engineering 46 (2021) 417–439.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Millard, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Ravikanna, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Groß, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Chesmore, Towards a swarm robotic system for autonomous cereal harvesting, in: K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Althoefer, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Konstantinova, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Zhang (Eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' ), Towards Autonomous Robotic Sys- tems, Springer International Publishing, Cham, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 458–461.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' FAO, Global Livestock Environmental Assessment Model (GLEAM), Food and Agriculture Organisation of the United Nations, https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='fao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' org/gleam/results/en, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Borsellino, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Schimmenti, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' El Bilali, Agri-food markets towards sustainable patterns, Sustainability 12 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='Stafford, Implementing Precision Agriculture in the 21st Century, Journal of Agricultural Engineering Research 76 (2000) 267–275.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Gebbers, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Adamchuk, Precision agriculture and food security, Science 327 (2010) 828–831.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Durisi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Koch, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Popovski, Toward Massive, Ultrareliable, and Low- Latency Wireless Communication With Short Packets, Proc of the IEEE 104 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Popovski, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Trillingsgaard, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Simeone, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Durisi, 5G wireless network slicing for eMBB, URLLC, and mMTC: A communication- theoretic view, IEEE Access 6 (2018) 55765–55779.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Rendon Schneir, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Xiong, A cost study of fixed broadband access net- works for rural areas, Telecommunications Policy 40 (2016) 755–773.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Technological change and the provision, consumption and regulation of services: Papers from a European ITS regional conference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Adami, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Giordano, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Tamburello, A monitoring application for animal repelling devices in smart agriculture, in: 2020 IEEE 25th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 1109/CAMAD50429.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='9209316.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Kagan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Arnold, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Cappelleri, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Keske, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Turner, Special report: The internet of things for precision agriculture (iot4ag), Computers and Electronics in Agriculture 196 (2022) 106742.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Tao, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Zhao, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Wang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Liang, Review of the internet of things com- munication technologies in smart agriculture and challenges, Computers and Electronics in Agriculture 189 (2021) 106352.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' T Zhivkov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' : Preprint submitted to Elsevier Page 18 of 19 5G on the Farm M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Karthikkumar, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Premchandran, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Sathish, An agricultural irrigatıon management system based on the internet of things with MQTT proto- col, IOP Conference Series: Materials Science and Engineering 1084 (2021) 012118.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Bodunde, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Adie, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Ikumapayi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Akinyoola, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Aderoba, Ar- chitectural design and performance evaluation of a zigbee technology based adaptive sprinkler irrigation robot, Computers and Electronics in Agriculture 160 (2019) 168–178.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Tsipis, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Papamichail, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Koufoudakis, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Tsoumanis, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Polykalas, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Oikonomou, Latency-adjustable cloud/fog computing architecture for time-sensitive environmental monitoring in olive groves, AgriEngi- neering 2 (2020) 175–205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Maraveas, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Bartzanas, Application of internet of things (iot) for optimized greenhouse environments, AgriEngineering 3 (2021) 954– 970.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Batte, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Ehsani, The economics of precision guidance with auto- boom control for farmer-owned agricultural sprayers, Computers and Electronics in Agriculture 53 (2006) 28–44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Panfilov, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Mann, The importance of real-time visual information for the remote supervision of an autonomous agricultural machine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=', Canadian Biosystems Engineering 60 (2018) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='11–2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Gomez, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Aptoula, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Parsons, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Bosilj, Deep regression versus detection for counting in robotic phenotyping, IEEE Robotics and Automation Letters 6 (2021) 2902–2907.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Choi, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Would, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Gomez, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Cielniak, Self-supervised representa- tion learning for reliable robotic monitoring of fruit anomalies, CoRR abs/2109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='10135 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Ponnambalam, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Fentanes, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Das, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Cielniak, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Gjevestad, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' From, Agri-cost-maps-integration of environmental constraints into navigation systems for agricultural robots, in: 2020 6th International Conference on Control, Automation and Robotics (ICCAR), 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 214–220.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='1109/ICCAR49639.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='9108030.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Salazar-Gomez, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Darbyshire, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Gao, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Sklar, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Parsons, Beyond mAP: Towards practical object detection for weed spraying in precision agriculture, in: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Jocher, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Stoken, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Borovec, NanoCode012, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Chaurasia, TaoXie, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Changyu, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' V, Laughing, tkianai, yxNONG, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Hogan, loren- zomammana, AlexWang1900, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Hajek, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Diaconu, Marc, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Kwon, oleg, wanghaoyang0106, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Defretin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Lohia, ml5ah, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Milanko, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Fineran, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Khromov, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Yiwei, Doug, Durgesh, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Ingham, ultra- lytics/yolov5: v5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0 - YOLOv5-P6 1280 models, AWS, Supervise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ly and YouTube integrations (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Ofcom, Ofcom publishes 4G and 3G mobile broadband speeds research, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' URL: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ofcom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='org.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='uk/about-ofcom/latest/media/ media-releases/2014/3g-4g-bb-speeds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' D-Link, Dwm-222 4g lte usb adapter, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' URL: https://eu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='dlink.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='com/ uk/en/-/media/consumer_products/dwm/dwm-222/datasheet/dwm_222_a2_ datasheet_en_eu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='pdf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Donenfeld, Wireguard: Next generation kernel network tunnel, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' URL: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='wireguard.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='com/papers/wireguard.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='pdf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Fomon, The u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' is ahead of european trade partners for 5g, can’t beat south korea and china, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' URL: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='ookla.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='com/articles/ 5g-united-kingdom-q1-q2-2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Lee, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' O’Keefe, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Yun, The growth of broadband and electronic commerce in south korea: Contributing factors, The Information Society 19 (2003) 81–93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Massaro, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Kim, Why is south korea at the forefront of 5g?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' insights from technology systems theory, Telecommunications Policy 46 (2022) 102290.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Sachs, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Wikstrom, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Dudda, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Baldemair, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Kittichokechai, 5g radio network design for ultra-reliable low-latency communication, IEEE Network 32 (2018) 24–31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Chen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Hu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Shi, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Peng, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Fang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Zhao, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Zhao, Vehicle-to- everything (v2x) services supported by lte-based systems and 5g, IEEE Communications Standards Magazine 1 (2017) 70–76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Ali, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Zikria, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Bashir, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Garg, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Kim, Urllc for 5g and beyond: Requirements, enabling incumbent technologies and network intelligence, IEEE Access 9 (2021) 67064–67095.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' 3GPP, 5G;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' Study on scenarios and requirements for next generation ac- cess technologies, Technical Specification (TS) 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='913, 3rd Generation Partnership Project (3GPP), 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' URL: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='etsi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='org/deliver/ etsi_tr/138900_138999/138913/14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='00_60/tr_138913v140300p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='pdf, ver- sion 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' humanbenchmark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='com, Human benchmark: Reaction time test, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' URL: https://humanbenchmark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content='com/tests/reactiontime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' T Zhivkov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
+page_content=' : Preprint submitted to Elsevier Page 19 of 19' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdAzT4oBgHgl3EQfov0m/content/2301.01600v1.pdf'}
diff --git a/gtE3T4oBgHgl3EQf3wvW/content/2301.04767v1.pdf b/gtE3T4oBgHgl3EQf3wvW/content/2301.04767v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..52a289d548cfc8217ab2cbbd6b6cdd9d0e62c077
--- /dev/null
+++ b/gtE3T4oBgHgl3EQf3wvW/content/2301.04767v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:30f3b0081e8dff0e578a4719e2a48a513dc86313c67b54e4da8bcef28adcb0b1
+size 772681
diff --git a/htAzT4oBgHgl3EQfMvu5/content/tmp_files/2301.01138v1.pdf.txt b/htAzT4oBgHgl3EQfMvu5/content/tmp_files/2301.01138v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..9c323196d6c43399cabb64d74416813fb94a0b35
--- /dev/null
+++ b/htAzT4oBgHgl3EQfMvu5/content/tmp_files/2301.01138v1.pdf.txt
@@ -0,0 +1,1361 @@
+arXiv:2301.01138v1 [math.AG] 3 Jan 2023
+Another proof of the Riemann–Hilbert Correspondence
+for Regular Holonomic D-Modules∗
+Yohei ITO†
+Abstract
+In this paper, we reprove the Riemann–Hilbert correspondence for regular holo-
+nomic D-modules of [Kas84] (see also [Meb84]) by using the irregular Riemann–
+Hilbert correspondence of [DK16]. Moreover, we also prove the algebraic one by the
+same argument. For this purpose, we study C-constructible enhanced ind-sheaves
+of [Ito20, Ito21a] in more detail.
+1
+Introduction
+In 1984, the Riemann-Hilbert correspondence for analytic regular holonomic D-modules
+was established by M. Kashiwara [Kas84] as the equivalence of categories below (see also
+[Meb84]). Let X be a complex manifold. We denote by Db
+rh(DX) the triangulated category
+of regular holonomic DX-modules, by Db
+C-c(CX) the one of C-constructible sheaves on X
+and by SolX the solution functor.
+Fact 1.1 ([Kas84, Main Theorem], see also [Meb84, Thm. 2.1.1]). There exists an equiv-
+alence of triangulated categories
+SolX : Db
+rh(DX)op
+∼
+−→ Db
+C-c(CX).
+After the appearance of Fact 1.1, A. Beilinson and J. Bernstein developed systemat-
+ically a theory of regular holonomic D-modules on smooth algebraic varieties over the
+complex number field C and obtained an algebraic version of Fact 1.1 as follows. Let X
+be a smooth algebraic variety over C and denote by Xan the underlying complex manifold
+of X. We denote by Db
+rh(DX) the triangulated category of regular holonomic DX-modules,
+by Db
+C-c(CX) the one of algebraic C-constructible sheaves on Xan.
+Fact 1.2 ([Be, Main Theorem C (c)] and [Bor87, Theorem 14.4], see also [Sai89, §4]).
+There exists an equivalence of categories
+SolX : Db
+rh(DX)op
+∼
+−→ Db
+C-c(CX), M �→ SolX(M) := SolXan(Man).
+∗2020 Mathematics Subject Classification: 32C38, 32S60, 35A27
+†Department of Mathematics, Faculty of Science Division II, Tokyo University of Science, 1-3, Kagu-
+razaka, Shinjuku-ku, Tokyo, 162-8601, Japan. E-mail: yitoh@rs.tus.ac.jp
+1
+
+The problem of extending the Riemann–Hilbert correspondence to cover the case
+of holonomic D-modules with irregular singularities had been open for 30 years.
+Af-
+ter a groundbreaking development in the theory of irregular meromorphic connections
+by K. S. Kedlaya [Ked10, Ked11] and T. Mochizuki [Moc09, Moc11], A. D’Agnolo and
+M. Kashiwara established the Riemann–Hilbert correspondence for analytic irregular holo-
+nomic D-modules in [DK16] as follows. Let X be a complex manifold. We denote by
+Db
+hol(DX) the triangulated category of holonomic DX-modules and by Eb
+R-c(ICX) the one
+of R-constructible enhanced ind-sheaves on X.
+Fact 1.3 ([DK16, Thm. 9.5.3]). There exists a fully faithful embedding
+SolE
+X : Db
+hol(DX)op ֒→ Eb
+R-c(ICX).
+Furthermore, T. Mochizuki proved that the essential image of SolE
+X can be character-
+ized by the curve test [Moc16]. On the other hand, in [Kas16, Thm. 6.2], M. Kashiwara
+showed the similar result of Fact 1.3 by using enhanced subanalytic sheaves instead of
+enhanced ind-sheaves, see also [Ito21b]. In [Kuwa18, Thm. 8.6], T. Kuwagaki introduced
+another approach to the irregular Riemann–Hilbert correspondence via irregular con-
+structible sheaves which are defined by C-constructible sheaves with coefficients in a finite
+version of the Novikov ring and special gradings.
+In [Ito20], the author defined C-constructibility for enhanced ind-sheaves on a complex
+manifold X and proved that they are nothing but objects of the essential image of SolE
+X.
+Namely, we obtain an equivalence of categories as below. We denote by Eb
+C-c(ICX) the
+triangulated category of C-constructible enhanced ind-sheaves on X.
+Theorem 1.4 ([Ito20, Thm. 3.26]). There exists an equivalence of categories
+SolE
+X : Db
+hol(DX)op
+∼
+−→ Eb
+C-c(ICX).
+Moreover, the author proved an algebraic version of Theorem 1.4 in [Ito21a]. Let X
+be a smooth algebraic variety and denote by �
+X a smooth completion of X. The author
+defined algebraic C-constructibility for enhanced ind-sheaves on a bordered space Xan
+∞ =
+(Xan, �
+Xan) and proved the following result. We denote by Eb
+C-c(ICX∞) the triangulated
+category of algebraic C-constructible enhanced ind-sheaves on Xan
+∞ .
+Theorem 1.5 ([Ito21a, Thm. 3.11]). There exists an equivalence of categories
+SolE
+X∞ : Db
+hol(DX)op
+∼
+−→ Eb
+C-c(ICX∞).
+In this paper, we reprove Fact 1.1 (resp. Fact 1.2) by using Fact 1.3 and Theorem 1.4
+(resp. Theorem 1.5) in Theorem 3.5 (resp. Theorem 3.11). For this purpose, we study
+C-constructible enhanced ind-sheaves of [Ito20, Def. 3.19] (resp. [Ito21a, Def. 3.10]) in
+Propositions 3.1, 3.2 (resp. Propositions 3.7, 3.8). The key result of this paper is Lemma
+3.4.
+Note that the proofs of Theorems 3.3, 3.5, 3.9 and 3.11 are NOT circular reasoning.
+The idea of the proof is in line with the one used by Z. Mebkhout in the Riemann–Hilbert
+correspondence for regular holonomic D-modules of [Meb84, Thm. 2.1.1]. Namely, we
+reduce the problem to the case of regular meromorphic connections by the d´evissage and
+the resolution singularity of [Hiro64].
+2
+
+Acknowledgement
+I would like to thank Dr. Tauchi of Kyushu University for many discussions and giving
+many comments.
+This work was supported by Grant-in-Aid for Research Activity Start-up (No.
+21K20335) and Grant-in-Aid for Young Scientists (No. 22K13902), Japan Society for
+the Promotion of Science.
+2
+Preliminary Notions and Results
+2.1
+Bordered Spaces
+We shall recall a notion of bordered spaces. See [DK16, §3.2] and [DK21, 2.1] for the
+details.
+A bordered space is a pair M∞ = (M, ˇ
+M) of a good topological space ˇ
+M (i.e., a locally
+compact Hausdorff space which is countable at infinity and has finite soft dimension) and
+an open subset M ⊂
+ˇ
+M. A morphism f : (M, ˇ
+M) → (N, ˇN) of bordered spaces is a
+continuous map f : M → N such that the first projection ˇ
+M × ˇN → ˇ
+M is proper on the
+closure Γf of the graph Γf of f in ˇ
+M × ˇN. The category of good topological spaces is
+embedded into that of bordered spaces by the identification M = (M, M). Note that we
+have the morphism jM∞ : M∞ → ˇ
+M of bordered spaces given by the embedding M ֒→ ˇ
+M.
+We sometimes denote jM∞ by j for short. For a locally closed subset Z ⊂ M of M, we
+set Z∞ := (Z, Z) where Z is the closure of Z in ˇ
+M and denote by iZ∞ : Z∞ → Z the
+morphism of bordered spaces given by the embedding Z ֒→ Z.
+By definition, a subset of M∞ = (M, ˇ
+M) is a subset of M. We say that a subset Z of
+M∞ is open (resp. closed, locally closed) if it is so in M. Moreover, a subset Z of M∞ is
+a relatively compact subset if it is contained in a compact subset of ˇ
+M.
+2.2
+Ind-Sheaves on Bordered Spaces
+We shall recall a notion of ind-sheaves on a bordered space of [DK16, §3.2].
+Let us denote by ICM∞ the abelian category of ind-sheaves on a bordered space
+M∞ = (M, ˇ
+M) and denote by Db(ICM∞) the triangulated category of them.
+For a
+morphism f : M∞ → N∞ of bordered spaces, we have the Grothendieck operations
+⊗, RIhom, Rf∗, Rf!!, f −1, f ! for ind-sheaves on bordered spaces. Note that there exists
+an embedding functor ιM∞ : Db(CM) ֒→ Db(ICM∞). We sometimes write Db(CM∞) for
+Db(CM), when considered as the full subcategory of Db(ICM∞). Note that there exists
+the standard t-structure on Db(ICM∞). Note also that the embedding functor ιM∞ has a
+left adjoint functor αM∞ : Db(ICM∞) → Db(CM).
+2.3
+Enhanced Ind-Sheaves
+We shall recall some basic notions of enhanced ind-sheaves on bordered spaces and results
+on those. Reference are made to [KS16a] and [DK19, DK21]. Moreover we also refer to
+[DK16] and [KS16b] for the notions of enhanced ind-sheaves on good topological spaces.
+3
+
+Let M∞ = (M, ˇ
+M) be a bordered space. We set R∞ := (R, R) for R := R⊔{−∞, +∞},
+and let t ∈ R be the affine coordinate. We consider the morphism of bordered spaces
+π: M∞ × R∞ → M∞ given by the projection map π: M × R → M, (x, t) �→ x. Then the
+triangulated category of enhanced ind-sheaves on a bordered space M∞ is defined by
+Eb(ICM∞) := Db(ICM∞×R∞)/π−1Db(ICM∞).
+The quotient functor QM∞ : Db(ICM∞×R∞) → Eb(ICM∞) has fully faithful left and
+right adjoints LE
+M∞, RE
+M∞ : Eb(ICM∞) → Db(ICM∞×R∞), respectively.
+We sometimes
+denote QM∞ (resp. LE
+M∞, RE
+M∞ ) by Q (resp. LE, RE) for short.
+Then we have the
+standard t-structure on Eb(ICM∞) which is induced by the standard t-structure on
+Db(ICM∞×R∞).
+We denote by E0(ICM∞) the heart of Eb(ICM∞) with respect to the
+standard t-structure and by Hn : Eb(ICM∞) → E0(ICM∞) the n-th cohomology functor.
+For a morphism f : M∞ → N∞ of bordered spaces, we have the Grothendieck opera-
+tions
++⊗, RIhom+, Ef −1, Ef∗, Ef !, Ef!! for enhanced ind-sheaves on bordered spaces.
+Moreover, for F ∈ Db(ICM∞) and K ∈ Eb(ICM∞) the objects
+π−1F ⊗ K := QM∞(π−1F ⊗ LE
+M∞K),
+RIhom(π−1F, K) := QM∞
+�
+RIhom(π−1F, RE
+M∞K)
+�
+in Eb(ICM∞) are well defined. We set
+CE
+M∞ := QM∞
+�
+“ lim
+−→
+a→+∞
+” C{t≥a}
+�
+∈ Eb(ICM∞)
+where {t ≥ a} stands for {(x, t) ∈ M × R | t ≥ a} ⊂ ˇ
+M × R. Moreover, for a continuous
+function ϕ: U → R defined on an open subset U ⊂ M, we set
+Eϕ
+U|M∞ := CE
+M∞
++⊗ QM∞
+�
+C{t+ϕ=0}
+�
+,
+where {t + ϕ = 0} stands for {(x, t) ∈ ˇ
+M × R | t ∈ R, x ∈ U, t + ϕ(x) = 0}.
+We have a natural embedding eM∞ : Db(ICM∞) → Eb(ICM∞) defined by
+eM∞(F) := CE
+M∞ ⊗ π−1F,
+see [DK19, Lem. 2.8.2] (see also [KS16a, Prop. 2.20]) for the details. Note also that for a
+morphism f : M∞ → N∞ of bordered spaces and objects F ∈ Db(ICM∞), G ∈ Db(ICN∞)
+we obtain
+Ef!!(eM∞F) ≃ eN∞(Rf!!F),
+Ef −1(eN∞G) ≃ eM∞(f −1G),
+Ef !(eN∞G) ≃ eM∞(f !G)
+by using [KS16a, Prop. 2.18]. Let i0 : M∞ → M∞ × R∞ be the inclusion map of bordered
+spaces induced by M → M × R, x �→ (x, 0). We set
+shM∞ := αM∞ ◦ i!
+0 ◦ RE
+M∞ : Eb(ICM∞) → Db(CM)
+and call it the sheafification functor for enhanced ind-sheaves on bordered spaces. We
+will use the following fact in §3.
+Fact 2.1 ([DK21, Prop. 3.8 (i)]). For any F ∈ Db(CM), there exists an isomorphism
+F
+∼
+−→ shM∞(eM∞(ιM∞(F))).
+The following notion was introduced in [DK21].
+Definition 2.2 ([DK21, Def. 3.4 (ii)]). We say that K ∈ Eb(ICM∞) is of sheaf type if
+there exists an object F ∈ Db(CM∞) such that K ≃ eM∞(ιM∞(F))).
+4
+
+2.4
+R-Constructible Enhanced Ind-Sheaves
+We shall recall a notion of the R-constructibility for enhanced ind-sheaves and results on
+those. References are made to [DK16, DK19].
+In this subsection, we assume that a bordered space M∞ = (M, ˇ
+M) is a subanalytic
+bordered space. Namely, ˇ
+M is a subanalytic space and M is an open subanalytic subset
+of ˇ
+M. See [DK19, Def. 3.1.1] for the details.
+Definition 2.3 ([DK19, Def. 3.1.2]). We denote by Db
+R-c(CM∞) the full subcategory of
+Db(CM∞) consisting of objects F satisfying RjM∞!F is an R-constructible sheaf on ˇ
+M.
+Recall that a subset Z of M∞ is subanalytic if it is subanalytic in ˇ
+M.
+Definition 2.4 ([DK19, Def. 3.3.1]). We say that K ∈ Eb(ICM∞) is R-constructible if
+for any relatively compact subanalytic open subset U of M∞ there exists an isomorphism
+Ei−1
+U∞K ≃ CE
+U∞
++⊗ F for some F ∈ Db
+R-c(CU∞×R∞).
+We denote by Eb
+R-c(ICM∞) the full triangulated subcategory of Eb(ICM∞) consisting of
+R-constructible enhanced ind-sheaves. Note that the triangulated category Eb
+R-c(ICM∞)
+has the standard t-structure which is induced by the standard t-structure on Eb(ICM∞).
+Let us denote by E0
+R-c(ICM∞) the heart of Eb
+R-c(ICM∞) with respect to the standard t-
+structure.
+2.5
+D-Modules
+In this section we recall some basic notions and results on D-modules. References are
+made to [Bj¨o93], [DK16, §§8, 9], [KS01, §7], [KS16b, §§3, 4, 7] for analytic D-modules, to
+[Be], [Bor87], [HTT08] for algebraic ones.
+2.5.1
+Analytic D-Modules
+Let X be a complex manifold and denote by dX its complex dimension. We denote by OX
+the sheaf of holomorphic functions and by DX the sheaf of holomorphic differential oper-
+ators on X. Let us denote by Db(DX) the bounded derived category of left DX-modules.
+Moreover we denote by Db
+coh(DX), Db
+hol(DX) and Db
+rh(DX) the full triangulated subcat-
+egories of Db(DX) consisting of objects with coherent, holonomic and regular holonomic
+cohomologies, respectively. For a morphism f : X → Y of complex manifolds, denote by
+D⊗, Df∗, Df ∗ the standard operations for analytic D-modules.
+For an analytic hypersurface D in X we denote by OX(∗D) the sheaf of meromorphic
+functions on X with poles in D. Then for M ∈ Db(DX) we set
+M(∗D) := M
+D⊗ OX(∗D).
+We say that a DX-module is a meromorphic connection on X along D if it is isomorphic
+as an OX-module to a coherent OX(∗D)-module. We denote by Conn(X; D) the cate-
+gory of meromorphic connections along D and by Connreg(X; D) the category of regular
+meromorphic connections along D. Moreover, we set
+Db
+mero(DX(D)) := {M ∈ Db
+hol(DX) | Hi(M) ∈ Conn(X; D) for any i ∈ Z}.
+5
+
+The classical solution functor on X is defined by
+SolX : Db
+coh(DX)op → Db(CX),
+M �−→ RHomDX(M, OX).
+An essential part of the following theorem was proved by Deligne in [De70]. We denote
+by Loc(X \ D) the category of local systems on X \ D. The following theorem is used in
+the proof of Proposition 3.1.
+Fact 2.5 (see e.g., [HTT08, Cor. 5.2.21]). There exists an equivalence of abelian categories
+S : Connreg(X; D) → Loc(X \ D), M → SolX(M)|X\D.
+We denote by OE
+X the enhanced ind-sheaf of tempered holomorphic functions [DK16,
+Def. 8.2.1] and by SolE
+X the enhanced solution functor on X:
+SolE
+X : Db
+coh(DX)op → Eb(ICX),
+M �−→ RIhomDX(M, OE
+X),
+[DK16, Def. 9.1.1] (see also [Ito21a, Lem. 3.15]). We will use the following facts in §3.
+Fact 2.6 ([DK16, the equation just before Thm. 9.1.2, Prop. 9.1.3] (see also [Ito21a, Last
+part of Prop. 3.14])1). For any M ∈ Db
+rh(DX) there exists an isomorphism
+SolE
+X(M) ≃ eX
+�
+SolX(M)
+�
+.
+Fact 2.7 ([DK16, Lem. 9.5.5]). For M ∈ Db
+coh(DX), we have an isomorphism
+shX
+�
+SolE
+X(M)
+�
+≃ SolX(M).
+At the end of this subsection, let us recall the notion of Mreg. We denote by D∞
+X the
+sheaf of rings of differential operators of infinite order on X and set
+M∞ := D∞
+X ⊗DX M.
+Then for a holonomic DX-module M, a DX-module
+Mreg := {s ∈ M∞ | DX · s ∈ Modrh(DX)}
+is a regular holonomic DX-module. Note that we have
+(Mreg)∞ ≃ M∞
+and hence
+SolX(Mreg) ≃ SolX(M).
+See [KK81, Thm. 5.2.1], also [Kas84, Prop. 5.7] for the details.
+1Remark that the assertion of [Ito21a, Last part of Prop. 3.14] was proved without Fact 1.2.
+6
+
+2.5.2
+Algebraic D-Modules
+Let X be a smooth algebraic variety over C and denote by dX its complex dimension.
+We denote by OX the sheaf of regular functions and by DX the sheaf of algebraic differ-
+ential operators on X. Let us denote by Db(DX) the bounded derived category of left
+DX-modules. Moreover we denote by Db
+coh(DX), Db
+hol(DX) and Db
+rh(DX) the full triangu-
+lated subcategories of Db(DX) consisting of objects with coherent, holonomic and regular
+holonomic cohomologies, respectively. For a morphism f : X → Y of smooth algebraic
+varieties, we denote by
+D⊗, Df∗, Df ∗ the standard operations for algebraic D-modules.
+We denote by Xan the underlying complex manifold of X and by �ι: (Xan, OXan) →
+(X, OX) the morphism of ringed spaces. Since there exists a morphism �ι−1OX → OXan
+of sheaves on Xan, we have a canonical morphism �ι−1DX → DXan. Then we set
+Man := DXan ⊗�ι−1DX �ι−1M
+for M ∈ Mod(DX) and obtain a functor (·)an: Mod(DX) → Mod(DXan). It is called
+the analytification functor on X. Since the sheaf DXan is faithfully flat over �ι−1DX, the
+analytification functor is faithful and exact, and hence we obtain
+(·)an : Db(DX) → Db(DXan).
+Note that the analytification functor preserves the properties of coherent and holonomic.
+At the end of this subsection, we shall recall algebraic meromorphic connections. Let
+D be a divisor of X, and j : X \D ֒→ X the natural embedding. Then we set OX(∗D) :=
+j∗OX and also set
+M(∗D) := M
+D⊗ OX(∗D)
+for M ∈ Mod(DX).
+Note that we have M(∗D) ≃ Dj∗Dj∗M.
+We say that a DX-
+module is a meromorphic connection on X along D if it is isomorphic as an OX-module
+to a coherent OX(∗D)-module. We denote by Conn(X; D) the category of meromorphic
+connections on X along D. Note that it is the full abelian subcategory of Modhol(DX).
+Moreover, we set
+Db
+mero(DX(D)) := {M ∈ Db
+hol(DX) | Hi(M) ∈ Conn(X; D) for any i ∈ Z}.
+We note that if X is complete there exists an equivalence of categories between the
+abelian category Conn(X; D) and the one of effective meromorphic connections on Xan
+along Dan by [HTT08, §5.3]. However as a consequence of [Mal96, Thm. 3.3.1] any analytic
+meromorphic connection is effective. Hence we have:
+Fact 2.8 ([HTT08, (5.3.2)], [Mal96, Thm. 3.3.1]). If X is complete, there exists an equiv-
+alence of abelian categories
+(·)an: Conn(X; D)
+∼
+−→ Conn(Xan; Dan).
+Moreover this induces an equivalence of triangulated categories
+(·)an : Db
+mero(DX(D))
+∼
+−→ Db
+mero(DXan(Dan)).
+7
+
+2.6
+C-constructible Enhanced Ind-Sheaves
+In this section, we recall the definition of C-constructibility for enhanced ind-sheaves and
+main results of [Ito20] and [Ito21a].
+2.6.1
+Analytic Case
+Let X be a complex manifold and D ⊂ X a normal crossing divisor on it. Let us take
+local coordinates (u1, . . . , ul, v1, . . . , vdX−l) of X such that D = {u1u2 · · · ul = 0} and set
+Y = {u1 = u2 = · · · = ul = 0}. We define a partial order ≤ on the set Zl by
+a ≤ a′ ⇐⇒ ai ≤ a′
+i (1 ≤ ∀i ≤ l),
+for a = (a1, . . . , al), a′ = (a′
+1, . . . , a′
+l) ∈ Zl. Then for a meromorphic function ϕ ∈ OX(∗D)
+on X along D which has the Laurent expansion
+ϕ =
+�
+a∈Zl
+ca(ϕ)(v) · ua ∈ OX(∗D)
+with respect to u1, . . . , ul, where ca(ϕ) are holomorphic functions on Y , we define its order
+ord(ϕ) ∈ Zl by the minimum
+min
+�
+{a ∈ Zl | ca(ϕ) ̸= 0} ∪ {0}
+�
+if it exists. For any f ∈ OX(∗D)/OX, we take any lift �f to OX(∗D), and we set ord(f) :=
+ord( �f), if the right-hand side exists. Note that it is independent of the choice of a lift
+�f. If ord(f) ̸= 0, cord(f)( �f) is independent of the choice of a lift �f, which is denoted by
+cord(f)(f).
+Definition 2.9 ([Moc11, Def. 2.1.2]). In the situation as above, a finite subset I ⊂
+OX(∗D)/OX is called a good set of irregular values on (X, D), if the following conditions
+are satisfied:
+- For each element f ∈ I, ord(f) exists.
+If f ̸= 0 in OX(∗D)/OX, cord(f)(f) is
+invertible on Y .
+- For two distinct f, g ∈ I, ord(f − g) exists and cord(f−g)(f − g) is invertible on Y .
+- The set {ord(f − g) | f, g ∈ I} is totally ordered with respect to the above partial
+order ≤ on Zl.
+Definition 2.10 ([Ito20, Def. 3.5]). In the situation as above, we say that an enhanced
+ind-sheaf K ∈ E0(ICX) has a normal form along D if the following three conditions are
+satisfied:
+(i) π−1CX\D ⊗ K
+∼
+−→ K,
+(ii) for any x ∈ X \ D there exist an open neighborhood Ux ⊂ X \ D of x and a
+non-negative integer k such that K|Ux ≃ (CE
+Ux)⊕k,
+8
+
+(iii) for any x ∈ D there exist an open neighborhood Ux ⊂ X of x, a good set of irregular
+values {ϕi}i on (Ux, D ∩ Ux) and a finite sectorial open covering {Ux,j}j of Ux\D
+such that
+π−1CUx,j ⊗ K|Ux ≃
+�
+i
+ERe ϕi
+Ux,j|Ux
+for any j.
+In [Ito20, Def. 3.5], we assumed that K is R-constructible, see [DK19, Def. 3.3.1] (see
+also Definition 2.4) for the definition of R-constructible enhanced ind-sheaves. However,
+it is not necessary:
+Proposition 2.11. Any enhanced ind-sheaf which has a normal form along D is an
+R-constructible enhanced ind-sheaf.
+Proof. Let K ∈ E0(ICX) be an enhanced ind-sheaf which has a normal form along
+D. Since the R-constructibility of enhanced ind-sheaves is a local property (see [DK16,
+Cor. 4.9.8] for details), it is enough to show that for any x ∈ X there exists an open subset
+Ux ⊂ X of x such that K|Ux ∈ E0
+R-c(ICUx).
+Since K satisfies the condition (ii) in Definition 2.10 and the constant enhanced ind-
+sheaf CE is R-constructible, for any x ∈ X \ D there exists an open neighborhood Ux ⊂
+X \ D of x such that K|Ux ∈ E0
+R-c(ICUx).
+Since K satisfies the condition (iii) in Definition 2.10, for any x ∈ D there exist an
+open neighborhood Ux ⊂ X, Lx ∈ E0
+R-c(ICUx) and a finite sectorial open covering {Ux,j}
+of Ux \ D such that
+π−1CUx,j ⊗ K|Ux ≃ π−1CUx,j ⊗ Lx
+for any j. Here we used the fact that the enhanced ind-sheaf ERe ϕ
+Ux\D|Ux is R-constructible
+for any meromorphic function ϕ ∈ OUx(∗(D ∩ Ux)), by Fact 1.3 and [DK16, Cor. 9.4.12].
+We shall show that K|Ux is R-constructible. Note that since K satisfies the condition (i)
+in Definition 2.10 we have
+K|Ux ≃ π−1CUx\D ⊗ K|Ux.
+Hence by using [DK16, Prop. 4.9.3] and the Mayer–Vietoris sequence for sheaves (see
+e.g., [KS90, Prop. 2.3.6 (vii)]), it is enough to prove that π−1CUx,j ⊗ K|Ux ∈ E0
+R-c(ICUx).
+However, this follows from π−1CUx,j ⊗ Lx ∈ E0
+R-c(ICUx).
+A ramification of X along a normal crossing divisor D on a neighborhood U of x ∈ D
+is a finite map r: Urm → U of complex manifolds of the form z′ �→ z = (z1, z2, . . . , zn) =
+r(z′) = (z′m1
+1
+, . . . , z′mk
+k
+, z′
+k+1, . . . , z′
+n) for some (m1, . . . , mk) ∈ (Z>0)k, where (z′
+1, . . . , z′
+n)
+is a local coordinate system of Urm and (z1, . . . , zn) is the one of U such that D ∩ U =
+{z1 · · · zk = 0}.
+Definition 2.12 ([Ito20, Def. 3.11]). We say that an enhanced ind-sheaf K ∈ E0(ICX)
+has a quasi-normal form along D if it satisfies (i) and (ii) in Definition 2.10, and if for any
+x ∈ D there exist an open neighborhood Ux ⊂ X of x and a ramification rx : Urm
+x
+→ Ux of
+Ux along Dx := Ux ∩ D such that Er−1
+x (K|Ux) has a normal form along Drm
+x
+:= r−1
+x (Dx).
+Note that any enhanced ind-sheaf which has a quasi-normal form along D is an R-
+constructible enhanced ind-sheaf on X. See [Ito20, Prop. 3.12] for the details.
+9
+
+A modification of X with respect to an analytic hypersurface H is a projective map
+m: Xmd → X from a complex manifold Xmd to X such that Dmd := m−1(H) is a normal
+crossing divisor of Xmd and m induces an isomorphism Xmd \ Dmd
+∼
+−→ X \ H.
+Definition 2.13 ([Ito20, Def. 3.14]). We say that an enhanced ind-sheaf K ∈ E0(ICX)
+has a modified quasi-normal form along H if it satisfies (i) and (ii) in Definition 2.10,
+and if for any x ∈ H there exist an open neighborhood Ux ⊂ X of x and a modification
+mx : Umd
+x
+→ Ux of Ux along Hx := Ux ∩H such that Em−1
+x (K|Ux) has a quasi-normal form
+along Dmd
+x
+:= m−1
+x (Hx).
+Note that any enhanced ind-sheaf which has a modified quasi-normal form along H
+is an R-constructible enhanced ind-sheaf on X. See [Ito20, Prop. 3.15] for the details.
+Moreover we have:
+Proposition 2.14 ([Ito20, Lem. 3.16]). The enhanced solution functor SolE
+X induces
+an equivalence of abelian categories between the full subcategory of E0(ICX) consisting
+of objects which have a modified quasi-normal form along H and the abelian category
+Conn(X; H) of meromorphic connections on X along H.
+We denote by E0
+mero(ICX(H)) the essential image of
+SolE
+X : Conn(X; H)op → E0(ICX).
+This abelian category is nothing but the full subcategory of E0(ICX) consisting of en-
+hanced ind-sheaves which have a modified quasi-normal form along H by Proposition
+2.14. Moreover, we set
+Eb
+mero(ICX(H)) := {K ∈ Eb
+R-c(ICX) | Hi(K) ∈ E0
+mero(ICX(H)) for any i ∈ Z}.
+Since the category Db
+mero(DX(H)) is the full triangulated subcategory of Db
+hol(DX) and
+the category Eb
+mero(ICX(H)) is the full triangulated subcategory of Eb
+R-c(ICX), the following
+proposition is obvious by induction on the length of a complex:
+Proposition 2.15. The enhanced solution functor SolE
+X induces an equivalence of trian-
+gulated categories
+Db
+mero(DX(H))op
+∼
+−→ Eb
+mero(ICX(H)).
+A complex analytic stratification of X is a locally finite partition {Xα}α∈A of X by
+locally closed analytic subsets Xα such that for any α ∈ A, Xα is smooth, Xα and
+∂Xα := Xα \ Xα are complex analytic subsets and Xα = �
+β∈B Xβ for a subset B ⊂ A.
+Definition 2.16 ([Ito20, Def. 3.19]). We say that an enhanced ind-sheaf K ∈ E0(ICX) is
+C-constructible if there exists a complex analytic stratification {Xα}α of X such that
+π−1CX
+bl
+α \Dα ⊗ Eb−1
+α K
+has a modified quasi-normal form along Dα for any α, where bα : X
+bl
+α → X is a complex
+blow-up of Xα along ∂Xα = Xα \ Xα and Dα := b−1
+α (∂Xα). Namely X
+bl
+α is a complex
+manifold, Dα is a normal crossing divisor of X
+bl
+α and bα is a projective map which induces
+an isomorphism X
+bl
+α \ Dα
+∼
+−→ Xα and satisfies bα
+�
+X
+bl
+α
+�
+= Xα.
+We call such a family {Xα}α∈A a complex analytic stratification adapted to K.
+10
+
+Remark 2.17. Definition 2.16 does not depend on the choice of a complex blow-up bα by
+[Ito20, Sublem. 3.22].
+We denote by E0
+C-c(ICX) the full subcategory of E0(ICX) whose objects are C-
+constructible and set
+Eb
+C-c(ICX) := {K ∈ Eb(ICX) | Hi(K) ∈ E0
+C-c(ICX) for any i ∈ Z} ⊂ Eb(ICX).
+Note that the category Eb
+C-c(ICX) is the full triangulated subcategory of Eb
+R-c(ICX). See
+[Ito20, Prop. 3.21] for the details.
+Theorem 2.18 ([Ito20, Prop. 3.25, Thm. 3.26]). For any M ∈ Db
+hol(DX), the enhanced
+solution complex SolE
+X(M) of M is a C-constructible enhanced ind-sheaf.
+On the other hand, for any C-constructible enhanced ind-sheaf K ∈ Eb
+C-c(ICX), there
+exists M ∈ Db
+hol(DX) such that
+K
+∼
+−→ SolE
+X(M).
+Therefore we obtain an equivalence of triangulated categories
+SolE
+X : Db
+hol(DX)op → Eb
+C-c(ICX).
+2.6.2
+Algebraic Case
+Let X be a smooth algebraic variety over C and denote by Xan the underlying complex
+analytic manifold of X. Recall that an algebraic stratification of X is a Zariski locally
+finite partition {Xα}α∈A of X by locally closed subvarieties Xα such that for any α ∈ A,
+Xα is smooth and Xα = �
+β∈B Xβ for a subset B ⊂ A. Moreover an algebraic stratification
+{Xα}α∈A of X induces a complex analytic stratification {Xan
+α }α∈A of Xan.
+Definition 2.19 ([Ito21a, Thm. 3.1]). We say that an enhanced ind-sheaf K ∈ E0(ICXan)
+satisfies the condition (AC) if there exists an algebraic stratification {Xα}α of X such
+that
+π−1C(X
+bl
+α )an\Dan
+α ⊗ E(ban
+α )−1K
+has a modified quasi-normal form along Dan
+α for any α, where bα : X
+bl
+α → X is a blow-
+up of Xα along ∂Xα := Xα \ Xα, Dα := b−1
+α (∂Xα) and Dan
+α :=
+�
+X
+bl
+α
+�an \
+�
+X
+bl
+α \ Dα
+�an.
+Namely X
+bl
+α is a smooth algebraic variety over C, Dα is a normal crossing divisor of X
+bl
+α
+and bα is a projective map which induces an isomorphism X
+bl
+α \ Dα
+∼
+−→ Xα and satisfies
+bα
+�
+X
+bl
+α
+�
+= Xα.
+We denote by E0
+C-c(ICX) the full subcategory of E0(ICXan) whose objects satisfy the
+condition (AC).
+Note that E0
+C-c(ICX) is the full subcategory of the abelian category
+E0
+C-c(ICXan) of C-constructible enhanced ind-sheaves on Xan. Moreover we set
+Eb
+C-c(ICX) := {K ∈ Eb(ICXan) | Hi(K) ∈ E0
+C-c(ICX) for any i ∈ Z} ⊂ Eb
+C-c(ICXan).
+Theorem 2.20 ([Ito21a, Thm. 3.7]). Let X be a smooth complete algebraic variety over
+C. Then there exists an equivalence of triangulated categories
+SolE
+X : Db
+hol(DX)op
+∼
+−→ Eb
+C-c(ICX), M �→ SolE
+X(M) := SolE
+Xan(Man).
+11
+
+Thanks to Hironaka’s desingularization theorem [Hiro64] (see also [Naga62, Thm 4.3]),
+we can take a smooth complete algebraic variety �X such that X ⊂ �
+X and D := �
+X \ X is
+a normal crossing divisor of �
+X. Let us consider a bordered space
+Xan
+∞ = (Xan, �
+Xan)
+and the triangulated category Eb(ICXan
+∞ ) of enhanced ind-sheaves on Xan
+∞ . Remark that
+Eb(ICXan
+∞ ) does not depend on the choice of �
+X, see [Ito21a, §2.3] for the details.
+We shall denote by j : X ֒→ �X the open embedding, and by jan : Xan ֒→ �
+Xan the
+correspondence morphism for analytic spaces of j.
+Then we obtain the morphism of
+bordered spaces
+jan : Xan
+∞ → �
+Xan
+given by the embedding jan : Xan ֒→ �
+Xan.
+Definition 2.21 ([Ito21a, Def. 3.10]). We say that an enhanced ind-sheaf K ∈ Eb(ICXan
+∞ )
+is algebraic C-constructible on Xan
+∞ if Ejan
+!! K ∈ Eb(IC �
+Xan) is an object of Eb
+C-c(IC �
+X).
+We denote by Eb
+C-c(ICX∞) the full triangulated subcategory of Eb(ICXan
+∞ ) consisting of
+algebraic C-constructible enhanced ind-sheaves on Xan
+∞ . Note that the triangulated cate-
+gory Eb
+C-c(ICX∞) is the full triangulated subcategory of Eb
+R-c(ICXan
+∞ ), see [Ito20, Prop. 3.21]
+for the details.
+Let us set
+SolE
+X∞(M) := E(jan)−1SolE
+�
+X(Dj∗M) ∈ Eb(ICXan
+∞ )
+for any M ∈ Db(DX).
+Theorem 2.22 ([Ito21a, Thm. 3.11]). For any M ∈ Db
+hol(DX), the enhanced solution
+complex SolE
+X∞(M) of M is an algebraic C-constructible enhanced ind-sheaf.
+On the other hand, for any algebraic C-constructible enhanced ind-sheaf K
+∈
+Eb
+C-c(ICX∞), there exists M ∈ Db
+hol(DX) such that
+K
+∼
+−→ SolE
+X∞(M).
+Moreover, we obtain an equivalence of triangulated categories
+SolE
+X∞ : Db
+hol(DX)op
+∼
+−→ Eb
+C-c(ICX∞).
+12
+
+3
+Main Results
+The main results of this paper are Theorems 3.3, 3.5, 3.9 and 3.11.
+3.1
+Analytic case
+In this subsection, let X be a complex manifold. First of all, we shall prove that the
+natural embedding functor eX ◦ ιX and the sheafification functor shX preserve the C-
+constructibility.
+Proposition 3.1 (resp. Proposition 3.2) below was proved in [Ito20, Cor. 3.27] (resp.
+[Ito20, Cor. 3.28]) by using Fact 1.1. In this paper, we will prove them without Fact 1.1.
+Proposition 3.1. For any F ∈ Db
+C-c(CX), we have eX(ιX(F)) ∈ Eb
+C-c(ICX).
+Proof. By induction on the length of complex, it is enough to show in the case when F
+is a C-constructible sheaf (not complex).
+Let F be a C-constructible sheaf. Then there exists a complex analytic stratification
+{Xα}α∈A of X such that F|Xα is a local system. We shall prove that K := eX(ιX(F)) is
+a C-constructible enhanced ind-sheaf. For each α ∈ A, let bα : X
+bl
+α → X be a complex
+blow-up of Xα along ∂Xα := Xα \ Xα and set Dα := b−1
+α (∂Xα), as in the condition (iii)
+of the definition of the C-constructibility (Definition 2.16). Then we have isomorphisms
+π−1CX
+bl
+α \Dα ⊗ Eb−1
+α K ≃ eX
+bl
+α
+�
+ιX
+bl
+α
+�
+CX
+bl
+α \Dα ⊗ b−1
+α (F)
+��
+≃ eX
+bl
+α
+�
+ιX
+bl
+α
+�
+iX
+bl
+α \Dα!(bα|X
+bl
+α \Dα)−1(F|Xα)
+��
+,
+by the commutativity of eX and ιX for various operations, where iX
+bl
+α \Dα : X
+bl
+α \Dα → X
+bl
+α
+is the natural embedding. Since (bα|X
+bl
+α \Dα)−1(F|Xα) is a local system on X
+bl
+α \ Dα, there
+exists an object Mα ∈ Connreg(X
+bl
+α ; Dα) such that
+(bα|X
+bl
+α \Dα)−1(F|Xα) ≃ SolX
+bl
+α (Mα)|X
+bl
+α \Dα
+by Fact 2.5. Hence, there exist isomorphisms
+π−1CX
+bl
+α \Dα ⊗ Eb−1
+α K ≃ eX
+bl
+α
+�
+ιX
+bl
+α
+�
+iX
+bl
+α \Dα!SolX
+bl
+α (Mα)|X
+bl
+α \Dα
+��
+≃ eX
+bl
+α
+�
+ιX
+bl
+α
+�
+CX
+bl
+α \Dα ⊗ SolX
+bl
+α (Mα)
+��
+≃ eX
+bl
+α
+�
+ιX
+bl
+α
+�
+SolX
+bl
+α (Mα)
+��
+≃ SolE
+X
+bl
+α (Mα),
+where the third isomorphism follows from Mα ≃ Mα(∗Dα) and the last isomorphism
+follows from Fact 2.6. Since Mα ∈ Conn(X
+bl
+α ; Dα), the enhanced ind-sheaf SolE
+X
+bl
+α (M)
+has a modified quasi-normal form along Dα by Proposition 2.14.
+Therefore, the enhanced ind-sheaf
+π−1CX
+bl
+α \Dα ⊗ Eb−1
+α K ∈ E0(ICX
+bl
+α )
+has a modified quasi-normal form along Dα for each α ∈ A, and hence the enhanced
+ind-sheaf K = eX(ιX(F)) is C-constructible.
+13
+
+Proposition 3.2. For any K ∈ Eb
+C-c(ICX), we have shX(K) ∈ Db
+C-c(CX).
+Proof. By induction on the length of complex, it is enough to show in the case of K ∈
+E0
+C-c(ICX).
+Let K ∈ E0
+C-c(ICX) and {Xα}α∈A a complex analytic stratification adapted to K.
+We shall prove that shX(K)|Xα is a local system for each α ∈ A.
+For each α ∈ A,
+let bα : X
+bl
+α → X be a complex blow-up of Xα along ∂Xα := Xα \ Xα and set Dα :=
+b−1
+α (∂Xα), as in the condition (iii) of the definition of the C-constructibility (Definition
+2.16). Since bα|X
+bl
+α \Dα : X
+bl
+α \ Dα
+∼
+−→ Xα is an isomorphism, it is enough to show that
+(bα|X
+bl
+α \Dα)−1(shX(K)|Xα) is a local system on X
+bl
+α \ Dα. However, this follows from
+(bα|X
+bl
+α \Dα)−1(shX(K)|Xα) ≃ shX
+bl
+α \Dα
+�
+(Eb−1
+α K)|X
+bl
+α \Dα
+�
+by [DK21, Lem. 3.3 (1)], the condition (ii) in Definition 2.13 (see also Definition 2.10)
+and the fact that there exists an isomorphism shM∞(CE
+M∞) ≃ CM for any bordered space
+M∞ = (M, ˇ
+M).
+The following theorem can be proved as a corollary of [Kas78, Thm. 4.8] (see also
+[Kas75, Thm. 3.5]). In this paper, we will give an another proof by using Proposition 3.2.
+Theorem 3.3. For any M ∈ Db
+hol(DX), we have SolX(M) ∈ Db
+C-c(CX).
+Proof. Let M ∈ Db
+hol(DX). Then we have SolE
+X(M) ∈ Eb
+C-c(ICX) by Theorem 2.18. By
+Fact 2.7, we have an isomorphism
+SolX(M) ≃ shX(SolE
+X(M))
+and hence we obtain SolX(M) ∈ Db
+C-c(CX) by Proposition 3.2.
+The following lemma is a key lemma of this paper.
+Lemma 3.4. Let M ∈ Db
+hol(DX). An enhanced ind-sheaf SolE
+X(M) is of sheaf type if and
+only if M ∈ Db
+rh(DX).
+Proof. By Fact 2.6, an enhanced ind-sheaf SolE
+X(M) is of sheaf type if M ∈ Db
+rh(DX).
+We assume that SolE
+X(M) is of sheaf type. By definition (see Definition 2.2), there
+exists F ∈ Db(CX) such that
+SolE
+X(M) ≃ eX(ιX(F)).
+By Fact 2.1 and Fact 2.7, we have SolX(M) ≃ F. Remark that there exists an isomor-
+phism SolX(M) ≃ SolX(Mreg), see the end of §2.5.1. Hence, we have isomorphisms
+SolE
+X(M) ≃ eX(ιX(F)) ≃ eX(ιX(SolX(Mreg))) ≃ SolE
+X(Mreg),
+where the last isomorphism follows from Fact 2.6. Therefore we have M ≃ Mreg by Fact
+1.3 and hence M ∈ Db
+rh(DX).
+Let us reprove Fact 1.1 (the Riemann–Hilbert correspondence for regular holonomic
+D-modules of [Kas84]).
+14
+
+Theorem 3.5. There exists an equivalence of triangulated categories
+SolX : Db
+rh(DX)op
+∼
+−→ Db
+C-c(CX).
+Proof. By Theorem 3.3, it is enough to show that the functor SolX : Db
+rh(DX)op →
+Db
+C-c(CX) is fully faithful and essentially surjective.
+Let M, N ∈ Db
+rh(DX). Then we have isomorphisms
+HomDb
+C-c(CX) (SolX(N ), SolX(M)) ≃ HomEb
+C-c(ICX) (eX(ιX(SolX(N ))), eX(ιX(SolX(M))))
+≃ HomEb
+C-c(ICX)
+�
+SolE
+X(N ), SolE
+X(M)
+�
+≃ HomDb
+rh(DX) (M, N ) ,
+where the first isomorphism follows from the fact that the functor eX ◦ ιX : Db
+C-c(CX) →
+Eb
+C-c(ICX) is fully faithful by [DK16, Prop. 4.7.15], [KS01, Prop. 3.3.4] and Proposition
+3.1, the second isomorphism follows from Fact 2.6 and the last isomorphism follows from
+Fact 1.3. Hence, the functor SolX is fully faithful.
+Let F ∈ Db
+C-c(CX). By Proposition 3.1, we have eX(ιX(F)) ∈ Eb
+C-c(ICX) and hence
+there exists M ∈ Db
+hol(DX) such that eX(ιX(F)) ≃ SolE
+X(M) by Theorem 2.18. Since
+M ∈ Db
+rh(DX) by Lemma 3.4, we obtain an isomorphism
+eX(ιX(F)) ≃ eX(ιX(SolX(M)))
+by Fact 2.6 and hence we have F ≃ SolX(M) by applying the sheafification functor shX
+and using Fact 2.1. This means that the functor SolX is essentially surjective.
+Therefore, there exists an equivalence of triangulated categories
+SolX : Db
+rh(DX)op
+∼
+−→ Db
+C-c(CX).
+3.2
+Algebraic case
+In this subsection, let X be a smooth algebraic variety over C. First of this subsection, we
+shall prove that the natural embedding functor eXan
+∞ ◦ ιXan
+∞ and the sheafification functor
+shXan
+∞ preserve the algebraic C-constructibility.
+Proposition 3.7 (resp. Proposition 3.8) below was proved in [Ito21a, Prop. 3.14] (resp.
+[Ito21a, Prop. 3.16]) by using Fact 1.2. In this paper, we will prove them without Fact
+1.2.
+The following lemma can be prove by using Fact 2.8 and the same arguments of
+Propositions 3.1, 3.2. We shall skip the proof of this lemma.
+Lemma 3.6. If X is complete then we have:
+(1) For any F ∈ Db
+C-c(CX), we have eXan(ιXan(F)) ∈ Eb
+C-c(ICX).
+(2) For any K ∈ Eb
+C-c(ICX), we have shXan(K) ∈ Db
+C-c(CX).
+15
+
+Again, let X be a smooth algebraic variety (not necessarily complete) over C.
+Proposition 3.7. For any F ∈ Db
+C-c(CX), we have eXan
+∞ (ιXan
+∞ (F)) ∈ Eb
+C-c(ICX∞).
+Proof. Let F ∈ Db
+C-c(CX) and we set K := eXan
+∞ (ιXan
+∞ (F)) ∈ Eb(ICXan
+∞ ). It is enough to
+show that Ejan
+!! K ∈ Eb
+C-c(IC �
+X) by Definition 2.21. Since jan : Xan
+∞ → �
+Xan is semi-proper
+(see [DK19, Def. 2.3.5] (also [KS16a, Def. 2.4]) for the definition of semi-proper), there
+exists an isomorphism
+Ejan
+!! K ≃ e �
+Xan(ι �
+Xan(Rjan
+! (F)))
+by [KS16a, Prop. 2.18 (i)] and [DK19, Rem. 2.4.3]. Since Rjan
+! (F) ∈ Db
+C-c(C �
+X) by [HTT08,
+Thm. 4.5.8 (iii)], we have
+e �
+Xan(ι �
+Xan(Rjan
+! (F))) ∈ Eb
+C-c(IC �
+X)
+by Lemma 3.6 (1).
+Therefore, we have Ejan
+!! K
+∈
+Eb
+C-c(IC �
+X) and hence K
+=
+eXan
+∞ (ιXan
+∞ (F)) ∈ Eb
+C-c(ICX∞).
+Proposition 3.8. For any K ∈ Eb
+C-c(ICX∞), we have shXan
+∞ (K) ∈ Db
+C-c(CX).
+Proof. Let K ∈ Eb
+C-c(ICX∞). Recall that there exists an isomorphism
+shXan
+∞ (K) ≃ (j−1)an(sh �
+Xan(Ejan
+!! K))
+by the definition of the sheafification functor. By the definition of the triangulated cate-
+gory Eb
+C-c(ICX∞) (see Definition 2.21), we have Ejan
+!! K ∈ Eb
+C-c(IC �
+X), and hence
+sh �
+Xan(Ejan
+!! K) ∈ Db
+C-c(C �
+X)
+by Lemma 3.6 (2). Moreover by [HTT08, Thm. 4.5.8 (ii)], we have
+(j−1)an(sh �
+Xan(Ejan
+!! K)) ∈ Db
+C-c(CX).
+Therefore we have shXan
+∞ (K) ∈ Db
+C-c(CX).
+The following theorem was proved in [Be, Main Theorem C (a)]. In this paper, we
+will give an another proof by using Proposition 3.8.
+Theorem 3.9. For any M ∈ Db
+hol(DX), we have SolX(M) ∈ Db
+C-c(CX).
+Proof. Let M ∈ Db
+hol(DX). Then we have SolE
+X∞(M) ∈ Eb
+C-c(ICX∞) by Theorem 2.22.
+By [Ito21a, Lem. 3.15], we have an isomorphism
+SolX(M) ≃ shXan
+∞ (SolE
+X∞(M))
+and hence we obtain SolX(M) ∈ Db
+C-c(CX) by Proposition 3.8.
+Lemma 3.10. Let M ∈ Db
+hol(DX). An enhanced ind-sheaf SolE
+X∞(M) is of sheaf type if
+and only if M ∈ Db
+rh(DX).
+16
+
+Proof. By [Ito21a, Last part of Prop. 3.14]2, an enhanced ind-sheaf SolE
+X∞(M) is of sheaf
+type if M ∈ Db
+rh(DX).
+We assume that SolE
+X∞(M) is of sheaf type. By definition (see Definition 2.2), there
+exists F ∈ Db(CX) such that
+SolE
+X∞(M) ≃ eXan
+∞ (ιXan
+∞ (F)).
+By applying the functor Ejan
+!! , we have an isomorphism
+SolE
+�
+Xan((Dj∗M)an) ≃ e �
+Xan(ι �
+Xan(Rjan
+! (F))).
+Hence, the enhanced ind-sheaf SolE
+�
+Xan((Dj∗M)an) ∈ Eb(IC �
+Xan) is of sheaf type.
+By
+Lemma 3.4, we have (Dj∗M)an ∈ Db
+rh(D �
+Xan). This means that M ∈ Db
+rh(DX) by [HTT08,
+Thm. 6.1.12].
+Let us reprove Fact 1.2 (the algebraic version of the Riemann–Hilbert correspondence
+for regular holonomic D-modules).
+Theorem 3.11. There exists an equivalence of triangulated categories
+SolX : Db
+rh(DX)op
+∼
+−→ Db
+C-c(CX).
+Proof. By Theorem 3.9 it is enough to show that the functor SolX : Db
+rh(DX)op →
+Db
+C-c(CX) is fully faithful and essentially surjective.
+Let M, N ∈ Db
+rh(DX). Then we have isomorphisms
+HomDb
+C-c(CX) (SolX(N ), SolX(M)) ≃ HomEb
+C-c(ICX∞)
+�
+eXan
+∞ (ιXan
+∞ (SolX(N ))), eXan
+∞ (ιXan
+∞ (SolX(M)))
+�
+≃ HomEb
+C-c(ICX∞)
+�
+SolE
+X∞(N ), SolE
+X∞(M)
+�
+≃ HomDb
+rh(DX) (M, N ) ,
+where the first isomorphism follows from the fact that the functor eXan
+∞ ◦ιXan
+∞ : Db
+C-c(CX) →
+Eb
+C-c(ICX∞) is fully faithful by [DK19, Lem. 2.8.2] (see also [KS16a, Prop. 2.20]), [KS16a,
+(2.6)] and Proposition 3.7, the second isomorphism follows from [Ito21a, Last part of
+Prop. 3.14]3 and the last isomorphism follows from Theorem 2.22. Hence, the functor
+SolX is fully faithful.
+Let F ∈ Db
+C-c(CX). By Proposition 3.7, we have eXan
+∞ (ιXan
+∞ (F)) ∈ Eb
+C-c(ICX∞) and
+hence there exists M ∈ Db
+hol(DX) such that eXan
+∞ (ιXan
+∞ (F)) ≃ SolE
+X∞(M) by Theorem
+2.22. Since M ∈ Db
+rh(DX) by Lemma 3.10, we obtain an isomorphism
+eXan
+∞ (ιXan
+∞ (F)) ≃ eXan
+∞ (ιXan
+∞ (SolX(M)))
+by [Ito21a, Last part of Prop. 3.14] and hence we have F ≃ SolX(M) by applying the
+sheafification functor shXan
+∞ and using Fact 2.1.
+This means that the functor SolX is
+essentially surjective.
+Therefore, there exists an equivalence of triangulated categories
+SolX : Db
+rh(DX)op
+∼
+−→ Db
+C-c(CX).
+2Remark that the assertion of [Ito21a, Last part of Prop. 3.14] (where we omit iota in the diagram)
+was proved without Fact 1.2.
+3Remark that the assertion of [Ito21a, Last part of Prop. 3.14] (where we omit iota in the diagram)
+was proved without Fact 1.2.
+17
+
+References
+[Be] Joseph Bernstein, Algebraic Theory of D-Modules, unpublished notes.
+[Bj¨o93] Jan-Erik Bj¨ork, Analytic D-modules and applications, Mathematics and its Ap-
+plications, 247, Kluwer Academic Publishers Group, 1993.
+[Bor87] Armand Borel et al., Algebraic D-Modules, Perspectives in Mathematics, 2, Aca-
+demic Press, 1987.
+[De70] P. Deligne, ´Equations diff´erentielles ´a points singuliers r´eguliers, Lecture Notes in
+Mathematics, 163, Springer-Verlag, 1970.
+[DK16] Andrea D’Agnolo and Masaki Kashiwara, Riemann–Hilbert correspondence for
+holonomic D-modules, Publ. Math. Inst. Hautes ´Etudes Sci., 123(1), 69–197, 2016.
+[DK19] Andrea D’Agnolo and Masaki Kashiwara, Enhanced perversities, J. Reine Angew.
+Math. (Crelle’s Journal), 751, 185–241, 2019.
+[DK21] Andrea D’Agnolo and Masaki Kashiwara, On a topological counterpart of regu-
+larization for holonomic D-modules, Journal de l’´Ecole polytechnique Math´ematiques,
+8, 27–55, 2021
+[Hiro64] Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field
+of characteristic zero I, II, Ann. Math., 79(1), I:109–203, 1964, II: 205–326, 1964.
+[HTT08] Ryoshi Hotta, Kiyoshi Takeuchi, and Toshiyuki Tanisaki, D-modules, perverse
+sheaves, and representation theory, Progress in Mathematics, 236, Birkh¨auser, 2008.
+[Ito20] Yohei Ito, C-Conctructible Enhanced Ind-Sheaves, Tsukuba journal of Mathemat-
+ics, 44(1), 155–201, 2020.
+[Ito21a] Yohei Ito, Note on Algebraic Irregular Riemann–Hilbert Correspondence, Rend.
+Sem. Mat. Univ. Padova., 2021, in press, arXiv:2004.13518, 52 pages.
+[Ito21b] Note on Relation between Enhanced Ind-Sheaves and Enhanced Subanalytic
+Sheaves, arXiv:2109.13991, 84 pages.
+[Kas75] Masaki Kashiwara, On the maximally overdetermined system of linear differential
+equations, I, Publ. RIMS, Kyoto Univ.,10, 563–579, 1975.
+[Kas78] Masaki Kashiwara, On the holonomic systems of linear differential equations, II,
+Inventiones math., 49, 121–135, 1978.
+[Kas84] Masaki Kashiwara, The Riemann–Hilbert problem for holonomic systems, Publ.
+Res. Inst. Math. Sci., 20(2), 319–365, 1984.
+[Kas16] Masaki Kashiwara, Riemann–Hilbert correspondence for irregular holonomic D-
+modules, Japan J. Math., 11, 13–149, 2016.
+18
+
+[KK81] M. Kashiwara and Takahiro Kawai, On holonomic systems of microdifferential
+equations III—system with regular singularities, Publ. Res. Inst. Math. Sci., 17, 813–
+979, 1981.
+[KS90] Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der
+Mathematischen Wissenschaften, 292, Springer-Verlag, 1990.
+[KS01] Masaki Kashiwara and Pierre Schapira, Ind-sheaves, Ast´erisque, 271, 2001.
+[KS06] Masaki Kashiwara and Pierre Schapira, Categories and Sheaves, Grundlehren der
+Mathematischen Wissenschaften, 332 , Springer-Verlag, 2006.
+[KS16a] Masaki Kashiwara and Pierre Schapira, Irregular holonomic kernels and Laplace
+transform, Selecta Math., 22(1), 55–109, 2016.
+[KS16b] Masaki Kashiwara and Pierre Schapira, Regular and irregular holonomic D-
+modules, London Mathematical Society Lecture Note Series, 433, Cambridge Univer-
+sity Press, 2016.
+[Ked10] Kiran S. Kedlaya, Good formal structures for flat meromorphic connections, I:
+surfaces, Duke Math. J., 154(2), 343–418, 2010.
+[Ked11] Kiran S. Kedlaya, Good formal structures for flat meromorphic connections, II:
+excellent schemes, J. Amer. Math. Soc., 24(1), 183–229, 2011.
+[Kuwa18] Tatsuki Kuwagaki, Irregular perverse sheaves,
+Compositio Mathematica,
+157(3), 573–624, 2021.
+[Mal96] Bernard Malgrange, “Connexions m´eromorphes, II: le r´eseau canonique”, Invent.
+Math. 124, 367–387, 1996.
+[Meb84] Zoghman Mebkhout, Une autre ´equivalence de cat´egories, Compositio Math.
+51(1), 63–88, 1984.
+[Moc09] Takuro Mochizuki, Good formal structure for meromorphic flat connections on
+smooth projective surfaces, In Algebraic analysis and around, Adv. Stud. Pure Math.,
+54, 223–253, 2009.
+[Moc11] Takuro Mochizuki, Wild harmonic bundles and wild pure twistor D-modules,
+Ast´erisque, 340, 2011.
+[Moc16] Takuro Mochizuki, Curve test for enhanced ind-sheaves and holonomic D-
+modules, I, II Annales scientifiques de l’ENS, 55(3), 575–738, 2022.
+[Naga62] Masayoshi Nagata, Imbedding of an abstract variety in a complete variety, J.
+Math. Kyoto Univ. 2, 1-10, 1962.
+[Sai89] Morihiko Saito, Induced D-modules and differential complexes, Bull. Soc. Math.
+France, 117-3 (1989), 361-387.
+19
+
diff --git a/htAzT4oBgHgl3EQfMvu5/content/tmp_files/load_file.txt b/htAzT4oBgHgl3EQfMvu5/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..88841a510cfa8534a0990e73451eb9479b571ee3
--- /dev/null
+++ b/htAzT4oBgHgl3EQfMvu5/content/tmp_files/load_file.txt
@@ -0,0 +1,917 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf,len=916
+page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='01138v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='AG] 3 Jan 2023 Another proof of the Riemann–Hilbert Correspondence for Regular Holonomic D-Modules∗ Yohei ITO† Abstract In this paper, we reprove the Riemann–Hilbert correspondence for regular holo- nomic D-modules of [Kas84] (see also [Meb84]) by using the irregular Riemann– Hilbert correspondence of [DK16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Moreover, we also prove the algebraic one by the same argument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' For this purpose, we study C-constructible enhanced ind-sheaves of [Ito20, Ito21a] in more detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 1 Introduction In 1984, the Riemann-Hilbert correspondence for analytic regular holonomic D-modules was established by M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Kashiwara [Kas84] as the equivalence of categories below (see also [Meb84]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Let X be a complex manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We denote by Db rh(DX) the triangulated category of regular holonomic DX-modules, by Db C-c(CX) the one of C-constructible sheaves on X and by SolX the solution functor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Fact 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1 ([Kas84, Main Theorem], see also [Meb84, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' There exists an equiv- alence of triangulated categories SolX : Db rh(DX)op ∼ −→ Db C-c(CX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' After the appearance of Fact 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Beilinson and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Bernstein developed systemat- ically a theory of regular holonomic D-modules on smooth algebraic varieties over the complex number field C and obtained an algebraic version of Fact 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1 as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Let X be a smooth algebraic variety over C and denote by Xan the underlying complex manifold of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We denote by Db rh(DX) the triangulated category of regular holonomic DX-modules, by Db C-c(CX) the one of algebraic C-constructible sheaves on Xan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Fact 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='2 ([Be, Main Theorem C (c)] and [Bor87, Theorem 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='4], see also [Sai89, §4]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' There exists an equivalence of categories SolX : Db rh(DX)op ∼ −→ Db C-c(CX), M �→ SolX(M) := SolXan(Man).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' ∗2020 Mathematics Subject Classification: 32C38, 32S60, 35A27 †Department of Mathematics, Faculty of Science Division II, Tokyo University of Science, 1-3, Kagu- razaka, Shinjuku-ku, Tokyo, 162-8601, Japan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' E-mail: yitoh@rs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='tus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='jp 1 The problem of extending the Riemann–Hilbert correspondence to cover the case of holonomic D-modules with irregular singularities had been open for 30 years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Af- ter a groundbreaking development in the theory of irregular meromorphic connections by K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Kedlaya [Ked10, Ked11] and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Mochizuki [Moc09, Moc11], A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' D’Agnolo and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Kashiwara established the Riemann–Hilbert correspondence for analytic irregular holo- nomic D-modules in [DK16] as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Let X be a complex manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We denote by Db hol(DX) the triangulated category of holonomic DX-modules and by Eb R-c(ICX) the one of R-constructible enhanced ind-sheaves on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Fact 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='3 ([DK16, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='3]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' There exists a fully faithful embedding SolE X : Db hol(DX)op ֒→ Eb R-c(ICX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Furthermore, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Mochizuki proved that the essential image of SolE X can be character- ized by the curve test [Moc16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' On the other hand, in [Kas16, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='2], M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Kashiwara showed the similar result of Fact 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='3 by using enhanced subanalytic sheaves instead of enhanced ind-sheaves, see also [Ito21b].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' In [Kuwa18, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='6], T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Kuwagaki introduced another approach to the irregular Riemann–Hilbert correspondence via irregular con- structible sheaves which are defined by C-constructible sheaves with coefficients in a finite version of the Novikov ring and special gradings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' In [Ito20], the author defined C-constructibility for enhanced ind-sheaves on a complex manifold X and proved that they are nothing but objects of the essential image of SolE X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Namely, we obtain an equivalence of categories as below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We denote by Eb C-c(ICX) the triangulated category of C-constructible enhanced ind-sheaves on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='4 ([Ito20, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='26]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' There exists an equivalence of categories SolE X : Db hol(DX)op ∼ −→ Eb C-c(ICX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Moreover, the author proved an algebraic version of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='4 in [Ito21a].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Let X be a smooth algebraic variety and denote by � X a smooth completion of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' The author defined algebraic C-constructibility for enhanced ind-sheaves on a bordered space Xan ∞ = (Xan, � Xan) and proved the following result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We denote by Eb C-c(ICX∞) the triangulated category of algebraic C-constructible enhanced ind-sheaves on Xan ∞ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='5 ([Ito21a, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='11]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' There exists an equivalence of categories SolE X∞ : Db hol(DX)op ∼ −→ Eb C-c(ICX∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' In this paper, we reprove Fact 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1 (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Fact 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='2) by using Fact 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='3 and Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='4 (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='5) in Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='5 (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' For this purpose, we study C-constructible enhanced ind-sheaves of [Ito20, Def.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='19] (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' [Ito21a, Def.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='10]) in Propositions 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='2 (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Propositions 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='7, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' The key result of this paper is Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Note that the proofs of Theorems 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='3, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='5, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='9 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='11 are NOT circular reasoning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' The idea of the proof is in line with the one used by Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Mebkhout in the Riemann–Hilbert correspondence for regular holonomic D-modules of [Meb84, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Namely, we reduce the problem to the case of regular meromorphic connections by the d´evissage and the resolution singularity of [Hiro64].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 2 Acknowledgement I would like to thank Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Tauchi of Kyushu University for many discussions and giving many comments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' This work was supported by Grant-in-Aid for Research Activity Start-up (No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 21K20335) and Grant-in-Aid for Young Scientists (No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 22K13902), Japan Society for the Promotion of Science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 2 Preliminary Notions and Results 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1 Bordered Spaces We shall recall a notion of bordered spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' See [DK16, §3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='2] and [DK21, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1] for the details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' A bordered space is a pair M∞ = (M, ˇ M) of a good topological space ˇ M (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=', a locally compact Hausdorff space which is countable at infinity and has finite soft dimension) and an open subset M ⊂ ˇ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' A morphism f : (M, ˇ M) → (N, ˇN) of bordered spaces is a continuous map f : M → N such that the first projection ˇ M × ˇN → ˇ M is proper on the closure Γf of the graph Γf of f in ˇ M × ˇN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' The category of good topological spaces is embedded into that of bordered spaces by the identification M = (M, M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Note that we have the morphism jM∞ : M∞ → ˇ M of bordered spaces given by the embedding M ֒→ ˇ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We sometimes denote jM∞ by j for short.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' For a locally closed subset Z ⊂ M of M, we set Z∞ := (Z, Z) where Z is the closure of Z in ˇ M and denote by iZ∞ : Z∞ → Z the morphism of bordered spaces given by the embedding Z ֒→ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' By definition, a subset of M∞ = (M, ˇ M) is a subset of M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We say that a subset Z of M∞ is open (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' closed, locally closed) if it is so in M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Moreover, a subset Z of M∞ is a relatively compact subset if it is contained in a compact subset of ˇ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='2 Ind-Sheaves on Bordered Spaces We shall recall a notion of ind-sheaves on a bordered space of [DK16, §3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Let us denote by ICM∞ the abelian category of ind-sheaves on a bordered space M∞ = (M, ˇ M) and denote by Db(ICM∞) the triangulated category of them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' For a morphism f : M∞ → N∞ of bordered spaces, we have the Grothendieck operations ⊗, RIhom, Rf∗, Rf!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=', f −1, f !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' for ind-sheaves on bordered spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Note that there exists an embedding functor ιM∞ : Db(CM) ֒→ Db(ICM∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We sometimes write Db(CM∞) for Db(CM), when considered as the full subcategory of Db(ICM∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Note that there exists the standard t-structure on Db(ICM∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Note also that the embedding functor ιM∞ has a left adjoint functor αM∞ : Db(ICM∞) → Db(CM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='3 Enhanced Ind-Sheaves We shall recall some basic notions of enhanced ind-sheaves on bordered spaces and results on those.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Reference are made to [KS16a] and [DK19, DK21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Moreover we also refer to [DK16] and [KS16b] for the notions of enhanced ind-sheaves on good topological spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3 Let M∞ = (M, ˇ M) be a bordered space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We set R∞ := (R, R) for R := R⊔{−∞, +∞}, and let t ∈ R be the affine coordinate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We consider the morphism of bordered spaces π: M∞ × R∞ → M∞ given by the projection map π: M × R → M, (x, t) �→ x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Then the triangulated category of enhanced ind-sheaves on a bordered space M∞ is defined by Eb(ICM∞) := Db(ICM∞×R∞)/π−1Db(ICM∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' The quotient functor QM∞ : Db(ICM∞×R∞) → Eb(ICM∞) has fully faithful left and right adjoints LE M∞, RE M∞ : Eb(ICM∞) → Db(ICM∞×R∞), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We sometimes denote QM∞ (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' LE M∞, RE M∞ ) by Q (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' LE, RE) for short.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Then we have the standard t-structure on Eb(ICM∞) which is induced by the standard t-structure on Db(ICM∞×R∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We denote by E0(ICM∞) the heart of Eb(ICM∞) with respect to the standard t-structure and by Hn : Eb(ICM∞) → E0(ICM∞) the n-th cohomology functor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' For a morphism f : M∞ → N∞ of bordered spaces, we have the Grothendieck opera- tions +⊗, RIhom+, Ef −1, Ef∗, Ef !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=', Ef!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' for enhanced ind-sheaves on bordered spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Moreover, for F ∈ Db(ICM∞) and K ∈ Eb(ICM∞) the objects π−1F ⊗ K := QM∞(π−1F ⊗ LE M∞K), RIhom(π−1F, K) := QM∞ � RIhom(π−1F, RE M∞K) � in Eb(ICM∞) are well defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We set CE M∞ := QM∞ � “ lim −→ a→+∞ ” C{t≥a} � ∈ Eb(ICM∞) where {t ≥ a} stands for {(x, t) ∈ M × R | t ≥ a} ⊂ ˇ M × R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Moreover, for a continuous function ϕ: U → R defined on an open subset U ⊂ M, we set Eϕ U|M∞ := CE M∞ +⊗ QM∞ � C{t+ϕ=0} � , where {t + ϕ = 0} stands for {(x, t) ∈ ˇ M × R | t ∈ R, x ∈ U, t + ϕ(x) = 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We have a natural embedding eM∞ : Db(ICM∞) → Eb(ICM∞) defined by eM∞(F) := CE M∞ ⊗ π−1F, see [DK19, Lem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='2] (see also [KS16a, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='20]) for the details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Note also that for a morphism f : M∞ → N∞ of bordered spaces and objects F ∈ Db(ICM∞), G ∈ Db(ICN∞) we obtain Ef!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' (eM∞F) ≃ eN∞(Rf!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='F), Ef −1(eN∞G) ≃ eM∞(f −1G), Ef !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' (eN∞G) ≃ eM∞(f !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='G) by using [KS16a, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Let i0 : M∞ → M∞ × R∞ be the inclusion map of bordered spaces induced by M → M × R, x �→ (x, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We set shM∞ := αM∞ ◦ i!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 0 ◦ RE M∞ : Eb(ICM∞) → Db(CM) and call it the sheafification functor for enhanced ind-sheaves on bordered spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We will use the following fact in §3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Fact 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1 ([DK21, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='8 (i)]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' For any F ∈ Db(CM), there exists an isomorphism F ∼ −→ shM∞(eM∞(ιM∞(F))).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' The following notion was introduced in [DK21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='2 ([DK21, Def.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='4 (ii)]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We say that K ∈ Eb(ICM∞) is of sheaf type if there exists an object F ∈ Db(CM∞) such that K ≃ eM∞(ιM∞(F))).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='4 R-Constructible Enhanced Ind-Sheaves We shall recall a notion of the R-constructibility for enhanced ind-sheaves and results on those.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' References are made to [DK16, DK19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' In this subsection, we assume that a bordered space M∞ = (M, ˇ M) is a subanalytic bordered space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Namely, ˇ M is a subanalytic space and M is an open subanalytic subset of ˇ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' See [DK19, Def.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1] for the details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='3 ([DK19, Def.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='2]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We denote by Db R-c(CM∞) the full subcategory of Db(CM∞) consisting of objects F satisfying RjM∞!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='F is an R-constructible sheaf on ˇ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Recall that a subset Z of M∞ is subanalytic if it is subanalytic in ˇ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='4 ([DK19, Def.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We say that K ∈ Eb(ICM∞) is R-constructible if for any relatively compact subanalytic open subset U of M∞ there exists an isomorphism Ei−1 U∞K ≃ CE U∞ +⊗ F for some F ∈ Db R-c(CU∞×R∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We denote by Eb R-c(ICM∞) the full triangulated subcategory of Eb(ICM∞) consisting of R-constructible enhanced ind-sheaves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Note that the triangulated category Eb R-c(ICM∞) has the standard t-structure which is induced by the standard t-structure on Eb(ICM∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Let us denote by E0 R-c(ICM∞) the heart of Eb R-c(ICM∞) with respect to the standard t- structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='5 D-Modules In this section we recall some basic notions and results on D-modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' References are made to [Bj¨o93], [DK16, §§8, 9], [KS01, §7], [KS16b, §§3, 4, 7] for analytic D-modules, to [Be], [Bor87], [HTT08] for algebraic ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1 Analytic D-Modules Let X be a complex manifold and denote by dX its complex dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We denote by OX the sheaf of holomorphic functions and by DX the sheaf of holomorphic differential oper- ators on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Let us denote by Db(DX) the bounded derived category of left DX-modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Moreover we denote by Db coh(DX), Db hol(DX) and Db rh(DX) the full triangulated subcat- egories of Db(DX) consisting of objects with coherent, holonomic and regular holonomic cohomologies, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' For a morphism f : X → Y of complex manifolds, denote by D⊗, Df∗, Df ∗ the standard operations for analytic D-modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' For an analytic hypersurface D in X we denote by OX(∗D) the sheaf of meromorphic functions on X with poles in D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Then for M ∈ Db(DX) we set M(∗D) := M D⊗ OX(∗D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We say that a DX-module is a meromorphic connection on X along D if it is isomorphic as an OX-module to a coherent OX(∗D)-module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We denote by Conn(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' D) the cate- gory of meromorphic connections along D and by Connreg(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' D) the category of regular meromorphic connections along D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Moreover, we set Db mero(DX(D)) := {M ∈ Db hol(DX) | Hi(M) ∈ Conn(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' D) for any i ∈ Z}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 5 The classical solution functor on X is defined by SolX : Db coh(DX)op → Db(CX), M �−→ RHomDX(M, OX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' An essential part of the following theorem was proved by Deligne in [De70].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We denote by Loc(X \\ D) the category of local systems on X \\ D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' The following theorem is used in the proof of Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Fact 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='5 (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=', [HTT08, Cor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='21]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' There exists an equivalence of abelian categories S : Connreg(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' D) → Loc(X \\ D), M → SolX(M)|X\\D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We denote by OE X the enhanced ind-sheaf of tempered holomorphic functions [DK16, Def.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1] and by SolE X the enhanced solution functor on X: SolE X : Db coh(DX)op → Eb(ICX), M �−→ RIhomDX(M, OE X), [DK16, Def.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1] (see also [Ito21a, Lem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='15]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We will use the following facts in §3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Fact 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='6 ([DK16, the equation just before Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='2, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='3] (see also [Ito21a, Last part of Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='14])1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' For any M ∈ Db rh(DX) there exists an isomorphism SolE X(M) ≃ eX � SolX(M) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Fact 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='7 ([DK16, Lem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='5]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' For M ∈ Db coh(DX), we have an isomorphism shX � SolE X(M) � ≃ SolX(M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' At the end of this subsection, let us recall the notion of Mreg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We denote by D∞ X the sheaf of rings of differential operators of infinite order on X and set M∞ := D∞ X ⊗DX M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Then for a holonomic DX-module M, a DX-module Mreg := {s ∈ M∞ | DX · s ∈ Modrh(DX)} is a regular holonomic DX-module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Note that we have (Mreg)∞ ≃ M∞ and hence SolX(Mreg) ≃ SolX(M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' See [KK81, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1], also [Kas84, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='7] for the details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 1Remark that the assertion of [Ito21a, Last part of Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='14] was proved without Fact 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='2 Algebraic D-Modules Let X be a smooth algebraic variety over C and denote by dX its complex dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We denote by OX the sheaf of regular functions and by DX the sheaf of algebraic differ- ential operators on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Let us denote by Db(DX) the bounded derived category of left DX-modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Moreover we denote by Db coh(DX), Db hol(DX) and Db rh(DX) the full triangu- lated subcategories of Db(DX) consisting of objects with coherent, holonomic and regular holonomic cohomologies, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' For a morphism f : X → Y of smooth algebraic varieties, we denote by D⊗, Df∗, Df ∗ the standard operations for algebraic D-modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We denote by Xan the underlying complex manifold of X and by �ι: (Xan, OXan) → (X, OX) the morphism of ringed spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Since there exists a morphism �ι−1OX → OXan of sheaves on Xan, we have a canonical morphism �ι−1DX → DXan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Then we set Man := DXan ⊗�ι−1DX �ι−1M for M ∈ Mod(DX) and obtain a functor (·)an: Mod(DX) → Mod(DXan).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' It is called the analytification functor on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Since the sheaf DXan is faithfully flat over �ι−1DX, the analytification functor is faithful and exact, and hence we obtain (·)an : Db(DX) → Db(DXan).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Note that the analytification functor preserves the properties of coherent and holonomic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' At the end of this subsection, we shall recall algebraic meromorphic connections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Let D be a divisor of X, and j : X \\D ֒→ X the natural embedding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Then we set OX(∗D) := j∗OX and also set M(∗D) := M D⊗ OX(∗D) for M ∈ Mod(DX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Note that we have M(∗D) ≃ Dj∗Dj∗M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We say that a DX- module is a meromorphic connection on X along D if it is isomorphic as an OX-module to a coherent OX(∗D)-module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We denote by Conn(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' D) the category of meromorphic connections on X along D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Note that it is the full abelian subcategory of Modhol(DX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Moreover, we set Db mero(DX(D)) := {M ∈ Db hol(DX) | Hi(M) ∈ Conn(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' D) for any i ∈ Z}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We note that if X is complete there exists an equivalence of categories between the abelian category Conn(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' D) and the one of effective meromorphic connections on Xan along Dan by [HTT08, §5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' However as a consequence of [Mal96, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1] any analytic meromorphic connection is effective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Hence we have: Fact 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='8 ([HTT08, (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='2)], [Mal96, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' If X is complete, there exists an equiv- alence of abelian categories (·)an: Conn(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' D) ∼ −→ Conn(Xan;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Dan).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Moreover this induces an equivalence of triangulated categories (·)an : Db mero(DX(D)) ∼ −→ Db mero(DXan(Dan)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 7 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='6 C-constructible Enhanced Ind-Sheaves In this section, we recall the definition of C-constructibility for enhanced ind-sheaves and main results of [Ito20] and [Ito21a].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1 Analytic Case Let X be a complex manifold and D ⊂ X a normal crossing divisor on it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Let us take local coordinates (u1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' , ul, v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' , vdX−l) of X such that D = {u1u2 · · · ul = 0} and set Y = {u1 = u2 = · · · = ul = 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We define a partial order ≤ on the set Zl by a ≤ a′ ⇐⇒ ai ≤ a′ i (1 ≤ ∀i ≤ l), for a = (a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' , al), a′ = (a′ 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' , a′ l) ∈ Zl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Then for a meromorphic function ϕ ∈ OX(∗D) on X along D which has the Laurent expansion ϕ = � a∈Zl ca(ϕ)(v) · ua ∈ OX(∗D) with respect to u1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' , ul, where ca(ϕ) are holomorphic functions on Y , we define its order ord(ϕ) ∈ Zl by the minimum min � {a ∈ Zl | ca(ϕ) ̸= 0} ∪ {0} � if it exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' For any f ∈ OX(∗D)/OX, we take any lift �f to OX(∗D), and we set ord(f) := ord( �f), if the right-hand side exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Note that it is independent of the choice of a lift �f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' If ord(f) ̸= 0, cord(f)( �f) is independent of the choice of a lift �f, which is denoted by cord(f)(f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='9 ([Moc11, Def.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='2]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' In the situation as above, a finite subset I ⊂ OX(∗D)/OX is called a good set of irregular values on (X, D), if the following conditions are satisfied: For each element f ∈ I, ord(f) exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' If f ̸= 0 in OX(∗D)/OX, cord(f)(f) is invertible on Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' For two distinct f, g ∈ I, ord(f − g) exists and cord(f−g)(f − g) is invertible on Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' The set {ord(f − g) | f, g ∈ I} is totally ordered with respect to the above partial order ≤ on Zl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='10 ([Ito20, Def.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='5]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' In the situation as above,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' we say that an enhanced ind-sheaf K ∈ E0(ICX) has a normal form along D if the following three conditions are satisfied: (i) π−1CX\\D ⊗ K ∼ −→ K,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' (ii) for any x ∈ X \\ D there exist an open neighborhood Ux ⊂ X \\ D of x and a non-negative integer k such that K|Ux ≃ (CE Ux)⊕k,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 8 (iii) for any x ∈ D there exist an open neighborhood Ux ⊂ X of x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' a good set of irregular values {ϕi}i on (Ux,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' D ∩ Ux) and a finite sectorial open covering {Ux,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='j}j of Ux\\D such that π−1CUx,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='j ⊗ K|Ux ≃ � i ERe ϕi Ux,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='j|Ux for any j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' In [Ito20, Def.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='5], we assumed that K is R-constructible, see [DK19, Def.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1] (see also Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='4) for the definition of R-constructible enhanced ind-sheaves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' However, it is not necessary: Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Any enhanced ind-sheaf which has a normal form along D is an R-constructible enhanced ind-sheaf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Let K ∈ E0(ICX) be an enhanced ind-sheaf which has a normal form along D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Since the R-constructibility of enhanced ind-sheaves is a local property (see [DK16, Cor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='8] for details), it is enough to show that for any x ∈ X there exists an open subset Ux ⊂ X of x such that K|Ux ∈ E0 R-c(ICUx).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Since K satisfies the condition (ii) in Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='10 and the constant enhanced ind- sheaf CE is R-constructible, for any x ∈ X \\ D there exists an open neighborhood Ux ⊂ X \\ D of x such that K|Ux ∈ E0 R-c(ICUx).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Since K satisfies the condition (iii) in Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='10, for any x ∈ D there exist an open neighborhood Ux ⊂ X, Lx ∈ E0 R-c(ICUx) and a finite sectorial open covering {Ux,j} of Ux \\ D such that π−1CUx,j ⊗ K|Ux ≃ π−1CUx,j ⊗ Lx for any j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Here we used the fact that the enhanced ind-sheaf ERe ϕ Ux\\D|Ux is R-constructible for any meromorphic function ϕ ∈ OUx(∗(D ∩ Ux)), by Fact 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='3 and [DK16, Cor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We shall show that K|Ux is R-constructible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Note that since K satisfies the condition (i) in Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='10 we have K|Ux ≃ π−1CUx\\D ⊗ K|Ux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Hence by using [DK16, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='3] and the Mayer–Vietoris sequence for sheaves (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=', [KS90, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='6 (vii)]), it is enough to prove that π−1CUx,j ⊗ K|Ux ∈ E0 R-c(ICUx).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' However, this follows from π−1CUx,j ⊗ Lx ∈ E0 R-c(ICUx).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' A ramification of X along a normal crossing divisor D on a neighborhood U of x ∈ D is a finite map r: Urm → U of complex manifolds of the form z′ �→ z = (z1, z2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' , zn) = r(z′) = (z′m1 1 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' , z′mk k , z′ k+1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' , z′ n) for some (m1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' , mk) ∈ (Z>0)k, where (z′ 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' , z′ n) is a local coordinate system of Urm and (z1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' , zn) is the one of U such that D ∩ U = {z1 · · · zk = 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='12 ([Ito20, Def.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='11]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We say that an enhanced ind-sheaf K ∈ E0(ICX) has a quasi-normal form along D if it satisfies (i) and (ii) in Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='10, and if for any x ∈ D there exist an open neighborhood Ux ⊂ X of x and a ramification rx : Urm x → Ux of Ux along Dx := Ux ∩ D such that Er−1 x (K|Ux) has a normal form along Drm x := r−1 x (Dx).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Note that any enhanced ind-sheaf which has a quasi-normal form along D is an R- constructible enhanced ind-sheaf on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' See [Ito20, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='12] for the details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 9 A modification of X with respect to an analytic hypersurface H is a projective map m: Xmd → X from a complex manifold Xmd to X such that Dmd := m−1(H) is a normal crossing divisor of Xmd and m induces an isomorphism Xmd \\ Dmd ∼ −→ X \\ H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='13 ([Ito20, Def.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='14]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We say that an enhanced ind-sheaf K ∈ E0(ICX) has a modified quasi-normal form along H if it satisfies (i) and (ii) in Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='10, and if for any x ∈ H there exist an open neighborhood Ux ⊂ X of x and a modification mx : Umd x → Ux of Ux along Hx := Ux ∩H such that Em−1 x (K|Ux) has a quasi-normal form along Dmd x := m−1 x (Hx).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Note that any enhanced ind-sheaf which has a modified quasi-normal form along H is an R-constructible enhanced ind-sheaf on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' See [Ito20, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='15] for the details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Moreover we have: Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='14 ([Ito20, Lem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='16]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' The enhanced solution functor SolE X induces an equivalence of abelian categories between the full subcategory of E0(ICX) consisting of objects which have a modified quasi-normal form along H and the abelian category Conn(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' H) of meromorphic connections on X along H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We denote by E0 mero(ICX(H)) the essential image of SolE X : Conn(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' H)op → E0(ICX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' This abelian category is nothing but the full subcategory of E0(ICX) consisting of en- hanced ind-sheaves which have a modified quasi-normal form along H by Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Moreover, we set Eb mero(ICX(H)) := {K ∈ Eb R-c(ICX) | Hi(K) ∈ E0 mero(ICX(H)) for any i ∈ Z}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Since the category Db mero(DX(H)) is the full triangulated subcategory of Db hol(DX) and the category Eb mero(ICX(H)) is the full triangulated subcategory of Eb R-c(ICX), the following proposition is obvious by induction on the length of a complex: Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' The enhanced solution functor SolE X induces an equivalence of trian- gulated categories Db mero(DX(H))op ∼ −→ Eb mero(ICX(H)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' A complex analytic stratification of X is a locally finite partition {Xα}α∈A of X by locally closed analytic subsets Xα such that for any α ∈ A, Xα is smooth, Xα and ∂Xα := Xα \\ Xα are complex analytic subsets and Xα = � β∈B Xβ for a subset B ⊂ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='16 ([Ito20, Def.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='19]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We say that an enhanced ind-sheaf K ∈ E0(ICX) is C-constructible if there exists a complex analytic stratification {Xα}α of X such that π−1CX bl α \\Dα ⊗ Eb−1 α K has a modified quasi-normal form along Dα for any α, where bα : X bl α → X is a complex blow-up of Xα along ∂Xα = Xα \\ Xα and Dα := b−1 α (∂Xα).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Namely X bl α is a complex manifold, Dα is a normal crossing divisor of X bl α and bα is a projective map which induces an isomorphism X bl α \\ Dα ∼ −→ Xα and satisfies bα � X bl α � = Xα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We call such a family {Xα}α∈A a complex analytic stratification adapted to K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 10 Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='16 does not depend on the choice of a complex blow-up bα by [Ito20, Sublem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We denote by E0 C-c(ICX) the full subcategory of E0(ICX) whose objects are C- constructible and set Eb C-c(ICX) := {K ∈ Eb(ICX) | Hi(K) ∈ E0 C-c(ICX) for any i ∈ Z} ⊂ Eb(ICX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Note that the category Eb C-c(ICX) is the full triangulated subcategory of Eb R-c(ICX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' See [Ito20, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='21] for the details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='18 ([Ito20, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='25, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='26]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' For any M ∈ Db hol(DX), the enhanced solution complex SolE X(M) of M is a C-constructible enhanced ind-sheaf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' On the other hand, for any C-constructible enhanced ind-sheaf K ∈ Eb C-c(ICX), there exists M ∈ Db hol(DX) such that K ∼ −→ SolE X(M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Therefore we obtain an equivalence of triangulated categories SolE X : Db hol(DX)op → Eb C-c(ICX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='2 Algebraic Case Let X be a smooth algebraic variety over C and denote by Xan the underlying complex analytic manifold of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Recall that an algebraic stratification of X is a Zariski locally finite partition {Xα}α∈A of X by locally closed subvarieties Xα such that for any α ∈ A, Xα is smooth and Xα = � β∈B Xβ for a subset B ⊂ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Moreover an algebraic stratification {Xα}α∈A of X induces a complex analytic stratification {Xan α }α∈A of Xan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='19 ([Ito21a, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We say that an enhanced ind-sheaf K ∈ E0(ICXan) satisfies the condition (AC) if there exists an algebraic stratification {Xα}α of X such that π−1C(X bl α )an\\Dan α ⊗ E(ban α )−1K has a modified quasi-normal form along Dan α for any α, where bα : X bl α → X is a blow- up of Xα along ∂Xα := Xα \\ Xα, Dα := b−1 α (∂Xα) and Dan α := � X bl α �an \\ � X bl α \\ Dα �an.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Namely X bl α is a smooth algebraic variety over C, Dα is a normal crossing divisor of X bl α and bα is a projective map which induces an isomorphism X bl α \\ Dα ∼ −→ Xα and satisfies bα � X bl α � = Xα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We denote by E0 C-c(ICX) the full subcategory of E0(ICXan) whose objects satisfy the condition (AC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Note that E0 C-c(ICX) is the full subcategory of the abelian category E0 C-c(ICXan) of C-constructible enhanced ind-sheaves on Xan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Moreover we set Eb C-c(ICX) := {K ∈ Eb(ICXan) | Hi(K) ∈ E0 C-c(ICX) for any i ∈ Z} ⊂ Eb C-c(ICXan).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='20 ([Ito21a, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='7]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Let X be a smooth complete algebraic variety over C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Then there exists an equivalence of triangulated categories SolE X : Db hol(DX)op ∼ −→ Eb C-c(ICX), M �→ SolE X(M) := SolE Xan(Man).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 11 Thanks to Hironaka’s desingularization theorem [Hiro64] (see also [Naga62, Thm 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='3]), we can take a smooth complete algebraic variety �X such that X ⊂ � X and D := � X \\ X is a normal crossing divisor of � X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Let us consider a bordered space Xan ∞ = (Xan, � Xan) and the triangulated category Eb(ICXan ∞ ) of enhanced ind-sheaves on Xan ∞ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Remark that Eb(ICXan ∞ ) does not depend on the choice of � X, see [Ito21a, §2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='3] for the details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We shall denote by j : X ֒→ �X the open embedding, and by jan : Xan ֒→ � Xan the correspondence morphism for analytic spaces of j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Then we obtain the morphism of bordered spaces jan : Xan ∞ → � Xan given by the embedding jan : Xan ֒→ � Xan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='21 ([Ito21a, Def.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='10]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We say that an enhanced ind-sheaf K ∈ Eb(ICXan ∞ ) is algebraic C-constructible on Xan ∞ if Ejan !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' K ∈ Eb(IC � Xan) is an object of Eb C-c(IC � X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We denote by Eb C-c(ICX∞) the full triangulated subcategory of Eb(ICXan ∞ ) consisting of algebraic C-constructible enhanced ind-sheaves on Xan ∞ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Note that the triangulated cate- gory Eb C-c(ICX∞) is the full triangulated subcategory of Eb R-c(ICXan ∞ ), see [Ito20, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='21] for the details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Let us set SolE X∞(M) := E(jan)−1SolE � X(Dj∗M) ∈ Eb(ICXan ∞ ) for any M ∈ Db(DX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='22 ([Ito21a, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='11]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' For any M ∈ Db hol(DX), the enhanced solution complex SolE X∞(M) of M is an algebraic C-constructible enhanced ind-sheaf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' On the other hand, for any algebraic C-constructible enhanced ind-sheaf K ∈ Eb C-c(ICX∞), there exists M ∈ Db hol(DX) such that K ∼ −→ SolE X∞(M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Moreover, we obtain an equivalence of triangulated categories SolE X∞ : Db hol(DX)op ∼ −→ Eb C-c(ICX∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 12 3 Main Results The main results of this paper are Theorems 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='3, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='5, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='9 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1 Analytic case In this subsection, let X be a complex manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' First of all, we shall prove that the natural embedding functor eX ◦ ιX and the sheafification functor shX preserve the C- constructibility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1 (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='2) below was proved in [Ito20, Cor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='27] (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' [Ito20, Cor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='28]) by using Fact 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' In this paper, we will prove them without Fact 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' For any F ∈ Db C-c(CX), we have eX(ιX(F)) ∈ Eb C-c(ICX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' By induction on the length of complex, it is enough to show in the case when F is a C-constructible sheaf (not complex).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Let F be a C-constructible sheaf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Then there exists a complex analytic stratification {Xα}α∈A of X such that F|Xα is a local system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We shall prove that K := eX(ιX(F)) is a C-constructible enhanced ind-sheaf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' For each α ∈ A, let bα : X bl α → X be a complex blow-up of Xα along ∂Xα := Xα \\ Xα and set Dα := b−1 α (∂Xα), as in the condition (iii) of the definition of the C-constructibility (Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Then we have isomorphisms π−1CX bl α \\Dα ⊗ Eb−1 α K ≃ eX bl α � ιX bl α � CX bl α \\Dα ⊗ b−1 α (F) �� ≃ eX bl α � ιX bl α � iX bl α \\Dα!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' (bα|X bl α \\Dα)−1(F|Xα) �� , by the commutativity of eX and ιX for various operations, where iX bl α \\Dα : X bl α \\Dα → X bl α is the natural embedding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Since (bα|X bl α \\Dα)−1(F|Xα) is a local system on X bl α \\ Dα, there exists an object Mα ∈ Connreg(X bl α ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Dα) such that (bα|X bl α \\Dα)−1(F|Xα) ≃ SolX bl α (Mα)|X bl α \\Dα by Fact 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Hence, there exist isomorphisms π−1CX bl α \\Dα ⊗ Eb−1 α K ≃ eX bl α � ιX bl α � iX bl α \\Dα!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='SolX bl α (Mα)|X bl α \\Dα �� ≃ eX bl α � ιX bl α � CX bl α \\Dα ⊗ SolX bl α (Mα) �� ≃ eX bl α � ιX bl α � SolX bl α (Mα) �� ≃ SolE X bl α (Mα), where the third isomorphism follows from Mα ≃ Mα(∗Dα) and the last isomorphism follows from Fact 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Since Mα ∈ Conn(X bl α ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Dα), the enhanced ind-sheaf SolE X bl α (M) has a modified quasi-normal form along Dα by Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Therefore, the enhanced ind-sheaf π−1CX bl α \\Dα ⊗ Eb−1 α K ∈ E0(ICX bl α ) has a modified quasi-normal form along Dα for each α ∈ A, and hence the enhanced ind-sheaf K = eX(ιX(F)) is C-constructible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 13 Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' For any K ∈ Eb C-c(ICX), we have shX(K) ∈ Db C-c(CX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' By induction on the length of complex, it is enough to show in the case of K ∈ E0 C-c(ICX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Let K ∈ E0 C-c(ICX) and {Xα}α∈A a complex analytic stratification adapted to K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We shall prove that shX(K)|Xα is a local system for each α ∈ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' For each α ∈ A, let bα : X bl α → X be a complex blow-up of Xα along ∂Xα := Xα \\ Xα and set Dα := b−1 α (∂Xα), as in the condition (iii) of the definition of the C-constructibility (Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Since bα|X bl α \\Dα : X bl α \\ Dα ∼ −→ Xα is an isomorphism, it is enough to show that (bα|X bl α \\Dα)−1(shX(K)|Xα) is a local system on X bl α \\ Dα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' However, this follows from (bα|X bl α \\Dα)−1(shX(K)|Xα) ≃ shX bl α \\Dα � (Eb−1 α K)|X bl α \\Dα � by [DK21, Lem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='3 (1)], the condition (ii) in Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='13 (see also Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='10) and the fact that there exists an isomorphism shM∞(CE M∞) ≃ CM for any bordered space M∞ = (M, ˇ M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' The following theorem can be proved as a corollary of [Kas78, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='8] (see also [Kas75, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='5]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' In this paper, we will give an another proof by using Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' For any M ∈ Db hol(DX), we have SolX(M) ∈ Db C-c(CX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Let M ∈ Db hol(DX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Then we have SolE X(M) ∈ Eb C-c(ICX) by Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' By Fact 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='7, we have an isomorphism SolX(M) ≃ shX(SolE X(M)) and hence we obtain SolX(M) ∈ Db C-c(CX) by Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' The following lemma is a key lemma of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Let M ∈ Db hol(DX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' An enhanced ind-sheaf SolE X(M) is of sheaf type if and only if M ∈ Db rh(DX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' By Fact 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='6, an enhanced ind-sheaf SolE X(M) is of sheaf type if M ∈ Db rh(DX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We assume that SolE X(M) is of sheaf type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' By definition (see Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='2), there exists F ∈ Db(CX) such that SolE X(M) ≃ eX(ιX(F)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' By Fact 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1 and Fact 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='7, we have SolX(M) ≃ F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Remark that there exists an isomor- phism SolX(M) ≃ SolX(Mreg), see the end of §2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Hence, we have isomorphisms SolE X(M) ≃ eX(ιX(F)) ≃ eX(ιX(SolX(Mreg))) ≃ SolE X(Mreg), where the last isomorphism follows from Fact 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Therefore we have M ≃ Mreg by Fact 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='3 and hence M ∈ Db rh(DX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Let us reprove Fact 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1 (the Riemann–Hilbert correspondence for regular holonomic D-modules of [Kas84]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 14 Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' There exists an equivalence of triangulated categories SolX : Db rh(DX)op ∼ −→ Db C-c(CX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' By Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='3, it is enough to show that the functor SolX : Db rh(DX)op → Db C-c(CX) is fully faithful and essentially surjective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Let M, N ∈ Db rh(DX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Then we have isomorphisms HomDb C-c(CX) (SolX(N ), SolX(M)) ≃ HomEb C-c(ICX) (eX(ιX(SolX(N ))), eX(ιX(SolX(M)))) ≃ HomEb C-c(ICX) � SolE X(N ), SolE X(M) � ≃ HomDb rh(DX) (M, N ) , where the first isomorphism follows from the fact that the functor eX ◦ ιX : Db C-c(CX) → Eb C-c(ICX) is fully faithful by [DK16, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='15], [KS01, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='4] and Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1, the second isomorphism follows from Fact 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='6 and the last isomorphism follows from Fact 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Hence, the functor SolX is fully faithful.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Let F ∈ Db C-c(CX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' By Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1, we have eX(ιX(F)) ∈ Eb C-c(ICX) and hence there exists M ∈ Db hol(DX) such that eX(ιX(F)) ≃ SolE X(M) by Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Since M ∈ Db rh(DX) by Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='4, we obtain an isomorphism eX(ιX(F)) ≃ eX(ιX(SolX(M))) by Fact 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='6 and hence we have F ≃ SolX(M) by applying the sheafification functor shX and using Fact 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' This means that the functor SolX is essentially surjective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Therefore, there exists an equivalence of triangulated categories SolX : Db rh(DX)op ∼ −→ Db C-c(CX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='2 Algebraic case In this subsection, let X be a smooth algebraic variety over C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' First of this subsection, we shall prove that the natural embedding functor eXan ∞ ◦ ιXan ∞ and the sheafification functor shXan ∞ preserve the algebraic C-constructibility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='7 (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='8) below was proved in [Ito21a, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='14] (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' [Ito21a, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='16]) by using Fact 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' In this paper, we will prove them without Fact 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' The following lemma can be prove by using Fact 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='8 and the same arguments of Propositions 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We shall skip the proof of this lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' If X is complete then we have: (1) For any F ∈ Db C-c(CX), we have eXan(ιXan(F)) ∈ Eb C-c(ICX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' (2) For any K ∈ Eb C-c(ICX), we have shXan(K) ∈ Db C-c(CX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 15 Again, let X be a smooth algebraic variety (not necessarily complete) over C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' For any F ∈ Db C-c(CX), we have eXan ∞ (ιXan ∞ (F)) ∈ Eb C-c(ICX∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Let F ∈ Db C-c(CX) and we set K := eXan ∞ (ιXan ∞ (F)) ∈ Eb(ICXan ∞ ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' It is enough to show that Ejan !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' K ∈ Eb C-c(IC � X) by Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Since jan : Xan ∞ → � Xan is semi-proper (see [DK19, Def.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='5] (also [KS16a, Def.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='4]) for the definition of semi-proper), there exists an isomorphism Ejan !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' K ≃ e � Xan(ι � Xan(Rjan !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' (F))) by [KS16a, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='18 (i)] and [DK19, Rem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Since Rjan !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' (F) ∈ Db C-c(C � X) by [HTT08, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='8 (iii)], we have e � Xan(ι � Xan(Rjan !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' (F))) ∈ Eb C-c(IC � X) by Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='6 (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Therefore, we have Ejan !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' K ∈ Eb C-c(IC � X) and hence K = eXan ∞ (ιXan ∞ (F)) ∈ Eb C-c(ICX∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' For any K ∈ Eb C-c(ICX∞), we have shXan ∞ (K) ∈ Db C-c(CX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Let K ∈ Eb C-c(ICX∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Recall that there exists an isomorphism shXan ∞ (K) ≃ (j−1)an(sh � Xan(Ejan !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' K)) by the definition of the sheafification functor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' By the definition of the triangulated cate- gory Eb C-c(ICX∞) (see Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='21), we have Ejan !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' K ∈ Eb C-c(IC � X), and hence sh � Xan(Ejan !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' K) ∈ Db C-c(C � X) by Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='6 (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Moreover by [HTT08, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='8 (ii)], we have (j−1)an(sh � Xan(Ejan !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' K)) ∈ Db C-c(CX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Therefore we have shXan ∞ (K) ∈ Db C-c(CX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' The following theorem was proved in [Be, Main Theorem C (a)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' In this paper, we will give an another proof by using Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' For any M ∈ Db hol(DX), we have SolX(M) ∈ Db C-c(CX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Let M ∈ Db hol(DX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Then we have SolE X∞(M) ∈ Eb C-c(ICX∞) by Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' By [Ito21a, Lem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='15], we have an isomorphism SolX(M) ≃ shXan ∞ (SolE X∞(M)) and hence we obtain SolX(M) ∈ Db C-c(CX) by Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Let M ∈ Db hol(DX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' An enhanced ind-sheaf SolE X∞(M) is of sheaf type if and only if M ∈ Db rh(DX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 16 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' By [Ito21a, Last part of Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='14]2, an enhanced ind-sheaf SolE X∞(M) is of sheaf type if M ∈ Db rh(DX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' We assume that SolE X∞(M) is of sheaf type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' By definition (see Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='2), there exists F ∈ Db(CX) such that SolE X∞(M) ≃ eXan ∞ (ιXan ∞ (F)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' By applying the functor Ejan !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' , we have an isomorphism SolE � Xan((Dj∗M)an) ≃ e � Xan(ι � Xan(Rjan !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' (F))).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Hence, the enhanced ind-sheaf SolE � Xan((Dj∗M)an) ∈ Eb(IC � Xan) is of sheaf type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' By Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='4, we have (Dj∗M)an ∈ Db rh(D � Xan).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' This means that M ∈ Db rh(DX) by [HTT08, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Let us reprove Fact 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='2 (the algebraic version of the Riemann–Hilbert correspondence for regular holonomic D-modules).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' There exists an equivalence of triangulated categories SolX : Db rh(DX)op ∼ −→ Db C-c(CX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' By Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='9 it is enough to show that the functor SolX : Db rh(DX)op → Db C-c(CX) is fully faithful and essentially surjective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Let M, N ∈ Db rh(DX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Then we have isomorphisms HomDb C-c(CX) (SolX(N ), SolX(M)) ≃ HomEb C-c(ICX∞) � eXan ∞ (ιXan ∞ (SolX(N ))), eXan ∞ (ιXan ∞ (SolX(M))) � ≃ HomEb C-c(ICX∞) � SolE X∞(N ), SolE X∞(M) � ≃ HomDb rh(DX) (M, N ) , where the first isomorphism follows from the fact that the functor eXan ∞ ◦ιXan ∞ : Db C-c(CX) → Eb C-c(ICX∞) is fully faithful by [DK19, Lem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='2] (see also [KS16a, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='20]), [KS16a, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='6)] and Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='7, the second isomorphism follows from [Ito21a, Last part of Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='14]3 and the last isomorphism follows from Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Hence, the functor SolX is fully faithful.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Let F ∈ Db C-c(CX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' By Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='7, we have eXan ∞ (ιXan ∞ (F)) ∈ Eb C-c(ICX∞) and hence there exists M ∈ Db hol(DX) such that eXan ∞ (ιXan ∞ (F)) ≃ SolE X∞(M) by Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Since M ∈ Db rh(DX) by Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='10, we obtain an isomorphism eXan ∞ (ιXan ∞ (F)) ≃ eXan ∞ (ιXan ∞ (SolX(M))) by [Ito21a, Last part of Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='14] and hence we have F ≃ SolX(M) by applying the sheafification functor shXan ∞ and using Fact 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' This means that the functor SolX is essentially surjective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Therefore, there exists an equivalence of triangulated categories SolX : Db rh(DX)op ∼ −→ Db C-c(CX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 2Remark that the assertion of [Ito21a, Last part of Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='14] (where we omit iota in the diagram) was proved without Fact 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3Remark that the assertion of [Ito21a, Last part of Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='14] (where we omit iota in the diagram) was proved without Fact 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 17 References [Be] Joseph Bernstein, Algebraic Theory of D-Modules, unpublished notes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' [Bj¨o93] Jan-Erik Bj¨ork, Analytic D-modules and applications, Mathematics and its Ap- plications, 247, Kluwer Academic Publishers Group, 1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' [Bor87] Armand Borel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=', Algebraic D-Modules, Perspectives in Mathematics, 2, Aca- demic Press, 1987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' [De70] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Deligne, ´Equations diff´erentielles ´a points singuliers r´eguliers, Lecture Notes in Mathematics, 163, Springer-Verlag, 1970.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' [DK16] Andrea D’Agnolo and Masaki Kashiwara, Riemann–Hilbert correspondence for holonomic D-modules, Publ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Inst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Hautes ´Etudes Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=', 123(1), 69–197, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' [DK19] Andrea D’Agnolo and Masaki Kashiwara, Enhanced perversities, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Reine Angew.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' (Crelle’s Journal), 751, 185–241, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' [DK21] Andrea D’Agnolo and Masaki Kashiwara, On a topological counterpart of regu- larization for holonomic D-modules, Journal de l’´Ecole polytechnique Math´ematiques, 8, 27–55, 2021 [Hiro64] Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero I, II, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=', 79(1), I:109–203, 1964, II: 205–326, 1964.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' [HTT08] Ryoshi Hotta, Kiyoshi Takeuchi, and Toshiyuki Tanisaki, D-modules, perverse sheaves, and representation theory, Progress in Mathematics, 236, Birkh¨auser, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' [Ito20] Yohei Ito, C-Conctructible Enhanced Ind-Sheaves, Tsukuba journal of Mathemat- ics, 44(1), 155–201, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' [Ito21a] Yohei Ito, Note on Algebraic Irregular Riemann–Hilbert Correspondence, Rend.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Sem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Padova.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=', 2021, in press, arXiv:2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='13518, 52 pages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' [Ito21b] Note on Relation between Enhanced Ind-Sheaves and Enhanced Subanalytic Sheaves, arXiv:2109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content='13991, 84 pages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' [Kas75] Masaki Kashiwara, On the maximally overdetermined system of linear differential equations, I, Publ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' RIMS, Kyoto Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=',10, 563–579, 1975.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' [Kas78] Masaki Kashiwara, On the holonomic systems of linear differential equations, II, Inventiones math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=', 49, 121–135, 1978.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' [Kas84] Masaki Kashiwara, The Riemann–Hilbert problem for holonomic systems, Publ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Inst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=', 20(2), 319–365, 1984.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' [Kas16] Masaki Kashiwara, Riemann–Hilbert correspondence for irregular holonomic D- modules, Japan J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=', 11, 13–149, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 18 [KK81] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Kashiwara and Takahiro Kawai, On holonomic systems of microdifferential equations III—system with regular singularities, Publ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Inst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=', 17, 813– 979, 1981.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' [KS90] Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften, 292, Springer-Verlag, 1990.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' [KS01] Masaki Kashiwara and Pierre Schapira, Ind-sheaves, Ast´erisque, 271, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' [KS06] Masaki Kashiwara and Pierre Schapira, Categories and Sheaves, Grundlehren der Mathematischen Wissenschaften, 332 , Springer-Verlag, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' [KS16a] Masaki Kashiwara and Pierre Schapira, Irregular holonomic kernels and Laplace transform, Selecta Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=', 22(1), 55–109, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' [KS16b] Masaki Kashiwara and Pierre Schapira, Regular and irregular holonomic D- modules, London Mathematical Society Lecture Note Series, 433, Cambridge Univer- sity Press, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' [Ked10] Kiran S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Kedlaya, Good formal structures for flat meromorphic connections, I: surfaces, Duke Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=', 154(2), 343–418, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' [Ked11] Kiran S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Kedlaya, Good formal structures for flat meromorphic connections, II: excellent schemes, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=', 24(1), 183–229, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' [Kuwa18] Tatsuki Kuwagaki, Irregular perverse sheaves, Compositio Mathematica, 157(3), 573–624, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' [Mal96] Bernard Malgrange, “Connexions m´eromorphes, II: le r´eseau canonique”, Invent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 124, 367–387, 1996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' [Meb84] Zoghman Mebkhout, Une autre ´equivalence de cat´egories, Compositio Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 51(1), 63–88, 1984.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' [Moc09] Takuro Mochizuki, Good formal structure for meromorphic flat connections on smooth projective surfaces, In Algebraic analysis and around, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Stud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Pure Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=', 54, 223–253, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' [Moc11] Takuro Mochizuki, Wild harmonic bundles and wild pure twistor D-modules, Ast´erisque, 340, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' [Moc16] Takuro Mochizuki, Curve test for enhanced ind-sheaves and holonomic D- modules, I, II Annales scientifiques de l’ENS, 55(3), 575–738, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' [Naga62] Masayoshi Nagata, Imbedding of an abstract variety in a complete variety, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Kyoto Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 2, 1-10, 1962.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' [Sai89] Morihiko Saito, Induced D-modules and differential complexes, Bull.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' France, 117-3 (1989), 361-387.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
+page_content=' 19' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htAzT4oBgHgl3EQfMvu5/content/2301.01138v1.pdf'}
diff --git a/i9AyT4oBgHgl3EQf-_q2/vector_store/index.faiss b/i9AyT4oBgHgl3EQf-_q2/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..dc3b5e235b6ee050a9a89e8320d9fde6370ed31c
--- /dev/null
+++ b/i9AyT4oBgHgl3EQf-_q2/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:054f6c2994005841047c02f2b04befaca697efd08d046351a769cbf44dca289c
+size 7602221
diff --git a/j9FIT4oBgHgl3EQfqivf/content/2301.11328v1.pdf b/j9FIT4oBgHgl3EQfqivf/content/2301.11328v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..db16655b8153c979162ac411f6a2d6b43b722a04
--- /dev/null
+++ b/j9FIT4oBgHgl3EQfqivf/content/2301.11328v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:0013dd1260d301a913949b65666e567bb272f16915f1dcbbe8c52f371d2d637e
+size 760456
diff --git a/j9FIT4oBgHgl3EQfqivf/vector_store/index.faiss b/j9FIT4oBgHgl3EQfqivf/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..714c5e956700315c2a5e2b7656969ea59da076cb
--- /dev/null
+++ b/j9FIT4oBgHgl3EQfqivf/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:8c7b4655b9a378905a8344156b61eec9ddf157c7a52b365ff3e44e2bb879af07
+size 1900589
diff --git a/jtE1T4oBgHgl3EQf0AX0/vector_store/index.faiss b/jtE1T4oBgHgl3EQf0AX0/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..93a8ccddfd10574592f3dd3ca27a2ab937241b76
--- /dev/null
+++ b/jtE1T4oBgHgl3EQf0AX0/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c79b4f9a867ea577c9f662b455da9bd19473ceedb06a06c4e98323dba646a57b
+size 2687021
diff --git a/jtE3T4oBgHgl3EQf5Qsz/vector_store/index.pkl b/jtE3T4oBgHgl3EQf5Qsz/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..c6db4e6f357900070fd144ce3dde9ff99fd0dc49
--- /dev/null
+++ b/jtE3T4oBgHgl3EQf5Qsz/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:051e83f99a2869d661d8de6b4cc08f508a0df4b3d829d2506a00e61aeae51c42
+size 144851
diff --git a/k9E1T4oBgHgl3EQf0gWY/content/tmp_files/2301.03457v1.pdf.txt b/k9E1T4oBgHgl3EQf0gWY/content/tmp_files/2301.03457v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..e528cec3b6711857a78e7a88dfae1a154359c854
--- /dev/null
+++ b/k9E1T4oBgHgl3EQf0gWY/content/tmp_files/2301.03457v1.pdf.txt
@@ -0,0 +1,1053 @@
+
+2nd International Joint Conference on Water Distribution
+Systems Analysis & Computing and Control in the Water Industry
+Valencia (Spain), 18-22 July 2022
+doi: https://doi.org/10.4995/WDSA-CCWI2022.2022.14829
+
+
+2022, Universitat Politècnica de València
+2nd WDSA/CCWI Joint Conference
+
+
+NON-INTRUSIVE WATER USAGE CLASSIFICATION CONSIDERING
+LIMITED TRAINING DATA
+Pavlos Pavlou1, Stelios Vrachimis1, 2,
+Demetrios G. Eliades1, Marios M. Polycarpou1,2
+1KIOS Research and Innovation Center of Excellence, University of Cyprus, Nicosia, Cyprus
+2 Department of Electrical and Computer Engineering, University of Cyprus, Cyprus
+10000-0001-8740-4187, pavlou.v.pavlos@ucy.ac.cy, 20000-0001-8862-5205, vrachimis.stelios@ucy.ac.cy,
+30000-0001-8862-5205, eldemet@ucy.ac.cy, 40000-0001-6495-9171, mpolycar@ucy.ac.cy
+Abstract
+Smart metering of domestic water consumption to continuously monitor the usage of different
+appliances has been shown to have an impact on people’s behavior towards water conservation.
+However, the installation of multiple sensors to monitor each appliance currently has a high
+initial cost and as a result, monitoring consumption from different appliances using sensors is
+not cost-effective. To address this challenge, studies have focused on analyzing measurements of
+the total domestic consumption using Machine Learning (ML) methods, to disaggregate water
+usage into each appliance. Identifying which appliances are in use through ML is challenging
+since their operation may be overlapping, while specific appliances may operate with
+intermittent flow, making individual consumption events hard to distinguish. Moreover, ML
+approaches require large amounts of labeled input data to train their models, which are typically
+not available for a single household, while usage characteristics may vary in different regions. In
+this work, we initially propose a data model that generates synthetic time series based on
+regional water usage characteristics and resolution to overcome the need for a large training
+dataset with real labeled data. The method requires a small number of real labeled data from the
+studied region. Following this, we propose a new algorithm for classifying single and overlapping
+household water usage events, using the total domestic consumption measurements. The
+classification procedure is described below: 1) During the offline feature learning stage, a dataset
+of labeled data corresponding to water-use profile signals is analyzed to some predefined
+features, such as event volume, event duration, event flow peak, and event signature, to extract
+its statistical properties, 2) The event classification stage monitors the provided measurement
+time-series for events between zero-flow intervals. The identified events are then classified using
+Dynamic Time Wrapping and an optimization procedure that finds the best label for the observed
+event based on the features learned in the first stage and similarity indices. Non-classified events
+are processed using a variation vector technique to identify the combined events which are then
+split into sub-single events and classified.
+Keywords
+Non-intrusive water usage classification, device disambiguation
+1
+INTRODUCTION
+The increasing water consumption due to population growth and excessive urban development is
+creating an unbalanced situation between water demand and supply [1]. Adding to this, the need
+for continuous water supply and sufficient pressure during peak times puts even more burden on
+the water utilities that must face these challenges [2]. Among others, water demand management
+practices have been proposed as a response to these problems, aiming to ensure water demand
+needs are met constantly while promoting water conservation [3].
+New advancements in sensor technology for collecting, analyzing, and transmitting high-
+resolution data to both utilities and consumers, are considered important tools for water
+
+WDSA CCW 2022G
+cc
+BY
+NC
+SANon-intrusive water usage classification considering limited training data
+
+2022, Universitat Politècnica de València
+2nd WDSA/CCWI Joint Conference
+
+
+management [4]. Smart metering of domestic water consumption to continuously monitor the
+usage of different appliances has been shown to have an impact on people’s behavior towards
+water conservation [5] and can be a useful tool for water utilities in managing demand during
+peak hours and drought periods thus eliminating the need for further investment in upgrading
+the water infrastructure [6].
+Smart metering can be categorized into intrusive and non-intrusive metering. Intrusive metering
+considers the installation of a sensor in each water-consuming appliance (e.g., dishwasher, toilet,
+shower) while non-intrusive metering considers the installation of only one sensor on the main
+water supply pipe of a house thus measuring the total household consumption. Although intrusive
+metering offers more insight into consumer habits, the installation of multiple sensors to monitor
+each appliance may have a high initial cost and may be inapplicable due to practical considerations
+[7].
+Real-time data that are available through new smart metering systems must be coupled with data
+analytic techniques and intelligent algorithms to play a significant role as a decision-making tool
+and to have an impact on water demand management and water conservation. Disaggregation
+algorithms process the data retrieved through non-intrusive metering and identify which water
+end-use appliance is active by analyzing the total water consumption signal. Identifying which
+appliances are in use through non-intrusive water usage classification is challenging since their
+operation may be overlapping while specific appliances may operate with intermittent flow
+making individual consumption events hard to distinguish.
+Water end-use disaggregation belongs to the general spectrum of time series classification
+problems. Time series classification is extensively addressed using machine learning and deep
+learning methodologies which require large training datasets [8] as well as with pattern
+recognition techniques based on similarity measurements such as Dynamic Time Wrapping
+(DTW) [9] and Longest Common Subsequence (LCSS) [10] that generally require a reference
+dataset. Various studies have been conducted to address the challenge of water end-use
+classification using smart water metering. In a first approach (Trace Wizard and Identiflow),
+decision tree methods were applied for water end-use classification which required significant
+data [11,12]. In [13,14], the authors suggested the use of pressure sensors combined with a
+Bayesian approach to identify water usage events (Hydrosense). These approaches required a
+high initial cost for the deployment of the sensor network and did not achieve high accuracy. Non-
+intrusive metering combined with machine learning methods were further used to disaggregate
+water end-use events. The authors in [15] proposed the use of an adaptable neuro-fuzzy network
+to classify water end-uses achieving high accuracy, using a limited dataset of flow measurements.
+In more recent studies, machine learning and data analytic algorithms were developed to address
+the problem of water end-use disaggregation, with promising results [16–21]. Several drawbacks
+that were noted in these studies include the need for a large amount of historical data to train the
+model and the absence of disaggregation techniques for combined water events. A notable study
+by [22] (Autoflow) addressed the aforementioned drawbacks using a hybrid combination of
+Hidden Markov Models, Artificial Neural Networks, and DTW algorithms, which was further
+improved to avoid the need of collecting new use-data for different regional use cases [23]. The
+“Autoflow" model addresses the classification of single and combined water end-use events with
+85.9-96.1% and 81.8-91.5% accuracy respectively. However, as stressed by the authors, more
+regional data are needed to improve the performance of this method.
+This work has two main contributions:
+•
+Proposes an approach for calibrating an existing synthetic time-series data generator
+based on regional water usage characteristics and resolution. The generated data can be
+used to train Machine Learning algorithms without the need of collecting real labeled data
+for long periods from pilot studies.
+
+cc
+G
+BY
+NC
+SAPavlou et al. (2022)
+
+2022, Universitat Politècnica de València
+2nd WDSA/CCWI Joint Conference
+
+
+•
+The development of a new methodology for classifying single and overlapping household
+water usage events within the same dataset using non-intrusive metering. The proposed
+approach takes into consideration water end-use events which exhibit intermittent or
+non-uniform flow.
+The paper is structured as follows: Section 2 describes the data models, Section 3 provides the
+proposed classification methodology, Section 4 presents the performance of our classification
+approach and in Section 5 we conclude the paper and discuss some future extensions.
+2
+DATA MODEL
+2.1
+Available usage characteristics model
+In this study, we use the available usage characteristics incorporated in the STochastic Residential
+water End-use Model (STREaM) introduced by [24]. STREaM is a modeling software that generates
+synthetic time series of data of a household with up to 10s resolution and it was calibrated on a
+large dataset including observed and disaggregated water end-uses from more than 300 single-
+family households in nine U.S. cities [25]. Each of the water end-uses considered in the STREaM
+dataset (toilet, shower, faucet, clothes washer, dishwasher) is characterized by its signature (i.e.,
+typical consumption pattern) and the probability distributions of the water event volume, the
+single-use durations, the number of uses per day and the time of use during the day. The number
+of events per day is modelled using the negative binomial and Poisson distributions, the event
+start time with the Kernel distribution, and the event volume and duration with two-component
+Gaussian Mixtures. The probability distributions are created by taking into consideration the
+number of house residents and the efficiency of each appliance (standard or high efficiency.
+The STREaM data model requires as inputs the number of household occupants, the available
+water appliances with their corresponding efficiency level, the simulation time, and the data
+resolution. Following, it generates time series of each water end-use and their sum as the total
+household water consumption based on the following procedure: i) samples the number of events
+for each water end-use and each day of the simulation time using the Monte-Carlo method from
+its probability distributions, ii) samples using the Monte-Carlo method the event-usage
+characteristics, duration, volume and time of use form their probability distributions, iii)
+randomly chooses one of the available signatures of the selected water end-use, iv) scales the
+duration and magnitude of the signature to match the pre-selected event duration and volume,
+and v) positions the newly created event time-series in the total event time series of the selected
+water end-use according to its start time.
+2.2
+Model calibration using limited regional data
+The data model proposed in this work extends the STREaM data model to generate synthetic data
+based on regional water usage characteristics. For this, we assume that we have water usage data
+from a limited number of households within the region. We use a 1-week dataset from a single-
+family house in Cyprus to update the existing signatures and generate data with up to 1s
+resolution. The regional dataset includes data from the following appliances: toilet, shower,
+faucet, clothes washer and dishwasher. We assume that these data have been correctly classified
+per their usage and were collected at a resolution of 1s. Finally, it is assumed that no leakages exist
+in the recorded data.
+The drawback of having a small dataset is that we may not be able to identify the probability
+distribution describing event occurrence, volume, and duration. However, the characteristic
+signatures of events can be identified even from this small dataset which are more representative
+of the appliances and local usage characteristics. Thus, the main approach for the development of
+the data model relies on updating the existing signatures with regional signatures from the case
+study. In addition, during the last step of the event generation process which includes the scaling
+
+cc
+G
+BY
+NC
+SANon-intrusive water usage classification considering limited training data
+
+2022, Universitat Politècnica de València
+2nd WDSA/CCWI Joint Conference
+
+
+of the duration and magnitude of the selected signature, boundaries were applied to ensure that
+generated events comply with the consumption flow rate indicated by the regional signatures. For
+example, during the sampling process of the usage characteristics, our model could pick a water
+end-use with a short-time duration and large volume resulting in an event with an inconsistent
+consumption pattern compared to the regional signature.
+In the following paragraphs, we describe the methodology for the creation of regional
+consumption patterns. Signatures from the regional labeled dataset are extracted using a hybrid
+combination of DTW algorithm, k-medoids clustering method evaluated based on the “Silhouette
+index” and an affinity search technique. We use DTW in a clustering procedure to extract water
+end-use signatures from the regional dataset. The partitioning algorithm k-medoids splits the
+time series dataset into k clusters based on the minimum distance between the points of a cluster
+and a specified point at the center of the cluster and can be considered faster than other clustering
+methods [26]. The silhouette method measures the consistency of each cluster by comparing the
+similarity of an object to its cluster, compared to the remaining clusters of the group [27].
+Silhouette score ranges from -1 to +1, with high values indicating a better fit of the object to its
+predefined cluster.
+Initially, the time series (events) of each water appliance are extracted from the dataset, pre-
+processed to remove potentially faulty sensor measurements, and normalized to avoid scale
+differences. A similarity matrix for each group of events is obtained using DTW followed by k-
+Medoids clustering. The “Silhouette index” is used to define the number of clusters per fixture and
+the prototype signature is generated using a similarity search technique.
+Each event time-series ������������������������ = {������������1, . . , ������������������������} comprised of n flow data points, is normalized to have a
+zero mean and standard deviation of one, thus being invariant to scale and offset, as follows:
+
+ ������������̃������������(������������) = ������������������������(������������) − ������������
+������������
+
+(1)
+
+where the arithmetic mean ������������ is given by:
+ ������������ = ∑
+������������������������
+������������
+������������=1
+������������
+
+(2)
+
+and the standard deviation is given by:
+ ������������ = �∑
+(������������������������ − ������������)
+������������
+������������=1
+2
+������������
+
+(3)
+The similarities between the time series of each group of events are calculated using the DTW
+method, resulting in the similarity matrix M of size AxA, where A the number of events per water-
+end use category, and the matrix elements are calculated as follows:
+ ������������������������������������ = ������������(������������̃������������, ������������̃������������)
+(4)
+where function ������������(⋅) calculates the distance between points of two time-series, using the DTW
+method. DTW is a methodology to measure the shape similarity between two time-series with
+different lengths. DTW wraps the time axis to align the data points and calculates the optimal
+alignment between two time-series according to the following equation:
+
+cc
+G
+BY
+NC
+SAPavlou et al. (2022)
+
+2022, Universitat Politècnica de València
+2nd WDSA/CCWI Joint Conference
+
+
+������������(������������, ������������) = ������������(������������, ������������) + ������������������������������������{������������(������������ − 1, ������������), ������������(������������ − 1, ������������ − 1), ������������(������������, ������������ − 1)}
+(5)
+where ������������ = {������������1, . . , ������������������������, . . , ������������������������} and ������������ = �������������1, . . , ������������������������, . . , ������������������������� are the two time series with m and n data
+points, respectively. Distance metric w is given by ������������(������������, ������������) = |������������������������ − ������������������������| with the possible
+combinations limited to (������������ − 1, ������������), (������������ − 1, ������������ − 1), (������������, ������������ − 1). The accumulated DTW distance ������������(������������, ������������)
+is considered the optimal alignment between the two time-series, with initial condition ������������(1,1) =
+������������(1,1).
+Following, the time series of each water fixture are grouped into clusters based on their similarity
+using the k-medoids clustering approach. Since the k-medoids method requires the number of
+clusters to be defined prior to clustering, the process can be carried out for a given range of
+clusters (e.g., 2-10 clusters). In order to define the appropriate number of clusters per water
+fixture, an evaluation method was simultaneously applied using the “Silhouette index”.
+The last step includes the extraction of the most representative signature of each cluster according
+to the DTW similarity results [28]. The time series with the lowest total dissimilarity ������������������������������������ is
+extracted as the main signature:
+������������������������(������������������������) = �
+∑
+������������������������������������
+������������∈������������������������
+������������������������������������
+� , ������������������������ = min(������������������������)
+(6)
+where:
+
+������������������������������������ :������������������������������������������������������������������������������������������������������������������������ ������������������������������������������������������������������������ ������������������������������������������������������������������������������������ ������������������������������������������������ ������������������������������������������������������������������������ ������������������������ ������������������������������������ ������������������������ ������������������������������������������������������������������������������������������������������������ ������������������������ ������������������������������������������������������������������������������������ ������������������������
+������������������������������������ : ������������������������������������������������������������������������ ������������������������ ������������������������������������������������ ������������������������������������������������������������������������ ������������������������ ������������������������������������ℎ ������������������������������������������������������������������������������������ ������������������������
+������������ : ������������������������������������������������������������������������ ������������������������ ������������������������������������������������������������������������������������������������
+The extracted signature from each water end-use category can be eventually smoothened using
+polynomial fitting to remove measurement noise caused by the sensor and then stored in the data
+model. To illustrate the approach, we utilize a water-use dataset collected from a single-family
+household in Cyprus, in which water consumption was recorded with a 1-second resolution, and
+the data were labeled as toilet, shower, faucet, clothes washer, and dishwasher. Figure 1 shows
+the signatures extracted from each cluster of the shower category.
+
+
+Figure 1: Signature patterns for shower water end-use
+2.3
+Datasets
+Two synthetic datasets with a duration of 45 and 15 days respectively and 1s resolution were
+produced from the data model considering the following water end-uses: standard toilet, standard
+shower, standard faucet, high-efficiency clothes washer, and standard dishwasher. The 45-day
+dataset serves as the training set and the 15-day as the testing set. The training set is used to
+identify potential usage characteristics for each water end-use category and the testing set to
+evaluate the performance of the classification model described in the next section.
+0
+50
+100
+Time of use [s]
+0
+0.05
+0.1
+Water use [L/s]
+0
+50
+100
+150
+Time of use [s]
+0
+0.05
+0.1
+Water use [L/s]
+0
+200
+400
+Time of use [s]
+0
+0.05
+0.1
+Water use [L/s]
+
+cc
+G
+BY
+NC
+SANon-intrusive water usage classification considering limited training data
+
+2022, Universitat Politècnica de València
+2nd WDSA/CCWI Joint Conference
+
+
+3
+CLASSIFICATION METHODOLOGY
+The water end-use classification procedure consists of two main stages.
+1. In the first stage, namely the offline feature learning stage, the training dataset consisting
+of labeled data corresponding to water end-use signals is analyzed to extract the statistical
+properties of some predefined features including event duration, event volume, event flow
+peak, and event signature.
+2. The event classification stage monitors the provided measurement time series from the test
+set for events between zero-flow intervals followed by the single and overlapping event
+classification. The classification of water end-use event relies on the DTW approach and
+an optimization procedure that uses similarity indices and statistical bounds extracted
+from the features learned in the first stage. Classification of events with an intermittent
+flow such as Dishwashers (DW) and Clothes washers (CW) are further processed
+considering a time window in the time series analysis that includes the device cycle in its
+entirety.
+3.1
+Offline Feature Learning Stage
+This stage assumes the availability of inflow data of a residential household labeled according to
+which appliance is operating. In our case, the training dataset extracted from the data model is
+analyzed. The algorithm first creates event sets from labeled data by acquiring the observed time-
+series data with event labels and separating events, creating the set of events ������������. The events with
+the same label ������������ are then gathered, creating the subsets of events ������������������������ ⊂ ������������. The features of event
+duration, event volume, and event flow peak were extracted. The next step includes the calculation
+of the 99% confidence intervals of each feature from each water end-use. The statistical analysis
+showed that sets of data have a skewed distribution, thus the proposed confidence intervals were
+obtained by filtering out the 1% most distant data points. This was achieved by calculating the
+absolute distance between each data point and the arithmetic mean of the dataset. We considered
+that only the generated training dataset is available for the classification model and not all the
+data that is stored in the data model.
+3.2
+Event Classification Stage
+Overview of the event classification process
+This stage distinguishes individual events in the time-series by filtering out data points separated
+by a zero-flow time interval. The event classification process is applied on the extracted events
+and consists of the single event classification and the combined event disaggregation and
+categorization. A combined event includes two or more single events with overlapping operations.
+Single event classification is performed using a hybrid approach that includes DTW algorithm and
+criteria based on similarity indices using statistical bounds extracted from the features at the
+previous stage. Following, the combined event disaggregation takes place using initially a filtering
+method to split the combined event into sub-events which are then processed through the single
+event classification procedure. Besides the difficulty in identifying both single and overlapping
+events another two obstacles that were identified during the process are:
+•
+DW and CW devices have a working cycle that exhibits intermittent flow. Classification of
+such events was performed using a sliding time window of measurements.
+•
+The existence of single events with a varying flow rate that occurs in rare circumstances
+can be easily misclassified as combined events. To overcome this problem, a filtered
+variation vector technique is applied in the combined event classification procedure to
+identify these events.
+The overall classification process is presented in Figure 2.
+
+cc
+G
+BY
+NC
+SAPavlou et al. (2022)
+
+2022, Universitat Politècnica de València
+2nd WDSA/CCWI Joint Conference
+
+
+
+Figure 2: Water end-use event classification process
+Single event classification
+The proposed single event classification relies mostly on pattern recognition through DTW.
+Initially, the investigated events and labeled signatures are normalized as described in equation
+1. The first task is the detection of potential time windows inside the dataset with the operation
+of intermittent flow devices such as DW and CW. This is achieved by applying DTW between a
+sliding time window with a length equal to the full cycle of operation of the selected appliance and
+its corresponding labeled signatures. From the Cyprus case study pilot, in Figure 3a, the signature
+of a DW full-cycle operation is presented with a duration of 2793 seconds which corresponds to
+the time window used for the classification. Bounds of maximum flow criteria are also applied in
+this task to avoid misclassification of DW or CW time windows.
+Following, DTW is applied in all events and distinguishes them into the following categories: toilet,
+shower, and faucet. Classification of WM and CW single events from their full cycle of operation is
+performed only within the time windows specified previously. In this case, the labeled signatures
+of WM and CW devices are broken down forming smaller sub-patterns (Figure 3b). A similarity
+
+cc
+G
+BY
+NC
+SATotal flow
+Extraction ofwater
+measurements
+end-use events
+Sliding window
+process (CW and
+DW)
+DTW and statistical
+bounds (volume
+duration, peak flow)
+Toilet
+Shower
+Classified single
+Unclassified
+events
+events
+Faucet
+ClothesWasher
+Categorization
+based on filtered
+variation vector
+DlshWasher
+Unclassified single
+DTW
+Unclassified
+events
+combined events
+Categorization
+based on filtered
+variation vector
+Combined events
+Combined events
+(Category 2)
+(Category 1)
+Events not
+complying with
+Main Event
+Sub-event
+separation criteria
+Main Event
+Sub-event
+Categorization
+based on filtered
+variation vector
+Step 1: Single
+Step 1: Single
+Combined event
+Singleevent
+event classificaiton
+event classificaitonNon-intrusive water usage classification considering limited training data
+
+2022, Universitat Politècnica de València
+2nd WDSA/CCWI Joint Conference
+
+
+matrix is created between the investigated event and the available labeled signatures stored in
+the database. Events with signature similarity above a specific threshold are then labeled.
+Simultaneously, a screening procedure is performed utilizing the minimum and maximum bounds
+obtained from features extracted from the training dataset (volume, duration, and peak flow). Any
+events not complying with the criteria defined through the DTW and the water end-use feature’s
+statistical analysis are marked as unclassified.
+
+Figure 3: a) Signature of Dishwasher’s full operation cycle b) Sub-single events within the Dishwasher’s main
+signature
+Unclassified events are then categorized into unclassified single and combined events. The
+categorization is performed using a filtering technique that detects flow rate changes within an
+event that exists at a specific threshold. Changes in the flow rates of an event are a good indication
+that another water-end use event has either been started or completed. The elements of the
+calculated vector are the differences between adjacent data points within an event, calculated as:
+������������������������ = ������������������������+1 − ������������������������, 1 ≤ ������������ < ������������
+(7)
+
+Where ������������ = (������������1, ������������2, . . , ������������������������, . . , ������������������������) the event flow rate points with a duration of n seconds and ������������ =
+(������������1, ������������2, . . , ������������������������, . . , ������������������������−1) the extracted vector. A threshold is then specified to neglect fluctuations
+within the vector that do not correspond to the use of a new water appliance. A range of thresholds
+calculated based on the variation between the maximum flows of labeled events from the training
+dataset were evaluated and the value of 0.01 L/sec was selected as it achieved the highest
+accuracy. Unclassified single events are selected as the events which exhibit no fluctuations in the
+extracted filtered variation vector. The initial and final phases of the filtered vector are ignored
+since they mark the starting and ending of the event (Figure 4).
+The main DTW classification methodology is applied again without using statistical bounds to
+categorize the unclassified single events. The remaining unlabeled events are considered as
+combined events and their classification follows in the next step.
+500
+1000
+1500
+2000
+2500
+Time of use [s]
+0
+0.01
+0.02
+0.03
+Water use [L/s]
+50
+100
+150
+200
+250
+300
+350
+400
+450
+500
+Time of use [s]
+0
+0.01
+0.02
+Water use [L/s]
+
+cc
+G
+BY
+NC
+SAPavlou et al. (2022)
+
+2022, Universitat Politècnica de València
+2nd WDSA/CCWI Joint Conference
+
+
+
+Figure 4: a) Combined event as extracted from the dataset, b) Filtered variation vector of the combined event,
+c) Sub-events extracted from the original event
+Combined event classification
+The combined event classification consists of two main tasks, the disaggregation of the combined
+event into single events and their classification following the approach described previously.
+Overlapping between events can be expressed in two different categories. The first category
+includes events overlapping with one sub-event a) starting and finishing before one or more other
+sub-events and b) starting and finishing after one or more other sub-events. The second category
+includes sub-events that start and finish within other sub-events.
+The first step is the disaggregation of events belonging to the first category. This task is performed
+using an approach presented in [29], where the last flow-rate drop that corresponds to the
+finishing time of a combined event is compared to the last flow rate rise. If their difference is below
+a predefined threshold (a value of 0.005 L/sec resulted in the highest accuracy between a range
+of thresholds) then it is considered that a single sub-event occurred in the last phase of the
+combined event. The same principle applies to the starting phase. The sub-event is extracted from
+the initial combined event and the algorithm calculates its flow rate for the period that it was
+overlapping with other events. This is achieved by calculating the median flow rate during the
+period when only the targeted sub-event was active. An example is shown in Figure 4 with a sub-
+event starting and ending before the second sub-event. The remaining sub-event is evaluated
+again using the filtered variation vector approach and categorized as a single or combined event.
+If identified as a combined event, then it is included in the second category and processed as
+follows.
+The second step includes the disaggregation of combined events included in the second category
+using the filtered variation vector defined previously. In this case, the algorithm searches within
+the filtered vector to identify the positions where a zero value is followed by a positive value and
+the positions where a negative value is followed by a zero value. These positions indicate the
+beginning and finishing of a sub-event within the combined event. The first “starting” position is
+matched with the first “finishing” position and the sub-event is separated from the base combined
+
+cc
+G
+BY
+NC
+SA0.1
+20
+40
+60
+80
+100
+120
+Time of use [s]
+Variation vector
+0.05
+0.05
+20
+40
+60
+80
+100
+120
+Time of use [s]
+[s/门]
+20
+40
+60
+80
+100
+120
+Time of use [s]Non-intrusive water usage classification considering limited training data
+
+2022, Universitat Politècnica de València
+2nd WDSA/CCWI Joint Conference
+
+
+event. Events included in this category that do not meet these conditions (including at least one
+“starting” and “finishing” point) but they do present considerable fluctuations in their flow rate,
+are considered as single events and are then processed to the single event classification procedure
+with the use only of the DTW method. With this technique, single events with a varying flow rate
+that can be presented in real datasets (Figure 5), can be distiguinshed from combined events.
+In the third step, the classification of the sub-events and the left-over (the remaining event after
+the separation process) base combined event extracted from the two previous steps takes place
+using the single event classification. Any events not classified are processed again through the
+combined event classification procedure.
+
+Figure 5: Example of a single event initially misclassified as a combined event. a) Original event as extracted
+from the dataset, b) Filtered variation vector of the event
+4
+RESULTS
+Evaluation metrics
+The macro f1-Score [30], a widely accepted metric that takes into consideration both the
+algorithm’s precision and recall, is used:
+Macro f1-score = 2 × ������������������������������������������������������������������������������������������������������������ × ������������������������������������������������������������������������
+������������������������������������������������������������������������������������������������������������ + ������������������������������������������������������������������������
+
+(8)
+
+Precision indicates the percentage of true positive indices among the total number of positive
+indices classified by the model:
+������������������������������������������������������������������������������������������������������������ = ������������������������/(������������������������ + ������������������������)
+(9)
+and recall measures the amount of correctly labeled positive cases among the total number of
+positive cases:
+5
+10
+15
+20
+25
+30
+35
+40
+Time of use [s]
+0
+0.02
+0.04
+0.06
+Water use [L/s]
+5
+10
+15
+20
+25
+30
+35
+40
+Time of use [s]
+-0.05
+0
+0.05
+Variation vector
+
+cc
+G
+BY
+NC
+SAPavlou et al. (2022)
+
+2022, Universitat Politècnica de València
+2nd WDSA/CCWI Joint Conference
+
+
+������������������������������������������������������������������������ = ������������������������/(������������������������ + ������������������������)
+(10)
+
+TP, TN, FP, FN correspond to the number of true positives, true negative, false positive, and false
+negative events. The combination of the model’s precision and recall makes F1-score less sensitive
+to imbalance classification scenarios and reaches its best value at 1 and worst score at 0. Testing
+accuracy is presented in terms of the number of events and consumption volume.
+A confusion matrix is used to visually present the algorithm’s performance by illustrating the
+number of correctly predicted events against the actual number of events.
+Confidence intervals
+The 99% confidence intervals were calculated from the statistical analysis of the three predefined
+features extracted from the training set (Table 1). For the DW and CW devices, the statistical
+analysis refers to the sub-single events that comprise a full cycle of operation. Toilet, faucet, and
+CW events have similar event characteristics, specifically for consumption duration and peak flow.
+Similarly, the calculated event volume bounds are identical as well, although CW can generate
+lower volume events than toilets and faucets. On the other hand, shower and DW events have
+more distinctive characteristics than the other categories which play a significant role in the
+classification process. Shower events have a longer duration, larger consumption volume, and a
+maximum flow higher than other categories. DW operation on the other side results in small
+events with low consumption and the lowest peak flow that can easily be distinguished from other
+appliances.
+Table 1: 99% confidence intervals obtained for the water end-use features: volume, duration, peak flow
+
+Toilet
+Shower
+Faucet
+CW
+DW
+Duration (s)
+10-190
+90-880
+10-170
+1-139
+1-85
+Volume (L)
+0.66-9
+13-90
+0.43-10
+0.03-11.85
+0.002-2.22
+Peak flow (L/s)
+0.04-0.10
+0.09-0.15
+0.02-0.11
+0.06-0.13
+0.004-0.03
+
+Classification results
+The test set comprised of 1323 single and 22 combined events for a period of 15 days. The
+proposed approach has shown high accuracy (99%) in distinguishing the single events from the
+set of events while a lower F1-score of 69% was achieved for the combined event categorization
+although 77% of the combined events were correctly classified (Table 2). This is explained due to
+the existence of single events with a varying flow rate which were misclassified as combined
+events thus reducing the algorithm’s precision. The calibration of the data model, which includes
+a large database of volume and duration features with regional water-end use signatures resulted
+in the development of a realistic dataset that included a few events with non-uniform
+consumption patterns. It was decided to keep these events in the dataset since they can indeed be
+presented in real conditions. An example is presented in Figure 5, showing a faucet event with an
+irregular flow trace. Although this event is considered rare, it is very realistic since it can be
+presented during the use of a single faucet (e.g during plate washing).
+Table 2: Accuracy results in distinguishing single and combined events
+
+Single Events
+Combined Events
+Recall (%)
+99.2
+77.3
+
+cc
+G
+BY
+NC
+SANon-intrusive water usage classification considering limited training data
+
+2022, Universitat Politècnica de València
+2nd WDSA/CCWI Joint Conference
+
+
+Precision (%)
+99.6
+63.0
+Macro f1-score (%)
+99.4
+69.4
+
+Single events
+Table 3 presents the results from the classification of single events in terms of the number of
+events and event volume. Scoring ranges from 83% to 98% in terms of the number of events and
+84% to 99% in terms of volume. Single event classification precision is also presented through the
+confusion matrix (Figure 6) among the percentage of misclassified events per category.
+Toilet: The model demonstrates an accuracy of 84% in classifying toilet events with 87% of the
+total toilet events being identified. In terms of volume, we notice a total score of 90% with
+approximately 91% of the total water volume consumed to be correctly calculated. Toilet events
+were mainly distinguished from the rest of the events due to their fixed mechanical
+operation/signature which was identified by the DTW algorithm. A few toilet events were
+misclassified with faucet events as presented in the confusion matrix due to similarity between
+their usage characteristics.
+Shower: The highest recall score in terms of the number of events and volume was achieved for
+the shower appliance (100%) mainly due to its distinctive consumption volume, duration, and
+pattern characteristics. This score indicates that all shower events were correctly classified. The
+precision regarding the number of events, in this case, is lower (77%) though due to
+misclassification with faucet events. This occurs due to the presence of a small number of shower
+events with a short duration. This misclassification is not considered a limitation since the
+algorithm precision in terms of volume is considerably high (91%). The overall score for this
+category reaches 87% and 95% accuracy in terms of the number of events and volume,
+respectively.
+Faucet: An 83% accuracy was achieved for faucet event classification with an 81% recall score
+regarding the total number of classified faucet events and 79% recall score for their
+corresponding volume. The lower score in terms of volume is explained by the misclassification
+of some single events as combined. As previously explained, a small number of single faucet events
+were misclassified as combined events due to their flow trace variation. Although in small
+number, these events had a considerably larger volume than typical faucet events which explained
+the variation between the two scoring categories.
+Clothes washer: The model has also been able to correctly classify most of the CW events with
+91% accuracy. The few misclassified events were confused with faucet events. The high score
+indicates the effectiveness of applying a sliding window to detect the full operation cycle of
+intermittent flow devices.
+Dishwasher: Regarding the DW category, the model demonstrates the highest accuracy for both
+scoring categories (98-99%). Approximately all DW events were identified with the
+corresponding algorithm precision reaching 100%. The distinctive usage characteristics of DW
+events obtained from the statistical analysis along with the application of DTW using sliding
+windows proved to be highly efficient in detecting such events.
+Table 3: Single event classification accuracy in terms of number of events and volume
+Number of events /
+Volume
+Toilet
+Shower
+Faucet
+CW
+DW
+Recall (%)
+86.7/91.4
+100/100
+81.4/78.7
+91.3/91.0
+95.7/98.7
+
+cc
+G
+BY
+NC
+SAPavlou et al. (2022)
+
+2022, Universitat Politècnica de València
+2nd WDSA/CCWI Joint Conference
+
+
+Precision (%)
+81.6/88.6
+76.9/91.1
+85.3/90.4
+90.1/90.5
+100/100
+Macro f1-score (%)
+84.1/90.0
+87.0/95.3
+83.3/84.2
+90.7/90.8
+97.8/99.4
+
+
+Figure 6: Confusion matrix for single event classification precision (number of events)
+Combined events
+As stated in Table 2, the algorithm correctly identified 17 out of 22 combined events (recall of
+77%) using the proposed approach. The following approach consisting of the separation process
+and the classification of the extracted sub-events demonstrated an accuracy of 70%. Filtering out
+single events within combined events, which can be occurring completely at the same time or
+starting and finishing at the same time is considered a challenging task that needs to be further
+investigated. The extraction of sub-events under these circumstances is not always accurate, and
+the imbalance between the number of sub-events and single events can explain the lower
+classification score. Further improvements can be considered in the separation process to reach
+a higher precision of combined event separation and classification.
+5
+CONCLUSIONS AND FUTURE WORK
+In this work, we initially presented an approach of extracting water end-use signatures from a
+limited real labeled dataset to calibrate our data model on regional water usage characteristics
+and resolution. The developed data model gives us the ability to use an existing large database of
+water end-use features from STREaM including event duration, volume, and number of events per
+day, and produce synthetic time series of events with regional consumption patterns. The method
+requires a small number of real labeled data from the target region. Following, a water end-use
+classification procedure is presented considering non-intrusive monitoring. The developed
+approach addresses the main difficulties of this challenging problem such as identifying
+overlapping events, devices with intermittent flow, and single events which exhibit a non-uniform
+consumption pattern. In the proposed hybrid approach, we use sliding windows, DTW, and
+confidence intervals to identify active water end-uses with accuracy ranging between 84-99% for
+Toilet
+Shower
+Faucet
+Clotheswasher
+Dishwasher
+Predicted Label
+Toilet
+Shower
+Faucet
+Clotheswasher
+Dishwasher
+Actual Label
+Single Event Classification Precision [%]
+0
+17
+1
+0
+0
+15
+0
+0
+3
+0
+11
+1
+1
+0
+8
+0
+0
+0
+0
+0
+82
+77
+85
+90
+100
+0
+10
+20
+30
+40
+50
+60
+70
+80
+90
+100
+
+cc
+G
+BY
+NC
+SANon-intrusive water usage classification considering limited training data
+
+2022, Universitat Politècnica de València
+2nd WDSA/CCWI Joint Conference
+
+
+single events and 70% for combined events. The main difficulties encountered were the
+identification of single events with varying flow rates and the accurate separation of combined
+events into sub-singe events. As shown in the results, the accurate extraction of single events from
+a combined event is crucial during the classification process. The applicability of this approach is
+further suggested to be tested in large real datasets from regions with different water usage
+characteristics considering also the presence of leakages.
+6
+ACKNOWLEDGMENTS
+The work was supported by the FLOBIT Project EXCELLENCE/0918/0282 which is co-financed
+by the European Regional Development Fund and the Republic of Cyprus through the Research
+and Innovation Foundation, and the European Union Horizon 2020 program under Grant
+Agreement No. 739551 (KIOS CoE) and the Government of the Republic of Cyprus through the
+Deputy Ministry of Research, Innovation and Digital Policy.
+7
+REFERENCES
+[1]
+A. K. Biswas and C. Tortajada, “Assessing Global Water Megatrends,” in Water Resources
+Development and Management, Springer, Singapore, 2018.
+[2]
+H. M. Ramos, A. Carravetta, and A. M. Nabola, “New Challenges in Water Systems,” Water, vol. 12, no.
+9, Aug. 2020, p. 2340.
+[3]
+A. Liu, D. Giurco, and P. Mukheibir, “Urban water conservation through customised water and end-
+use information,” Journal of Cleaner Production, vol. 112, Jan. 2016, pp. 3164–3175.
+[4]
+A. Cominola, M. Giuliani, D. Piga, A. Castelletti, and A. E. Rizzoli, “Benefits and challenges of using
+smart meters for advancing residential water demand modeling and management: A review,”
+Environmental Modelling & Software, vol. 72, Oct. 2015, pp. 198–214.
+[5]
+A. Cominola et al., “Long-term water conservation is fostered by smart meter-based feedback and
+digital user engagement,” npj Clean Water, vol. 4, no. 1, Dec. 2021, p. 29.
+[6]
+M. S. Rahim, K. Anh Nguyen, R. A. Stewart, D. Giurco, and M. Blumenstein, “Predicting Household
+Water Consumption Events: Towards a Personalised Recommender System to Encourage Water-
+conscious Behaviour,” in Proc. 2019 International Joint Conference on Neural Networks (IJCNN),
+Budapest, IEEE, 2019, pp. 1–8.
+[7]
+Y. Kim, T. Schmid, Z. M. Charbiwala, J. Friedman, and M. B. Srivastava, “NAWMS,” in Proc. of the 6th
+ACM conference on Embedded network sensor systems - SenSys ’08, 2008, p. 309.
+[8]
+A. P. Ruiz, M. Flynn, J. Large, M. Middlehurst, and A. Bagnall, “The great multivariate time series
+classification bake off: a review and experimental evaluation of recent algorithmic advances,” Data
+Mining and Knowledge Discovery, vol. 35, no. 2, Mar. 2021, pp. 401–449.
+[9]
+E. Keogh and C. A. Ratanamahatana, “Exact indexing of dynamic time warping,” Knowledge and
+Information Systems, vol. 7, no. 3, Mar. 2005, pp. 358–386.
+[10]
+M. Vlachos, G. Kollios, and D. Gunopulos, “Discovering similar multidimensional trajectories,” in
+Proc. 18th International Conference on Data Engineering, San Jose, CA, IEEE, 2002, pp. 673–684.
+[11]
+W. B. DeOreo, J. P. Heaney, and P. W. Mayer, “Flow trace analysis to access water use,” Journal -
+American Water Works Association, vol. 88, no. 1, Jan. 1996, pp. 79–90.
+[12]
+R. A. Stewart, R. Willis, D. Giurco, K. Panuwatwanich, and G. Capati, “Web-based knowledge
+management system: linking smart metering to the future of urban water planning,” Australian
+Planner, vol. 47, no. 2, Jun. 2010, pp. 66–74.
+[13]
+J. E. Froehlich, E. Larson, T. Campbell, C. Haggerty, J. Fogarty, and S. N. Patel, “HydroSense,” in Proc.
+of the 11th international conference on Ubiquitous computing, New York, ACM, 2009, pp. 235–244.
+[14]
+J. Froehlich et al., “A Longitudinal Study of Pressure Sensing to Infer Real-World Water Usage Events
+in the Home,” in International conference on pervasive computing, Springer, Berlin, 2011, pp. 50–69.
+[15]
+M. A. Corona-Nakamura, R. Ruelas, B. Ojeda-Magana, and D. Andina, “Classification of domestic water
+consumption using an Anfis model,” in Proc. 2008 World Automation Congress, Waikoloa, HI, IEEE,
+
+cc
+G
+BY
+NC
+SAPavlou et al. (2022)
+
+2022, Universitat Politècnica de València
+2nd WDSA/CCWI Joint Conference
+
+
+2008, pp. 1-9.
+[16]
+B. E. Meyer, K. Nguyen, C. D. Beal, H. E. Jacobs, and S. G. Buchberger, “Classifying Household Water
+Use Events into Indoor and Outdoor Use: Improving the Benefits of Basic Smart Meter Data Sets,”
+Journal of Water Resources Planning and Management, vol. 147, no. 12, Dec. 2021, p. 04021079.
+[17]
+L. Pastor-Jabaloyes, F. Arregui, and R. Cobacho, “Water End Use Disaggregation Based on Soft
+Computing Techniques,” Water, vol. 10, no. 1, Jan. 2018, p. 46.
+[18]
+R. Cardell-Oliver, J. Wang, and H. Gigney, “Smart Meter Analytics to Pinpoint Opportunities for
+Reducing Household Water Use,” Journal of Water Resources Planning and Management, vol. 142, no.
+6, Jun. 2016, p. 04016007.
+[19]
+J. S. Vitter and M. E. Webber, “A non-intrusive approach for classifying residential water events using
+coincident electricity data,” Environmental Modelling & Software, vol. 100, Feb. 2018, pp. 302–313.
+[20]
+M. S. Rahim, K. A. Nguyen, R. A. Stewart, D. Giurco, and M. Blumenstein, “Machine Learning and Data
+Analytic Techniques in Digital Water Metering: A Review,” Water, vol. 12, no. 1, Jan. 2020, p. 294.
+[21]
+F. Mazzoni, S. Alvisi, M. Franchini, M. Ferraris, and Z. Kapelan, “Automated Household Water End-
+Use Disaggregation through Rule-Based Methodology,” Journal of Water Resources Planning and
+Management, vol. 147, no. 6, Jun. 2021, p. 04021024.
+[22]
+K. A. Nguyen, R. A. Stewart, H. Zhang, and C. Jones, “Intelligent autonomous system for residential
+water end use classification: Autoflow,” Applied Soft Computing, vol. 31, Jun. 2015, pp. 118–131.
+[23]
+K. A. Nguyen, R. A. Stewart, H. Zhang, and O. Sahin, “An adaptive model for the autonomous
+monitoring and management of water end use,” Smart Water, vol. 3, no. 1, Dec. 2018, p. 5.
+[24]
+A. Cominola, M. Giuliani, A. Castelletti, D. E. Rosenberg, and A. M. Abdallah, “Implications of data
+sampling resolution on water use simulation, end-use disaggregation, and demand management,”
+Environmental Modelling & Software, vol. 102, Apr. 2018, pp. 199–212.
+[25]
+W. B. DeOreo, “Analysis of water use in new single family homes,” By Aquacraft. For Salt Lake City
+Corporation and US EPA, 2011.
+[26]
+S. Aghabozorgi, A. Seyed Shirkhorshidi, and T. Ying Wah, “Time-series clustering – A decade review,”
+Information Systems, vol. 53, Oct. 2015, pp. 16–38.
+[27]
+V. Vijayakumar and R. Bremananth, “A Study on Human Hair Analysis and Synthesis,” in Proc.
+International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007),
+Sivakasi, IEEE, 2007, pp. 549–556.
+[28]
+S. Aghabozorgi, T. Ying Wah, T. Herawan, H. A. Jalab, M. A. Shaygan, and A. Jalali, “A Hybrid Algorithm
+for Clustering of Time Series Data Based on Affinity Search Technique,” The Scientific World Journal,
+vol. 2014, 2014, pp. 1–12.
+[29]
+K. A. Nguyen, R. A. Stewart, and H. Zhang, “An intelligent pattern recognition model to automate the
+categorisation of residential water end-use events,” Environmental Modelling & Software, vol. 47,
+Sep. 2013, pp. 108–127.
+[30]
+Haibo He and E. A. Garcia, “Learning from Imbalanced Data,” IEEE Transactions on Knowledge and
+Data Engineering, vol. 21, no. 9, Sep. 2009, pp. 1263–1284.
+
+
+cc
+G
+BY
+NC
+SA
\ No newline at end of file
diff --git a/k9E1T4oBgHgl3EQf0gWY/content/tmp_files/load_file.txt b/k9E1T4oBgHgl3EQf0gWY/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..9e6cc3ed4293fe5abb0e5dbba5927c1c43f2eba6
--- /dev/null
+++ b/k9E1T4oBgHgl3EQf0gWY/content/tmp_files/load_file.txt
@@ -0,0 +1,788 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf,len=787
+page_content='2nd International Joint Conference on Water Distribution Systems Analysis & Computing and Control in the Water Industry Valencia (Spain), 18-22 July 2022 doi: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='4995/WDSA-CCWI2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='14829 2022, Universitat Politècnica de València 2nd WDSA/CCWI Joint Conference NON-INTRUSIVE WATER USAGE CLASSIFICATION CONSIDERING LIMITED TRAINING DATA Pavlos Pavlou1, Stelios Vrachimis1, 2, Demetrios G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Eliades1, Marios M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Polycarpou1,2 1KIOS Research and Innovation Center of Excellence, University of Cyprus, Nicosia, Cyprus 2 Department of Electrical and Computer Engineering, University of Cyprus, Cyprus 10000-0001-8740-4187, pavlou.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='pavlos@ucy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='cy, 20000-0001-8862-5205, vrachimis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='stelios@ucy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='cy, 30000-0001-8862-5205, eldemet@ucy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='cy, 40000-0001-6495-9171, mpolycar@ucy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='cy Abstract Smart metering of domestic water consumption to continuously monitor the usage of different appliances has been shown to have an impact on people’s behavior towards water conservation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' However, the installation of multiple sensors to monitor each appliance currently has a high initial cost and as a result, monitoring consumption from different appliances using sensors is not cost-effective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' To address this challenge, studies have focused on analyzing measurements of the total domestic consumption using Machine Learning (ML) methods, to disaggregate water usage into each appliance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Identifying which appliances are in use through ML is challenging since their operation may be overlapping, while specific appliances may operate with intermittent flow, making individual consumption events hard to distinguish.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Moreover, ML approaches require large amounts of labeled input data to train their models, which are typically not available for a single household, while usage characteristics may vary in different regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' In this work, we initially propose a data model that generates synthetic time series based on regional water usage characteristics and resolution to overcome the need for a large training dataset with real labeled data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The method requires a small number of real labeled data from the studied region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Following this, we propose a new algorithm for classifying single and overlapping household water usage events, using the total domestic consumption measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The classification procedure is described below: 1) During the offline feature learning stage, a dataset of labeled data corresponding to water-use profile signals is analyzed to some predefined features, such as event volume, event duration, event flow peak, and event signature, to extract its statistical properties, 2) The event classification stage monitors the provided measurement time-series for events between zero-flow intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The identified events are then classified using Dynamic Time Wrapping and an optimization procedure that finds the best label for the observed event based on the features learned in the first stage and similarity indices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Non-classified events are processed using a variation vector technique to identify the combined events which are then split into sub-single events and classified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Keywords Non-intrusive water usage classification, device disambiguation 1 INTRODUCTION The increasing water consumption due to population growth and excessive urban development is creating an unbalanced situation between water demand and supply [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Adding to this, the need for continuous water supply and sufficient pressure during peak times puts even more burden on the water utilities that must face these challenges [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Among others, water demand management practices have been proposed as a response to these problems, aiming to ensure water demand needs are met constantly while promoting water conservation [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' New advancements in sensor technology for collecting, analyzing, and transmitting high- resolution data to both utilities and consumers, are considered important tools for water WDSA CCW 2022G cc BY NC SANon-intrusive water usage classification considering limited training data 2022, Universitat Politècnica de València 2nd WDSA/CCWI Joint Conference management [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Smart metering of domestic water consumption to continuously monitor the usage of different appliances has been shown to have an impact on people’s behavior towards water conservation [5] and can be a useful tool for water utilities in managing demand during peak hours and drought periods thus eliminating the need for further investment in upgrading the water infrastructure [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Smart metering can be categorized into intrusive and non-intrusive metering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Intrusive metering considers the installation of a sensor in each water-consuming appliance (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=', dishwasher, toilet, shower) while non-intrusive metering considers the installation of only one sensor on the main water supply pipe of a house thus measuring the total household consumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Although intrusive metering offers more insight into consumer habits, the installation of multiple sensors to monitor each appliance may have a high initial cost and may be inapplicable due to practical considerations [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Real-time data that are available through new smart metering systems must be coupled with data analytic techniques and intelligent algorithms to play a significant role as a decision-making tool and to have an impact on water demand management and water conservation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Disaggregation algorithms process the data retrieved through non-intrusive metering and identify which water end-use appliance is active by analyzing the total water consumption signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Identifying which appliances are in use through non-intrusive water usage classification is challenging since their operation may be overlapping while specific appliances may operate with intermittent flow making individual consumption events hard to distinguish.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Water end-use disaggregation belongs to the general spectrum of time series classification problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Time series classification is extensively addressed using machine learning and deep learning methodologies which require large training datasets [8] as well as with pattern recognition techniques based on similarity measurements such as Dynamic Time Wrapping (DTW) [9] and Longest Common Subsequence (LCSS) [10] that generally require a reference dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Various studies have been conducted to address the challenge of water end-use classification using smart water metering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' In a first approach (Trace Wizard and Identiflow), decision tree methods were applied for water end-use classification which required significant data [11,12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' In [13,14], the authors suggested the use of pressure sensors combined with a Bayesian approach to identify water usage events (Hydrosense).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' These approaches required a high initial cost for the deployment of the sensor network and did not achieve high accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Non- intrusive metering combined with machine learning methods were further used to disaggregate water end-use events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The authors in [15] proposed the use of an adaptable neuro-fuzzy network to classify water end-uses achieving high accuracy, using a limited dataset of flow measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' In more recent studies, machine learning and data analytic algorithms were developed to address the problem of water end-use disaggregation, with promising results [16–21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Several drawbacks that were noted in these studies include the need for a large amount of historical data to train the model and the absence of disaggregation techniques for combined water events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' A notable study by [22] (Autoflow) addressed the aforementioned drawbacks using a hybrid combination of Hidden Markov Models, Artificial Neural Networks, and DTW algorithms, which was further improved to avoid the need of collecting new use-data for different regional use cases [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The “Autoflow" model addresses the classification of single and combined water end-use events with 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='9-96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='1% and 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='8-91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='5% accuracy respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' However, as stressed by the authors, more regional data are needed to improve the performance of this method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' This work has two main contributions: Proposes an approach for calibrating an existing synthetic time-series data generator based on regional water usage characteristics and resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The generated data can be used to train Machine Learning algorithms without the need of collecting real labeled data for long periods from pilot studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' cc G BY NC SAPavlou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' (2022) 2022, Universitat Politècnica de València 2nd WDSA/CCWI Joint Conference The development of a new methodology for classifying single and overlapping household water usage events within the same dataset using non-intrusive metering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The proposed approach takes into consideration water end-use events which exhibit intermittent or non-uniform flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The paper is structured as follows: Section 2 describes the data models, Section 3 provides the proposed classification methodology, Section 4 presents the performance of our classification approach and in Section 5 we conclude the paper and discuss some future extensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 2 DATA MODEL 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='1 Available usage characteristics model In this study, we use the available usage characteristics incorporated in the STochastic Residential water End-use Model (STREaM) introduced by [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' STREaM is a modeling software that generates synthetic time series of data of a household with up to 10s resolution and it was calibrated on a large dataset including observed and disaggregated water end-uses from more than 300 single- family households in nine U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' cities [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Each of the water end-uses considered in the STREaM dataset (toilet, shower, faucet, clothes washer, dishwasher) is characterized by its signature (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=', typical consumption pattern) and the probability distributions of the water event volume, the single-use durations, the number of uses per day and the time of use during the day.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The number of events per day is modelled using the negative binomial and Poisson distributions, the event start time with the Kernel distribution, and the event volume and duration with two-component Gaussian Mixtures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The probability distributions are created by taking into consideration the number of house residents and the efficiency of each appliance (standard or high efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The STREaM data model requires as inputs the number of household occupants, the available water appliances with their corresponding efficiency level, the simulation time, and the data resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Following,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' it generates time series of each water end-use and their sum as the total household water consumption based on the following procedure: i) samples the number of events for each water end-use and each day of the simulation time using the Monte-Carlo method from its probability distributions,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' ii) samples using the Monte-Carlo method the event-usage characteristics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' duration,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' volume and time of use form their probability distributions,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' iii) randomly chooses one of the available signatures of the selected water end-use,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' iv) scales the duration and magnitude of the signature to match the pre-selected event duration and volume,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' and v) positions the newly created event time-series in the total event time series of the selected water end-use according to its start time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='2 Model calibration using limited regional data The data model proposed in this work extends the STREaM data model to generate synthetic data based on regional water usage characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' For this, we assume that we have water usage data from a limited number of households within the region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' We use a 1-week dataset from a single- family house in Cyprus to update the existing signatures and generate data with up to 1s resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The regional dataset includes data from the following appliances: toilet, shower, faucet, clothes washer and dishwasher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' We assume that these data have been correctly classified per their usage and were collected at a resolution of 1s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Finally, it is assumed that no leakages exist in the recorded data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The drawback of having a small dataset is that we may not be able to identify the probability distribution describing event occurrence, volume, and duration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' However, the characteristic signatures of events can be identified even from this small dataset which are more representative of the appliances and local usage characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Thus, the main approach for the development of the data model relies on updating the existing signatures with regional signatures from the case study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' In addition, during the last step of the event generation process which includes the scaling cc G BY NC SANon-intrusive water usage classification considering limited training data 2022, Universitat Politècnica de València 2nd WDSA/CCWI Joint Conference of the duration and magnitude of the selected signature, boundaries were applied to ensure that generated events comply with the consumption flow rate indicated by the regional signatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' For example, during the sampling process of the usage characteristics, our model could pick a water end-use with a short-time duration and large volume resulting in an event with an inconsistent consumption pattern compared to the regional signature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' In the following paragraphs, we describe the methodology for the creation of regional consumption patterns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Signatures from the regional labeled dataset are extracted using a hybrid combination of DTW algorithm, k-medoids clustering method evaluated based on the “Silhouette index” and an affinity search technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' We use DTW in a clustering procedure to extract water end-use signatures from the regional dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The partitioning algorithm k-medoids splits the time series dataset into k clusters based on the minimum distance between the points of a cluster and a specified point at the center of the cluster and can be considered faster than other clustering methods [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The silhouette method measures the consistency of each cluster by comparing the similarity of an object to its cluster, compared to the remaining clusters of the group [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Silhouette score ranges from -1 to +1, with high values indicating a better fit of the object to its predefined cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Initially, the time series (events) of each water appliance are extracted from the dataset, pre- processed to remove potentially faulty sensor measurements, and normalized to avoid scale differences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' A similarity matrix for each group of events is obtained using DTW followed by k- Medoids clustering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The “Silhouette index” is used to define the number of clusters per fixture and the prototype signature is generated using a similarity search technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Each event time-series ������������������������ = {������������1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' ������������������������} comprised of n flow data points,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' is normalized to have a zero mean and standard deviation of one,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' thus being invariant to scale and offset,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' as follows: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='������������̃������������(������������) = ������������������������(������������) − ������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='(1) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='where the arithmetic mean ������������ is given by: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='������������ = ∑ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='������������=1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='(2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='and the standard deviation is given by: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='������������ = �∑ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='(������������������������ − ������������) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='������������=1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='(3) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='The similarities between the time series of each group of events are calculated using the DTW ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='method,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' resulting in the similarity matrix M of size AxA,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' where A the number of events per water- end use category,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' and the matrix elements are calculated as follows: ������������������������������������ = ������������(������������̃������������,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' ������������̃������������) (4) where function ������������(⋅) calculates the distance between points of two time-series,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' using the DTW method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' DTW is a methodology to measure the shape similarity between two time-series with different lengths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' DTW wraps the time axis to align the data points and calculates the optimal alignment between two time-series according to the following equation: cc G BY NC SAPavlou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' (2022) 2022, Universitat Politècnica de València 2nd WDSA/CCWI Joint Conference ������������(������������, ������������) = ������������(������������, ������������) + ������������������������������������{������������(������������ − 1, ������������), ������������(������������ − 1, ������������ − 1), ������������(������������, ������������ − 1)} (5) where ������������ = {������������1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' , ������������������������, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' , ������������������������} and ������������ = �������������1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' , ������������������������, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' , ������������������������� are the two time series with m and n data points, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Distance metric w is given by ������������(������������, ������������) = |������������������������ − ������������������������| with the possible combinations limited to (������������ − 1, ������������), (������������ − 1, ������������ − 1), (������������, ������������ − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The accumulated DTW distance ������������(������������, ������������) is considered the optimal alignment between the two time-series, with initial condition ������������(1,1) = ������������(1,1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Following, the time series of each water fixture are grouped into clusters based on their similarity using the k-medoids clustering approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Since the k-medoids method requires the number of clusters to be defined prior to clustering, the process can be carried out for a given range of clusters (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=', 2-10 clusters).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' In order to define the appropriate number of clusters per water fixture, an evaluation method was simultaneously applied using the “Silhouette index”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The last step includes the extraction of the most representative signature of each cluster according to the DTW similarity results [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The time series with the lowest total dissimilarity ������������������������������������ is extracted as the main signature: ������������������������(������������������������) = � ∑ ������������������������������������ ������������∈������������������������ ������������������������������������ � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' ������������������������ = min(������������������������) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='(6) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='where: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='������������������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=':������������������������������������������������������������������������������������������������������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='������������������������������������������������������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='������������������������������������������������������������������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='������������������������������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='������������������������������������������������������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='������������������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='������������������������������������������������������������������������������������������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='������������������������������������������������������������������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='������������������������������������ : ������������������������������������������������������������������������ ������������������������ ������������������������������������������������ ������������������������������������������������������������������������ ������������������������ ������������������������������������ℎ ������������������������������������������������������������������������������������ ������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='������������ : ������������������������������������������������������������������������ ������������������������ ������������������������������������������������������������������������������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='The extracted signature from each water end-use category can be eventually smoothened using ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='polynomial fitting to remove measurement noise caused by the sensor and then stored in the data ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' To illustrate the approach, we utilize a water-use dataset collected from a single-family household in Cyprus, in which water consumption was recorded with a 1-second resolution, and the data were labeled as toilet, shower, faucet, clothes washer, and dishwasher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Figure 1 shows the signatures extracted from each cluster of the shower category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Figure 1: Signature patterns for shower water end-use 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='3 Datasets Two synthetic datasets with a duration of 45 and 15 days respectively and 1s resolution were produced from the data model considering the following water end-uses: standard toilet, standard shower, standard faucet, high-efficiency clothes washer, and standard dishwasher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The 45-day dataset serves as the training set and the 15-day as the testing set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The training set is used to identify potential usage characteristics for each water end-use category and the testing set to evaluate the performance of the classification model described in the next section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 0 50 100 Time of use [s] 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='1 Water use [L/s] 0 50 100 150 Time of use [s] 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='1 Water use [L/s] 0 200 400 Time of use [s] 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='1 Water use [L/s] cc G BY NC SANon-intrusive water usage classification considering limited training data 2022, Universitat Politècnica de València 2nd WDSA/CCWI Joint Conference 3 CLASSIFICATION METHODOLOGY The water end-use classification procedure consists of two main stages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' In the first stage, namely the offline feature learning stage, the training dataset consisting of labeled data corresponding to water end-use signals is analyzed to extract the statistical properties of some predefined features including event duration, event volume, event flow peak, and event signature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The event classification stage monitors the provided measurement time series from the test set for events between zero-flow intervals followed by the single and overlapping event classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The classification of water end-use event relies on the DTW approach and an optimization procedure that uses similarity indices and statistical bounds extracted from the features learned in the first stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Classification of events with an intermittent flow such as Dishwashers (DW) and Clothes washers (CW) are further processed considering a time window in the time series analysis that includes the device cycle in its entirety.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='1 Offline Feature Learning Stage This stage assumes the availability of inflow data of a residential household labeled according to which appliance is operating.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' In our case, the training dataset extracted from the data model is analyzed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The algorithm first creates event sets from labeled data by acquiring the observed time- series data with event labels and separating events, creating the set of events ������������.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The events with the same label ������������ are then gathered, creating the subsets of events ������������������������ ⊂ ������������.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The features of event duration, event volume, and event flow peak were extracted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The next step includes the calculation of the 99% confidence intervals of each feature from each water end-use.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The statistical analysis showed that sets of data have a skewed distribution, thus the proposed confidence intervals were obtained by filtering out the 1% most distant data points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' This was achieved by calculating the absolute distance between each data point and the arithmetic mean of the dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' We considered that only the generated training dataset is available for the classification model and not all the data that is stored in the data model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='2 Event Classification Stage Overview of the event classification process This stage distinguishes individual events in the time-series by filtering out data points separated by a zero-flow time interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The event classification process is applied on the extracted events and consists of the single event classification and the combined event disaggregation and categorization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' A combined event includes two or more single events with overlapping operations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Single event classification is performed using a hybrid approach that includes DTW algorithm and criteria based on similarity indices using statistical bounds extracted from the features at the previous stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Following, the combined event disaggregation takes place using initially a filtering method to split the combined event into sub-events which are then processed through the single event classification procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Besides the difficulty in identifying both single and overlapping events another two obstacles that were identified during the process are: DW and CW devices have a working cycle that exhibits intermittent flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Classification of such events was performed using a sliding time window of measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The existence of single events with a varying flow rate that occurs in rare circumstances can be easily misclassified as combined events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' To overcome this problem, a filtered variation vector technique is applied in the combined event classification procedure to identify these events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The overall classification process is presented in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' cc G BY NC SAPavlou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' (2022) 2022, Universitat Politècnica de València 2nd WDSA/CCWI Joint Conference Figure 2: Water end-use event classification process Single event classification The proposed single event classification relies mostly on pattern recognition through DTW.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Initially, the investigated events and labeled signatures are normalized as described in equation 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The first task is the detection of potential time windows inside the dataset with the operation of intermittent flow devices such as DW and CW.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' This is achieved by applying DTW between a sliding time window with a length equal to the full cycle of operation of the selected appliance and its corresponding labeled signatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' From the Cyprus case study pilot, in Figure 3a, the signature of a DW full-cycle operation is presented with a duration of 2793 seconds which corresponds to the time window used for the classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Bounds of maximum flow criteria are also applied in this task to avoid misclassification of DW or CW time windows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Following, DTW is applied in all events and distinguishes them into the following categories: toilet, shower, and faucet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Classification of WM and CW single events from their full cycle of operation is performed only within the time windows specified previously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' In this case, the labeled signatures of WM and CW devices are broken down forming smaller sub-patterns (Figure 3b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' A similarity cc G BY NC SATotal flow Extraction ofwater measurements end-use events Sliding window process (CW and DW) DTW and statistical bounds (volume duration,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' peak flow) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='Toilet ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='Shower ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='Classified single ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='Unclassified ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='events ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='events ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='Faucet ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='ClothesWasher ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='Categorization ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='based on filtered ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='variation vector ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='DlshWasher ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='Unclassified single ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='DTW ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='Unclassified ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='events ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='combined events ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='Categorization ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='based on filtered ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='variation vector ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='Combined events ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='Combined events ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='(Category 2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='(Category 1) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='Events not ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='complying with ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='Main Event ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='Sub-event ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='separation criteria ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='Main Event ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='Sub-event ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='Categorization ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='based on filtered ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='variation vector ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='Step 1: Single ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='Step 1: Single ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='Combined event ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='Singleevent ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='event classificaiton ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='event classificaitonNon-intrusive water usage classification considering limited training data ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='2022,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Universitat Politècnica de València 2nd WDSA/CCWI Joint Conference matrix is created between the investigated event and the available labeled signatures stored in the database.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Events with signature similarity above a specific threshold are then labeled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Simultaneously, a screening procedure is performed utilizing the minimum and maximum bounds obtained from features extracted from the training dataset (volume, duration, and peak flow).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Any events not complying with the criteria defined through the DTW and the water end-use feature’s statistical analysis are marked as unclassified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Figure 3: a) Signature of Dishwasher’s full operation cycle b) Sub-single events within the Dishwasher’s main signature Unclassified events are then categorized into unclassified single and combined events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The categorization is performed using a filtering technique that detects flow rate changes within an event that exists at a specific threshold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Changes in the flow rates of an event are a good indication that another water-end use event has either been started or completed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The elements of the calculated vector are the differences between adjacent data points within an event, calculated as: ������������������������ = ������������������������+1 − ������������������������, 1 ≤ ������������ < ������������ (7) Where ������������ = (������������1, ������������2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' , ������������������������, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' , ������������������������) the event flow rate points with a duration of n seconds and ������������ = (������������1, ������������2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' , ������������������������, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' , ������������������������−1) the extracted vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' A threshold is then specified to neglect fluctuations within the vector that do not correspond to the use of a new water appliance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' A range of thresholds calculated based on the variation between the maximum flows of labeled events from the training dataset were evaluated and the value of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='01 L/sec was selected as it achieved the highest accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Unclassified single events are selected as the events which exhibit no fluctuations in the extracted filtered variation vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The initial and final phases of the filtered vector are ignored since they mark the starting and ending of the event (Figure 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The main DTW classification methodology is applied again without using statistical bounds to categorize the unclassified single events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The remaining unlabeled events are considered as combined events and their classification follows in the next step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 500 1000 1500 2000 2500 Time of use [s] 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='03 Water use [L/s] 50 100 150 200 250 300 350 400 450 500 Time of use [s] 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='02 Water use [L/s] cc G BY NC SAPavlou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' (2022) 2022, Universitat Politècnica de València 2nd WDSA/CCWI Joint Conference Figure 4: a) Combined event as extracted from the dataset, b) Filtered variation vector of the combined event, c) Sub-events extracted from the original event Combined event classification The combined event classification consists of two main tasks, the disaggregation of the combined event into single events and their classification following the approach described previously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Overlapping between events can be expressed in two different categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The first category includes events overlapping with one sub-event a) starting and finishing before one or more other sub-events and b) starting and finishing after one or more other sub-events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The second category includes sub-events that start and finish within other sub-events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The first step is the disaggregation of events belonging to the first category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' This task is performed using an approach presented in [29], where the last flow-rate drop that corresponds to the finishing time of a combined event is compared to the last flow rate rise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' If their difference is below a predefined threshold (a value of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='005 L/sec resulted in the highest accuracy between a range of thresholds) then it is considered that a single sub-event occurred in the last phase of the combined event.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The same principle applies to the starting phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The sub-event is extracted from the initial combined event and the algorithm calculates its flow rate for the period that it was overlapping with other events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' This is achieved by calculating the median flow rate during the period when only the targeted sub-event was active.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' An example is shown in Figure 4 with a sub- event starting and ending before the second sub-event.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The remaining sub-event is evaluated again using the filtered variation vector approach and categorized as a single or combined event.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' If identified as a combined event, then it is included in the second category and processed as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The second step includes the disaggregation of combined events included in the second category using the filtered variation vector defined previously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' In this case, the algorithm searches within the filtered vector to identify the positions where a zero value is followed by a positive value and the positions where a negative value is followed by a zero value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' These positions indicate the beginning and finishing of a sub-event within the combined event.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The first “starting” position is matched with the first “finishing” position and the sub-event is separated from the base combined cc G BY NC SA0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='1 20 40 60 80 100 120 Time of use [s] Variation vector 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='05 20 40 60 80 100 120 Time of use [s] [s/门] 20 40 60 80 100 120 Time of use [s]Non-intrusive water usage classification considering limited training data 2022, Universitat Politècnica de València 2nd WDSA/CCWI Joint Conference event.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Events included in this category that do not meet these conditions (including at least one “starting” and “finishing” point) but they do present considerable fluctuations in their flow rate, are considered as single events and are then processed to the single event classification procedure with the use only of the DTW method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' With this technique, single events with a varying flow rate that can be presented in real datasets (Figure 5), can be distiguinshed from combined events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' In the third step, the classification of the sub-events and the left-over (the remaining event after the separation process) base combined event extracted from the two previous steps takes place using the single event classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Any events not classified are processed again through the combined event classification procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Figure 5: Example of a single event initially misclassified as a combined event.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' a) Original event as extracted from the dataset,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' b) Filtered variation vector of the event 4 RESULTS Evaluation metrics The macro f1-Score [30],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' a widely accepted metric that takes into consideration both the algorithm’s precision and recall,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' is used: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='Macro f1-score = 2 × ������������������������������������������������������������������������������������������������������������ × ������������������������������������������������������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='������������������������������������������������������������������������������������������������������������ + ������������������������������������������������������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='(8) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='Precision indicates the percentage of true positive indices among the total number of positive ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='indices classified by the model: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='������������������������������������������������������������������������������������������������������������ = ������������������������/(������������������������ + ������������������������) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='(9) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='and recall measures the amount of correctly labeled positive cases among the total number of ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='positive cases: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='35 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='Time of use [s] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='06 Water use [L/s] 5 10 15 20 25 30 35 40 Time of use [s] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='05 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='05 Variation vector cc G BY NC SAPavlou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' (2022) 2022, Universitat Politècnica de València 2nd WDSA/CCWI Joint Conference ������������������������������������������������������������������������ = ������������������������/(������������������������ + ������������������������) (10) TP, TN, FP, FN correspond to the number of true positives, true negative, false positive, and false negative events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The combination of the model’s precision and recall makes F1-score less sensitive to imbalance classification scenarios and reaches its best value at 1 and worst score at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Testing accuracy is presented in terms of the number of events and consumption volume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' A confusion matrix is used to visually present the algorithm’s performance by illustrating the number of correctly predicted events against the actual number of events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Confidence intervals The 99% confidence intervals were calculated from the statistical analysis of the three predefined features extracted from the training set (Table 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' For the DW and CW devices, the statistical analysis refers to the sub-single events that comprise a full cycle of operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Toilet, faucet, and CW events have similar event characteristics, specifically for consumption duration and peak flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Similarly, the calculated event volume bounds are identical as well, although CW can generate lower volume events than toilets and faucets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' On the other hand, shower and DW events have more distinctive characteristics than the other categories which play a significant role in the classification process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Shower events have a longer duration, larger consumption volume, and a maximum flow higher than other categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' DW operation on the other side results in small events with low consumption and the lowest peak flow that can easily be distinguished from other appliances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Table 1: 99% confidence intervals obtained for the water end-use features: volume, duration, peak flow Toilet Shower Faucet CW DW Duration (s) 10-190 90-880 10-170 1-139 1-85 Volume (L) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='66-9 13-90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='43-10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='03-11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='002-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='22 Peak flow (L/s) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='04-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='09-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='02-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='06-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='004-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='03 Classification results The test set comprised of 1323 single and 22 combined events for a period of 15 days.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The proposed approach has shown high accuracy (99%) in distinguishing the single events from the set of events while a lower F1-score of 69% was achieved for the combined event categorization although 77% of the combined events were correctly classified (Table 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' This is explained due to the existence of single events with a varying flow rate which were misclassified as combined events thus reducing the algorithm’s precision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The calibration of the data model, which includes a large database of volume and duration features with regional water-end use signatures resulted in the development of a realistic dataset that included a few events with non-uniform consumption patterns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' It was decided to keep these events in the dataset since they can indeed be presented in real conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' An example is presented in Figure 5, showing a faucet event with an irregular flow trace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Although this event is considered rare, it is very realistic since it can be presented during the use of a single faucet (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='g during plate washing).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Table 2: Accuracy results in distinguishing single and combined events Single Events Combined Events Recall (%) 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='2 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='3 cc G BY NC SANon-intrusive water usage classification considering limited training data 2022, Universitat Politècnica de València 2nd WDSA/CCWI Joint Conference Precision (%) 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='6 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='0 Macro f1-score (%) 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='4 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='4 Single events Table 3 presents the results from the classification of single events in terms of the number of events and event volume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Scoring ranges from 83% to 98% in terms of the number of events and 84% to 99% in terms of volume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Single event classification precision is also presented through the confusion matrix (Figure 6) among the percentage of misclassified events per category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Toilet: The model demonstrates an accuracy of 84% in classifying toilet events with 87% of the total toilet events being identified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' In terms of volume, we notice a total score of 90% with approximately 91% of the total water volume consumed to be correctly calculated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Toilet events were mainly distinguished from the rest of the events due to their fixed mechanical operation/signature which was identified by the DTW algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' A few toilet events were misclassified with faucet events as presented in the confusion matrix due to similarity between their usage characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Shower: The highest recall score in terms of the number of events and volume was achieved for the shower appliance (100%) mainly due to its distinctive consumption volume, duration, and pattern characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' This score indicates that all shower events were correctly classified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The precision regarding the number of events, in this case, is lower (77%) though due to misclassification with faucet events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' This occurs due to the presence of a small number of shower events with a short duration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' This misclassification is not considered a limitation since the algorithm precision in terms of volume is considerably high (91%).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The overall score for this category reaches 87% and 95% accuracy in terms of the number of events and volume, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Faucet: An 83% accuracy was achieved for faucet event classification with an 81% recall score regarding the total number of classified faucet events and 79% recall score for their corresponding volume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The lower score in terms of volume is explained by the misclassification of some single events as combined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' As previously explained, a small number of single faucet events were misclassified as combined events due to their flow trace variation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Although in small number, these events had a considerably larger volume than typical faucet events which explained the variation between the two scoring categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Clothes washer: The model has also been able to correctly classify most of the CW events with 91% accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The few misclassified events were confused with faucet events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The high score indicates the effectiveness of applying a sliding window to detect the full operation cycle of intermittent flow devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Dishwasher: Regarding the DW category, the model demonstrates the highest accuracy for both scoring categories (98-99%).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Approximately all DW events were identified with the corresponding algorithm precision reaching 100%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The distinctive usage characteristics of DW events obtained from the statistical analysis along with the application of DTW using sliding windows proved to be highly efficient in detecting such events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Table 3: Single event classification accuracy in terms of number of events and volume Number of events / Volume Toilet Shower Faucet CW DW Recall (%) 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='7/91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='4 100/100 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='4/78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='7 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='3/91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='0 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='7/98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='7 cc G BY NC SAPavlou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' (2022) 2022, Universitat Politècnica de València 2nd WDSA/CCWI Joint Conference Precision (%) 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='6/88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='6 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='9/91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='1 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='3/90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='4 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='1/90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='5 100/100 Macro f1-score (%) 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='1/90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='0 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='0/95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='3 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='3/84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='2 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='7/90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='8 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='8/99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='4 Figure 6: Confusion matrix for single event classification precision (number of events) Combined events As stated in Table 2, the algorithm correctly identified 17 out of 22 combined events (recall of 77%) using the proposed approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The following approach consisting of the separation process and the classification of the extracted sub-events demonstrated an accuracy of 70%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Filtering out single events within combined events, which can be occurring completely at the same time or starting and finishing at the same time is considered a challenging task that needs to be further investigated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The extraction of sub-events under these circumstances is not always accurate, and the imbalance between the number of sub-events and single events can explain the lower classification score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Further improvements can be considered in the separation process to reach a higher precision of combined event separation and classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 5 CONCLUSIONS AND FUTURE WORK In this work, we initially presented an approach of extracting water end-use signatures from a limited real labeled dataset to calibrate our data model on regional water usage characteristics and resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The developed data model gives us the ability to use an existing large database of water end-use features from STREaM including event duration, volume, and number of events per day, and produce synthetic time series of events with regional consumption patterns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The method requires a small number of real labeled data from the target region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Following, a water end-use classification procedure is presented considering non-intrusive monitoring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The developed approach addresses the main difficulties of this challenging problem such as identifying overlapping events, devices with intermittent flow, and single events which exhibit a non-uniform consumption pattern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' In the proposed hybrid approach,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' we use sliding windows,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' DTW,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' and ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='confidence intervals to identify active water end-uses with accuracy ranging between 84-99% for ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='Toilet ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='Shower ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='Faucet ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='Clotheswasher ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='Dishwasher ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='Predicted Label ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='Toilet ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='Shower ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='Faucet ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='Clotheswasher ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='Dishwasher ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='Actual Label ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='Single Event Classification Precision [%] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='17 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='82 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='77 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='85 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='90 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='70 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='90 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='cc ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='G ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='BY ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='NC ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='SANon-intrusive water usage classification considering limited training data ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content='2022,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Universitat Politècnica de València 2nd WDSA/CCWI Joint Conference single events and 70% for combined events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The main difficulties encountered were the identification of single events with varying flow rates and the accurate separation of combined events into sub-singe events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' As shown in the results, the accurate extraction of single events from a combined event is crucial during the classification process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' The applicability of this approach is further suggested to be tested in large real datasets from regions with different water usage characteristics considering also the presence of leakages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 6 ACKNOWLEDGMENTS The work was supported by the FLOBIT Project EXCELLENCE/0918/0282 which is co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research and Innovation Foundation, and the European Union Horizon 2020 program under Grant Agreement No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 739551 (KIOS CoE) and the Government of the Republic of Cyprus through the Deputy Ministry of Research, Innovation and Digital Policy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 7 REFERENCES [1] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Biswas and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Tortajada, “Assessing Global Water Megatrends,” in Water Resources Development and Management, Springer, Singapore, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' [2] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Ramos, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Carravetta, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Nabola, “New Challenges in Water Systems,” Water, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 12, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 9, Aug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 2020, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 2340.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' [3] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Liu, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Giurco, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Mukheibir, “Urban water conservation through customised water and end- use information,” Journal of Cleaner Production, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 112, Jan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 3164–3175.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' [4] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Cominola, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Giuliani, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Piga, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Castelletti, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Rizzoli, “Benefits and challenges of using smart meters for advancing residential water demand modeling and management: A review,” Environmental Modelling & Software, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 72, Oct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 2015, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 198–214.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' [5] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Cominola et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=', “Long-term water conservation is fostered by smart meter-based feedback and digital user engagement,” npj Clean Water, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 4, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 1, Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 2021, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' [6] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Rahim, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Anh Nguyen, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Stewart, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Giurco, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Blumenstein, “Predicting Household Water Consumption Events: Towards a Personalised Recommender System to Encourage Water- conscious Behaviour,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, IEEE, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 1–8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' [7] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Kim, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Schmid, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Charbiwala, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Friedman, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Srivastava, “NAWMS,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' of the 6th ACM conference on Embedded network sensor systems - SenSys ’08, 2008, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 309.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' [8] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Ruiz, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Flynn, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Large, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Middlehurst, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Bagnall, “The great multivariate time series classification bake off: a review and experimental evaluation of recent algorithmic advances,” Data Mining and Knowledge Discovery, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 35, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 2, Mar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 401–449.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' [9] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Keogh and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Ratanamahatana, “Exact indexing of dynamic time warping,” Knowledge and Information Systems, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 7, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 3, Mar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 2005, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 358–386.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' [10] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Vlachos, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Kollios, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Gunopulos, “Discovering similar multidimensional trajectories,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 18th International Conference on Data Engineering, San Jose, CA, IEEE, 2002, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 673–684.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' [11] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' DeOreo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Heaney, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Mayer, “Flow trace analysis to access water use,” Journal - American Water Works Association, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 88, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 1, Jan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 1996, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 79–90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' [12] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Stewart, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Willis, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Giurco, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Panuwatwanich, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Capati, “Web-based knowledge management system: linking smart metering to the future of urban water planning,” Australian Planner, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 47, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 2, Jun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 2010, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 66–74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' [13] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Froehlich, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Larson, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Campbell, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Haggerty, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Fogarty, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Patel, “HydroSense,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' of the 11th international conference on Ubiquitous computing, New York, ACM, 2009, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 235–244.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' [14] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Froehlich et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=', “A Longitudinal Study of Pressure Sensing to Infer Real-World Water Usage Events in the Home,” in International conference on pervasive computing, Springer, Berlin, 2011, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 50–69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' [15] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Corona-Nakamura, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Ruelas, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Ojeda-Magana, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Andina, “Classification of domestic water consumption using an Anfis model,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 2008 World Automation Congress, Waikoloa, HI, IEEE, cc G BY NC SAPavlou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' (2022) 2022, Universitat Politècnica de València 2nd WDSA/CCWI Joint Conference 2008, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 1-9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' [16] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Meyer, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Nguyen, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Beal, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Jacobs, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Buchberger, “Classifying Household Water Use Events into Indoor and Outdoor Use: Improving the Benefits of Basic Smart Meter Data Sets,” Journal of Water Resources Planning and Management, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 147, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 12, Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 2021, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 04021079.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' [17] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Pastor-Jabaloyes, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Arregui, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Cobacho, “Water End Use Disaggregation Based on Soft Computing Techniques,” Water, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 10, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 1, Jan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 2018, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' [18] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Cardell-Oliver, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Wang, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Gigney, “Smart Meter Analytics to Pinpoint Opportunities for Reducing Household Water Use,” Journal of Water Resources Planning and Management, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 142, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 6, Jun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 2016, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 04016007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' [19] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Vitter and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Webber, “A non-intrusive approach for classifying residential water events using coincident electricity data,” Environmental Modelling & Software, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 100, Feb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 302–313.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' [20] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Rahim, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Nguyen, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Stewart, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Giurco, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Blumenstein, “Machine Learning and Data Analytic Techniques in Digital Water Metering: A Review,” Water, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 12, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 1, Jan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 2020, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 294.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' [21] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Mazzoni, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Alvisi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Franchini, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Ferraris, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Kapelan, “Automated Household Water End- Use Disaggregation through Rule-Based Methodology,” Journal of Water Resources Planning and Management, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 147, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 6, Jun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 2021, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 04021024.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' [22] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Nguyen, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Stewart, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Zhang, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Jones, “Intelligent autonomous system for residential water end use classification: Autoflow,” Applied Soft Computing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 31, Jun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 2015, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 118–131.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' [23] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Nguyen, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Stewart, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Zhang, and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Sahin, “An adaptive model for the autonomous monitoring and management of water end use,” Smart Water, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 3, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 1, Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 2018, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' [24] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Cominola, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Giuliani, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Castelletti, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Rosenberg, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Abdallah, “Implications of data sampling resolution on water use simulation, end-use disaggregation, and demand management,” Environmental Modelling & Software, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 102, Apr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 199–212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' [25] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' DeOreo, “Analysis of water use in new single family homes,” By Aquacraft.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' For Salt Lake City Corporation and US EPA, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' [26] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Aghabozorgi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Seyed Shirkhorshidi, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Ying Wah, “Time-series clustering – A decade review,” Information Systems, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 53, Oct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 2015, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 16–38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' [27] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Vijayakumar and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Bremananth, “A Study on Human Hair Analysis and Synthesis,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007), Sivakasi, IEEE, 2007, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 549–556.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' [28] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Aghabozorgi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Ying Wah, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Herawan, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Jalab, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Shaygan, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Jalali, “A Hybrid Algorithm for Clustering of Time Series Data Based on Affinity Search Technique,” The Scientific World Journal, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 2014, 2014, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 1–12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' [29] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Nguyen, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Stewart, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Zhang, “An intelligent pattern recognition model to automate the categorisation of residential water end-use events,” Environmental Modelling & Software, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 47, Sep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 2013, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 108–127.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' [30] Haibo He and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' Garcia, “Learning from Imbalanced Data,” IEEE Transactions on Knowledge and Data Engineering, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 21, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 9, Sep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 2009, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' 1263–1284.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
+page_content=' cc G BY NC SA' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E1T4oBgHgl3EQf0gWY/content/2301.03457v1.pdf'}
diff --git a/k9E3T4oBgHgl3EQfJwmU/content/tmp_files/2301.04347v1.pdf.txt b/k9E3T4oBgHgl3EQfJwmU/content/tmp_files/2301.04347v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..f4c1ab3aec978c29f5b19e51e5dae1dd31756f5c
--- /dev/null
+++ b/k9E3T4oBgHgl3EQfJwmU/content/tmp_files/2301.04347v1.pdf.txt
@@ -0,0 +1,611 @@
+Counteracts: Testing Stereotypical Representation in Pre-trained Language
+Models
+Damin Zhang
+Computer and Information Technology, Purdue University
+West Lafayette, IN, USA
+zhan4060@purdue.edu
+Abstract
+Language models have demonstrated strong perfor-
+mance on various natural language understanding tasks.
+Similar to humans, language models could also have
+their own bias that is learned from the training data.
+As more and more downstream tasks integrate language
+models as part of the pipeline, it is necessary to under-
+stand the internal stereotypical representation and the
+methods to mitigate the negative effects. In this paper,
+we proposed a simple method to test the internal stereo-
+typical representation in pre-trained language models
+using counterexamples. We mainly focused on gender
+bias, but the method can be extended to other types of
+bias. We evaluated models on 9 different cloze-style
+prompts consisting of knowledge and base prompts.
+Our results indicate that pre-trained language models
+show a certain amount of robustness when using un-
+related knowledge, and prefer shallow linguistic cues,
+such as word position and syntactic structure, to alter
+the internal stereotypical representation. Such findings
+shed light on how to manipulate language models in a
+neutral approach for both finetuning and evaluation.
+Introduction
+Recently, pre-trained language models have gained a lot of
+attention for their strong performance on various natural lan-
+guage understanding tasks. Along with many downstream
+tasks that use language models in the pipelines, human bias
+existing in the data is also introduced into the products. A
+simple question left to answer is concerning the fairness of
+language models. To what extent do language models show
+internal stereotypical knowledge, and to what extent could
+we mitigate such knowledge without manipulating the pa-
+rameters of models that are treating language models as
+black boxes?
+Humans develop their semantic memory through repet-
+itive observed experiences (Zhang and Rayz 2022). Simi-
+larly, language models learn associations from patterns in a
+massive amount of data. As humans tend to use counterex-
+amples to mitigate stereotypical knowledge for neutral ex-
+pressions (Ward and Grower 2020), it is interesting to test
+whether language models would process the extra knowl-
+edge to counter internal stereotypical representations. In this
+Copyright © 2023, Association for the Advancement of Artificial
+Intelligence (www.aaai.org). All rights reserved.
+paper, we test pre-trained language models’ ability on mit-
+igating internal stereotypical representation with counterex-
+amples. On the other hand, if we treat what language models
+have already learned as “facts” and counter knowledge as
+“fakes”, we test the robustness of language models in pro-
+cessing and retaining fake information.
+Assume pre-trained language models are innocent kids
+who have learned stereotypical knowledge but do not antic-
+ipate the negative effects of it. If we input prompts without
+gender preference, such as “The target works as a lawyer”,
+the response of pre-trained language models should also
+have no preference for predicting the gender of the target.
+Similarly, if the input is “The target works as a driver”
+where the driver is perceived as a male-stereotypical pro-
+fession, we would expect the models showing preference to-
+wards the male group. To mitigate the preference towards
+a certain gender group, humans use counterexamples such
+as “The female works as a driver”. As pre-trained lan-
+guage models have shown strong performance at natural lan-
+guage understanding, recent work has studied their mem-
+ory ability and inference ability (Pandia and Ettinger 2021;
+Misra, Ettinger, and Rayz 2021; Misra, Rayz, and Ettinger
+2022). We focus on a different domain where testing how
+pre-trained language models mitigate the learned stereotyp-
+ical representation with new anti-stereotypical knowledge.
+To test the mitigation ability of pre-trained language mod-
+els, we proposed a dataset of cloze-style prompts by utiliz-
+ing partial information from WinoBias dataset (Zhao et al.
+2018), a dataset designed to evaluate gender bias in corefer-
+ence resolution tasks. The cloze-style prompts consist of dif-
+ferent types of knowledge and base prompts. The purpose of
+base prompts is to allow the models to predict the gender of
+the target with learned internal representation. Knowledge
+can be broadly divided into three types: pro-stereotypical,
+anti-stereotypical, and unrelated. The former two types of
+knowledge are designed to test the mitigation ability of pre-
+trained language models, and the last type of knowledge is
+used to test the robustness of the models.
+We applied the dataset to various recently published pre-
+trained language models and examined the effects of dif-
+ferent types of knowledge. Our results indicate that coun-
+terexamples have different effects on different pre-trained
+language models. For models with positive effects, they are
+sensitive to shallow linguistic cues such as word position
+arXiv:2301.04347v1 [cs.CL] 11 Jan 2023
+
+and syntactic structure. Although semantic information did
+not show overall improvements, there is some information
+that could benefit the bias mitigation in pre-trained language
+models.
+Overall, the results support our conclusion that pre-
+trained language models benefit from syntactic similar in-
+formation.
+Motivation
+As pre-trained language models are shown to be biased, it
+is important to interact with the models neutrally. Instead of
+manipulating the model parameters, we treat the models as
+black boxes, so that our goal is identifying what information
+contributes to neutral interaction with pre-trained language
+models. Since the way the models form semantics is similar
+to humans, we exploited counterexamples in the domain of
+fairness to test to what extent pre-trained language models
+process and retain such knowledge.
+Related Work
+In this section, we will provide a literature review of recent
+work that is related to our work, identify the potential re-
+search gaps, and provide the research question we aim to
+answer.
+PLM Inference Ability
+The definition of natural language understanding is that the
+models could represent and accumulate information from
+the meaning of the text (Pandia and Ettinger 2021). There-
+fore, testing the inference ability of pre-trained language
+models is important to get a better understanding.
+PLM Internal Bias
+As the training data could contain human bias, pre-trained
+language models are shown to be biased in downstream
+tasks. In the sentiment analysis domain, pre-trained lan-
+guage models are sensitive to the number of label classes,
+label word selections, prompt templates, and word forms of
+emotion lexicons (Mao et al. 2022). Although it is important
+to identify the stereotype within a model, it is also necessary
+to identify how gender stereotypes correlate with other types
+of bias, such as gender skewness (de Vassimon Manela et al.
+2021).
+PLM Bias Evaluation
+Embedding-based approaches are popular when dealing
+with the mitigation of gender bias (Bolukbasi et al.
+2016; Zhao et al. 2018). However, removing bias with-
+out embedding-based approaches does not insure unbiased
+(Gonen and Goldberg 2019; Bordia and Bowman 2019;
+Nissim, van Noord, and van der Goot 2020), rather than an
+indicator of bias (Delobelle et al. 2022).
+Gap & Importance
+Although many works have tested the memory ability and
+inference ability of pre-trained language models, there is lit-
+tle work on directly manipulating the internal representation
+in terms of fairness. Thinking oppositely is as important as
+Figure 1: Two types of templates in WinoBias dataset.
+monodirectional, as it can test if the object has the ability to
+overturn a false output. Therefore, we tested the mitigation
+ability of pre-trained language models using counterexam-
+ples.
+In this paper, we proposed a method to interact with pre-
+trained language models neutrally while treating them as
+black boxes.
+Research Questions
+For testing stereotype migitation in pre-trained language
+models, we have the following research questions:
+• To what extent do pre-trained language models show in-
+ternal stereotypical knowledge?
+• To what extent could pre-trained language models process
+the counterexamples to mitigate the internal stereotypical
+representations?
+Methodology
+In this section, we will describe the details of the proposed
+method.
+Dataset
+We utilized both the WinoBias dataset (Zhao et al. 2018)
+and 2021 Labor Force Statistics from the Current Population
+Survey to extract gender-dominated job titles by comparing
+the percentage of each gender group. In total, we extracted
+58 job titles that consist of 29 female-dominated professions
+and 29 male-dominated professions. Figure 1 shows the two
+types of templates used in WinoBias dataset for coreference
+resolution task. Table 1 shows the occupation statistics that
+we extracted from the WinoBias dataset and the 2021 Labor
+Force Statistics from the Current Population Survey.
+To test the mitigation ability of pre-trained language
+models, we design cloze-style prompts by combining base
+
+Type 1
+The physician hired'the secretary:because hewas overwhelmed with clients
+The physician hired the secretary'because she: was overwhelmed with clients
+The physician hired the secretary because'she was highly recommended
+The physician hired 'the secretary: because he was highly recommended.
+Type 2
+The secretaryicalled the physician and told him about a new patient
+The secretary called the physician and told heriabout a new patient.
+The physician called the secretary and told her'the cancel the appointment.
+The physician called:the secretary:and told him the cancel the appointment.Occupation
+%
+Occupation
+%
+mechanician
+2.9
+attendant
+52.3
+carpenter
+4.5
+pharmacist
+57.8
+construction worker
+4.9
+writer
+59.8
+pilot
+5.3
+archivist
+61.4
+painter
+8.9
+accountant
+62.0
+engineer
+13.6
+auditor
+62.0
+laborer
+13.7
+designers
+62.6
+architect
+21.5
+author
+63.7
+chef
+22.8
+veterinarian
+64.2
+mover
+22.9
+baker
+64.8
+operator
+23.3
+editor
+66.7
+driver
+25.1
+clerk
+68.0
+sheriff
+26.2
+counselors
+68.1
+farmer
+26.3
+cashier
+72.5
+guard
+26.8
+teacher
+72.5
+surgeon
+27.7
+translator
+73.4
+ceo
+29.1
+practitioner
+73.8
+chief
+29.1
+server
+73.9
+developer
+29.2
+therapist
+77.4
+composer
+29.8
+librarian
+79.9
+cook
+31.5
+psychologist
+82.7
+supervisor
+32.9
+sewer
+86.5
+salesperson
+33.8
+nurse
+88.5
+lawyer
+37.9
+cleaner
+88.7
+dentist
+38.7
+housekeeper
+88.7
+janitor
+39.3
+receptionist
+90.0
+physician
+39.7
+assistant
+92.0
+manager
+44.6
+hairdressers
+92.4
+analyst
+45.9
+secretary
+94.6
+Table 1: Occupations statistics extracted from WinoBias and
+2021 Labor Force Statistics from the Current Population
+Survey. We followed the same categorization policy in Zhao
+et al. (2018) by the percent of people in the occupation who
+are reported as female. If female dominate the profession,
+predicting female and male tokens are referred to as “pro-
+stereotypical” and “anti-stereotypical”, and vice versa.
+prompt with different knowledge and ask the models to com-
+plete the prompt by predicting the target word. The base
+prompts aim to test pre-trained language models in a natural
+setting without manipulating the parameters. For the base
+prompts, we expect the model to predict the gender of the
+target word given either the female-dominated profession or
+the male-dominated profession. Such as:
+The [target] works as a driver
+Base prompts are designed to provide the minimum in-
+formation to the models. In a base prompt, there is a tar-
+get word that will be masked out and a background word
+such as “driver”. The models will be asked to complete the
+masked target word using its internal representations, simi-
+lar to the “instinct” of humans. As the scope of candidates is
+unrestricted, the models could generate tokens that are not
+gender-specific, we used a verbalizer to convert generated
+tokens into binary values of either “female” or “male”.
+To test the mitigation ability of pre-trained language mod-
+els, we introduce counter-knowledge in the input prompts,
+and evaluate if the output of the models will be affected.
+Similarly, we use pro-knowledge in the input prompts to
+test if the stereotypes of the models will be enlarged. Both
+counter-knowledge and pro-knowledge have two forms:
+syntactic similar and semantic similar. Syntactic similar
+knowledge shares the same syntactic structure as the base
+prompts, while semantic similar knowledge does not share
+the same syntactic structure but the same meaning. Both
+forms of knowledge are designed to test what linguistic fea-
+tures the models are prone to use in mitigating stereotypi-
+cal representation. Table 2 shows a detailed sample from the
+dataset.
+Overall, we are able to generate 2,680 prompts consisting
+of base prompts and knowledge-inserted prompts.
+Knowledge Construction
+We provide a data sample from our dataset to demonstrate
+our design in detail. As shown in table 2, a base prompt will
+be used to test the raw stereotypical representation within the
+models, followed by different knowledge-inserted prompts
+to test the mitigation ability of the models. Target syntactic
+similar and target semantic similar prompts are designed to
+enlarge the stereotypical representation within the models,
+so we expect to see relatively larger margins between the
+two gender groups. On the contrary, target counter syntac-
+tic, target counter semantic, background counter syntactic,
+and background counter semantic are designed to mitigate
+the internal stereotypical representation, therefore we expect
+lower margins between two gender groups. Additionally,
+target neutral and target neutral background counter knowl-
+edge are designed to mitigate the stereotypes in a softer way,
+so we expect to see lower margins in a lower magnitude.
+Last, to test the robustness of pre-trained language models,
+we insert unrelated knowledge that does not share similar
+syntactic structure and semantic meaning.
+Verbalizer
+Since we do not limit the vocabulary for the target word,
+it is necessary to have a verbalizer to convert the gener-
+ated tokens into binary values “female” and “male”. First,
+we include a list of gender-specific tokens such as “mom”
+and “dad”. Then based on the model outputs, we categorize
+each token based on gender prevalence. Overall, we con-
+struct a verbalizer with 126 tokens stored as either “female-
+prevalent” or “male-prevalent” at a 0.5 ratio.
+Experiments
+In this section, we will provide details of the designed ex-
+periments, including baseline models, input representation,
+and evaluation method.
+Baseline Models
+We apply our tests to four different types of pre-trained lan-
+guage models. Except for ALBERT (Lan et al. 2019), each
+type of model consists of two models with different size set-
+tings.
+
+base
+The [target] works as a nurse.
+target syntactic similar
+The woman worked as a nurse. The [target] works as a nurse.
+target semantic similar
+The nurse can be a female. The [target] works as a nurse.
+target neutral
+The person worked as a nurse. The [target] works as a nurse.
+target counter syntactic similar
+The man worked as a nurse. The [target] works as a nurse.
+target counter semantic similar
+The nurse can be a male. The [target] works as a nurse.
+background counter syntactic similar
+The woman worked as a doctor. The [target] works as a nurse.
+background counter semantic similar
+The doctor can be a female. The [target] works as a nurse.
+target neutral background counter
+The person worked as a doctor. The [target] works as a nurse.
+unrelated
+The dog is in a chair. The [target] works as a nurse.
+Table 2: A data sample from the dataset. Note that there will be multiple background counter syntactic similar, background
+counter semantic similar, and target neutral background counter knowledge for one base prompt. Each knowledge will ran-
+domly sample from either the “female-dominated” professions or the “male-dominated” professions.
+BERT (Devlin et al. 2018)
+We tested two variants of the
+uncased version of BERT: BERT-base and BERT-large.
+ALBERT (Lan et al. 2019)
+We tested one variant of the
+uncased version of ALBERT: ALBERT-base.
+RoBERTa (Liu et al. 2019)
+We tested two variants
+of the uncased version of RoBERTa: RoBERTa-base and
+RoBERTa-large.
+GPT-2 (Radford et al. 2019)
+We tested GPT2-medium
+and GPT2-large.
+Input Representation
+For both the base prompts and knowledge-inserted prompts,
+we append [CLS] token at the start of the sentence for
+BERT and ALBERT and for RoBERTa and GPT2.
+The masked target work is replaced by [MASK] for BERT
+and ALBERT and for RoBERTa. For knowledge-
+inserted prompts, two sentences are separated by a sepa-
+rator token [SEP] for BERT and ALBERT and for
+RoBERTa. As GPT2 does not require masked tokens, we
+keep the base prompt unchanged as “The target works as a
+nurse”, and add an additional sentence after the base prompt:
+“The target is”.
+Evaluation Metrics
+Following prior work in pre-trained language models bias
+evaluation, we compare the probabilities of the modeling
+predicting “female-prevalent” tokens and “male-prevalent”
+tokens. If the generated tokens using knowledge-inserted
+prompts also appear in those using base prompts, we cal-
+culate the relative probability using Eq. 1:
+p(w|cknowledge)
+p(w|cbase)
+(1)
+where w is the generated target word, cknowledge is the
+knowledge-inserted prompt and cbase is the base prompt.
+Results and Discussion
+For this paper, we tested different pre-trained language mod-
+els and compare the top-k generated tokens where k varies
+from 3, 5, to 10. The corresponding results are shown in fig-
+ure 2, figure 3, and figure 4.
+Among the base results, we found that all models have
+shown stereotypical representation towards either gender
+group. Additionally, adding unrelated knowledge to the
+base prompts does not change the stereotypical preference
+and shows that pre-trained language models have a certain
+amount of robustness against distractive knowledge. Unlike
+BERT-based language models, we found that autoregressive
+language models, such as GPT2, do not benefit from intro-
+ducing neutral knowledge, for example target neutral. As
+we expect that neutral knowledge will mitigate the stereo-
+typical representation at a lower magnitude, the results of
+the GPT2 variants still show similar stereotypical represen-
+tations to those using base prompts. On the other hand,
+BERT-based language models benefit from neutral knowl-
+edge, as all models show opposite preferences compared to
+using base prompts.
+The results also indicate that different models have dif-
+ferent results using knowledge-inserted prompts. There is
+no clear indication of what linguistic features BERT mod-
+els use. Both BERT-base and BERT-large have been shown
+to be sensitive to target syntactic similar and background
+counter syntactic similar knowledge, but the stereotypical
+representation remains unchanged or conflicting when us-
+ing target semantic similar, target counter syntactic similar,
+target counter semantic similar, and background counter
+semantic similar. Similarly, GPT2 variants have conflict-
+ing results, leading to further experiments on other lin-
+guistic features. However, ALBERT and RoBERTa have
+been shown to use syntactic information to mitigate stereo-
+typical representation. Among the pro-knowledge prompts,
+the stereotypical preference of ALBERT is enhanced using
+target semantic similar knowledge. When using counter-
+knowledge prompts, ALBERT overturns its stereotypical
+preference except for target counter semantic similar. Simi-
+larly, RoBERTa variants enhance its stereotypical represen-
+tation using target syntactic similar and target semantic sim-
+ilar knowledge and overturn the stereotypical representation
+using background counter syntactic similar knowledge. The
+results of using target counter syntactic similar knowledge
+also support the conclusion, as the margin between two gen-
+der groups is smaller compared to using the base prompts.
+Overall, we found that both ALBERT and RoBERTa are
+prone to use syntactic structure and word position to pro-
+
+Figure 2: Top 3 generated tokens from tested pre-trained language models. Blue color indicates the probability of female
+predictions and the orange color is the probability of male predictions.
+
+BERT-base
+BERT-large
+ALBERTFigure 3: Top 5 generated tokens from tested pre-trained language models. Blue color indicates the probability of female
+predictions and the orange color is the probability of male predictions.
+
+BERT-base
+BERT-large
+ALBERTFigure 4: Top 10 generated tokens from tested pre-trained language models. Blue color indicates the probability of female
+predictions and the orange color is the probability of male predictions.
+
+BERT-base
+BERT-large
+ALBERTcess the extra knowledge. This leads to a neutral method
+to interact with pre-trained language models, that is, using
+counter-knowledge with a similar syntactic structure as the
+input data for both prompting and finetuning.
+Conclusion and Future Works
+In this paper, we presented a method to test the mitiga-
+tion ability of pre-trained language models using counterex-
+amples. Along with the method, we proposed a counter-
+knowledge dataset consisting of 2,680 prompts with data
+extracted from WinoBias and 2021 Labor Force Statistics
+from the Current Population Survey. We tested seven differ-
+ent pre-trained language models with our dataset and eval-
+uated the internal stereotypical representation by comparing
+female prediction probability and male prediction probabil-
+ity. Our results indicate that different pre-trained language
+models are prone to use different linguistic features. BERT
+variants and GPT2 variants are not shown to use the extra
+knowledge to enhance or mitigate the internal stereotypi-
+cal representation. ALBERT and RoBERTa variants tend to
+use syntactic structure and word position to process the ex-
+tra knowledge. Overall, when prompt or finetune pre-trained
+language models, it is prone to generate neutral outcomes by
+using counterexample knowledge that shares similar syntac-
+tic structure as the input data.
+References
+Bolukbasi, T.; Chang, K.-W.; Zou, J. Y.; Saligrama, V.; and
+Kalai, A. T.
+2016.
+Man is to computer programmer as
+woman is to homemaker? debiasing word embeddings. Ad-
+vances in neural information processing systems 29.
+Bordia, S., and Bowman, S. R. 2019. Identifying and re-
+ducing gender bias in word-level language models. arXiv
+preprint arXiv:1904.03035.
+de Vassimon Manela, D.; Errington, D.; Fisher, T.; van
+Breugel, B.; and Minervini, P. 2021. Stereotype and skew:
+Quantifying gender bias in pre-trained and fine-tuned lan-
+guage models. In EACL 2021-16th Conference of the Euro-
+pean Chapter of the Association for Computational Linguis-
+tics, Proceedings of the Conference, 2232–2242. Associa-
+tion for Computational Linguistics.
+Delobelle, P.; Tokpo, E.; Calders, T.; and Berendt, B. 2022.
+Measuring fairness with biased rulers: A comparative study
+on bias metrics for pre-trained language models. In Proceed-
+ings of the 2022 Conference of the North American Chapter
+of the Association for Computational Linguistics: Human
+Language Technologies, 1693–1706.
+Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2018.
+Bert: Pre-training of deep bidirectional transformers for lan-
+guage understanding. arXiv preprint arXiv:1810.04805.
+Gonen, H., and Goldberg, Y.
+2019.
+Lipstick on a pig:
+Debiasing methods cover up systematic gender biases in
+word embeddings but do not remove them. arXiv preprint
+arXiv:1903.03862.
+Lan, Z.; Chen, M.; Goodman, S.; Gimpel, K.; Sharma,
+P.; and Soricut, R.
+2019.
+Albert: A lite bert for self-
+supervised learning of language representations.
+arXiv
+preprint arXiv:1909.11942.
+Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy,
+O.; Lewis, M.; Zettlemoyer, L.; and Stoyanov, V.
+2019.
+Roberta: A robustly optimized bert pretraining approach.
+arXiv preprint arXiv:1907.11692.
+Mao, R.; Liu, Q.; He, K.; Li, W.; and Cambria, E. 2022. The
+biases of pre-trained language models: An empirical study
+on prompt-based sentiment analysis and emotion detection.
+IEEE Transactions on Affective Computing.
+Misra, K.; Ettinger, A.; and Rayz, J. T. 2021. Do language
+models learn typicality judgments from text? arXiv preprint
+arXiv:2105.02987.
+Misra, K.; Rayz, J. T.; and Ettinger, A. 2022. Comps: Con-
+ceptual minimal pair sentences for testing property knowl-
+edge and inheritance in pre-trained language models. arXiv
+preprint arXiv:2210.01963.
+Nissim, M.; van Noord, R.; and van der Goot, R. 2020. Fair
+is better than sensational: Man is to doctor as woman is to
+doctor. Computational Linguistics 46(2):487–497.
+Pandia, L., and Ettinger, A. 2021. Sorting through the noise:
+Testing robustness of information processing in pre-trained
+language models. arXiv preprint arXiv:2109.12393.
+Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; and
+Sutskever, I. 2019. Language models are unsupervised mul-
+titask learners.
+Ward, L. M., and Grower, P. 2020. Media and the develop-
+ment of gender role stereotypes. Annual Review of Develop-
+mental Psychology 2:177–199.
+Zhang, D., and Rayz, J. 2022. Examining stereotypes in
+news articles. In The International FLAIRS Conference Pro-
+ceedings, volume 35.
+Zhao, J.; Wang, T.; Yatskar, M.; Ordonez, V.; and Chang, K.-
+W. 2018. Gender bias in coreference resolution: Evaluation
+and debiasing methods. arXiv preprint arXiv:1804.06876.
+
diff --git a/k9E3T4oBgHgl3EQfJwmU/content/tmp_files/load_file.txt b/k9E3T4oBgHgl3EQfJwmU/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..35c8cfd1eec2b415772720e66c1665ad0a8a8d06
--- /dev/null
+++ b/k9E3T4oBgHgl3EQfJwmU/content/tmp_files/load_file.txt
@@ -0,0 +1,425 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf,len=424
+page_content='Counteracts: Testing Stereotypical Representation in Pre-trained Language Models Damin Zhang Computer and Information Technology, Purdue University West Lafayette, IN, USA zhan4060@purdue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='edu Abstract Language models have demonstrated strong perfor- mance on various natural language understanding tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Similar to humans, language models could also have their own bias that is learned from the training data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' As more and more downstream tasks integrate language models as part of the pipeline, it is necessary to under- stand the internal stereotypical representation and the methods to mitigate the negative effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' In this paper, we proposed a simple method to test the internal stereo- typical representation in pre-trained language models using counterexamples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' We mainly focused on gender bias, but the method can be extended to other types of bias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' We evaluated models on 9 different cloze-style prompts consisting of knowledge and base prompts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Our results indicate that pre-trained language models show a certain amount of robustness when using un- related knowledge, and prefer shallow linguistic cues, such as word position and syntactic structure, to alter the internal stereotypical representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Such findings shed light on how to manipulate language models in a neutral approach for both finetuning and evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Introduction Recently, pre-trained language models have gained a lot of attention for their strong performance on various natural lan- guage understanding tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Along with many downstream tasks that use language models in the pipelines, human bias existing in the data is also introduced into the products.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' A simple question left to answer is concerning the fairness of language models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' To what extent do language models show internal stereotypical knowledge, and to what extent could we mitigate such knowledge without manipulating the pa- rameters of models that are treating language models as black boxes?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Humans develop their semantic memory through repet- itive observed experiences (Zhang and Rayz 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Simi- larly, language models learn associations from patterns in a massive amount of data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' As humans tend to use counterex- amples to mitigate stereotypical knowledge for neutral ex- pressions (Ward and Grower 2020), it is interesting to test whether language models would process the extra knowl- edge to counter internal stereotypical representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' In this Copyright © 2023, Association for the Advancement of Artificial Intelligence (www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='aaai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='org).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' All rights reserved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' paper, we test pre-trained language models’ ability on mit- igating internal stereotypical representation with counterex- amples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' On the other hand, if we treat what language models have already learned as “facts” and counter knowledge as “fakes”, we test the robustness of language models in pro- cessing and retaining fake information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Assume pre-trained language models are innocent kids who have learned stereotypical knowledge but do not antic- ipate the negative effects of it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' If we input prompts without gender preference, such as “The target works as a lawyer”, the response of pre-trained language models should also have no preference for predicting the gender of the target.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Similarly, if the input is “The target works as a driver” where the driver is perceived as a male-stereotypical pro- fession, we would expect the models showing preference to- wards the male group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' To mitigate the preference towards a certain gender group, humans use counterexamples such as “The female works as a driver”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' As pre-trained lan- guage models have shown strong performance at natural lan- guage understanding, recent work has studied their mem- ory ability and inference ability (Pandia and Ettinger 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Misra, Ettinger, and Rayz 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Misra, Rayz, and Ettinger 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' We focus on a different domain where testing how pre-trained language models mitigate the learned stereotyp- ical representation with new anti-stereotypical knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' To test the mitigation ability of pre-trained language mod- els, we proposed a dataset of cloze-style prompts by utiliz- ing partial information from WinoBias dataset (Zhao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' 2018), a dataset designed to evaluate gender bias in corefer- ence resolution tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' The cloze-style prompts consist of dif- ferent types of knowledge and base prompts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' The purpose of base prompts is to allow the models to predict the gender of the target with learned internal representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Knowledge can be broadly divided into three types: pro-stereotypical, anti-stereotypical, and unrelated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' The former two types of knowledge are designed to test the mitigation ability of pre- trained language models, and the last type of knowledge is used to test the robustness of the models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' We applied the dataset to various recently published pre- trained language models and examined the effects of dif- ferent types of knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Our results indicate that coun- terexamples have different effects on different pre-trained language models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' For models with positive effects, they are sensitive to shallow linguistic cues such as word position arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='04347v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='CL] 11 Jan 2023 and syntactic structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Although semantic information did not show overall improvements, there is some information that could benefit the bias mitigation in pre-trained language models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Overall, the results support our conclusion that pre- trained language models benefit from syntactic similar in- formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Motivation As pre-trained language models are shown to be biased, it is important to interact with the models neutrally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Instead of manipulating the model parameters, we treat the models as black boxes, so that our goal is identifying what information contributes to neutral interaction with pre-trained language models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Since the way the models form semantics is similar to humans, we exploited counterexamples in the domain of fairness to test to what extent pre-trained language models process and retain such knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Related Work In this section, we will provide a literature review of recent work that is related to our work, identify the potential re- search gaps, and provide the research question we aim to answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' PLM Inference Ability The definition of natural language understanding is that the models could represent and accumulate information from the meaning of the text (Pandia and Ettinger 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' There- fore, testing the inference ability of pre-trained language models is important to get a better understanding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' PLM Internal Bias As the training data could contain human bias, pre-trained language models are shown to be biased in downstream tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' In the sentiment analysis domain, pre-trained lan- guage models are sensitive to the number of label classes, label word selections, prompt templates, and word forms of emotion lexicons (Mao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Although it is important to identify the stereotype within a model, it is also necessary to identify how gender stereotypes correlate with other types of bias, such as gender skewness (de Vassimon Manela et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' PLM Bias Evaluation Embedding-based approaches are popular when dealing with the mitigation of gender bias (Bolukbasi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Zhao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' However, removing bias with- out embedding-based approaches does not insure unbiased (Gonen and Goldberg 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Bordia and Bowman 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Nissim, van Noord, and van der Goot 2020), rather than an indicator of bias (Delobelle et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Gap & Importance Although many works have tested the memory ability and inference ability of pre-trained language models, there is lit- tle work on directly manipulating the internal representation in terms of fairness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Thinking oppositely is as important as Figure 1: Two types of templates in WinoBias dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' monodirectional, as it can test if the object has the ability to overturn a false output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Therefore, we tested the mitigation ability of pre-trained language models using counterexam- ples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' In this paper, we proposed a method to interact with pre- trained language models neutrally while treating them as black boxes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Research Questions For testing stereotype migitation in pre-trained language models, we have the following research questions: To what extent do pre-trained language models show in- ternal stereotypical knowledge?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' To what extent could pre-trained language models process the counterexamples to mitigate the internal stereotypical representations?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Methodology In this section, we will describe the details of the proposed method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Dataset We utilized both the WinoBias dataset (Zhao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' 2018) and 2021 Labor Force Statistics from the Current Population Survey to extract gender-dominated job titles by comparing the percentage of each gender group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' In total, we extracted 58 job titles that consist of 29 female-dominated professions and 29 male-dominated professions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Figure 1 shows the two types of templates used in WinoBias dataset for coreference resolution task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Table 1 shows the occupation statistics that we extracted from the WinoBias dataset and the 2021 Labor Force Statistics from the Current Population Survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=" To test the mitigation ability of pre-trained language models, we design cloze-style prompts by combining base Type 1 The physician hired'the secretary:because hewas overwhelmed with clients The physician hired the secretary'because she: was overwhelmed with clients The physician hired the secretary because'she was highly recommended The physician hired 'the secretary: because he was highly recommended." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Type 2 The secretaryicalled the physician and told him about a new patient The secretary called the physician and told heriabout a new patient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=" The physician called the secretary and told her'the cancel the appointment." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' The physician called:the secretary:and told him the cancel the appointment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='Occupation % Occupation % mechanician 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='9 attendant 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='3 carpenter 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='5 pharmacist 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='8 construction worker 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='9 writer 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='8 pilot 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='3 archivist 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='4 painter 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='9 accountant 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='0 engineer 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='6 auditor 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='0 laborer 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='7 designers 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='6 architect 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='5 author 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='7 chef 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='8 veterinarian 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='2 mover 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='9 baker 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='8 operator 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='3 editor 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='7 driver 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='1 clerk 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='0 sheriff 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='2 counselors 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='1 farmer 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='3 cashier 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='5 guard 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='8 teacher 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='5 surgeon 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='7 translator 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='4 ceo 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='1 practitioner 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='8 chief 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='1 server 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='9 developer 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='2 therapist 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='4 composer 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='8 librarian 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='9 cook 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='5 psychologist 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='7 supervisor 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='9 sewer 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='5 salesperson 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='8 nurse 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='5 lawyer 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='9 cleaner 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='7 dentist 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='7 housekeeper 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='7 janitor 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='3 receptionist 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='0 physician 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='7 assistant 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='0 manager 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='6 hairdressers 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='4 analyst 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='9 secretary 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='6 Table 1: Occupations statistics extracted from WinoBias and 2021 Labor Force Statistics from the Current Population Survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' We followed the same categorization policy in Zhao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' (2018) by the percent of people in the occupation who are reported as female.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' If female dominate the profession, predicting female and male tokens are referred to as “pro- stereotypical” and “anti-stereotypical”, and vice versa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' prompt with different knowledge and ask the models to com- plete the prompt by predicting the target word.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' The base prompts aim to test pre-trained language models in a natural setting without manipulating the parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' For the base prompts, we expect the model to predict the gender of the target word given either the female-dominated profession or the male-dominated profession.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Such as: The [target] works as a driver Base prompts are designed to provide the minimum in- formation to the models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' In a base prompt, there is a tar- get word that will be masked out and a background word such as “driver”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' The models will be asked to complete the masked target word using its internal representations, simi- lar to the “instinct” of humans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' As the scope of candidates is unrestricted, the models could generate tokens that are not gender-specific, we used a verbalizer to convert generated tokens into binary values of either “female” or “male”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' To test the mitigation ability of pre-trained language mod- els, we introduce counter-knowledge in the input prompts, and evaluate if the output of the models will be affected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Similarly, we use pro-knowledge in the input prompts to test if the stereotypes of the models will be enlarged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Both counter-knowledge and pro-knowledge have two forms: syntactic similar and semantic similar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Syntactic similar knowledge shares the same syntactic structure as the base prompts, while semantic similar knowledge does not share the same syntactic structure but the same meaning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Both forms of knowledge are designed to test what linguistic fea- tures the models are prone to use in mitigating stereotypi- cal representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Table 2 shows a detailed sample from the dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Overall, we are able to generate 2,680 prompts consisting of base prompts and knowledge-inserted prompts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Knowledge Construction We provide a data sample from our dataset to demonstrate our design in detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' As shown in table 2, a base prompt will be used to test the raw stereotypical representation within the models, followed by different knowledge-inserted prompts to test the mitigation ability of the models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Target syntactic similar and target semantic similar prompts are designed to enlarge the stereotypical representation within the models, so we expect to see relatively larger margins between the two gender groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' On the contrary, target counter syntac- tic, target counter semantic, background counter syntactic, and background counter semantic are designed to mitigate the internal stereotypical representation, therefore we expect lower margins between two gender groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Additionally, target neutral and target neutral background counter knowl- edge are designed to mitigate the stereotypes in a softer way, so we expect to see lower margins in a lower magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Last, to test the robustness of pre-trained language models, we insert unrelated knowledge that does not share similar syntactic structure and semantic meaning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Verbalizer Since we do not limit the vocabulary for the target word, it is necessary to have a verbalizer to convert the gener- ated tokens into binary values “female” and “male”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' First, we include a list of gender-specific tokens such as “mom” and “dad”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Then based on the model outputs, we categorize each token based on gender prevalence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Overall, we con- struct a verbalizer with 126 tokens stored as either “female- prevalent” or “male-prevalent” at a 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='5 ratio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Experiments In this section, we will provide details of the designed ex- periments, including baseline models, input representation, and evaluation method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Baseline Models We apply our tests to four different types of pre-trained lan- guage models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Except for ALBERT (Lan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' 2019), each type of model consists of two models with different size set- tings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' base The [target] works as a nurse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' target syntactic similar The woman worked as a nurse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' The [target] works as a nurse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' target semantic similar The nurse can be a female.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' The [target] works as a nurse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' target neutral The person worked as a nurse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' The [target] works as a nurse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' target counter syntactic similar The man worked as a nurse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' The [target] works as a nurse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' target counter semantic similar The nurse can be a male.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' The [target] works as a nurse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' background counter syntactic similar The woman worked as a doctor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' The [target] works as a nurse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' background counter semantic similar The doctor can be a female.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' The [target] works as a nurse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' target neutral background counter The person worked as a doctor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' The [target] works as a nurse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' unrelated The dog is in a chair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' The [target] works as a nurse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Table 2: A data sample from the dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Note that there will be multiple background counter syntactic similar, background counter semantic similar, and target neutral background counter knowledge for one base prompt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Each knowledge will ran- domly sample from either the “female-dominated” professions or the “male-dominated” professions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' BERT (Devlin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' 2018) We tested two variants of the uncased version of BERT: BERT-base and BERT-large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' ALBERT (Lan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' 2019) We tested one variant of the uncased version of ALBERT: ALBERT-base.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' RoBERTa (Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' 2019) We tested two variants of the uncased version of RoBERTa: RoBERTa-base and RoBERTa-large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' GPT-2 (Radford et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' 2019) We tested GPT2-medium and GPT2-large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Input Representation For both the base prompts and knowledge-inserted prompts, we append [CLS] token at the start of the sentence for BERT and ALBERT and for RoBERTa and GPT2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' The masked target work is replaced by [MASK] for BERT and ALBERT and for RoBERTa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' For knowledge- inserted prompts, two sentences are separated by a sepa- rator token [SEP] for BERT and ALBERT and for RoBERTa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' As GPT2 does not require masked tokens, we keep the base prompt unchanged as “The target works as a nurse”, and add an additional sentence after the base prompt: “The target is”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Evaluation Metrics Following prior work in pre-trained language models bias evaluation, we compare the probabilities of the modeling predicting “female-prevalent” tokens and “male-prevalent” tokens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' If the generated tokens using knowledge-inserted prompts also appear in those using base prompts, we cal- culate the relative probability using Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' 1: p(w|cknowledge) p(w|cbase) (1) where w is the generated target word, cknowledge is the knowledge-inserted prompt and cbase is the base prompt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Results and Discussion For this paper, we tested different pre-trained language mod- els and compare the top-k generated tokens where k varies from 3, 5, to 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' The corresponding results are shown in fig- ure 2, figure 3, and figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Among the base results, we found that all models have shown stereotypical representation towards either gender group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Additionally, adding unrelated knowledge to the base prompts does not change the stereotypical preference and shows that pre-trained language models have a certain amount of robustness against distractive knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Unlike BERT-based language models, we found that autoregressive language models, such as GPT2, do not benefit from intro- ducing neutral knowledge, for example target neutral.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' As we expect that neutral knowledge will mitigate the stereo- typical representation at a lower magnitude, the results of the GPT2 variants still show similar stereotypical represen- tations to those using base prompts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' On the other hand, BERT-based language models benefit from neutral knowl- edge, as all models show opposite preferences compared to using base prompts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' The results also indicate that different models have dif- ferent results using knowledge-inserted prompts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' There is no clear indication of what linguistic features BERT mod- els use.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Both BERT-base and BERT-large have been shown to be sensitive to target syntactic similar and background counter syntactic similar knowledge, but the stereotypical representation remains unchanged or conflicting when us- ing target semantic similar, target counter syntactic similar, target counter semantic similar, and background counter semantic similar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Similarly, GPT2 variants have conflict- ing results, leading to further experiments on other lin- guistic features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' However, ALBERT and RoBERTa have been shown to use syntactic information to mitigate stereo- typical representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Among the pro-knowledge prompts, the stereotypical preference of ALBERT is enhanced using target semantic similar knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' When using counter- knowledge prompts, ALBERT overturns its stereotypical preference except for target counter semantic similar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Simi- larly, RoBERTa variants enhance its stereotypical represen- tation using target syntactic similar and target semantic sim- ilar knowledge and overturn the stereotypical representation using background counter syntactic similar knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' The results of using target counter syntactic similar knowledge also support the conclusion, as the margin between two gen- der groups is smaller compared to using the base prompts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Overall, we found that both ALBERT and RoBERTa are prone to use syntactic structure and word position to pro- Figure 2: Top 3 generated tokens from tested pre-trained language models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Blue color indicates the probability of female predictions and the orange color is the probability of male predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' BERT-base BERT-large ALBERTFigure 3: Top 5 generated tokens from tested pre-trained language models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Blue color indicates the probability of female predictions and the orange color is the probability of male predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' BERT-base BERT-large ALBERTFigure 4: Top 10 generated tokens from tested pre-trained language models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Blue color indicates the probability of female predictions and the orange color is the probability of male predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' BERT-base BERT-large ALBERTcess the extra knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' This leads to a neutral method to interact with pre-trained language models, that is, using counter-knowledge with a similar syntactic structure as the input data for both prompting and finetuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Conclusion and Future Works In this paper, we presented a method to test the mitiga- tion ability of pre-trained language models using counterex- amples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Along with the method, we proposed a counter- knowledge dataset consisting of 2,680 prompts with data extracted from WinoBias and 2021 Labor Force Statistics from the Current Population Survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' We tested seven differ- ent pre-trained language models with our dataset and eval- uated the internal stereotypical representation by comparing female prediction probability and male prediction probabil- ity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Our results indicate that different pre-trained language models are prone to use different linguistic features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' BERT variants and GPT2 variants are not shown to use the extra knowledge to enhance or mitigate the internal stereotypi- cal representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' ALBERT and RoBERTa variants tend to use syntactic structure and word position to process the ex- tra knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Overall, when prompt or finetune pre-trained language models, it is prone to generate neutral outcomes by using counterexample knowledge that shares similar syntac- tic structure as the input data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' References Bolukbasi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Chang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Zou, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Saligrama, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' and Kalai, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Man is to computer programmer as woman is to homemaker?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' debiasing word embeddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Ad- vances in neural information processing systems 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Bordia, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=', and Bowman, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Identifying and re- ducing gender bias in word-level language models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' arXiv preprint arXiv:1904.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='03035.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' de Vassimon Manela, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Errington, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Fisher, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' van Breugel, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' and Minervini, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Stereotype and skew: Quantifying gender bias in pre-trained and fine-tuned lan- guage models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' In EACL 2021-16th Conference of the Euro- pean Chapter of the Association for Computational Linguis- tics, Proceedings of the Conference, 2232–2242.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Associa- tion for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Delobelle, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Tokpo, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Calders, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' and Berendt, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Measuring fairness with biased rulers: A comparative study on bias metrics for pre-trained language models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' In Proceed- ings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 1693–1706.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Devlin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Chang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Lee, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' and Toutanova, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Bert: Pre-training of deep bidirectional transformers for lan- guage understanding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' arXiv preprint arXiv:1810.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='04805.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Gonen, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=', and Goldberg, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Lipstick on a pig: Debiasing methods cover up systematic gender biases in word embeddings but do not remove them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' arXiv preprint arXiv:1903.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='03862.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Lan, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Chen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Goodman, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Gimpel, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Sharma, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' and Soricut, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Albert: A lite bert for self- supervised learning of language representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' arXiv preprint arXiv:1909.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='11942.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Ott, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Goyal, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Du, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Joshi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Chen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Levy, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Lewis, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Zettlemoyer, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' and Stoyanov, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Roberta: A robustly optimized bert pretraining approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' arXiv preprint arXiv:1907.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='11692.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Mao, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Liu, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' He, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Li, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' and Cambria, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' The biases of pre-trained language models: An empirical study on prompt-based sentiment analysis and emotion detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' IEEE Transactions on Affective Computing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Misra, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Ettinger, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' and Rayz, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Do language models learn typicality judgments from text?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' arXiv preprint arXiv:2105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='02987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Misra, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Rayz, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' and Ettinger, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Comps: Con- ceptual minimal pair sentences for testing property knowl- edge and inheritance in pre-trained language models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' arXiv preprint arXiv:2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='01963.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Nissim, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' van Noord, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' and van der Goot, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Fair is better than sensational: Man is to doctor as woman is to doctor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Computational Linguistics 46(2):487–497.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Pandia, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=', and Ettinger, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Sorting through the noise: Testing robustness of information processing in pre-trained language models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' arXiv preprint arXiv:2109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='12393.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Radford, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Wu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Child, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Luan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Amodei, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' and Sutskever, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Language models are unsupervised mul- titask learners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Ward, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=', and Grower, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Media and the develop- ment of gender role stereotypes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Annual Review of Develop- mental Psychology 2:177–199.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Zhang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=', and Rayz, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Examining stereotypes in news articles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' In The International FLAIRS Conference Pro- ceedings, volume 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Zhao, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Wang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Yatskar, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Ordonez, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' and Chang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='- W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' Gender bias in coreference resolution: Evaluation and debiasing methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content=' arXiv preprint arXiv:1804.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
+page_content='06876.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9E3T4oBgHgl3EQfJwmU/content/2301.04347v1.pdf'}
diff --git a/kdE2T4oBgHgl3EQfIgZc/vector_store/index.faiss b/kdE2T4oBgHgl3EQfIgZc/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..014539e42a437c755478c20dc32da761fb4e363b
--- /dev/null
+++ b/kdE2T4oBgHgl3EQfIgZc/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c889c01b44e783740318f182953d10b9a6e46dc725a47b84149370702fa3d9ec
+size 6815789
diff --git a/l9E1T4oBgHgl3EQf0wWx/content/tmp_files/2301.03461v1.pdf.txt b/l9E1T4oBgHgl3EQf0wWx/content/tmp_files/2301.03461v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..de15c4ac4b26b46fca21beb4ca681d84e4a477de
--- /dev/null
+++ b/l9E1T4oBgHgl3EQf0wWx/content/tmp_files/2301.03461v1.pdf.txt
@@ -0,0 +1,1327 @@
+DeMT: Deformable Mixer Transformer for Multi-Task Learning of Dense
+Prediction
+Yangyang Xu 1, Yibo Yang 3, Lefei Zhang 1,2*
+1 National Engineering Research Center for Multimedia Software, School of Computer Science, Wuhan University, China
+2 Hubei Luojia Laboratory, China
+3 JD Explore Academy, China
+{yangyangxu, zhanglefei}@whu.edu.cn, ibo@pku.edu.cn
+Abstract
+Convolution neural networks (CNNs) and Transformers have
+their own advantages and both have been widely used for
+dense prediction in multi-task learning (MTL). Most of the
+current studies on MTL solely rely on CNN or Transformer.
+In this work, we present a novel MTL model by com-
+bining both merits of deformable CNN and query-based
+Transformer for multi-task learning of dense prediction. Our
+method, named DeMT, is based on a simple and effec-
+tive encoder-decoder architecture (i.e., deformable mixer en-
+coder and task-aware transformer decoder). First, the de-
+formable mixer encoder contains two types of operators: the
+channel-aware mixing operator leveraged to allow communi-
+cation among different channels (i.e., efficient channel loca-
+tion mixing), and the spatial-aware deformable operator with
+deformable convolution applied to efficiently sample more
+informative spatial locations (i.e., deformed features). Sec-
+ond, the task-aware transformer decoder consists of the task
+interaction block and task query block. The former is ap-
+plied to capture task interaction features via self-attention.
+The latter leverages the deformed features and task-interacted
+features to generate the corresponding task-specific feature
+through a query-based Transformer for corresponding task
+predictions. Extensive experiments on two dense image pre-
+diction datasets, NYUD-v2 and PASCAL-Context, demon-
+strate that our model uses fewer GFLOPs and significantly
+outperforms current Transformer- and CNN-based competi-
+tive models on a variety of metrics. The code are available at
+https://github.com/yangyangxu0/DeMT.
+1
+Introduction
+Human vision capability is powerful and can perform dif-
+ferent tasks from one visual scene, such as classification,
+segmentation, recognition, etc. Therefore, multi-task learn-
+ing (MTL) research is topical in computer vision. We expect
+to develop a powerful vision model to do multiple tasks si-
+multaneously in different visual scenarios, and this model
+is expected to work efficiently. As shown in Figure 1, in
+this paper, we aim to develop a powerful vision model to
+learn multiple tasks, including semantic segmentation, hu-
+man parts segmentation, depth estimation, boundary detec-
+*Corresponding Author.
+Copyright © 2023, Association for the Advancement of Artificial
+Intelligence (www.aaai.org). All rights reserved.
+tion, saliency estimation, and normal estimation simultane-
+ously, and this model is expected to work efficiently.
+Recently, existing works (Liu, Johns, and Davison 2019;
+Vandenhende et al. 2020; Phillips et al. 2021; Ghiasi et al.
+2021; Bruggemann et al. 2021; Xu et al. 2022b; Bhat-
+tacharjee et al. 2022) have adopted CNN and Transformer
+technologies to advance the MTL of dense prediction. Al-
+though CNN-based MTL models are carefully proposed to
+achieve promising performance on the multi-task dense pre-
+diction task, these models still suffer from the limitations of
+convolutional operations, i.e., lacking global modeling and
+cross-task interaction capability. Some works (Bruggemann
+et al. 2021; Vandenhende et al. 2020) develop a distillation
+scheme to increase the expressiveness of the cross-task and
+global information passing via enlarging the receptive field
+and stacking multiple convolutional layers but still cannot
+build global dependency directly. For modeling global and
+cross-task interaction information, Transformer-based MTL
+models (Bhattacharjee et al. 2022; Xu et al. 2022b) utilize
+the efficient attention mechanism (Vaswani et al. 2017) for
+global modeling and task interactions. However, such a self-
+attention approach may fail to focus on task awareness fea-
+tures because the queries, keys and values are based on the
+same feature. Regular self-attention may lead to high com-
+putational costs and limit the ability to disentangle task-
+specific features.
+We can see that the CNN-based models better capture the
+multiple task context in a local field but suffer from a lack
+of global modeling and task interaction. The Transformer-
+based models better focus on global information of different
+tasks. However, they ignore task awareness and introduce
+many computation costs. Therefore, a technical challenge in
+developing a better MTL model is how to combine the mer-
+its of CNN-based and Transformer-based MTL models.
+To address the challenges, we introduce the Deformable
+Mixer Transformers (DeMT): a simple and effective method
+for multi-task dense prediction based on combining both
+merits of deformable CNN and query-based Transformer.
+Specifically, our DeMT consists of the deformable mixer
+encoder and task-aware transformer decoder. Motivated by
+the success of deformable convolutional networks (Zhu et al.
+2019) in vision tasks, our deformable mixer encoder learns
+different deformed features for each task based on more effi-
+cient sampling spatial locations and channel location mixing
+arXiv:2301.03461v1 [cs.CV] 9 Jan 2023
+
+(i.e., deformed feature). It learns multiple deformed features
+highlighting more informative regions with respect to the
+different tasks. In the task-aware transformer decoder, the
+multiple deformed features are fused and fed into our task
+interaction block. We use the fused feature to generate task-
+interacted features via a multi-head self-attention for model
+task interactions. To focus on the task awareness of each in-
+dividual task, we use deformed features directly as query to-
+kens. We expect the set of candidate key/value to be from
+task-interacted features. Then, our task query block tasks
+the deformed features and task-interacted features as input
+and generates the task awareness features. In this way, our
+deformable mixer encoder selects more valuable regions as
+deformed features to alleviate the lack of global modeling
+in CNN. The task-aware transformer decoder performs the
+task interactions by self-attention and enhances task aware-
+ness via a query-based Transformer. This design both re-
+duces computational costs and focuses on task awareness
+features. Through extensive experiments on several publicly
+MTL dense prediction datasets, we demonstrate that the pro-
+posed DeMT method achieves state-of-the-art results on a
+variety of metrics.
+The contributions of this paper are as follows: 1) We
+propose a simple and effective DeMT method for MTL of
+dense prediction via combining both merits of CNN and
+Transformer. Most importantly, our approach not only al-
+leviates the lack of global modeling in MTL models using
+CNNs but also avoids the lack of task awareness in MTL
+models using Transformers. 2) We introduce a deformable
+mixer transformer (DeMT) model which consists of the de-
+formable mixer encoder (Section 3.3) and task-aware trans-
+former decoder (Section 3.4). The deformable mixer en-
+coder produces the deformed features. The task-aware trans-
+former decoder uses the deformed features to model task in-
+teraction via a self-attention and focus on the task aware-
+ness features via a query-based transformer. 3) The exten-
+sive experiments on NYUD-v2 (Silberman et al. 2012) and
+PASCAL-Context (Chen et al. 2014) and visualization re-
+sults show the efficacy of our model. DeMT’s strong perfor-
+mance on MTL can demonstrate the benefits of combining
+the deformable CNN and query-based Transformer.
+2
+Related Work
+2.1
+Multi-Task Learning (MTL)
+MTL has dramatically evolved with the development of
+Deep Neural Networks and Vision Transformers. MTL
+tasks are mainly distributed in two aspects: model struc-
+tures (Bruggemann et al. 2021) and task loss weighting
+optimization (Liu et al. 2021a). In the vision domain, the
+core idea of MTL is to use a single model to predict se-
+mantic segmentation, human parts segmentation, depth, sur-
+face normal, boundary, etc., which is an interesting topic.
+MuST (Ghiasi et al. 2021) model uses the knowledge in
+independent specialized teacher models to train a general
+model for creating general visual representations. Several re-
+cent MTL frameworks follow different technologies: (Gao
+et al. 2019; Vandenhende et al. 2020) is CNN-based MTL
+model, (Bruggemann et al. 2021) is Neural Architecture
+Search (NAS)-based model and (Bhattacharjee et al. 2022;
+Xu et al. 2022b,a) are Transformer-based models. (Vanden-
+hende et al. 2021) states that the MTL structures in vi-
+sion tasks can be summarized into two categories: encoder-
+and decoder-focused architectures. Some encoder-focused
+works (Kendall, Gal, and Cipolla 2018; Chen et al. 2018)
+rely on a shared encoder to learn a general visual feature.
+The features from the shared encoder are input into the task-
+specific heads to perform the dense predictions for every
+task. The decoder-focused works (Gao et al. 2019; Zhang
+et al. 2019; Bruggemann et al. 2021) use a shared backbone
+network to extract a shared feature for each task. Then, the
+designed task-specific module captures valuable information
+from the shared feature. However, these MTL methods pri-
+marily focus on the shared feature, which is hard to disen-
+tangle the task-specific features.
+2.2
+Deformable CNNs and Transformers.
+Deformable CNNs. Deformable ConvNets (Dai et al. 2017;
+Zhu et al. 2019) harness the enriched modeling capability of
+CNNs (Yang et al. 2020) via deformable convolution and de-
+formable spatial locations. Deformable ConvNets is the first
+to achieve competitive results in vision tasks (e.g., object de-
+tection and semantic segmentation, etc.) using deformable
+convolution. Deformable transformers (Zhu et al. 2021; Xia
+et al. 2022) attend to a small set of crucial sampling points
+around a reference and capture more informative features.
+Transformers. Transformer and attention (Vaswani et al.
+2017) mechanism models were first employed in natural lan-
+guage processing (NLP) tasks with good performance. Re-
+cently, the transformer structures have also produced im-
+pressive results in computer vision and tend to replace CNN
+progressively. ViT (Dosovitskiy et al. 2021) is the first work
+to derive from the attention mechanism for computer vision
+tasks. More Transformer-based approaches (Carion et al.
+2020; Liu et al. 2021b; Ranftl, Bochkovskiy, and Koltun
+2021; Wang et al. 2021; Lan et al. 2022; Ru et al. 2022) have
+been introduced by improving the attention mechanism for
+dense prediction tasks. Recently, these works are also ex-
+tended to the MTL domain to learn good representations for
+multiple task predictions. In contrast, we find the deformed
+features to focus on the valuable region for different tasks. In
+addition, we use the query-based transformer approach for
+modeling and leverage deformed features as queries in trans-
+former calculations to enhance task-relevant features. These
+queries can naturally disentangle the task-specific feature
+from the fused feature. Our approach combines the respec-
+tive advantages of CNN and Transformer, achieving state-
+of-the-art on NYUD-v2 and PASCAL-Context datasets.
+3
+The DeMT Method
+3.1
+Overall Architecture
+We describe the overall framework of our architecture in
+Figure 1. DeMT is the result of a non-shared encoder-
+decoder procedure: First, we design a deformable mixer en-
+coder to encode task-specific spatial features for each task.
+Second, the task interaction block and task query block are
+
+Feature
+Extractor
+Image data
+𝓛seg
+𝓛depth
+𝓛normal
+𝓛bound
+Deformable
+Mixer
+Feature Map
+q
+k,v
+Deformable
+Mixer
+Deformable
+Mixer
+Deformable
+Mixer
+Task Query
+Block
+Task Query
+Block
+Task Query
+Block
+Task Query
+Block
+q
+k,v
+k,v
+k,v
+q
+q
+𝓛
+d: depth
+q: query
+: loss
+k: key
+v: value
+Task
+Interaction
+Block
+Head
+Head
+Head
+Head
+Deformable Mixer Encoder
+Task-aware Transformer Decoder
+×d
+×d
+×d
+×d
+x
+x: feature
+Figure 1: An overview of our model jointly handles multiple tasks with a unified encoder-decoder architecture. Our DeMT
+model consists of the deformable mixer encoder and task-aware transformer decoder. The depth d is the number of repetitions
+of the Deformable Mixer (ablation on the d in Table 3b).
+proposed to model the decode the task interaction informa-
+tion and decode task-specific features via self-attention. In
+the following section, we describe our task losses.
+3.2
+Feature Extractor
+The feature extractor is utilized to aggregate multi-scale fea-
+tures and manufacture a shared feature map for each task.
+The initial image data Xin ∈ RH×W ×3 (3 means image
+channel) is input to the backbone, which then generates four
+stages of image features. Then the four stage image fea-
+tures are up-sampled to the same resolution, and then they
+are concatenated along the channel dimension to obtain an
+image feature X ∈ R
+H
+4 × W
+4 ×C, where H, W, and C are the
+height, width, and channel of the image feature, respectively.
+3.3
+Deformable Mixer Encoder
+The motivation. Inspired by the success of the Deformable
+ConvNets (Zhu et al. 2019) and Deformable DETR mod-
+els (Zhu et al. 2021), we propose the deformable mixer en-
+coder that adaptively provides more efficient receptive fields
+and sampling spatial locations for each task. For this pur-
+pose, the deformable mixer encoder is designed to separate
+the mixing of spatial-aware deformable spatial features and
+channel-aware location features. As shown in Figure 2 (left),
+the spatial-aware deformable and channel-aware mixing op-
+erators are interleaved to enable interaction of both input
+feature dimensions (HW × C).
+Specifically, we propose a deformable mixer encoder to
+capture the unique receptive regions corresponding to the in-
+dividual task. The deformable mixer only attends to a small
+set of crucial sampling points which are learnable offset.
+The spatial-aware deformable is capable of modeling spa-
+tial context aggregation. Then the spatial-aware deformable,
+channel-aware mixing, and layer normalization operators
+are stacked to form one deformable mixer. The effect of the
+depth of the deformable mixer stack on the model is shown
+in the Table 3b ablation experiment.
+The deformable mixer encoder structure is shown in Fig-
+ure 2. First, a linear layer reduces the channel dimension of
+the image feature X ∈ R
+H
+4 × W
+4 ×C from C to a smaller di-
+mension C′. The linear layer can be written as follows:
+X = W · Norm(X),
+(1)
+where Norm means LayerNorm function. After the linear
+layer, we obtain a smaller dimension image feature map X ∈
+R
+H
+4 × W
+4 ×C′ as the input for the downstream.
+Channel-aware mixing. The channel-aware mixing allows
+communication between different channels. The channel-
+aware mixing applies the standard point-wise convolution
+(the convolving kernel is 1×1) to mix channel locations. It
+can be formulated as:
+XC′ =
+C′−1
+�
+C′=0
+W1 · XC′ + b,
+(2)
+where the W1 is the point-wise convolution weight. b is a
+learnable bias. Subsequently, we add GELU activation and
+BatchNorm as well. This operation is calculated as:
+XC′ = BN(σ(XC′)),
+(3)
+where σ(·) is the non-linearity function (GELU); BN is the
+BatchNorm operation.
+Spatial-aware deformable. Given the input image feature
+Xi,j ∈ R
+H
+4 × W
+4 ×C′ from Eq.(3), the point (i, j) is the spatial
+location on the single channel.
+
+口Task-query
+MHSA
+Deformable
+Mixer
+Deformable
+Mixer
+Task Query
+Block
+Task Interaction
+Block
+MHSA
+(q=xq, k=xf, v=xf)
+LN
+LN
+sMLP
+MHSA
+(q=xf, k=xf, v=xf)
+xq
+xq
+1
+2
+1
+x: H/4×W/4×C
+xq
+xq
+1
+2
+xf (2N×C’)
+xf
+xf
+xq
+1
+Deformed Feature: xq
+1 , xq
+2
+Feature
+Map: x
+xq
+1
+xq
+2
+xf
+Reshape
+Concat
+sMLP
+Deformable Mixer Encoder
+Task-aware Transformer Decoder
+Linear
+Reshape
+x1
+x2
+̂
+̂
+T
+T
+T
+T
+(N×C’)
+(N×C’)
+(2N×C’)
+(H/4×W/4×C’)
+GELU & BN
+Channel-aware
+Mixing
+Spatial-aware
+Deformable
+GELU & BN
+̂
+̂
+̂
+̂
+̂
+Figure 2: Illustration of our DeMT components. For sim-
+plicity, we assume there are two tasks (T=2) in this figure.
+Small MLP (sMLP) only consists of Linear and LayerNorm
+functions.
+To generate the relative offsets with respect to the refer-
+ence point, the image feature XC′ is fed to the convolution
+operator to learn the corresponding offsets ∆(i,j) for all ref-
+erence points. For each location point (i, j) on the image
+feature X, the spatial deformable can be written as:
+DS(Xi,j) =
+C′−1
+�
+C′=0
+W2 · X((i, j) + ∆(i,j), C′),
+(4)
+where the W2 is a deformable weight. The ∆(i,j) is the
+learnable offset. The spatial-aware deformable is followed
+by a GELU activation, BatchNorm, and residual connection:
+Xq = Reshape(XC′ + BN(σ(DS(Xi,j)))),
+(5)
+where the Reshape is applied to flatten the feature Xq ∈
+R
+H
+4 × W
+4 ×C′ to a sequence RN×C′ (N =
+H
+4 × W
+4 ). When
+there are T tasks, the deformable mixer encoder generate a
+feature set (X1
+q , X2
+q , · · · XT
+q ) (T means task number) (See
+Figure 2). These output task-specific features are learned by
+a deformable mixer that we refer to as deformed features,
+which we add to the input of the downstream blocks (task
+interaction block and task query block).
+3.4
+Task-aware Transformer Decoder
+In the task-aware transformer decoder, we design the task
+interaction block and task query block (See Figure 2). It is
+important for MTL to consider task interactions. Thus, we
+propose a task interaction block to capture the task inter-
+actions at every task via an attention mechanism. Each task
+interaction block is composed of two parts, i.e., a multi-head
+self-attention module (MHSA) and a small Multi-Layer Per-
+ceptron (sMLP). The downstream task query block also con-
+sists of the MHSA and the sMLP. The difference between
+the task interaction block and the task query block is that
+their query features are fundamentally different. The feature
+is projected into the queries (Q), keys (K) and values (V) of
+dimension dk and self attention is being computed by the Q,
+K and V. The self-attention operator is calculated as:
+MHSA(Q, K, V ) = softmax(QKT
+√dk
+)V,
+(6)
+where Q ∈ RN×C′, K ∈ RN×C′ and V ∈ RN×C′ are the
+query, key and value matrices; MHSA(Q, K, V ) ∈ RN×C′.
+Task interaction block. As illustrated in Figure 2 (cen-
+ter), We first concatenate the deformed features from the de-
+formable mixer encoder output.
+Xf = Concat(X1
+q , X2
+q , · · · XT
+q ),
+(7)
+where Xf ∈ RT N×C′ is the fused feature. The T means
+task number in XT
+q ∈ RN×C′. Then, for efficient task in-
+teraction, we construct a self-attention strategy via the fused
+feature Xf:
+X′
+f = MHSA(Q = LN(Xf), K = LN(Xf), V = LN(Xf)),
+(8)
+ˆXf = sMLP(X′
+f),
+(9)
+where ˆXf ∈ RT N×C′ is the task-interacted feature. LN
+means LayerNorm function. sMLP consists of a linear layer
+and a LayerNorm.
+Task query block. As illustrated in Figure 2 (right), we
+take the deformed feature Xq as task query and the task-
+interacted feature ˆXf as key & value to MHSA. The de-
+formed feature is applied as a query in MHSA to decode the
+task awareness feature from the task-interacted feature for
+each task prediction. We first apply the LayerNorm in paral-
+lel to generate queries Q, keys K and values V :
+ˆQ = LN(Xq),
+ˆK = LN( ˆXf),
+ˆV = LN( ˆXf),
+(10)
+where LN is the layer normalization. Xq and ˆXf are the out-
+put of deformable mixer encoder and task interaction block,
+respectively. Then, the task query block operation using a
+MHSA is calculated as:
+ˆXq = MHSA( ˆQ, ˆK, ˆV ),
+(11)
+ˆX = Reshape(Xq + sMLP( ˆXq)),
+(12)
+where the residual feature Xq comes from Eq. (5). The
+task awareness feature ˆX ∈ R
+H
+4 × W
+4 ×C′ is reshaped from
+RN×C′ (N = H
+4 × W
+4 ) via Reshape operation.
+3.5
+Loss Function
+For balancing the loss contribution for each task, we set the
+weight αt to decide the loss contribution for the task t. A
+weighted sum Ltotal of task-specific losses:
+Ltotal =
+T
+�
+t=1
+αtLt,
+(13)
+where the Lt is a loss function for task t. For fair compar-
+isons, we use αt and Lt consistent with ATRC (Bruggemann
+et al. 2021) and MQTransformer (Xu et al. 2022b).
+
+Table 1: Comparison of the MTL models with state-of-the-art on NYUD-v2 dataset. The notation ’↓’: lower is better. The
+notation ’↑’: higher is better. ∆m denotes average per-task performance drop. ”Params” denotes parameters.
+Model
+Backbone
+Params
+GFLOPs
+SemSeg
+Depth
+Normal
+Bound
+∆m[%]↑
+(M)
+(G)
+(IoU)↑
+(rmse)↓
+(mErr)↓
+(odsF)↑
+single task baseline
+HRNet18
+16.09
+40.93
+38.02
+0.6104
+20.94
+76.22
+0.00
+multi-task baseline
+HRNet18
+4.52
+17.59
+36.35
+0.6284
+21.02
+76.36
+-1.89
+Cross-Stitch(Misra et al. 2016)
+HRNet18
+4.52
+17.59
+36.34
+0.6290
+20.88
+76.38
+-1.75
+Pad-Net(Xu et al. 2018)
+HRNet18
+5.02
+25.18
+36.70
+0.6264
+20.85
+76.50
+-1.33
+PAP(Zhang et al. 2019)
+HRNet18
+4.54
+53.04
+36.72
+0.6178
+20.82
+76.42
+-0.95
+PSD(Ling et al. 2020)
+HRNet18
+4.71
+21.10
+36.69
+0.6246
+20.87
+76.42
+-1.30
+NDDR-CNN(Gao et al. 2019)
+HRNet18
+4.59
+18.68
+36.72
+0.6288
+20.89
+76.32
+-1.51
+MTI-Net(Vandenhende et al. 2020)
+HRNet18
+12.56
+19.14
+36.61
+0.6270
+20.85
+76.38
+-1.44
+ATRC(Bruggemann et al. 2021)
+HRNet18
+5.06
+25.76
+38.90
+0.6010
+20.48
+76.34
+1.56
+DeMT (Ours)
+HRNet18
+4.76
+22.07
+39.18
+0.5922
+20.21
+76.40
+2.37
+single task baseline
+Swin-T
+115.08
+161.25
+38.02
+0.6104
+20.94
+76.22
+0.00
+multi-task baseline
+Swin-T
+32.50
+96.29
+38.78
+0.6312
+21.05
+75.60
+-3.74
+MQTransformer(Xu et al. 2022b)
+Swin-T
+35.35
+106.02
+43.61
+0.5979
+20.05
+76.20
+0.31
+DeMT (Ours)
+Swin-T
+32.07
+100.70
+46.36
+0.5871
+20.65
+76.90
+3.36
+single task baseline
+Swin-S
+200.33
+242.63
+48.92
+0.5804
+20.94
+77.20
+0.00
+multi-task baseline
+Swin-S
+53.82
+116.63
+47.90
+0.6053
+21.17
+76.90
+-1.96
+MQTransformer(Xu et al. 2022b)
+Swin-S
+56.67
+126.37
+49.18
+0.5785
+20.81
+77.00
+1.59
+DeMT (Ours)
+Swin-S
+53.03
+121.05
+51.50
+0.5474
+20.02
+78.10
+4.12
+4
+Experiment
+In this section, we conduct extensive experiments on two
+widely-used dense prediction datasets to evaluate the per-
+formance of our method on different metrics. We also show
+the visualization results on different datasets.
+4.1
+Experimental Setup
+Implementation. All the leveraged backbones generate four
+scales (1/4, 1/8, 1/16, 1/32) features to perform multi-scale
+aggregation in our feature extractor (Section 3.2). We train
+our model with SGD setting the learning rate to 10−3 and
+weight decay to 5 × 10−4. The whole experiments are per-
+formed with pre-trained models on ImageNet. All our ex-
+periments are performed on the Pytorch platform with eight
+A100 SXM4 40GB GPUs.
+Datasets. We conduct experiments on two publicly ac-
+cessible datasets, NYUD-v2 (Silberman et al. 2012) and
+PASCAL-Context (Chen et al. 2014). NYUD-V2 is com-
+prised of pairs of RGB and Depth frames that 795 images
+are used for training and 654 images for testing. NYUD-V2
+usually is mainly adopted for semantic segmentation (‘Sem-
+Seg’), depth estimation (‘Depth’), surface normal estimation
+(‘Normal’), and boundary detection (‘Bound’) tasks by pro-
+viding dense labels for every image. PASCAL-Context train-
+ing and validation contain 10103 images, while testing con-
+tains 9637 images. PASCAL-Context usually is adopted for
+semantic segmentation (’SemSeg’), human parts segmenta-
+tion (’PartSeg’), saliency estimation (’Sal’), surface normal
+estimation (’Normal’), and boundary detection (’Bound’)
+tasks by providing annotations for the whole scene.
+Metrics. We adopt five evaluation metrics to compare our
+model with other prior multi-task models: mean Intersec-
+tion over Union (mIoU), root mean square error (rmse),
+mean Error (mErr), optimal dataset scale F-measure (odsF),
+and maximum F-measure (maxF). The average per-task per-
+formance drop (∆m) is used to quantify multi-task perfor-
+mance. ∆m =
+1
+T
+�T
+i=1(Fm,i − Fs,i)/Fs,i × 100%, where
+m, s and T mean multi-task model, single task baseline and
+task numbers. ∆m: the higher is the better.
+Backbones. We test our method using several CNN and
+Vision Transformer backbones: HRNetV2-W18-small (HR-
+Net18), HRNetV2-W48 (HRNet48) (Sun et al. 2019), Swin-
+Tiny (Swin-T), Swin-Small (Swin-S) and Swin-Base (Swin-
+B) (Liu et al. 2021b).
+4.2
+Comparison with the state-of-the-art
+We compare our model with CNN-based and Transformer-
+based models to show the advantages of our method.
+NYUD-v2. The Comparisons with state-of-the-art models
+on the NYUD-v2 dataset are shown in Table 1. We first
+report results comparison with three different backbones:
+HRNet18, Swin-T, and Swin-S. We demonstrate simulta-
+neous performance improvements over prior work in hav-
+ing smaller parameters, a smaller number of GFLOPs, and
+better semantic segmentation, depth estimation, surface nor-
+mal and boundary detection accuracies. For example, a per-
+formance comparison between MQTransformer and DeMT
+proves the effectiveness of our framework. Besides this,
+DeMT also consistently outperforms previous state-of-the-
+art Transformer-based models, such as ATRC (Bruggemann
+et al. 2021) and MQTransformer (Xu et al. 2022b). In addi-
+tion, we also observe that using a transformer as a backbone
+model is more promising compared to CNN as the back-
+bone. Because Transformer-based and CNN-based models
+use similar GFLOPs, the former shows higher accuracy in all
+metrics. Our DeMT obtains 46.36 SemSeg accuracy, which
+is 6.3% higher than that of MQTransformer with the same
+Swin-T backbone and slightly lower FLOPs (100.7G vs.
+106.02G). MuIT (Bhattacharjee et al. 2022) reports a 13.3%
+and 8.54% increase in relative performance for semantic
+
+Table 2: Comparison of the MTL models with state-of-the-art on PASCAL-Context dataset. The notation ‘↓’: lower is better.
+The notation ‘↑’: higher is better. ∆m denotes average per-task performance drop (the higher is the better).
+Model
+Backbone
+SemSeg
+PartSeg
+Sal
+Normal
+Bound
+∆m[%]↑
+(IoU)↑
+(IoU)↑
+(maxF)↑
+(mErr)↓
+(odsF)↑
+single task baseline
+HRNet18
+62.23
+61.66
+85.08
+13.69
+73.06
+0.00
+multi-task baseline
+HRNet18
+51.48
+57.23
+83.43
+14.10
+69.76
+-6.77
+PAD-Net (Xu et al. 2018)
+HRNet18
+53.60
+59.60
+65.80
+15.3
+72.50
+-4.41
+ATRC (Bruggemann et al. 2021)
+HRNet18
+57.89
+57.33
+83.77
+13.99
+69.74
+-4.45
+MQTransformer(Xu et al. 2022b)
+HRNet18
+58.91
+57.43
+83.78
+14.17
+69.80
+-4.20
+DeMT (Ours)
+HRNet18
+59.23
+57.93
+83.93
+14.02
+69.80
+-3.79
+single task baseline
+Swin-T
+67.81
+56.32
+82.18
+14.81
+70.90
+0.00
+multi-task baseline
+Swin-T
+64.74
+53.25
+76.88
+15.86
+69.00
+-3.23
+MQTransformer(Xu et al. 2022b)
+Swin-T
+68.24
+57.05
+83.40
+14.56
+71.10
+1.07
+DeMT (Ours)
+Swin-T
+69.71
+57.18
+82.63
+14.56
+71.20
+1.75
+single task baseline
+Swin-S
+70.83
+59.71
+82.64
+15.13
+71.20
+0.00
+multi-task baseline
+Swin-S
+68.10
+56.20
+80.64
+16.09
+70.20
+-3.97
+MQTransformer(Xu et al. 2022b)
+Swin-S
+71.25
+60.11
+84.05
+14.74
+71.80
+1.27
+DeMT (Ours)
+Swin-S
+72.01
+58.96
+83.20
+14.57
+72.10
+1.36
+single task baseline
+Swin-B
+74.91
+62.13
+82.35
+14.83
+73.30
+0.00
+multi-task baseline
+Swin-B
+73.83
+60.59
+80.75
+16.35
+71.10
+-3.81
+DeMT (Ours)
+Swin-B
+75.33
+63.11
+83.42
+14.54
+73.20
+1.04
+segmentation and depth tasks. While we have a 14.74% and
+9.43% increase. The comparison results show our model
+also achieves good performance, evaluating the flexibility of
+our model. By comparison, our DeMT achieves new records
+on the NYUD-v2, which are remarkably superior to previ-
+ous CNNs and Transformers models in terms of all metrics.
+PASCAL-Context. We also evaluate the proposed DeMT
+on PASCAL-Context with three backbones: HRNet18,
+Swin-T, Swin-S, and Swin-B. Table 2 shows the compar-
+ison results. Our model obtains significantly better results
+when compared with the baseline and other models. For ex-
+ample, DeMT improves MQTransformer (Xu et al. 2022b)
+with the same Swin-T backbone by 1.47 point in SemSeg.
+Our DeMT achieves the best performance among models on
+several metrics and can reach a high performance of 75.33
+in the SemSeg task.
+4.3
+Ablation Studies
+We ablate DeMT to understand the contribution of each
+component and setting using Swin-T on NYUD-v2 dataset.
+Ablation on modules. The DeMT model consists of three
+components: deformable mixer, task interaction, and task
+query blocks. As shown in Table 3a, we demonstrate the
+advantages of the deformable mixer, task interaction, and
+task query blocks. We observe that task interaction block has
+more effect on the performance, and it is essential to inter-
+act the whole task features for task interaction information.
+This indicates that task interaction and task query blocks are
+essential to the task-aware transformer decoder. From the
+Figure 4 and Table 3a it can be observed that different com-
+ponents are playing a beneficial role.
+Ablation on the depths d. As shown in Figure 2, the depth
+d is the number of repetitions of the deformable mixer. We
+add the d to analyze the effect of the depth of the deformable
+mixer on the DeMT model. In Table 3b, We vary the number
+of used deformable mixer depth (e.g., 1, 2, 4, 8) and com-
+pare their performances. Comparing the first to last row in
+Table 3b, we observe the best performance when the depth
+is set to 4. However, as increasing the depth, the parameters
+and GFLOPs also become more extensive. Practically, we
+choose a depth d = 1 for all models in this paper.
+Ablation on scales. We explore the influence of using differ-
+ent scale features. The backbone outputs four-scale (1/4, 1/8,
+1/16, 1/32) features. Table 3c shows the influence of using a
+different number of scales. Note that the model performance
+increases obviously with the increasing number of scales.
+Our method can capture valuable semantic information for
+multiple tasks. Practically, we choose four-scale features for
+all models in this paper.
+Ablation on backbones. Table 3d shows the results using
+the different backbones. To deeper explore the capacity of
+the our DeMT, we employ extensive backbones to conduct
+the ablation experiment. It is worth noting that our DeMT
+leads to the best performance on all metrics when using
+Swin-B on NYUD-v2. In addition, we also observe the in-
+spiring fact that using a larger transformer backbone can eas-
+ily reach top-tier performance. The different backbones are
+compared to demonstrate the generalization of our method.
+4.4
+Visualization
+To deeper understand our DeMT model, we visualize the
+multiple task predictions. We show the qualitative results in
+different dimensions. For visual analysis (see Figure 3 and
+Figure 4), we employ a trained model with Swin-T. Fig-
+ure 3 shows the capability of DeMT with Swin-T backbone
+to perform dense predictions with strong expressive power
+and successfully capture the task-specific features. As il-
+lustrated in Figure 3 (last two rows), the second and third
+columns focus mainly on specific semantics such as human,
+animal, and other objects. Figure 4 showcases the impact
+of our approach using different components: while only the
+deformable mixer encoder fails to visualize some objects,
+
+Table 3: Ablation studies and analysis on NYUD-v2 dataset using a Swin-T backbone. Deformable mixer (DM), task interaction
+(TI) block, and task query (TQ) block are the parts of our model. HR48 denotes HRNet48. The notation ‘↓’: lower is better.
+The notation ‘↑’: higher is better. The w/ indicates ”with”.
+(a) Ablation on components
+Model
+SemSeg
+Depth
+Normal
+Bound
+(IoU)↑
+(rmse)↓
+(mErr)↓
+(odsF)↑
+baseline
+38.78
+0.6312
+21.05
+75.6
+w/ DM
+42.40
+0.6069
+20.83
+76.2
+w/ DM+TI
+44.44
+0.5969
+20.75
+76.4
+w/ DM+TI+TQ
+46.36
+0.5871
+20.65
+76.9
+(b) Ablation on the depths (d)
+d
+SemSeg
+Depth
+Normal
+Bound
+(IoU)↑
+(rmse)↓
+(mErr)↓
+(odsF)↑
+1
+46.36
+0.5871
+20.65
+76.9
+2
+46.90
+0.5622
+20.05
+77.0
+4
+47.71
+0.5613
+19.90
+77.1
+8
+47.16
+0.5518
+19.87
+77.1
+(c) Ablation on scales
+Scale
+SemSeg
+Depth
+Normal
+Bound
+(IoU)↑
+(rmse)↓
+(mErr)↓
+(odsF)↑
+1/4
+7.51
+1.1961
+33.26
+66.1
+1/4, 1/8
+12.85
+1.0433
+27.66
+70.4
+1/4, 1/8, 1/16
+40.32
+0.6966
+21.44
+76.3
+1/4, 1/8, 1/16, 1/32
+46.36
+0.5871
+20.65
+76.9
+(d) Ablation on backbones
+Backbone
+SemSeg
+Depth
+Normal
+Bound
+(IoU)↑
+(rmse)↓
+(mErr)↓
+(odsF)↑
+HR48 baseline
+41.96
+0.5543
+20.36
+77.6
+HR48 w/ ours
+43.84
+0.5517
+19.88
+77.7
+Swin-B baseline
+51.44
+0.5813
+20.44
+77.0
+Swin-B w/ ours
+54.34
+0.5209
+19.21
+78.5
+SemSeg
+Normal
+Depth
+Input Image
+SemSeg
+Normal
+Saliency
+Human Parts
+Input Image
+PASCAL-Context
+NYUD-v2
+Boundary
+Boundary
+Figure 3: The first two rows of the visualization illustrate two ex-
+amples from the NYUD-v2. The last two rows of the visualization
+illustrate two examples from the PASCAL-Context.
+the third row shows DeMT’s improvements to multiple task
+predictions. Note that we not only report these results for
+qualitative understanding of the model but also evaluate it
+quantitatively in Table 3a. We compared the prediction re-
+sults of the DeMT model with the ATRC (Figure 4 last row),
+and our results are significantly better than ATRC, especially
+on SemSeg and Human Parts tasks. Our DeMT model pro-
+duces higher-quality predictions than both the Swin baseline
+and the existing CNN-based MTL model.
+5
+Conclusion
+In this work, we introduce DeMT, a simple and effective
+method that leverages the combination of both merits of de-
+SemSeg
+Boundary
+Normal
+Saliency
+Human Parts
+Input Image
+Baseline+DM
++DM+TI
+DeMT
+ATRC
+Figure 4: Qualitative analysis of the components on PASCAL-
+Context. Visualizations show the components in Table 3a. The last
+row shows the ATRC model visualization results as a comparison.
+formable CNN and query-based Transformer for multi-task
+learning of dense prediction. Significantly, the deformed fea-
+ture produced by the deformable mixer encoder is lever-
+aged as a task query in the task-aware transformer decoder
+to disentangle task-specific features. Extensive experiments
+on dense prediction datasets (i, e., NYUD-v2 and PASCAL-
+Context) validate the effectiveness of our DeMT model.
+Limitations and future work. This work only uses a naive
+operation to aggregate multi-scale features and could be fur-
+ther improved in two aspects: considering using the FPN or
+FPN variant to aggregate multi-scale features and how to de-
+sign flexible attention to learn more valuable information.
+
+Acknowledgements
+This work was done when Yangyang Xu was a research in-
+tern at JD Explore Academy. This work was supported by
+the National Natural Science Foundation of China under
+Grants 62122060, 62076188, and the Special Fund of Hubei
+Luojia Laboratory under Grant 220100014.
+References
+Bhattacharjee, D.; Zhang, T.; S¨usstrunk, S.; and Salzmann,
+M. 2022. MulT: An End-to-End Multitask Learning Trans-
+former. In CVPR, 12031–12041.
+Bruggemann, D.; Kanakis, M.; Obukhov, A.; Georgoulis,
+S.; and Gool., L. V. 2021. Exploring relational context for
+multi-task dense prediction. In ICCV, 15869–15878.
+Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov,
+A.; and Zagoruyko, S. 2020. End-to-end object detection
+with transformers. In ECCV, 213–229.
+Chen, X.; Mottaghi, R.; Liu, X.; Fidler, S.; Urtasun, R.; and
+Yuille, A. 2014. Detect what you can: Detecting and rep-
+resenting objects using holistic models and body parts. In
+CVPR, 1971–1978.
+Chen, Z.; Badrinarayanan, V.; Lee, C.-Y.; and Rabinovich,
+A. 2018.
+Gradnorm: Gradient normalization for adaptive
+loss balancing in deep multitask networks. In ICML, 794–
+803.
+Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; and
+Wei, Y. 2017. Deformable convolutional networks. In ICCV,
+764–773.
+Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
+D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;
+Heigold, G.; Gelly, S.; Uszkoreit, J.; and Houlsby, N. 2021.
+An Image is Worth 16x16 Words: Transformers for Image
+Recognition at Scale. In ICLR.
+Gao, Y.; Ma, J.; Zhao, M.; Liu, W.; and Yuille, A. L. 2019.
+Nddr-cnn: Layerwise feature fusing in multi-task cnns by
+neural discriminative dimensionality reduction. In CVPR,
+3205–3214.
+Ghiasi, G.; Zoph, B.; Cubuk, E. D.; Le, Q. V.; and Lin, T.-Y.
+2021. Multi-Task Self-Training for Learning General Rep-
+resentations. In ICCV, 8856–8865.
+Kendall, A.; Gal, Y.; and Cipolla, R. 2018. Multi-task learn-
+ing using uncertainty to weigh losses for scene geometry and
+semantics. In CVPR, 7482–7491.
+Lan, M.; Zhang, J.; He, F.; and Zhang, L. 2022. Siamese
+Network with Interactive Transformer for Video Object Seg-
+mentation. In AAAI, 1228–1236.
+Ling, Z.; Zhen, C.; Chunyan, X.; Zhenyu, Z.; Chaoqun, W.;
+Tong, Z.; and Jian, Y. 2020. Pattern-Structure Diffusion for
+Multi-Task Learning. In CVPR, 4514–4523.
+Liu, L.; Li, Y.; Kuang, Z.; Xue, J.; Chen, Y.; Yang, W.; Liao,
+Q.; and Zhang, W. 2021a.
+Towards impartial multi-task
+learning. In ICLR.
+Liu, S.; Johns, E.; and Davison, A. J. 2019.
+End-to-end
+multi-task learning with attention. In CVPR, 1871–1880.
+Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin,
+S.; and Guo, B. 2021b. Swin Transformer: Hierarchical Vi-
+sion Transformer using Shifted Windows. In ICCV, 10012–
+10022.
+Misra, I.; Shrivastava, A.; Gupta, A.; and Hebert, M. 2016.
+Cross-stitch networks for multi-task learning.
+In CVPR,
+3994–4003.
+Phillips, J.; Martinez, J.; Bˆarsan, I. A.; Casas, S.; Sadat, A.;
+and Urtasun, R. 2021. Deep multi-task learning for joint
+localization, perception, and prediction. In CVPR, 4679–
+4689.
+Ranftl, R.; Bochkovskiy, A.; and Koltun, V. 2021. Vision
+transformers for dense prediction. In CVPR, 12179–12188.
+Ru, L.; Zhan, Y.; Yu, B.; and Du, B. 2022. Learning Affinity
+from Attention: End-to-End Weakly-Supervised Semantic
+Segmentation with Transformers. In CVPR, 16846–16855.
+Silberman, N.; Hoiem, D.; Kohli, P.; and Fergus, R. 2012.
+Indoor segmentation and support inference from rgbd im-
+ages. In ECCV, 746–760.
+Sun, K.; Xiao, B.; Liu, D.; and Wang, J. 2019. Deep High-
+Resolution Representation Learning for Human Pose Esti-
+mation. In CVPR, 5693–5703.
+Vandenhende, S.; Georgoulis, S.; Gansbeke, W. V.; Proes-
+mans, M.; Dai, D.; and Gool, L. V. 2021. Multi-Task Learn-
+ing for Dense Prediction Tasks: A Survey. IEEE TPAMI.
+Vandenhende, S.; Georgoulis, S.; Van Gool, L.; and
+Van Gool, L. 2020. Mti-net: Multi-scale task interaction net-
+works for multi-task learning. In ECCV, 527–543.
+Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
+L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
+tention is all you need. NeurIPS.
+Wang, W.; Xie, E.; Li, X.; Fan, D.-P.; Song, K.; Liang, D.;
+Lu, T.; Luo, P.; and Shao, L. 2021. Pyramid Vision Trans-
+former: A Versatile Backbone for Dense Prediction Without
+Convolutions. In ICCV, 568–578.
+Xia, Z.; Pan, X.; Song, S.; Li, L. E.; and Huang, G. 2022. Vi-
+sion transformer with deformable attention. In CVPR, 4794–
+4803.
+Xu, D.; Ouyang, W.; Wang, X.; and Sebe, N. 2018. Pad-
+net: Multi-tasks guided prediction-and-distillation network
+for simultaneous depth estimation and scene parsing.
+In
+CVPR, 675–684.
+Xu, X.; Zhao, H.; Vineet, V.; Lim, S.-N.; and Torralba, A.
+2022a.
+MTFormer: Multi-task Learning via Transformer
+and Cross-Task Reasoning. In ECCV, 304–321.
+Xu, Y.; Li, X.; Yuan, H.; Yang, Y.; Zhang, J.; Tong,
+Y.; Zhang, L.; and Tao, D. 2022b.
+Multi-Task Learning
+with Multi-query Transformer for Dense Prediction. arXiv
+preprint arXiv:2205.14354.
+Yang, Y.; Li, H.; Li, X.; Zhao, Q.; Wu, J.; and Lin, Z. 2020.
+Sognet: Scene overlap graph network for panoptic segmen-
+tation. In AAAI.
+Zhang, Z.; Cui, Z.; Xu, C.; Yan, Y.; Sebe, N.; and Yang, J.
+2019.
+Pattern-affinitive propagation across depth, surface
+normal and semantic segmentation. In CVPR, 4106–4115.
+
+Zhu, X.; Hu, H.; Lin, S.; and Dai, J. 2019. Deformable con-
+vnets v2: More deformable, better results. In CVPR, 9308–
+9316.
+Zhu, X.; Su, W.; Lu, L.; Li, B.; Wang, X.; and Dai, J. 2021.
+Deformable DETR: Deformable Transformers for End-to-
+End Object Detection. In ICLR.
+
diff --git a/l9E1T4oBgHgl3EQf0wWx/content/tmp_files/load_file.txt b/l9E1T4oBgHgl3EQf0wWx/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..854818af8dacb8c6a67aa97340c10a6cc495cd40
--- /dev/null
+++ b/l9E1T4oBgHgl3EQf0wWx/content/tmp_files/load_file.txt
@@ -0,0 +1,1135 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf,len=1134
+page_content='DeMT: Deformable Mixer Transformer for Multi-Task Learning of Dense Prediction Yangyang Xu 1, Yibo Yang 3, Lefei Zhang 1,2* 1 National Engineering Research Center for Multimedia Software, School of Computer Science, Wuhan University, China 2 Hubei Luojia Laboratory, China 3 JD Explore Academy, China {yangyangxu, zhanglefei}@whu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='cn, ibo@pku.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='cn Abstract Convolution neural networks (CNNs) and Transformers have their own advantages and both have been widely used for dense prediction in multi-task learning (MTL).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Most of the current studies on MTL solely rely on CNN or Transformer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' In this work, we present a novel MTL model by com- bining both merits of deformable CNN and query-based Transformer for multi-task learning of dense prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Our method, named DeMT, is based on a simple and effec- tive encoder-decoder architecture (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=', deformable mixer en- coder and task-aware transformer decoder).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' First, the de- formable mixer encoder contains two types of operators: the channel-aware mixing operator leveraged to allow communi- cation among different channels (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=', efficient channel loca- tion mixing), and the spatial-aware deformable operator with deformable convolution applied to efficiently sample more informative spatial locations (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=', deformed features).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Sec- ond, the task-aware transformer decoder consists of the task interaction block and task query block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The former is ap- plied to capture task interaction features via self-attention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The latter leverages the deformed features and task-interacted features to generate the corresponding task-specific feature through a query-based Transformer for corresponding task predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Extensive experiments on two dense image pre- diction datasets, NYUD-v2 and PASCAL-Context, demon- strate that our model uses fewer GFLOPs and significantly outperforms current Transformer- and CNN-based competi- tive models on a variety of metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The code are available at https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='com/yangyangxu0/DeMT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 1 Introduction Human vision capability is powerful and can perform dif- ferent tasks from one visual scene, such as classification, segmentation, recognition, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Therefore, multi-task learn- ing (MTL) research is topical in computer vision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' We expect to develop a powerful vision model to do multiple tasks si- multaneously in different visual scenarios, and this model is expected to work efficiently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' As shown in Figure 1, in this paper, we aim to develop a powerful vision model to learn multiple tasks, including semantic segmentation, hu- man parts segmentation, depth estimation, boundary detec- Corresponding Author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Copyright © 2023, Association for the Advancement of Artificial Intelligence (www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='aaai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='org).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' All rights reserved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' tion, saliency estimation, and normal estimation simultane- ously, and this model is expected to work efficiently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Recently, existing works (Liu, Johns, and Davison 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Vandenhende et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Phillips et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Ghiasi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Bruggemann et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Xu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2022b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Bhat- tacharjee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2022) have adopted CNN and Transformer technologies to advance the MTL of dense prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Al- though CNN-based MTL models are carefully proposed to achieve promising performance on the multi-task dense pre- diction task, these models still suffer from the limitations of convolutional operations, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=', lacking global modeling and cross-task interaction capability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Some works (Bruggemann et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Vandenhende et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2020) develop a distillation scheme to increase the expressiveness of the cross-task and global information passing via enlarging the receptive field and stacking multiple convolutional layers but still cannot build global dependency directly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' For modeling global and cross-task interaction information, Transformer-based MTL models (Bhattacharjee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Xu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2022b) utilize the efficient attention mechanism (Vaswani et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2017) for global modeling and task interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' However, such a self- attention approach may fail to focus on task awareness fea- tures because the queries, keys and values are based on the same feature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Regular self-attention may lead to high com- putational costs and limit the ability to disentangle task- specific features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' We can see that the CNN-based models better capture the multiple task context in a local field but suffer from a lack of global modeling and task interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The Transformer- based models better focus on global information of different tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' However, they ignore task awareness and introduce many computation costs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Therefore, a technical challenge in developing a better MTL model is how to combine the mer- its of CNN-based and Transformer-based MTL models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' To address the challenges, we introduce the Deformable Mixer Transformers (DeMT): a simple and effective method for multi-task dense prediction based on combining both merits of deformable CNN and query-based Transformer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Specifically, our DeMT consists of the deformable mixer encoder and task-aware transformer decoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Motivated by the success of deformable convolutional networks (Zhu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2019) in vision tasks, our deformable mixer encoder learns different deformed features for each task based on more effi- cient sampling spatial locations and channel location mixing arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='03461v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='CV] 9 Jan 2023 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=', deformed feature).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' It learns multiple deformed features highlighting more informative regions with respect to the different tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' In the task-aware transformer decoder, the multiple deformed features are fused and fed into our task interaction block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' We use the fused feature to generate task- interacted features via a multi-head self-attention for model task interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' To focus on the task awareness of each in- dividual task, we use deformed features directly as query to- kens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' We expect the set of candidate key/value to be from task-interacted features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Then, our task query block tasks the deformed features and task-interacted features as input and generates the task awareness features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' In this way, our deformable mixer encoder selects more valuable regions as deformed features to alleviate the lack of global modeling in CNN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The task-aware transformer decoder performs the task interactions by self-attention and enhances task aware- ness via a query-based Transformer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' This design both re- duces computational costs and focuses on task awareness features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Through extensive experiments on several publicly MTL dense prediction datasets, we demonstrate that the pro- posed DeMT method achieves state-of-the-art results on a variety of metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The contributions of this paper are as follows: 1) We propose a simple and effective DeMT method for MTL of dense prediction via combining both merits of CNN and Transformer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Most importantly, our approach not only al- leviates the lack of global modeling in MTL models using CNNs but also avoids the lack of task awareness in MTL models using Transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2) We introduce a deformable mixer transformer (DeMT) model which consists of the de- formable mixer encoder (Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='3) and task-aware trans- former decoder (Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The deformable mixer en- coder produces the deformed features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The task-aware trans- former decoder uses the deformed features to model task in- teraction via a self-attention and focus on the task aware- ness features via a query-based transformer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 3) The exten- sive experiments on NYUD-v2 (Silberman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2012) and PASCAL-Context (Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2014) and visualization re- sults show the efficacy of our model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' DeMT’s strong perfor- mance on MTL can demonstrate the benefits of combining the deformable CNN and query-based Transformer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2 Related Work 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='1 Multi-Task Learning (MTL) MTL has dramatically evolved with the development of Deep Neural Networks and Vision Transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' MTL tasks are mainly distributed in two aspects: model struc- tures (Bruggemann et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2021) and task loss weighting optimization (Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2021a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' In the vision domain, the core idea of MTL is to use a single model to predict se- mantic segmentation, human parts segmentation, depth, sur- face normal, boundary, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=', which is an interesting topic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' MuST (Ghiasi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2021) model uses the knowledge in independent specialized teacher models to train a general model for creating general visual representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Several re- cent MTL frameworks follow different technologies: (Gao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Vandenhende et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2020) is CNN-based MTL model, (Bruggemann et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2021) is Neural Architecture Search (NAS)-based model and (Bhattacharjee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Xu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2022b,a) are Transformer-based models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' (Vanden- hende et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2021) states that the MTL structures in vi- sion tasks can be summarized into two categories: encoder- and decoder-focused architectures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Some encoder-focused works (Kendall, Gal, and Cipolla 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2018) rely on a shared encoder to learn a general visual feature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The features from the shared encoder are input into the task- specific heads to perform the dense predictions for every task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The decoder-focused works (Gao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Bruggemann et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2021) use a shared backbone network to extract a shared feature for each task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Then, the designed task-specific module captures valuable information from the shared feature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' However, these MTL methods pri- marily focus on the shared feature, which is hard to disen- tangle the task-specific features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='2 Deformable CNNs and Transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Deformable CNNs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Deformable ConvNets (Dai et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Zhu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2019) harness the enriched modeling capability of CNNs (Yang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2020) via deformable convolution and de- formable spatial locations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Deformable ConvNets is the first to achieve competitive results in vision tasks (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=', object de- tection and semantic segmentation, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=') using deformable convolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Deformable transformers (Zhu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Xia et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2022) attend to a small set of crucial sampling points around a reference and capture more informative features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Transformer and attention (Vaswani et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2017) mechanism models were first employed in natural lan- guage processing (NLP) tasks with good performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Re- cently, the transformer structures have also produced im- pressive results in computer vision and tend to replace CNN progressively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' ViT (Dosovitskiy et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2021) is the first work to derive from the attention mechanism for computer vision tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' More Transformer-based approaches (Carion et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2021b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Ranftl, Bochkovskiy, and Koltun 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Lan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Ru et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2022) have been introduced by improving the attention mechanism for dense prediction tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Recently, these works are also ex- tended to the MTL domain to learn good representations for multiple task predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' In contrast, we find the deformed features to focus on the valuable region for different tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' In addition, we use the query-based transformer approach for modeling and leverage deformed features as queries in trans- former calculations to enhance task-relevant features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' These queries can naturally disentangle the task-specific feature from the fused feature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Our approach combines the respec- tive advantages of CNN and Transformer, achieving state- of-the-art on NYUD-v2 and PASCAL-Context datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 3 The DeMT Method 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='1 Overall Architecture We describe the overall framework of our architecture in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' DeMT is the result of a non-shared encoder- decoder procedure: First, we design a deformable mixer en- coder to encode task-specific spatial features for each task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Second,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' the task interaction block and task query block are Feature Extractor Image data 𝓛seg 𝓛depth 𝓛normal 𝓛bound Deformable Mixer Feature Map q k,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='v Deformable Mixer Deformable Mixer Deformable Mixer Task Query Block Task Query Block Task Query Block Task Query Block q k,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='v k,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='v k,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='v q q 𝓛 d: depth q: query : loss k: key v: value Task Interaction Block Head Head Head Head Deformable Mixer Encoder Task-aware Transformer Decoder ×d ×d ×d ×d x x: feature Figure 1: An overview of our model jointly handles multiple tasks with a unified encoder-decoder architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Our DeMT model consists of the deformable mixer encoder and task-aware transformer decoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The depth d is the number of repetitions of the Deformable Mixer (ablation on the d in Table 3b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' proposed to model the decode the task interaction informa- tion and decode task-specific features via self-attention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' In the following section, we describe our task losses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='2 Feature Extractor The feature extractor is utilized to aggregate multi-scale fea- tures and manufacture a shared feature map for each task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The initial image data Xin ∈ RH×W ×3 (3 means image channel) is input to the backbone, which then generates four stages of image features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Then the four stage image fea- tures are up-sampled to the same resolution, and then they are concatenated along the channel dimension to obtain an image feature X ∈ R H 4 × W 4 ×C, where H, W, and C are the height, width, and channel of the image feature, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='3 Deformable Mixer Encoder The motivation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Inspired by the success of the Deformable ConvNets (Zhu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2019) and Deformable DETR mod- els (Zhu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2021), we propose the deformable mixer en- coder that adaptively provides more efficient receptive fields and sampling spatial locations for each task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' For this pur- pose, the deformable mixer encoder is designed to separate the mixing of spatial-aware deformable spatial features and channel-aware location features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' As shown in Figure 2 (left), the spatial-aware deformable and channel-aware mixing op- erators are interleaved to enable interaction of both input feature dimensions (HW × C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Specifically, we propose a deformable mixer encoder to capture the unique receptive regions corresponding to the in- dividual task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The deformable mixer only attends to a small set of crucial sampling points which are learnable offset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The spatial-aware deformable is capable of modeling spa- tial context aggregation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Then the spatial-aware deformable, channel-aware mixing, and layer normalization operators are stacked to form one deformable mixer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The effect of the depth of the deformable mixer stack on the model is shown in the Table 3b ablation experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The deformable mixer encoder structure is shown in Fig- ure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' First, a linear layer reduces the channel dimension of the image feature X ∈ R H 4 × W 4 ×C from C to a smaller di- mension C′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The linear layer can be written as follows: X = W · Norm(X), (1) where Norm means LayerNorm function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' After the linear layer, we obtain a smaller dimension image feature map X ∈ R H 4 × W 4 ×C′ as the input for the downstream.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Channel-aware mixing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The channel-aware mixing allows communication between different channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The channel- aware mixing applies the standard point-wise convolution (the convolving kernel is 1×1) to mix channel locations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' It can be formulated as: XC′ = C′−1 � C′=0 W1 · XC′ + b, (2) where the W1 is the point-wise convolution weight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' b is a learnable bias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Subsequently, we add GELU activation and BatchNorm as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' This operation is calculated as: XC′ = BN(σ(XC′)), (3) where σ(·) is the non-linearity function (GELU);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' BN is the BatchNorm operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Spatial-aware deformable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Given the input image feature Xi,j ∈ R H 4 × W 4 ×C′ from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' (3), the point (i, j) is the spatial location on the single channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 口Task-query MHSA Deformable Mixer Deformable Mixer Task Query Block Task Interaction Block MHSA (q=xq,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' k=xf,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' v=xf) LN LN sMLP MHSA (q=xf,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' k=xf,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' v=xf) xq xq 1 2 1 x: H/4×W/4×C xq xq 1 2 xf (2N×C’) xf xf xq 1 Deformed Feature: xq 1 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' xq 2 Feature Map: x xq 1 xq 2 xf Reshape Concat sMLP Deformable Mixer Encoder Task-aware Transformer Decoder Linear Reshape x1 x2 ̂ ̂ T T T T (N×C’) (N×C’) (2N×C’) (H/4×W/4×C’) GELU & BN Channel-aware Mixing Spatial-aware Deformable GELU & BN ̂ ̂ ̂ ̂ ̂ Figure 2: Illustration of our DeMT components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' For sim- plicity, we assume there are two tasks (T=2) in this figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Small MLP (sMLP) only consists of Linear and LayerNorm functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' To generate the relative offsets with respect to the refer- ence point, the image feature XC′ is fed to the convolution operator to learn the corresponding offsets ∆(i,j) for all ref- erence points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' For each location point (i, j) on the image feature X, the spatial deformable can be written as: DS(Xi,j) = C′−1 � C′=0 W2 · X((i, j) + ∆(i,j), C′), (4) where the W2 is a deformable weight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The ∆(i,j) is the learnable offset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The spatial-aware deformable is followed by a GELU activation, BatchNorm, and residual connection: Xq = Reshape(XC′ + BN(σ(DS(Xi,j)))), (5) where the Reshape is applied to flatten the feature Xq ∈ R H 4 × W 4 ×C′ to a sequence RN×C′ (N = H 4 × W 4 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' When there are T tasks, the deformable mixer encoder generate a feature set (X1 q , X2 q , · · · XT q ) (T means task number) (See Figure 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' These output task-specific features are learned by a deformable mixer that we refer to as deformed features, which we add to the input of the downstream blocks (task interaction block and task query block).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='4 Task-aware Transformer Decoder In the task-aware transformer decoder, we design the task interaction block and task query block (See Figure 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' It is important for MTL to consider task interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Thus, we propose a task interaction block to capture the task inter- actions at every task via an attention mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Each task interaction block is composed of two parts, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=', a multi-head self-attention module (MHSA) and a small Multi-Layer Per- ceptron (sMLP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The downstream task query block also con- sists of the MHSA and the sMLP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The difference between the task interaction block and the task query block is that their query features are fundamentally different.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The feature is projected into the queries (Q), keys (K) and values (V) of dimension dk and self attention is being computed by the Q, K and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The self-attention operator is calculated as: MHSA(Q, K, V ) = softmax(QKT √dk )V, (6) where Q ∈ RN×C′, K ∈ RN×C′ and V ∈ RN×C′ are the query, key and value matrices;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' MHSA(Q, K, V ) ∈ RN×C′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Task interaction block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' As illustrated in Figure 2 (cen- ter), We first concatenate the deformed features from the de- formable mixer encoder output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Xf = Concat(X1 q , X2 q , · · · XT q ), (7) where Xf ∈ RT N×C′ is the fused feature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The T means task number in XT q ∈ RN×C′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Then, for efficient task in- teraction, we construct a self-attention strategy via the fused feature Xf: X′ f = MHSA(Q = LN(Xf), K = LN(Xf), V = LN(Xf)), (8) ˆXf = sMLP(X′ f), (9) where ˆXf ∈ RT N×C′ is the task-interacted feature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' LN means LayerNorm function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' sMLP consists of a linear layer and a LayerNorm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Task query block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' As illustrated in Figure 2 (right), we take the deformed feature Xq as task query and the task- interacted feature ˆXf as key & value to MHSA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The de- formed feature is applied as a query in MHSA to decode the task awareness feature from the task-interacted feature for each task prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' We first apply the LayerNorm in paral- lel to generate queries Q, keys K and values V : ˆQ = LN(Xq), ˆK = LN( ˆXf), ˆV = LN( ˆXf), (10) where LN is the layer normalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Xq and ˆXf are the out- put of deformable mixer encoder and task interaction block, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Then, the task query block operation using a MHSA is calculated as: ˆXq = MHSA( ˆQ, ˆK, ˆV ), (11) ˆX = Reshape(Xq + sMLP( ˆXq)), (12) where the residual feature Xq comes from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The task awareness feature ˆX ∈ R H 4 × W 4 ×C′ is reshaped from RN×C′ (N = H 4 × W 4 ) via Reshape operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='5 Loss Function For balancing the loss contribution for each task, we set the weight αt to decide the loss contribution for the task t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' A weighted sum Ltotal of task-specific losses: Ltotal = T � t=1 αtLt, (13) where the Lt is a loss function for task t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' For fair compar- isons, we use αt and Lt consistent with ATRC (Bruggemann et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2021) and MQTransformer (Xu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2022b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Table 1: Comparison of the MTL models with state-of-the-art on NYUD-v2 dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The notation ’↓’: lower is better.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The notation ’↑’: higher is better.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' ∆m denotes average per-task performance drop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' ”Params” denotes parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Model Backbone Params GFLOPs SemSeg Depth Normal Bound ∆m[%]↑ (M) (G) (IoU)↑ (rmse)↓ (mErr)↓ (odsF)↑ single task baseline HRNet18 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='09 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='93 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='6104 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='94 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='22 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='00 multi-task baseline HRNet18 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='52 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='59 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='6284 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='02 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='36 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='89 Cross-Stitch(Misra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2016) HRNet18 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='52 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='59 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='34 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='6290 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='88 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='38 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='75 Pad-Net(Xu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2018) HRNet18 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='02 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='18 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='6264 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='85 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='50 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='33 PAP(Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2019) HRNet18 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='54 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='04 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='72 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='6178 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='82 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='42 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='95 PSD(Ling et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2020) HRNet18 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='71 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='10 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='69 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='6246 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='87 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='42 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='30 NDDR-CNN(Gao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2019) HRNet18 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='59 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='68 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='72 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='6288 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='89 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='32 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='51 MTI-Net(Vandenhende et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2020) HRNet18 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='56 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='14 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='61 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='6270 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='85 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='38 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='44 ATRC(Bruggemann et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2021) HRNet18 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='06 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='76 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='6010 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='48 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='34 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='56 DeMT (Ours) HRNet18 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='76 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='07 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='5922 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='21 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='40 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='37 single task baseline Swin-T 115.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='08 161.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='25 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='6104 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='94 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='22 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='00 multi-task baseline Swin-T 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='50 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='29 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='78 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='6312 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='05 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='60 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='74 MQTransformer(Xu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2022b) Swin-T 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='35 106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='02 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='61 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='5979 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='05 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='31 DeMT (Ours) Swin-T 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='07 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='70 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='36 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='5871 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='65 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='90 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='36 single task baseline Swin-S 200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='33 242.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='63 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='92 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='5804 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='94 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='00 multi-task baseline Swin-S 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='82 116.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='63 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='6053 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='17 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='90 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='96 MQTransformer(Xu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2022b) Swin-S 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='67 126.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='37 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='5785 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='81 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='59 DeMT (Ours) Swin-S 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='03 121.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='05 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='5474 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='02 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='10 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='12 4 Experiment In this section, we conduct extensive experiments on two widely-used dense prediction datasets to evaluate the per- formance of our method on different metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' We also show the visualization results on different datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='1 Experimental Setup Implementation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' All the leveraged backbones generate four scales (1/4, 1/8, 1/16, 1/32) features to perform multi-scale aggregation in our feature extractor (Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' We train our model with SGD setting the learning rate to 10−3 and weight decay to 5 × 10−4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The whole experiments are per- formed with pre-trained models on ImageNet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' All our ex- periments are performed on the Pytorch platform with eight A100 SXM4 40GB GPUs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' We conduct experiments on two publicly ac- cessible datasets, NYUD-v2 (Silberman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2012) and PASCAL-Context (Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' NYUD-V2 is com- prised of pairs of RGB and Depth frames that 795 images are used for training and 654 images for testing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' NYUD-V2 usually is mainly adopted for semantic segmentation (‘Sem- Seg’), depth estimation (‘Depth’), surface normal estimation (‘Normal’), and boundary detection (‘Bound’) tasks by pro- viding dense labels for every image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' PASCAL-Context train- ing and validation contain 10103 images, while testing con- tains 9637 images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' PASCAL-Context usually is adopted for semantic segmentation (’SemSeg’), human parts segmenta- tion (’PartSeg’), saliency estimation (’Sal’), surface normal estimation (’Normal’), and boundary detection (’Bound’) tasks by providing annotations for the whole scene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' We adopt five evaluation metrics to compare our model with other prior multi-task models: mean Intersec- tion over Union (mIoU), root mean square error (rmse), mean Error (mErr), optimal dataset scale F-measure (odsF), and maximum F-measure (maxF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The average per-task per- formance drop (∆m) is used to quantify multi-task perfor- mance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' ∆m = 1 T �T i=1(Fm,i − Fs,i)/Fs,i × 100%, where m, s and T mean multi-task model, single task baseline and task numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' ∆m: the higher is the better.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Backbones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' We test our method using several CNN and Vision Transformer backbones: HRNetV2-W18-small (HR- Net18), HRNetV2-W48 (HRNet48) (Sun et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2019), Swin- Tiny (Swin-T), Swin-Small (Swin-S) and Swin-Base (Swin- B) (Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2021b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='2 Comparison with the state-of-the-art We compare our model with CNN-based and Transformer- based models to show the advantages of our method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' NYUD-v2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The Comparisons with state-of-the-art models on the NYUD-v2 dataset are shown in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' We first report results comparison with three different backbones: HRNet18, Swin-T, and Swin-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' We demonstrate simulta- neous performance improvements over prior work in hav- ing smaller parameters, a smaller number of GFLOPs, and better semantic segmentation, depth estimation, surface nor- mal and boundary detection accuracies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' For example, a per- formance comparison between MQTransformer and DeMT proves the effectiveness of our framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Besides this, DeMT also consistently outperforms previous state-of-the- art Transformer-based models, such as ATRC (Bruggemann et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2021) and MQTransformer (Xu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2022b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' In addi- tion, we also observe that using a transformer as a backbone model is more promising compared to CNN as the back- bone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Because Transformer-based and CNN-based models use similar GFLOPs, the former shows higher accuracy in all metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Our DeMT obtains 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='36 SemSeg accuracy, which is 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='3% higher than that of MQTransformer with the same Swin-T backbone and slightly lower FLOPs (100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='7G vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='02G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' MuIT (Bhattacharjee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2022) reports a 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='3% and 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='54% increase in relative performance for semantic Table 2: Comparison of the MTL models with state-of-the-art on PASCAL-Context dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The notation ‘↓’: lower is better.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The notation ‘↑’: higher is better.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' ∆m denotes average per-task performance drop (the higher is the better).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Model Backbone SemSeg PartSeg Sal Normal Bound ∆m[%]↑ (IoU)↑ (IoU)↑ (maxF)↑ (mErr)↓ (odsF)↑ single task baseline HRNet18 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='23 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='66 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='08 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='69 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='00 multi-task baseline HRNet18 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='48 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='23 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='43 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='10 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='76 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='77 PAD-Net (Xu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2018) HRNet18 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='60 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='60 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='80 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='3 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='50 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='41 ATRC (Bruggemann et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2021) HRNet18 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='89 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='33 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='77 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='99 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='74 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='45 MQTransformer(Xu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2022b) HRNet18 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='91 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='43 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='78 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='17 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='80 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='20 DeMT (Ours) HRNet18 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='23 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='93 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='93 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='02 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='80 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='79 single task baseline Swin-T 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='81 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='32 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='18 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='81 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='00 multi-task baseline Swin-T 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='74 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='25 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='88 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='86 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='00 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='23 MQTransformer(Xu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2022b) Swin-T 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='24 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='05 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='40 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='56 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='10 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='07 DeMT (Ours) Swin-T 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='71 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='18 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='63 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='56 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='20 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='75 single task baseline Swin-S 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='83 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='71 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='64 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='13 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='00 multi-task baseline Swin-S 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='10 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='20 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='64 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='09 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='20 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='97 MQTransformer(Xu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2022b) Swin-S 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='25 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='11 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='05 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='74 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='80 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='27 DeMT (Ours) Swin-S 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='01 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='96 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='20 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='57 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='10 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='36 single task baseline Swin-B 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='91 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='13 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='35 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='83 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='00 multi-task baseline Swin-B 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='83 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='59 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='75 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='35 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='10 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='81 DeMT (Ours) Swin-B 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='33 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='11 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='42 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='54 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='20 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='04 segmentation and depth tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' While we have a 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='74% and 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='43% increase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The comparison results show our model also achieves good performance, evaluating the flexibility of our model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' By comparison, our DeMT achieves new records on the NYUD-v2, which are remarkably superior to previ- ous CNNs and Transformers models in terms of all metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' PASCAL-Context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' We also evaluate the proposed DeMT on PASCAL-Context with three backbones: HRNet18, Swin-T, Swin-S, and Swin-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Table 2 shows the compar- ison results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Our model obtains significantly better results when compared with the baseline and other models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' For ex- ample, DeMT improves MQTransformer (Xu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2022b) with the same Swin-T backbone by 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='47 point in SemSeg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Our DeMT achieves the best performance among models on several metrics and can reach a high performance of 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='33 in the SemSeg task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='3 Ablation Studies We ablate DeMT to understand the contribution of each component and setting using Swin-T on NYUD-v2 dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Ablation on modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The DeMT model consists of three components: deformable mixer, task interaction, and task query blocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' As shown in Table 3a, we demonstrate the advantages of the deformable mixer, task interaction, and task query blocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' We observe that task interaction block has more effect on the performance, and it is essential to inter- act the whole task features for task interaction information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' This indicates that task interaction and task query blocks are essential to the task-aware transformer decoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' From the Figure 4 and Table 3a it can be observed that different com- ponents are playing a beneficial role.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Ablation on the depths d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' As shown in Figure 2, the depth d is the number of repetitions of the deformable mixer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' We add the d to analyze the effect of the depth of the deformable mixer on the DeMT model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' In Table 3b, We vary the number of used deformable mixer depth (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=', 1, 2, 4, 8) and com- pare their performances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Comparing the first to last row in Table 3b, we observe the best performance when the depth is set to 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' However, as increasing the depth, the parameters and GFLOPs also become more extensive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Practically, we choose a depth d = 1 for all models in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Ablation on scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' We explore the influence of using differ- ent scale features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The backbone outputs four-scale (1/4, 1/8, 1/16, 1/32) features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Table 3c shows the influence of using a different number of scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Note that the model performance increases obviously with the increasing number of scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Our method can capture valuable semantic information for multiple tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Practically, we choose four-scale features for all models in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Ablation on backbones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Table 3d shows the results using the different backbones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' To deeper explore the capacity of the our DeMT, we employ extensive backbones to conduct the ablation experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' It is worth noting that our DeMT leads to the best performance on all metrics when using Swin-B on NYUD-v2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' In addition, we also observe the in- spiring fact that using a larger transformer backbone can eas- ily reach top-tier performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The different backbones are compared to demonstrate the generalization of our method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='4 Visualization To deeper understand our DeMT model, we visualize the multiple task predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' We show the qualitative results in different dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' For visual analysis (see Figure 3 and Figure 4), we employ a trained model with Swin-T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Fig- ure 3 shows the capability of DeMT with Swin-T backbone to perform dense predictions with strong expressive power and successfully capture the task-specific features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' As il- lustrated in Figure 3 (last two rows), the second and third columns focus mainly on specific semantics such as human, animal, and other objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Figure 4 showcases the impact of our approach using different components: while only the deformable mixer encoder fails to visualize some objects, Table 3: Ablation studies and analysis on NYUD-v2 dataset using a Swin-T backbone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Deformable mixer (DM), task interaction (TI) block, and task query (TQ) block are the parts of our model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' HR48 denotes HRNet48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The notation ‘↓’: lower is better.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The notation ‘↑’: higher is better.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The w/ indicates ”with”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' (a) Ablation on components Model SemSeg Depth Normal Bound (IoU)↑ (rmse)↓ (mErr)↓ (odsF)↑ baseline 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='78 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='6312 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='05 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='6 w/ DM 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='6069 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='83 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='2 w/ DM+TI 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='44 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='5969 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='75 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='4 w/ DM+TI+TQ 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='36 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='5871 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='65 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='9 (b) Ablation on the depths (d) d SemSeg Depth Normal Bound (IoU)↑ (rmse)↓ (mErr)↓ (odsF)↑ 1 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='36 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='5871 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='65 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='9 2 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='5622 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='05 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='0 4 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='71 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='5613 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='90 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='1 8 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='5518 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='87 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='1 (c) Ablation on scales Scale SemSeg Depth Normal Bound (IoU)↑ (rmse)↓ (mErr)↓ (odsF)↑ 1/4 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='51 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='1961 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='26 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='1 1/4, 1/8 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='85 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='0433 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='66 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='4 1/4, 1/8, 1/16 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='32 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='6966 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='44 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='3 1/4, 1/8, 1/16, 1/32 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='36 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='5871 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='65 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='9 (d) Ablation on backbones Backbone SemSeg Depth Normal Bound (IoU)↑ (rmse)↓ (mErr)↓ (odsF)↑ HR48 baseline 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='96 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='5543 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='36 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='6 HR48 w/ ours 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='84 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='5517 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='88 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='7 Swin-B baseline 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='44 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='5813 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='44 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='0 Swin-B w/ ours 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='34 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='5209 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='21 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='5 SemSeg Normal Depth Input Image SemSeg Normal Saliency Human Parts Input Image PASCAL-Context NYUD-v2 Boundary Boundary Figure 3: The first two rows of the visualization illustrate two ex- amples from the NYUD-v2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The last two rows of the visualization illustrate two examples from the PASCAL-Context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' the third row shows DeMT’s improvements to multiple task predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Note that we not only report these results for qualitative understanding of the model but also evaluate it quantitatively in Table 3a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' We compared the prediction re- sults of the DeMT model with the ATRC (Figure 4 last row), and our results are significantly better than ATRC, especially on SemSeg and Human Parts tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Our DeMT model pro- duces higher-quality predictions than both the Swin baseline and the existing CNN-based MTL model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 5 Conclusion In this work, we introduce DeMT, a simple and effective method that leverages the combination of both merits of de- SemSeg Boundary Normal Saliency Human Parts Input Image Baseline+DM +DM+TI DeMT ATRC Figure 4: Qualitative analysis of the components on PASCAL- Context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Visualizations show the components in Table 3a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' The last row shows the ATRC model visualization results as a comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' formable CNN and query-based Transformer for multi-task learning of dense prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Significantly, the deformed fea- ture produced by the deformable mixer encoder is lever- aged as a task query in the task-aware transformer decoder to disentangle task-specific features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Extensive experiments on dense prediction datasets (i, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=', NYUD-v2 and PASCAL- Context) validate the effectiveness of our DeMT model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Limitations and future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' This work only uses a naive operation to aggregate multi-scale features and could be fur- ther improved in two aspects: considering using the FPN or FPN variant to aggregate multi-scale features and how to de- sign flexible attention to learn more valuable information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Acknowledgements This work was done when Yangyang Xu was a research in- tern at JD Explore Academy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' This work was supported by the National Natural Science Foundation of China under Grants 62122060, 62076188, and the Special Fund of Hubei Luojia Laboratory under Grant 220100014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' References Bhattacharjee, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Zhang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' S¨usstrunk, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' and Salzmann, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' MulT: An End-to-End Multitask Learning Trans- former.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' In CVPR, 12031–12041.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Bruggemann, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Kanakis, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Obukhov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Georgoulis, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' and Gool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=', L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Exploring relational context for multi-task dense prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' In ICCV, 15869–15878.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Carion, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Massa, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Synnaeve, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Usunier, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Kirillov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' and Zagoruyko, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' End-to-end object detection with transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' In ECCV, 213–229.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Chen, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Mottaghi, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Liu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Fidler, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Urtasun, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' and Yuille, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Detect what you can: Detecting and rep- resenting objects using holistic models and body parts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' In CVPR, 1971–1978.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Chen, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Badrinarayanan, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Lee, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' and Rabinovich, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Gradnorm: Gradient normalization for adaptive loss balancing in deep multitask networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' In ICML, 794– 803.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Dai, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Qi, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Xiong, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Li, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Zhang, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Hu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' and Wei, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Deformable convolutional networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' In ICCV, 764–773.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Dosovitskiy, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Beyer, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Kolesnikov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Weissenborn, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Zhai, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Unterthiner, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Dehghani, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Minderer, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Heigold, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Gelly, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Uszkoreit, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' and Houlsby, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' In ICLR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Gao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Ma, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Zhao, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Liu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' and Yuille, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Nddr-cnn: Layerwise feature fusing in multi-task cnns by neural discriminative dimensionality reduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' In CVPR, 3205–3214.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Ghiasi, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Zoph, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Cubuk, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Le, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' and Lin, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Multi-Task Self-Training for Learning General Rep- resentations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' In ICCV, 8856–8865.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Kendall, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Gal, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' and Cipolla, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Multi-task learn- ing using uncertainty to weigh losses for scene geometry and semantics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' In CVPR, 7482–7491.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Lan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Zhang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' He, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' and Zhang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Siamese Network with Interactive Transformer for Video Object Seg- mentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' In AAAI, 1228–1236.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Ling, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Zhen, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Chunyan, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Zhenyu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Chaoqun, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Tong, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' and Jian, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Pattern-Structure Diffusion for Multi-Task Learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' In CVPR, 4514–4523.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Liu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Li, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Kuang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Xue, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Chen, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Yang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Liao, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' and Zhang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2021a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Towards impartial multi-task learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' In ICLR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Liu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Johns, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' and Davison, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' End-to-end multi-task learning with attention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' In CVPR, 1871–1880.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Liu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Lin, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Cao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Hu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Wei, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Zhang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Lin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' and Guo, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2021b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Swin Transformer: Hierarchical Vi- sion Transformer using Shifted Windows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' In ICCV, 10012– 10022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Misra, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Shrivastava, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Gupta, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' and Hebert, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Cross-stitch networks for multi-task learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' In CVPR, 3994–4003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Phillips, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Martinez, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Bˆarsan, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Casas, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Sadat, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' and Urtasun, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Deep multi-task learning for joint localization, perception, and prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' In CVPR, 4679– 4689.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Ranftl, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Bochkovskiy, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' and Koltun, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Vision transformers for dense prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' In CVPR, 12179–12188.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Ru, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Zhan, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Yu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' and Du, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Learning Affinity from Attention: End-to-End Weakly-Supervised Semantic Segmentation with Transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' In CVPR, 16846–16855.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Silberman, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Hoiem, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Kohli, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' and Fergus, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Indoor segmentation and support inference from rgbd im- ages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' In ECCV, 746–760.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Sun, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Xiao, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Liu, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' and Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Deep High- Resolution Representation Learning for Human Pose Esti- mation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' In CVPR, 5693–5703.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Vandenhende, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Georgoulis, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Gansbeke, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Proes- mans, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Dai, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' and Gool, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Multi-Task Learn- ing for Dense Prediction Tasks: A Survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' IEEE TPAMI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Vandenhende, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Georgoulis, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Van Gool, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' and Van Gool, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Mti-net: Multi-scale task interaction net- works for multi-task learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' In ECCV, 527–543.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Vaswani, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Shazeer, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Parmar, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Uszkoreit, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Jones, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Gomez, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Kaiser, Ł.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' and Polosukhin, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' At- tention is all you need.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' NeurIPS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Wang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Xie, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Li, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Fan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Song, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Liang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Lu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Luo, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' and Shao, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Pyramid Vision Trans- former: A Versatile Backbone for Dense Prediction Without Convolutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' In ICCV, 568–578.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Xia, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Pan, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Song, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Li, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' and Huang, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Vi- sion transformer with deformable attention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' In CVPR, 4794– 4803.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Xu, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Ouyang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Wang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' and Sebe, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Pad- net: Multi-tasks guided prediction-and-distillation network for simultaneous depth estimation and scene parsing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' In CVPR, 675–684.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Xu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Zhao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Vineet, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Lim, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='-N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' and Torralba, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2022a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' MTFormer: Multi-task Learning via Transformer and Cross-Task Reasoning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' In ECCV, 304–321.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Xu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Li, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Yuan, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Yang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Zhang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Tong, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Zhang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' and Tao, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2022b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Multi-Task Learning with Multi-query Transformer for Dense Prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' arXiv preprint arXiv:2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content='14354.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Yang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Li, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Li, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Zhao, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Wu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' and Lin, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Sognet: Scene overlap graph network for panoptic segmen- tation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' In AAAI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Zhang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Cui, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Xu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Yan, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Sebe, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' and Yang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Pattern-affinitive propagation across depth, surface normal and semantic segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' In CVPR, 4106–4115.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Zhu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Hu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Lin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' and Dai, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Deformable con- vnets v2: More deformable, better results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' In CVPR, 9308– 9316.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Zhu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Su, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Lu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Li, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Wang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' and Dai, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' Deformable DETR: Deformable Transformers for End-to- End Object Detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
+page_content=' In ICLR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/l9E1T4oBgHgl3EQf0wWx/content/2301.03461v1.pdf'}
diff --git a/l9FKT4oBgHgl3EQfDy1k/vector_store/index.faiss b/l9FKT4oBgHgl3EQfDy1k/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..a0c7fbd9eb228da554a1bb3dcb274433a365a65b
--- /dev/null
+++ b/l9FKT4oBgHgl3EQfDy1k/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:39f7db3d023faebe6ac429034236c6d6ed048af8a6c1fa9e85eaa6999f06aa62
+size 2424877
diff --git a/lNE_T4oBgHgl3EQf6By0/vector_store/index.pkl b/lNE_T4oBgHgl3EQf6By0/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..9d12aa7d54a1938fa183c449ba29ff7efbbc9c0e
--- /dev/null
+++ b/lNE_T4oBgHgl3EQf6By0/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:d76c0b6477d67bb74139c5542d0bb3afca8661dbe6ba8f356cddfcc044be5e6c
+size 200479
diff --git a/mNAyT4oBgHgl3EQflPgY/content/tmp_files/2301.00447v1.pdf.txt b/mNAyT4oBgHgl3EQflPgY/content/tmp_files/2301.00447v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..ac815ec1817e0e1eb4d81f9b277acb7ab33e3b17
--- /dev/null
+++ b/mNAyT4oBgHgl3EQflPgY/content/tmp_files/2301.00447v1.pdf.txt
@@ -0,0 +1,607 @@
+Image To Tree with Recursive Prompting
+James Batten1,2, Matthew Sinclair1,2, Ben Glocker1,2, and Michiel Schaap1,2
+1 Imperial College London
+2 HeartFlow, Inc.
+Abstract. Extracting complex structures from grid-based data is a com-
+mon key step in automated medical image analysis. The conventional
+solution to recovering tree-structured geometries typically involves com-
+puting the minimal cost path through intermediate representations de-
+rived from segmentation masks. However, this methodology has signifi-
+cant limitations in the context of projective imaging of tree-structured
+3D anatomical data such as coronary arteries, since there are often over-
+lapping branches in the 2D projection. In this work, we propose a novel
+approach to predicting tree connectivity structure which reformulates
+the task as an optimization problem over individual steps of a recursive
+process. We design and train a two-stage model which leverages the UNet
+and Transformer architectures and introduces an image-based prompting
+technique. Our proposed method achieves compelling results on a pair
+of synthetic datasets, and outperforms a shortest-path baseline.
+Keywords: Tree extraction · Connectivity · Image-based prompting
+1
+Introduction
+Extracting centerline trees from medical images is challenging in projective
+modalities such as Coronary X-ray Angiography due to overlapping branches in
+the 2D image. Tree connectivity structure extraction is a more restricted problem
+which involves detecting the set of topologically significant keypoints (such as
+root, bifurcation and leaf nodes) in the image domain and predicting the directed
+edges which connect these together to form a tree. We focus on this important
+subproblem and propose a novel method which achieves favorable performance
+on two large-scale synthetic datasets compared to a shortest-path baseline.
+Our novel two-stage neural network model, named I2TRP, leverages the UNet
+[20] and Transformer [22] architectures in order to perform tree connectivity
+structure extraction in 2D images. The I2TRP model employs an image-based
+prompting technique and decomposes the tree decoding problem into multiple
+recursive steps. Formulating the task as an optimization problem over individual
+steps of a recursive process enables a fully-supervised training strategy while
+removing the need for more complex end-to-end optimization. Furthermore, we
+introduce a simple yet effective method to stochastically sample trees from our
+model, and merge these into a final prediction in order to improve performance.
+We evaluate our method on two large synthetic datasets and explore the effects
+of different sampling parameters.
+arXiv:2301.00447v1 [cs.CV] 1 Jan 2023
+
+2
+James Batten, Matthew Sinclair, Ben Glocker, and Michiel Schaap
+2
+Related Work
+Vessel extraction. The extraction of curvilinear centerline trees is a common
+task for the analysis of vascular data. Many classical techniques apply minimal-
+path algorithms to acquire the curve [5,2,15]. Improvements can be achieved
+by predicting a dense centerline distance map and subsequently extracting the
+minimal path [9], and decoding topological feature vectors which are then used
+to inform the tree reconstruction [13]. Other approaches use formal graph-based
+techniques on skeletonised binary segmentations [3]. A more recent method pre-
+dicts skeletonisations of manual segmentations using convolutional and recurrent
+architectures [1].
+Set Prediction. Image-to-Tree prediction can be viewed as an extension to
+set prediction, since the underlying nodes of the tree are set-structured. While
+object detection is a mature field of research [10], recent approaches have tackled
+set prediction from novel angles such as end-to-end modeling through the use
+of permutation-invariant loss functions [14]. An alternative method, particularly
+relevant to this paper, discards the end-to-end paradigm in favour of sequence-
+based modeling [4], and tackles the set prediction problem by training a neural
+network to model single steps of a sequential process. Our proposed method
+leverages this intuition by modeling single steps of a recursive process.
+Graph Generation. Another perspective on tree connectivity structure ex-
+traction is to consider it as a subclass of graph generation. In [12], the authors
+propose leveraging a tree-structured intermediate representation in order to sup-
+port the decoding of the graph-structured molecule. Other approaches in the field
+of generative molecular modeling include [23] which proposes a policy network
+implemented using graph convolutions, and models the molecular graph decod-
+ing as a Markov decision process.
+3
+Proposed Method: I2TRP
+The proposed I2TRP (“Image To Tree with Recursive Prompting”) method con-
+sists of a two-stage approach for tree extraction (c.f. Figure 1). The first model
+consumes the input image and predicts a set of keypoints corresponding to the
+root nodes, bifurcations, trifurcations and leaf nodes of the tree. The second
+stage then extracts patches around each of the keypoints produced by the first
+stage and recursively decodes the tree structure connecting them together.
+3.1
+Keypoint Detection
+The keypoint prediction model uses a simple UNet model to predict small Gaus-
+sian “blobs” around the locations of the topologically-significant keypoints in the
+image. During training, the target keypoints grid is computed by placing fixed-
+size Gaussians (with an application-specific standard deviation) at each node
+location. During inference, the discrete set of keypoints is extracted from the
+predicted grid of scalar intensities by using the NMS (non-maximum suppres-
+sion) algorithm.
+
+Image To Tree with Recursive Prompting
+3
+UNet
+NMS
+Keypoints
+Keypoints
+Input
+Image
+Gaussian
+"Blobs"
+Stage 1: keypoint detection
+Stage 2: recursive decoding
+X/Y positional encodings
++
+Image-based Prompt
++
+Global Input Grid
+Patches cropped around
+each keypoint
+(all channels included)
+ViT
+Transformer
+Decoder
+ResNet
+ResNet
+MLP
+MLP
+MLP
+ResNet
+selection
+topology
+Fig. 1: Overview of the two stages of the I2TRP model. Stage 1 on the
+left: keypoint detection. Stage 2 on the right: recursive decoding
+3.2
+Recursive Tree Extraction
+Connectivity Structure Extraction. The second stage formulates the tree
+extraction as a recursive process which consumes both the input image and the
+set of candidate keypoints. The tree decoding problem is decomposed into a finite
+set of deterministic recursive steps. During training, each batch is composed of a
+set of trees from which single randomly-sampled recursive steps in the decoding
+process are sampled. The model is tasked with selecting for a given parent-
+query node the corresponding child nodes among the set of candidate keypoints.
+Since the exact steps of the decoding process are known at training time, this
+training methodology is fully-supervised and exploration-free. At inference time,
+each forward pass through the second stage model selects the keypoints which
+correspond to the child nodes of a specified query node.
+Image-based Prompt. In order to indicate to the model the location of
+the query (parent) node, we compute a “distance-to-query” scalar channel d (in
+world coordinates where the X/Y values go from 0.0 to 1.0 across the image
+domain) which is then lifted to a “Fourier feature” [21] encoding: sin(αd). We
+found that this simple encoding was particularly effective in our experiments,
+a key benefit being that for every position in the image, the local information
+in this positional encoding is sufficient to determine both the direction towards
+the query node (from the orientation of the ripples) and the distance to the
+query node (from the curvature of the ripples). Note that the root node does not
+have a parent, and for this particular case the image-based prompt is empty. A
+common fixed scalar α term set to 30.0 is used for all the positional encodings
+in this model.
+
+4
+James Batten, Matthew Sinclair, Ben Glocker, and Michiel Schaap
+I2TRP Architecture. The second stage model follows an encoder-decoder
+architecture. In the encoder pathway, the input image x ∈ RH×W ×C (including
+the prompt and positional encoding channels) are passed through an 8-layer
+vision transformer (ViT) [6] to produce a set of global image encodings vg.
+Around each candidate keypoint location we crop patches p of size 51x51 pixels
+and pass these through a ResNet [11] encoder. The resulting patch-vectors vp
+are subsequently fed into a transformer decoder which attends to the global
+image memory encodings and produces the updated patch vectors v′
+p. Finally,
+these updated patch vectors vp are fed through a two-layer MLP (with a GELU
+nonlinearity) which predicts the output selection vo
+s and topology vo
+t vectors.
+Note that both the ViT and ResNets are supplied with the image prompt and
+positional encoding channels.
+vg = ViT(x)
+vp = ResNet(p)
+v′
+p = TransformerDecoder(vp, vg)
+vo
+s, vo
+t = MLP(v′
+p)
+X/Y Positional Encodings. In addition to the image channel and the
+dynamic prompt indicating the location of the query node, we also inject X/Y
+positional information into the patches in the encoder and decoder pathways.
+While it is possible to add positional encodings to the vector representations in
+the internal ViT and patch encoder components, this implementation instead
+represents positional information in the grid external to the model in order to
+reduce the complexity of the architecture. More specifically, we append a number
+of static channels to the input data which encode the position information. In
+total there are four channels used for this encoding: two for the absolute X/Y
+positions (with values between 0.0 and 1.0), and two for sinusoidal lifted variants
+of these: sin(αx) and sin(αy).
+Loss Function. We train the recursive model by combining a pair of loss
+functions on the output selection and topology vectors vo
+s and vo
+t . The selec-
+tion loss is computed between the predicted selection vector of shape RP ×1
+(where P is the number of patches) and its binary ground-truth vector vg
+s of the
+same shape. This target selection vector represents the child nodes of the speci-
+fied query node. Similarly, the topology loss is computed between the predicted
+topology vector of shape RP ×4 (note that for the SSA dataset there are no tri-
+furcations and we use topology vectors vt of shape RP ×3) and its ground-truth
+vector vg
+t . The target topology vector is a one-hot encoding which represents
+the different node topologies (the node’s number of children). For both datasets,
+only root nodes are permitted to have a single child node, and all other nodes
+either have multiple children or are leaf nodes. Note that root nodes can also
+have multiple children. To train the topology term we use a cross-entropy loss
+(LXE). We explored using cross-entropy to train the selection term, but found
+in our experiments that the mean squared error (LMSE) loss was more stable.
+The combined loss L is thus written as:
+L = λt . LXE(vo
+t , vg
+t ) + λs . LMSE(vo
+s, vg
+s) , λt = 0.1, λs = 1.0
+(1)
+Training with Ground-Truth Keypoints. We use the ground-truth key-
+points to train the second stage I2TRP model instead of using those predicted
+
+Image To Tree with Recursive Prompting
+5
+from the first stage UNet model. In order to mitigate distributional shift, we ap-
+ply a small spatial Gaussian jitter to the position of the ground-truth keypoints
+during the training of the second stage. Using the ground truth trees to train the
+second stage significantly reduces the implementation complexity. At inference
+time, the candidate keypoints are those predicted by the first-stage UNet, and
+we find that the recursive model generalises well to the predicted keypoint sets.
+3.3
+Stochastic Decoding
+Sampling parameters. Once trained, the tree extraction model can be queried
+stochastically by interpreting the scalar outputs of the decoder as probabilistic
+weights (as opposed to simply taking a deterministic argmax). In order to sim-
+plify the sampling, we limit this stochasticity to the topology term, and retain
+the selection as a deterministic prediction at each recursive step. For a given step
+in the decoding process, the topology head of the decoder predicts a softmax over
+the node geometry classes for each of the keypoints produced by the first stage.
+In stochastic mode, we include a “topology temperature” term γ which adjusts
+the scalar values of the softmax weights: wi =
+e
+vo
+t,i/γ
+�
+j e
+vo
+t,j /γ . The node topology is
+then predicted by randomly sampling according to these weights. During infer-
+ence, the stochastic sampling acquires multiple decodings of the tree, the total
+number of which is set by the parameter ndec.
+Merging the trees. We implement a merging algorithm which prioritises
+simplicity and achieves good performance compared to the baseline. This algo-
+rithm first produces a matrix which counts the number of times a child and
+parent keypoint-pair occur in the stochastically generated trees. Once the count
+matrix is complete, the final merged tree is decoded by starting from the root
+and recursively selecting the child nodes which most frequently connect to the
+parent selected at each recursive step.
+4
+Data
+4.1
+Volumetrically Rendered Meshes (VRM)
+The first dataset which we utilize in this paper is generated by rendering a large
+set of 3D coronary artery tree meshes derived from CTA (computed tomogra-
+phy angiography). Our intent is to create a large-scale “semi-synthetic” dataset
+using real anatomical data which replicates the geometric complexity of the tree
+connectivity structure extraction problem as seen in real-world modalities such
+as projected 2D X-ray angiography. Note that the dataset is acquired from geo-
+graphically diverse regions, and is representative of clinical populations.
+The VRM dataset is generated from 9,845 left and right coronary tree meshes.
+For each tree we generate volumetric projections along five different view angles.
+These 2D projections are then split into three subsets: train (39,420 views), test
+(8,855 views) and validation (950 views). Note that we ensure trees from the
+
+6
+James Batten, Matthew Sinclair, Ben Glocker, and Michiel Schaap
+(a)
+(b)
+(c)
+Fig. 2: Examples with the ground-truth tree connectivity structure overlay. (a)
+and (b): from the VRM dataset. (c): from the SSA dataset
+same patient are not mixed between different subsets. The trees in the VRM
+dataset include root, leaf, bifurcation and trifurcation nodes. Since the trees
+are generated from real-world data, the relative frequencies of these reflect the
+true statistics of coronary anatomy. Since the 3D meshes are clipped beyond the
+radius of 0.25mm, small secondary vessel structures at finer resolutions are not
+present in this representation. For each view, we render 500x500 pixel grids by
+randomly sampling perspective projections and tracing rays through the scene.
+For every pixel in these grids, we set the intensity according to the corresponding
+ray traversal distance through the coronary artery mesh (c.f. Fig. 2a and 2b).
+4.2
+Simple Synthetic Angiography (SSA)
+In addition to the volumetrically rendered meshes, we generate a simpler 2D
+synthetic dataset, composed of 15,248 train and 3,812 test trees, on which both
+the proposed and baseline models are trained and evaluated. This dataset, which
+will be publicly released, is intended to both facilitate reproducibility of our work
+and support future development of learning-based tree extraction algorithms.
+The dataset is generated in two steps: the first step produces the tree ge-
+ometry, and the second renders the corresponding image. The first step models
+the angiogenesis process using a simple force-based simulation which iteratively
+grows a tree composed of a set of nodes and edges. In order to assign the vessel
+diameter to each location along the centerline, we use Murray’s law [18]. Note
+that the SSA dataset does not contain trifurcations. The second step consumes
+the tree geometry and produces the noisy rendered image. In order to emulate
+vessel-like appearance, we model each vessel as a 3D cylinder (aligned in the
+same plane) filled with constant-density contrast. For each tree, we create a grid
+of 250x250 pixels and trace rays orthographically through the scene. As a final
+step in the rendering process, we add multi-scale Perlin noise (c.f. Fig. 2c).
+
+Image To Tree with Recursive Prompting
+7
+5
+Baseline
+Our model is evaluated against a baseline inspired by previous works which follow
+the minimum cost path approach [5,2,15]. The extraction of curvilinear struc-
+tures in image data typically involves optimizing a candidate path χ according to
+a function f : χ → R. Methods which leverage minimal path techniques include
+those which define cost or potential maps derived from image intensities [5],
+vesselness [17] and medialness [8] filters or distance transforms of segmentation
+masks [7]. Image-domain cost maps f(I) assign for every discrete pixel location
+a particular cost, allowing integration along a sequence of pixels to recover the
+path score. The choice of cost map f(I) affects the resulting minimum-cost path.
+In our baseline implementation, the image of the tree is passed through a
+UNet [20] which predicts the set of root and leaf nodes, in addition to a segmen-
+tation mask S. A distance transform Dint(S) is then applied inside the predicted
+mask which represents for each pixel the distance to the segmentation edge. The
+cost map C is computed such that on the mask’s interior Cint = m − Dint(S),
+and on its exterior Cext = m + 1, where m = max(Dint(S)). Minimal-cost paths
+are then traced accordingly from each leaf node to the root (using Dijkstra’s
+algorithm). Finally, these paths are merged to form the centerline tree, from
+which the discrete tree connectivity structure is extracted.
+6
+Training Details
+We trained both the proposed and baseline models using the AdamW [16] op-
+timizer implemented in PyTorch [19]. For training, the learning rate scheduler
+performs a short linear ramp up followed by an exponential learning rate decay,
+with different peak learning rate and decay parameters. All experiments were
+run on a single NVIDIA V100 32GB GPU, with a weight decay of 1e-3, using
+translate, scale and rotate augmentations.
+6.1
+First stage: Keypoint model
+On both the SSA and VRM datasets, the first stage UNet model is trained
+using a batch size of 16. The grid containing the target gaussian blobs is parti-
+tioned by thresholding at 0.5, and the MSE foreground and background terms
+are reweighted by multiplying by 0.7 and 0.3 respectively. On the SSA dataset,
+the peak learning rate after the linear ramp up is 1e-3, versus 3e-4 for the VRM
+dataset. The UNet model is trained for 21k steps on the SSA dataset, with the
+learning rate decaying by a factor 10 every 10k steps, and for 66k steps on the
+VRM dataset, with the learning rate decaying by a factor 10 every 20k steps.
+Augmentation. Note that since the scale augmentation is used while training
+this stage, we take care to compute the target keypoints grid dynamically instead
+of applying augmentations to the target image. This ensures that the generated
+gaussian blobs are of fixed pixel dimensions.
+
+8
+James Batten, Matthew Sinclair, Ben Glocker, and Michiel Schaap
+6.2
+Second stage: Recursive Model
+On the SSA dataset the second stage model uses a transformer decoder with 12
+layers and ViT with a patch size of 25. On the VRM dataset a decoder with 21
+layers is used and a patch size of 40. On both datasets we use a peak learning rate
+of 1e-4 and a batch size of 144. On the SSA dataset the learning rate is decayed
+by a factor 10 every 10k steps, and every 50k steps on the VRM dataset. In all
+our experiments we use transformers with eight heads and a per-head feature
+dimension of size 64.
+7
+Results
+7.1
+Evaluation Metrics
+In order to compare the performance of our proposed I2TRP model against
+the baseline, we use leverage two point cloud distance metrics: the Chamfer dis-
+tance CD(Sa, Sb) =
+1
+|Sa|
+�
+x∈Sa miny∈Sb ||x − y||2
+2+
+1
+|Sb|
+�
+y∈Sb minx∈Sa ||x − y||2
+2
+and
+the
+Hausdorff
+distance
+HD(Sa, Sb)
+=
+max{ maxx∈Sa miny∈Sb ||x −
+y||2, maxy∈Sb minx∈Sa ||x − y||2 }. While the objective here is to quantitatively
+compare 2D predicted tree connectivity structures against their ground-truth
+targets, we found in practice that these set-to-set distance metrics are effec-
+tive measurement tools which are both sensitive to small errors and correlate
+well with qualitative assessment. In order to compute these metrics between a
+predicted and target tree, we linearly sample 100 points down each edge, and
+then compute for each case the distance metrics between the two point sets. This
+metric is then averaged over the test (or validation) set to obtain the final result.
+7.2
+SSA Test Set
+The results on the SSA dataset indicate that our proposed I2TRP model out-
+performs the baseline (c.f. Table 2). We emphasize, however, that this dataset
+is intended to be simple by design, and that the absolute difference between the
+models on these two metrics is fairly marginal considering these distances are
+measured in pixels (and pixels2).
+For the inference on the SSA dataset, we use the sampling parameters ndec =
+10 and γ = 1.0. While these parameters are possibly suboptimal, we chose to not
+over optimize and this simple data, and leave the sensitivity analysis of different
+sampling parameters to the following section on the VRM data. Qualitatively, the
+tree connectivity structures predicted by both the baseline and I2TRP models
+are highly accurate on the SSA dataset (c.f. Figures 3a and 3b).
+7.3
+VRM Validation and Test Sets
+On the VRM validation set, we seek to explore the sensitivity of the ndec and γ
+sampling parameters in order to achieve improved performance on the test set.
+
+Image To Tree with Recursive Prompting
+9
+(a)
+(b)
+Fig. 3: Overlay of the tree connectivity structure predicted by the baseline (a)
+and proposed model (b) for one example in the SSA test set
+Sensitivity of the number of stochastic samples. The first sampling
+parameter which we explore is the ndec term, which corresponds to the number
+of tree connectivity structures which are stochastically sampled before being
+merged into the final tree. In Figure 4b and Table 1 we can observe that for a
+variety of different γ (topology temperature) terms, the quality of the merged
+tree consistently improves as the number of stochastic samples increases.
+(a)
+(b)
+(c)
+Fig. 4: Results of the proposed model on the VRM validation set. (a): mean
+Hausdorff distances for multiple values of ndec as a function of the temperature
+values. (b): mean Hausdorff distances for multiple values of γ (topology tem-
+perature) as a function of ndec. (c): mean Chamfer distance obtained on the
+validation set for ndec = 20 as a function of the temperature values.
+Sensitivity of the temperature term. The second sampling parameter
+which we explore is the γ term, which corresponds to the softmax temperature
+used to sample the categorical topology classification. In Figures 4a and 4c and
+Table 1 we observe that for for different values of ndec, we can select a tempera-
+ture term which reaches the minimum Chamfer distance on the VRM validation
+set.
+
+10
+James Batten, Matthew Sinclair, Ben Glocker, and Michiel Schaap
+(a)
+(b)
+(c)
+Fig. 5: Predicted tree connectivity structures on an example from the VRM val-
+idation set. (a): input image, (b): I2TRP prediction, (c): baseline prediction.
+Of particular note here is the shortcut problem demonstrated by the baseline
+in Figure (c), observed at the centre and the top right. This problem does not
+occur in the proposed I2TRP model (Figure (b)) since it directly extracts the
+tree connectivity structure.
+Analysing the sensitivity of these two sampling parameters across a range of
+values suggests that the possibly best performance on the VRM data is achieved
+for ndec = 20 and γ = 3.0. For these parameters, the proposed model reaches a
+Chamfer distance of 31.06 pixels2 on the VRM validation set (vs 85.20 pixels2
+for the baseline model) . Note that the I2TRP model’s HD of 14.44 pixels (vs
+24.89 pixels for the baseline) is close to the optimum according to these results,
+but that a slightly better HD value of 13.97 is reached for a value of 3.5 for γ.
+ndec = 20
+γ
+1.5
+2.0
+2.5
+3.0
+3.5
+4.0
+baseline
+HD
+16.89 17.30 15.32 14.44 13.97 14.79
+24.89
+CD
+146.6 232.2 112.7 31.06 40.46 42.44
+85.20
+γ = 3.0
+ndec
+5
+8
+11
+14
+17
+20
+baseline
+HD
+19.03 17.31 15.84 15.58 14.99 14.44
+24.89
+CD
+277.4 177.5 91.22 160.8 57.01 31.06
+85.20
+Table 1: VRM validation set sensitivity analysis
+SSA Test Set
+Model
+HD
+CD
+Baseline
+3.55
+2.60
+I2TRP
+1.36 ± 0.06 0.67 ± 0.10
+VRM Test Set
+Model
+HD
+CD
+Baseline
+25.26
+92.16
+I2TRP
+15.02
+71.73
+Table 2: Test sets results
+Finally, when evaluating both models on the VRM test set with these fixed
+sampling parameters, we observe quantitatively that the proposed model out-
+performs the baseline (c.f. Table 2). A qualitative evaluation of the decoded tree
+structures (c.f. Figures 5a, 5b, and 5c) further suggests that our proposed I2TRP
+model does not suffer from the baseline’s shortcut issue, and can correctly handle
+branches overlapping in the projection (c.f. centre and top right of Figure 5c).
+
+Image To Tree with Recursive Prompting
+11
+8
+Conclusion & Discussion
+We presented a novel algorithm to extract tree connectivity structure from im-
+ages. We described two large-scale 2D synthetic datasets, one of which is gener-
+ated using real 3D coronary artery meshes from a clinically representative patient
+population. Our model achieves favorable performance compared to a minimal-
+path baseline. We report the influence of two sampling parameters on a valida-
+tion set. We expect that solving the connectivity structure problem in modalities
+such as projective X-ray Angiography will significantly reduce the complexity of
+subsequently extracting the full curvilinear centerline tree. Since high quality
+expert annotations are expensive to produce at scale for tree-structured data,
+our work here is currently limited to synthetic images. Bridging the gap between
+real and synthetic data is rapidly becoming more tractable thanks to diffusion
+models, and we intend to further explore combining these with our method.
+Furthermore, while the model proposed in this paper is applied only to 2D im-
+ages, we are confident that the choice of model architecture will scale well to 3D
+modalities such as CT angiography.
+9
+Acknowledgements
+This research was funded by HeartFlow, Inc.; James Batten was supported
+by the UKRI CDT in AI for Healthcare http://ai4health.io (Grant No.
+EP/S023283/1).
+References
+1. Bates, R., Irving, B., Markelc, B., Kaeppler, J., Muschel, R., Grau, V., Schnabel,
+J.A.: Extracting 3d vascular structures from microscopy images using convolutional
+recurrent networks. arXiv preprint arXiv:1705.09597 (2017)
+2. Benmansour, F., Cohen, L.D.: Tubular structure segmentation based on minimal
+path method and anisotropic enhancement. International Journal of Computer
+Vision 92(2), 192–210 (2011)
+3. Chapman, B.E., Berty, H.P., Schulthies, S.L.: Automated generation of directed
+graphs from vascular segmentations. Journal of biomedical informatics 56, 395–405
+(2015)
+4. Chen, T., Saxena, S., Li, L., Fleet, D.J., Hinton, G.: Pix2seq: A language modeling
+framework for object detection. arXiv preprint arXiv:2109.10852 (2021)
+5. Cohen, L.D., Kimmel, R.: Global minimum for active contour models: A minimal
+path approach. International journal of computer vision 24(1), 57–78 (1997)
+6. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
+T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is
+worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
+arXiv:2010.11929 (2020)
+7. Frimmel, H., Näppi, J., Yoshida, H.: Fast and robust computation of colon center-
+line in ct colonography: Fast and robust computation of colon centerline. Medical
+Physics 31(11), 3046–3056 (2004)
+
+12
+James Batten, Matthew Sinclair, Ben Glocker, and Michiel Schaap
+8. Gülsün, M.A., Tek, H.: Robust vessel tree modeling. In: International Conference
+on Medical Image Computing and Computer-Assisted Intervention. pp. 602–611.
+Springer (2008)
+9. Guo, Z., Bai, J., Lu, Y., Wang, X., Cao, K., Song, Q., Sonka, M., Yin, Y.: Deep-
+centerline: A multi-task fully convolutional network for centerline extraction. In:
+International Conference on Information Processing in Medical Imaging. pp. 441–
+453. Springer (2019)
+10. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the
+IEEE international conference on computer vision. pp. 2961–2969 (2017)
+11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
+Proceedings of the IEEE conference on computer vision and pattern recognition.
+pp. 770–778 (2016)
+12. Jin, W., Barzilay, R., Jaakkola, T.: Junction tree variational autoencoder for molec-
+ular graph generation. In: International conference on machine learning. pp. 2323–
+2332. PMLR (2018)
+13. Keshwani, D., Kitamura, Y., Ihara, S., Iizuka, S., Simo-Serra, E.: Topnet: Topology
+preserving metric learning for vessel tree reconstruction and labelling. In: Interna-
+tional Conference on Medical Image Computing and Computer-Assisted Interven-
+tion. pp. 14–23. Springer (2020)
+14. Kosiorek, A.R., Kim, H., Rezende, D.J.: Conditional set generation with trans-
+formers. arXiv preprint arXiv:2006.16841 (2020)
+15. Li, H., Yezzi, A.: Vessels as 4-d curves: Global minimal 4-d paths to extract 3-
+d tubular surfaces and centerlines. IEEE transactions on medical imaging 26(9),
+1213–1223 (2007)
+16. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint
+arXiv:1711.05101 (2017)
+17. Metz, C., Schaap, M., Weustink, A., Mollet, N., van Walsum, T., Niessen, W.:
+Coronary centerline extraction from ct coronary angiography images using a min-
+imum cost path approach. Medical physics 36(12), 5568–5579 (2009)
+18. Murray, C.D.: The physiological principle of minimum work: I. the vascular system
+and the cost of blood volume. Proceedings of the National Academy of Sciences
+12(3), 207–214 (1926)
+19. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
+T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-
+performance deep learning library. Advances in neural information processing sys-
+tems 32 (2019)
+20. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedi-
+cal image segmentation. In: International Conference on Medical image computing
+and computer-assisted intervention. pp. 234–241. Springer (2015)
+21. Tancik, M., Srinivasan, P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Sing-
+hal, U., Ramamoorthi, R., Barron, J., Ng, R.: Fourier features let networks learn
+high frequency functions in low dimensional domains. Advances in Neural Infor-
+mation Processing Systems 33, 7537–7547 (2020)
+22. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
+Ł., Polosukhin, I.: Attention is all you need. Advances in neural information pro-
+cessing systems 30 (2017)
+23. You, J., Liu, B., Ying, Z., Pande, V., Leskovec, J.: Graph convolutional policy net-
+work for goal-directed molecular graph generation. Advances in neural information
+processing systems 31 (2018)
+
diff --git a/mNAyT4oBgHgl3EQflPgY/content/tmp_files/load_file.txt b/mNAyT4oBgHgl3EQflPgY/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..7c8dc6ea58be39d91c9d6840decd5f1294eba266
--- /dev/null
+++ b/mNAyT4oBgHgl3EQflPgY/content/tmp_files/load_file.txt
@@ -0,0 +1,475 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf,len=474
+page_content='Image To Tree with Recursive Prompting James Batten1,2, Matthew Sinclair1,2, Ben Glocker1,2, and Michiel Schaap1,2 1 Imperial College London 2 HeartFlow, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Extracting complex structures from grid-based data is a com- mon key step in automated medical image analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' The conventional solution to recovering tree-structured geometries typically involves com- puting the minimal cost path through intermediate representations de- rived from segmentation masks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' However, this methodology has signifi- cant limitations in the context of projective imaging of tree-structured 3D anatomical data such as coronary arteries, since there are often over- lapping branches in the 2D projection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' In this work, we propose a novel approach to predicting tree connectivity structure which reformulates the task as an optimization problem over individual steps of a recursive process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' We design and train a two-stage model which leverages the UNet and Transformer architectures and introduces an image-based prompting technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Our proposed method achieves compelling results on a pair of synthetic datasets, and outperforms a shortest-path baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Keywords: Tree extraction · Connectivity · Image-based prompting 1 Introduction Extracting centerline trees from medical images is challenging in projective modalities such as Coronary X-ray Angiography due to overlapping branches in the 2D image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Tree connectivity structure extraction is a more restricted problem which involves detecting the set of topologically significant keypoints (such as root, bifurcation and leaf nodes) in the image domain and predicting the directed edges which connect these together to form a tree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' We focus on this important subproblem and propose a novel method which achieves favorable performance on two large-scale synthetic datasets compared to a shortest-path baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Our novel two-stage neural network model, named I2TRP, leverages the UNet [20] and Transformer [22] architectures in order to perform tree connectivity structure extraction in 2D images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' The I2TRP model employs an image-based prompting technique and decomposes the tree decoding problem into multiple recursive steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Formulating the task as an optimization problem over individual steps of a recursive process enables a fully-supervised training strategy while removing the need for more complex end-to-end optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Furthermore, we introduce a simple yet effective method to stochastically sample trees from our model, and merge these into a final prediction in order to improve performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' We evaluate our method on two large synthetic datasets and explore the effects of different sampling parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='00447v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='CV] 1 Jan 2023 2 James Batten, Matthew Sinclair, Ben Glocker, and Michiel Schaap 2 Related Work Vessel extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' The extraction of curvilinear centerline trees is a common task for the analysis of vascular data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Many classical techniques apply minimal- path algorithms to acquire the curve [5,2,15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Improvements can be achieved by predicting a dense centerline distance map and subsequently extracting the minimal path [9], and decoding topological feature vectors which are then used to inform the tree reconstruction [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Other approaches use formal graph-based techniques on skeletonised binary segmentations [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' A more recent method pre- dicts skeletonisations of manual segmentations using convolutional and recurrent architectures [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Set Prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Image-to-Tree prediction can be viewed as an extension to set prediction, since the underlying nodes of the tree are set-structured.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' While object detection is a mature field of research [10], recent approaches have tackled set prediction from novel angles such as end-to-end modeling through the use of permutation-invariant loss functions [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' An alternative method, particularly relevant to this paper, discards the end-to-end paradigm in favour of sequence- based modeling [4], and tackles the set prediction problem by training a neural network to model single steps of a sequential process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Our proposed method leverages this intuition by modeling single steps of a recursive process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Graph Generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Another perspective on tree connectivity structure ex- traction is to consider it as a subclass of graph generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' In [12], the authors propose leveraging a tree-structured intermediate representation in order to sup- port the decoding of the graph-structured molecule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Other approaches in the field of generative molecular modeling include [23] which proposes a policy network implemented using graph convolutions, and models the molecular graph decod- ing as a Markov decision process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' 3 Proposed Method: I2TRP The proposed I2TRP (“Image To Tree with Recursive Prompting”) method con- sists of a two-stage approach for tree extraction (c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Figure 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' The first model consumes the input image and predicts a set of keypoints corresponding to the root nodes, bifurcations, trifurcations and leaf nodes of the tree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' The second stage then extracts patches around each of the keypoints produced by the first stage and recursively decodes the tree structure connecting them together.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='1 Keypoint Detection The keypoint prediction model uses a simple UNet model to predict small Gaus- sian “blobs” around the locations of the topologically-significant keypoints in the image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' During training, the target keypoints grid is computed by placing fixed- size Gaussians (with an application-specific standard deviation) at each node location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' During inference, the discrete set of keypoints is extracted from the predicted grid of scalar intensities by using the NMS (non-maximum suppres- sion) algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Image To Tree with Recursive Prompting 3 UNet NMS Keypoints Keypoints Input Image Gaussian "Blobs" Stage 1: keypoint detection Stage 2: recursive decoding X/Y positional encodings + Image-based Prompt + Global Input Grid Patches cropped around each keypoint (all channels included) ViT Transformer Decoder ResNet ResNet MLP MLP MLP ResNet selection topology Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' 1: Overview of the two stages of the I2TRP model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Stage 1 on the left: keypoint detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Stage 2 on the right: recursive decoding 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='2 Recursive Tree Extraction Connectivity Structure Extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' The second stage formulates the tree extraction as a recursive process which consumes both the input image and the set of candidate keypoints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' The tree decoding problem is decomposed into a finite set of deterministic recursive steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' During training, each batch is composed of a set of trees from which single randomly-sampled recursive steps in the decoding process are sampled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' The model is tasked with selecting for a given parent- query node the corresponding child nodes among the set of candidate keypoints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Since the exact steps of the decoding process are known at training time, this training methodology is fully-supervised and exploration-free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' At inference time, each forward pass through the second stage model selects the keypoints which correspond to the child nodes of a specified query node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Image-based Prompt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' In order to indicate to the model the location of the query (parent) node, we compute a “distance-to-query” scalar channel d (in world coordinates where the X/Y values go from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='0 to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='0 across the image domain) which is then lifted to a “Fourier feature” [21] encoding: sin(αd).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' We found that this simple encoding was particularly effective in our experiments, a key benefit being that for every position in the image, the local information in this positional encoding is sufficient to determine both the direction towards the query node (from the orientation of the ripples) and the distance to the query node (from the curvature of the ripples).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Note that the root node does not have a parent, and for this particular case the image-based prompt is empty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' A common fixed scalar α term set to 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='0 is used for all the positional encodings in this model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' 4 James Batten, Matthew Sinclair, Ben Glocker, and Michiel Schaap I2TRP Architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' The second stage model follows an encoder-decoder architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' In the encoder pathway, the input image x ∈ RH×W ×C (including the prompt and positional encoding channels) are passed through an 8-layer vision transformer (ViT) [6] to produce a set of global image encodings vg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Around each candidate keypoint location we crop patches p of size 51x51 pixels and pass these through a ResNet [11] encoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' The resulting patch-vectors vp are subsequently fed into a transformer decoder which attends to the global image memory encodings and produces the updated patch vectors v′ p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Finally, these updated patch vectors vp are fed through a two-layer MLP (with a GELU nonlinearity) which predicts the output selection vo s and topology vo t vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Note that both the ViT and ResNets are supplied with the image prompt and positional encoding channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' vg = ViT(x) vp = ResNet(p) v′ p = TransformerDecoder(vp, vg) vo s, vo t = MLP(v′ p) X/Y Positional Encodings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' In addition to the image channel and the dynamic prompt indicating the location of the query node, we also inject X/Y positional information into the patches in the encoder and decoder pathways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' While it is possible to add positional encodings to the vector representations in the internal ViT and patch encoder components, this implementation instead represents positional information in the grid external to the model in order to reduce the complexity of the architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' More specifically, we append a number of static channels to the input data which encode the position information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' In total there are four channels used for this encoding: two for the absolute X/Y positions (with values between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='0 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='0), and two for sinusoidal lifted variants of these: sin(αx) and sin(αy).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Loss Function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' We train the recursive model by combining a pair of loss functions on the output selection and topology vectors vo s and vo t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' The selec- tion loss is computed between the predicted selection vector of shape RP ×1 (where P is the number of patches) and its binary ground-truth vector vg s of the same shape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' This target selection vector represents the child nodes of the speci- fied query node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Similarly, the topology loss is computed between the predicted topology vector of shape RP ×4 (note that for the SSA dataset there are no tri- furcations and we use topology vectors vt of shape RP ×3) and its ground-truth vector vg t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' The target topology vector is a one-hot encoding which represents the different node topologies (the node’s number of children).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' For both datasets, only root nodes are permitted to have a single child node, and all other nodes either have multiple children or are leaf nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Note that root nodes can also have multiple children.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' To train the topology term we use a cross-entropy loss (LXE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' We explored using cross-entropy to train the selection term, but found in our experiments that the mean squared error (LMSE) loss was more stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' The combined loss L is thus written as: L = λt .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' LXE(vo t , vg t ) + λs .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' LMSE(vo s, vg s) , λt = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='1, λs = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='0 (1) Training with Ground-Truth Keypoints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' We use the ground-truth key- points to train the second stage I2TRP model instead of using those predicted Image To Tree with Recursive Prompting 5 from the first stage UNet model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' In order to mitigate distributional shift, we ap- ply a small spatial Gaussian jitter to the position of the ground-truth keypoints during the training of the second stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Using the ground truth trees to train the second stage significantly reduces the implementation complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' At inference time, the candidate keypoints are those predicted by the first-stage UNet, and we find that the recursive model generalises well to the predicted keypoint sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='3 Stochastic Decoding Sampling parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Once trained, the tree extraction model can be queried stochastically by interpreting the scalar outputs of the decoder as probabilistic weights (as opposed to simply taking a deterministic argmax).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' In order to sim- plify the sampling, we limit this stochasticity to the topology term, and retain the selection as a deterministic prediction at each recursive step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' For a given step in the decoding process, the topology head of the decoder predicts a softmax over the node geometry classes for each of the keypoints produced by the first stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' In stochastic mode, we include a “topology temperature” term γ which adjusts the scalar values of the softmax weights: wi = e vo t,i/γ � j e vo t,j /γ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' The node topology is then predicted by randomly sampling according to these weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' During infer- ence, the stochastic sampling acquires multiple decodings of the tree, the total number of which is set by the parameter ndec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Merging the trees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' We implement a merging algorithm which prioritises simplicity and achieves good performance compared to the baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' This algo- rithm first produces a matrix which counts the number of times a child and parent keypoint-pair occur in the stochastically generated trees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Once the count matrix is complete, the final merged tree is decoded by starting from the root and recursively selecting the child nodes which most frequently connect to the parent selected at each recursive step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' 4 Data 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='1 Volumetrically Rendered Meshes (VRM) The first dataset which we utilize in this paper is generated by rendering a large set of 3D coronary artery tree meshes derived from CTA (computed tomogra- phy angiography).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Our intent is to create a large-scale “semi-synthetic” dataset using real anatomical data which replicates the geometric complexity of the tree connectivity structure extraction problem as seen in real-world modalities such as projected 2D X-ray angiography.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Note that the dataset is acquired from geo- graphically diverse regions, and is representative of clinical populations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' The VRM dataset is generated from 9,845 left and right coronary tree meshes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' For each tree we generate volumetric projections along five different view angles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' These 2D projections are then split into three subsets: train (39,420 views), test (8,855 views) and validation (950 views).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Note that we ensure trees from the 6 James Batten, Matthew Sinclair, Ben Glocker, and Michiel Schaap (a) (b) (c) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' 2: Examples with the ground-truth tree connectivity structure overlay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' (a) and (b): from the VRM dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' (c): from the SSA dataset same patient are not mixed between different subsets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' The trees in the VRM dataset include root, leaf, bifurcation and trifurcation nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Since the trees are generated from real-world data, the relative frequencies of these reflect the true statistics of coronary anatomy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Since the 3D meshes are clipped beyond the radius of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='25mm, small secondary vessel structures at finer resolutions are not present in this representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' For each view, we render 500x500 pixel grids by randomly sampling perspective projections and tracing rays through the scene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' For every pixel in these grids, we set the intensity according to the corresponding ray traversal distance through the coronary artery mesh (c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' 2a and 2b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='2 Simple Synthetic Angiography (SSA) In addition to the volumetrically rendered meshes, we generate a simpler 2D synthetic dataset, composed of 15,248 train and 3,812 test trees, on which both the proposed and baseline models are trained and evaluated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' This dataset, which will be publicly released, is intended to both facilitate reproducibility of our work and support future development of learning-based tree extraction algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' The dataset is generated in two steps: the first step produces the tree ge- ometry, and the second renders the corresponding image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' The first step models the angiogenesis process using a simple force-based simulation which iteratively grows a tree composed of a set of nodes and edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' In order to assign the vessel diameter to each location along the centerline, we use Murray’s law [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Note that the SSA dataset does not contain trifurcations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' The second step consumes the tree geometry and produces the noisy rendered image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' In order to emulate vessel-like appearance, we model each vessel as a 3D cylinder (aligned in the same plane) filled with constant-density contrast.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' For each tree, we create a grid of 250x250 pixels and trace rays orthographically through the scene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' As a final step in the rendering process, we add multi-scale Perlin noise (c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' 2c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Image To Tree with Recursive Prompting 7 5 Baseline Our model is evaluated against a baseline inspired by previous works which follow the minimum cost path approach [5,2,15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' The extraction of curvilinear struc- tures in image data typically involves optimizing a candidate path χ according to a function f : χ → R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Methods which leverage minimal path techniques include those which define cost or potential maps derived from image intensities [5], vesselness [17] and medialness [8] filters or distance transforms of segmentation masks [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Image-domain cost maps f(I) assign for every discrete pixel location a particular cost, allowing integration along a sequence of pixels to recover the path score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' The choice of cost map f(I) affects the resulting minimum-cost path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' In our baseline implementation, the image of the tree is passed through a UNet [20] which predicts the set of root and leaf nodes, in addition to a segmen- tation mask S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' A distance transform Dint(S) is then applied inside the predicted mask which represents for each pixel the distance to the segmentation edge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' The cost map C is computed such that on the mask’s interior Cint = m − Dint(S), and on its exterior Cext = m + 1, where m = max(Dint(S)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Minimal-cost paths are then traced accordingly from each leaf node to the root (using Dijkstra’s algorithm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Finally, these paths are merged to form the centerline tree, from which the discrete tree connectivity structure is extracted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' 6 Training Details We trained both the proposed and baseline models using the AdamW [16] op- timizer implemented in PyTorch [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' For training, the learning rate scheduler performs a short linear ramp up followed by an exponential learning rate decay, with different peak learning rate and decay parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' All experiments were run on a single NVIDIA V100 32GB GPU, with a weight decay of 1e-3, using translate, scale and rotate augmentations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='1 First stage: Keypoint model On both the SSA and VRM datasets, the first stage UNet model is trained using a batch size of 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' The grid containing the target gaussian blobs is parti- tioned by thresholding at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='5, and the MSE foreground and background terms are reweighted by multiplying by 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='7 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='3 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' On the SSA dataset, the peak learning rate after the linear ramp up is 1e-3, versus 3e-4 for the VRM dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' The UNet model is trained for 21k steps on the SSA dataset, with the learning rate decaying by a factor 10 every 10k steps, and for 66k steps on the VRM dataset, with the learning rate decaying by a factor 10 every 20k steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Augmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Note that since the scale augmentation is used while training this stage, we take care to compute the target keypoints grid dynamically instead of applying augmentations to the target image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' This ensures that the generated gaussian blobs are of fixed pixel dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' 8 James Batten, Matthew Sinclair, Ben Glocker, and Michiel Schaap 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='2 Second stage: Recursive Model On the SSA dataset the second stage model uses a transformer decoder with 12 layers and ViT with a patch size of 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' On the VRM dataset a decoder with 21 layers is used and a patch size of 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' On both datasets we use a peak learning rate of 1e-4 and a batch size of 144.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' On the SSA dataset the learning rate is decayed by a factor 10 every 10k steps, and every 50k steps on the VRM dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' In all our experiments we use transformers with eight heads and a per-head feature dimension of size 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' 7 Results 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='1 Evaluation Metrics In order to compare the performance of our proposed I2TRP model against the baseline, we use leverage two point cloud distance metrics: the Chamfer dis- tance CD(Sa, Sb) = 1 |Sa| � x∈Sa miny∈Sb ||x − y||2 2+ 1 |Sb| � y∈Sb minx∈Sa ||x − y||2 2 and the Hausdorff distance HD(Sa, Sb) = max{ maxx∈Sa miny∈Sb ||x − y||2, maxy∈Sb minx∈Sa ||x − y||2 }.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' While the objective here is to quantitatively compare 2D predicted tree connectivity structures against their ground-truth targets, we found in practice that these set-to-set distance metrics are effec- tive measurement tools which are both sensitive to small errors and correlate well with qualitative assessment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' In order to compute these metrics between a predicted and target tree, we linearly sample 100 points down each edge, and then compute for each case the distance metrics between the two point sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' This metric is then averaged over the test (or validation) set to obtain the final result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='2 SSA Test Set The results on the SSA dataset indicate that our proposed I2TRP model out- performs the baseline (c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Table 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' We emphasize, however, that this dataset is intended to be simple by design, and that the absolute difference between the models on these two metrics is fairly marginal considering these distances are measured in pixels (and pixels2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' For the inference on the SSA dataset, we use the sampling parameters ndec = 10 and γ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' While these parameters are possibly suboptimal, we chose to not over optimize and this simple data, and leave the sensitivity analysis of different sampling parameters to the following section on the VRM data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Qualitatively, the tree connectivity structures predicted by both the baseline and I2TRP models are highly accurate on the SSA dataset (c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Figures 3a and 3b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='3 VRM Validation and Test Sets On the VRM validation set, we seek to explore the sensitivity of the ndec and γ sampling parameters in order to achieve improved performance on the test set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Image To Tree with Recursive Prompting 9 (a) (b) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' 3: Overlay of the tree connectivity structure predicted by the baseline (a) and proposed model (b) for one example in the SSA test set Sensitivity of the number of stochastic samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' The first sampling parameter which we explore is the ndec term, which corresponds to the number of tree connectivity structures which are stochastically sampled before being merged into the final tree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' In Figure 4b and Table 1 we can observe that for a variety of different γ (topology temperature) terms, the quality of the merged tree consistently improves as the number of stochastic samples increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' (a) (b) (c) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' 4: Results of the proposed model on the VRM validation set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' (a): mean Hausdorff distances for multiple values of ndec as a function of the temperature values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' (b): mean Hausdorff distances for multiple values of γ (topology tem- perature) as a function of ndec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' (c): mean Chamfer distance obtained on the validation set for ndec = 20 as a function of the temperature values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Sensitivity of the temperature term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' The second sampling parameter which we explore is the γ term, which corresponds to the softmax temperature used to sample the categorical topology classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' In Figures 4a and 4c and Table 1 we observe that for for different values of ndec, we can select a tempera- ture term which reaches the minimum Chamfer distance on the VRM validation set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' 10 James Batten, Matthew Sinclair, Ben Glocker, and Michiel Schaap (a) (b) (c) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' 5: Predicted tree connectivity structures on an example from the VRM val- idation set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' (a): input image, (b): I2TRP prediction, (c): baseline prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Of particular note here is the shortcut problem demonstrated by the baseline in Figure (c), observed at the centre and the top right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' This problem does not occur in the proposed I2TRP model (Figure (b)) since it directly extracts the tree connectivity structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Analysing the sensitivity of these two sampling parameters across a range of values suggests that the possibly best performance on the VRM data is achieved for ndec = 20 and γ = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' For these parameters, the proposed model reaches a Chamfer distance of 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='06 pixels2 on the VRM validation set (vs 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='20 pixels2 for the baseline model) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Note that the I2TRP model’s HD of 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='44 pixels (vs 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='89 pixels for the baseline) is close to the optimum according to these results, but that a slightly better HD value of 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='97 is reached for a value of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='5 for γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' ndec = 20 γ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='0 baseline HD 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='89 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='30 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='32 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='44 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='97 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='79 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='89 CD 146.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='6 232.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='2 112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='7 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='06 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='46 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='44 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='20 γ = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='0 ndec 5 8 11 14 17 20 baseline HD 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='03 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='31 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='84 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='58 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='99 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='44 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='89 CD 277.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='4 177.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='5 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='22 160.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='8 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='01 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='06 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='20 Table 1: VRM validation set sensitivity analysis SSA Test Set Model HD CD Baseline 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='55 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='60 I2TRP 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='36 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='67 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='10 VRM Test Set Model HD CD Baseline 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='26 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='16 I2TRP 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='02 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='73 Table 2: Test sets results Finally, when evaluating both models on the VRM test set with these fixed sampling parameters, we observe quantitatively that the proposed model out- performs the baseline (c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Table 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' A qualitative evaluation of the decoded tree structures (c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Figures 5a, 5b, and 5c) further suggests that our proposed I2TRP model does not suffer from the baseline’s shortcut issue, and can correctly handle branches overlapping in the projection (c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' centre and top right of Figure 5c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Image To Tree with Recursive Prompting 11 8 Conclusion & Discussion We presented a novel algorithm to extract tree connectivity structure from im- ages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' We described two large-scale 2D synthetic datasets, one of which is gener- ated using real 3D coronary artery meshes from a clinically representative patient population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Our model achieves favorable performance compared to a minimal- path baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' We report the influence of two sampling parameters on a valida- tion set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' We expect that solving the connectivity structure problem in modalities such as projective X-ray Angiography will significantly reduce the complexity of subsequently extracting the full curvilinear centerline tree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Since high quality expert annotations are expensive to produce at scale for tree-structured data, our work here is currently limited to synthetic images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Bridging the gap between real and synthetic data is rapidly becoming more tractable thanks to diffusion models, and we intend to further explore combining these with our method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Furthermore, while the model proposed in this paper is applied only to 2D im- ages, we are confident that the choice of model architecture will scale well to 3D modalities such as CT angiography.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' 9 Acknowledgements This research was funded by HeartFlow, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' James Batten was supported by the UKRI CDT in AI for Healthcare http://ai4health.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='io (Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' EP/S023283/1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' References 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Bates, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Irving, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Markelc, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Kaeppler, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Muschel, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Grau, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Schnabel, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' : Extracting 3d vascular structures from microscopy images using convolutional recurrent networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' arXiv preprint arXiv:1705.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='09597 (2017) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Benmansour, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Cohen, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' : Tubular structure segmentation based on minimal path method and anisotropic enhancement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' International Journal of Computer Vision 92(2), 192–210 (2011) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Chapman, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Berty, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Schulthies, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' : Automated generation of directed graphs from vascular segmentations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Journal of biomedical informatics 56, 395–405 (2015) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Chen, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Saxena, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Li, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Fleet, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Hinton, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=': Pix2seq: A language modeling framework for object detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' arXiv preprint arXiv:2109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='10852 (2021) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Cohen, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Kimmel, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=': Global minimum for active contour models: A minimal path approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' International journal of computer vision 24(1), 57–78 (1997) 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Dosovitskiy, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Beyer, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Kolesnikov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Weissenborn, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Zhai, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Unterthiner, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Dehghani, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Minderer, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Heigold, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Gelly, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' : An image is worth 16x16 words: Transformers for image recognition at scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' arXiv preprint arXiv:2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='11929 (2020) 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Frimmel, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Näppi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Yoshida, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=': Fast and robust computation of colon center- line in ct colonography: Fast and robust computation of colon centerline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Medical Physics 31(11), 3046–3056 (2004) 12 James Batten, Matthew Sinclair, Ben Glocker, and Michiel Schaap 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Gülsün, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Tek, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=': Robust vessel tree modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' In: International Conference on Medical Image Computing and Computer-Assisted Intervention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' 602–611.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Springer (2008) 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Guo, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Bai, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Lu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Wang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Cao, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Song, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Sonka, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Yin, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=': Deep- centerline: A multi-task fully convolutional network for centerline extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' In: International Conference on Information Processing in Medical Imaging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' 441– 453.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Springer (2019) 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' He, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Gkioxari, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Dollár, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Girshick, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=': Mask r-cnn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' In: Proceedings of the IEEE international conference on computer vision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' 2961–2969 (2017) 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' He, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Zhang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Ren, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Sun, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=': Deep residual learning for image recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' In: Proceedings of the IEEE conference on computer vision and pattern recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' 770–778 (2016) 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Jin, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Barzilay, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Jaakkola, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=': Junction tree variational autoencoder for molec- ular graph generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' In: International conference on machine learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' 2323– 2332.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' PMLR (2018) 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Keshwani, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Kitamura, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Ihara, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Iizuka, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Simo-Serra, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=': Topnet: Topology preserving metric learning for vessel tree reconstruction and labelling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' In: Interna- tional Conference on Medical Image Computing and Computer-Assisted Interven- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' 14–23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Springer (2020) 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Kosiorek, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Kim, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Rezende, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' : Conditional set generation with trans- formers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' arXiv preprint arXiv:2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='16841 (2020) 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Li, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Yezzi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=': Vessels as 4-d curves: Global minimal 4-d paths to extract 3- d tubular surfaces and centerlines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' IEEE transactions on medical imaging 26(9), 1213–1223 (2007) 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Loshchilov, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Hutter, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=': Decoupled weight decay regularization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' arXiv preprint arXiv:1711.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='05101 (2017) 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Metz, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Schaap, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Weustink, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Mollet, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', van Walsum, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Niessen, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=': Coronary centerline extraction from ct coronary angiography images using a min- imum cost path approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Medical physics 36(12), 5568–5579 (2009) 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Murray, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' : The physiological principle of minimum work: I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' the vascular system and the cost of blood volume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Proceedings of the National Academy of Sciences 12(3), 207–214 (1926) 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Paszke, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Gross, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Massa, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Lerer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Bradbury, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Chanan, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Killeen, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Lin, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Gimelshein, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Antiga, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' : Pytorch: An imperative style, high- performance deep learning library.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Advances in neural information processing sys- tems 32 (2019) 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Ronneberger, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Fischer, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Brox, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=': U-net: Convolutional networks for biomedi- cal image segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' In: International Conference on Medical image computing and computer-assisted intervention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' 234–241.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Springer (2015) 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Tancik, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Srinivasan, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Mildenhall, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Fridovich-Keil, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Raghavan, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Sing- hal, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Ramamoorthi, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Barron, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Ng, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=': Fourier features let networks learn high frequency functions in low dimensional domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Advances in Neural Infor- mation Processing Systems 33, 7537–7547 (2020) 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Vaswani, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Shazeer, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Parmar, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Uszkoreit, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Jones, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Gomez, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Kaiser, Ł.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Polosukhin, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=': Attention is all you need.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Advances in neural information pro- cessing systems 30 (2017) 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' You, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Liu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Ying, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Pande, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=', Leskovec, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=': Graph convolutional policy net- work for goal-directed molecular graph generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
+page_content=' Advances in neural information processing systems 31 (2018)' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQflPgY/content/2301.00447v1.pdf'}
diff --git a/odAzT4oBgHgl3EQfqv0U/content/2301.01632v1.pdf b/odAzT4oBgHgl3EQfqv0U/content/2301.01632v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..5a490183cf0c97087eb97ff9d894022505e8f02a
--- /dev/null
+++ b/odAzT4oBgHgl3EQfqv0U/content/2301.01632v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4ffcb57c11ed6c522d62b0a1b083f99256b70e8794e1b82dfe4e6826c89860ff
+size 143956
diff --git a/odAzT4oBgHgl3EQfqv0U/vector_store/index.pkl b/odAzT4oBgHgl3EQfqv0U/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..beb0194f1597134ac5a878fdde120ef4980bd8b4
--- /dev/null
+++ b/odAzT4oBgHgl3EQfqv0U/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:141bab0884d50073f96d5a58d91cc637be31c3aa64432d26c8c0f239a6385311
+size 42560
diff --git a/ptFQT4oBgHgl3EQfsTaj/content/tmp_files/2301.13387v1.pdf.txt b/ptFQT4oBgHgl3EQfsTaj/content/tmp_files/2301.13387v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..74fd985d7b8cd457528016e3a49162b772fecb2e
--- /dev/null
+++ b/ptFQT4oBgHgl3EQfsTaj/content/tmp_files/2301.13387v1.pdf.txt
@@ -0,0 +1,407 @@
+Deep Learning for Reference-Free Geolocation of
+Poplar Trees
+Cai W. John∗
+Bredesen Center
+University of Tennessee, Knoxville
+Knoxville, TN 37996
+cjohn3@vols.utk.edu
+Owen Queen∗†
+Department of Biomedical Informatics
+Harvard Medical School
+Boston, MA 02115
+owen_queen@hms.harvard.edu
+Wellington Muchero
+Center for Bioenergy Innovation
+Oak Ridge National Laboratory
+Oak Ridge, TN 37830
+mucherow@ornl.gov
+Scott J. Emrich
+Electrical Eng. and Computer Science
+Bredesen Center
+University of Tennessee, Knoxville
+Knoxville, TN 37996
+semrich@utk.edu
+Abstract
+A core task in precision agriculture is the identification of climatic and ecological
+conditions that are advantageous for a given crop. The most succinct approach
+is geolocation, which is concerned with locating the native region of a given
+sample based on its genetic makeup. Here, we investigate genomic geolocation of
+Populus trichocarpa, or poplar, which has been identified by the US Department of
+Energy as a fast-rotation biofuel crop to be harvested nationwide. In particular, we
+approach geolocation from a reference-free perspective, circumventing the need
+for compute-intensive processes such as variant calling and alignment. Our model,
+MASHNET, predicts latitude and longitude for poplar trees from randomly-sampled,
+unaligned sequence fragments. We show that our model performs comparably
+to Locator, a state-of-the-art method based on aligned whole-genome sequence
+data. MASHNET achieves an error of 34.0 km2 compared to Locator’s 22.1 km2.
+MASHNET allows growers to quickly and efficiently identify natural varieties that
+will be most productive in their growth environment based on genotype. This paper
+explores geolocation for precision agriculture while providing a framework and
+data source for further development by the machine learning community.
+1
+Introduction
+Pollen dispersal in natural populations of Populus trichocarpa, as well as other species, results in
+correlations between geography and genetic variation. These correlations can be leveraged to predict
+geographic origin of a sample from genetic data as demonstrated in previous studies [1] [2]. To date,
+all studies have achieved this prediction task using aligned, whole-genome sequence data. Here,
+we demonstrate our novel tool MASHNET that predicts geographic origin from unaligned sequence
+fragments. We compare it to the current state of the art implementation, Locator [1], which uses a
+deep learning architecture on aligned sequences. Our method performs similarly despite using more
+noisy sequence read-only information.
+∗Shared first authorship
+†Work done while at University of Tennessee, Knoxville
+NeurIPS 2022 AI for Science Workshop.
+arXiv:2301.13387v1 [q-bio.GN] 31 Jan 2023
+
+Sequence alignment is a necessary procedure to transform short read fragments into genome-scale
+information. Modern technology is only capable of sequencing small sections of DNA, so large-scale
+genotyping of individuals using sequencing data requires post hoc alignment and variant-calling
+algorithms, usually relative to a well-established reference genome sequence [3]. These algorithms
+are computationally intensive procedures that create major bottlenecks between sample collection and
+downstream analysis of variant data. Further, although reference genomes are increasingly common
+due to advances in both technology and assembly algorithms[4], they still require large amounts of
+sequence data and resource intensive de novo assembly. These demands prevent many non-model
+organisms from being sequenced. Our approach is alignment-free and therefore can be applied to the
+many non-model organisms currently without a reference genome. It also circumvents the need for
+variant-calling algorithms allowing researchers to more rapidly analyze samples. For example, one
+can envision sampling natural genetic diversity in a species, and then using computational methods to
+suggest the ancestral origin(s) of unknown samples. This process is called geolocation. A simple
+spatial-climate map, such as the Köppen-Geiger climate system [5], could then map origin locations
+to desired growing environments. Being able to pinpoint these environments is key to precision
+agriculture.
+In this study, we focus on Populus trichocarpa (poplar) because of interest from the Department of
+Energy (DOE) in developing it as a fast-rotation biofuel crop to be viable nationwide [6]. Poplar’s
+species range extends from southern California all the way to British Columbia encompassing a
+latitudinal range of 38.88 to 54.25 degrees [7]. This range includes a diversity of macro and micro-
+environments that have likely shaped subpopulations of this species. Our goal is to predict the
+latitudinal and longitudinal coordinates of these genotypes from their sequence data, a task known as
+genomic geolocation.
+Geolocation has applications in precision agriculture. When considering a new site for a tree nursery
+it is desirable to clone samples well-suited to that environment. Given that these trees have often
+been previously cloned, and relocated to common gardens and greenhouses for commercial use and
+agricultural research, it can be difficult to obtain meta-data locating them to their origin environment.
+MASHNET resolves this issue allowing growers to rapidly identify the origin location of their trees,
+and identify which will be most productive in the new climate.
+In this work, we present MASHNET, a deep learning-based model that can perform accurate geolo-
+cation of poplar trees. The model uses a multi-task neural architecture to jointly predict latitude
+and longitude coordinates for each sample. Importantly, this method uses Mash sketches [8], an
+alignment-free feature extraction method that randomly samples k-mers from sequencing read data.
+We demonstrate that MASHNET can use alignment-free Mash sketches to compete with WGS-based
+methods. We open source our methods and data while highlighting the importance of this task to
+precision agriculture.
+2
+Methods
+2.1
+Data
+We consider 1,252 poplar genotypes from a representative sampling of the latitudinal distribution of
+its species range (see Figure 1 panel A). Genome re-sequencing, alignment and variant-calling of this
+population was previously described by Zhang et al. [3]. We use these aligned and variant called
+sequences in Locator as a performance benchmark for our alignment-free method. MASHNET is
+trained on unaligned reads. Out of the total 1,252 samples, 1,024 have reads that are publicly available
+for download from the NCBI’s Sequence Read Archive (SRA). A map of sample ID’s to SRA key
+is included with the meta data in our Github 3. During training, meta data labels with ground-truth
+latitude and longitude coordinates for all 1,252 samples are used. These are also included on our
+GitHub repository. Unfortunately, we are unable to publicly host the aligned WGS used to train and
+test Locator, as well as the remaining 228 sample reads. This is due to current access restrictions.
+Associated with each sample are several meta-data variables. The first is river system, which
+corresponds to the nearby river from which each sample was originally collected. This variable
+in particular shows strong signal, as is evidenced by Figure 1C, which shows a PCA-UMAP [9]
+3All codes and data found at https://github.com/owencqueen/MashPredict
+2
+
+Figure 1: A) Map of the origin location of all 1,252 poplar samples. B) Reduced set of 919 samples
+used for PCA-UMAP clustering by river system. Downsampling from 1,252 samples is achieved
+by retaining only river systems with ≥ 35 members. C) PCA-UMAP embedding of 919 clustering
+samples colored by river system.
+projection of each sample colored by its associated river system. This projection illustrates the
+correlation between origin location and genotype that we will leverage to geolocate these samples.
+2.2
+MinHashing Unaligned Reads
+A major innovation of this work is achieving prediction from unaligned reads. We accomplished this
+using the Mash software [8]. This process uses read fragments to create a reduced representation
+of the genome, i.e., a “sketch” of the genome, which has been shown to accurately reflect genome-
+wide structure [8]. It does this by randomly sub-sampling k-mer’s from the read fragments using a
+minHash-based approach. When using Mash the user must define the k-mer length to use, as well as
+the number of hash functions to store which determines the sketch size (s). For our study, we chose
+a k-mer length of 21. This is the default in Mash and their studies demonstrate this k-mer length
+robustly maps to Average Nucleotide Identity (an alignment-based measure of mutation distance)
+across different sketch sizes.
+Mash states that “Increasing sketch size improves the accuracy of Mash estimates, especially for
+divergent genomes” [8]. To test this, we ran MASH at four different sketch sizes: s=500, 2000, 4000,
+and 50,000. We trained and tested our prediction algorithms across all four sketch sizes to compare
+performance (see Table 1 and Figure 2).
+Once sketched, we devised a novel application of the Mash output. The input to Mash is a dataset of
+n samples of reads Ri that correspond to sequencing reads for a given poplar tree, D = {R1, ..., Rn}.
+Assuming no hash collisions, each hash function Hi is a unique identifier for a 21 length k-mer.
+3
+
+BRITISH
+COLUMBIA
+Edmonton
+Calgary
+River
+Victoria
+Columbia
+GTON
+MONTAN
+Skagit
+Puyallup
+Skykomish
+OREGON
+IDAHO
+Snoqualmie
+34
+Willamette
+NookSack
+A
+B
+Sacramen
+San
+15
+10
+Columbia
+Skagit
+Puyallup
+0
+Skykomish
+ Snoqualmie
+34
+C
+Willamette
+-5
+Nooksack
+-10
+-5
+0
+5
+10
+15
+20
+25Mash samples s random k-mers per Ri, thereby resulting in a set of s hash functions, known as a
+sketch: Mi = {Hi
+1, ..., Hi
+s}. s is a user-defined parameter called sketch size that is discussed in
+subsequent sections. This procedure is repeated for every sample in D to build a set of sketches
+{M1, ..., Mn}. Now, a union is taken over all hash functions in each sketch in order to construct a
+set of hash functions H = �n
+i=1 Mi. Note that |H| is guaranteed to be upper-bounded by s × n, but
+often |H| ≪ s × n because there are common k-mers shared across samples Ri.
+Typically, these sketches are used for a simple pairwise comparison of genomes to estimate genetic
+distance. For a pair of genotypes, this is done by set comparison of the hash functions in each genome
+sketch, such as a Jaccard index. Here, instead of only looking at pairwise comparisons, we look at set
+membership across the entire population. This is achieved by building a presence-absence matrix for
+the hash functions in each sketch. Taking the set of all hash functions H, we construct a vector by
+placing a 1 if the hash is found in sketch Mi and a 0 if it is not found in sketch Mi. Formally, each
+vector representation Vi corresponding to a sketch Mi is defined by Vi = {1[Hj∈Mi]|Hj ∈ H} where
+the indicator function 1 sets the value to 1 if Hj ∈ Mi and 0 otherwise. This converts each set Mi to
+a constant-size binary vector Vi. Assuming no hash collisions, this means our matrix represents a
+random sampling of k-mers, with a 1 indicating that k-mer as present in a genotype and 0 indicating
+its absence. This provides a binary input matrix for our deep learning architecture MASHNET.
+2.3
+MASHNET Model
+MASHNET is a neural network for prediction and representation of Mash sketches. This network
+takes the binary Mash matrix as input and performs predictions for latitude and longitude. The
+model architecture consists of a combination of linear and LayerNorm [10] layers followed by ELU
+[11] activation functions. We also chose to use a Batch Normalization [12] layer to process the
+input, following Locator’s [1] similar decision. We empirically found that this architecture improved
+performance on the sparse Mash sketch input (see Figure 2).
+MASHNET can be used for prediction of any phenotype, but we chose to focus it on geolocation,
+i.e., predicting latitude and longitude coordinates for each sample. As the output of the network, we
+have a multi-task learning setup, where we jointly predict both latitude and longitude in the same
+forward pass. The MASHNET model F takes a vectorized Mash sketch Vi as input and outputs
+a coordinate R2. Our loss function is a simple Absolute Error (AE) with equal weight for both
+latitude and longitude, i.e., L = Llat + Llong, where Llat is the AE for latitude and Llong is the AE for
+longitude.
+2.4
+Experiments and Comparison Models
+For geolocation, we compare MASHNET to several other non-neural models. First, we use k-nearest
+neighbors (kNN) on the Mash distances. Mash computes pairwise distances with a set-based distance
+function that approximates the Jaccard index between each sample, as discussed in [8]. We compute
+this pairwise distance matrix and use this as a distance metric in the kNN prediction. Additionally,
+XGBoost and ElasticNet algorithms are employed on the binarized Mash sketches. For each model,
+we perform a search over a hyperparameter space to optimize model performance: for kNN, we search
+over k values, for XGBoost and ElasticNet, we search over parameters controlling regularization
+strength and learning rate.
+We also compare several WGS methods against models trained on sketch-based inputs. First, we
+use a state-of-the-art method Locator [1], which was designed for direct geolocation prediction from
+WGS data. Finally, we use XGBoost [13] and ElasticNet [14] algorithms on a principal component
+analysis (PCA)-reduced representation. PCA is used to reduce the WGS representations because of
+the large size and high level of sparsity. PCA is a widely established technique in bioinformatics, and
+it has previously shown to be effective in compressing WGS samples [9].
+Each experiment is performed with 30 separate 5-fold cross validations, each with individual random
+seeds. Performance metrics are averaged across all folds for one cross validation, and we report the
+mean and standard error across all 30 cross validations for each separate experiment. Each error in
+Table 1 is reported as mean absolute error (MAE) in kilometers, which is calculated from latitude and
+longitude coordinates via geodesic distance provided by the geopy package [15]. We only use 5 trials
+of cross validation on Locator because of prohibitively long runtimes. For MASHNET, we standard
+scale the latitude and longitude before training and inverse scale the outputs to compute errors. This
+4
+
+standard scaling approach involves transforming the data to a normal distribution with mean= 0 and
+standard deviation= 1. It seemed to have no detectable effect on performance for alternative models.
+3
+Results
+Figure 2: Inspecting errors across varying sketch sizes for all algorithms applied to unaligned read
+fragments.
+Locator
+ElasticNet
+XGBoost
+WGS
+22.10±1.37
+236.54±0.02
+37.77±0.09
+Table 1a
+Sketch size (×103)
+kNN
+ElasticNet
+XGBoost
+MASHNET
+0.5
+117.82±1.06
+113.26±0.08
+117.16±0.14
+93.73±0.32
+2
+79.90±1.62
+89.04±0.09
+96.28±0.13
+57.38±0.33
+4
+73.31±1.02
+77.64±0.09
+91.97±0.14
+48.12±0.96
+50
+54.20±0.97
+57.46±0.08
+76.27±0.15
+34.00±0.24
+Table 1b
+Table 1: Mean absolute error in kilometers2 for various models trained on whole-genome sequence
+inputs (1a) and Mash sketch-encoded vectors (1b). Table 1a ElasticNet and XGBoost are trained on
+PCA-reduced versions of SNP data obtained after sequence alignment. Table 1b sketch size is shown
+in units of 1000 sketches. kNN is trained on Jaccard distance between each sample while all other
+methods are trained on vectorized Mash sketches.
+Locator is the best-performing model, pinpointing the location to within 22.1km2 of error. ElasticNet
+and XGBoost, which are both trained on PCA-reduced versions of the WGS SNPs, perform worse
+than Locator on the geolocation task. Within the Mash-based predictors, MASHNET outperforms all
+methods, regardless of the sketch size. kNN performs better than both ElasticNet and XGBoost; this is
+likely because distance is defined based on the set-based metric used in the original Mash publication
+[8]. ElasticNet consistently outperforms XGBoost, with XGBoost being the least predictive model
+for Mash-based input data.
+Comparing across WGS and Mash-based predictors, WGS predictors perform better overall. This
+result is expected given the longer-range structure that is elucidated during the alignment procedure.
+5
+
+Geolocation Error for Algorithms on Read Fragments
+100
+Algorithm
+XGBoost
+75
+ElasticNet
+kNN
+MashNet
+50
+0
+10
+20
+30
+40
+50
+Sketch Size (x1,000)However, several key patterns emerge. First, MASHNET still outperforms both WGS-based ElasticNet
+and XGBoost when using a sketch size of 50,000. This highlights the utility and capacity of
+MASHNET and neural networks for geolocation, even from noisy data such as Mash sketches.
+Second, on the WGS data XGBoost outperforms ElasticNet, but on the Mash-based input ElasticNet
+performs better. This is most likely due to the differences in data geometry. The Mash-based input
+data are sparse, binary vectors while PCA-reduced WGS inputs are dense with fewer dimensions.
+The geolocation task is highly nonlinear, so in the dense WGS setting, we expect a tree-based model
+(XGBoost) to perform better than a linear model (ElasticNet).
+We also perform benchmarking across different numbers of Mash sketches. Sketch size is an important
+tuning factor when using MASHNET. As seen in Table 1, performance increases with increasing
+sketch size. In Mash, compute time to build a sketch is largely invariant to sketch size, however
+overall computational costs will increase due to higher dimensional input being passed to downstream
+prediction models. This is a trade-off that must be managed. In general, traditional, non-deep
+learning-based methods (ElasticNet and XGBoost) perform poorly on Mash sketches, highlighting
+the need for an alternative such as our model MASHNET. However, the set-based distance metric
+leveraged by the original Mash publication has been further validated here, showing a clear ability to
+recover significant predictive signal using kNN, which even outperforms more sophisticated methods
+such as ElasticNet and XGBoost.
+4
+Discussion
+The genome sciences contain many applications for reference-free prediction using computational
+techniques. To the best knowledge of the authors, this study is one of the first attempts at trait
+prediction from unaligned read fragments. Innovations in this space have the potential for large
+impact on topics ranging from precision agriculture to medical diagnostic tools.
+In this study, we present a solution to the challenging task of geolocation of poplar trees from
+unaligned read fragments. We approach this problem by leveraging a commonly-used bioinformatics
+tool, Mash, and create a framework that can circumvent the computationally expensive procedures
+of genome assembly and short read alignment. Our solution, MASHNET, uses a neural network to
+predict latitude and longitude coordinates for each sample, achieving within 12.1 km2 prediction
+accuracy to the state-of-the-art whole-genome sequence-based method, Locator [1].
+Future studies will attempt to improve our predictive capacity using unaligned reads. The initial
+studies undertaken in this paper outline two paths to improvement. The first is to try to pre-identify
+important k-mers on which screening should be focused. For example, in currently unpublished
+work we have identified regulatory hotspots through genome-wide association (GWAS) mapping of
+climatic variation. We hypothesize that if we could sample k-mer’s directly from these hotspots—
+and not randomly as we do currently— we could focus on the higher variance regions and therefore
+significantly boost prediction performance. However, this approach would require a priori knowledge
+of the genomic location of these hotspots and therefore pre-existing aligned WGS data. Thus, while
+such a hybrid approach would likely improve predictive performance, it would also nullify the
+generalizability of our MASHNET approach to non-model organisms.
+A second approach would be to increase the sketch size of the minHashing procedure. In Figure 2,
+we observe that there seems to be a performance plateau associated with increasing sketch size. We
+hypothesize this occurs once sufficient sampling coverage of the genome has been achieved. This
+suggests that while increasing sketch size would lead to performance gains, these gains are likely to
+be marginal. This presents an open question: MASHNET can predict locations within 34km2, but
+could a more advanced technique predict these locations with less error?
+Given the importance of the geolocation task for precision agriculture, we present this as an open
+problem for the machine learning community. Our tool, MASHNET, demonstrates how deep
+learning can achieve impressive results on reference-free geolocation tasks, even when compared to
+state-of-the-art models based on WGS representations. We believe that more advanced tools can be
+developed for this area and used to improve prediction accuracy of the ideal ecosystem in which a
+crop should be grown. We open-source the codebase and datasets used for this study with the hope
+that future development will focus on new techniques for representing unaligned, fragmented reads
+for machine learning, as well as more sophisticated prediction architectures.
+6
+
+References
+[1] CJ Battey, Peter L Ralph, and Andrew D Kern. Predicting geographic location from genetic
+variation with deep neural networks. eLife, 9:e54507, jun 2020.
+[2] Gilles Guillot, Hákon Jónsson, Antoine Hinge, Nabil Manchih, and Ludovic Orlando. Accu-
+rate continuous geographic assignment from low- to high-density SNP data. Bioinformatics,
+32(7):1106–1108, 11 2015.
+[3] Jin Zhang and Yongil et al. Yang. Genome-wide association studies and expression-based
+quantitative trait loci analyses reveal roles of hct2 in caffeoylquinic acid biosynthesis and its
+regulation by defense-responsive transcription factors in populus. New Phytologist, 220(2):502–
+516, 2018.
+[4] Sergey Nurk, Brian P. Walenz, Arang Rhie, Mitchell R. Vollger, Glennis A. Logsdon, Robert
+Grothe, Karen H. Miga, Evan E. Eichler, Adam M. Phillippy, and Sergey Koren. Hicanu:
+accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity
+long reads. Genome Research, 30(9):1291–1305, 2020.
+[5] F. Rubel and M Kottek. Observed and projected climate shifts 1901-2100 depicted by world
+maps of the köppen-geiger climate classification. Meteorol. Z., 2010.
+[6] Stephanie G Seay. Doe funds center for bioenergy innovation at ornl to accelerate biofuels,
+bioproducts research, 2017.
+[7] Gancho T. Slavov and Stephen P. et al. DiFazio. Genome resequencing reveals multiscale
+geographic structure and extensive linkage disequilibrium in the forest tree populus trichocarpa.
+New Phytologist, 196:713–725, 2012.
+[8] B. D. Ondov, T. J. Treangen, et al. Mash: fast genome and metagenome distance estimation
+using minhash. Genome Biology, 17, 2016.
+[9] S Sakaue, J Hirata, M Kanai, et al. Dimensionality reduction reveals fine-scale structure in the
+japanese population with consequences for polygenic risk prediction. Nat Commun, 2020.
+[10] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
+arXiv:1607.06450, 2016.
+[11] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
+learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.
+[12] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
+by reducing internal covariate shift. In International conference on machine learning, pages
+448–456. PMLR, 2015.
+[13] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of
+the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
+pages 785–794, 2016.
+[14] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal of
+the Royal Statistical Society: series B (Statistical Methodology), 67(2):301–320, 2005.
+[15] geopy. geopy: Geocoding library for python. https://github.com/geopy/geopy,
+2013.
+7
+
diff --git a/ptFQT4oBgHgl3EQfsTaj/content/tmp_files/load_file.txt b/ptFQT4oBgHgl3EQfsTaj/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..4fbf90f8e8d6cbbb49566eb674674bca63fe49e1
--- /dev/null
+++ b/ptFQT4oBgHgl3EQfsTaj/content/tmp_files/load_file.txt
@@ -0,0 +1,302 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf,len=301
+page_content='Deep Learning for Reference-Free Geolocation of Poplar Trees Cai W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' John∗ Bredesen Center University of Tennessee, Knoxville Knoxville, TN 37996 cjohn3@vols.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='utk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='edu Owen Queen∗† Department of Biomedical Informatics Harvard Medical School Boston, MA 02115 owen_queen@hms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='harvard.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='edu Wellington Muchero Center for Bioenergy Innovation Oak Ridge National Laboratory Oak Ridge, TN 37830 mucherow@ornl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='gov Scott J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Emrich Electrical Eng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' and Computer Science Bredesen Center University of Tennessee, Knoxville Knoxville, TN 37996 semrich@utk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='edu Abstract A core task in precision agriculture is the identification of climatic and ecological conditions that are advantageous for a given crop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' The most succinct approach is geolocation, which is concerned with locating the native region of a given sample based on its genetic makeup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Here, we investigate genomic geolocation of Populus trichocarpa, or poplar, which has been identified by the US Department of Energy as a fast-rotation biofuel crop to be harvested nationwide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' In particular, we approach geolocation from a reference-free perspective, circumventing the need for compute-intensive processes such as variant calling and alignment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Our model, MASHNET, predicts latitude and longitude for poplar trees from randomly-sampled, unaligned sequence fragments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' We show that our model performs comparably to Locator, a state-of-the-art method based on aligned whole-genome sequence data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' MASHNET achieves an error of 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='0 km2 compared to Locator’s 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='1 km2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' MASHNET allows growers to quickly and efficiently identify natural varieties that will be most productive in their growth environment based on genotype.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' This paper explores geolocation for precision agriculture while providing a framework and data source for further development by the machine learning community.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' 1 Introduction Pollen dispersal in natural populations of Populus trichocarpa, as well as other species, results in correlations between geography and genetic variation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' These correlations can be leveraged to predict geographic origin of a sample from genetic data as demonstrated in previous studies [1] [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' To date, all studies have achieved this prediction task using aligned, whole-genome sequence data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Here, we demonstrate our novel tool MASHNET that predicts geographic origin from unaligned sequence fragments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' We compare it to the current state of the art implementation, Locator [1], which uses a deep learning architecture on aligned sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Our method performs similarly despite using more noisy sequence read-only information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' ∗Shared first authorship †Work done while at University of Tennessee, Knoxville NeurIPS 2022 AI for Science Workshop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='13387v1 [q-bio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='GN] 31 Jan 2023 Sequence alignment is a necessary procedure to transform short read fragments into genome-scale information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Modern technology is only capable of sequencing small sections of DNA, so large-scale genotyping of individuals using sequencing data requires post hoc alignment and variant-calling algorithms, usually relative to a well-established reference genome sequence [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' These algorithms are computationally intensive procedures that create major bottlenecks between sample collection and downstream analysis of variant data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Further, although reference genomes are increasingly common due to advances in both technology and assembly algorithms[4], they still require large amounts of sequence data and resource intensive de novo assembly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' These demands prevent many non-model organisms from being sequenced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Our approach is alignment-free and therefore can be applied to the many non-model organisms currently without a reference genome.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' It also circumvents the need for variant-calling algorithms allowing researchers to more rapidly analyze samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' For example, one can envision sampling natural genetic diversity in a species, and then using computational methods to suggest the ancestral origin(s) of unknown samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' This process is called geolocation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' A simple spatial-climate map, such as the Köppen-Geiger climate system [5], could then map origin locations to desired growing environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Being able to pinpoint these environments is key to precision agriculture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' In this study, we focus on Populus trichocarpa (poplar) because of interest from the Department of Energy (DOE) in developing it as a fast-rotation biofuel crop to be viable nationwide [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Poplar’s species range extends from southern California all the way to British Columbia encompassing a latitudinal range of 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='88 to 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='25 degrees [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' This range includes a diversity of macro and micro- environments that have likely shaped subpopulations of this species.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Our goal is to predict the latitudinal and longitudinal coordinates of these genotypes from their sequence data, a task known as genomic geolocation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Geolocation has applications in precision agriculture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' When considering a new site for a tree nursery it is desirable to clone samples well-suited to that environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Given that these trees have often been previously cloned, and relocated to common gardens and greenhouses for commercial use and agricultural research, it can be difficult to obtain meta-data locating them to their origin environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' MASHNET resolves this issue allowing growers to rapidly identify the origin location of their trees, and identify which will be most productive in the new climate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' In this work, we present MASHNET, a deep learning-based model that can perform accurate geolo- cation of poplar trees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' The model uses a multi-task neural architecture to jointly predict latitude and longitude coordinates for each sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Importantly, this method uses Mash sketches [8], an alignment-free feature extraction method that randomly samples k-mers from sequencing read data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' We demonstrate that MASHNET can use alignment-free Mash sketches to compete with WGS-based methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' We open source our methods and data while highlighting the importance of this task to precision agriculture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' 2 Methods 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='1 Data We consider 1,252 poplar genotypes from a representative sampling of the latitudinal distribution of its species range (see Figure 1 panel A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Genome re-sequencing, alignment and variant-calling of this population was previously described by Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' We use these aligned and variant called sequences in Locator as a performance benchmark for our alignment-free method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' MASHNET is trained on unaligned reads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Out of the total 1,252 samples, 1,024 have reads that are publicly available for download from the NCBI’s Sequence Read Archive (SRA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' A map of sample ID’s to SRA key is included with the meta data in our Github 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' During training, meta data labels with ground-truth latitude and longitude coordinates for all 1,252 samples are used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' These are also included on our GitHub repository.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Unfortunately, we are unable to publicly host the aligned WGS used to train and test Locator, as well as the remaining 228 sample reads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' This is due to current access restrictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Associated with each sample are several meta-data variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' The first is river system, which corresponds to the nearby river from which each sample was originally collected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' This variable in particular shows strong signal, as is evidenced by Figure 1C, which shows a PCA-UMAP [9] 3All codes and data found at https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='com/owencqueen/MashPredict 2 Figure 1: A) Map of the origin location of all 1,252 poplar samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' B) Reduced set of 919 samples used for PCA-UMAP clustering by river system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Downsampling from 1,252 samples is achieved by retaining only river systems with ≥ 35 members.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' C) PCA-UMAP embedding of 919 clustering samples colored by river system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' projection of each sample colored by its associated river system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' This projection illustrates the correlation between origin location and genotype that we will leverage to geolocate these samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='2 MinHashing Unaligned Reads A major innovation of this work is achieving prediction from unaligned reads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' We accomplished this using the Mash software [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' This process uses read fragments to create a reduced representation of the genome, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=', a “sketch” of the genome, which has been shown to accurately reflect genome- wide structure [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' It does this by randomly sub-sampling k-mer’s from the read fragments using a minHash-based approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' When using Mash the user must define the k-mer length to use, as well as the number of hash functions to store which determines the sketch size (s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' For our study, we chose a k-mer length of 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' This is the default in Mash and their studies demonstrate this k-mer length robustly maps to Average Nucleotide Identity (an alignment-based measure of mutation distance) across different sketch sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Mash states that “Increasing sketch size improves the accuracy of Mash estimates, especially for divergent genomes” [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' To test this, we ran MASH at four different sketch sizes: s=500, 2000, 4000, and 50,000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' We trained and tested our prediction algorithms across all four sketch sizes to compare performance (see Table 1 and Figure 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Once sketched, we devised a novel application of the Mash output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' The input to Mash is a dataset of n samples of reads Ri that correspond to sequencing reads for a given poplar tree, D = {R1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=', Rn}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Assuming no hash collisions, each hash function Hi is a unique identifier for a 21 length k-mer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' 3 BRITISH COLUMBIA Edmonton Calgary River Victoria Columbia GTON MONTAN Skagit Puyallup Skykomish OREGON IDAHO Snoqualmie 34 Willamette NookSack A B Sacramen San 15 10 Columbia Skagit Puyallup 0 Skykomish Snoqualmie 34 C Willamette 5 Nooksack 10 5 0 5 10 15 20 25Mash samples s random k-mers per Ri, thereby resulting in a set of s hash functions, known as a sketch: Mi = {Hi 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=', Hi s}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' s is a user-defined parameter called sketch size that is discussed in subsequent sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' This procedure is repeated for every sample in D to build a set of sketches {M1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=', Mn}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Now, a union is taken over all hash functions in each sketch in order to construct a set of hash functions H = �n i=1 Mi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Note that |H| is guaranteed to be upper-bounded by s × n, but often |H| ≪ s × n because there are common k-mers shared across samples Ri.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Typically, these sketches are used for a simple pairwise comparison of genomes to estimate genetic distance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' For a pair of genotypes, this is done by set comparison of the hash functions in each genome sketch, such as a Jaccard index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Here, instead of only looking at pairwise comparisons, we look at set membership across the entire population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' This is achieved by building a presence-absence matrix for the hash functions in each sketch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Taking the set of all hash functions H, we construct a vector by placing a 1 if the hash is found in sketch Mi and a 0 if it is not found in sketch Mi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Formally, each vector representation Vi corresponding to a sketch Mi is defined by Vi = {1[Hj∈Mi]|Hj ∈ H} where the indicator function 1 sets the value to 1 if Hj ∈ Mi and 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' This converts each set Mi to a constant-size binary vector Vi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Assuming no hash collisions, this means our matrix represents a random sampling of k-mers, with a 1 indicating that k-mer as present in a genotype and 0 indicating its absence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' This provides a binary input matrix for our deep learning architecture MASHNET.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='3 MASHNET Model MASHNET is a neural network for prediction and representation of Mash sketches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' This network takes the binary Mash matrix as input and performs predictions for latitude and longitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' The model architecture consists of a combination of linear and LayerNorm [10] layers followed by ELU [11] activation functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' We also chose to use a Batch Normalization [12] layer to process the input, following Locator’s [1] similar decision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' We empirically found that this architecture improved performance on the sparse Mash sketch input (see Figure 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' MASHNET can be used for prediction of any phenotype, but we chose to focus it on geolocation, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=', predicting latitude and longitude coordinates for each sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' As the output of the network, we have a multi-task learning setup, where we jointly predict both latitude and longitude in the same forward pass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' The MASHNET model F takes a vectorized Mash sketch Vi as input and outputs a coordinate R2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Our loss function is a simple Absolute Error (AE) with equal weight for both latitude and longitude, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=', L = Llat + Llong, where Llat is the AE for latitude and Llong is the AE for longitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='4 Experiments and Comparison Models For geolocation, we compare MASHNET to several other non-neural models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' First, we use k-nearest neighbors (kNN) on the Mash distances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Mash computes pairwise distances with a set-based distance function that approximates the Jaccard index between each sample, as discussed in [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' We compute this pairwise distance matrix and use this as a distance metric in the kNN prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Additionally, XGBoost and ElasticNet algorithms are employed on the binarized Mash sketches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' For each model, we perform a search over a hyperparameter space to optimize model performance: for kNN, we search over k values, for XGBoost and ElasticNet, we search over parameters controlling regularization strength and learning rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' We also compare several WGS methods against models trained on sketch-based inputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' First, we use a state-of-the-art method Locator [1], which was designed for direct geolocation prediction from WGS data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Finally, we use XGBoost [13] and ElasticNet [14] algorithms on a principal component analysis (PCA)-reduced representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' PCA is used to reduce the WGS representations because of the large size and high level of sparsity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' PCA is a widely established technique in bioinformatics, and it has previously shown to be effective in compressing WGS samples [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Each experiment is performed with 30 separate 5-fold cross validations, each with individual random seeds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Performance metrics are averaged across all folds for one cross validation, and we report the mean and standard error across all 30 cross validations for each separate experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Each error in Table 1 is reported as mean absolute error (MAE) in kilometers, which is calculated from latitude and longitude coordinates via geodesic distance provided by the geopy package [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' We only use 5 trials of cross validation on Locator because of prohibitively long runtimes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' For MASHNET, we standard scale the latitude and longitude before training and inverse scale the outputs to compute errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' This 4 standard scaling approach involves transforming the data to a normal distribution with mean= 0 and standard deviation= 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' It seemed to have no detectable effect on performance for alternative models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' 3 Results Figure 2: Inspecting errors across varying sketch sizes for all algorithms applied to unaligned read fragments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Locator ElasticNet XGBoost WGS 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='10±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='37 236.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='54±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='02 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='77±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='09 Table 1a Sketch size (×103) kNN ElasticNet XGBoost MASHNET 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='5 117.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='82±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='06 113.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='26±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='08 117.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='16±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='14 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='73±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='32 2 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='90±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='62 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='04±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='09 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='28±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='13 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='38±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='33 4 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='31±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='02 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='64±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='09 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='97±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='14 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='12±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='96 50 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='20±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='97 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='46±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='08 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='27±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='15 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='00±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='24 Table 1b Table 1: Mean absolute error in kilometers2 for various models trained on whole-genome sequence inputs (1a) and Mash sketch-encoded vectors (1b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Table 1a ElasticNet and XGBoost are trained on PCA-reduced versions of SNP data obtained after sequence alignment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Table 1b sketch size is shown in units of 1000 sketches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' kNN is trained on Jaccard distance between each sample while all other methods are trained on vectorized Mash sketches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Locator is the best-performing model, pinpointing the location to within 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='1km2 of error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' ElasticNet and XGBoost, which are both trained on PCA-reduced versions of the WGS SNPs, perform worse than Locator on the geolocation task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Within the Mash-based predictors, MASHNET outperforms all methods, regardless of the sketch size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' kNN performs better than both ElasticNet and XGBoost;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' this is likely because distance is defined based on the set-based metric used in the original Mash publication [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' ElasticNet consistently outperforms XGBoost, with XGBoost being the least predictive model for Mash-based input data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Comparing across WGS and Mash-based predictors, WGS predictors perform better overall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' This result is expected given the longer-range structure that is elucidated during the alignment procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' 5 Geolocation Error for Algorithms on Read Fragments 100 Algorithm XGBoost 75 ElasticNet kNN MashNet 50 0 10 20 30 40 50 Sketch Size (x1,000)However, several key patterns emerge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' First, MASHNET still outperforms both WGS-based ElasticNet and XGBoost when using a sketch size of 50,000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' This highlights the utility and capacity of MASHNET and neural networks for geolocation, even from noisy data such as Mash sketches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Second, on the WGS data XGBoost outperforms ElasticNet, but on the Mash-based input ElasticNet performs better.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' This is most likely due to the differences in data geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' The Mash-based input data are sparse, binary vectors while PCA-reduced WGS inputs are dense with fewer dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' The geolocation task is highly nonlinear, so in the dense WGS setting, we expect a tree-based model (XGBoost) to perform better than a linear model (ElasticNet).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' We also perform benchmarking across different numbers of Mash sketches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Sketch size is an important tuning factor when using MASHNET.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' As seen in Table 1, performance increases with increasing sketch size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' In Mash, compute time to build a sketch is largely invariant to sketch size, however overall computational costs will increase due to higher dimensional input being passed to downstream prediction models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' This is a trade-off that must be managed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' In general, traditional, non-deep learning-based methods (ElasticNet and XGBoost) perform poorly on Mash sketches, highlighting the need for an alternative such as our model MASHNET.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' However, the set-based distance metric leveraged by the original Mash publication has been further validated here, showing a clear ability to recover significant predictive signal using kNN, which even outperforms more sophisticated methods such as ElasticNet and XGBoost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' 4 Discussion The genome sciences contain many applications for reference-free prediction using computational techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' To the best knowledge of the authors, this study is one of the first attempts at trait prediction from unaligned read fragments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Innovations in this space have the potential for large impact on topics ranging from precision agriculture to medical diagnostic tools.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' In this study, we present a solution to the challenging task of geolocation of poplar trees from unaligned read fragments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' We approach this problem by leveraging a commonly-used bioinformatics tool, Mash, and create a framework that can circumvent the computationally expensive procedures of genome assembly and short read alignment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Our solution, MASHNET, uses a neural network to predict latitude and longitude coordinates for each sample, achieving within 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='1 km2 prediction accuracy to the state-of-the-art whole-genome sequence-based method, Locator [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Future studies will attempt to improve our predictive capacity using unaligned reads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' The initial studies undertaken in this paper outline two paths to improvement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' The first is to try to pre-identify important k-mers on which screening should be focused.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' For example, in currently unpublished work we have identified regulatory hotspots through genome-wide association (GWAS) mapping of climatic variation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' We hypothesize that if we could sample k-mer’s directly from these hotspots— and not randomly as we do currently— we could focus on the higher variance regions and therefore significantly boost prediction performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' However, this approach would require a priori knowledge of the genomic location of these hotspots and therefore pre-existing aligned WGS data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Thus, while such a hybrid approach would likely improve predictive performance, it would also nullify the generalizability of our MASHNET approach to non-model organisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' A second approach would be to increase the sketch size of the minHashing procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' In Figure 2, we observe that there seems to be a performance plateau associated with increasing sketch size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' We hypothesize this occurs once sufficient sampling coverage of the genome has been achieved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' This suggests that while increasing sketch size would lead to performance gains, these gains are likely to be marginal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' This presents an open question: MASHNET can predict locations within 34km2, but could a more advanced technique predict these locations with less error?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Given the importance of the geolocation task for precision agriculture, we present this as an open problem for the machine learning community.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Our tool, MASHNET, demonstrates how deep learning can achieve impressive results on reference-free geolocation tasks, even when compared to state-of-the-art models based on WGS representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' We believe that more advanced tools can be developed for this area and used to improve prediction accuracy of the ideal ecosystem in which a crop should be grown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' We open-source the codebase and datasets used for this study with the hope that future development will focus on new techniques for representing unaligned, fragmented reads for machine learning, as well as more sophisticated prediction architectures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' 6 References [1] CJ Battey, Peter L Ralph, and Andrew D Kern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Predicting geographic location from genetic variation with deep neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' eLife, 9:e54507, jun 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' [2] Gilles Guillot, Hákon Jónsson, Antoine Hinge, Nabil Manchih, and Ludovic Orlando.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Accu- rate continuous geographic assignment from low- to high-density SNP data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Bioinformatics, 32(7):1106–1108, 11 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' [3] Jin Zhang and Yongil et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Yang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Genome-wide association studies and expression-based quantitative trait loci analyses reveal roles of hct2 in caffeoylquinic acid biosynthesis and its regulation by defense-responsive transcription factors in populus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' New Phytologist, 220(2):502– 516, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' [4] Sergey Nurk, Brian P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Walenz, Arang Rhie, Mitchell R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Vollger, Glennis A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Logsdon, Robert Grothe, Karen H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Miga, Evan E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Eichler, Adam M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Phillippy, and Sergey Koren.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Hicanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Genome Research, 30(9):1291–1305, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' [5] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Rubel and M Kottek.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Observed and projected climate shifts 1901-2100 depicted by world maps of the köppen-geiger climate classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Meteorol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=', 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' [6] Stephanie G Seay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Doe funds center for bioenergy innovation at ornl to accelerate biofuels, bioproducts research, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' [7] Gancho T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Slavov and Stephen P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' DiFazio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Genome resequencing reveals multiscale geographic structure and extensive linkage disequilibrium in the forest tree populus trichocarpa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' New Phytologist, 196:713–725, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' [8] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Ondov, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Treangen, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Mash: fast genome and metagenome distance estimation using minhash.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Genome Biology, 17, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' [9] S Sakaue, J Hirata, M Kanai, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Dimensionality reduction reveals fine-scale structure in the japanese population with consequences for polygenic risk prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Nat Commun, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' [10] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Layer normalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' arXiv preprint arXiv:1607.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='06450, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' [11] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Fast and accurate deep network learning by exponential linear units (elus).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' arXiv preprint arXiv:1511.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='07289, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' [12] Sergey Ioffe and Christian Szegedy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Batch normalization: Accelerating deep network training by reducing internal covariate shift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' In International conference on machine learning, pages 448–456.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' PMLR, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' [13] Tianqi Chen and Carlos Guestrin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Xgboost: A scalable tree boosting system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 785–794, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' [14] Hui Zou and Trevor Hastie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Regularization and variable selection via the elastic net.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' Journal of the Royal Statistical Society: series B (Statistical Methodology), 67(2):301–320, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' [15] geopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' geopy: Geocoding library for python.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content='com/geopy/geopy, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
+page_content=' 7' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ptFQT4oBgHgl3EQfsTaj/content/2301.13387v1.pdf'}
diff --git a/u9E0T4oBgHgl3EQf9wIf/content/tmp_files/2301.02804v1.pdf.txt b/u9E0T4oBgHgl3EQf9wIf/content/tmp_files/2301.02804v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..2a7a04ced8246e355901fb8a8e75b1d11a8a4f08
--- /dev/null
+++ b/u9E0T4oBgHgl3EQf9wIf/content/tmp_files/2301.02804v1.pdf.txt
@@ -0,0 +1,207 @@
+arXiv:2301.02804v1 [astro-ph.IM] 7 Jan 2023
+Radio source analysis services for the SKA and precursors
+Simone Riggi,1 Cristobal Bordiu,1 Daniel Magro,2 Renato Sortino,3
+Carmelo Pino,1 Eva Sciacca,1 Filomena Bufano,1 Thomas Cecconello,4
+Giuseppe Vizzari,4 Fabio Vitello,1 and Giuseppe Tudisco1
+1Istituto Nazionale di Astrofisica (INAF), Italy; simone.riggi@inaf.it
+2University of Malta, Malta
+3University of Catania, Italy
+4University of Milano-Bicocca, Italy
+Abstract.
+New developments in data processing and visualization are being made
+in preparation for upcoming radioastronomical surveys planned with the Square Kilo-
+metre Array (SKA) and its precursors. A major goal is enabling extraction of science
+information from the data in a mostly automated way, possibly exploiting the capabil-
+ities offered by modern computing infrastructures and technologies. In this context,
+the integration of source analysis algorithms into data visualization tools is expected to
+significantly improve and speed up the cataloguing process of large area surveys. To
+this aim, the CIRASA (Collaborative and Integrated platform for Radio Astronomical
+Source Analysis) project was recently started to develop and integrate a set of services
+for source extraction, classification and analysis into the ViaLactea visual analytic plat-
+form and knowledge base archive. In this contribution, we will present the project
+objectives and tools that have been developed, interfaced and deployed so far on the
+prototype European Open Science Cloud (EOSC) infrastructure provided by the H2020
+NEANIAS project.
+1.
+Introduction
+SKA will make it possible to survey the radio sky with unprecedented level of details,
+paving the way for breakthrough discoveries in multiple areas. While the SKA has
+entered the construction phase, its precursor telescopes are delivering first scientific
+results. The volume of the data are already requiring considerable efforts and new soft-
+ware developments to extract science information in an efficient and mostly automated
+way, anticipating the major challenges expected in SKA Regional Centers (SRCs). The
+availability of distributed services for Advanced Data Products (ADPs) generation from
+Observatory or Project level data is indeed identified as a key element for delivering
+SKA science with the SRC. SRC Working Groups (WGs) are therefore currently defin-
+ing requirements and science cases in collaboration with SKA Key Science Project
+(KSP) users to investigate ADP management challenges in details.
+In this context, we started a new project, named CIRASA (Riggi et al. 2021),
+to tackle selected SRC cases from the perspective of Galactic Science users, using
+observations done with ASKAP and MeerKAT precursors.
+1
+
+2
+S. Riggi et al.
+Figure 1.
+High-level architecture of CIRASA source finding services.
+2.
+The CIRASA project
+The CIRASA project aims to develop and integrate a set of services for source extrac-
+tion, classification and analysis into the ViaLactea Visual Analytic (VLVA) platform
+and knowledge base services (VLKB), delivering proto-SRC solutions that can scale to
+larger computing infrastructures. New developments to improve the source catalogu-
+ing process will focus on: reducing the fraction of spurious sources (currently around
+20%) automatically extracted by standard source finders; detecting objects broken up
+into multiple source islands; selecting sources of likely Galactic origin, possibly iden-
+tifying their Galactic object class; highlighting unexpected or anomalous objects. In
+this paper we report the current status of source finding services, while the ongoing ac-
+tivities for visualization and archiving services are presented elsewhere (Tudisco et al.
+2022; Butora et al. 2022).
+3.
+CIRASA source finding services
+caesar-rest1 is a Flask-based web service, providing a REST API for uploading input
+radio images (2D), performing source extraction runs on them, and retrieving catalogue
+outputs. The service architecture, sketched in Fig. 1, consists of multiple containerized
+micro-services. The web application supports user job submission on a Kubernetes or
+Slurm cluster using Docker and Singularity containers, respectively. User input and
+job data are stored in a MongoDB database. The service is also integrated with core
+services (AAI, logging and accounting) developed within the NEANIAS H2020 project
+1https://github.com/SKA-INAF/caesar-rest
+
+Log Storage
+Data Storage
+elastic
+job outputs
+Update
+accounting
+Update
+stats
+job status info
+Job
+Accounting
+Monitoring
+mongoDB
+Getjobinfo
+users/iobs/data
+Re
+:
+WebApp
+slurm
+WebApp
+Flask
+Job
+(RESTAPI)
+(REST API)
+Submit jobs
+Scheduler
+Celery
+requests
+kubernetes
+django
+N
+Load
+Web Ul
+requests
+Balancer
+requests
+SFinder
+service
+日
+VLVA
+clientRadio source analysis services for the SKA and precursors
+3
+(Sciacca et al. 2022) for the European Open Science Cloud (EOSC) infrastructure. In-
+tegration with the VLVA client is in progress.
+The service is deployed on a Kubernetes cluster, set up on the Italian GARR Open-
+Stack cloud2, and on CIRASA dedicated resources. Users can access it from EOSC
+marketplace portal3 through a Django-based web UI. At present, the service only al-
+lows users to perform CAESAR source finder (Riggi et al. 2019) runs, but there are
+plans to shortly integrate other widely used source finders (Aegean, CuTEx, SoFiA).
+Novel ML-based applications, described below, will be integrated as soon as the devel-
+opment is completed.
+Figure 2.
+Sample detection results obtained with ASGARD on input images with
+sidelobes (in red), galaxies (in yellow) and compact sources (in blue).
+3.1.
+ASGARD
+ASGARD4 (Magro et al. 2021) is a novel source finder based on Mask R-CNN frame-
+work, trained to detect three different classes of objects (compact sources, sidelobes and
+extended radio galaxies) in 2D radio maps. Sample results are shown in Fig. 2. Model
+performances are rather good for extended galaxies (F1>0.9), moderate for compact
+sources (F1>0.75), and poorer for sidelobes (F1∼0.3). ASGARD is already available
+from caesar-rest service interface, but its usage is presently limited to small image
+cutouts (<10002 pixels). To support processing on larger maps, a parallel MPI-based
+version was developed. Further testing activities are needed before full integration in
+CIRASA.
+3.2.
+Compact source classification
+We are also developing new tools for source classification exploiting multiwavelength
+data. In this domain, convolutional autoencoders are a powerful method for extract-
+ing feature parameters to produce diagnostic plots or build supervised or unsupervised
+classifiers. In Fig. 3 we report the results obtained with a simple network architecture
+(2 convolutional layers with 16 and 8 filters, and a dense layer of size 16) trained to
+learn a compressed 2D representation of sample input image data (radio, 12 and 22
+µm) for different compact source classes (Hii region, PN, pulsar, YSO, extragalactic
+2https://cloud.garr.it/
+3https://marketplace.eosc-portal.eu/
+4https://github.com/SKA-INAF/mrcnn
+
+source 0.98
+source1.00
+source1.00
+sidelpbe 0.86
+source1.00
+Xy1.00
+source 0.98
+source 0.84
+source 1.00
+source 1.00
+source1.00
+source 1.00
+source 1.004
+S. Riggi et al.
+Figure 3.
+Top: Architecture of autoencoder networks and scatter plot of feature
+parameters obtained on a sample dataset including different Galactic and extragalac-
+tic compact sources.
+star, radio galaxy, QSO). As one can see, the trained model already enables potential
+galactic objects to be selected. Better results are however expected to be achieved with
+additional input infrared bands (e.g. 8 and 70 µm), feature parameters (e.g. the radio
+spectral index), and a more refined network architecture. Analysis are ongoing and will
+be reported in a future work.
+4.
+Summary and future developments
+In this paper we have presented the source finding services developed so far for the
+CIRASA project. Ongoing activities are focusing on: data preparation for developed
+applications, source service integration with visualization client and support for other
+finder applications, improvements in deep learning finders. For instance, to overcome
+some of the limitations found in ASGARD, we are training alternative state-of-the-art
+models (Tiramisu, YOLOv3, Detectron2, DETR) on an enlarged dataset. Promising
+results were found on sidelobe detection, although obtained in some cases at the cost of
+a net increase in training runtimes. Results will be reported in a forthcoming work.
+Acknowledgments.
+This work was financially supported by INAF under the PRIN
+TEC CIRASA programme and by the European Commission under the H2020 grant
+agreement No. 863448 (NEANIAS).
+References
+Butora, R., et al. 2022, in ADASS XXXI, edited by TBD, vol. TBD of ASP Conf. Ser.
+Magro, D., et al. 2021, PASA, submitted
+Riggi, S., et al. 2019, PASA, 36, e037. 1909.06116
+— 2021, Astronomy and Computing, accepted
+Sciacca, E., et al. 2022, in ADASS XXXI, edited by TBD, ASP Conf. Ser.
+Tudisco, G., et al. 2022, in ADASS XXXI, edited by TBD, ASP Conf. Ser.
+
+radio
+ENCODER
+DECODER
+Input-Image
+Latent-Vector
+Predicted-lmagefromZ
+GeneratedfromX
+12 um
+22 um
+N
+-2
+GALAXY
+PULSAR
+H
\ No newline at end of file
diff --git a/u9E0T4oBgHgl3EQf9wIf/content/tmp_files/load_file.txt b/u9E0T4oBgHgl3EQf9wIf/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..0c097b02c33e718060f1f65900ec3732c715d87e
--- /dev/null
+++ b/u9E0T4oBgHgl3EQf9wIf/content/tmp_files/load_file.txt
@@ -0,0 +1,128 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf,len=127
+page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content='02804v1 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content='IM] 7 Jan 2023 Radio source analysis services for the SKA and precursors Simone Riggi,1 Cristobal Bordiu,1 Daniel Magro,2 Renato Sortino,3 Carmelo Pino,1 Eva Sciacca,1 Filomena Bufano,1 Thomas Cecconello,4 Giuseppe Vizzari,4 Fabio Vitello,1 and Giuseppe Tudisco1 1Istituto Nazionale di Astrofisica (INAF), Italy;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' simone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content='riggi@inaf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content='it 2University of Malta, Malta 3University of Catania, Italy 4University of Milano-Bicocca, Italy Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' New developments in data processing and visualization are being made in preparation for upcoming radioastronomical surveys planned with the Square Kilo- metre Array (SKA) and its precursors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' A major goal is enabling extraction of science information from the data in a mostly automated way, possibly exploiting the capabil- ities offered by modern computing infrastructures and technologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' In this context, the integration of source analysis algorithms into data visualization tools is expected to significantly improve and speed up the cataloguing process of large area surveys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' To this aim, the CIRASA (Collaborative and Integrated platform for Radio Astronomical Source Analysis) project was recently started to develop and integrate a set of services for source extraction, classification and analysis into the ViaLactea visual analytic plat- form and knowledge base archive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' In this contribution, we will present the project objectives and tools that have been developed, interfaced and deployed so far on the prototype European Open Science Cloud (EOSC) infrastructure provided by the H2020 NEANIAS project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' Introduction SKA will make it possible to survey the radio sky with unprecedented level of details, paving the way for breakthrough discoveries in multiple areas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' While the SKA has entered the construction phase, its precursor telescopes are delivering first scientific results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' The volume of the data are already requiring considerable efforts and new soft- ware developments to extract science information in an efficient and mostly automated way, anticipating the major challenges expected in SKA Regional Centers (SRCs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' The availability of distributed services for Advanced Data Products (ADPs) generation from Observatory or Project level data is indeed identified as a key element for delivering SKA science with the SRC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' SRC Working Groups (WGs) are therefore currently defin- ing requirements and science cases in collaboration with SKA Key Science Project (KSP) users to investigate ADP management challenges in details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' In this context, we started a new project, named CIRASA (Riggi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' 2021), to tackle selected SRC cases from the perspective of Galactic Science users, using observations done with ASKAP and MeerKAT precursors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' 1 2 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' Riggi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' High-level architecture of CIRASA source finding services.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' The CIRASA project The CIRASA project aims to develop and integrate a set of services for source extrac- tion, classification and analysis into the ViaLactea Visual Analytic (VLVA) platform and knowledge base services (VLKB), delivering proto-SRC solutions that can scale to larger computing infrastructures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' New developments to improve the source catalogu- ing process will focus on: reducing the fraction of spurious sources (currently around 20%) automatically extracted by standard source finders;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' detecting objects broken up into multiple source islands;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' selecting sources of likely Galactic origin, possibly iden- tifying their Galactic object class;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' highlighting unexpected or anomalous objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' In this paper we report the current status of source finding services, while the ongoing ac- tivities for visualization and archiving services are presented elsewhere (Tudisco et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' Butora et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' CIRASA source finding services caesar-rest1 is a Flask-based web service, providing a REST API for uploading input radio images (2D), performing source extraction runs on them, and retrieving catalogue outputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' The service architecture, sketched in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' 1, consists of multiple containerized micro-services.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' The web application supports user job submission on a Kubernetes or Slurm cluster using Docker and Singularity containers, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' User input and job data are stored in a MongoDB database.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' The service is also integrated with core services (AAI, logging and accounting) developed within the NEANIAS H2020 project 1https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content='com/SKA-INAF/caesar-rest Log Storage Data Storage elastic job outputs Update accounting Update stats job status info Job Accounting Monitoring mongoDB Getjobinfo users/iobs/data Re : WebApp slurm WebApp Flask Job (RESTAPI) (REST API) Submit jobs Scheduler Celery requests kubernetes django N Load Web Ul requests Balancer requests SFinder service 日 VLVA clientRadio source analysis services for the SKA and precursors 3 (Sciacca et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' 2022) for the European Open Science Cloud (EOSC) infrastructure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' In- tegration with the VLVA client is in progress.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' The service is deployed on a Kubernetes cluster, set up on the Italian GARR Open- Stack cloud2, and on CIRASA dedicated resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' Users can access it from EOSC marketplace portal3 through a Django-based web UI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' At present, the service only al- lows users to perform CAESAR source finder (Riggi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' 2019) runs, but there are plans to shortly integrate other widely used source finders (Aegean, CuTEx, SoFiA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' Novel ML-based applications, described below, will be integrated as soon as the devel- opment is completed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' Sample detection results obtained with ASGARD on input images with sidelobes (in red), galaxies (in yellow) and compact sources (in blue).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' ASGARD ASGARD4 (Magro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' 2021) is a novel source finder based on Mask R-CNN frame- work, trained to detect three different classes of objects (compact sources, sidelobes and extended radio galaxies) in 2D radio maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' Sample results are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' Model performances are rather good for extended galaxies (F1>0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content='9), moderate for compact sources (F1>0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content='75), and poorer for sidelobes (F1∼0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' ASGARD is already available from caesar-rest service interface, but its usage is presently limited to small image cutouts (<10002 pixels).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' To support processing on larger maps, a parallel MPI-based version was developed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' Further testing activities are needed before full integration in CIRASA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' Compact source classification We are also developing new tools for source classification exploiting multiwavelength data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' In this domain, convolutional autoencoders are a powerful method for extract- ing feature parameters to produce diagnostic plots or build supervised or unsupervised classifiers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' 3 we report the results obtained with a simple network architecture (2 convolutional layers with 16 and 8 filters, and a dense layer of size 16) trained to learn a compressed 2D representation of sample input image data (radio, 12 and 22 µm) for different compact source classes (Hii region, PN, pulsar, YSO, extragalactic 2https://cloud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content='garr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content='it/ 3https://marketplace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content='eosc-portal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content='eu/ 4https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content='com/SKA-INAF/mrcnn source 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content='98 source1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content='00 source1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content='00 sidelpbe 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content='86 source1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content='00 Xy1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content='00 source 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content='98 source 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content='84 source 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content='00 source 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content='00 source1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content='00 source 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content='00 source 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content='004 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' Riggi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' Top: Architecture of autoencoder networks and scatter plot of feature parameters obtained on a sample dataset including different Galactic and extragalac- tic compact sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' star, radio galaxy, QSO).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' As one can see, the trained model already enables potential galactic objects to be selected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' Better results are however expected to be achieved with additional input infrared bands (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' 8 and 70 µm), feature parameters (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' the radio spectral index), and a more refined network architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' Analysis are ongoing and will be reported in a future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' Summary and future developments In this paper we have presented the source finding services developed so far for the CIRASA project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' Ongoing activities are focusing on: data preparation for developed applications, source service integration with visualization client and support for other finder applications, improvements in deep learning finders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' For instance, to overcome some of the limitations found in ASGARD, we are training alternative state-of-the-art models (Tiramisu, YOLOv3, Detectron2, DETR) on an enlarged dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' Promising results were found on sidelobe detection, although obtained in some cases at the cost of a net increase in training runtimes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' Results will be reported in a forthcoming work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' Acknowledgments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' This work was financially supported by INAF under the PRIN TEC CIRASA programme and by the European Commission under the H2020 grant agreement No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' 863448 (NEANIAS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' References Butora, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' 2022, in ADASS XXXI, edited by TBD, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' TBD of ASP Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' Magro, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' 2021, PASA, submitted Riggi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' 2019, PASA, 36, e037.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' 1909.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content='06116 — 2021, Astronomy and Computing, accepted Sciacca, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' 2022, in ADASS XXXI, edited by TBD, ASP Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' Tudisco, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' 2022, in ADASS XXXI, edited by TBD, ASP Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
+page_content=' radio ENCODER DECODER Input-Image Latent-Vector Predicted-lmagefromZ GeneratedfromX 12 um 22 um N 2 GALAXY PULSAR H' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/u9E0T4oBgHgl3EQf9wIf/content/2301.02804v1.pdf'}
diff --git a/uNAyT4oBgHgl3EQfm_gQ/content/tmp_files/2301.00479v1.pdf.txt b/uNAyT4oBgHgl3EQfm_gQ/content/tmp_files/2301.00479v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..0fec7503aeb9a675b97dc0971ca565238528bfaa
--- /dev/null
+++ b/uNAyT4oBgHgl3EQfm_gQ/content/tmp_files/2301.00479v1.pdf.txt
@@ -0,0 +1,2132 @@
+WIP: The Design Principle of Blockchain:
+An Initiative for the SoK of SoKs
+SUNSHINE ZHANG∗, Primitives Lane, Metaverse
+Fig. 1. The Word Cloud of Blockchain Related SoK Titles
+Blockchain, also coined as decentralized AI, has the potential to empower AI to be more trustworthy by creating
+a decentralized trust of privacy, security, and audibility. However, systematic studies on the design principle of
+Blockchain as a trust engine for an integrated society of Cyber-Physical-Socia-System (CPSS) are still absent.
+In this article, we provide an initiative for seeking the design principle of Blockchain for a better digital world.
+Using a hybrid method of qualitative and quantitative studies, we examine the past origin, the current develop-
+ment, and the future directions of Blockchain design principles. We have three findings. First, the answers to
+whether Blockchain lives up to its original design principle as a distributed database are controversial. Second,
+the current development of Blockchain community reveals a taxonomy of 7 categories, including privacy and
+security, scalability, decentralization, applicability, governance and regulation, system design, and cross-chain
+interoperability. Both research and practice are more centered around the first category of privacy and security
+and the fourth category of applicability. Future scholars, practitioners, and policy-makers have vast opportuni-
+ties in other, much less exploited facets and the synthesis at the interface of multiple aspects. Finally, in counter-
+examples, we conclude that a synthetic solution that crosses discipline boundaries is necessary to close the gaps
+between the current design of Blockchain and the design principle of a trust engine for a truly intelligent world.
+∗Primitives Lane is a non-profit research group focused on blockchain and other frontier technologies. We are dedicated
+to solving the most fundamental public issues in frontier fields, helping researchers grow steadily, and creating a friendly
+and supportive space for builders.
+Author’s address: Sunshine Zhang, Primitives Lane, Metaverse.
+arXiv:2301.00479v1 [cs.CR] 1 Jan 2023
+
+Laundering Stratified
+cohtext
+BFTrunning
+Cryptocurrencies
+NetwOrkDigital
+payment
+security
+taxonom
+Applications-
+Preventing
+ea
+oolspow
+AMM
+ critica
+>Yield
+oprivate
+pooisledger.distrlbuted
+Legal
+hemati
+anonymit
+Machine
+smart
+internet
+Auction
+Oracles
+privacy
+used
+light
+Models
+Transactionaggregator
+DAG
+Metaverse
+e
+Research
+state
+framework
+demystifying-
+a
+game
+Randomness
+e
+TEE
+e
+ Repeated
+Deo
+cen
+Sf
+Su
+Governance
+idd
+Achieving
+attack
+automate
+anal
+e
+challenges
+graduat
+S
+Meets
+stablecoin
+computing
+ethereu
+dishonesty
+dex
+bo
+Legacy
+auditabilit
+Watching Con
+dentia
+VOTO8
+Layer.
+Decentralzed
+secure
+maker
+Beacor
+S
+designs
+Money
+xperts
+hai
+O
+odefiperspectives
+Understanding
+Mitigation
+MEV
+systems
+Bridge
+market
+Bitcoin
+accountabilit
+.qual
+tatil
+cryptography
+solution
+P2P
+based
+two
+groundcomprehensivetheorytront
+across
+ation(oiintermeasires2
+Sunshine Zhang
+CCS Concepts: • Applied computing → Economics; • Security and privacy → Distributed systems
+security; • Human-centered computing → Collaborative and social computing systems and tools.
+Additional Key Words and Phrases: blockchain, AI ethics, philosophy, economics, computer science
+1
+INTRODUCTION
+The past one hundred years have witnessed incredible advancements in Artificial Intelligence
+(AI) [Littman et al., 2022, Stone et al., 2022]. The advancement is integrating cyberspace (CS), phys-
+ical space (PS), and social space(SS), into the Cyber-Physical-Social System(CPSS), which expands
+the territories of human civilizations [Wang, 2010] extraordinarily. However, AI per se is not enough
+to establish trust in CPSS [Jacovi et al., 2021, Jan et al., 2020], which is the cornerstone of prosperity
+in every civilized society. Blockchain, also coined as decentralized AI, can empower AI to be more
+trustworthy by creating a decentralized trust of privacy, security, and audit-ability [Adel et al., 2022,
+Harris and Waggoner, 2019, Hussain and Al-Turjman, 2021]. However, systematic studies on the
+design principle of Blockchain as a trust engine for CPSS are still absent. If we could decipher the phi-
+losophy of blockchain, we would build the infrastructure of a better digital world. In this article, we
+provide an initiative for seeking the design principle of blockchain for the betterment of human civi-
+lization. Unlike the existing Systemization of Knowledge (SoK) on blockchain focusing on a specific
+discipline purpose or topic of interest, ours aim to open an intellectual conversation beyond bound-
+aries for the ultimate goal of a better digital world, namely, the SoK of SoKs. Specifically, we hope to
+initiate the answers to three questions for the past, the current, and the future of Blockchain design.
+(1) the past. does Blockchain live up to its original design principles as a distributed database?
+(2) the current. how do the current Blockchain literature, industry practices, and global standards
+address and develop the design principle of Blockchain?
+(3) the future. what are the gaps between the current design of Blockchain and the design
+principle of a trust engine for a truly intelligent world?
+In Section 2, we examine the performance of blockchain by its original design principle as
+a distributed database. We present the controversial answers in a dialogue style of debates. In
+Section 3, we analyze the current research and practice of blockchain principles by investigating
+the current SoKs of emerging blockchain literature, the white papers that provide technique cor-
+nerstones for Blockchain technology in the real world, and the discussions on global standards for
+Blockchain. We identify a taxonomy of blockchain literature into the seven categories of privacy
+and security, scalability, decentralization, applicability, governance and regulation, system design,
+and cross-chain interoperability. Integrating the AI of Natural Language Processing (NLP) [Bird
+et al., 2009] methods, we find that the current Blockchain design principles, in both research and
+practice, are more centered around the first category of privacy and security and the fourth category
+of applicability. Future scholars, practitioners, and policymakers have vast opportunities in the
+other much less exploit categories and the synthesis at the interface of multiple categories. In
+Section 4, we envision the future of blockchain technology by pointing out the gaps between the
+current design of blockchain and the design principle of a trust engine for a truly intelligence world.
+By providing counterexamples, we question the possibility of developing a plausible solution of
+singularity to the gaps without crossing the current boundaries of domain expertise.
+Sages in both the west and east have been craving an ideal society. In the Book of Rites, one of the
+Confucian (551–479 B.C.E.) classics [Csikszentmihalyi, 2020], the Great Unity is a Chinese vision
+of an ideal world in which men of virtue and ability rules. In ancient Greek, Plato [Kraut, 2022]
+(429–347 B.C.E.) envisions an ideal city-state ruled by a philosopher-king of justice in the Republic, a
+Socratic dialogue. By such a coincidence, both Confucius and Plato place the foundation of an ideal
+society on cultivating or selecting the men of virtue to be the administrators that people can trust.
+
+WIP: The Design Principle of Blockchain:
+An Initiative for the SoK of SoKs
+3
+Fig. 2. A Conversation Between Sunshine and Chat GPT-3 on 2022/12/30
+Nevertheless, the existence of a benevolent ruler might not be guaranteed. In contrast, Blockchain
+enables a new way of trust creation empowered by computer intelligence beyond human ethics.
+However, the current blockchain technology is evidently not a panacea for doubts about human trust.
+Then why "throw the baby out with the bathwater?" Existing mechanisms for cultivating human
+trust have created economic prosperity and human civilizations for thousands of years. How can
+we integrate blockchain technology into existing governance, economics, and ethics mechanisms
+for an ideal society in the new era of CPSS? We initiate an open dialogue of synthetic solutions.
+2
+THE PAST
+What is Blockchain originally designed for? How does Blockchain live up to the design principle
+of its original purpose? Sherman et al. [2019] introduce the origin of blockchain for establishing a
+distributed database trusted by mutually suspicious groups. Bayer et al. [1993], Haber and Stornetta
+[1990], Narayanan et al. [2016] further elaborate on the follow-up development of Blockchain
+technology for a series of desired properties such as decentralization, immutability, transparency,
+security, and efficiency. Figure 2 shows the answer returned by Generative Pre-trained Transformer
+(ChatGPT), https://openai.com/blog/chatgpt/, a chatbot launched by OpenAI in November 2022, to
+the question "what is the design principle of blockchain?" The answer accurately matches elabora-
+tions in earlier blockchain literature. We now examine the performance of Blockchain on each prin-
+ciple in a dialogue style of debates in the spirits of Confucius’s the Analects [Ames and Rosemont Jr,
+
+What is the design principle of blockchain?
+A blockchain is a decentralized, distributed database that is used to maintain a
+continuously growing list of records, called blocks. Each block contains a timestamp and a
+link to the previous block.
+The design principles of blockchain technology include:
+1. Decentralization: A blockchain is decentralized, meaning it is not controlled by any
+single entity or organization. Instead, it is maintained by a network of users who
+validate and record transactions on the blockchain.
+2. Immutability: Once data has been recorded on a blockchain, it cannot be altered. This
+ensures the integrity and security of the data on the blockchain.
+3. Transparency: Transactions on a blockchain are visible to all participants in the
+network. This transparency helps to build trust among users and enables the
+blockchain to function as a transparent and secure record-keeping system.
+4. Security: Blockchain technology uses advanced cryptographic techniques to secure
+the data on the network. Each block contains a cryptographic hash of the previous
+block, which helps to ensure the integrity and security of the data on the blockchain.
+5. Efficiency: By using a decentralized network and eliminating the need for
+intermediaries, blockchain technology can help to streamline and improve the
+efficiency of many different types of transactions.4
+Sunshine Zhang
+2010] and Plato’s the Republic [Plato, 2005]. We find the answer to be controversial. Moreover, the
+desired principles might conflict with each other or lead to other undesired consequences.
+Question 1: does Blockchain live up to its promise of decentralization?
+2.0.1
+Pros. Yes, Blockchain is decentralized. Compared with centralized ledgers, Blockchain is not
+subject to single point failure of a centralized entity [Puthal et al., 2018]. Blockchain record and
+validate data by a consensus protocol involving decentralized entities, which has the fault tolerance
+of minorities [Zhang and Tian, 2022].
+2.0.2
+Cons. No, Blockchain is not decentralized. Sai et al. [2021] provides a taxonomy of blockchain
+centralization in 13 aspects. For example, Sai et al. [2021] shows that the top four mining pools in
+Ethereum (Bitcoin) consist of 63.04% (50.36%) of the hashing power, which are enough to conduct
+a successful malicious attack. Moreover, Zhang et al. [2022] and the references therein show that
+the usage of blockchain at the application layer has the trend of conversing to centralization.
+Question 2: does Blockchain live up to its promise of immutability?
+2.0.3
+Pros. Yes, Blockchain is immutable. Narayanan et al. [2016] elaborate on the difficulty of
+manipulating the recorded data due to the chain structure of Merkle trees.
+2.0.4
+Cons. No, Blockchain is mutable. Hofmann et al. [2017] shows that the immutability of
+blockchain can be breached by various attacks. Politou et al. [2019] even addresses the conflicts
+between Blockchain’s immutability and the new European data protection regulation on the Right
+to be Forgotten (RtbF), according to which individuals have the right to delete their personal data
+under certain conditions.
+Question 3: does Blockchain live up to its promise of transparency?
+2.0.5
+Pros. Yes, Blockchain is transparent. [Monrat et al., 2019] explains that all the transactions
+on Blockchain are recorded and auditable by each Replica node in the network.
+2.0.6
+Cons. No, Blockchain is not transparent. Sai et al. [2021] demonstrates the centralization in
+node operation, which is required to audit the Blockchain data due to technique barriers. Feng et al.
+[2019] even point out the transparency of Blockchain as a negative feature, a threat to user privacy.
+Question 4: does Blockchain live up to its promise of security?
+2.0.7
+Pros. Yes, Blockchain is secure. Zhang et al. [2019] address the Blockchain security prop-
+erty of consistency and integrity achieved by the main techniques of consensus algorithms and
+hash-chained storage.
+2.0.8
+Cons. No, Blockchain is not secure. Lin and Liao [2017] evidences a long list of real attacks
+on Blockchain together with analyzing potential security issues. Budish [2022] even conclude that
+the mechanism supporting Blockchain security is either vulnerable or not worth the economic cost.
+Question 5: does Blockchain live up to its promise of efficiency?
+2.0.9
+Pros. Yes, Blockchain is efficient. Wang et al. [2019a] analyze how Blockchain improves
+efficiency in human interactions by automating and streamlining business operations using smart
+contracts.
+2.0.10
+Cons. No, Blockchain is not efficient. The current major blockchains can only sustain
+tens of transactions per second (TPS), not comparable to the centralized platforms, which have
+a throughput of thousands of TPS [Chauhan et al., 2018].
+
+WIP: The Design Principle of Blockchain:
+An Initiative for the SoK of SoKs
+5
+3
+THE CURRENT
+How do the current Blockchain literature, industry practices, and global standards address and
+develop the design principle of Blockchain? We collect all the Systemization of Knowledge (SoK)
+papers related to facets of Blockchain or surveys and review articles that satisfy the defining features
+of SoKs. We refer the readers to the JSys website, https://www.jsys.org/type_SoK/, for background
+information on SoKs and the Oakland conference GitHub site, https://oaklandsok.github.io/, for
+the histories of SoK in computer security and privacy literature. We present a taxonomy of the
+collected SoKs in Table 1 and Table 2 into seven categories based on the topic of research questions.
+• Category 1: Privacy and Security. We include literature that answers questions about private
+information protection and attacks on Blockchain systems. We refer the readers to DeCew
+[2018] for the philosophical symposium on privacy and Bishop [2003] for the computer
+science insights on security.
+• Category 2: Scalability. We include literature that answers questions related to the scalable
+deployment of Blockchain usually measured in throughput and quality of service. We refer the
+readers to Jogalekar and Woodside [2000] for the definition and measurement of scalability
+in the distributed system literature.
+• Category 3: Decentralization. We include the literature that answers questions related to the
+designed and realized decentralization of Blockchain. We refer the readers to Zhang et al.
+[2022] for an interdisciplinary synthesis for a taxonomy of Blockchain decentralization.
+• Category 4: Applicability. We include literature that answers questions related to the applica-
+tion of Blockchain to solve social and economic issues in various human interactions. Table 2
+shows that the major applications are in financial services [Chen and Bellavitis, 2020, Harvey
+et al., 2021, Zetzsche et al., 2020].
+• Category 5: Governance and Regulation. We include literature that answers questions related
+to utilizing Blockchain as a new way of governance, the process of interaction of an organized
+society, and its interactions with existing governance solutions, including corporate, govern-
+ment, and Non-Government Organizations (NGOs). We refer the readers to [Bevir, 2012] for
+a review of existing governance solutions, including various forms of social coordination and
+patterns of rules
+• Category 6: System design. We include literature that answers questions related to designing
+Blockchain as an advancement of existing computer systems. We refer the readers to Saltzer
+and Kaashoek [2009] for the design principles of computer systems.
+• Category 7: Cross-chain and Interoperability. We include literature that answers questions
+related to communication, cooperation, and integration among Blockchain systems, other
+computer systems, and human societies. We refer the readers to Wegner [1996] and Leal et al.
+[2019] for the importance and assessment of interoperability among information systems.
+Table 6 lists the top 28 blockchain projects, excluding applications on the Blockchain and cross-
+chain solutions ranked by the market value of its native currency retried from Coinmarketcap,
+https://coinmarketcap.com/, on Dec. 27, 2022. We further collect the white papers that provide the
+technical foundations for the 28 projects. We then conduct a text analysis applying natural language
+processing (NLP) methods to produce the word cloud and bigram networks of the titles and abstracts
+of the SoKs and white papers. The results are presented in Table 4, Table 5, Table 7, Table 8, Table 9,
+Figure 1, Figure 8, Figure 3, Figure 7, Figure 6, Figure 4, Figure 5, Figure 9, Figure 8. The word cloud
+distinguish the word frequency in these documents in font size and the bigram represents the
+co-appearance of two words in sequential order ranking by counts in the tables and in the network
+figures. We also further research the emerging documents of blockchain standard development
+and papers discussing blockchain standards by working groups and institutions globally.
+
+6
+Sunshine Zhang
+Data and Code Availability: We open source the data and code for replication and future
+research on the Github: https://github.com/sunshineluyao/design-principle-blockchain.
+we find that the current Blockchain design principles, in both research and practice, are more
+centered around the first category of privacy and security and the fourth category of applicability.
+Future scholars, practitioners, and policymakers have vast opportunities in the other much less
+exploit categories and the synthesis at the interface of multiple categories.
+4
+THE FUTURE
+What are the gaps between the current design of Blockchain and the design principle of a trust
+engine for a truly intelligent world? In this section, we are not intended for a comprehensive answer.
+Instead, we question the possibility of developing a plausible solution of singularity to the gaps
+without crossing the current boundaries of domain expertise by providing counterexamples.
+Case Study 1:
+How to elaborate on the design principle of privacy and security for a better society?
+The scientific community of distributed systems and cryptography made great milestones in
+Blockchain development by achieving the anonymity of private information and the audibility of
+public transactions. However, privacy and security are only the means but not necessarily the ends
+for a better society of human prosperity. Historically, Critiques [DeCew, 2018] addresses privacy
+as the source of criminal activities, economic inefficiency, and the abuse of minorities. Cong et al.
+[2022b] identify that wash trading count for around 70% of total cryptocurrency trading volumes.
+Cong et al. [2022a] further provides a taxonomy of crimes enabled by the anonymity feature on
+Blockchain. Abundant literature in behavioral science [Dawson, 2018] establishes the connection
+between anonymity and abusive behavior. However, none of those negative effects on human
+behavior are considered in the original design principles of Blockchain. How can we redesign pri-
+vacy and security to cultivate human cooperation better and minimize abusive behavior? Behavior
+scientists have the expertise to contribute.
+Case Study 2:
+How to elaborate on the design principle of decentralization for a better society?
+Most top-ranked Blockchain projects aim to create a permissionless system that is more inclu-
+sive, democratic, and decentralized. However, what is required to satisfy the permission for the
+permissionless Blockchains? You must have access to the internet, afford the computer system
+requirements to run a Replica node, and master engineering skills to participate in the network.
+Unfortunately, according to World in Data, https://ourworldindata.org/internet, in most parts of our
+world, less than half of the population have access to the internet. Let alone the higher requirements
+of computer system and engineering skills. Moreover, Ao et al. [2022] and the references therein
+evidence most of the crypto transactions are executed via centralized exchanges but not in the
+decentralized form of on-chain peer-to-peer transactions. Cong et al. [2022c] further addresses the
+inclusion issues of the current Web 3 economy due to technology barriers and lack of inclusion
+consideration in the original design principle of Blockchain. The famous Irish playwright Bernard
+Shaw says: "Revolutions have never lightened the burden of tyranny. They have only shifted it
+to another shoulder" [Tiliouine and Estes, 2016]. To direct Blockchain development to avoid the
+fate stated by Bernard Shaw and serve a more decentralized society of the people, by the people,
+for the people, anthropologists, social scientists, and economists are able to contribute to designing
+a society of democracy, diversity, and inclusion.
+
+WIP: The Design Principle of Blockchain:
+An Initiative for the SoK of SoKs
+7
+Case Study 3:
+How to elaborate on the design principle of efficiency for a better society?
+The current solutions for efficiency or scalability on Blockchain focus on improving transaction
+throughput and automating business processes. However, the pursuit of efficiency in an isolated
+system of short-sighted consideration might lead to inefficiency for the society as a whole for long-
+term sustainability. For example, the current scalability solutions generally consider the Blockchain
+system only in isolation but ignore the negative externality of the high-energy consumption design
+to the outside world [Truby, 2018]. Moreover, Grimmelmann [2019] points out that although smart
+contracts automate business processes, the current design ignores the ambiguity in the semantics of
+the programming language. Thus, a temporary convenience of the smart contract operation might
+lead to costly disputes in unforeseen scenarios when developers and users disagree. Policy-makers
+and lawyers can contribute to reconsidering the Blockchain design to improve the efficiency of
+negotiations among different stakeholders and our society as a whole.
+A Call for Collaboration
+Kranzberg [1986] states in his 1985 address as president of the Society for the History of Technology
+(SHOT): "Technology is neither good nor bad, nor is it neutral." Blockchain is a powerful technology
+that brings lots of new possibilities. How can we redesign blockchain for a truly intelligent world?
+We call for a joint endeavor from all disciplines.
+REFERENCES
+Yousif Abuidris, Rajesh Kumar, and Wang Wenyong. 2019. A survey of blockchain based on e-voting systems. In Proceedings
+of the 2019 2nd International Conference on Blockchain Technology and Applications. 99–104.
+Kareem Adel, Ahmed Elhakeem, and Mohamed Marzouk. 2022.
+Decentralizing construction AI applications using
+blockchain technology. Expert Systems with Applications 194 (2022), 116548.
+Anwaar Ali, Mohamed Rahouti, Siddique Latif, Salil Kanhere, Jatinder Singh, Umar Janjua, Adnan Noor Mian, Junaid
+Qadir, Jon Crowcroft, et al. 2019. Blockchain and the future of the internet: A comprehensive review. arXiv preprint
+arXiv:1904.00733 (2019).
+Ghada Almashaqbeh and Ravital Solomon. 2022. SoK: privacy-preserving computing in the blockchain era. In 2022 IEEE
+7th European Symposium on Security and Privacy (EuroS&P). IEEE, 124–139.
+Nasser Alsalami and Bingsheng Zhang. 2019. SoK: A systematic study of anonymity in cryptocurrencies. In 2019 IEEE
+Conference on Dependable and Secure Computing (DSC). IEEE, 1–9.
+Roger T Ames and Henry Rosemont Jr. 2010. The analects of Confucius: A philosophical translation. Ballantine books.
+Ralph Ankele, Kai Nahrgang, Branka Stojanovic, and Atta Badii. 2020. SoK: Cyber-Attack Taxonomy of Distributed
+Ledger-and Legacy Systems-based Financial Infrastructures. Cryptology ePrint Archive (2020).
+Ziqiao Ao, Gergely Horvath, and Luyao Zhang. 2022. Are decentralized finance really decentralized? A social network
+analysis of the Aave protocol on the Ethereum blockchain. arXiv preprint arXiv:2206.08401 (2022).
+Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2017. A survey of attacks on ethereum smart contracts (sok). In
+International conference on principles of security and trust. Springer, 164–186.
+Sarah Azouvi and Alexander Hicks. 2019. Sok: Tools for game theoretic models of security for cryptocurrencies. arXiv
+preprint arXiv:1905.08595 (2019).
+Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch Lafuente. 2021. SoK: lending pools in decentralized finance.
+In International Conference on Financial Cryptography and Data Security. Springer, 553–578.
+Carsten Baum, James Hsin-yu Chiang, Bernardo David, Tore Kasper Frederiksen, and Lorenzo Gentile. 2021. Sok: Mitigation
+of front-running in decentralized finance. Cryptology ePrint Archive (2021).
+Dave Bayer, Stuart Haber, and W Scott Stornetta. 1993. Improving the efficiency and reliability of digital time-stamping.
+In Sequences Ii. Springer, 329–334.
+Badr Bellaj, Aafaf Ouaddah, Emmanuel Bertin, Noel Crespi, and Abdellatif Mezrioui. 2022. SOK: a comprehensive survey on
+distributed ledger technologies. In ICBC 2022: IEEE International Conference on Blockchain and Cryptocurrency. IEEE, 1–16.
+Mark Bevir. 2012. Governance: A very short introduction. OUP Oxford.
+Steven Bird, Ewan Klein, and Edward Loper. 2009. Natural language processing with Python: analyzing text with the natural
+language toolkit. " O’Reilly Media, Inc.".
+Matt Bishop. 2003. What is computer security? IEEE Security & Privacy 1, 1 (2003), 67–69.
+
+8
+Sunshine Zhang
+Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A Kroll, and Edward W Felten. 2015. Sok:
+Research perspectives and challenges for bitcoin and cryptocurrencies. In 2015 IEEE symposium on security and privacy.
+IEEE, 104–121.
+Silvia Bonomi, Antonella Del Pozzo, Álvaro García-Pérez, and Sara Tucci-Piergiovanni. 2021. SoK: Achieving State Machine
+Replication in Blockchains based on Repeated Consensus. arXiv preprint arXiv:2105.13732 (2021).
+Eric B Budish. 2022. The economic limits of Bitcoin and anonymous, decentralized trust on the blockchain. University
+of Chicago, Becker Friedman Institute for Economics Working Paper 83 (2022).
+Fran Casino, Claudia Pina, Pablo López-Aguilar, Edgar Batista, Agusti Solanas, and Constantinos Patsakis. 2022. SoK:
+Cross-border Criminal Investigations and Digital Evidence. arXiv preprint arXiv:2205.12911 (2022).
+Panagiotis Chatzigiannis, Foteini Baldimtsi, and Konstantinos Chalkias. 2021. SoK: auditability and accountability in dis-
+tributed payment systems. In International Conference on Applied Cryptography and Network Security. Springer, 311–337.
+Panagiotis Chatzigiannis, Foteini Baldimtsi, and Konstantinos Chalkias. 2022. Sok: Blockchain light clients. In International
+Conference on Financial Cryptography and Data Security. Springer, 615–641.
+Anamika Chauhan, Om Prakash Malviya, Madhav Verma, and Tejinder Singh Mor. 2018. Blockchain and scalability. In
+2018 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). IEEE, 122–128.
+Huashan Chen, Marcus Pendleton, Laurent Njilla, and Shouhuai Xu. 2020. A survey on ethereum systems security:
+Vulnerabilities, attacks, and defenses. ACM Computing Surveys (CSUR) 53, 3 (2020), 1–43.
+Yan Chen and Cristiano Bellavitis. 2020. Blockchain disruption and decentralized finance: The rise of decentralized business
+models. Journal of Business Venturing Insights 13 (2020), e00151.
+Jeremy Clark, Didem Demirag, and Mahsa Moosavi. 2019. SoK: demystifying stablecoins. Communications of the ACM,
+Forthcoming (2019).
+Lin William Cong, Campbell R Harvey, Daniel Rabetti, and Zong-Yu Wu. 2022a. An anatomy of crypto-enabled cybercrimes.
+Available at SSRN 4188661 (2022).
+Lin William Cong, Xi Li, Ke Tang, and Yang Yang. 2022b. Crypto wash trading. Technical Report. National Bureau of
+Economic Research.
+Lin William Cong, Ke Tang, Yanxin Wang, and Xi Zhao. 2022c. Inclusion and democratization through web3 and defi?
+initial evidence from the ethereum ecosystem. Initial Evidence from the Ethereum Ecosystem (July 29, 2022) (2022).
+Simon Cousaert, Jiahua Xu, and Toshiko Matsui. 2022. Sok: Yield aggregators in defi. In 2022 IEEE International Conference
+on Blockchain and Cryptocurrency (ICBC). IEEE, 1–14.
+Mark Csikszentmihalyi. 2020. Confucius. In The Stanford Encyclopedia of Philosophy (Summer 2020 ed.), Edward N. Zalta
+(Ed.). Metaphysics Research Lab, Stanford University.
+Thomas K Dasaklis, Fran Casino, and Constantinos Patsakis. 2021. Sok: Blockchain solutions for forensics. In Technology
+Development for Security Practitioners. Springer, 21–40.
+Joe Dawson. 2018. Who is that? The study of anonymity and behavior. APS Observer 31 (2018).
+Judith DeCew. 2018.
+Privacy.
+In The Stanford Encyclopedia of Philosophy (Spring 2018 ed.), Edward N. Zalta (Ed.).
+Metaphysics Research Lab, Stanford University.
+Dominic Deuber, Viktoria Ronge, and Christian Rückert. 2022.
+SoK: Assumptions Underlying Cryptocurrency
+Deanonymizations. Proceedings on Privacy Enhancing Technologies 3 (2022), 670–691.
+Monika Di Angelo, Christian Sack, and Gernot Salzer. 2020. SoK: Development of secure smart contracts–lessons from
+a graduate course. In International Conference on Financial Cryptography and Data Security. Springer, 91–105.
+Maya Dotan, Yvonne-Anne Pignolet, Stefan Schmid, Saar Tochner, and Aviv Zohar. 2020. SOK: cryptocurrency networking
+context, state-of-the-art, challenges. In Proceedings of the 15th International Conference on Availability, Reliability and
+Security. 1–13.
+Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy Clark. 2020. Sok: Transparent dishonesty: front-running attacks
+on blockchain. In International Conference on Financial Cryptography and Data Security. Springer, 170–189.
+Shayan Eskandari, Mehdi Salehi, Wanyun Catherine Gu, and Jeremy Clark. 2021. Sok: Oracles from the ground truth to
+market manipulation. In Proceedings of the 3rd ACM Conference on Advances in Financial Technologies. 127–141.
+Qi Feng, Debiao He, Sherali Zeadally, Muhammad Khurram Khan, and Neeraj Kumar. 2019. A survey on privacy protection
+in blockchain system. Journal of Network and Computer Applications 126 (2019), 45–58.
+Federico Franzoni and Vanesa Daza. 2022. SoK: Network-Level Attacks on the Bitcoin P2P Network. IEEE Access 10 (2022),
+94924–94962.
+Thippa Reddy Gadekallu, Thien Huynh-The, Weizheng Wang, Gokul Yenduri, Pasika Ranaweera, Quoc-Viet Pham,
+Daniel Benevides da Costa, and Madhusanka Liyanage. 2022. Blockchain for the Metaverse: A Review. arXiv preprint
+arXiv:2203.09738 (2022).
+QingQiu Gan, Raymond Yiu Keung Lau, and Jin Hong. 2021. A critical review of blockchain applications to banking and
+finance: a qualitative thematic analysis approach. Technology Analysis & Strategic Management (2021), 1–17.
+
+WIP: The Design Principle of Blockchain:
+An Initiative for the SoK of SoKs
+9
+Juan Garay and Aggelos Kiayias. 2020. Sok: A consensus taxonomy in the blockchain era. In Cryptographers’ track at the
+RSA conference. Springer, 284–318.
+Simin Ghesmati, Walid Fdhila, and Edgar Weippl. 2021. SoK: How private is Bitcoin? Classification and Evaluation of
+Bitcoin Mixing Techniques. Cryptology ePrint Archive (2021).
+James Grimmelmann. 2019. All smart contracts are ambiguous. JL & Innovation 2 (2019), 1.
+Lewis Gudgeon, Pedro Moreno-Sanchez, Stefanie Roos, Patrick McCorry, and Arthur Gervais. 2020. Sok: Layer-two
+blockchain protocols. In International Conference on Financial Cryptography and Data Security. Springer, 201–226.
+Stuart Haber and W Scott Stornetta. 1990. How to time-stamp a digital document. In Conference on the Theory and
+Application of Cryptography. Springer, 437–455.
+Justin D Harris and Bo Waggoner. 2019. Decentralized and collaborative AI on blockchain. In 2019 IEEE international
+conference on blockchain (Blockchain). IEEE, 368–375.
+Campbell R Harvey, Ashwin Ramachandran, and Joey Santoro. 2021. DeFi and the Future of Finance. John Wiley & Sons.
+Lioba Heimbach and Roger Wattenhofer. 2022. SoK: Preventing Transaction Reordering Manipulations in Decentralized
+Finance. arXiv preprint arXiv:2203.11520 (2022).
+Frank Hofmann, Simone Wurster, Eyal Ron, and Moritz Böhmecke-Schwafert. 2017. The immutability concept of blockchains
+and benefits of early standardization. In 2017 ITU Kaleidoscope: Challenges for a Data-Driven Society (ITU K). IEEE, 1–8.
+Adedoyin A Hussain and Fadi Al-Turjman. 2021. Artificial intelligence and blockchain: A review. Transactions on emerging
+telecommunications technologies 32, 9 (2021), e4268.
+Md Rafiqul Islam, Muhammad Mahbubur Rahman, Md Mahmud, Mohammed Ataur Rahman, Muslim Har Sani Mohamad,
+et al. 2021. A Review on Blockchain Security Issues and Challenges. In 2021 IEEE 12th Control and System Graduate
+Research Colloquium (ICSGRC). IEEE, 227–232.
+Alon Jacovi, Ana Marasović, Tim Miller, and Yoav Goldberg. 2021. Formalizing trust in artificial intelligence: Prerequisites,
+causes and goals of human trust in ai. In Proceedings of the 2021 ACM conference on fairness, accountability, and
+transparency. 624–635.
+Steve TK Jan, Vatche Ishakian, and Vinod Muthusamy. 2020. AI trust in business processes: the need for process-aware
+explanations. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. 13403–13404.
+Prasad Jogalekar and Murray Woodside. 2000. Evaluating the scalability of distributed systems. IEEE Transactions on
+parallel and distributed systems 11, 6 (2000), 589–603.
+Maxim Jourenko, Kanta Kurazumi, Mario Larangeira, and Keisuke Tanaka. 2019. SoK: A taxonomy for layer-2 scalability
+related protocols for cryptocurrencies. Cryptology ePrint Archive (2019).
+Aljosha Judmayer, Nicholas Stifter, Alexei Zamyatin, Itay Tsabary, Ittay Eyal, Peter Gaži, Sarah Meiklejohn, and Edgar
+Weippl. 2021. Sok: Algorithmic incentive manipulation attacks on permissionless pow cryptocurrencies. In International
+Conference on Financial Cryptography and Data Security. Springer, 507–532.
+Dimitris Karakostas, Aggelos Kiayias, and Christina Ovezik. 2022. SoK: A Stratified Approach to Blockchain Decentralization.
+arXiv preprint arXiv:2211.01291 (2022).
+Kostis Karantias. 2020. Sok: A taxonomy of cryptocurrency wallets. Cryptology ePrint Archive (2020).
+Aggelos Kiayias and Philip Lazos. 2022. SoK: Blockchain Governance. arXiv preprint arXiv:2201.07188 (2022).
+Kartick Kolachala, Ecem Simsek, Mohammed Ababneh, and Roopa Vishwanathan. 2021. SoK: Money Laundering in
+Cryptocurrencies. In The 16th International Conference on Availability, Reliability and Security. 1–10.
+M Kranzberg. 1986. Technology and History: Kranzberg’s Laws, Technology and Culture. (1986).
+Richard Kraut. 2022. Plato. In The Stanford Encyclopedia of Philosophy (Spring 2022 ed.), Edward N. Zalta (Ed.). Metaphysics
+Research Lab, Stanford University.
+Stefano Lande and Roberto Zunino. 2018. SoK: unraveling Bitcoin smart contracts. Principles of Security and Trust LNCS
+10804 (2018), 217.
+Gabriel da Silva Serapião Leal, Wided Guédria, and Hervé Panetto. 2019. Interoperability assessment: A systematic literature
+review. Computers in Industry 106 (2019), 111–132.
+Sung-Shine Lee, Alexandr Murashkin, Martin Derka, and Jan Gorzny. 2022. SoK: Not Quite Water Under the Bridge: Review
+of Cross-Chain Bridge Hacks. arXiv preprint arXiv:2210.16209 (2022).
+Rujia Li, Qin Wang, Qi Wang, David Galindo, and Mark Ryan. 2022. SoK: TEE-assisted Confidential Smart Contract. arXiv
+preprint arXiv:2203.08548 (2022).
+Xiaoqi Li, Peng Jiang, Ting Chen, Xiapu Luo, and Qiaoyan Wen. 2020. A survey on the security of blockchain systems.
+Future Generation Computer Systems 107 (2020), 841–853.
+Iuon-Chang Lin and Tzu-Chun Liao. 2017. A survey of blockchain security issues and challenges. Int. J. Netw. Secur. 19,
+5 (2017), 653–659.
+Michael L Littman, Ifeoma Ajunwa, Guy Berger, Craig Boutilier, Morgan Currie, Finale Doshi-Velez, Gillian Hadfield,
+Michael C Horowitz, Charles Isbell, Hiroaki Kitano, et al. 2022. Gathering strength, gathering storms: The one hundred
+year study on artificial intelligence (AI100) 2021 study panel report. arXiv preprint arXiv:2210.15767 (2022).
+
+10
+Sunshine Zhang
+Patrick McCorry, Chris Buckland, Bennet Yee, and Dawn Song. 2021. Sok: Validating bridges as a scaling solution for
+blockchains. Cryptology ePrint Archive (2021).
+Amani Moin, Kevin Sekniqi, and Emin Gun Sirer. 2020.
+SoK: A classification framework for stablecoin designs. In
+International Conference on Financial Cryptography and Data Security. Springer, 174–197.
+Ahmed Afif Monrat, Olov Schelén, and Karl Andersson. 2019. A survey of blockchain from the perspectives of applications,
+challenges, and opportunities. IEEE Access 7 (2019), 117134–117151.
+Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, and Steven Goldfeder. 2016. Bitcoin and cryptocurrency
+technologies: a comprehensive introduction. Princeton University Press.
+c Plato. 2005. From the republic. In Readings in the economics of the division of labor: The classical tradition. World Scientific,
+43–49.
+Eugenia Politou, Fran Casino, Efthimios Alepis, and Constantinos Patsakis. 2019. Blockchain mutability: Challenges and
+proposed solutions. IEEE Transactions on Emerging Topics in Computing 9, 4 (2019), 1972–1986.
+Deepak Puthal, Nisha Malik, Saraju P Mohanty, Elias Kougianos, and Chi Yang. 2018. The blockchain as a decentralized
+security framework [future directions]. IEEE Consumer Electronics Magazine 7, 2 (2018), 18–21.
+Mayank Raikwar and Danilo Gligoroski. 2022.
+SoK: Decentralized Randomness Beacon Protocols.
+arXiv preprint
+arXiv:2205.13333 (2022).
+Mayank Raikwar, Danilo Gligoroski, and Katina Kralevska. 2019. SoK of used cryptography in blockchain. IEEE Access
+7 (2019), 148550–148575.
+Roy Rinberg and Nilaksh Agarwal. 2022. Privacy when Everyone is Watching: An SOK on Anonymity on the Blockchain.
+Cryptology ePrint Archive (2022).
+Ashish Rajendra Sai, Jim Buckley, Brian Fitzgerald, and Andrew Le Gear. 2021. Taxonomy of centralization in public
+blockchain systems: A systematic literature review. Information Processing & Management 58, 4 (2021), 102584.
+Jerome Saltzer and M Frans Kaashoek. 2009. Principles of computer system design: an introduction. Morgan Kaufmann.
+Alan T Sherman, Farid Javani, Haibin Zhang, and Enis Golaszewski. 2019. On the origins and variations of blockchain
+technologies. IEEE Security & Privacy 17, 1 (2019), 72–77.
+Zeshun Shi, Cees de Laat, Paola Grosso, and Zhiming Zhao. 2021. When Blockchain Meets Auction Models: A Survey,
+Some Applications, and Challenges. arXiv preprint arXiv:2110.12534 (2021).
+Peter Stone, Rodney Brooks, Erik Brynjolfsson, Ryan Calo, Oren Etzioni, Greg Hager, Julia Hirschberg, Shivaram
+Kalyanakrishnan, Ece Kamar, Sarit Kraus, et al. 2022. Artificial intelligence and life in 2030: the one hundred year study
+on artificial intelligence. arXiv preprint arXiv:2211.06318 (2022).
+Ege Tekiner, Abbas Acar, A Selcuk Uluagac, Engin Kirda, and Ali Aydin Selcuk. 2021. SoK: cryptojacking malware. In
+2021 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 120–139.
+Habib Tiliouine and Richard J Estes. 2016. The state of social progress of Islamic societies. Op. cit 222 (2016).
+Jon Truby. 2018. Decarbonizing Bitcoin: Law and policy choices for reducing the energy consumption of Blockchain
+technologies and digital currencies. Energy research & social science 44 (2018), 399–410.
+Fei-Yue Wang. 2010. The emergence of intelligent enterprises: From CPS to CPSS. IEEE Intelligent Systems 25, 4 (2010), 85–88.
+Gang Wang. 2021. SoK: Understanding BFT Consensus in the Age of Blockchains. Cryptology ePrint Archive (2021).
+Gang Wang, Zhijie Jerry Shi, Mark Nixon, and Song Han. 2019b. Sok: Sharding on blockchain. In Proceedings of the 1st
+ACM Conference on Advances in Financial Technologies. 41–61.
+Qin Wang, Jiangshan Yu, Shiping Chen, and Yang Xiang. 2020. SoK: Diving into DAG-based blockchain systems. arXiv
+preprint arXiv:2012.06128 (2020).
+Shuai Wang, Liwei Ouyang, Yong Yuan, Xiaochun Ni, Xuan Han, and Fei-Yue Wang. 2019a. Blockchain-enabled smart
+contracts: architecture, applications, and future trends. IEEE Transactions on Systems, Man, and Cybernetics: Systems
+49, 11 (2019), 2266–2277.
+Peter Wegner. 1996. Interoperability. ACM Computing Surveys (CSUR) 28, 1 (1996), 285–287.
+Sam M Werner, Daniel Perez, Lewis Gudgeon, Ariah Klages-Mundt, Dominik Harz, and William J Knottenbelt. 2021. Sok:
+Decentralized finance (defi). arXiv preprint arXiv:2101.08778 (2021).
+Jiahua Xu, Krzysztof Paruch, Simon Cousaert, and Yebo Feng. 2021. Sok: Decentralized exchanges (dex) with automated
+market maker (AMM) protocols. arXiv preprint arXiv:2103.12732 (2021).
+Sen Yang, Fan Zhang, Ken Huang, Xi Chen, Youwei Yang, and Feng Zhu. 2022. SoK: MEV Countermeasures: Theory and
+Practice. arXiv preprint arXiv:2212.05111 (2022).
+Jingfan Yu, Mengqian Zhang, Xi Chen, and Zhixuan Fang. 2022. SoK: Play-to-Earn Projects. arXiv preprint arXiv:2211.01000
+(2022).
+Alexei Zamyatin, Mustafa Al-Bassam, Dionysis Zindros, Eleftherios Kokoris-Kogias, Pedro Moreno-Sanchez, Aggelos
+Kiayias, and William J Knottenbelt. 2021. Sok: Communication across distributed ledgers. In International Conference
+on Financial Cryptography and Data Security. Springer, 3–36.
+
+WIP: The Design Principle of Blockchain:
+An Initiative for the SoK of SoKs
+11
+Fig. 3. The Word Cloud of Blockchain Related SoK Title
+Dirk A Zetzsche, Douglas W Arner, and Ross P Buckley. 2020. Decentralized finance. Journal of Financial Regulation 6,
+2 (2020), 172–203.
+Luyao Zhang, Xinshi Ma, and Yulin Liu. 2022. SoK: Blockchain Decentralization. arXiv preprint arXiv:2205.04256 (2022).
+Luyao Zhang and Xinyu Tian. 2022. On Blockchain We Cooperate: An Evolutionary Game Perspective. arXiv preprint
+arXiv:2212.05357 (2022).
+Rui Zhang, Rui Xue, and Ling Liu. 2019. Security and privacy on blockchain. ACM Computing Surveys (CSUR) 52, 3 (2019),
+1–34.
+Liyi Zhou, Xihan Xiong, Jens Ernstberger, Stefanos Chaliasos, Zhipeng Wang, Ye Wang, Kaihua Qin, Roger Wattenhofer,
+Dawn Song, and Arthur Gervais. 2022. SoK: Decentralized Finance (DeFi) Incidents. arXiv preprint arXiv:2208.13035 (2022).
+Qiheng Zhou, Huawei Huang, Zibin Zheng, and Jing Bian. 2020. Solutions to scalability of blockchain: A survey. Ieee
+Access 8 (2020), 16440–16455.
+
+explorecomprehensive
+block
+lmplementation
+Since
+proposedchain
+issue
+o-otoco
+analyze
+gyears
+KnowledgeDeFi
+contract
+e
+nodes
+technologies
+order
+incentive
+analvsis
+a1m
+payment
+known
+Ethereum
+trusted
+ methoo
+without
+existing
+applied
+problem
+light
+user
+area
+taxonomyi
+various
+literature
+recent
+component
+service
+second
+ Internet
+conduct
+ULe
+0
+e
+gap
+O(
+often
+peer
+e
+well
+ best
+o
+0
+space
+help
+platform
+lication
+rateg.
+feature
+mechanism
+two
+open
+app
+based
+ket
+data
+anonymity
+towards
+cryptocurrencies
+privacy
+several
+ingeconomic
+benet1
+-016
+trust
+U
+paperresearch
+survey
+irst
+finance
+e
+metaverse
+used
+client
+distributedecäsystem
+performanc
+d
+study
+echnica.
+ major
+auction
+highlightasset technique
+transparency
+numerous
+Bitcoin
+systematization
+Sok
+design
+lalue
+DRB
+Vield
+related
+provlde
+risk
+system
+bridge
+enable
+=
+find
+inatlv
+stechno.ogy
+Community
+worlo
+scalability-among
+framework:
+attac
+interest
+different
+propertiescurrent
+ concept financia.
+assumptions exchange
+ approache12
+Sunshine Zhang
+Citation
+Title
+Category 1: Privacy and Security
+Almashaqbeh and Solomon [2022]
+SoK: privacy-preserving computing in the blockchain era
+Bonneau et al. [2015]
+SoK: Research Perspectives and Challenges for Bitcoin and Cryptocurrencies
+Wang [2021]
+SoK: Understanding BFT Consensus in the Age of Blockchains
+Eskandari et al. [2020]
+Sok: Transparent dishonesty: front-running attacks on blockchain
+Baum et al. [2021]
+Sok: Mitigation of front-running in decentralized finance
+Raikwar et al. [2019]
+SoK of used cryptography in blockchain
+Heimbach and Wattenhofer [2022]
+SoK: Preventing Transaction Reordering Manipulations in Decentralized Finance
+Zhou et al. [2022]
+SoK: Decentralized Finance (DeFi) Incidents
+Li et al. [2022]
+SoK: TEE-assisted Confidential Smart Contract
+Ankele et al. [2020]
+SoK: Cyber-Attack Taxonomy of Distributed Ledger-and Legacy Systems-based Financial Infrastructures
+Yang et al. [2022]
+SoK: MEV Countermeasures: Theory and Practice
+Azouvi and Hicks [2019]
+Sok: Tools for game theoretic models of security for cryptocurrencies
+Atzei et al. [2017]
+A survey of attacks on ethereum smart contracts (sok)
+Judmayer et al. [2021]
+Sok: Algorithmic incentive manipulation attacks on permissionless pow cryptocurrencies
+Di Angelo et al. [2020]
+SoK: Development of secure smart contracts–lessons from a graduate course
+Chen et al. [2020]
+A survey on ethereum systems security: Vulnerabilities, attacks, and defenses
+Islam et al. [2021]
+A Review on Blockchain Security Issues and Challenges
+Li et al. [2020]
+A survey on the security of blockchain systems
+Garay and Kiayias [2020]
+Sok: A consensus taxonomy in the blockchain era
+Tekiner et al. [2021]
+SoK: cryptojacking malware
+Alsalami and Zhang [2019]
+SoK: A systematic study of anonymity in cryptocurrencies
+Deuber et al. [2022]
+SoK: Assumptions Underlying Cryptocurrency Deanonymizations
+Rinberg and Agarwal [2022]
+Privacy when Everyone is Watching: An SOK on Anonymity on the Blockchain
+Bonomi et al. [2021]
+SoK: Achieving State Machine Replication in Blockchains based on Repeated Consensus
+Ghesmati et al. [2021]
+SoK: How private is Bitcoin? Classification and Evaluation of Bitcoin Mixing Techniques
+Franzoni and Daza [2022]
+SoK: Network-Level Attacks on the Bitcoin P2P Network
+Category 2: Scalability
+Wang et al. [2019b]
+SoK: Sharding on Blockchain
+Gudgeon et al. [2020]
+SoK: Layer-Two Blockchain Protocols
+McCorry et al. [2021]
+Sok: Validating bridges as a scaling solution for blockchains
+Chatzigiannis et al. [2022]
+Sok: Blockchain light clients
+Zhou et al. [2020]
+Solutions to scalability of blockchain: A survey
+Category 3: Decentralization
+Zhang et al. [2022]
+SoK: Blockchain Decentralization
+Karakostas et al. [2022]
+SoK: A Stratified Approach to Blockchain Decentralization
+Raikwar and Gligoroski [2022]
+SoK: Decentralized Randomness Beacon Protocols
+Table 1. A Taxonomy of SoKs
+
+WIP: The Design Principle of Blockchain:
+An Initiative for the SoK of SoKs
+13
+Citation
+Title
+Category 4: Applicability
+Gudgeon et al. [2020]
+SoK: Layer-Two Blockchain Protocols
+Bartoletti et al. [2021]
+SoK: lending pools in decentralized finance
+Werner et al. [2021]
+SoK: Decentralized Finance (DeFi)
+Xu et al. [2021]
+SoK: Decentralized Exchanges (DEX) with Automated Market Maker (AMM) Protocols
+Shi et al. [2021]
+When Blockchain Meets Auction Models: A Survey, Some Applications, and Challenges
+Abuidris et al. [2019]
+A survey of blockchain-based on e-voting systems
+Gadekallu et al. [2022]
+Blockchain for the Metaverse: A Review
+Ali et al. [2019]
+Blockchain and the future of the internet: A comprehensive review
+Cousaert et al. [2022]
+Sok: Yield aggregators in defi
+Yu et al. [2022]
+SoK: Play-to-Earn Projects
+Dotan et al. [2020]
+SOK: cryptocurrency networking context, state-of-the-art, challenges
+Moin et al. [2020]
+SoK: A classification framework for stablecoin designs
+Gan et al. [2021]
+A critical review of blockchain applications to banking and finance:
+a qualitative thematic analysis approach
+Dasaklis et al. [2021]
+Sok: Blockchain solutions for forensics
+Wang [2021]
+SoK: tokenization on blockchain
+Karantias [2020]
+Sok: A taxonomy of cryptocurrency wallets
+Clark et al. [2019]
+SoK: demystifying stablecoins
+Jourenko et al. [2019]
+SoK: A taxonomy for layer-2 scalability related protocols for cryptocurrencies
+Lande and Zunino [2018]
+SoK: unraveling Bitcoin smart contracts
+Moin et al. [2020]
+SoK: A Classification Framework for Stablecoin Designs
+Category 5: Governance and Regulations
+Kiayias and Lazos [2022]
+SoK: Blockchain Governance
+Chatzigiannis et al. [2021]
+SoK: Auditability and Accountability in Distributed Payment Systems
+Kolachala et al. [2021]
+SoK: Money Laundering in Cryptocurrencies
+Casino et al. [2022]
+SoK: Cross-border Criminal Investigations and Digital Evidence
+Deuber et al. [2022]
+SoK: Assumptions Underlying Cryptocurrency Deanonymizations
+–A Taxonomy for Scientific Experts and Legal Practitioners
+Category 6: System Design
+Wang et al. [2020]
+SoK: Diving into DAG-based blockchain systems
+Bellaj et al. [2022]
+SOK: a comprehensive survey on distributed ledger technologies
+Category 7: Cross-chain and Interoperability
+Zamyatin et al. [2021]
+Sok: Communication across distributed ledgers
+Wang [2021]
+Sok: Exploring blockchains interoperability
+Eskandari et al. [2021]
+Sok: Oracles from the ground truth to market manipulation
+Lee et al. [2022]
+SoK: Not Quite Water Under the Bridge: Review of Cross-Chain Bridge Hacks
+Table 2. The List of SoKs (continued)
+
+14
+Sunshine Zhang
+Table 3. The Bigram of Blockchain Related SoK Titles (Top 10)
+bigram
+counts
+(decentralized, finance)
+5
+(smart, contract)
+3
+(blockchain, system)
+2
+(framework, stablecoin)
+2
+(classification, framework)
+2
+(distributed, ledger)
+2
+(stablecoin, design)
+2
+(blockchain, decentralization)
+2
+(finance, defi)
+2
+(finance, decentralized)
+2
+(blockchain, era)
+2
+(dag-based, blockchain)
+1
+(pool, decentralized)
+1
+(lending, pool)
+1
+(ledger, lending)
+1
+(across, distributed)
+1
+(communication, across)
+1
+(contract, communication)
+1
+(confidential, smart)
+1
+(tee-assisted, confidential)
+1
+(system, tee-assisted)
+1
+(blockchains, blockchain)
+1
+(diving, dag-based)
+1
+(client, diving)
+1
+(light, client)
+1
+
+WIP: The Design Principle of Blockchain:
+An Initiative for the SoK of SoKs
+15
+Table 4. The Bigram of Blockchain Related SoK Abstracts (Top 1-45)
+bigram
+counts
+(smart, contract)
+25
+(blockchain, technology)
+24
+(blockchain, system)
+14
+(systematization, knowledge)
+12
+(future, research)
+12
+(decentralized, finance)
+11
+(research, direction)
+9
+(lending, pool)
+8
+(consensus, protocol)
+7
+(finance, defi)
+7
+(security, privacy)
+6
+(recent, year)
+6
+(market, maker)
+6
+(automated, market)
+6
+(blockchain, metaverse)
+6
+(layer-two, protocol)
+6
+(machine, replication)
+6
+(state, machine)
+6
+(cryptographic, concept)
+6
+(open, research)
+5
+(digital, forensics)
+5
+(application, blockchain)
+5
+(maker, amm)
+5
+(yield, farming)
+5
+(research, challenge)
+5
+(blockchain, ecosystem)
+5
+(distributed, system)
+5
+(best, knowledge)
+5
+(blockchain, security)
+4
+(repeated, consensus)
+4
+(finance, sector)
+4
+(banking, finance)
+4
+(transfer, asset)
+4
+(privacy, issue)
+4
+(future, direction)
+4
+(decentralized, application)
+4
+(cross-chain, communication)
+4
+(protocol, along)
+4
+(off-chain, transaction)
+4
+(financial, system)
+4
+(distributed, ledger)
+4
+(provide, systematization)
+4
+(payment, system)
+4
+(systematic, comprehensive)
+4
+(body, research)
+4
+
+16
+Sunshine Zhang
+Table 5. The Bigram of Blockchain Related SoK Abstracts Continued (Top 46-90)
+bigram
+counts
+(bft, consensus)
+4
+(built, top)
+3
+(solution, finally)
+3
+(light, client)
+3
+(third, party)
+3
+(security, guarantee)
+3
+(finally, discus)
+3
+(work, blockchain)
+3
+(general, design)
+3
+(first, present)
+3
+(system, security)
+3
+(layer-two, solution)
+3
+(state, channel)
+3
+(existing, protocol)
+3
+(auction, model)
+3
+(integral, part)
+3
+(decentralized, exchange)
+3
+(exchange, dexs)
+3
+(research, innovation)
+3
+(public, ledger)
+3
+(much, attention)
+3
+(shed, light)
+3
+(play-to-earn, project)
+3
+(security, vulnerability)
+3
+(cryptocurrency, system)
+3
+(paper, systematically)
+3
+(payment, state)
+3
+(provide, first)
+3
+(high, latency)
+3
+(research, gap)
+3
+(cryptographic, primitive)
+3
+(solution, blockchain)
+3
+(two, major)
+3
+(property, system)
+3
+(scattered, body)
+3
+(consensus, mechanism)
+3
+(important, role)
+3
+(application, domain)
+3
+(paper, conduct)
+3
+(conduct, systematic)
+3
+(potential, research)
+3
+(based, finding)
+3
+(service, however)
+3
+(ethereum, blockchain)
+3
+(transaction, load)
+3
+
+WIP: The Design Principle of Blockchain:
+An Initiative for the SoK of SoKs
+17
+Table 6. The Top 28 blockchain project and cross-chain solutions: ranked by market value retrieved from
+coinmarketcap on Dec. 27, 2022
+Rank
+name
+symbol
+Genesis
+Type
+1
+Bitcoin
+BTC
+2009
+Blockchain
+2
+Ethereum
+ETH
+2015
+Blockchain
+3
+Binance smart chain
+BNB
+2017
+Blockchain
+4
+XRP Ledger (Ripple)
+XRP
+2021
+Blockchain
+5
+Cardano
+ADA
+2017
+Blockchain
+6
+Polkadot
+DOT
+2022
+Cross-chain
+7
+TRON
+TRX
+2017
+Blockchain
+8
+Solana
+SOL
+2020
+Blockchain
+9
+Avalanche
+AVAX
+2020
+Blockchain
+10
+Chainlink
+LINK
+2017
+Cross-chain
+11
+The Open Network (TON)
+TON
+2018
+Blockchain
+12
+Cosmos
+ATOM
+2016
+Cross-chain
+13
+Stellar
+XLM
+2015
+Blockchain
+14
+Cronos Chain
+CRO
+2018
+Blockchain
+15
+Quant Overledger
+QNT
+2018
+Cross-chain
+16
+Agorand
+ALGO
+2019
+Blockchain
+17
+NEAR Protocol
+NEAR
+2021
+Blockchain
+18
+Filecoin
+FIL
+2017
+Cross-chain
+19
+Hedera
+HBAR
+2019
+Blockchain
+20
+Internet Computer
+ICP
+2021
+Blockchain
+21
+EOS Network
+EOS
+2018
+Blockchain
+22
+MultiversX (Elrond)
+EGLD
+2020
+Blockchain
+23
+Flow
+FLOW
+2018
+Blockchain
+24
+Theta Network
+THETA
+2019
+Blockchain
+25
+Tezos
+XTZ
+2018
+Blockchain
+26
+Zcash
+ZEC
+2016
+Blockchain
+27
+Klaytn
+KLAY
+2019
+Blockchain
+28
+Dash
+DASH
+2014
+Blockchain
+
+18
+Sunshine Zhang
+Table 7. The Bigram of Blockchain Projects and Cross-chain solutions Titles (Top 10)
+bigram
+counts
+(smart, contract)
+2
+(public, blockchain)
+2
+(blockchain, platform)
+2
+(white, paper)
+2
+(public, hashgraph)
+1
+(ledger, stellar)
+1
+(distributed, ledger)
+1
+(network, distributed)
+1
+(whitepaper, network)
+1
+(cosmos, whitepaper)
+1
+(network, cosmos)
+1
+(open, network)
+1
+(network, open)
+1
+(oracle, network)
+1
+(decentralized, oracle)
+1
+(evolution, decentralized)
+1
+(step, evolution)
+1
+(next, step)
+1
+(chainlink, next)
+1
+(dynamic, chainlink)
+1
+(avax, dynamic)
+1
+(token, avax)
+1
+(native, token)
+1
+(avalanche, native)
+1
+(v0, avalanche)
+1
+
+WIP: The Design Principle of Blockchain:
+An Initiative for the SoK of SoKs
+19
+Table 8. The Bigram of Blockchain Projects and Cross-chain Solutions Abstracts (Top 1-45)
+bigram
+counts
+(smart, contract)
+27
+(technical, paper)
+8
+(digital, asset)
+6
+(consensus, algorithm)
+6
+(blockchain, network)
+6
+(decentralized, application)
+5
+(virtual, machine)
+5
+(public, blockchain)
+5
+(cosmos, hub)
+5
+(byzantine, agreement)
+4
+(decentralised, application)
+4
+(blockchain, architecture)
+4
+(transaction, second)
+4
+(beacon, chain)
+4
+(native, token)
+3
+(development, platform)
+3
+(payment, scheme)
+3
+(storage, network)
+3
+(zone, cosmos)
+3
+(distributed, application)
+3
+(blockchain, application)
+3
+(end, user)
+3
+(proof, stake)
+3
+(new, blockchain)
+3
+(paper, proposes)
+3
+(blockchain, platform)
+3
+(programming, language)
+3
+(blockchain, technology)
+3
+(paper, also)
+3
+(introduces, new)
+2
+(tendermint, bft)
+2
+(ibc, protocol)
+2
+(communication, ibc)
+2
+(inter-blockchain, communication)
+2
+(hub, zone)
+2
+(zone, hub)
+2
+(well, suited)
+2
+(cosmos, network)
+2
+(address, problem)
+2
+(network, architecture)
+2
+(transaction, ledger)
+2
+(transaction, throughput)
+2
+(governance, mechanism)
+2
+(machine, evm)
+2
+(without, need)
+2
+
+20
+Sunshine Zhang
+Table 9. The Bigram of Blockchain Projects and Cross-chain Solutions Abstracts (Top 46-90)
+bigram
+counts
+(ba, protocol)
+2
+(achieves, robustness)
+2
+(protocol, scp)
+2
+(application, built)
+2
+(set, transaction)
+2
+(next, set)
+2
+(secure, scalable)
+2
+(algorand, us)
+2
+(widespread, adoption)
+2
+(network, providing)
+2
+(application, across)
+2
+(broad, range)
+2
+(ledger, technology)
+2
+(distributed, ledger)
+2
+(trusted, secure)
+2
+(cronos, designed)
+2
+(transaction, fee)
+2
+(low, transaction)
+2
+(million, transaction)
+2
+(provides, useful)
+2
+(network, ton)
+2
+(used, encode)
+2
+(strong, focus)
+2
+(work, present)
+2
+(network, communicate)
+2
+(consensus, protocol)
+2
+(handling, million)
+2
+(high, speed)
+2
+(autonomous, organization)
+2
+(functional, programming)
+2
+(decentralized, autonomous)
+2
+(important, part)
+2
+(cpu, power)
+2
+(longest, chain)
+2
+(network, network)
+2
+(peer-to-peer, network)
+2
+(open, source)
+2
+(advanced, feature)
+2
+(open, network)
+2
+(consensus, mechanism)
+2
+(hybrid, smart)
+2
+(computing, resource)
+2
+(off-chain, computing)
+2
+(oracle, network)
+2
+(new, blockchains)
+2
+
+WIP: The Design Principle of Blockchain:
+An Initiative for the SoK of SoKs
+21
+Fig. 4. The Bigram of Blockchain Related SoK Title
+
+applicatior
+dassificatietaverse
+market accountability
+cryptography
+bridge
+mitigation
+dishonestlockchain
+maker
+contract
+reordering
+dex
+challenge
+transaction age
+tee-assistec
+era
+auction
+across
+000
+research
+communication
+Marans
+used
+e-voting
+det
+automated
+attack
+sharding
+stratifie
+understanding
+smart
+lending
+auditability
+ledger
+bitcoin
+approach
+design
+computin
+pase
+cryptogt
+Yalidating
+ingident
+manipulation
+dient
+meet
+diying
+amrdecentralize
+payment
+la
+yer-two
+stabjecqjovemand
+future
+moder
+perspective
+bft.
+front-runaing
+decentralization
+privacy-preserving
+fotocol
+preventing
+confidential
+finance
+internet
+istributed
+framework
+system
+sblution
+consenst
+transparent22
+Sunshine Zhang
+Fig. 5. The Bigram of Blockchain Related SoK Abstract
+
+decentralization finally
+guarantee
+off-chaitechnolog
+auction
+direction
+forensics
+govemance
+financial
+metaverse
+muc
+lending
+scattered
+vulnerability
+researc
+client
+US6
+digital
+market
+gene
+machine
+contract
+repeated
+high
+yield
+buit
+present
+best
+part
+comprehensive
+finance
+Tans
+concep
+replication
+future
+finding
+latency
+upti
+gap
+important
+banking
+ngross-chain
+conduct
+hmunicatioh
+oper
+systematization
+secu
+chalenge
+platform
+provid
+utomated
+yer-two
+iowe
+sector
+level
+existing
+aiol
+systemati
+farming
+khowle
+decentralize
+identify
+asset
+rptogr
+DR
+bft
+bloakchain
+payme
+year
+transfer
+based
+distributed
+state
+privao
+pool
+amm
+public
+play-to-ear
+[system
+body
+work
+defi
+channel
+protoco
+integral
+cryptocurrency
+application
+light
+issue
+party ethereum
+Lexchange
+ecosyst
+tentio
+reorderin
+nnovWIP: The Design Principle of Blockchain:
+An Initiative for the SoK of SoKs
+23
+Fig. 6. The Word Cloud of Blockchain Projects and Cross-chain Solutions Title
+
+Adaptive
+Privacy
+Technique
+Open
+oken
+backgrouno
+vision
+PlatformNext
+environment
+naln
+Proof
+ordel
+self.
+ameworK
+EvolutionPolkadot
+Solana
+Stellar
+AVAX
+SSecure
+Dash
+OU
+TRON
+Yield oprivate pooisledger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='distrlbuted Legal hemati anonymit Machine smart internet Auction Oracles privacy used light Models Transactionaggregator DAG Metaverse e Research state framework demystifying- a game Randomness e TEE e Repeated Deo cen Sf Su Governance idd Achieving attack automate anal e challenges graduat S Meets stablecoin computing ethereu dishonesty dex bo Legacy auditabilit Watching Con dentia VOTO8 Layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Decentralzed secure maker Beacor S designs Money xperts hai O odefiperspectives Understanding Mitigation MEV systems Bridge market Bitcoin accountabilit .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='qual tatil cryptography solution P2P based two groundcomprehensivetheorytront across ation(oiintermeasires2 Sunshine Zhang CCS Concepts: • Applied computing → Economics;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' • Security and privacy → Distributed systems security;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' • Human-centered computing → Collaborative and social computing systems and tools.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Additional Key Words and Phrases: blockchain, AI ethics, philosophy, economics, computer science 1 INTRODUCTION The past one hundred years have witnessed incredible advancements in Artificial Intelligence (AI) [Littman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=', 2022, Stone et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=', 2022].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' The advancement is integrating cyberspace (CS), phys- ical space (PS), and social space(SS), into the Cyber-Physical-Social System(CPSS), which expands the territories of human civilizations [Wang, 2010] extraordinarily.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' However, AI per se is not enough to establish trust in CPSS [Jacovi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=', 2021, Jan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=', 2020], which is the cornerstone of prosperity in every civilized society.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Blockchain, also coined as decentralized AI, can empower AI to be more trustworthy by creating a decentralized trust of privacy, security, and audit-ability [Adel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=', 2022, Harris and Waggoner, 2019, Hussain and Al-Turjman, 2021].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' However, systematic studies on the design principle of Blockchain as a trust engine for CPSS are still absent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' If we could decipher the phi- losophy of blockchain, we would build the infrastructure of a better digital world.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In this article, we provide an initiative for seeking the design principle of blockchain for the betterment of human civi- lization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Unlike the existing Systemization of Knowledge (SoK) on blockchain focusing on a specific discipline purpose or topic of interest, ours aim to open an intellectual conversation beyond bound- aries for the ultimate goal of a better digital world, namely, the SoK of SoKs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Specifically, we hope to initiate the answers to three questions for the past, the current, and the future of Blockchain design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' (1) the past.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' does Blockchain live up to its original design principles as a distributed database?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' (2) the current.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' how do the current Blockchain literature, industry practices, and global standards address and develop the design principle of Blockchain?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' (3) the future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' what are the gaps between the current design of Blockchain and the design principle of a trust engine for a truly intelligent world?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In Section 2, we examine the performance of blockchain by its original design principle as a distributed database.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' We present the controversial answers in a dialogue style of debates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In Section 3, we analyze the current research and practice of blockchain principles by investigating the current SoKs of emerging blockchain literature, the white papers that provide technique cor- nerstones for Blockchain technology in the real world, and the discussions on global standards for Blockchain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' We identify a taxonomy of blockchain literature into the seven categories of privacy and security, scalability, decentralization, applicability, governance and regulation, system design, and cross-chain interoperability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Integrating the AI of Natural Language Processing (NLP) [Bird et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=', 2009] methods, we find that the current Blockchain design principles, in both research and practice, are more centered around the first category of privacy and security and the fourth category of applicability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Future scholars, practitioners, and policymakers have vast opportunities in the other much less exploit categories and the synthesis at the interface of multiple categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In Section 4, we envision the future of blockchain technology by pointing out the gaps between the current design of blockchain and the design principle of a trust engine for a truly intelligence world.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' By providing counterexamples, we question the possibility of developing a plausible solution of singularity to the gaps without crossing the current boundaries of domain expertise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Sages in both the west and east have been craving an ideal society.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In the Book of Rites, one of the Confucian (551–479 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=') classics [Csikszentmihalyi, 2020], the Great Unity is a Chinese vision of an ideal world in which men of virtue and ability rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In ancient Greek, Plato [Kraut, 2022] (429–347 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=') envisions an ideal city-state ruled by a philosopher-king of justice in the Republic, a Socratic dialogue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' By such a coincidence, both Confucius and Plato place the foundation of an ideal society on cultivating or selecting the men of virtue to be the administrators that people can trust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' WIP: The Design Principle of Blockchain: An Initiative for the SoK of SoKs 3 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' A Conversation Between Sunshine and Chat GPT-3 on 2022/12/30 Nevertheless, the existence of a benevolent ruler might not be guaranteed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In contrast, Blockchain enables a new way of trust creation empowered by computer intelligence beyond human ethics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' However, the current blockchain technology is evidently not a panacea for doubts about human trust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Then why "throw the baby out with the bathwater?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='" Existing mechanisms for cultivating human trust have created economic prosperity and human civilizations for thousands of years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' How can we integrate blockchain technology into existing governance, economics, and ethics mechanisms for an ideal society in the new era of CPSS?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' We initiate an open dialogue of synthetic solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2 THE PAST What is Blockchain originally designed for?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' How does Blockchain live up to the design principle of its original purpose?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Sherman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2019] introduce the origin of blockchain for establishing a distributed database trusted by mutually suspicious groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Bayer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [1993], Haber and Stornetta [1990], Narayanan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2016] further elaborate on the follow-up development of Blockchain technology for a series of desired properties such as decentralization, immutability, transparency, security, and efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Figure 2 shows the answer returned by Generative Pre-trained Transformer (ChatGPT), https://openai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='com/blog/chatgpt/, a chatbot launched by OpenAI in November 2022, to the question "what is the design principle of blockchain?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='" The answer accurately matches elabora- tions in earlier blockchain literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' We now examine the performance of Blockchain on each prin- ciple in a dialogue style of debates in the spirits of Confucius’s the Analects [Ames and Rosemont Jr, What is the design principle of blockchain?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' A blockchain is a decentralized, distributed database that is used to maintain a continuously growing list of records, called blocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Each block contains a timestamp and a link to the previous block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' The design principles of blockchain technology include: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Decentralization: A blockchain is decentralized, meaning it is not controlled by any single entity or organization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Instead, it is maintained by a network of users who validate and record transactions on the blockchain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Immutability: Once data has been recorded on a blockchain, it cannot be altered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' This ensures the integrity and security of the data on the blockchain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Transparency: Transactions on a blockchain are visible to all participants in the network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' This transparency helps to build trust among users and enables the blockchain to function as a transparent and secure record-keeping system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Security: Blockchain technology uses advanced cryptographic techniques to secure the data on the network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Each block contains a cryptographic hash of the previous block, which helps to ensure the integrity and security of the data on the blockchain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Efficiency: By using a decentralized network and eliminating the need for intermediaries, blockchain technology can help to streamline and improve the efficiency of many different types of transactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='4 Sunshine Zhang 2010] and Plato’s the Republic [Plato, 2005].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' We find the answer to be controversial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Moreover, the desired principles might conflict with each other or lead to other undesired consequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Question 1: does Blockchain live up to its promise of decentralization?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='1 Pros.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Yes, Blockchain is decentralized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Compared with centralized ledgers, Blockchain is not subject to single point failure of a centralized entity [Puthal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=', 2018].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Blockchain record and validate data by a consensus protocol involving decentralized entities, which has the fault tolerance of minorities [Zhang and Tian, 2022].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='2 Cons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' No, Blockchain is not decentralized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Sai et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2021] provides a taxonomy of blockchain centralization in 13 aspects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' For example, Sai et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2021] shows that the top four mining pools in Ethereum (Bitcoin) consist of 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='04% (50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='36%) of the hashing power, which are enough to conduct a successful malicious attack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Moreover, Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2022] and the references therein show that the usage of blockchain at the application layer has the trend of conversing to centralization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Question 2: does Blockchain live up to its promise of immutability?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='3 Pros.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Yes, Blockchain is immutable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Narayanan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2016] elaborate on the difficulty of manipulating the recorded data due to the chain structure of Merkle trees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='4 Cons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' No, Blockchain is mutable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Hofmann et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2017] shows that the immutability of blockchain can be breached by various attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Politou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2019] even addresses the conflicts between Blockchain’s immutability and the new European data protection regulation on the Right to be Forgotten (RtbF), according to which individuals have the right to delete their personal data under certain conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Question 3: does Blockchain live up to its promise of transparency?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='5 Pros.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Yes, Blockchain is transparent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [Monrat et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=', 2019] explains that all the transactions on Blockchain are recorded and auditable by each Replica node in the network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='6 Cons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' No, Blockchain is not transparent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Sai et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2021] demonstrates the centralization in node operation, which is required to audit the Blockchain data due to technique barriers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Feng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2019] even point out the transparency of Blockchain as a negative feature, a threat to user privacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Question 4: does Blockchain live up to its promise of security?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='7 Pros.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Yes, Blockchain is secure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2019] address the Blockchain security prop- erty of consistency and integrity achieved by the main techniques of consensus algorithms and hash-chained storage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='8 Cons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' No, Blockchain is not secure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Lin and Liao [2017] evidences a long list of real attacks on Blockchain together with analyzing potential security issues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Budish [2022] even conclude that the mechanism supporting Blockchain security is either vulnerable or not worth the economic cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Question 5: does Blockchain live up to its promise of efficiency?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='9 Pros.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Yes, Blockchain is efficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2019a] analyze how Blockchain improves efficiency in human interactions by automating and streamlining business operations using smart contracts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='10 Cons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' No, Blockchain is not efficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' The current major blockchains can only sustain tens of transactions per second (TPS), not comparable to the centralized platforms, which have a throughput of thousands of TPS [Chauhan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=', 2018].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' WIP: The Design Principle of Blockchain: An Initiative for the SoK of SoKs 5 3 THE CURRENT How do the current Blockchain literature, industry practices, and global standards address and develop the design principle of Blockchain?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' We collect all the Systemization of Knowledge (SoK) papers related to facets of Blockchain or surveys and review articles that satisfy the defining features of SoKs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' We refer the readers to the JSys website, https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='jsys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='org/type_SoK/, for background information on SoKs and the Oakland conference GitHub site, https://oaklandsok.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='io/, for the histories of SoK in computer security and privacy literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' We present a taxonomy of the collected SoKs in Table 1 and Table 2 into seven categories based on the topic of research questions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Category 1: Privacy and Security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' We include literature that answers questions about private information protection and attacks on Blockchain systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' We refer the readers to DeCew [2018] for the philosophical symposium on privacy and Bishop [2003] for the computer science insights on security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Category 2: Scalability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' We include literature that answers questions related to the scalable deployment of Blockchain usually measured in throughput and quality of service.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' We refer the readers to Jogalekar and Woodside [2000] for the definition and measurement of scalability in the distributed system literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Category 3: Decentralization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' We include the literature that answers questions related to the designed and realized decentralization of Blockchain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' We refer the readers to Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2022] for an interdisciplinary synthesis for a taxonomy of Blockchain decentralization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Category 4: Applicability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' We include literature that answers questions related to the applica- tion of Blockchain to solve social and economic issues in various human interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Table 2 shows that the major applications are in financial services [Chen and Bellavitis, 2020, Harvey et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=', 2021, Zetzsche et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=', 2020].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Category 5: Governance and Regulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' We include literature that answers questions related to utilizing Blockchain as a new way of governance, the process of interaction of an organized society, and its interactions with existing governance solutions, including corporate, govern- ment, and Non-Government Organizations (NGOs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' We refer the readers to [Bevir, 2012] for a review of existing governance solutions, including various forms of social coordination and patterns of rules Category 6: System design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' We include literature that answers questions related to designing Blockchain as an advancement of existing computer systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' We refer the readers to Saltzer and Kaashoek [2009] for the design principles of computer systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Category 7: Cross-chain and Interoperability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' We include literature that answers questions related to communication, cooperation, and integration among Blockchain systems, other computer systems, and human societies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' We refer the readers to Wegner [1996] and Leal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2019] for the importance and assessment of interoperability among information systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Table 6 lists the top 28 blockchain projects, excluding applications on the Blockchain and cross- chain solutions ranked by the market value of its native currency retried from Coinmarketcap, https://coinmarketcap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='com/, on Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 27, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' We further collect the white papers that provide the technical foundations for the 28 projects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' We then conduct a text analysis applying natural language processing (NLP) methods to produce the word cloud and bigram networks of the titles and abstracts of the SoKs and white papers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' The results are presented in Table 4, Table 5, Table 7, Table 8, Table 9, Figure 1, Figure 8, Figure 3, Figure 7, Figure 6, Figure 4, Figure 5, Figure 9, Figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' The word cloud distinguish the word frequency in these documents in font size and the bigram represents the co-appearance of two words in sequential order ranking by counts in the tables and in the network figures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' We also further research the emerging documents of blockchain standard development and papers discussing blockchain standards by working groups and institutions globally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 6 Sunshine Zhang Data and Code Availability: We open source the data and code for replication and future research on the Github: https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='com/sunshineluyao/design-principle-blockchain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' we find that the current Blockchain design principles, in both research and practice, are more centered around the first category of privacy and security and the fourth category of applicability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Future scholars, practitioners, and policymakers have vast opportunities in the other much less exploit categories and the synthesis at the interface of multiple categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 4 THE FUTURE What are the gaps between the current design of Blockchain and the design principle of a trust engine for a truly intelligent world?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In this section, we are not intended for a comprehensive answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Instead, we question the possibility of developing a plausible solution of singularity to the gaps without crossing the current boundaries of domain expertise by providing counterexamples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Case Study 1: How to elaborate on the design principle of privacy and security for a better society?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' The scientific community of distributed systems and cryptography made great milestones in Blockchain development by achieving the anonymity of private information and the audibility of public transactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' However, privacy and security are only the means but not necessarily the ends for a better society of human prosperity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Historically, Critiques [DeCew, 2018] addresses privacy as the source of criminal activities, economic inefficiency, and the abuse of minorities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Cong et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2022b] identify that wash trading count for around 70% of total cryptocurrency trading volumes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Cong et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2022a] further provides a taxonomy of crimes enabled by the anonymity feature on Blockchain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Abundant literature in behavioral science [Dawson, 2018] establishes the connection between anonymity and abusive behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' However, none of those negative effects on human behavior are considered in the original design principles of Blockchain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' How can we redesign pri- vacy and security to cultivate human cooperation better and minimize abusive behavior?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Behavior scientists have the expertise to contribute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Case Study 2: How to elaborate on the design principle of decentralization for a better society?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Most top-ranked Blockchain projects aim to create a permissionless system that is more inclu- sive, democratic, and decentralized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' However, what is required to satisfy the permission for the permissionless Blockchains?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' You must have access to the internet, afford the computer system requirements to run a Replica node, and master engineering skills to participate in the network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Unfortunately, according to World in Data, https://ourworldindata.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='org/internet, in most parts of our world, less than half of the population have access to the internet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Let alone the higher requirements of computer system and engineering skills.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Moreover, Ao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2022] and the references therein evidence most of the crypto transactions are executed via centralized exchanges but not in the decentralized form of on-chain peer-to-peer transactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Cong et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2022c] further addresses the inclusion issues of the current Web 3 economy due to technology barriers and lack of inclusion consideration in the original design principle of Blockchain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' The famous Irish playwright Bernard Shaw says: "Revolutions have never lightened the burden of tyranny.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' They have only shifted it to another shoulder" [Tiliouine and Estes, 2016].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' To direct Blockchain development to avoid the fate stated by Bernard Shaw and serve a more decentralized society of the people, by the people, for the people, anthropologists, social scientists, and economists are able to contribute to designing a society of democracy, diversity, and inclusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' WIP: The Design Principle of Blockchain: An Initiative for the SoK of SoKs 7 Case Study 3: How to elaborate on the design principle of efficiency for a better society?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' The current solutions for efficiency or scalability on Blockchain focus on improving transaction throughput and automating business processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' However, the pursuit of efficiency in an isolated system of short-sighted consideration might lead to inefficiency for the society as a whole for long- term sustainability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' For example, the current scalability solutions generally consider the Blockchain system only in isolation but ignore the negative externality of the high-energy consumption design to the outside world [Truby, 2018].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Moreover, Grimmelmann [2019] points out that although smart contracts automate business processes, the current design ignores the ambiguity in the semantics of the programming language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Thus, a temporary convenience of the smart contract operation might lead to costly disputes in unforeseen scenarios when developers and users disagree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Policy-makers and lawyers can contribute to reconsidering the Blockchain design to improve the efficiency of negotiations among different stakeholders and our society as a whole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' A Call for Collaboration Kranzberg [1986] states in his 1985 address as president of the Society for the History of Technology (SHOT): "Technology is neither good nor bad, nor is it neutral.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='" Blockchain is a powerful technology that brings lots of new possibilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' How can we redesign blockchain for a truly intelligent world?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' We call for a joint endeavor from all disciplines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' REFERENCES Yousif Abuidris, Rajesh Kumar, and Wang Wenyong.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' A survey of blockchain based on e-voting systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In Proceedings of the 2019 2nd International Conference on Blockchain Technology and Applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 99–104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Kareem Adel, Ahmed Elhakeem, and Mohamed Marzouk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Decentralizing construction AI applications using blockchain technology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Expert Systems with Applications 194 (2022), 116548.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Anwaar Ali, Mohamed Rahouti, Siddique Latif, Salil Kanhere, Jatinder Singh, Umar Janjua, Adnan Noor Mian, Junaid Qadir, Jon Crowcroft, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Blockchain and the future of the internet: A comprehensive review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' arXiv preprint arXiv:1904.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='00733 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Ghada Almashaqbeh and Ravital Solomon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' SoK: privacy-preserving computing in the blockchain era.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In 2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' IEEE, 124–139.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Nasser Alsalami and Bingsheng Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' SoK: A systematic study of anonymity in cryptocurrencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In 2019 IEEE Conference on Dependable and Secure Computing (DSC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' IEEE, 1–9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Roger T Ames and Henry Rosemont Jr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' The analects of Confucius: A philosophical translation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Ballantine books.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Ralph Ankele, Kai Nahrgang, Branka Stojanovic, and Atta Badii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' SoK: Cyber-Attack Taxonomy of Distributed Ledger-and Legacy Systems-based Financial Infrastructures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Cryptology ePrint Archive (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Ziqiao Ao, Gergely Horvath, and Luyao Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Are decentralized finance really decentralized?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' A social network analysis of the Aave protocol on the Ethereum blockchain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' arXiv preprint arXiv:2206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='08401 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' A survey of attacks on ethereum smart contracts (sok).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In International conference on principles of security and trust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Springer, 164–186.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Sarah Azouvi and Alexander Hicks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Sok: Tools for game theoretic models of security for cryptocurrencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' arXiv preprint arXiv:1905.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='08595 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch Lafuente.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' SoK: lending pools in decentralized finance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In International Conference on Financial Cryptography and Data Security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Springer, 553–578.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Carsten Baum, James Hsin-yu Chiang, Bernardo David, Tore Kasper Frederiksen, and Lorenzo Gentile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Sok: Mitigation of front-running in decentralized finance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Cryptology ePrint Archive (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Dave Bayer, Stuart Haber, and W Scott Stornetta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Improving the efficiency and reliability of digital time-stamping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In Sequences Ii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Springer, 329–334.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Badr Bellaj, Aafaf Ouaddah, Emmanuel Bertin, Noel Crespi, and Abdellatif Mezrioui.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' SOK: a comprehensive survey on distributed ledger technologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In ICBC 2022: IEEE International Conference on Blockchain and Cryptocurrency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' IEEE, 1–16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Mark Bevir.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Governance: A very short introduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' OUP Oxford.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Steven Bird, Ewan Klein, and Edward Loper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Natural language processing with Python: analyzing text with the natural language toolkit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' " O’Reilly Media, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='".' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Matt Bishop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' What is computer security?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' IEEE Security & Privacy 1, 1 (2003), 67–69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 8 Sunshine Zhang Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A Kroll, and Edward W Felten.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Sok: Research perspectives and challenges for bitcoin and cryptocurrencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In 2015 IEEE symposium on security and privacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' IEEE, 104–121.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Silvia Bonomi, Antonella Del Pozzo, Álvaro García-Pérez, and Sara Tucci-Piergiovanni.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' SoK: Achieving State Machine Replication in Blockchains based on Repeated Consensus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' arXiv preprint arXiv:2105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='13732 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Eric B Budish.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' The economic limits of Bitcoin and anonymous, decentralized trust on the blockchain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' University of Chicago, Becker Friedman Institute for Economics Working Paper 83 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Fran Casino, Claudia Pina, Pablo López-Aguilar, Edgar Batista, Agusti Solanas, and Constantinos Patsakis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' SoK: Cross-border Criminal Investigations and Digital Evidence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' arXiv preprint arXiv:2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='12911 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Panagiotis Chatzigiannis, Foteini Baldimtsi, and Konstantinos Chalkias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' SoK: auditability and accountability in dis- tributed payment systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In International Conference on Applied Cryptography and Network Security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Springer, 311–337.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Panagiotis Chatzigiannis, Foteini Baldimtsi, and Konstantinos Chalkias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Sok: Blockchain light clients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In International Conference on Financial Cryptography and Data Security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Springer, 615–641.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Anamika Chauhan, Om Prakash Malviya, Madhav Verma, and Tejinder Singh Mor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Blockchain and scalability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In 2018 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' IEEE, 122–128.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Huashan Chen, Marcus Pendleton, Laurent Njilla, and Shouhuai Xu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' A survey on ethereum systems security: Vulnerabilities, attacks, and defenses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' ACM Computing Surveys (CSUR) 53, 3 (2020), 1–43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Yan Chen and Cristiano Bellavitis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Blockchain disruption and decentralized finance: The rise of decentralized business models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Journal of Business Venturing Insights 13 (2020), e00151.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Jeremy Clark, Didem Demirag, and Mahsa Moosavi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' SoK: demystifying stablecoins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Communications of the ACM, Forthcoming (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Lin William Cong, Campbell R Harvey, Daniel Rabetti, and Zong-Yu Wu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2022a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' An anatomy of crypto-enabled cybercrimes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Available at SSRN 4188661 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Lin William Cong, Xi Li, Ke Tang, and Yang Yang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2022b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Crypto wash trading.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Technical Report.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' National Bureau of Economic Research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Lin William Cong, Ke Tang, Yanxin Wang, and Xi Zhao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2022c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Inclusion and democratization through web3 and defi?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' initial evidence from the ethereum ecosystem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Initial Evidence from the Ethereum Ecosystem (July 29, 2022) (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Simon Cousaert, Jiahua Xu, and Toshiko Matsui.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Sok: Yield aggregators in defi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In 2022 IEEE International Conference on Blockchain and Cryptocurrency (ICBC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' IEEE, 1–14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Mark Csikszentmihalyi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Confucius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In The Stanford Encyclopedia of Philosophy (Summer 2020 ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' ), Edward N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Zalta (Ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Metaphysics Research Lab, Stanford University.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Thomas K Dasaklis, Fran Casino, and Constantinos Patsakis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Sok: Blockchain solutions for forensics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In Technology Development for Security Practitioners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Springer, 21–40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Joe Dawson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Who is that?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' The study of anonymity and behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' APS Observer 31 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Judith DeCew.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Privacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In The Stanford Encyclopedia of Philosophy (Spring 2018 ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' ), Edward N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Zalta (Ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Metaphysics Research Lab, Stanford University.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Dominic Deuber, Viktoria Ronge, and Christian Rückert.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' SoK: Assumptions Underlying Cryptocurrency Deanonymizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Proceedings on Privacy Enhancing Technologies 3 (2022), 670–691.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Monika Di Angelo, Christian Sack, and Gernot Salzer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' SoK: Development of secure smart contracts–lessons from a graduate course.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In International Conference on Financial Cryptography and Data Security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Springer, 91–105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Maya Dotan, Yvonne-Anne Pignolet, Stefan Schmid, Saar Tochner, and Aviv Zohar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' SOK: cryptocurrency networking context, state-of-the-art, challenges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In Proceedings of the 15th International Conference on Availability, Reliability and Security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 1–13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy Clark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Sok: Transparent dishonesty: front-running attacks on blockchain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In International Conference on Financial Cryptography and Data Security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Springer, 170–189.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Shayan Eskandari, Mehdi Salehi, Wanyun Catherine Gu, and Jeremy Clark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Sok: Oracles from the ground truth to market manipulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In Proceedings of the 3rd ACM Conference on Advances in Financial Technologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 127–141.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Qi Feng, Debiao He, Sherali Zeadally, Muhammad Khurram Khan, and Neeraj Kumar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' A survey on privacy protection in blockchain system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Journal of Network and Computer Applications 126 (2019), 45–58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Federico Franzoni and Vanesa Daza.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' SoK: Network-Level Attacks on the Bitcoin P2P Network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' IEEE Access 10 (2022), 94924–94962.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Thippa Reddy Gadekallu, Thien Huynh-The, Weizheng Wang, Gokul Yenduri, Pasika Ranaweera, Quoc-Viet Pham, Daniel Benevides da Costa, and Madhusanka Liyanage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Blockchain for the Metaverse: A Review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' arXiv preprint arXiv:2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='09738 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' QingQiu Gan, Raymond Yiu Keung Lau, and Jin Hong.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' A critical review of blockchain applications to banking and finance: a qualitative thematic analysis approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Technology Analysis & Strategic Management (2021), 1–17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' WIP: The Design Principle of Blockchain: An Initiative for the SoK of SoKs 9 Juan Garay and Aggelos Kiayias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Sok: A consensus taxonomy in the blockchain era.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In Cryptographers’ track at the RSA conference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Springer, 284–318.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Simin Ghesmati, Walid Fdhila, and Edgar Weippl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' SoK: How private is Bitcoin?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Classification and Evaluation of Bitcoin Mixing Techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Cryptology ePrint Archive (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' James Grimmelmann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' All smart contracts are ambiguous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' JL & Innovation 2 (2019), 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Lewis Gudgeon, Pedro Moreno-Sanchez, Stefanie Roos, Patrick McCorry, and Arthur Gervais.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Sok: Layer-two blockchain protocols.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In International Conference on Financial Cryptography and Data Security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Springer, 201–226.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Stuart Haber and W Scott Stornetta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 1990.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' How to time-stamp a digital document.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In Conference on the Theory and Application of Cryptography.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Springer, 437–455.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Justin D Harris and Bo Waggoner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Decentralized and collaborative AI on blockchain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In 2019 IEEE international conference on blockchain (Blockchain).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' IEEE, 368–375.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Campbell R Harvey, Ashwin Ramachandran, and Joey Santoro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' DeFi and the Future of Finance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' John Wiley & Sons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Lioba Heimbach and Roger Wattenhofer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' SoK: Preventing Transaction Reordering Manipulations in Decentralized Finance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' arXiv preprint arXiv:2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='11520 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Frank Hofmann, Simone Wurster, Eyal Ron, and Moritz Böhmecke-Schwafert.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' The immutability concept of blockchains and benefits of early standardization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In 2017 ITU Kaleidoscope: Challenges for a Data-Driven Society (ITU K).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' IEEE, 1–8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Adedoyin A Hussain and Fadi Al-Turjman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Artificial intelligence and blockchain: A review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Transactions on emerging telecommunications technologies 32, 9 (2021), e4268.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Md Rafiqul Islam, Muhammad Mahbubur Rahman, Md Mahmud, Mohammed Ataur Rahman, Muslim Har Sani Mohamad, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' A Review on Blockchain Security Issues and Challenges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In 2021 IEEE 12th Control and System Graduate Research Colloquium (ICSGRC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' IEEE, 227–232.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Alon Jacovi, Ana Marasović, Tim Miller, and Yoav Goldberg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Formalizing trust in artificial intelligence: Prerequisites, causes and goals of human trust in ai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In Proceedings of the 2021 ACM conference on fairness, accountability, and transparency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 624–635.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Steve TK Jan, Vatche Ishakian, and Vinod Muthusamy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' AI trust in business processes: the need for process-aware explanations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In Proceedings of the AAAI Conference on Artificial Intelligence, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 13403–13404.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Prasad Jogalekar and Murray Woodside.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Evaluating the scalability of distributed systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' IEEE Transactions on parallel and distributed systems 11, 6 (2000), 589–603.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Maxim Jourenko, Kanta Kurazumi, Mario Larangeira, and Keisuke Tanaka.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' SoK: A taxonomy for layer-2 scalability related protocols for cryptocurrencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Cryptology ePrint Archive (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Aljosha Judmayer, Nicholas Stifter, Alexei Zamyatin, Itay Tsabary, Ittay Eyal, Peter Gaži, Sarah Meiklejohn, and Edgar Weippl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Sok: Algorithmic incentive manipulation attacks on permissionless pow cryptocurrencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In International Conference on Financial Cryptography and Data Security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Springer, 507–532.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Dimitris Karakostas, Aggelos Kiayias, and Christina Ovezik.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' SoK: A Stratified Approach to Blockchain Decentralization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' arXiv preprint arXiv:2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='01291 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Kostis Karantias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Sok: A taxonomy of cryptocurrency wallets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Cryptology ePrint Archive (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Aggelos Kiayias and Philip Lazos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' SoK: Blockchain Governance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' arXiv preprint arXiv:2201.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='07188 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Kartick Kolachala, Ecem Simsek, Mohammed Ababneh, and Roopa Vishwanathan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' SoK: Money Laundering in Cryptocurrencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In The 16th International Conference on Availability, Reliability and Security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 1–10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' M Kranzberg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 1986.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Technology and History: Kranzberg’s Laws, Technology and Culture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' (1986).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Richard Kraut.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Plato.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In The Stanford Encyclopedia of Philosophy (Spring 2022 ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' ), Edward N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Zalta (Ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Metaphysics Research Lab, Stanford University.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Stefano Lande and Roberto Zunino.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' SoK: unraveling Bitcoin smart contracts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Principles of Security and Trust LNCS 10804 (2018), 217.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Gabriel da Silva Serapião Leal, Wided Guédria, and Hervé Panetto.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Interoperability assessment: A systematic literature review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Computers in Industry 106 (2019), 111–132.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Sung-Shine Lee, Alexandr Murashkin, Martin Derka, and Jan Gorzny.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' SoK: Not Quite Water Under the Bridge: Review of Cross-Chain Bridge Hacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' arXiv preprint arXiv:2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='16209 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Rujia Li, Qin Wang, Qi Wang, David Galindo, and Mark Ryan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' SoK: TEE-assisted Confidential Smart Contract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' arXiv preprint arXiv:2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='08548 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Xiaoqi Li, Peng Jiang, Ting Chen, Xiapu Luo, and Qiaoyan Wen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' A survey on the security of blockchain systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Future Generation Computer Systems 107 (2020), 841–853.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Iuon-Chang Lin and Tzu-Chun Liao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' A survey of blockchain security issues and challenges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Netw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Secur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 19, 5 (2017), 653–659.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Michael L Littman, Ifeoma Ajunwa, Guy Berger, Craig Boutilier, Morgan Currie, Finale Doshi-Velez, Gillian Hadfield, Michael C Horowitz, Charles Isbell, Hiroaki Kitano, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Gathering strength, gathering storms: The one hundred year study on artificial intelligence (AI100) 2021 study panel report.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' arXiv preprint arXiv:2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='15767 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 10 Sunshine Zhang Patrick McCorry, Chris Buckland, Bennet Yee, and Dawn Song.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Sok: Validating bridges as a scaling solution for blockchains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Cryptology ePrint Archive (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Amani Moin, Kevin Sekniqi, and Emin Gun Sirer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' SoK: A classification framework for stablecoin designs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In International Conference on Financial Cryptography and Data Security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Springer, 174–197.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Ahmed Afif Monrat, Olov Schelén, and Karl Andersson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' A survey of blockchain from the perspectives of applications, challenges, and opportunities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' IEEE Access 7 (2019), 117134–117151.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, and Steven Goldfeder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Bitcoin and cryptocurrency technologies: a comprehensive introduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Princeton University Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' c Plato.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' From the republic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In Readings in the economics of the division of labor: The classical tradition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' World Scientific, 43–49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Eugenia Politou, Fran Casino, Efthimios Alepis, and Constantinos Patsakis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Blockchain mutability: Challenges and proposed solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' IEEE Transactions on Emerging Topics in Computing 9, 4 (2019), 1972–1986.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Deepak Puthal, Nisha Malik, Saraju P Mohanty, Elias Kougianos, and Chi Yang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' The blockchain as a decentralized security framework [future directions].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' IEEE Consumer Electronics Magazine 7, 2 (2018), 18–21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Mayank Raikwar and Danilo Gligoroski.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' SoK: Decentralized Randomness Beacon Protocols.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' arXiv preprint arXiv:2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='13333 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Mayank Raikwar, Danilo Gligoroski, and Katina Kralevska.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' SoK of used cryptography in blockchain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' IEEE Access 7 (2019), 148550–148575.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Roy Rinberg and Nilaksh Agarwal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Privacy when Everyone is Watching: An SOK on Anonymity on the Blockchain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Cryptology ePrint Archive (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Ashish Rajendra Sai, Jim Buckley, Brian Fitzgerald, and Andrew Le Gear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Taxonomy of centralization in public blockchain systems: A systematic literature review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Information Processing & Management 58, 4 (2021), 102584.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Jerome Saltzer and M Frans Kaashoek.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Principles of computer system design: an introduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Morgan Kaufmann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Alan T Sherman, Farid Javani, Haibin Zhang, and Enis Golaszewski.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' On the origins and variations of blockchain technologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' IEEE Security & Privacy 17, 1 (2019), 72–77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Zeshun Shi, Cees de Laat, Paola Grosso, and Zhiming Zhao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' When Blockchain Meets Auction Models: A Survey, Some Applications, and Challenges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' arXiv preprint arXiv:2110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='12534 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Peter Stone, Rodney Brooks, Erik Brynjolfsson, Ryan Calo, Oren Etzioni, Greg Hager, Julia Hirschberg, Shivaram Kalyanakrishnan, Ece Kamar, Sarit Kraus, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Artificial intelligence and life in 2030: the one hundred year study on artificial intelligence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' arXiv preprint arXiv:2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='06318 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Ege Tekiner, Abbas Acar, A Selcuk Uluagac, Engin Kirda, and Ali Aydin Selcuk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' SoK: cryptojacking malware.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In 2021 IEEE European Symposium on Security and Privacy (EuroS&P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' IEEE, 120–139.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Habib Tiliouine and Richard J Estes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' The state of social progress of Islamic societies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Op.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' cit 222 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Jon Truby.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Decarbonizing Bitcoin: Law and policy choices for reducing the energy consumption of Blockchain technologies and digital currencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Energy research & social science 44 (2018), 399–410.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Fei-Yue Wang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' The emergence of intelligent enterprises: From CPS to CPSS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' IEEE Intelligent Systems 25, 4 (2010), 85–88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Gang Wang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' SoK: Understanding BFT Consensus in the Age of Blockchains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Cryptology ePrint Archive (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Gang Wang, Zhijie Jerry Shi, Mark Nixon, and Song Han.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2019b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Sok: Sharding on blockchain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In Proceedings of the 1st ACM Conference on Advances in Financial Technologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 41–61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Qin Wang, Jiangshan Yu, Shiping Chen, and Yang Xiang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' SoK: Diving into DAG-based blockchain systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' arXiv preprint arXiv:2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='06128 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Shuai Wang, Liwei Ouyang, Yong Yuan, Xiaochun Ni, Xuan Han, and Fei-Yue Wang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2019a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Blockchain-enabled smart contracts: architecture, applications, and future trends.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' IEEE Transactions on Systems, Man, and Cybernetics: Systems 49, 11 (2019), 2266–2277.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Peter Wegner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 1996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Interoperability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' ACM Computing Surveys (CSUR) 28, 1 (1996), 285–287.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Sam M Werner, Daniel Perez, Lewis Gudgeon, Ariah Klages-Mundt, Dominik Harz, and William J Knottenbelt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Sok: Decentralized finance (defi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' arXiv preprint arXiv:2101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='08778 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Jiahua Xu, Krzysztof Paruch, Simon Cousaert, and Yebo Feng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Sok: Decentralized exchanges (dex) with automated market maker (AMM) protocols.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' arXiv preprint arXiv:2103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='12732 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Sen Yang, Fan Zhang, Ken Huang, Xi Chen, Youwei Yang, and Feng Zhu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' SoK: MEV Countermeasures: Theory and Practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' arXiv preprint arXiv:2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='05111 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Jingfan Yu, Mengqian Zhang, Xi Chen, and Zhixuan Fang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' SoK: Play-to-Earn Projects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' arXiv preprint arXiv:2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='01000 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Alexei Zamyatin, Mustafa Al-Bassam, Dionysis Zindros, Eleftherios Kokoris-Kogias, Pedro Moreno-Sanchez, Aggelos Kiayias, and William J Knottenbelt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Sok: Communication across distributed ledgers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' In International Conference on Financial Cryptography and Data Security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Springer, 3–36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' WIP: The Design Principle of Blockchain: An Initiative for the SoK of SoKs 11 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' The Word Cloud of Blockchain Related SoK Title Dirk A Zetzsche, Douglas W Arner, and Ross P Buckley.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Decentralized finance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Journal of Financial Regulation 6, 2 (2020), 172–203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Luyao Zhang, Xinshi Ma, and Yulin Liu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' SoK: Blockchain Decentralization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' arXiv preprint arXiv:2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='04256 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Luyao Zhang and Xinyu Tian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' On Blockchain We Cooperate: An Evolutionary Game Perspective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' arXiv preprint arXiv:2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='05357 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Rui Zhang, Rui Xue, and Ling Liu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Security and privacy on blockchain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' ACM Computing Surveys (CSUR) 52, 3 (2019), 1–34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Liyi Zhou, Xihan Xiong, Jens Ernstberger, Stefanos Chaliasos, Zhipeng Wang, Ye Wang, Kaihua Qin, Roger Wattenhofer, Dawn Song, and Arthur Gervais.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' SoK: Decentralized Finance (DeFi) Incidents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' arXiv preprint arXiv:2208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='13035 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Qiheng Zhou, Huawei Huang, Zibin Zheng, and Jing Bian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Solutions to scalability of blockchain: A survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Ieee Access 8 (2020), 16440–16455.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' explorecomprehensive block lmplementation Since proposedchain issue o-otoco analyze gyears KnowledgeDeFi contract e nodes technologies order incentive analvsis a1m payment known Ethereum trusted methoo without existing applied problem light user area taxonomyi various literature recent component service second Internet conduct ULe 0 e gap O( often peer e well best o 0 space help platform lication rateg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' feature mechanism two open app based ket data anonymity towards cryptocurrencies privacy several ingeconomic benet1 016 trust U paperresearch survey irst finance e metaverse used client distributedecäsystem performanc d study echnica.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' major auction highlightasset technique transparency numerous Bitcoin systematization Sok design lalue DRB Vield related provlde risk system bridge enable = find inatlv stechno.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='ogy Community worlo scalability-among framework: attac interest different propertiescurrent concept financia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' assumptions exchange approache12 Sunshine Zhang Citation Title Category 1: Privacy and Security Almashaqbeh and Solomon [2022] SoK: privacy-preserving computing in the blockchain era Bonneau et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2015] SoK: Research Perspectives and Challenges for Bitcoin and Cryptocurrencies Wang [2021] SoK: Understanding BFT Consensus in the Age of Blockchains Eskandari et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2020] Sok: Transparent dishonesty: front-running attacks on blockchain Baum et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2021] Sok: Mitigation of front-running in decentralized finance Raikwar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2019] SoK of used cryptography in blockchain Heimbach and Wattenhofer [2022] SoK: Preventing Transaction Reordering Manipulations in Decentralized Finance Zhou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2022] SoK: Decentralized Finance (DeFi) Incidents Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2022] SoK: TEE-assisted Confidential Smart Contract Ankele et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2020] SoK: Cyber-Attack Taxonomy of Distributed Ledger-and Legacy Systems-based Financial Infrastructures Yang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2022] SoK: MEV Countermeasures: Theory and Practice Azouvi and Hicks [2019] Sok: Tools for game theoretic models of security for cryptocurrencies Atzei et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2017] A survey of attacks on ethereum smart contracts (sok) Judmayer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2021] Sok: Algorithmic incentive manipulation attacks on permissionless pow cryptocurrencies Di Angelo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2020] SoK: Development of secure smart contracts–lessons from a graduate course Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2020] A survey on ethereum systems security: Vulnerabilities, attacks, and defenses Islam et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2021] A Review on Blockchain Security Issues and Challenges Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2020] A survey on the security of blockchain systems Garay and Kiayias [2020] Sok: A consensus taxonomy in the blockchain era Tekiner et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2021] SoK: cryptojacking malware Alsalami and Zhang [2019] SoK: A systematic study of anonymity in cryptocurrencies Deuber et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2022] SoK: Assumptions Underlying Cryptocurrency Deanonymizations Rinberg and Agarwal [2022] Privacy when Everyone is Watching: An SOK on Anonymity on the Blockchain Bonomi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2021] SoK: Achieving State Machine Replication in Blockchains based on Repeated Consensus Ghesmati et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2021] SoK: How private is Bitcoin?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' Classification and Evaluation of Bitcoin Mixing Techniques Franzoni and Daza [2022] SoK: Network-Level Attacks on the Bitcoin P2P Network Category 2: Scalability Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2019b] SoK: Sharding on Blockchain Gudgeon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2020] SoK: Layer-Two Blockchain Protocols McCorry et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2021] Sok: Validating bridges as a scaling solution for blockchains Chatzigiannis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2022] Sok: Blockchain light clients Zhou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2020] Solutions to scalability of blockchain: A survey Category 3: Decentralization Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2022] SoK: Blockchain Decentralization Karakostas et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2022] SoK: A Stratified Approach to Blockchain Decentralization Raikwar and Gligoroski [2022] SoK: Decentralized Randomness Beacon Protocols Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' A Taxonomy of SoKs WIP: The Design Principle of Blockchain: An Initiative for the SoK of SoKs 13 Citation Title Category 4: Applicability Gudgeon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2020] SoK: Layer-Two Blockchain Protocols Bartoletti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2021] SoK: lending pools in decentralized finance Werner et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2021] SoK: Decentralized Finance (DeFi) Xu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2021] SoK: Decentralized Exchanges (DEX) with Automated Market Maker (AMM) Protocols Shi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2021] When Blockchain Meets Auction Models: A Survey, Some Applications, and Challenges Abuidris et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2019] A survey of blockchain-based on e-voting systems Gadekallu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2022] Blockchain for the Metaverse: A Review Ali et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2019] Blockchain and the future of the internet: A comprehensive review Cousaert et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2022] Sok: Yield aggregators in defi Yu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2022] SoK: Play-to-Earn Projects Dotan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2020] SOK: cryptocurrency networking context, state-of-the-art, challenges Moin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2020] SoK: A classification framework for stablecoin designs Gan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2021] A critical review of blockchain applications to banking and finance: a qualitative thematic analysis approach Dasaklis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2021] Sok: Blockchain solutions for forensics Wang [2021] SoK: tokenization on blockchain Karantias [2020] Sok: A taxonomy of cryptocurrency wallets Clark et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2019] SoK: demystifying stablecoins Jourenko et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2019] SoK: A taxonomy for layer-2 scalability related protocols for cryptocurrencies Lande and Zunino [2018] SoK: unraveling Bitcoin smart contracts Moin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2020] SoK: A Classification Framework for Stablecoin Designs Category 5: Governance and Regulations Kiayias and Lazos [2022] SoK: Blockchain Governance Chatzigiannis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2021] SoK: Auditability and Accountability in Distributed Payment Systems Kolachala et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2021] SoK: Money Laundering in Cryptocurrencies Casino et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2022] SoK: Cross-border Criminal Investigations and Digital Evidence Deuber et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2022] SoK: Assumptions Underlying Cryptocurrency Deanonymizations –A Taxonomy for Scientific Experts and Legal Practitioners Category 6: System Design Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2020] SoK: Diving into DAG-based blockchain systems Bellaj et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2022] SOK: a comprehensive survey on distributed ledger technologies Category 7: Cross-chain and Interoperability Zamyatin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2021] Sok: Communication across distributed ledgers Wang [2021] Sok: Exploring blockchains interoperability Eskandari et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2021] Sok: Oracles from the ground truth to market manipulation Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' [2022] SoK: Not Quite Water Under the Bridge: Review of Cross-Chain Bridge Hacks Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' The List of SoKs (continued) 14 Sunshine Zhang Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' The Bigram of Blockchain Related SoK Titles (Top 10) bigram counts (decentralized,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' finance) 5 (smart,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' contract) 3 (blockchain,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' system) 2 (framework,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' stablecoin) 2 (classification,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' framework) 2 (distributed,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' ledger) 2 (stablecoin,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' design) 2 (blockchain,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' decentralization) 2 (finance,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' defi) 2 (finance,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' decentralized) 2 (blockchain,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' era) 2 (dag-based,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' blockchain) 1 (pool,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' decentralized) 1 (lending,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' pool) 1 (ledger,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' lending) 1 (across,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' distributed) 1 (communication,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' across) 1 (contract,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' communication) 1 (confidential,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' smart) 1 (tee-assisted,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' confidential) 1 (system,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' tee-assisted) 1 (blockchains,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' blockchain) 1 (diving,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' dag-based) 1 (client,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' diving) 1 (light,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' client) 1 WIP: The Design Principle of Blockchain: An Initiative for the SoK of SoKs 15 Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' The Bigram of Blockchain Related SoK Abstracts (Top 1-45) bigram counts (smart,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' contract) 25 (blockchain,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' technology) 24 (blockchain,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' system) 14 (systematization,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' knowledge) 12 (future,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' research) 12 (decentralized,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' finance) 11 (research,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' direction) 9 (lending,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' pool) 8 (consensus,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' protocol) 7 (finance,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' defi) 7 (security,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' privacy) 6 (recent,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' year) 6 (market,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' maker) 6 (automated,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' market) 6 (blockchain,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' metaverse) 6 (layer-two,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' protocol) 6 (machine,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' replication) 6 (state,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' machine) 6 (cryptographic,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' concept) 6 (open,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' research) 5 (digital,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' forensics) 5 (application,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' blockchain) 5 (maker,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' amm) 5 (yield,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' farming) 5 (research,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' challenge) 5 (blockchain,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' ecosystem) 5 (distributed,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' system) 5 (best,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' knowledge) 5 (blockchain,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' security) 4 (repeated,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' consensus) 4 (finance,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' sector) 4 (banking,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' finance) 4 (transfer,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' asset) 4 (privacy,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' issue) 4 (future,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' direction) 4 (decentralized,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' application) 4 (cross-chain,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' communication) 4 (protocol,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' along) 4 (off-chain,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' transaction) 4 (financial,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' system) 4 (distributed,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' ledger) 4 (provide,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' systematization) 4 (payment,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' system) 4 (systematic,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' comprehensive) 4 (body,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' research) 4 16 Sunshine Zhang Table 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' The Bigram of Blockchain Related SoK Abstracts Continued (Top 46-90) bigram counts (bft,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' consensus) 4 (built,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' top) 3 (solution,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' finally) 3 (light,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' client) 3 (third,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' party) 3 (security,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' guarantee) 3 (finally,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' discus) 3 (work,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' blockchain) 3 (general,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' design) 3 (first,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' present) 3 (system,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' security) 3 (layer-two,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' solution) 3 (state,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' channel) 3 (existing,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' protocol) 3 (auction,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' model) 3 (integral,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' part) 3 (decentralized,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' exchange) 3 (exchange,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' dexs) 3 (research,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' innovation) 3 (public,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' ledger) 3 (much,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' attention) 3 (shed,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' light) 3 (play-to-earn,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' project) 3 (security,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' vulnerability) 3 (cryptocurrency,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' system) 3 (paper,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' systematically) 3 (payment,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' state) 3 (provide,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' first) 3 (high,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' latency) 3 (research,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' gap) 3 (cryptographic,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' primitive) 3 (solution,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' blockchain) 3 (two,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' major) 3 (property,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' system) 3 (scattered,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' body) 3 (consensus,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' mechanism) 3 (important,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' role) 3 (application,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' domain) 3 (paper,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' conduct) 3 (conduct,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' systematic) 3 (potential,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' research) 3 (based,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' finding) 3 (service,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' however) 3 (ethereum,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' blockchain) 3 (transaction,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' load) 3 WIP: The Design Principle of Blockchain: An Initiative for the SoK of SoKs 17 Table 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' The Top 28 blockchain project and cross-chain solutions: ranked by market value retrieved from coinmarketcap on Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 27,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 2022 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Rank ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='name ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='symbol ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Genesis ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Type ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Bitcoin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='BTC ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='2009 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Blockchain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Ethereum ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='ETH ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='2015 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Blockchain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Binance smart chain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='BNB ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='2017 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Blockchain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='XRP Ledger (Ripple) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='XRP ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='2021 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Blockchain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Cardano ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='ADA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='2017 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Blockchain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Polkadot ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='DOT ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='2022 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Cross-chain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='TRON ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='TRX ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='2017 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Blockchain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Solana ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='SOL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='2020 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Blockchain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Avalanche ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='AVAX ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='2020 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Blockchain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Chainlink ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='LINK ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='2017 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Cross-chain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='The Open Network (TON) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='TON ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='2018 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Blockchain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Cosmos ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='ATOM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='2016 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Cross-chain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Stellar ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='XLM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='2015 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Blockchain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Cronos Chain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='CRO ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='2018 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Blockchain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Quant Overledger ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='QNT ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='2018 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Cross-chain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Agorand ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='ALGO ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='2019 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Blockchain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='17 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='NEAR Protocol ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='NEAR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='2021 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Blockchain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='18 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Filecoin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='FIL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='2017 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Cross-chain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='19 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Hedera ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='HBAR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='2019 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Blockchain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Internet Computer ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='ICP ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='2021 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Blockchain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='21 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='EOS Network ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='EOS ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='2018 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Blockchain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='MultiversX (Elrond) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='EGLD ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='2020 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Blockchain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Flow ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='FLOW ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='2018 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Blockchain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='24 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Theta Network ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='THETA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='2019 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Blockchain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Tezos ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='XTZ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='2018 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Blockchain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='26 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Zcash ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='ZEC ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='2016 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Blockchain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='27 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Klaytn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='KLAY ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='2019 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Blockchain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='28 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Dash ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='DASH ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='2014 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Blockchain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='18 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Sunshine Zhang ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Table 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' The Bigram of Blockchain Projects and Cross-chain solutions Titles (Top 10) bigram counts (smart,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' contract) 2 (public,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' blockchain) 2 (blockchain,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' platform) 2 (white,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' paper) 2 (public,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' hashgraph) 1 (ledger,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' stellar) 1 (distributed,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' ledger) 1 (network,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' distributed) 1 (whitepaper,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' network) 1 (cosmos,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' whitepaper) 1 (network,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' cosmos) 1 (open,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' network) 1 (network,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' open) 1 (oracle,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' network) 1 (decentralized,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' oracle) 1 (evolution,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' decentralized) 1 (step,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' evolution) 1 (next,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' step) 1 (chainlink,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' next) 1 (dynamic,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' chainlink) 1 (avax,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' dynamic) 1 (token,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' avax) 1 (native,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' token) 1 (avalanche,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' native) 1 (v0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' avalanche) 1 WIP: The Design Principle of Blockchain: An Initiative for the SoK of SoKs 19 Table 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' The Bigram of Blockchain Projects and Cross-chain Solutions Abstracts (Top 1-45) bigram counts (smart,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' contract) 27 (technical,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' paper) 8 (digital,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' asset) 6 (consensus,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' algorithm) 6 (blockchain,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' network) 6 (decentralized,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' application) 5 (virtual,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' machine) 5 (public,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' blockchain) 5 (cosmos,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' hub) 5 (byzantine,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' agreement) 4 (decentralised,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' application) 4 (blockchain,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' architecture) 4 (transaction,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' second) 4 (beacon,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' chain) 4 (native,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' token) 3 (development,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' platform) 3 (payment,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' scheme) 3 (storage,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' network) 3 (zone,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' cosmos) 3 (distributed,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' application) 3 (blockchain,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' application) 3 (end,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' user) 3 (proof,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' stake) 3 (new,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' blockchain) 3 (paper,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' proposes) 3 (blockchain,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' platform) 3 (programming,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' language) 3 (blockchain,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' technology) 3 (paper,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' also) 3 (introduces,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' new) 2 (tendermint,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' bft) 2 (ibc,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' protocol) 2 (communication,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' ibc) 2 (inter-blockchain,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' communication) 2 (hub,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' zone) 2 (zone,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' hub) 2 (well,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' suited) 2 (cosmos,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' network) 2 (address,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' problem) 2 (network,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' architecture) 2 (transaction,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' ledger) 2 (transaction,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' throughput) 2 (governance,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' mechanism) 2 (machine,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' evm) 2 (without,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' need) 2 20 Sunshine Zhang Table 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' The Bigram of Blockchain Projects and Cross-chain Solutions Abstracts (Top 46-90) bigram counts (ba,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' protocol) 2 (achieves,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' robustness) 2 (protocol,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' scp) 2 (application,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' built) 2 (set,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' transaction) 2 (next,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' set) 2 (secure,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' scalable) 2 (algorand,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' us) 2 (widespread,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' adoption) 2 (network,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' providing) 2 (application,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' across) 2 (broad,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' range) 2 (ledger,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' technology) 2 (distributed,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' ledger) 2 (trusted,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' secure) 2 (cronos,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' designed) 2 (transaction,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' fee) 2 (low,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' transaction) 2 (million,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' transaction) 2 (provides,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' useful) 2 (network,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' ton) 2 (used,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' encode) 2 (strong,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' focus) 2 (work,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' present) 2 (network,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' communicate) 2 (consensus,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' protocol) 2 (handling,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' million) 2 (high,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' speed) 2 (autonomous,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' organization) 2 (functional,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' programming) 2 (decentralized,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' autonomous) 2 (important,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' part) 2 (cpu,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' power) 2 (longest,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' chain) 2 (network,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' network) 2 (peer-to-peer,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' network) 2 (open,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' source) 2 (advanced,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' feature) 2 (open,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' network) 2 (consensus,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' mechanism) 2 (hybrid,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' smart) 2 (computing,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' resource) 2 (off-chain,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' computing) 2 (oracle,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' network) 2 (new,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' blockchains) 2 WIP: The Design Principle of Blockchain: An Initiative for the SoK of SoKs 21 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' The Bigram of Blockchain Related SoK Title ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='applicatior ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='dassificatietaverse ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='market accountability ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='cryptography ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='bridge ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='mitigation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='dishonestlockchain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='maker ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='contract ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='reordering ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='dex ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='challenge ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='transaction age ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='tee-assistec ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='era ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='auction ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='across ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='research ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='communication ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Marans ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='used ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='e-voting ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='det ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='automated ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='attack ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='sharding ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='stratifie ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='understanding ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='smart ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='lending ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='auditability ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='ledger ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='bitcoin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='approach ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='design ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='computin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='pase ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='cryptogt ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Yalidating ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='ingident ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='manipulation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='dient ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='meet ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='diying ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='amrdecentralize ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='payment ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='la ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='yer-two ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='stabjecqjovemand ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='future ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='moder ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='perspective ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='bft.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' front-runaing decentralization privacy-preserving fotocol preventing confidential finance internet istributed framework system sblution consenst transparent22 Sunshine Zhang Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' The Bigram of Blockchain Related SoK Abstract ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='decentralization finally ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='guarantee ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='off-chaitechnolog ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='auction ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='direction ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='forensics ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='govemance ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='financial ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='metaverse ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='muc ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='lending ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='scattered ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='vulnerability ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='researc ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='client ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='US6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='digital ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='market ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='gene ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='machine ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='contract ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='repeated ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='high ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='yield ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='buit ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='present ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='best ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='part ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='comprehensive ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='finance ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Tans ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='concep ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='replication ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='future ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='finding ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='latency ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='upti ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='gap ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='important ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='banking ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='ngross-chain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='conduct ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='hmunicatioh ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='oper ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='systematization ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='secu ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='chalenge ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='platform ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='provid ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='utomated ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='yer-two ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='iowe ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='sector ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='level ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='existing ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='aiol ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='systemati ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='farming ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='khowle ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='decentralize ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='identify ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='asset ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='rptogr ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='DR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='bft ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='bloakchain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='payme ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='year ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='transfer ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='based ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='distributed ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='state ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='privao ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='pool ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='amm ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='public ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='play-to-ear ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='[system ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='body ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='work ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='defi ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='channel ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='protoco ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='integral ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='cryptocurrency ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='application ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='light ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='issue ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='party ethereum ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Lexchange ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='ecosyst ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='tentio ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='reorderin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='nnovWIP: The Design Principle of Blockchain: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='An Initiative for the SoK of SoKs ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content='Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' The Word Cloud of Blockchain Projects and Cross-chain Solutions Title Adaptive Privacy Technique Open oken backgrouno vision PlatformNext environment naln Proof ordel self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/uNAyT4oBgHgl3EQfm_gQ/content/2301.00479v1.pdf'}
+page_content=' ameworK EvolutionPolkadot Solana Stellar AVAX SSecure Dash OU TRON R(d, l) then
+4:
+R(d, lnew) ← max(R(d, lnew), R(d, l))
+5:
+R(d, l) ← 0
+6:
+break
+7:
+end if
+8:
+end for
+9: end function
+Next, given the labels and their relevance scores from the
+zero-shot XML model, the time-aware adjustment component
+modifies the relevance scores. We observe that vulnerabilities
+in the same time range are more likely to affect the same
+versions of the libraries. Thus, CHRONOS uses a strategy to
+prioritize versions of libraries that have been recently affected
+5
+
+by vulnerabilities. As seen in Algorithm 1, CHRONOS’s time-
+aware adjustment component uses two steps to modify the
+relevance scores: a step to favor newer library versions (lines
+2–4) and a step to add a recency bias (lines 5–7).
+These two steps use a version store and a cache. The
+version store tracks the different versions of each library.
+Given a version of a library, the version store returns the list of
+labels corresponding to newer versions of the library, sorted in
+descending order by their versions (i.e., newest versions first).
+The cache stores the recently affected libraries using a Least
+Recently Used (LRU) replacement policy with a cache size
+c. Chronologically, as vulnerability reports are labelled with
+their true labels (e.g. as a security researcher annotates the
+ground-truth on each report after considering the predictions
+of CHRONOS), CHRONOS adds the label into the cache. When
+a new label is added while the cache is full, the new label
+replaces the oldest entry in the cache.
+For each description d, ZestXML models ranks the labels
+l in set of library Lhighest via the relevance scores R(d, l).
+CHRONOS uses the cache to modify the R(d, l) at prediction
+time through two successive steps: replacement and update.
+For efficiency, CHRONOS considers only the top-i highest rel-
+evant labels. i is a parameter which is tuned on the validation
+dataset and will be discussed in Section V-A.
+The time-aware adjustment favors newer library versions
+by replacing the old versions of a library in the top-i highest
+relevant labels by a newer version if certain conditions are
+satisfied. As seen in Algorithm 2, if a newer version, lnew,
+of a library is in the cache and they have smaller R(d, lnew)
+values (line 3), i.e., R(d, lnew) < R(d, l), CHRONOS will set
+the relevance of the new label to be R(d, l) (line 4) and remove
+the old versions from consideration (line 5).
+The time-aware adjustment has a recency bias and uses the
+cache to modify the top-i highest R(d, l) values. The update
+function f (used in Algorithm 1 on line 6) is formulated as:
+f(R(d, l)) =
+�
+R(d, l) + α × ¯R
+l ∈ cache
+R(d, l)
+l /∈ cache
+(5)
+where the magnitude of α is determined by the relative recency
+of l in the cache. More recently observed libraries are more
+likely to be the label of a vulnerability report. The parameter
+values require careful selection. If α and ¯R are too big, the
+adjustment function dominates the predictions of CHRONOS.
+Conversely, if they are too small, they do not affect the final
+scores. α and ¯R are defined as follows:
+α =
+M
+Lrecency + 1
+(6)
+¯R =
+�i
+j=1 R(d, lj)
+i
+(7)
+where M determines the magnitude of favouring recently
+vulnerable library versions. Lrecency is the relative recency for
+label l in the cache, which ranges from 0 to c − 1. 0 implies
+that the label was just added, while a recency of c−1 implies
+that the label is the least recently used label in the cache. ¯R
+TABLE II
+PARAMETERS USED FOR LIGHTXML
+Parameter
+Value
+Learning rate
+0.00001
+Epoch
+30
+Batch size
+4
+SWA warmup
+10
+SWA step
+200
+Feature
+Transformer generated vectors
+TABLE III
+PARAMETERS USED FOR CHRONOS
+Parameter
+Value
+cache size (c)
+300
+ranking-related factor (M)
+8
+update range (i)
+10
+x
+50
+y
+15
+is the average of top-i R(d, l) values. The values of M and i
+are tuned on the validation dataset.
+V. EVALUATION
+A. Implementation details
+We implement CHRONOS and baseline approaches using the
+PyTorch library and the Python programming language. The
+models are trained and evaluated on a Docker environment
+running Ubuntu 18.04 with Intel(R) i7-10700K @ 3.8GHz,
+64GB RAM, and 2 NVIDIA RTX 2080 Ti GPU (11GB of
+graphics memory for each). For LightXML’s hyper-parameters
+tunning, we run on AMD EPYC 7643 @ 2.3GHz, 512GB,
+and 4 RTX A5000. For hyper-parameter settings, we tuned
+CHRONOS’s and LightXML’s hyper-parameters through a grid
+search on the validation dataset and select the combinations
+with the best performance. The detailed hyper-parameters
+of CHRONOS and LightXML are shown in Table III and
+II, respectively. We have run LightXML and Chronos 5
+times. LightXML produced slightly different results, while
+Chronos produced the same results. The standard deviation of
+LightXML’s performance across the five runs is 0.005, which
+is very small, so we take the average of five runs.
+B. Dataset
+To evaluate effectiveness of our approach, we use a dataset
+of 7,665 vulnerability reports with 4,682 labels from the NVD
+(National Vulnerability Database) and SCA (Software Com-
+position Analysis) vulnerability database, initially collected
+by Chen et al [6]. Each report comprises a unique CVE ID,
+its vulnerability description, a list of web references, its CPE
+(Common Platform Enumeration) configuration, and its labels
+TABLE IV
+THE STATISTICS OF TRAINING, VALIDATION AND TESTING DATASET
+Dataset
+#Vulnerability Reports
+#Labels
+Training
+3111
+1378
+Validation
+1814
+1094
+Testing
+2740
+1432
+6
+
+(i.e., the affected libraries). For a fair comparison, we use the
+same preprocessing steps done by Haryono et al. [10]. Each
+vulnerability report is a single document after applying these
+preprocessing steps:
+• Description: Non-alphanumeric characters and non-noun
+words are removed. Words that appear in more than
+30% of the vulnerability data (i.e., common words) are
+removed.
+• References: Non-alphanumeric characters are replaced
+with whitespace.
+• CPE configuration: Possible library names are retrieved
+using a regular expression based on the CPE format [20].
+Finally, we have a dataset of 7,665 vulnerability reports
+with 2,817 labels. We split the dataset chronologically into
+training/validation/testing datasets. Our dataset comprises vul-
+nerability reports published in a span of six years (2014-
+2019). The training/validation/testing splits follow the ratio
+3:1:2. Particularly, vulnerability reports from years of 2014-
+2016, 2017 and 2018-2019 form the training, validation, and
+testing dataset respectively. Table IV shows the details of each
+dataset.
+C. Experimental Metrics
+Following previous works [6], [10], we evaluate the effec-
+tiveness of CHRONOS and three baselines in terms of Precision
+(P), Recall (R) and F1-score (F1) calculated for the top-k
+prediction results with k=1,2,3. These metrics are standard
+metrics for the evaluation of XML tasks in prior studies [6],
+[10], [11]. Particularly, for each technique, we obtain their
+prediction score for the possible labels of a given vulnerability
+report and then rank the labels based on the score to obtain
+the top-k prediction.
+Given a top-k prediction lb k(v) and the actual labels ˆlb(v)
+for a given vulnerability report v, P@k and R@k are defined
+as follows:
+P@k(v) = lb k(v) ∩ ˆlb(v)
+k
+P@k(v) = lb k(v) ∩ ˆlb(v)
+|ˆlb(v)|
+Then, we compute the average of the precision and recall
+calculated above to obtain the P@k and R@k that we use
+to compare the performance between CHRONOS and three
+baselines (n refers to the number of labels):
+P@k = 1
+n
+�n
+v=1 P@k(v)
+R@k = 1
+n
+�n
+v=1 R@k(v)
+Finally, we compute F1@k, which is the harmonic mean of
+P@k and R@k.
+F1@k = 2 × P@k × R@k
+P@k + R@k
+D. Baseline Approaches
+To assess CHRONOS, we use the following baselines:
+• CPE Matcher: CPE Matcher is a simple baseline pro-
+posed by Chen et al. [6]. CPE matcher uses the libraries
+listed in the CPE configuration of a vulnerability report.
+Particularly, CPE matcher retrieves library names and
+versions from the CPE configurations and outputs them
+as the labels on the vulnerability report.
+• Traditional IR. We use TF-IDF with bag-of-ngrams
+(n ≤ 2) to obtain feature vectors for the vulnerability re-
+ports and the labels. For each report, the cosine similarity
+between its feature vector and every label is computed.
+The top ranked labels are selected as output.
+• Exact
+Matcher: As simple approaches can some-
+times outperform complex ones in software engineering
+tasks [21]–[23], we propose a handcrafted heuristic-based
+approach that we term an Exact Matcher, which di-
+rectly matches labels to their occurrences in vulnerability
+reports. Exact Matcher ranks the label based on the
+number of occurrences that the library name occurs in
+each vulnerability report and outputs the top-k labels that
+occurs the most frequently.
+• LightXML: LightXML [11] is the best-performing XML
+technique on the library identification problem with
+non zero-shot setting in the experiments by Haryono et
+al. [10]. LightXML is a deep learning-based XML tech-
+nique that uses transformer-based models with dynamic
+negative sampling. Particularly, LightXML divides labels
+into clusters based on balance K-Means [?] and repre-
+sent vulnerability reports using dense 768-dimensional
+vectors obtained from transformer-based models such as
+RoBERTa [24], BERT [25] and XLNet [26]. LightXML
+uses generative cooperative networks with dynamic neg-
+ative label sampling to score all label clusters and re-
+turns possible libraries. Finally, LightXML scores every
+returned label and outputs the top-k highest score labels.
+E. Research Questions
+We aim to answer the following research questions:
+RQ1: What is percentage of unseen libraries in practice?
+This research question investigates the percentage of unseen
+libraries that do not belong to the training dataset in practice.
+To answer this question, we investigate the percentage of seen
+and unseen libraries on our dataset as described in section V-B.
+Particularly, we count the number of seen and unseen libraries
+for each year from 2015 to 2019. We consider a library of a
+vulnerability report as an unseen label if it does not appear
+in vulnerabilities from the training dataset, which includes
+vulnerabilities reports published chronologically before the
+reports in the testing dataset.
+RQ2: Is CHRONOS effective in identifying libraries from
+vulnerability reports? This research question concerns the
+ability of CHRONOS in identifying libraries from vulnerability
+reports. To evaluate our approach, we evaluate CHRONOS on
+a dataset of 7,665 real-world vulnerability reports in terms
+of Precision, Recall, and F1-score as described in section
+V-C. We compare our approach to multiple baselines, includ-
+ing the state-of-the-art technique, LightXML [10], the CPE
+Matcher [27] and a handcrafted exact matching algorithm. As
+LightXML and CHRONOS are stochastic, we run each tool five
+times and report the average results.
+7
+
+TABLE V
+THE STATISTICS OF SEEN AND UNSEEN LIBRARIES PER YEAR DURING THE
+PERIOD 2015-2019
+Year
+#Total
+#Seen Libraries
+#Unseen Libraries
+2015
+656
+312 (47.6%)
+344 (52.4%)
+2016
+896
+345 (38.5%)
+551 (61.5%)
+2017
+1094
+329 (30.0%)
+725 (70.0%)
+2018
+1094
+451 (41.2%)
+643 (58.8%)
+2019
+651
+313 (46.5%)
+338 (53.5%)
+TABLE VI
+THE STATISTICS OF VULNERABILITY REPORTS CONTAINING SEEN AND
+UNSEEN LABELS PER YEAR DURING THE PERIOD 2015-2019. THE #SEEN,
+#FULLUNSEEN AND #PARTIALUNSEEN DENOTES THE NUMBER OF
+VULNERABILITY REPORTS ARE RELATED TO ONLY SEEN LABELS, ONLY
+UNSEEN LABELS AND BOTH SEEN AND UNSEEN ONES, RESPECTIVELY.
+Year
+#Total
+#Seen
+#FullUnseen
+#PartialUnseen
+2015
+981
+551 (56.2%)
+292 (29.8%)
+430 (43.8%)
+2016
+1347
+704 (52.3%)
+447 (33.8%)
+643 (47.7%)
+2017
+1814
+896 (49.3%)
+837 (33.2%)
+918 (50.7%)
+2018
+1718
+872 (49.5%)
+640 (46.1%)
+846 (50.5%)
+2019
+1022
+498 (48.7%)
+458 (44.8%)
+525 (51.3%)
+RQ3: Which components of CHRONOS contributes to its
+performance? CHRONOS contains multiple components, in-
+cluding the data enhancement and time-aware adjustment. In
+this research question, we investigate the contribution of each
+component in an ablation study.
+F. RQ1: Percentage of Unseen Labels per Year
+We investigate the percentage of seen and unseen labels in
+our dataset. We count the number of seen and unseen labels
+and their associated vulnerability reports for each year from
+2015 to 2019. We consider a label unseen if it does not appear
+in previous years. The results are reported in Table V and VI.
+As shown in Table V, the percentage of unseen labels ranges
+from 52.4% to 70% during 2015-2019. In particular, unseen
+labels account for almost half of all vulnerable labels in every
+years, and the percentage of unseen labels is even 70% in
+2017.
+With respect to the percentage of vulnerability descriptions
+associated to unseen labels, Table VI shows that 43.8% to
+51.3% vulnerability descriptions during 2015-2019 contains
+at least one unseen label. Moreover, there are up to 46.1%
+vulnerability descriptions containing only unseen labels. These
+results reveal the limitations of a non zero-shot learning
+techniques on the problem as they cannot correctly predict
+unseen labels.
+Answer to RQ1: Up to 70% of labels are unseen
+labels. This affects 43.8% to 51.3% of vulnerability
+descriptions per year. This suggests that existing
+approaches cannot correctly produce the right
+labels for the half of all vulnerability reports each
+year.
+G. RQ2: Comparison with Baselines
+We compare CHRONOS against the baselines approaches
+with respect to Precision, Recall, and F1 at top-k predictions
+(k=1,2,3). The detailed results are shown in Table VII.
+Table VII shows that CHRONOS achieves an F1 of 0.75 on
+average with the F1@1 of 0.67, F1@2 of 0.77 and F1@3
+of 0.80. These results indicate that CHRONOS consistently
+outperforms the baseline tools, outperforming the best baseline
+by 131.1%, 67.4%, 53.8%, and 78.6% in terms of F1@1,
+F1@2, F1@3, and average F1 respectively. Compared to
+LightXML, CHRONOS outperforms it by 232.5% in average
+F1. Notably, LightXML underperforms the Exact Matching
+baseline in every metric. This highlights the challenge of the
+zero-shot experimental setting as LightXML was the best-
+performing approach in the experiments of the prior study [10]
+When
+considering
+only
+either
+Precision
+or
+Recall,
+CHRONOS is still the best performing approach. On Precision,
+CHRONOS is outperforms the best baseline by 127.3%, 50.9%,
+and 60% in the top-1, top-2, and top-3 predictions respec-
+tively. On Recall, CHRONOS outperforms the best baseline
+by 134.6%, 82.9% and 71.7% in the top-1, top-2, and top-3
+predictions respectively.
+Compared to ZestXML alone, CHRONOS improves by 27%
+in average F1. The improvements come from both increases
+in precision (up to 33.9%) and recall (35.5%). This highlights
+the contributions of the domain-specific components, i.e. data
+enhancement and time-aware adjustment.
+Answer to RQ2: Yes, CHRONOS is 78.6% better
+in average F1 compared to the strongest baseline.
+The improvements come from both increases in
+precision (up to 127.3%) and recall (up to 134.9%).
+H. RQ3: Ablation Study
+In this experiment, we evaluate the relative contribution of
+two components, data enhancement and time-aware adjust-
+ment, to the overall performance of our approach, CHRONOS.
+Table VII shows the results of our experiments.
+As shown in Table VII, removing each component reduces
+the overall performance of CHRONOS. The performance of
+CHRONOS drops in every metric. The average F1 of CHRONOS
+without data enhancement and time-aware adjustment are
+declined from 0.75 to 0.7 ( ↓ 6.7%) and 0.65 (↓ 9.2%),
+respectively. This suggests that both data enhancement and
+the time-aware adjustment are crucial to the effectiveness of
+CHRONOS. Moreover, the results also suggest that the time-
+aware adjustment is more essential to CHRONOS than the data
+enhancement.
+Answer to RQ3: All components of CHRONOS con-
+tribute positively to its effectiveness. Without data
+enhancement and time-aware adjustment, the per-
+formance of CHRONOS decreases by 6.7% and
+9.2% in terms of average F1, respectively.
+8
+
+TABLE VII
+COMPARISON OF THE EFFECTIVENESS OF CHRONOS WITH THE STATE-OF-THE-ART TECHNIQUES. THE BOLD NUMBERS DENOTE THE BEST RESULTS FOR
+EACH METRIC.CHRONOS W/O DE, CHRONOS W/O TA DENOTES THE RESULTS OF CHRONOS WITHOUT DATA ENHANCEMENT AND TIME-AWARE
+ADJUSTMENT, RESPECTIVELY.
+Model
+P@1
+R@1
+F1@1
+P@2
+R@2
+F1@2
+P@3
+R@3
+F1@3
+Avg. F1
+Exact Matching
+0.33
+0.26
+0.29
+0.53
+0.41
+0.46
+0.60
+0.46
+0.52
+0.42
+CPE Matcher
+0.27
+0.26
+0.26
+-
+-
+-
+-
+-
+-
+-
+Traditional IR
+0.20
+0.18
+0.19
+0.26
+0.25
+0.26
+0.30
+0.29
+0.30
+0.25
+LightXML
+0.32
+0.21
+0.26
+0.24
+0.28
+0.26
+0.18
+0.29
+0.22
+0.25
+ZestXML
+0.56
+0.45
+0.50
+0.63
+0.60
+0.61
+0.67
+0.65
+0.66
+0.59
+CHRONOS
+0.75
+0.61
+0.67
+0.80
+0.75
+0.77
+0.82
+0.79
+0.80
+0.75
+CHRONOS w/o DE
+0.70
+0.57
+0.63
+0.75
+0.70
+0.72
+0.77
+0.74
+0.75
+0.70
+CHRONOS w/o TA
+0.60
+0.49
+0.54
+0.70
+0.67
+0.68
+0.73
+0.71
+0.72
+0.65
+20
+40
+60
+80
+100
+Percentage of dataset (%)
+0
+3250
+6500
+9750
+13000
+Total Time (ms)
+Inference
+Training
+Fig. 3. Training and inference time of CHRONOS given different dataset sizes.
+The x-axis is the percentage of all vulnerability descriptions and the y-axis
+is the total time cost for training or inference. The total time of training or
+inference grows almost linearly with the size of dataset. It just costs just 1.62
+milliseconds to train and 0.26 milliseconds for inference per vulnerability
+description.
+VI. DISCUSSION
+A. Time Efficiency
+For practical usage, CHRONOS should work under a rea-
+sonable amount of time. We investigate the efficiency of
+CHRONOS. We analyze the training time (the amount of time
+a model takes to learn all the training examples on average)
+and inference time (the amount of time a model takes to
+return all prediction results on average). The training time and
+inference time are related to two factors: the machine where
+the models run, and the size of the dataset (i.e., how many
+vulnerability descriptions are used to train or to infer). We
+limit the models to only using 8 CPU cores to simulate running
+on a regular consumer-grade laptop. As one would expect,
+a greater number of vulnerability descriptions takes a longer
+time to compute. There are 7,665 vulnerability descriptions in
+total. We experiment with different dataset sizes. To reduce the
+effects of randomness, we repeat the experiments three times.
+The results are presented in Figure 3.
+The inference time is just a few thousands milliseconds and
+the training time is below fifteen thousand milliseconds with
+all vulnerability descriptions. The inference time and training
+time grow linearly with the size of the dataset, which shows the
+scalability of CHRONOS in practice. CHRONOS requires just
+1.62 milliseconds for training and 0.26 milliseconds to infer
+Fig. 4.
+Distribution of vulnerability reports. We have a total of 2,740 test
+instances, of which 1,633 are reports with unseen labels and 932 are reports
+with seen labels. 175 reports have both seen and unseen labels.
+labels for each vulnerability description. This indicates that
+CHRONOS is practical for use on a consumer-grade laptop.
+B. Qualitative Analysis
+As we reformulate the problem as a zero-shot learning task,
+we investigate the performance of CHRONOS in predicting la-
+bels without any training data. Figure 4 shows the composition
+of the vulnerability reports in the testing dataset.
+We report the result of our approach, CHRONOS, on the
+data with only seen labels, some seen labels, and all data
+with respect to Precision, Recall, and F1 at top-k predictions
+(k=1,2,3). The detailed results are shown in Table VIII.
+CHRONOS achieves an average F1 of 0.70, with an F1@1
+of 0.64, F1@2 of 0.72, and F1@3 of 0.75 on the data with
+some seen labels. For the data with only seen labels, our
+approach achieves an average F1 of 0.84, with an F1@1
+of 0.75, F1@2 of 0.87, and F1@3 of 0.9. Comparing our
+CHRONOS’s performance on data with only seen labels and
+data with some seen labels, CHRONOS performs better on the
+data with only seen labels by 20%.
+This indicates that CHRONOS’s performance on data with
+unseen labels still has room for improvement. Nevertheless,
+CHRONOS is able to perform reasonably well on the data with
+some seen labels. We conclude that CHRONOS achieves strong
+prediction results for the seen labels and is still effective at
+making good predictions on the unseen labels.
+9
+
+Data with only seen
+labels
+Data with only
+*
+*
+unseen labels
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+1633
+175
+932
+*
+*
+*
+*
+*
+*
+*
+*
+*
+Data with at least one
+seen labelsTABLE VIII
+COMPARISON OF CHRONOS UNDER DIFFERENT TESTING DATA. CHRONOS FULLSEEN AND CHRONOS PARTIALUNSEEN DENOTES THE RESULTS OF
+CHRONOS ON THE VULNERABILITY REPORTS WITH ONLY SEEN LABELS AND AT LEAST ONE UNSEEN LABELS, RESPECTIVELY
+Model
+P@1
+R@1
+F1@1
+P@2
+R@2
+F1@2
+P@3
+R@3
+F1@3
+Avg. F1
+CHRONOS FullSeen
+0.83
+0.68
+0.75
+0.89
+0.86
+0.87
+0.91
+0.89
+0.90
+0.84
+CHRONOS PartialUnseen
+0.70
+0.58
+0.64
+0.76
+0.69
+0.72
+0.77
+0.73
+0.75
+0.70
+CHRONOS
+0.75
+0.61
+0.67
+0.80
+0.75
+0.77
+0.82
+0.79
+0.80
+0.75
+TABLE IX
+COMPARISON OF THE EFFECTIVENESS OF CHRONOS WITH THE
+STATE-OF-THE-ART TECHNIQUES IN PREDICTING UNSEEN LABELS.
+CHRONOS IS ABLE TO CORRECTLY PREDICT 694 PREVIOUSLY UNSEEN
+LABELS.
+Model
+Success Rate
+# Success Cases / Total
+LightXML
+0%
+0 / 957
+CHRONOS
+72.52%
+694 / 957
+CVE-2019-0741
+Description
+An information disclosure vulnerability exists in the way Azure
+IoT Java SDK logs sensitive information, aka 'Azure IoT Java
+SDK Information Disclosure Vulnerability’.
+References
+http://www.securityfocus.com/bid/106971
+https://portal.msrc.microsoft.com/en-US/security-
+guidance/advisory/CVE-2019-0741
+CPE Configurations
+cpe:2.3:a:microsoft:java_software_development_kit:-
+:*:*:*:*:azure_internet_of_things:*:*
+Ground-Truth Label
+com.microsoft.azure iot-device-client
+com.microsoft.azure.sdk.iot iot-device-client
+CHRONOS Label Predictions
+microsoft.chakracore;microsoft.chakracore.vc140
+com.microsoft.azure.sdk.iot iot-device-client
+provisioning-device-client; microsoft.azure.devices.client;
+microsoft.azure.devices.provisioning.transport.amqp
+Fig. 5. Unseen Label Example. NVD entry for CVE-2019-0741. The top half
+of the image is the NVD entry of a description, some references, and CPE
+configurations. The bottom half of the image is the ground-truth label and
+CHRONOS’s prediction label.
+Table IX shows the improvements of CHRONOS over
+the baseline LightXML in predicting unseen labels. While
+LightXML cannot predict unseen labels, our method success-
+fully predicts at least one correct vulnerability for 72.52%
+of them. Figure 5 shows an example of a vulnerability re-
+port where CHRONOS successfully predicts an unseen label.
+Given the text extracted from the vulnerability description,
+we compare the ground-truth label and the predictions of
+CHRONOS. The red, bold characters in the ground-truth label
+and CHRONOS’s predictions are text that do not appear in the
+vulnerability description. Even if the library name does not
+explicitly appear in the vulnerability descriptions, our method
+can predict them successfully. This suggests that CHRONOS
+successfully learns to identify relevant terms that are indicative
+of each library.
+C. Threats to Validity
+Threats to internal validity include possible errors in our
+implementation. A possible threat relates to the selection of
+CHRONOS’s and baseline approaches’ hyper-parameters. To
+mitigate this threat, we tune these hyper-parameters using
+grid search and select the best combination on the validation
+dataset. Besides, we also have made the source code of our
+tool and data in our experiments publicly available.
+Threats to construct validity are related to the suitability
+of our evaluation metrics. To minimize this threat, we have
+used the same performance metrics of precision, recall, and
+F1 of the top 3 predictions that were used in the previous
+studies [6], [10]. These are standard metrics used in the
+literature of XML approaches [11], [12].
+Threats to external validity are concerned with the gener-
+alizability of our experiments and findings. A possible threat
+is related to our dataset. We have utilized the same dataset
+from prior work [6], [10], containing vulnerabilities spanning
+over several years. These data were collected and validated
+by security researchers in Veracode, hence, we believe that
+the threat is minimal. Another threat is related to the random-
+ness of CHRONOS and LightXML. To mitigate this risk, we
+ran each tool five times and report the average results and
+observe that LightXML is stable (with a standard deviation
+of 0.005 while Chronos returns the same results. Hence, we
+believe that the findings in our paper will not change even
+with more runs. The final threat is related to the setting of
+supervised learning apprach, i.e. LightXML. To deal with the
+unseen label issue, supervised learning can be evaluate an
+experimental setting where the data is provided as a stream.
+Unfortunately, LightXML requires around 6 hours for training,
+that means 6 (hours) x 2740 (entries) = 16,440 (hours) are
+required to retrain LightXML. Therefore, a comparison of
+Chronos and LightXML when data is provided as a stream
+is very expensive. We emphasize that this is a limitation of
+LightXML; LightXML will fail to predict previously unseen
+labels (occurring up to 70% in Table 3) without frequent
+retraining, while Chronos does not have this limitation.
+10
+
+VII. RELATED WORK
+Software Composition Analysis is increasingly essential
+for securing software systems. In recent years, there have
+been many studies investigating the dependencies of soft-
+ware [28]–[32]. Many empirical studies have reported the
+impact of vulnerable dependencies in the software supply
+chain. For example, Decan et al. [32] found that the number of
+vulnerability-affected packages in the npm network is growing
+over time, and half of the affected packages do not get fixed
+even when the fix is available. Lauinger et al. [33] also showed
+that around 37.8% of the packages in the npm network have at
+least one vulnerable dependency. These findings demonstrated
+the growing importance of securing the software supply chain.
+Unfortunately, developers are slow in updating their vulner-
+able dependencies, leading to the risk of exploitation [8], [34].
+Like our study, other researchers have recently proposed auto-
+mated methods that have emerged as a promising solution for
+speeding up the process [35], [36]. For example, Mirhosseini et
+al. [35] found that projects that use automated pull requests up-
+grade dependencies 1.6x often as projects that did not use any
+tools. Other studies propose methods for detecting or obtaining
+more information about vulnerabilities from different software
+artifacts, including commits [37]–[41], bug reports [27], [42],
+[43], and mailing lists [44], [45]. Unlike these studies, we
+do not aim to detect vulnerabilities but to determine which
+libraries are vulnerable based on a vulnerability report. Other
+methods help developers to check if a library vulnerability
+can be exploited [46], [47] but already requires comprehensive
+information about the vulnerable library.
+For vulnerability reports, researchers have proposed meth-
+ods to assist in the analysis of vulnerabilities. Some studies
+focus on identifying affected versions [48] or predicting the
+exploitability of a vulnerability [49]. Other approaches use
+vulnerability reports to predict the key aspects, severity, or
+other properties of vulnerabilities [49]–[52]. Another method
+models new attack techniques from textual descriptions of vul-
+nerabilities [53]. Similarly, our work aims to make predictions
+of vulnerability reports. However, we have a different goal of
+selecting libraries from a large space of possible labels.
+Our study shows the importance of considering more prac-
+tical experimental setups for analyzing vulnerability reports.
+Other Software Engineering studies have also shown that
+overlooking time and other practical concerns may lead to
+brittle experimental results [23], [54]–[58]. To address this
+practical challenge, our technique relies on a cache to leverage
+the time locality of the vulnerability reports. This phenomenon
+has been observed in other artifacts of software engineering.
+Tamrawi et al. [59] uses a caching strategy to enhance bug
+triaging by prioritizing developers who recently fixed related
+bugs. Caches of identifier names have been used to improve
+language models for source code [60]–[62].
+VIII. CONCLUSION AND FUTURE WORK
+Software Composition Analysis (SCA) depends on signifi-
+cant human effort in identifying every library that is affected
+by a vulnerability report. Due to the large space of possible
+libraries, human effort can be error-prone. Manual analysis
+relies on the human annotator’s limited domain knowledge
+to match libraries against vulnerability reports that may not
+explicitly indicate every relevant library. However, in this
+study, we show that the experimental setup considered in prior
+studies using extreme multi-label classification techniques may
+not consider a practical setting.
+We reformulate the problem as a generalized zero-shot
+learning task, in which we face the challenge of predicting
+previously unseen labels. Under the more realistic setting, prior
+approaches face a substantial drop in performance.
+CHRONOS uses zero-shot XML, data enhancement of the
+documents and labels, and time-aware adjustment of the labels.
+CHRONOS is able to produce the right labels even if they
+were previously unseen. CHRONOS achieves an average F1
+of 0.75, improving over the strongest approach identified in a
+prior study by 212.5%. Our experiments also indicate that each
+component of CHRONOS contributes to its effectiveness. These
+results suggest that the combination of techniques employed in
+CHRONOS successfully addresses the challenge of predicting
+previously unseen libraries. Overall, the experiments suggest
+that CHRONOS is effective for identifying libraries from vul-
+nerability reports.
+This study takes a large step forward in considering the
+real-world practical concerns of library identification from
+vulnerability reports. Among other techniques in CHRONOS,
+the use of reference data proved to be helpful in our exper-
+iments, however, the references listed on NVD entries may
+be incomplete as the references were also identified through
+human analysis. In the future, we will investigate methods
+of using software artifact traceability techniques [63], [64] to
+link the NVD report to related artifacts (e.g. the commits on
+GitHub fixing the vulnerabilities).
+IX. DATA AVAILABILITY
+CHRONOS’s dataset and implementation are publicly avail-
+able at https://figshare.com/articles/software/Chronos-ICSE23/
+20787805 and https://github.com/soarsmu/Chronos, respec-
+tively.
+ACKNOWLEDGEMENT
+This project is supported by the National Research Founda-
+tion, Singapore and National University of Singapore through
+its National Satellite of Excellence in Trustworthy Software
+Systems (NSOE-TSS) office under the Trustworthy Comput-
+ing for Secure Smart Nation Grant (TCSSNG) award no.
+NSOE-TSS2020-02. Any opinions, findings and conclusions
+or recommendations expressed in this material are those of
+the author(s) and do not reflect the views of National Research
+Foundation, Singapore and National University of Singapore
+(including its National Satellite of Excellence in Trustworthy
+Software Systems (NSOE-TSS) office).
+Xuan-Bach D. Le is supported by the Australian Gov-
+ernment through the Australian Research Council’s Dis-
+covery Early Career Researcher Award, project number
+DE220101057.
+11
+
+REFERENCES
+[1] G. A. A. Prana, A. Sharma, L. K. Shar, D. Foo, A. E. Santosa,
+A. Sharma, and D. Lo, “Out of sight, out of mind? how vulnerable
+dependencies affect open-source projects,” Empirical Software Engineer-
+ing (EMSE), vol. 26, no. 4, pp. 1–34, 2021.
+[2] N. Imtiaz, A. Khanom, and L. Williams, “Open or sneaky? fast or slow?
+light or heavy?: Investigating security releases of open source packages,”
+IEEE Transactions on Software Engineering (TSE), 2022.
+[3] N. Imtiaz, S. Thorn, and L. Williams, “A comparative study of vulnera-
+bility reporting by software composition analysis tools,” in Proceedings
+of the 15th ACM/IEEE International Symposium on Empirical Software
+Engineering and Measurement (ESEM), 2021, pp. 1–11.
+[4] D. Foo, J. Yeo, H. Xiao, and A. Sharma, “The dynamics of Software
+Composition Analysis,” Automated Software Engineering (ASE) (Late
+Breaking Results), 2019.
+[5] “Why do organizations trust Snyk to win the open source security bat-
+tle?” https://snyk.io/blog/why-snyk-wins-open-source-security-battle/.
+[6] Y. Chen, A. E. Santosa, A. Sharma, and D. Lo, “Automated identification
+of libraries from vulnerability data,” in Proceedings of the ACM/IEEE
+42nd International Conference on Software Engineering: Software En-
+gineering in Practice (ICSE-SEIP), 2020, pp. 90–99.
+[7] “Snyk’s
+database,
+CVE-2018-1914,”
+https://security.snyk.io/
+vuln?search=CVE-2018-19149.
+[8] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue, “Do develop-
+ers update their library dependencies?” Empirical Software Engineering
+(EMSE), vol. 23, no. 1, pp. 384–417, 2018.
+[9] B. Chinthanet, R. G. Kula, S. McIntosh, T. Ishio, A. Ihara, and
+K. Matsumoto, “Lags in the release, adoption, and propagation of npm
+vulnerability fixes,” Empirical Software Engineering (EMSE), vol. 26,
+no. 3, pp. 1–28, 2021.
+[10] S. Haryono, H. J. Kang, A. Sharma, A. Sharma, A. Santosa, A. M. Yi,
+and D. Lo, “Automated identification of libraries from vulnerability data:
+can we do better?” in IEEE/ACM International Conference on Program
+Comprehension (ICPC), 2022.
+[11] T. Jiang, D. Wang, L. Sun, H. Yang, Z. Zhao, and F. Zhuang,
+“LightXML: Transformer with dynamic negative sampling for high-
+performance extreme multi-label text classification,” in Proceedings of
+the AAAI Conference on Artificial Intelligence, vol. 35, no. 9, 2021, pp.
+7987–7994.
+[12] Y. Prabhu and M. Varma, “FastXML: A fast, accurate and stable tree-
+classifier for extreme multi-label learning,” in Proceedings of the 20th
+ACM SIGKDD international conference on Knowledge Discovery and
+Data Mining, 2014, pp. 263–272.
+[13] W. Wang, V. W. Zheng, H. Yu, and C. Miao, “A survey of zero-shot
+learning: Settings, methods, and applications,” ACM Transactions on
+Intelligent Systems and Technology (TIST), vol. 10, no. 2, pp. 1–37,
+2019.
+[14] N. Gupta, S. Bohra, Y. Prabhu, S. Purohit, and M. Varma, “Generalized
+zero-shot extreme multi-label learning,” in Proceedings of the 27th ACM
+SIGKDD Conference on Knowledge Discovery & Data Mining, 2021,
+pp. 527–535.
+[15] M. Honnibal, I. Montani, S. Van Landeghem, and A. Boyd, “spaCy:
+Industrial-strength Natural Language Processing in Python,” 2020.
+[16] A. Corazza, S. Di Martino, and V. Maggio, “Linsen: An efficient ap-
+proach to split identifiers and expand abbreviations,” in 2012 28th IEEE
+International Conference on Software Maintenance (ICSM).
+IEEE,
+2012, pp. 233–242.
+[17] E. Enslen, E. Hill, L. Pollock, and K. Vijay-Shanker, “Mining source
+code to automatically split identifiers for software analysis,” in 2009 6th
+IEEE International Working Conference on Mining Software Reposito-
+ries (MSR).
+IEEE, 2009, pp. 71–80.
+[18] M. Hucka, “Spiral: splitters for identifiers in source code files,” Journal
+of Open Source Software, vol. 3, no. 24, p. 653, 2018.
+[19] J. Ramos et al., “Using tf-idf to determine word relevance in document
+queries,” in Proceedings of the first Instructional Conference on Machine
+Learning, vol. 242, no. 1.
+Citeseer, 2003, pp. 29–48.
+[20] A. Buttner, T. Wittbold, and N. Ziring, “Common platform enumeration
+(cpe)-name format and description,” NATIONAL SECURITY AGEN-
+CY/CENTRAL SECURITY SERVICE FORT MEADE MD FORT
+MEADE . . . , Tech. Rep., 2007.
+[21] W. Fu and T. Menzies, “Easy over hard: A case study on deep learning,”
+in Proceedings of the 2017 11th Joint Meeting on Foundations of
+Software Engineering (FSE), 2017, pp. 49–60.
+[22] Z. Zeng, Y. Zhang, H. Zhang, and L. Zhang, “Deep just-in-time defect
+prediction: how far are we?” in Proceedings of the 30th ACM SIGSOFT
+International Symposium on Software Testing and Analysis (ISSTA),
+2021, pp. 427–438.
+[23] H. J. Kang, K. L. Aw, and D. Lo, “Detecting false alarms from automatic
+static analysis tools: How far are we?” in IEEE/ACM International
+Conference on Software Engineering (ICSE), 2022.
+[24] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
+L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
+pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.
+[25] J. D. M.-W. C. Kenton and L. K. Toutanova, “BERT: Pre-training of deep
+bidirectional transformers for language understanding,” in Proceedings
+of NAACL-HLT, 2019, pp. 4171–4186.
+[26] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and
+Q. V. Le, “XLNET: Generalized autoregressive pretraining for language
+understanding,” Advances in Neural Information Processing Systems,
+vol. 32, 2019.
+[27] Y. Chen, A. E. Santosa, A. M. Yi, A. Sharma, A. Sharma, and D. Lo, “A
+machine learning approach for vulnerability curation,” in Proceedings
+of the 17th International Conference on Mining Software Repositories
+(MSR), 2020, pp. 32–42.
+[28] J. Han, S. Deng, D. Lo, C. Zhi, J. Yin, and X. Xia, “An empirical
+study of the dependency networks of deep learning libraries,” in 2020
+IEEE International Conference on Software Maintenance and Evolution
+(ICSME).
+IEEE, 2020, pp. 868–878.
+[29] A. Decan, T. Mens, and P. Grosjean, “An empirical comparison of
+dependency network evolution in seven software packaging ecosystems,”
+Empirical Software Engineering (EMSE), vol. 24, no. 1, pp. 381–416,
+2019.
+[30] S. E. Ponta, H. Plate, and A. Sabetta, “Detection, assessment and
+mitigation of vulnerabilities in open source dependencies,” Empirical
+Software Engineering (EMSE), vol. 25, no. 5, pp. 3175–3215, 2020.
+[31] A. Decan, T. Mens, and E. Constantinou, “On the impact of security
+vulnerabilities in the npm package dependency network,” in Proceedings
+of the 15th International Conference on Mining Software Repositories,
+2018, pp. 181–191.
+[32] R. E. Zapata, R. G. Kula, B. Chinthanet, T. Ishio, K. Matsumoto, and
+A. Ihara, “Towards smoother library migrations: A look at vulnerable
+dependency migrations at function level for npm Javascript packages,”
+in 2018 IEEE International Conference on Software Maintenance and
+Evolution (ICSME).
+IEEE, 2018, pp. 559–563.
+[33] T. Lauinger, A. Chaabane, S. Arshad, W. Robertson, C. Wilson, and
+E. Kirda, “Thou shalt not depend on me: Analysing the use of outdated
+Javascript libraries on the web,” arXiv preprint arXiv:1811.00918, 2018.
+[34] A. Decan, T. Mens, A. Zerouali, and C. De Roover, “Back to the past–
+analysing backporting practices in package dependency networks,” IEEE
+Transactions on Software Engineering (TSE), 2021.
+[35] S. Mirhosseini and C. Parnin, “Can automated pull requests encourage
+software developers to upgrade out-of-date dependencies?” in 2017 32nd
+IEEE/ACM international conference on Automated Software Engineer-
+ing (ASE).
+IEEE, 2017, pp. 84–94.
+[36] B. Rombaut, F. R. Cogo, B. Adams, and A. E. Hassan, “There’s no such
+thing as a free lunch: Lessons learned from exploring the overhead intro-
+duced by the greenkeeper dependency bot in npm,” ACM Transactions
+on Software Engineering and Methodology (TOSEM), 2022.
+[37] G. Nguyen-Truong, H. J. Kang, D. Lo, A. Sharma, A. E. Santosa,
+A. Sharma, and M. Y. Ang, “Hermes: Using commit-issue linking to
+detect vulnerability-fixing commits,” in 2022 IEEE International Con-
+ference on Software Analysis, Evolution and Reengineering (SANER).
+IEEE, 2022, pp. 51–62.
+[38] J. Zhou, M. Pacheco, Z. Wan, X. Xia, D. Lo, Y. Wang, and A. E.
+Hassan, “Finding a needle in a haystack: Automated mining of silent
+vulnerability fixes,” in 2021 36th IEEE/ACM International Conference
+on Automated Software Engineering (ASE).
+IEEE, 2021, pp. 705–716.
+[39] G. Nguyen-Truong, T. Le-Cong, H. J. Kang, X.-B. D. Le, and D. Lo,
+“VulCurator: A vulnerability-fixing commit detector,” in Proceedings
+of the 30th ACM Joint Meeting on European Software Engineering
+Conference and Symposium on the Foundations of Software Engineering,
+2022.
+[40] Y. Zhou, J. K. Siow, C. Wang, S. Liu, and Y. Liu, “SPI: Automated
+identification of security patches via commits,” ACM Transactions on
+Software Engineering and Methodology (TOSEM), vol. 31, no. 1, pp.
+1–27, 2021.
+12
+
+[41] A. D. Sawadogo, T. F. Bissyand´e, N. Moha, K. Allix, J. Klein, L. Li,
+and Y. Le Traon, “SSPCatcher: Learning to catch security patches,”
+Empirical Software Engineering (EMSE), vol. 27, no. 6, pp. 1–32, 2022.
+[42] Y. Zhou and A. Sharma, “Automated identification of security issues
+from commit messages and bug reports,” in Proceedings of the 2017 11th
+Joint Meeting on Foundations of Software Engineering (ESEC/FSE),
+2017, pp. 914–919.
+[43] R. Shu, T. Xia, J. Chen, L. Williams, and T. Menzies, “How to better dis-
+tinguish security bug reports (using dual hyperparameter optimization),”
+Empirical Software Engineering (EMSE), vol. 26, no. 3, pp. 1–37, 2021.
+[44] R. Ramsauer, L. Bulwahn, D. Lohmann, and W. Mauerer, “The sound of
+silence: Mining security vulnerabilities from secret integration channels
+in open-source projects,” in Proceedings of the 2020 ACM SIGSAC
+Conference on Cloud Computing Security Workshop, 2020, pp. 147–
+157.
+[45] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A static analysis tool
+for detecting web application vulnerabilities,” in 2006 IEEE Symposium
+on Security and Privacy (S&P).
+IEEE, 2006, pp. 6–pp.
+[46] E. Iannone, D. Di Nucci, A. Sabetta, and A. De Lucia, “Toward
+automated exploit generation for known vulnerabilities in open-source
+libraries,” in 2021 IEEE/ACM 29th International Conference on Pro-
+gram Comprehension (ICPC).
+IEEE, 2021, pp. 396–400.
+[47] H. J. Kang, T. G. Nguyen, B. Le, C. S. P˘as˘areanu, and D. Lo,
+“Test mimicry to assess the exploitability of library vulnerabilities,” in
+Proceedings of the 31st ACM SIGSOFT International Symposium on
+Software Testing and Analysis (ISSTA), 2022, pp. 276–288.
+[48] L. Bao, X. Xia, A. E. Hassan, and X. Yang, “V-SZZ: automatic
+identification of version ranges affected by CVE vulnerabilities,” in 2022
+IEEE/ACM 44th International Conference on Software Engineering
+(ICSE).
+IEEE, 2022, pp. 2352–2364.
+[49] M. Bozorgi, L. K. Saul, S. Savage, and G. M. Voelker, “Beyond
+heuristics: learning to classify vulnerabilities and predict exploits,” in
+Proceedings of the 16th ACM SIGKDD International Conference on
+Knowledge Discovery and Data Mining, 2010, pp. 105–114.
+[50] H. Guo, S. Chen, Z. Xing, X. Li, Y. Bai, and J. Sun, “Detecting and
+augmenting missing key aspects in vulnerability descriptions,” ACM
+Transactions on Software Engineering and Methodology (TOSEM),
+vol. 31, no. 3, pp. 1–27, 2022.
+[51] Z. Han, X. Li, Z. Xing, H. Liu, and Z. Feng, “Learning to predict severity
+of software vulnerability using only vulnerability description,” in 2017
+IEEE International Conference on Software Maintenance and Evolution
+(ICSME).
+IEEE, 2017, pp. 125–136.
+[52] X. Gong, Z. Xing, X. Li, Z. Feng, and Z. Han, “Joint prediction
+of multiple vulnerability characteristics through multi-task learning,”
+in 2019 24th International Conference on Engineering of Complex
+Computer Systems (ICECCS).
+IEEE, 2019, pp. 31–40.
+[53] H. Binyamini, R. Bitton, M. Inokuchi, T. Yagyu, Y. Elovici, and
+A. Shabtai, “An automated, end-to-end framework for modeling attacks
+from vulnerability descriptions,” arXiv preprint arXiv:2008.04377, 2020.
+[54] F. Tu, J. Zhu, Q. Zheng, and M. Zhou, “Be careful of when: an empirical
+study on time-related misuse of issue tracking data,” in Proceedings of
+the 2018 26th ACM Joint Meeting on European Software Engineering
+Conference and Symposium on the Foundations of Software Engineering
+(ESEC/FSE), 2018, pp. 307–318.
+[55] K. Herzig, S. Just, and A. Zeller, “It’s not a bug, it’s a feature: how
+misclassification impacts bug prediction,” in 2013 35th International
+Conference on Software Engineering (ICSE).
+IEEE, 2013, pp. 392–
+401.
+[56] M. Christakis and C. Bird, “What developers want and need from
+program analysis: an empirical study,” in Proceedings of the 31st
+IEEE/ACM international conference on Automated Software Engineer-
+ing (ASE), 2016, pp. 332–343.
+[57] E. B. Sørensen, E. K. Karlsen, and J. Li, “What norwegian developers
+want and need from security-directed program analysis tools: A survey,”
+in Proceedings of the Evaluation and Assessment in Software Engineer-
+ing, 2020, pp. 505–511.
+[58] E. Winter, D. Bowes, S. Counsell, T. Hall, S. Haraldsson, V. Nowack,
+and J. Woodward, “How do developers really feel about bug fixing?
+directions for automatic program repair,” IEEE Transactions on Software
+Engineering, 2022.
+[59] A. Tamrawi, T. T. Nguyen, J. M. Al-Kofahi, and T. N. Nguyen, “Fuzzy
+set and cache-based approach for bug triaging,” in Proceedings of the
+19th ACM SIGSOFT Symposium and the 13th European Conference on
+Foundations of Software Engineering (FSE), 2011, pp. 365–375.
+[60] V. J. Hellendoorn and P. Devanbu, “Are deep neural networks the best
+choice for modeling source code?” in Proceedings of the 2017 11th
+Joint Meeting on Foundations of Software Engineering (FSE), 2017, pp.
+763–773.
+[61] C. Franks, Z. Tu, P. Devanbu, and V. Hellendoorn, “CACHECA: A cache
+language model based code suggestion tool,” in 2015 IEEE/ACM 37th
+IEEE International Conference on Software Engineering (ICSE), vol. 2.
+IEEE, 2015, pp. 705–708.
+[62] Z. Tu, Z. Su, and P. Devanbu, “On the localness of software,” in
+Proceedings of the 22nd ACM SIGSOFT International Symposium on
+Foundations of Software Engineering (FSE), 2014, pp. 269–280.
+[63] A. D. Rodriguez, J. Cleland-Huang, and D. Falessi, “Leveraging in-
+termediate artifacts to improve automated trace link retrieval,” in 2021
+IEEE International Conference on Software Maintenance and Evolution
+(ICSME).
+IEEE, 2021, pp. 81–92.
+[64] J. Lin, Y. Liu, Q. Zeng, M. Jiang, and J. Cleland-Huang, “Traceability
+transformed: Generating more accurate links with pre-trained bert mod-
+els,” in 2021 IEEE/ACM 43rd International Conference on Software
+Engineering (ICSE).
+IEEE, 2021, pp. 324–335.
+13
+
diff --git a/xdE2T4oBgHgl3EQfhAfX/content/tmp_files/load_file.txt b/xdE2T4oBgHgl3EQfhAfX/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..f187d7699604c5693cc35a4906fe5c48b9eaf086
--- /dev/null
+++ b/xdE2T4oBgHgl3EQfhAfX/content/tmp_files/load_file.txt
@@ -0,0 +1,1315 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf,len=1314
+page_content='CHRONOS: Time-Aware Zero-Shot Identification of Libraries from Vulnerability Reports Yunbo Lyu∗§, Thanh Le-Cong∗§, Hong Jin Kang∗, Ratnadira Widyasari∗, Zhipeng Zhao∗, Xuan-Bach D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Le†, Ming Li‡, David Lo∗ ∗Singapore Management Univerisity †The University of Melbourne ‡Nanjing Univeristiy Abstract—Tools that alert developers about library vulnera- bilities depend on accurate, up-to-date vulnerability databases which are maintained by security researchers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' These databases record the libraries related to each vulnerability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' However, the vulnerability reports may not explicitly list every library and human analysis is required to determine all the relevant libraries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Human analysis may be slow and expensive, which motivates the need for automated approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Researchers and practitioners have proposed to automatically identify libraries from vulnerability reports using extreme multi-label learning (XML).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' While state-of-the-art XML techniques showed promising performance, their experiment settings do not practically fit what happens in reality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Previous studies randomly split the vulnerability reports data for training and testing their models without considering the chronological order of the reports.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' This may unduly train the models on chronologically newer reports while testing the models on chronologically older ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' However, in practice, one often receives chronologically new reports, which may be related to previously unseen libraries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Under this practical setting, we observe that the performance of current XML techniques declines substantially, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=', F1 decreased from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='7 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='24 under experiments without and with consideration of chronological order of vulnerability reports.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' We propose a practical library identification approach, namely CHRONOS, based on zero-shot learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The novelty of CHRONOS is three-fold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' First, CHRONOS fits into the practical pipeline by considering the chronological order of vulnerability reports.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Second, CHRONOS enriches the data of the vulnerability descrip- tions and labels using a carefully designed data enhancement step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Third, CHRONOS exploits the temporal ordering of the vulnerability reports using a cache to prioritize prediction of versions of libraries that recently had reports of vulnerabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' In our experiments, CHRONOS achieves an average F1-score of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='75, 3x better than the best XML-based approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Data enhancement and the time-aware adjustment improve CHRONOS over the vanilla zero-shot learning model by 27% in average F1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Index Terms—zero-shot learning, library identification, unseen labels, extreme multi-label classification, vulnerability reports I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' INTRODUCTION The use of third-party libraries is commonplace in soft- ware development, however, software engineers have to be aware of and manage library vulnerabilities [1]–[3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Software Composition Analysis tools have been proposed to assist developers by warning them of vulnerable libraries included in a software project’s dependencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' These tools, including §Equal contribution those built by industrial companies, such as Veracode [4] and Snyk [5], are now widely deployed but depend on an up- to-date and accurate vulnerability database.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' These databases indicate libraries, known vulnerabilities, vulnerable library versions, and other data [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The database is maintained by security researchers who, through their domain knowledge and manual effort, curate vulnerability reports from multiple sources, including the National Vulnerability Database (NVD).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' A vulnerability report has an identification number, a CVE (Common Vulnerability Enumeration) ID and a description of the vulnerability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' While a CPE (Common Platform Enumera- tion) configuration indicates a package or library that is related to the vulnerability, this configuration is not exhaustive [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Hence, security researchers have to annotate each vulnerability report with the affected libraries and even specific versions if they think the versions are noteworthy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' For alerting developers, these databases require a mapping between each vulnerability ID and the libraries (and specific versions) that are affected by the vulnerability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' For example, Figure 1 shows the vulnerabil- ity report of CVE-2018-19149.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' While the vulnerability report mentions “Poppler”, other software systems such as “evince” and “okular” are also affected [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' There is usually a delay from vulnerability disclosure (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=', publicly posted on NVD and assigned a CVE ID) to developers updating their dependencies [8], [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' This motivates automated approaches that speed up the work of security researchers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' For curating vulnerabilities to update vulnerability databases, Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' from Veracode, a well-known application security com- pany that offers an SCA service, have proposed to automati- cally identify libraries from the vulnerability descriptions [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The study has formulated the problem as an extreme multi- label classification (XML) problem [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Characterized by the sparsity of the data and the large space of possible labels, XML problems are challenging for standard machine learning approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Recently, Haryono et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [10] found that the most effective XML approach for library identification is a deep learning-based XML approach, LightXML [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' While XML techniques were shown to be effective in the experiments of prior studies [6], [10], we observe that there are practical concerns that need to be addressed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Every year, new libraries are included in the NVD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' If an XML approach is trained strictly on data prior to the inclusion of the new library, it would not produce the correct labels as output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' In arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='03944v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='SE] 10 Jan 2023 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' NVD entry for CVE-2018-19149.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Each vulnerability report has a description, some references, and CPE configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' While “evince” is affected by the vulnerability, the term “evince” does not appear in the report.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' other words, existing library identification approaches will fail to predict previously unseen libraries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' We performed an empirical study of the number of new libraries with vulnerabilities each year.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Our analysis indicates that up to 70% libraries associated up to 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='7% of vulnerability reports each year cannot be correctly identified by the previ- ously proposed approaches [6], [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' As the training dataset would not contain any NVD entries related to the libraries, the XML techniques would not correctly identify vulnerabilities related to these libraries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' To address this practical concern, we reformulate the library identification task as a generalized zero-shot learning task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' We split the dataset chronologically;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' as new libraries may be added to the NVD, there would be libraries in the testing dataset that do not correspond to any NVD entry in the training dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' To tackle the aforementioned task, we propose a practical library identification approach namely CHRONOS based on zero-shot XML, that is capable of predicting previously unseen labels from vulnerability reports.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' To achieve this, CHRONOS relies on two main observations: (1) Additional documents referenced in the NVD entry, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=', bug reports, mailing lists, can help distinguish multiple previously unseen labels from one another.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' (2) Exploiting temporal connection between vul- nerability reports and affected libraries can help boost the prediction accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The key intuition is that if a vulnerability was reported for a particular version of a library recently, it is likely that new vulnerabilities will be reported for the same version rather than for an older version.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Towards this end, CHRONOS implements several techniques to retrieve and process additional sources of information referenced from NVD entries, enriching the vulnerability description with more information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' To exploit temporal con- nection between vulnerability reports and affected libraries, CHRONOS uses a cache to track the libraries related to the most recently seen NVD entries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The cache enables a reranking of CHRONOS’s predictions by favouring libraries and versions that were most recently observed to be vulnerable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' In our experiments, CHRONOS achieves an average F1 of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='75, outperforming the LightXML [11] approach by 212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='5% in average F1 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='75 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='24).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' This demonstrates the superior performance of CHRONOS over traditional non zero-shot XML models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Compared to a manually handcrafted approach that directly matches library names against the vulnerability de- scription, CHRONOS performs 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='6% better.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Compared to an approach using only the CPE, CHRONOS performs 3 times better.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Our analysis reveals that each component of CHRONOS contributes positively to its effectiveness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Removing the data enhancement step reduces performance by 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='7%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Removing the time-aware adjustment reduces performance by 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='2%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Overall, CHRONOS improves over a vanilla zero-shot XML model by 27% (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='75 vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='59).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Our study has practical and research significance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' It helps in securing the software supply chain by automating slow manual analysis, and highlights practical concerns, such as the chronological order of data, in developing automated tools.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' In summary, our paper makes the following contributions: Problem reformulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' We reformulate the task of predicting libraries to consider the reports chronologically based on publication dates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The task is a generalized zero-shot extreme multi-label (XML) classification task;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' vulnerability reports in the testing dataset may be related to libraries that did not appear in the training dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' We propose CHRONOS, a zero-shot learning technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' CHRONOS uses data enrichment and a time- aware adjustment step to favour more recently seen versions of each library.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' We evaluate CHRONOS and show that CHRONOS outperforms the strongest previously proposed approach by 212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='5% in average F1 on the realistic but more challenging experimental setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The rest of this paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Section II covers the background of our work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Section III formulates the task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Section IV introduces CHRONOS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Section V discusses our experimental results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Section VI presents a deeper analysis of our findings and threats to validity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Finally, Section VIII concludes the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' BACKGROUND A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Extreme Multi-label Classification for Identifying Libraries Extreme Multi-label Learning (XML) models assign rele- vant labels to documents [11], [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Each document may be assigned multiple labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Tasks employing XML techniques are characterized by an extremely large label space and sparse data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' XML approaches have to select a small subset of relevant labels out of millions of possible labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Moreover, many labels have only a few instances associated with them, posing a challenge for standard machine learning techniques [11], [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [6] from Veracode, a well-known application security company, formulated the task of identifying libraries 2 VD http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='securityfocus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='com/bid/10603 1 https://access.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='redhat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='com/errata/RHSA-2019:2022 https://gitlab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='freedesktop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='org/poppler/poppler/issues/664 https://security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='gento0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='0rg/glsa/201904-04 https://usn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='ubuntu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='com/3837-1/ https://usn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='ubuntu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='com/3837-2/affected by vulnerabilities given the vulnerability report.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Their experiments revealed that the NVD report’s CVE configura- tion was insufficient for identifying every affected library as they do not identify every relevant library.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Their experiments highlighted the promise of applying XML techniques for the task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Each vulnerability report may describe multiple affected libraries, and the space of all libraries is enormous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' These char- acteristics present challenges for traditional Machine Learning techniques but are addressed by XML techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' A recent study by Haryono et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [10] assessed recent XML techniques on the task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Their experiments revealed that the deep learning- based approach, LightXML [11], led to the greatest increase in performance among recently proposed XML techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' We show that while the powerful XML techniques had strong performance in the experiments of prior studies, the experiments did not capture every practical consideration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' In this study, we reformulate the task as a generalized zero-shot learning problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Generalized Zero-Shot Learning The challenge of predicting labels that do not appear during training is established in the machine learning literature [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' In zero-shot learning, the training and testing labels are dis- joint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' In generalized zero-shot learning, both seen and unseen labels appear in the testing dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' For generalized zero-shot XML problems, ZestXML [14] has been previously proposed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' ZestXML aims to exploit the sparsity of the data in XML tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' During training, ZestXML learns to project a small number of features to be close to the features of the relevant labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Using a novel optimization technique based on the assumption that only a few features are relevant to a label, ZestXML is able to be trained quickly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' We use ZestXML in our approach as it is targeted at zero- shot learning tasks;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' ZestXML can output labels without any training data as long as the document features closely match the label features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' PROBLEM FORMULATION A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Usage Scenario A security researcher is monitoring and curating vulner- ability data from multiple sources, including the National Vulnerability Database (NVD).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' For each vulnerability report, the researcher has to map it to a set of relevant libraries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Without an automated tool, the security researcher has to rely only on his domain knowledge and carefully analyze the vulnerability description and references to mailing lists/bug reports.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Unfortunately, there is a large number of vulnerability reports and many possible libraries, and even each libraries may have many different versions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' As a result, human analysis is slow and may be error-prone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' An automated approach that predicts relevant libraries would augment the manual analysis performed by the researcher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Problem Formulation In this work, following prior works [6], [10], we formulate the problem of library identification from vulnerability reports as an XML problem, where vulnerability reports and possible libraries, which can be enumerated from package managers, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=', npm, pypi,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' are considered documents and labels, respec- tively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' If security researchers believe that particular versions of the libraries are noteworthy [6], the vulnerability report may be labelled with specific versions of the affected library (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' the standard library of java 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='7 vs java 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Different from prior works, we reformulate the problem in the zero-shot setting as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Prior Knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' A labelled dataset D = (V, L, M), where V is set of vulnerability reports and L is set of labels for M is a mapping from V to set of subsets of L, where M(v) ⊆ L is the set of labels for a vulnerability report v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' A new (unlabelled) dataset Dnew = (Vnew, Lnew) where Vnew ̸= V is set of new vulnerability reports and Lnew ⊇ L is set of labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' A mapping Mnew from Vnew to set of subsets of Lnew such that Mnew(v) ⊆ Lnew is the set of labels for each vulnerability report v ∈ Vnew.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The approaches proposed in prior studies [6], [10] are built upon the assumption that the set of labels in the labelled (training) dataset Lnew are identical to the labels in new (testing) dataset L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' More formally, Lnew = L (1) The previous studies treat the problem as a supervised learning task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' As a result, they trained supervised learning models such as LightXML [11] or FastXML [12] to learn the mapping M from labelled dataset and then use the trained model as the mapping Mnew.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Unfortunately, in a practical setting, the assumption (1) does not hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' In this paper, we reformulate the problem of library iden- tification from vulnerability reports to consider the possibility of unseen libraries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' We relax assumption (1) to: Lnew ⊇ L (2) This assumption means that L, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=', the set of seen labels belonging to the labelled dataset, should be a subset of Lnew, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=', the set of all seen and unseen labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' This relaxation allows our problem formulation to include unseen labels and be more suitable in practical settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' PROPOSED APPROACH Figure 2 illustrates the overall framework of CHRONOS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' CHRONOS identifies libraries for each vulnerability report.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' There are three main components in CHRONOS: (1) data enhancement, (2) a zero-shot learning XML model, and (3) time-aware adjustment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The first component, data enhancement (Section IV-A), ad- dresses the lack of discriminating information to identify links between the vulnerability description and possible labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' This enriches vulnerability descriptions by collecting data from their website references (Section IV-A1) and then perform- ing preprocessing (Section IV-A2) to clean the descriptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 3 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The overview of CHRONOS CHRONOS also enriches the label features by splitting labels to sub-words (section IV-A3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The second component, a zero- shot XML model (Section IV-B), uses a ZestXML model to answer the question, “How likely is a vulnerability description and a library name to be relevant?”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' using the features from vulnerability descriptions and the label features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The third component, time-aware adjustment (Section IV-C), exploits the temporal ordering of the vulnerability reports using a cache to prioritize predictions of versions of libraries that were more recently affected by vulnerabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Data Enhancement 1) Collecting Reference Data: A vulnerability report can come with a list of website references.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' These website ref- erences can include any pertinent references (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=', solutions, workarounds, etc).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' This information may be helpful to identify affected libraries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Before a vulnerability report is passed to the zero-shot XML model, CHRONOS fetches the web references from the vulnerability report to extract the aforementioned textual information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Unfortunately, there are many different domains (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 1,054 unique domains on our dataset) for the web references.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' This is a challenge for web scrapping tools as each domain has a unique web page layout.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' To address this problem, we only extract data from the highly frequent domains in our dataset as shown in Table I, which cover 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='3% of the vulnerability reports in the dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' For each web reference belonging to this domain, CHRONOS automatically crawl the references of depth 1, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=', references explicitly linked from the report.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' In total, we crawled 28,783 references.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' As the quality of data collected is more important than its quantity, our crawler accommodates the different website structures of each domain to fetch the vulnerabilities’ details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' We crawl each refer- ence’s page title and description of the vulnerability, which may name affected products (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' CVE-2014-1512 references TABLE I MOST FREQUENT DOMAINS WITH THEIR NUMBER OF OCCURRENCES Domain #Occurrences access.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='redhat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='com 6383 list.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='opensuse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='org 4882 github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='com 3479 debian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='org 2853 oracle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='com 2717 securitytracker.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='com 2286 security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='gentoo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='org 1875 ubuntu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='com 1752 usn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='ubuntu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='com 1687 openwall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='com 1517 lists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='fedoraproject.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='org 1299 bugzilla.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='redhat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='com 1225 https://ubuntu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='com/security/notices/USN-2151-1, which indi- cates that “Thunderbird” is affected).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 2) Preprocessing Reference Data: We preprocess the docu- ments collected in the previous step in order to clean the data before using it for training CHRONOS’s model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' We perform the following three steps: In the first basic preprocessing step, we remove non- alphanumeric characters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' This preprocessing step is done using the regular expression: ”[a-zA-Z][a-z]+”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' We perform stemming and stopwords removal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' This is performed automatically using the spaCy [15] package.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' We remove x% of words sorted by the number of occurrences in reference data since they are common words that will increase the noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' We also remove words that appear more than y times in a single reference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Some words appear frequently in the collected reference data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' As they are not specific to a particular CVE or libraries, they can be removed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Removing these words was previously found to be effective for identifying libraries [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' x and y are parameters that are tuned on the validation dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Finally, CHRONOS merges the processed reference data with each vulnerability description to produce the final description, d, from the vulnerability reports.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 3) Library Sub-word Splitting: Next, the label processing component of CHRONOS enriches the features that help deter- mine labels associated with vulnerability reports, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=', libraries, denoted as L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' To maximize the chance of matching a label against mentions of the library in the vulnerability description, CHRONOS initializes the label features with different forms of the library name.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Library names usually comprises several words.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' While the words in some library names are visu- ally separated based on existing conventions to ease reading (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' org.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='apache.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='tika), not all libraries have names with clear conventions for splitting them (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' org.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='springframework, pyopenssl).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Moreover, when considering libraries related to vulnerabilities, the library names adhere to different conven- tions as the libraries come from a variety of different languages and ecosystems [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Therefore, we split each library name into its constituent subtokens using a suitable library name splitter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The decision of whether to decompose the library names into subtokens, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' morphological units, has important im- plications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' With subtokens, the number of features increase, 4 Vulnerability Library Affected Report Names Libraries Data Enhancement Adjusted Ranking Time-aware Adjustment Enhanced Enhanced Description Label Zero-Shot Learning Original Ranking CHRONOSmaking the selection the most important features of each label more difficult.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' On the other hand, breaking up a library name into multiple units has advantages as CHRONOS may be able to identify more valuable features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Subtokens are more common than the original library name, enabling CHRONOS to find more connections between unseen and seen library names, which improves CHRONOS to predict unseen labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' For splitting tokens into subtokens, several approaches use Mining Software Repositories techniques, such as LIN- SEN [16], Samurai [17], Spiral [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' We apply the state-of- the-art Spiral token splitter [18], which was shown to be more effective than other methods [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Zero-shot Learning The next component in CHRONOS is a zero-shot learning model, which takes the vulnerability reports as input and produces a list of labels and their intermediate relevance scores as output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Particularly, CHRONOS employs the current state-of- the-art technique, ZestXML [14], as the core machine learning model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Following the original paper [14], CHRONOS uses TF- IDF [19] to extract the feature vectors for the descriptions and labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' ZestXML takes input as the extracted features models the relevance between descriptions and labels by analyzing their linear feature interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Particularly, given a description d and a label l, the relevance score between are calculated as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' R(d, l) = d⊤Wl (3) where a large (small) R(d, l) value means high (low) relevance between d and l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' d⊤ is the transpose vector of d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' For simplicity, ZestXML are absorbed into Equation (3) by appending a constant feature to d and l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' W is RD′ × RL′ a matrix of model parameters, which is learned to correctly classify all description and label pairs in the training dataset (D′ and L′ indicate their high dimensional, sparse TF-IDF feature vectors of descriptions and labels).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Particularly, ZestXML learns the model parameters W via a regularized logistic regression as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' min W 1 2∥W∥2 L + λ D � i=1 L � j=1 log � 1 + e−yijd⊤ i Wlj� s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=', ∥Wi∗∥0 ≤ K ∀i ∈ {1, · · · , D′} (4) where D, L are the number of descriptions and labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' K, λ are hyper-parameters of the model and ∥Wi∗∥0 is the number of non-zeros in the i th row of W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' To determine the optimal model parameters W for the afore- mentioned training objective, ZestXML proposed an extension of Hard Thresholding Pursuit [14] termed XHTP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' ZestXML was designed with the assumption that the features of each label is sparse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Similar to other second-order optimization algorithms, an iteration of XHTP consists of 2 successive steps: (1) approximation in which XHTP approximates the training objective in Equation (4) by a quadratic form and minimizes it to obtain a sparsified solution, and (2) refinement, in which XHTP refines the values of non-zero parameters to fit the original objective better.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' However, unlike other second- order optimization algorithms, XHTP exploits assumptions such as feature independence and a favorable starting point, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=', W = 0 to achieve highly sparsified and accurate model parameters in just one iteration of approximation and refine- ment steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' In this way, ZestXML improves its efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Time-aware Adjustment Algorithm 1 Time-aware adjustment that favours new library versions and recently observed labels Require: Lhighest ← top-i most relevant labels for each de- scription version store ← a map of a label to newer versions of the same library cache ← recently seen labels R(d, l) ← a relevance score between a description, d and a label, l f ← an update function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Given in Equation 5 1: function TIME-AWARE ADJUSTMENT(Lhighest) 2: for l ∈ Lhighest do 3: FAVORNEWVERSION(l,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' version store,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' cache) 4: end for 5: for l ∈ Lhighest do 6: R(d,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' l) ← f(R(d,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' l)) 7: end for 8: end function Algorithm 2 Transferring the relevance scores from old to new versions of the same library Require: l ← a label version store ← a map of a label to newer versions of the same library cache ← recently seen labels R(d,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' l) ← a relevance score between a description,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' d and a label,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' l 1: function FAVORNEWVERSION(l,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' version store,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' cache) 2: for lnew ∈ version store[l] do 3: if lnew ∈ cache and R(d,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' lnew) > R(d,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' l) then 4: R(d,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' lnew) ← max(R(d,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' lnew),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' R(d,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' l)) 5: R(d,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' l) ← 0 6: break 7: end if 8: end for 9: end function Next,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' given the labels and their relevance scores from the zero-shot XML model,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' the time-aware adjustment component modifies the relevance scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' We observe that vulnerabilities in the same time range are more likely to affect the same versions of the libraries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Thus, CHRONOS uses a strategy to prioritize versions of libraries that have been recently affected 5 by vulnerabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' As seen in Algorithm 1, CHRONOS’s time- aware adjustment component uses two steps to modify the relevance scores: a step to favor newer library versions (lines 2–4) and a step to add a recency bias (lines 5–7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' These two steps use a version store and a cache.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The version store tracks the different versions of each library.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Given a version of a library, the version store returns the list of labels corresponding to newer versions of the library, sorted in descending order by their versions (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=', newest versions first).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The cache stores the recently affected libraries using a Least Recently Used (LRU) replacement policy with a cache size c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Chronologically, as vulnerability reports are labelled with their true labels (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' as a security researcher annotates the ground-truth on each report after considering the predictions of CHRONOS), CHRONOS adds the label into the cache.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' When a new label is added while the cache is full, the new label replaces the oldest entry in the cache.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' For each description d, ZestXML models ranks the labels l in set of library Lhighest via the relevance scores R(d, l).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' CHRONOS uses the cache to modify the R(d, l) at prediction time through two successive steps: replacement and update.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' For efficiency, CHRONOS considers only the top-i highest rel- evant labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' i is a parameter which is tuned on the validation dataset and will be discussed in Section V-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The time-aware adjustment favors newer library versions by replacing the old versions of a library in the top-i highest relevant labels by a newer version if certain conditions are satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' As seen in Algorithm 2, if a newer version, lnew, of a library is in the cache and they have smaller R(d, lnew) values (line 3), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=', R(d, lnew) < R(d, l), CHRONOS will set the relevance of the new label to be R(d, l) (line 4) and remove the old versions from consideration (line 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The time-aware adjustment has a recency bias and uses the cache to modify the top-i highest R(d, l) values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The update function f (used in Algorithm 1 on line 6) is formulated as: f(R(d, l)) = � R(d, l) + α × ¯R l ∈ cache R(d, l) l /∈ cache (5) where the magnitude of α is determined by the relative recency of l in the cache.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' More recently observed libraries are more likely to be the label of a vulnerability report.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The parameter values require careful selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' If α and ¯R are too big, the adjustment function dominates the predictions of CHRONOS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Conversely, if they are too small, they do not affect the final scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' α and ¯R are defined as follows: α = M Lrecency + 1 (6) ¯R = �i j=1 R(d, lj) i (7) where M determines the magnitude of favouring recently vulnerable library versions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Lrecency is the relative recency for label l in the cache, which ranges from 0 to c − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 0 implies that the label was just added, while a recency of c−1 implies that the label is the least recently used label in the cache.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' ¯R TABLE II PARAMETERS USED FOR LIGHTXML Parameter Value Learning rate 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='00001 Epoch 30 Batch size 4 SWA warmup 10 SWA step 200 Feature Transformer generated vectors TABLE III PARAMETERS USED FOR CHRONOS Parameter Value cache size (c) 300 ranking-related factor (M) 8 update range (i) 10 x 50 y 15 is the average of top-i R(d, l) values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The values of M and i are tuned on the validation dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' EVALUATION A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Implementation details We implement CHRONOS and baseline approaches using the PyTorch library and the Python programming language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The models are trained and evaluated on a Docker environment running Ubuntu 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='04 with Intel(R) i7-10700K @ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='8GHz, 64GB RAM, and 2 NVIDIA RTX 2080 Ti GPU (11GB of graphics memory for each).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' For LightXML’s hyper-parameters tunning, we run on AMD EPYC 7643 @ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='3GHz, 512GB, and 4 RTX A5000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' For hyper-parameter settings, we tuned CHRONOS’s and LightXML’s hyper-parameters through a grid search on the validation dataset and select the combinations with the best performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The detailed hyper-parameters of CHRONOS and LightXML are shown in Table III and II, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' We have run LightXML and Chronos 5 times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' LightXML produced slightly different results, while Chronos produced the same results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The standard deviation of LightXML’s performance across the five runs is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='005, which is very small, so we take the average of five runs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Dataset To evaluate effectiveness of our approach, we use a dataset of 7,665 vulnerability reports with 4,682 labels from the NVD (National Vulnerability Database) and SCA (Software Com- position Analysis) vulnerability database, initially collected by Chen et al [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Each report comprises a unique CVE ID, its vulnerability description, a list of web references, its CPE (Common Platform Enumeration) configuration, and its labels TABLE IV THE STATISTICS OF TRAINING, VALIDATION AND TESTING DATASET Dataset #Vulnerability Reports #Labels Training 3111 1378 Validation 1814 1094 Testing 2740 1432 6 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=', the affected libraries).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' For a fair comparison, we use the same preprocessing steps done by Haryono et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Each vulnerability report is a single document after applying these preprocessing steps: Description: Non-alphanumeric characters and non-noun words are removed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Words that appear in more than 30% of the vulnerability data (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=', common words) are removed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' References: Non-alphanumeric characters are replaced with whitespace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' CPE configuration: Possible library names are retrieved using a regular expression based on the CPE format [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Finally, we have a dataset of 7,665 vulnerability reports with 2,817 labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' We split the dataset chronologically into training/validation/testing datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Our dataset comprises vul- nerability reports published in a span of six years (2014- 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The training/validation/testing splits follow the ratio 3:1:2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Particularly, vulnerability reports from years of 2014- 2016, 2017 and 2018-2019 form the training, validation, and testing dataset respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Table IV shows the details of each dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Experimental Metrics Following previous works [6], [10], we evaluate the effec- tiveness of CHRONOS and three baselines in terms of Precision (P), Recall (R) and F1-score (F1) calculated for the top-k prediction results with k=1,2,3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' These metrics are standard metrics for the evaluation of XML tasks in prior studies [6], [10], [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Particularly, for each technique, we obtain their prediction score for the possible labels of a given vulnerability report and then rank the labels based on the score to obtain the top-k prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Given a top-k prediction lb k(v) and the actual labels ˆlb(v) for a given vulnerability report v,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' P@k and R@k are defined as follows: P@k(v) = lb k(v) ∩ ˆlb(v) k P@k(v) = lb k(v) ∩ ˆlb(v) |ˆlb(v)| Then,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' we compute the average of the precision and recall calculated above to obtain the P@k and R@k that we use to compare the performance between CHRONOS and three baselines (n refers to the number of labels): P@k = 1 n �n v=1 P@k(v) R@k = 1 n �n v=1 R@k(v) Finally,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' we compute F1@k,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' which is the harmonic mean of P@k and R@k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' F1@k = 2 × P@k × R@k P@k + R@k D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Baseline Approaches To assess CHRONOS, we use the following baselines: CPE Matcher: CPE Matcher is a simple baseline pro- posed by Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' CPE matcher uses the libraries listed in the CPE configuration of a vulnerability report.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Particularly, CPE matcher retrieves library names and versions from the CPE configurations and outputs them as the labels on the vulnerability report.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Traditional IR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' We use TF-IDF with bag-of-ngrams (n ≤ 2) to obtain feature vectors for the vulnerability re- ports and the labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' For each report, the cosine similarity between its feature vector and every label is computed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The top ranked labels are selected as output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Exact Matcher: As simple approaches can some- times outperform complex ones in software engineering tasks [21]–[23], we propose a handcrafted heuristic-based approach that we term an Exact Matcher, which di- rectly matches labels to their occurrences in vulnerability reports.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Exact Matcher ranks the label based on the number of occurrences that the library name occurs in each vulnerability report and outputs the top-k labels that occurs the most frequently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' LightXML: LightXML [11] is the best-performing XML technique on the library identification problem with non zero-shot setting in the experiments by Haryono et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' LightXML is a deep learning-based XML tech- nique that uses transformer-based models with dynamic negative sampling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Particularly, LightXML divides labels into clusters based on balance K-Means [?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='] and repre- sent vulnerability reports using dense 768-dimensional vectors obtained from transformer-based models such as RoBERTa [24], BERT [25] and XLNet [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' LightXML uses generative cooperative networks with dynamic neg- ative label sampling to score all label clusters and re- turns possible libraries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Finally, LightXML scores every returned label and outputs the top-k highest score labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Research Questions We aim to answer the following research questions: RQ1: What is percentage of unseen libraries in practice?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' This research question investigates the percentage of unseen libraries that do not belong to the training dataset in practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' To answer this question, we investigate the percentage of seen and unseen libraries on our dataset as described in section V-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Particularly, we count the number of seen and unseen libraries for each year from 2015 to 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' We consider a library of a vulnerability report as an unseen label if it does not appear in vulnerabilities from the training dataset, which includes vulnerabilities reports published chronologically before the reports in the testing dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' RQ2: Is CHRONOS effective in identifying libraries from vulnerability reports?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' This research question concerns the ability of CHRONOS in identifying libraries from vulnerability reports.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' To evaluate our approach, we evaluate CHRONOS on a dataset of 7,665 real-world vulnerability reports in terms of Precision, Recall, and F1-score as described in section V-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' We compare our approach to multiple baselines, includ- ing the state-of-the-art technique, LightXML [10], the CPE Matcher [27] and a handcrafted exact matching algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' As LightXML and CHRONOS are stochastic, we run each tool five times and report the average results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 7 TABLE V THE STATISTICS OF SEEN AND UNSEEN LIBRARIES PER YEAR DURING THE PERIOD 2015-2019 Year #Total #Seen Libraries #Unseen Libraries 2015 656 312 (47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='6%) 344 (52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='4%) 2016 896 345 (38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='5%) 551 (61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='5%) 2017 1094 329 (30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='0%) 725 (70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='0%) 2018 1094 451 (41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='2%) 643 (58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='8%) 2019 651 313 (46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='5%) 338 (53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='5%) TABLE VI THE STATISTICS OF VULNERABILITY REPORTS CONTAINING SEEN AND UNSEEN LABELS PER YEAR DURING THE PERIOD 2015-2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' THE #SEEN, #FULLUNSEEN AND #PARTIALUNSEEN DENOTES THE NUMBER OF VULNERABILITY REPORTS ARE RELATED TO ONLY SEEN LABELS, ONLY UNSEEN LABELS AND BOTH SEEN AND UNSEEN ONES, RESPECTIVELY.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Year #Total #Seen #FullUnseen #PartialUnseen 2015 981 551 (56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='2%) 292 (29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='8%) 430 (43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='8%) 2016 1347 704 (52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='3%) 447 (33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='8%) 643 (47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='7%) 2017 1814 896 (49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='3%) 837 (33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='2%) 918 (50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='7%) 2018 1718 872 (49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='5%) 640 (46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='1%) 846 (50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='5%) 2019 1022 498 (48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='7%) 458 (44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='8%) 525 (51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='3%) RQ3: Which components of CHRONOS contributes to its performance?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' CHRONOS contains multiple components, in- cluding the data enhancement and time-aware adjustment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' In this research question, we investigate the contribution of each component in an ablation study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' RQ1: Percentage of Unseen Labels per Year We investigate the percentage of seen and unseen labels in our dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' We count the number of seen and unseen labels and their associated vulnerability reports for each year from 2015 to 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' We consider a label unseen if it does not appear in previous years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The results are reported in Table V and VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' As shown in Table V, the percentage of unseen labels ranges from 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='4% to 70% during 2015-2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' In particular, unseen labels account for almost half of all vulnerable labels in every years, and the percentage of unseen labels is even 70% in 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' With respect to the percentage of vulnerability descriptions associated to unseen labels, Table VI shows that 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='8% to 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='3% vulnerability descriptions during 2015-2019 contains at least one unseen label.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Moreover, there are up to 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='1% vulnerability descriptions containing only unseen labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' These results reveal the limitations of a non zero-shot learning techniques on the problem as they cannot correctly predict unseen labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Answer to RQ1: Up to 70% of labels are unseen labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' This affects 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='8% to 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='3% of vulnerability descriptions per year.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' This suggests that existing approaches cannot correctly produce the right labels for the half of all vulnerability reports each year.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' RQ2: Comparison with Baselines We compare CHRONOS against the baselines approaches with respect to Precision, Recall, and F1 at top-k predictions (k=1,2,3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The detailed results are shown in Table VII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Table VII shows that CHRONOS achieves an F1 of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='75 on average with the F1@1 of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='67, F1@2 of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='77 and F1@3 of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' These results indicate that CHRONOS consistently outperforms the baseline tools, outperforming the best baseline by 131.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='1%, 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='4%, 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='8%, and 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='6% in terms of F1@1, F1@2, F1@3, and average F1 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Compared to LightXML, CHRONOS outperforms it by 232.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='5% in average F1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Notably, LightXML underperforms the Exact Matching baseline in every metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' This highlights the challenge of the zero-shot experimental setting as LightXML was the best- performing approach in the experiments of the prior study [10] When considering only either Precision or Recall, CHRONOS is still the best performing approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' On Precision, CHRONOS is outperforms the best baseline by 127.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='3%, 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='9%, and 60% in the top-1, top-2, and top-3 predictions respec- tively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' On Recall, CHRONOS outperforms the best baseline by 134.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='6%, 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='9% and 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='7% in the top-1, top-2, and top-3 predictions respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Compared to ZestXML alone, CHRONOS improves by 27% in average F1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The improvements come from both increases in precision (up to 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='9%) and recall (35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='5%).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' This highlights the contributions of the domain-specific components, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' data enhancement and time-aware adjustment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Answer to RQ2: Yes, CHRONOS is 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='6% better in average F1 compared to the strongest baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The improvements come from both increases in precision (up to 127.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='3%) and recall (up to 134.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='9%).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' RQ3: Ablation Study In this experiment, we evaluate the relative contribution of two components, data enhancement and time-aware adjust- ment, to the overall performance of our approach, CHRONOS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Table VII shows the results of our experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' As shown in Table VII, removing each component reduces the overall performance of CHRONOS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The performance of CHRONOS drops in every metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The average F1 of CHRONOS without data enhancement and time-aware adjustment are declined from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='75 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='7 ( ↓ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='7%) and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='65 (↓ 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='2%), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' This suggests that both data enhancement and the time-aware adjustment are crucial to the effectiveness of CHRONOS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Moreover, the results also suggest that the time- aware adjustment is more essential to CHRONOS than the data enhancement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Answer to RQ3: All components of CHRONOS con- tribute positively to its effectiveness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Without data enhancement and time-aware adjustment, the per- formance of CHRONOS decreases by 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='7% and 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='2% in terms of average F1, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 8 TABLE VII COMPARISON OF THE EFFECTIVENESS OF CHRONOS WITH THE STATE-OF-THE-ART TECHNIQUES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' THE BOLD NUMBERS DENOTE THE BEST RESULTS FOR EACH METRIC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='CHRONOS W/O DE, CHRONOS W/O TA DENOTES THE RESULTS OF CHRONOS WITHOUT DATA ENHANCEMENT AND TIME-AWARE ADJUSTMENT, RESPECTIVELY.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Model P@1 R@1 F1@1 P@2 R@2 F1@2 P@3 R@3 F1@3 Avg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' F1 Exact Matching 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='33 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='26 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='29 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='53 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='41 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='46 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='46 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='52 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='42 CPE Matcher 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='27 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='26 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='26 Traditional IR 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='19 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='26 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='26 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='29 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='25 LightXML 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='32 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='21 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='26 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='24 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='28 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='26 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='29 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='22 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='25 ZestXML 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='56 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='63 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='61 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='67 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='66 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='59 CHRONOS 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='61 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='67 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='77 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='82 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='79 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='75 CHRONOS w/o DE 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='57 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='63 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='72 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='77 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='74 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='70 CHRONOS w/o TA 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='49 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='54 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='67 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='68 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='73 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='71 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='72 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='65 20 40 60 80 100 Percentage of dataset (%) 0 3250 6500 9750 13000 Total Time (ms) Inference Training Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Training and inference time of CHRONOS given different dataset sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The x-axis is the percentage of all vulnerability descriptions and the y-axis is the total time cost for training or inference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The total time of training or inference grows almost linearly with the size of dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' It just costs just 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='62 milliseconds to train and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='26 milliseconds for inference per vulnerability description.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' DISCUSSION A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Time Efficiency For practical usage, CHRONOS should work under a rea- sonable amount of time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' We investigate the efficiency of CHRONOS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' We analyze the training time (the amount of time a model takes to learn all the training examples on average) and inference time (the amount of time a model takes to return all prediction results on average).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The training time and inference time are related to two factors: the machine where the models run, and the size of the dataset (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=', how many vulnerability descriptions are used to train or to infer).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' We limit the models to only using 8 CPU cores to simulate running on a regular consumer-grade laptop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' As one would expect, a greater number of vulnerability descriptions takes a longer time to compute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' There are 7,665 vulnerability descriptions in total.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' We experiment with different dataset sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' To reduce the effects of randomness, we repeat the experiments three times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The results are presented in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The inference time is just a few thousands milliseconds and the training time is below fifteen thousand milliseconds with all vulnerability descriptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The inference time and training time grow linearly with the size of the dataset, which shows the scalability of CHRONOS in practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' CHRONOS requires just 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='62 milliseconds for training and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='26 milliseconds to infer Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Distribution of vulnerability reports.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' We have a total of 2,740 test instances, of which 1,633 are reports with unseen labels and 932 are reports with seen labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 175 reports have both seen and unseen labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' labels for each vulnerability description.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' This indicates that CHRONOS is practical for use on a consumer-grade laptop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Qualitative Analysis As we reformulate the problem as a zero-shot learning task, we investigate the performance of CHRONOS in predicting la- bels without any training data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Figure 4 shows the composition of the vulnerability reports in the testing dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' We report the result of our approach, CHRONOS, on the data with only seen labels, some seen labels, and all data with respect to Precision, Recall, and F1 at top-k predictions (k=1,2,3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The detailed results are shown in Table VIII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' CHRONOS achieves an average F1 of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='70, with an F1@1 of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='64, F1@2 of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='72, and F1@3 of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='75 on the data with some seen labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' For the data with only seen labels, our approach achieves an average F1 of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='84, with an F1@1 of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='75, F1@2 of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='87, and F1@3 of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Comparing our CHRONOS’s performance on data with only seen labels and data with some seen labels, CHRONOS performs better on the data with only seen labels by 20%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' This indicates that CHRONOS’s performance on data with unseen labels still has room for improvement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Nevertheless, CHRONOS is able to perform reasonably well on the data with some seen labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' We conclude that CHRONOS achieves strong prediction results for the seen labels and is still effective at making good predictions on the unseen labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 9 Data with only seen labels Data with only unseen labels 1633 175 932 Data with at least one seen labelsTABLE VIII COMPARISON OF CHRONOS UNDER DIFFERENT TESTING DATA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' CHRONOS FULLSEEN AND CHRONOS PARTIALUNSEEN DENOTES THE RESULTS OF CHRONOS ON THE VULNERABILITY REPORTS WITH ONLY SEEN LABELS AND AT LEAST ONE UNSEEN LABELS, RESPECTIVELY Model P@1 R@1 F1@1 P@2 R@2 F1@2 P@3 R@3 F1@3 Avg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' F1 CHRONOS FullSeen 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='83 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='68 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='89 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='86 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='87 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='91 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='89 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='84 CHRONOS PartialUnseen 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='58 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='64 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='76 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='69 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='72 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='77 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='73 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='70 CHRONOS 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='61 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='67 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='77 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='82 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='79 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='75 TABLE IX COMPARISON OF THE EFFECTIVENESS OF CHRONOS WITH THE STATE-OF-THE-ART TECHNIQUES IN PREDICTING UNSEEN LABELS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' CHRONOS IS ABLE TO CORRECTLY PREDICT 694 PREVIOUSLY UNSEEN LABELS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Model Success Rate # Success Cases / Total LightXML 0% 0 / 957 CHRONOS 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content="52% 694 / 957 CVE-2019-0741 Description An information disclosure vulnerability exists in the way Azure IoT Java SDK logs sensitive information, aka 'Azure IoT Java SDK Information Disclosure Vulnerability’." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' References http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='securityfocus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='com/bid/106971 https://portal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='msrc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='microsoft.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='com/en-US/security- guidance/advisory/CVE-2019-0741 CPE Configurations cpe:2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='3:a:microsoft:java_software_development_kit:- :*:*:*:*:azure_internet_of_things:*:* Ground-Truth Label com.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='microsoft.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='azure iot-device-client com.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='microsoft.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='azure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='sdk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='iot iot-device-client CHRONOS Label Predictions microsoft.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='chakracore;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='microsoft.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='chakracore.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='vc140 com.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='microsoft.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='azure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='sdk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='iot iot-device-client provisioning-device-client;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' microsoft.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='azure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='client;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' microsoft.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='azure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='provisioning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='transport.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='amqp Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Unseen Label Example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' NVD entry for CVE-2019-0741.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The top half of the image is the NVD entry of a description, some references, and CPE configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The bottom half of the image is the ground-truth label and CHRONOS’s prediction label.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Table IX shows the improvements of CHRONOS over the baseline LightXML in predicting unseen labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' While LightXML cannot predict unseen labels, our method success- fully predicts at least one correct vulnerability for 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='52% of them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Figure 5 shows an example of a vulnerability re- port where CHRONOS successfully predicts an unseen label.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Given the text extracted from the vulnerability description, we compare the ground-truth label and the predictions of CHRONOS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The red, bold characters in the ground-truth label and CHRONOS’s predictions are text that do not appear in the vulnerability description.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Even if the library name does not explicitly appear in the vulnerability descriptions, our method can predict them successfully.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' This suggests that CHRONOS successfully learns to identify relevant terms that are indicative of each library.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Threats to Validity Threats to internal validity include possible errors in our implementation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' A possible threat relates to the selection of CHRONOS’s and baseline approaches’ hyper-parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' To mitigate this threat, we tune these hyper-parameters using grid search and select the best combination on the validation dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Besides, we also have made the source code of our tool and data in our experiments publicly available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Threats to construct validity are related to the suitability of our evaluation metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' To minimize this threat, we have used the same performance metrics of precision, recall, and F1 of the top 3 predictions that were used in the previous studies [6], [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' These are standard metrics used in the literature of XML approaches [11], [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Threats to external validity are concerned with the gener- alizability of our experiments and findings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' A possible threat is related to our dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' We have utilized the same dataset from prior work [6], [10], containing vulnerabilities spanning over several years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' These data were collected and validated by security researchers in Veracode, hence, we believe that the threat is minimal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Another threat is related to the random- ness of CHRONOS and LightXML.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' To mitigate this risk, we ran each tool five times and report the average results and observe that LightXML is stable (with a standard deviation of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='005 while Chronos returns the same results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Hence, we believe that the findings in our paper will not change even with more runs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' The final threat is related to the setting of supervised learning apprach, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' LightXML.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' To deal with the unseen label issue, supervised learning can be evaluate an experimental setting where the data is provided as a stream.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Unfortunately, LightXML requires around 6 hours for training, that means 6 (hours) x 2740 (entries) = 16,440 (hours) are required to retrain LightXML.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Therefore, a comparison of Chronos and LightXML when data is provided as a stream is very expensive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' We emphasize that this is a limitation of LightXML;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' LightXML will fail to predict previously unseen labels (occurring up to 70% in Table 3) without frequent retraining, while Chronos does not have this limitation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 10 VII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' RELATED WORK Software Composition Analysis is increasingly essential for securing software systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' In recent years, there have been many studies investigating the dependencies of soft- ware [28]–[32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Many empirical studies have reported the impact of vulnerable dependencies in the software supply chain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' For example, Decan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [32] found that the number of vulnerability-affected packages in the npm network is growing over time, and half of the affected packages do not get fixed even when the fix is available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Lauinger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [33] also showed that around 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='8% of the packages in the npm network have at least one vulnerable dependency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' These findings demonstrated the growing importance of securing the software supply chain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Unfortunately, developers are slow in updating their vulner- able dependencies, leading to the risk of exploitation [8], [34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Like our study, other researchers have recently proposed auto- mated methods that have emerged as a promising solution for speeding up the process [35], [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' For example, Mirhosseini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [35] found that projects that use automated pull requests up- grade dependencies 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='6x often as projects that did not use any tools.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Other studies propose methods for detecting or obtaining more information about vulnerabilities from different software artifacts, including commits [37]–[41], bug reports [27], [42], [43], and mailing lists [44], [45].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Unlike these studies, we do not aim to detect vulnerabilities but to determine which libraries are vulnerable based on a vulnerability report.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Other methods help developers to check if a library vulnerability can be exploited [46], [47] but already requires comprehensive information about the vulnerable library.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' For vulnerability reports, researchers have proposed meth- ods to assist in the analysis of vulnerabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Some studies focus on identifying affected versions [48] or predicting the exploitability of a vulnerability [49].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Other approaches use vulnerability reports to predict the key aspects, severity, or other properties of vulnerabilities [49]–[52].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Another method models new attack techniques from textual descriptions of vul- nerabilities [53].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Similarly, our work aims to make predictions of vulnerability reports.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' However, we have a different goal of selecting libraries from a large space of possible labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Our study shows the importance of considering more prac- tical experimental setups for analyzing vulnerability reports.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Other Software Engineering studies have also shown that overlooking time and other practical concerns may lead to brittle experimental results [23], [54]–[58].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' To address this practical challenge, our technique relies on a cache to leverage the time locality of the vulnerability reports.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' This phenomenon has been observed in other artifacts of software engineering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Tamrawi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [59] uses a caching strategy to enhance bug triaging by prioritizing developers who recently fixed related bugs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Caches of identifier names have been used to improve language models for source code [60]–[62].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' VIII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' CONCLUSION AND FUTURE WORK Software Composition Analysis (SCA) depends on signifi- cant human effort in identifying every library that is affected by a vulnerability report.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Due to the large space of possible libraries, human effort can be error-prone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Manual analysis relies on the human annotator’s limited domain knowledge to match libraries against vulnerability reports that may not explicitly indicate every relevant library.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' However, in this study, we show that the experimental setup considered in prior studies using extreme multi-label classification techniques may not consider a practical setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' We reformulate the problem as a generalized zero-shot learning task, in which we face the challenge of predicting previously unseen labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Under the more realistic setting, prior approaches face a substantial drop in performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' CHRONOS uses zero-shot XML, data enhancement of the documents and labels, and time-aware adjustment of the labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' CHRONOS is able to produce the right labels even if they were previously unseen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' CHRONOS achieves an average F1 of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='75, improving over the strongest approach identified in a prior study by 212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='5%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Our experiments also indicate that each component of CHRONOS contributes to its effectiveness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' These results suggest that the combination of techniques employed in CHRONOS successfully addresses the challenge of predicting previously unseen libraries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Overall, the experiments suggest that CHRONOS is effective for identifying libraries from vul- nerability reports.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' This study takes a large step forward in considering the real-world practical concerns of library identification from vulnerability reports.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Among other techniques in CHRONOS, the use of reference data proved to be helpful in our exper- iments, however, the references listed on NVD entries may be incomplete as the references were also identified through human analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' In the future, we will investigate methods of using software artifact traceability techniques [63], [64] to link the NVD report to related artifacts (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' the commits on GitHub fixing the vulnerabilities).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' IX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' DATA AVAILABILITY CHRONOS’s dataset and implementation are publicly avail- able at https://figshare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='com/articles/software/Chronos-ICSE23/ 20787805 and https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='com/soarsmu/Chronos, respec- tively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' ACKNOWLEDGEMENT This project is supported by the National Research Founda- tion, Singapore and National University of Singapore through its National Satellite of Excellence in Trustworthy Software Systems (NSOE-TSS) office under the Trustworthy Comput- ing for Secure Smart Nation Grant (TCSSNG) award no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' NSOE-TSS2020-02.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of National Research Foundation, Singapore and National University of Singapore (including its National Satellite of Excellence in Trustworthy Software Systems (NSOE-TSS) office).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Xuan-Bach D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Le is supported by the Australian Gov- ernment through the Australian Research Council’s Dis- covery Early Career Researcher Award, project number DE220101057.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 11 REFERENCES [1] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Prana, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Sharma, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Shar, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Foo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Santosa, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Sharma, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Lo, “Out of sight, out of mind?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' how vulnerable dependencies affect open-source projects,” Empirical Software Engineer- ing (EMSE), vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 26, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 1–34, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [2] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Imtiaz, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Khanom, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Williams, “Open or sneaky?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' fast or slow?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' light or heavy?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' : Investigating security releases of open source packages,” IEEE Transactions on Software Engineering (TSE), 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [3] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Imtiaz, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Thorn, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Williams, “A comparative study of vulnera- bility reporting by software composition analysis tools,” in Proceedings of the 15th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM), 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 1–11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [4] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Foo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Yeo, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Xiao, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Sharma, “The dynamics of Software Composition Analysis,” Automated Software Engineering (ASE) (Late Breaking Results), 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [5] “Why do organizations trust Snyk to win the open source security bat- tle?”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' https://snyk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='io/blog/why-snyk-wins-open-source-security-battle/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [6] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Chen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Santosa, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Sharma, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Lo, “Automated identification of libraries from vulnerability data,” in Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering: Software En- gineering in Practice (ICSE-SEIP), 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 90–99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [7] “Snyk’s database, CVE-2018-1914,” https://security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='snyk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='io/ vuln?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='search=CVE-2018-19149.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [8] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Kula, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' German, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Ouni, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Ishio, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Inoue, “Do develop- ers update their library dependencies?”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Empirical Software Engineering (EMSE), vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 23, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 384–417, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [9] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Chinthanet, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Kula, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' McIntosh, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Ishio, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Ihara, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Matsumoto, “Lags in the release, adoption, and propagation of npm vulnerability fixes,” Empirical Software Engineering (EMSE), vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 26, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 1–28, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [10] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Haryono, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Kang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Sharma, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Sharma, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Santosa, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Yi, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Lo, “Automated identification of libraries from vulnerability data: can we do better?”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' in IEEE/ACM International Conference on Program Comprehension (ICPC), 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [11] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Jiang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Wang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Sun, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Yang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Zhao, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Zhuang, “LightXML: Transformer with dynamic negative sampling for high- performance extreme multi-label text classification,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 35, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 9, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 7987–7994.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [12] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Prabhu and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Varma, “FastXML: A fast, accurate and stable tree- classifier for extreme multi-label learning,” in Proceedings of the 20th ACM SIGKDD international conference on Knowledge Discovery and Data Mining, 2014, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 263–272.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [13] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Wang, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Zheng, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Yu, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Miao, “A survey of zero-shot learning: Settings, methods, and applications,” ACM Transactions on Intelligent Systems and Technology (TIST), vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 10, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 1–37, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [14] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Gupta, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Bohra, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Prabhu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Purohit, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Varma, “Generalized zero-shot extreme multi-label learning,” in Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 527–535.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [15] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Honnibal, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Montani, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Van Landeghem, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Boyd, “spaCy: Industrial-strength Natural Language Processing in Python,” 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [16] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Corazza, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Di Martino, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Maggio, “Linsen: An efficient ap- proach to split identifiers and expand abbreviations,” in 2012 28th IEEE International Conference on Software Maintenance (ICSM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' IEEE, 2012, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 233–242.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [17] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Enslen, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Hill, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Pollock, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Vijay-Shanker, “Mining source code to automatically split identifiers for software analysis,” in 2009 6th IEEE International Working Conference on Mining Software Reposito- ries (MSR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' IEEE, 2009, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 71–80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [18] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Hucka, “Spiral: splitters for identifiers in source code files,” Journal of Open Source Software, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 3, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 24, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 653, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [19] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Ramos et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=', “Using tf-idf to determine word relevance in document queries,” in Proceedings of the first Instructional Conference on Machine Learning, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 242, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Citeseer, 2003, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 29–48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [20] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Buttner, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Wittbold, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Ziring, “Common platform enumeration (cpe)-name format and description,” NATIONAL SECURITY AGEN- CY/CENTRAL SECURITY SERVICE FORT MEADE MD FORT MEADE .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' , Tech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=', 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [21] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Fu and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Menzies, “Easy over hard: A case study on deep learning,” in Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering (FSE), 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 49–60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [22] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Zeng, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Zhang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Zhang, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Zhang, “Deep just-in-time defect prediction: how far are we?”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' in Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA), 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 427–438.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [23] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Kang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Aw, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Lo, “Detecting false alarms from automatic static analysis tools: How far are we?”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' in IEEE/ACM International Conference on Software Engineering (ICSE), 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [24] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Liu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Ott, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Goyal, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Du, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Joshi, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Chen, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Levy, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Lewis, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Zettlemoyer, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Stoyanov, “Roberta: A robustly optimized bert pretraining approach,” arXiv preprint arXiv:1907.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='11692, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [25] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Kenton and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Toutanova, “BERT: Pre-training of deep bidirectional transformers for language understanding,” in Proceedings of NAACL-HLT, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 4171–4186.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [26] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Yang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Dai, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Yang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Carbonell, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Salakhutdinov, and Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Le, “XLNET: Generalized autoregressive pretraining for language understanding,” Advances in Neural Information Processing Systems, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 32, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [27] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Chen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Santosa, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Yi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Sharma, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Sharma, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Lo, “A machine learning approach for vulnerability curation,” in Proceedings of the 17th International Conference on Mining Software Repositories (MSR), 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 32–42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [28] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Han, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Deng, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Lo, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Zhi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Yin, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Xia, “An empirical study of the dependency networks of deep learning libraries,” in 2020 IEEE International Conference on Software Maintenance and Evolution (ICSME).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' IEEE, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 868–878.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [29] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Decan, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Mens, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Grosjean, “An empirical comparison of dependency network evolution in seven software packaging ecosystems,” Empirical Software Engineering (EMSE), vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 24, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 381–416, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [30] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Ponta, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Plate, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Sabetta, “Detection, assessment and mitigation of vulnerabilities in open source dependencies,” Empirical Software Engineering (EMSE), vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 25, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 3175–3215, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [31] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Decan, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Mens, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Constantinou, “On the impact of security vulnerabilities in the npm package dependency network,” in Proceedings of the 15th International Conference on Mining Software Repositories, 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 181–191.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [32] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Zapata, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Kula, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Chinthanet, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Ishio, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Matsumoto, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Ihara, “Towards smoother library migrations: A look at vulnerable dependency migrations at function level for npm Javascript packages,” in 2018 IEEE International Conference on Software Maintenance and Evolution (ICSME).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' IEEE, 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 559–563.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [33] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Lauinger, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Chaabane, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Arshad, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Robertson, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Wilson, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Kirda, “Thou shalt not depend on me: Analysing the use of outdated Javascript libraries on the web,” arXiv preprint arXiv:1811.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='00918, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [34] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Decan, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Mens, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Zerouali, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' De Roover, “Back to the past– analysing backporting practices in package dependency networks,” IEEE Transactions on Software Engineering (TSE), 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [35] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Mirhosseini and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Parnin, “Can automated pull requests encourage software developers to upgrade out-of-date dependencies?”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' in 2017 32nd IEEE/ACM international conference on Automated Software Engineer- ing (ASE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' IEEE, 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 84–94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [36] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Rombaut, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Cogo, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Adams, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Hassan, “There’s no such thing as a free lunch: Lessons learned from exploring the overhead intro- duced by the greenkeeper dependency bot in npm,” ACM Transactions on Software Engineering and Methodology (TOSEM), 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [37] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Nguyen-Truong, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Kang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Lo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Sharma, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Santosa, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Sharma, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Ang, “Hermes: Using commit-issue linking to detect vulnerability-fixing commits,” in 2022 IEEE International Con- ference on Software Analysis, Evolution and Reengineering (SANER).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' IEEE, 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 51–62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [38] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Zhou, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Pacheco, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Wan, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Xia, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Lo, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Wang, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Hassan, “Finding a needle in a haystack: Automated mining of silent vulnerability fixes,” in 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' IEEE, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 705–716.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [39] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Nguyen-Truong, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Le-Cong, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Kang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Le, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Lo, “VulCurator: A vulnerability-fixing commit detector,” in Proceedings of the 30th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [40] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Zhou, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Siow, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Wang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Liu, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Liu, “SPI: Automated identification of security patches via commits,” ACM Transactions on Software Engineering and Methodology (TOSEM), vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 31, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 1–27, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 12 [41] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Sawadogo, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Bissyand´e, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Moha, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Allix, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Klein, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Li, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Le Traon, “SSPCatcher: Learning to catch security patches,” Empirical Software Engineering (EMSE), vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 27, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 1–32, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [42] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Zhou and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Sharma, “Automated identification of security issues from commit messages and bug reports,” in Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering (ESEC/FSE), 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 914–919.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [43] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Shu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Xia, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Chen, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Williams, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Menzies, “How to better dis- tinguish security bug reports (using dual hyperparameter optimization),” Empirical Software Engineering (EMSE), vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 26, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 1–37, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [44] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Ramsauer, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Bulwahn, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Lohmann, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Mauerer, “The sound of silence: Mining security vulnerabilities from secret integration channels in open-source projects,” in Proceedings of the 2020 ACM SIGSAC Conference on Cloud Computing Security Workshop, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 147– 157.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [45] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Jovanovic, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Kruegel, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Kirda, “Pixy: A static analysis tool for detecting web application vulnerabilities,” in 2006 IEEE Symposium on Security and Privacy (S&P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' IEEE, 2006, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 6–pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [46] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Iannone, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Di Nucci, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Sabetta, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' De Lucia, “Toward automated exploit generation for known vulnerabilities in open-source libraries,” in 2021 IEEE/ACM 29th International Conference on Pro- gram Comprehension (ICPC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' IEEE, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 396–400.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [47] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Kang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Nguyen, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Le, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' P˘as˘areanu, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Lo, “Test mimicry to assess the exploitability of library vulnerabilities,” in Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA), 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 276–288.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [48] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Bao, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Xia, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Hassan, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Yang, “V-SZZ: automatic identification of version ranges affected by CVE vulnerabilities,” in 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' IEEE, 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 2352–2364.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [49] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Bozorgi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Saul, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Savage, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Voelker, “Beyond heuristics: learning to classify vulnerabilities and predict exploits,” in Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2010, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 105–114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [50] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Guo, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Chen, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Xing, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Li, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Bai, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Sun, “Detecting and augmenting missing key aspects in vulnerability descriptions,” ACM Transactions on Software Engineering and Methodology (TOSEM), vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 31, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 1–27, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [51] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Han, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Xing, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Liu, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Feng, “Learning to predict severity of software vulnerability using only vulnerability description,” in 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' IEEE, 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 125–136.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [52] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Gong, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Xing, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Feng, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Han, “Joint prediction of multiple vulnerability characteristics through multi-task learning,” in 2019 24th International Conference on Engineering of Complex Computer Systems (ICECCS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' IEEE, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 31–40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [53] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Binyamini, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Bitton, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Inokuchi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Yagyu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Elovici, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Shabtai, “An automated, end-to-end framework for modeling attacks from vulnerability descriptions,” arXiv preprint arXiv:2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content='04377, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [54] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Tu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Zhu, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Zheng, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Zhou, “Be careful of when: an empirical study on time-related misuse of issue tracking data,” in Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE), 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 307–318.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [55] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Herzig, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Just, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Zeller, “It’s not a bug, it’s a feature: how misclassification impacts bug prediction,” in 2013 35th International Conference on Software Engineering (ICSE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' IEEE, 2013, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 392– 401.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [56] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Christakis and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Bird, “What developers want and need from program analysis: an empirical study,” in Proceedings of the 31st IEEE/ACM international conference on Automated Software Engineer- ing (ASE), 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 332–343.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [57] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Sørensen, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Karlsen, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Li, “What norwegian developers want and need from security-directed program analysis tools: A survey,” in Proceedings of the Evaluation and Assessment in Software Engineer- ing, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 505–511.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [58] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Winter, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Bowes, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Counsell, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Hall, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Haraldsson, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Nowack, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Woodward, “How do developers really feel about bug fixing?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' directions for automatic program repair,” IEEE Transactions on Software Engineering, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [59] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Tamrawi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Nguyen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Al-Kofahi, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Nguyen, “Fuzzy set and cache-based approach for bug triaging,” in Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering (FSE), 2011, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 365–375.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [60] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Hellendoorn and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Devanbu, “Are deep neural networks the best choice for modeling source code?”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' in Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering (FSE), 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 763–773.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [61] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Franks, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Tu, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Devanbu, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Hellendoorn, “CACHECA: A cache language model based code suggestion tool,” in 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering (ICSE), vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' IEEE, 2015, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 705–708.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [62] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Tu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Su, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Devanbu, “On the localness of software,” in Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE), 2014, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 269–280.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [63] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Rodriguez, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Cleland-Huang, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Falessi, “Leveraging in- termediate artifacts to improve automated trace link retrieval,” in 2021 IEEE International Conference on Software Maintenance and Evolution (ICSME).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' IEEE, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 81–92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' [64] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Lin, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Liu, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Zeng, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Jiang, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' Cleland-Huang, “Traceability transformed: Generating more accurate links with pre-trained bert mod- els,” in 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' IEEE, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 324–335.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
+page_content=' 13' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/xdE2T4oBgHgl3EQfhAfX/content/2301.03944v1.pdf'}
diff --git a/xtAyT4oBgHgl3EQfnvhT/vector_store/index.faiss b/xtAyT4oBgHgl3EQfnvhT/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..98b941e818d0fb936b4bfcb1345908e06da44d83
--- /dev/null
+++ b/xtAyT4oBgHgl3EQfnvhT/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c05ce8931ddeadc5930742b55c6878c3d2ec435bc2eb292a8de18e80eff7090d
+size 5767213
diff --git a/xtAyT4oBgHgl3EQfnvhT/vector_store/index.pkl b/xtAyT4oBgHgl3EQfnvhT/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..846f44d5221601b4251b7d746f8a826de7ab20f7
--- /dev/null
+++ b/xtAyT4oBgHgl3EQfnvhT/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:31c99c6a633a05298678dfcb3dfea4292212b8de0f993008080a70d42a34a072
+size 220414
diff --git a/yNAyT4oBgHgl3EQfnvis/vector_store/index.pkl b/yNAyT4oBgHgl3EQfnvis/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..fd4d969aef56edf9ce1f392c28ee7a388df69c7b
--- /dev/null
+++ b/yNAyT4oBgHgl3EQfnvis/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:9822626f64de6b50f830dfcdbe496228cac486c7cf2fdcc45b162ae4cf8a3ef6
+size 147169
diff --git a/z9AyT4oBgHgl3EQf0_mr/content/tmp_files/2301.00728v1.pdf.txt b/z9AyT4oBgHgl3EQf0_mr/content/tmp_files/2301.00728v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..71a5922bbaac1110b2c60baa56252d074b0034b6
--- /dev/null
+++ b/z9AyT4oBgHgl3EQf0_mr/content/tmp_files/2301.00728v1.pdf.txt
@@ -0,0 +1,1403 @@
+The decay A0 → h0Z(∗) in the inverted hierarchy
+scenario and its detection prospects at the Large
+Hadron Collider
+A.G. Akeroyd,1, ∗ S. Alanazi,1, 2, † and Stefano Moretti1, 3, ‡
+1School of Physics and Astronomy,
+University of Southampton, Highfield,
+Southampton SO17 1BJ, United Kingdom
+2Physics Department, Imam Mohammad Ibn Saud Islamic University (IMISU),
+P.O. Box 90950, Riyadh, 11623, Saudi Arabia
+3Department of Physics and Astronomy,
+Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
+(Dated: January 3, 2023)
+1
+arXiv:2301.00728v1 [hep-ph] 2 Jan 2023
+
+Abstract
+Searches are being carried out at the Large Hadron Collider (LHC) for the decay of the CP-odd
+scalar (A0) in Two-Higgs-Doublet Models (2HDMs) with Natural Flavour Conservation (NFC) in
+the channel A0 → h0Z (with mh0 = 125 GeV and Z on-shell). In the absence of any signal, limits
+on the parameter space of [tan β, cos(β − α), mA0] in each 2HDM are derived for mA0 > 225 GeV.
+In this work we consider the scenario of inverted hierarchy with mh0 < 125 GeV and mH0 = 125
+GeV in which the decay A0 → h0Z(∗) (i.e. including the case of an off-shell Z) can have a large
+branching ratio in the 2HDM (Type I) for mA0 < 225 GeV. We calculate the signal cross section
+σ(gg → A0) × BR(A0 → h0Z(∗)) × BR(h0 → bb) in the 2HDM (Type I) with NFC and compare
+its magnitude with the cross section for the case of normal hierarchy (mh0 = 125 GeV) that is
+currently being searched for at the LHC. For the experimentally unexplored region mA0 < 225
+GeV it is shown that the above cross section for signal events in the scenario of inverted hierarchy
+can be of the order of a few picobarns. Such sizeable cross sections are several orders of magnitude
+larger than the cross sections for the case of normal hierarchy, thus motivating an extension of the
+ongoing searches for A0 → h0Z(∗) to probe the scenario of inverted hierarchy.
+∗Electronic address: a.g.akeroyd@soton.ac.uk
+†Electronic address: swa1a19@soton.ac.uk; SWAlanazi@imamu.edu.sa
+‡Electronic address: S.Moretti@soton.ac.uk; stefano.moretti@physics.uu.se
+2
+
+I.
+INTRODUCTION
+The discovery in the year 2012 of a new particle with a mass of around 125 GeV by the
+ATLAS and CMS collaborations of the Large Hadron Collider (LHC) [1, 2] has led to increas-
+ingly precise measurements of its properties in the last ten years. To date, all measurements
+of the 125 GeV state are in very good agreement (within experimental error) with the pre-
+dicted properties of the Higgs boson of the Standard Model (SM) with a mass of 125 GeV.
+Five decay channels (γγ, ZZ, W +W −, τ +τ −, and bb) have now been observed with a sta-
+tistical significance of greater than 5σ (e.g. see [3]). Evidence for the decays to µ+µ− and
+Zγ is currently at the 2σ level, and observation of these channels with a statistical signifi-
+cance of 5σ is likely by the end of the operation of the High Luminosity LHC (HL-LHC). In
+addition, each of the four main production mechanisms (gluon-gluon fusion, vector boson
+(W/Z) fusion, associated production with a vector boson, and associated production with
+top quarks) have been measured for at least one of the above decay channels, with no signif-
+icant deviation from the predicted cross-sections of the SM Higgs boson. Measurements of
+all the above cross sections and branching ratios (BRs) with the full Run II data (139 fb−1
+at √s = 13 TeV) have been combined to show a signal strength (i.e. cross section times BR,
+averaged over all channels) relative to that of the SM Higgs boson of 1.02+0.07
+−0.06 [4] (CMS)
+and 1.06 ± 0.06 [5] (ATLAS).
+Whether or not the observed 125 GeV boson is the (solitary) Higgs boson of the SM
+is still an issue to be clarified experimentally. It is possible that the 125 GeV boson is
+the first scalar to be discovered from an extension of the SM that contains a non-minimal
+Higgs sector e.g.
+the scalar potential contains additional scalar isospin doublets and/or
+other representations such as scalar isospin singlets/triplets. A much studied example is the
+non-supersymmetric Two Higgs Doublet Model (2HDM) [6–9], in which the scalar potential
+of the SM contains two SU(2)L ⊗ U(1)Y isospin doublets instead of just one. The SM has
+various shortcoming such as i) an absence of neutrino mass, ii) an absence of a dark matter
+candidate, and iii) insufficient CP violation for baryogenesis. These issues (and others) are
+often solved in extensions of the SM that contain additional scalars. Many models with a
+non-minimal Higgs sector predict a SM-like scalar in part of the model’s parameter space. In
+the aforementioned 2HDM there is an ”alignment limit” in which one of the CP-even scalars
+has properties that exactly match those of the Higgs boson of the SM. This alignment is
+3
+
+naturally obtained if only one of the CP-even scalars remains light (of the order of the
+electroweak scale) while all other scalars have masses that are much larger. The alignment
+can also be realised if all scalars are of the order of the electroweak scale (”alignment without
+decoupling”) and it is on this scenario that we will focus.
+If the 125 GeV boson is the first scalar to be discovered from a non-minimal Higgs
+sector then future measurements (e.g. with larger integrated luminosity at the LHC and/or
+at a future e+e− collider) of its various production cross sections and BRs might start to
+show deviations from the values for the SM Higgs boson. Moreover, enlarged Higgs sectors
+contain additional neutral scalars and/or charged scalars (H±), and such particles are being
+actively searched for at the LHC. In 2HDMs there are two CP-even scalars h0 and H0 (with
+mh0 < mH0), a pair of charged scalars H+ and H− and a neutral pseudoscalar Higgs boson
+A0, which is CP-odd.
+The discovered 125 GeV boson has been shown to be CP-even and in the context of a
+2HDM it would be interpreted as being either h0 (called ”normal hierarchy”, NH) or H0
+(called ”inverted hierarchy”, IH). The CP-odd A0 does not have tree-level couplings to the
+gauge bosons of the weak interaction (W ±, Z) and has a different phenomenology to both
+h0 an H0. We shall focus on the prospects of discovering an A0 from a 2HDM at the LHC
+via its decay A0 → h0Z(∗). In the context of NH one has mh0 = 125 GeV and the current
+searches at the LHC for A0 → h0Z (assuming an on-shell Z) are only carried out for this NH
+scenario and for the specific case of mA0 >225 GeV. In this work we consider the case of IH
+in which mh0 can be significantly lighter than 125 GeV. It will be shown that the number of
+signal events for A0 → h0Z(∗) can be considerably larger than in NH for the experimentally
+unexplored region of mA0 < 225 GeV, and the current experimental searches would need to
+be modified in order to probe this scenario.
+This work is organised as follows. In section II the various 2HDMs are introduced. In
+section III the phenomenology of A0 at the LHC is presented, and in section IV the current
+searches for A0 → h0Z at the LHC are summarised. Our numerical results for the cross
+section for A0 → h0Z(∗) events in the IH scenario are given in section V, and conclusions
+are contained in section VI.
+4
+
+II.
+THE TWO HIGGS DOUBLET MODEL (2HDM)
+The SM has one complex scalar isospin doublet (I = 1/2) with hypercharge Y = 1, in which
+the real part of the neutral scalar field obtains a vacuum expectation value (v). The presence
+of v leads to the spontaneous breaking of the SU(2)L ⊗ U(1)Y local gauge symmetry to a
+U(1)Q local gauge symmetry, and provides mass to the W ±, Z (via the kinetic energy term of
+the scalar fields) and charged fermions (via the Yukawa couplings). Such a mechanism for the
+generation of mass is called the ”Higgs mechanism”, and a CP-even physical scalar particle
+(a ”Higgs boson”, h0) is predicted. In the context of the SM this Higgs boson h0 has now
+been found with a mass of around 125 GeV. The Higgs mechanism can also be implemented
+using two complex scalar doublets in which there are now two vacuum expectation values
+(v1 and v2), and such a model is called the 2HDM [6–9]. Supersymmetric (SUSY) versions of
+the SM require two complex scalar doublets [10], but the 2HDM has also been well-studied
+as a minimal (and non-SUSY) extension of the SM. After ”electroweak symmetry breaking”
+(EWSB) there are five physical Higgs bosons instead of the one CP-even Higgs boson h0 of a
+one-scalar doublet model. In the context of a 2HDM the 125 GeV boson that was discovered
+at the LHC is interpreted as being either h0 (NH) or H0 (IH), with couplings very close to
+those of the SM Higgs boson.
+Enlarging the scalar sector of the SM can conflict with experimental data. A strong sup-
+pression of ”Flavour Changing Neutral Currents” (FCNCs) that are predicted in any 2HDM
+is a stringent constraint on its structure. In general, the Yukawa couplings in a 2HDM are
+not flavour diagonal. Such FCNCs lead to interactions that change quark flavour (such as
+a vertex h0bs), which must be highly suppressed in order to respect experimental limits
+on the phenomenology of quarks. A particularly elegant suppression mechanism of FCNCs
+in 2HDMs (the ”Paschos-Glashow-Weinberg theorem” or ”Natural Flavour Conservation”
+(NFC) [11]) is to require that the Lagrangian respects certain discrete symmetries (Z2 sym-
+metries). Such symmetries enforce that a given flavour of charged fermion receives its mass
+from just one vacuum expectation value, leading to the elimination of FCNC processes at
+the tree-level.
+The most general scalar potential of a 2HDM that is invariant under the SU(2)L ⊗U(1)Y
+local gauge symmetry and which only softly breaks (via the m2
+12 terms) an appropriate Z2
+5
+
+symmetry (imposed to avoid FCNCs) is as follows [7, 8]:
+V (Φ1Φ2) = m2
+11Φ†
+1Φ1 + m2
+22Φ†
+2Φ2 − m2
+12(Φ†
+1Φ2 + Φ†
+2Φ1) + λ1
+2 (Φ†
+1Φ1)2 +
+(1)
+λ2
+2 (Φ†
+2Φ2)2 + λ3Φ†
+1Φ1Φ†
+2Φ2 + λ4Φ†
+1Φ2Φ†
+2Φ1 + λ5
+2 [(Φ†
+1Φ2)2 + (Φ†
+2Φ1)2] ,
+with Φi =
+�
+Φ∔
+i
+(υi+ρi+iηi)
+√
+2
+�
+, and i = 1, 2.
+In general, some of the parameters in the scalar potential can be complex and thus they can
+be sources of CP violation. We consider a simplified scenario by taking all parameters to be
+real, as is often done in phenomenological studies of the 2HDM. The scalar potential then
+has 8 real independent parameters: m2
+11, m2
+22, m2
+12, λ1, λ2, λ3, λ4, and λ5. These parameters
+determine the masses of the Higgs bosons and their couplings to fermions and gauge bosons.
+However, it is convenient to work with different independent parameters which are more
+directly related to physical observables. A common choice is: mh0, mH0, mH±, mA0, υ1, υ2,
+m2
+12 and sin(β − α). The first four parameters are the masses of the physical Higgs bosons.
+The vacuum expectation values υ1 and υ2 are the values of the neutral CP-even fields in Φ1
+and Φ2 respectively at the minimum of the scalar potential:
+⟨Φ1⟩ = 1
+√
+2
+� 0
+υ1
+�
+,
+⟨Φ2⟩ = 1
+√
+2
+� 0
+υ2
+�
+.
+(2)
+The parameter β is defined via tan β = υ2/υ1, and the angle α determines the composition
+of the CP-even mass eigenstates h0 and H0 in terms of the original neutral CP-even fields
+that are present in the isospin doublets Φ1 and Φ2. Of these 8 parameters in the scalar
+potential, 2 have now been measured. After EWSB in a 2HDM, the mass of the W ± boson
+is given by mW = gv/2, with υ =
+�
+υ2
+1 + υ2
+2 ≃ 246 GeV. Hence only one of υ1 and υ2 is
+independent, and so tan β = υ2/υ1 is taken as an independent parameter. As mentioned
+earlier, in a 2HDM the discovered 125 GeV boson is taken to be h0 or H0 and thus either
+mh0 = 125 GeV (NH) or mH0 = 125 GeV (IH). The remaining 6 independent parameters in
+the 2HDM scalar potential are: mH±, mA0, m2
+12, tan β, sin(β − α) and one of [mh0, mH0]. In
+the NH scenario mH0 > 125 GeV and in the IH scenario mh0 < 125 GeV. In this work we
+shall be focussing on the IH scenario and the phenomenology of A0.
+As mentioned above, the masses of the pseudoscalar A0 and the charged scalars H± are
+independent parameters, and in terms of the original parameters in the scalar potential are
+6
+
+given by:
+m2
+A0 =
+� m2
+12
+υ1υ2
+− 2λ5
+�
+(υ2
+1 + υ2
+2) ,
+m2
+H± =
+� m2
+12
+υ1υ2
+− λ4 − λ5
+�
+(υ2
+1 + υ2
+2) =
+�
+m2
+A + υ(λ5 − λ4)
+�
+.
+(3)
+From these equations it can be seen that the mass difference between mA0 and mH± depends
+on λ5 − λ4. In our numerical analysis we shall be taking mA0 = mH± in order to satisfy
+more easily the constraints from electroweak precision observables (”oblique parameters”),
+and this corresponds to λ5 = λ4. For the masses of the CP-even scalars we take mH0 = 125
+GeV, and mh0 < 125 GeV (IH scenario).
+There are four distinct types of 2HDM with NFC which differ in how the two doublets
+are coupled to the charged fermions. These are called: Type I, Type II, Lepton Specific and
+Flipped [12]. The phenomenology of all four models has been studied in great detail. The
+Lagrangian in a 2HDM that describes the interactions of A0 with the fermions (the Yukawa
+couplings) can be written as follows [8]:
+Lyuk
+A0 = i
+v
+�
+yd
+A0mdA0dγ5d + yu
+A0muA0uγ5u + yℓ
+A0mℓA0ℓγ5ℓ
+�
+.
+(4)
+In eq. (4) it is understood that d refers to the down-type quarks (d, s, b), u refers to the
+up-type quarks (u, c, t) and ℓ refers to the charged leptons (e, µ, τ) i.e. there are three
+terms of the form yd
+A0mddγ5d. In Table I the couplings yd
+A0, yu
+A0, and yℓ
+A0 of A0 to the charged
+fermions in each of these four models are displayed.
+yd
+A0
+yu
+A0
+yℓ
+A0
+Type I
+− cot β cot β − cot β
+Type II
+tan β
+cot β
+tan β
+Lepton Specific − cot β cot β
+tan β
+Flipped
+tan β
+cot β − cot β
+TABLE I: The couplings yd
+A0, yu
+A0, and yℓ
+A0 in the Yukawa interactions of A0 in the four versions
+of the 2HDM with NFC.
+The viable parameter space in a 2HDM must respect all theoretical and experimental
+constraints, which are listed below:
+1. Theoretical constraints:
+7
+
+(i) Vacuum stability of the 2HDM potential:
+The values of λi are constrained by the requirement that the scalar potential
+a) breaks the electroweak symmetry SU(2)L ⊗ U(1)Y to U(1)Q, b) the scalar
+potential is bounded from below, and c) the scalar potential stays positive for
+arbitrarily large values of the scalar fields. The constraints are:
+λ1 > 0, λ2 > 0, λ3 + λ4 − |λ5| + √λ1λ2 ≥ 0, λ3 + √λ1λ2 ≥ 0.
+From these conditions it be seen that λ1 and λ2 are positive definite, while λ3, λ4
+and λ5 can have either sign.
+(ii) Perturbativity:
+For calculational purposes it is required that the quartic couplings λi do not take
+numerical values for which the perturbative expansion ceases to converge. The
+couplings λi remain perturbative up to the unification scale if they satisfy the
+condition |λi| ≤ 8π.
+(iii) Unitarity:
+The 2 → 2 scattering processes (s1s2 → s3s4) involving only scalars (including
+Goldstone bosons) are mediated by scalar quartic couplings, which depend on the
+parameters of the scalar potential. Tree-level unitarity constraints require that
+the eigenvalues of a scattering matrix of the amplitudes of s1s2 → s3s4 be less
+than the unitarity limit of 8π, and this leads to further constraints on λi.
+2. Experimental constraints:
+(i) Direct searches for Higgs bosons:
+The observation of the 125 GeV boson at the LHC and the non-observation of
+additional Higgs bosons at LEP, Tevatron and LHC rule out regions of the param-
+eter space of a 2HDM. In our numerical results these constraints are respected by
+using the publicly available codes HiggsBounds [13] (which implements searches
+for additional Higgs bosons) and HiggsSignals [14] (which implements the mea-
+surements of the 125 GeV boson). Any point in the 2HDM parameter space that
+violates experimental limits/measurements concerning Higgs bosons is rejected.
+(ii) Oblique parameters:
+The Higgs bosons in a 2HDM give contributions to the self-energies of the W ±
+8
+
+and Z bosons. The oblique parameters S, T and U [15] describe the deviation
+from the SM prediction of S = T = U = 0. The current best-fit values (not
+including the recent CDF measurement of mW [16]) are [17]:
+S = −0.01 ± 0.10, T = 0.03 ± 0.12, U = 0.02 ± 0.11 .
+(5)
+If U = 0 is taken (which is approximately true in any 2HDM) then the experi-
+mental allowed ranges for S and T are narrowed to [17]:
+S = 0.00 ± 0.07, T = 0.05 ± 0.06 .
+(6)
+In our numerical results the theoretical constraints in 1(i), 1(ii), 1(iii) and the ex-
+perimental constraints 2(ii) (using the ranges for S and T in eq.(6)) are respected
+by using 2HDMC [18]. If the recent measurement of mW by the CDF collabora-
+tion [16] is included in the world average for mW then the central values of the
+S and T parameters in eq.(6) change significantly, and can be accommodated
+in a 2HDM by having sizeable mass splittings among the Higgs bosons. Recent
+studies have been carried out in [19, 20] in both NH and IH.
+(iii) Flavour constraints:
+The parameter space of a 2HDM is also constrained by flavour observables, espe-
+cially the decays of b quarks (confined inside B mesons). The main origin of such
+constraints is the fact that the charged Higgs boson H± contributes to processes
+that are mediated by a W ±, leading to constraints on the parameters mH± and
+tan β. The flavour observable that is most constraining is the rare decay b → sγ,
+although H± contributes to numerous processes (e.g. BB mixing). There have
+been many studies of flavour constraints on the the parameter space of 2HDMs
+e.g. [21–23]. In our numerical analysis we respect such flavour constraints by use
+of the publicly available code SuperIso [24]. In the 2HDM (Type I), in which
+the couplings of H± to the fermions is proportional to cot β, the constraint on
+mH± is weaker with increasing tan β. The lowest value of tan β we consider is
+tan β = 3, for which mH± = 140 GeV is allowed (as can be seen in [21]).
+9
+
+III.
+PHENOMENOLOGY OF A0 AT THE LHC
+In this section the formulae for the partial widths of A0 are given and the previous studies
+of its BRs in the four types of 2HDM with NFC are summarised. The main production
+mechanisms for A0 at the LHC are also discussed. Emphasis will be given to the decay
+A0 → h0Z(∗) for which there is a dependence on the mass of h0 (we assume mA0 > mh0).
+In the NH one has mh0 = 125 GeV while in the IH the mass mh0 is a free parameter with
+mh0 < 125 GeV. Consequently, the magnitude of BR(A0 → h0Z(∗)) in the parameter space
+of the 2HDM requires separate analyses in each of the two hierarchies. Most previous studies
+of the BRs of A0 focus on the scenario of NH, with very few studies in the context of IH.
+These works will be summarised in this section.
+A.
+The Branching Ratios of A0 in 2HDMs with NFC
+We now present the explicit expressions for the partial decay widths of A0 to a fermion (f)
+and an anti-fermion (f) at tree-level . These generic expressions apply to all four 2HDMs
+with NFC, with the model dependence arising in the yu
+A0, yd
+A0 and yℓ
+A0 couplings that are
+displayed in Table I. The partial widths Γ(A0 → ff) are given by (e.g. see [8, 10, 25, 26]):
+Γ(A0 → uu) = 3GFmA0m2
+u(yu
+A0)2
+8πv2
+λ1/2
+� m2
+u
+m2
+A0
+, m2
+u
+m2
+A0
+�
+,
+(7)
+Γ(A0 → dd) = 3GFmA0m2
+d(yd
+A0)2
+8πv2
+λ1/2
+� m2
+d
+m2
+A0
+, m2
+d
+m2
+A0
+�
+,
+(8)
+Γ(A0 → ℓℓ) = GFmA0m2
+ℓ(yℓ
+A0)2
+8πv2
+λ1/2
+� m2
+ℓ
+m2
+A0
+, m2
+ℓ
+m2
+A0
+�
+.
+(9)
+The phase space suppression factor is given by λ(x, y) = (1 − x − y)2 − 4xy. For our main
+case of interest of mA0 > 130 GeV the factor λ1/2 is essentially negligible for all fermions
+except the top quark (if mA0 > 2mt). In the above expressions the running quark masses
+mu and md are evaluated at the energy scale (Q) of mA0, and this encompasses the bulk of
+the QCD corrections. There are also QCD vertex corrections to the decays to quarks which
+have the effect of multiplying the above partial widths by an overall factor. To order αs this
+factor is given by (1 + 17αs/(3π)) and higher-order vertex corrections have been calculated
+[10].
+10
+
+The partial width for the decay to two gluons (A0 → gg) at leading order is mediated by
+triangle loops of fermions. The dominant contribution comes from i) the triangle diagram
+with t-quarks, which is proportional to (yt
+A0)2, and ii) the triangle diagram with b-quarks,
+which is proportional to (yb
+A0)2.
+The explicit formula for Γ(A0 → gg) can be found in
+[10, 25, 27]. There is the also the decay A0 → γγ, which is mediated by triangle loops of f,
+W ± and H±. However, Γ(A → γγ) is much smaller than Γ(A0 → gg) because the former has
+a factor of α2 while the latter has a factor of α2
+s. The decays A0 → W +W − and A0 → ZZ
+are absent at tree-level in the (CP-conserving) 2HDM. These decays are generated at higher
+orders but have much smaller BRs [28, 29] than some of the tree-level decays and will be
+neglected in our study.
+Finally, we consider the decays of A0 to another Higgs boson and to a vector boson, which
+can be dominant. These interactions originate from the kinetic term in the Lagrangian and
+do not involve the Yukawa couplings. The partial width for A0 → h0Z (i.e. a two-body
+decay with on-shell Z) is given by:
+Γ(A0 → h0Z) = m3
+A0 cos2(β − α)
+v2
+λ3/2
+� m2
+h0
+m2
+A0
+, m2
+Z
+m2
+A0
+�
+.
+(10)
+The partial width Γ(A0 → h0Z∗) (i.e. a three-body decay with off-shell Z∗ → ff) is also
+proportional to cos2(β −α) and involves an integration over the momenta of ff. Its explicit
+expression is given in [25, 30, 31]. The partial width Γ(A0 → H0Z) has the same form as
+eq. (10), but with mh0 replaced by mH0 and cos2(β − α) replaced by sin2(β − α). We do not
+consider the decay channel A0 → H±W ∓ as we shall be taking mA0 = mH±.
+We now briefly review previous studies of the decay A0 → h0Z(∗), which were first
+performed in the context of the Minimal Supersymmetric Standard Model (MSSM). The
+scalar potential of the MSSM takes the form of the scalar potential of the 2HDM but with
+fewer free parameters in it and necessarily Type II Yukawa couplings. In the MSSM mh0
+has an upper bound of around 130 GeV, in which mh0 = 125 GeV can be accommodated
+with large SUSY corrections to the tree-level scalar potential. The value of sin2(β − α)
+rapidly approaches 1 as mA0 increases above 100 GeV and this is in contrast to a non-SUSY
+2HDM for which sin2(β − α) could differ substantially from 1 for mA0 > 100 GeV. Early
+studies of BR(A0 → h0Z) in the MSSM and its detection prospects at the LHC can be
+found in [32–34]. The first calculation of Γ(A0 → h0Z∗) was carried out in [25, 30], but this
+three-body decay has limited importance in the MSSM due its Type II structure and the
+11
+
+fact that cos(β −α) rapidly tends to zero as mA0 increases. The BRs of A0 in the MSSM are
+summarised in [10]. For low tan β (e.g. tan β = 3), BR(A0 → h0Z(∗)) can be of the order
+of 10% or more in the region 200 GeV < mA0 < 300 GeV when the two-body decay is open
+and before A0 → tt becomes dominant for heavier mA0.
+In the context of non-supersymmetric 2HDMs with NFC (on which we focus) an early
+study of the on-shell decay A0 → h0Z (Type I and Type II only) was carried out in [35],
+taking several values of sin2(β − α) in the range 0 → 1 and mh0 = 100 GeV. It was shown
+that this decay channel for A0 can have the largest BR, and detection prospects at the LHC
+in the channel A0 → h0Z → γγℓ+ℓ− were studied. The three-body decay A0 → h0Z∗ in
+non-supersymmetric 2HDMs (Type I and Lepton Specific) with NFC were first studied in
+the context of LEP2 in [36]. It was pointed out that BR(A0 → h0Z∗) can be dominant in
+Type I as tan β increases because Γ(A0 → ff) decreases ∝ cot2 β. This in contrast to the
+case in the MSSM where BR(A0 → h0Z∗) is always small. In [36], BR(A0 → h0Z∗) was
+studied as a function of tan β in the 2HDM (Type I) for mA0 = 80 GeV, 100 GeV and 120
+GeV, with mh0 = 40 GeV and cos2(β − α) = 1. This is the IH scenario but at that time
+mH0 was not known.
+Studies of the BRs of A0 in the four versions of the 2HDM with NFC were given in [37]
+for mA0 = 150 GeV without including A0 → h0Z(∗) (mh0 or mH0 = 125 GeV was not known
+at the time). Recent works [31] have presented the BRs of A0 including A0 → h0Z(∗) in the
+scenario of NH (mh0 = 125 GeV) with sin2(β − α) ≈ 1 and these results will be summarised
+below. Electroweak corrections to Γ(A0 → h0Z) were also calculated for the first time in
+[31] and are of the order of 10%.
+The ranges of the five parameters mh0, mH0, mA0, tan β and cos(β − α) that will be
+considered in this work are given in Table II. The parameter tan β only takes positive
+values, while cos(β − α) can take positive or negative values. In the case of NH one has (by
+definition) mh0 = 125 GeV and so necessarily mH0 > 125 GeV. The discovered 125 GeV
+boson has been measured by the LHC experiments to have SM-like Higgs boson couplings
+within experimental error, and in the context of a 2HDM with NH the parameter | cos(β−α)|
+is thus constrained to be (approximately) less than 0.1. The exact constraint on | cos(β −α)|
+has a dependence on tan β, as well as a dependence on which 2HDM is being considered
+e.g. in the 2HDM (Type II), | cos(β − α)| = 0.1 is only possible for 1 < tan β < 2, while
+in the 2HDM (Type I), | cos(β − α)| can reach a value of 0.25 for 3 < tan β < 5, with
+12
+
+2HDM Parameter
+Normal Hierarchy (NH)
+Inverted Hierarchy (IH)
+mh0
+125 GeV
+10 GeV < mh0 < 100 GeV
+mH0
+300 GeV
+125 GeV
+mA0
+130 GeV ≤ mA0 ≤ 400 GeV
+130 GeV ≤ mA0 ≤ 400 GeV
+mH±
+mH0
+mA0
+cos(β − α)
+0 ≤ | cos(β − α)| < 0.1
+0.9 < | cos(β − α)| < 1
+tan β
+2.9 ≤ tan β ≤ 5.2
+2.9 ≤ tan β ≤ 5.2
+m2
+12
+560 GeV2 ≤ m2
+12 ≤ 1670 GeV2 560 GeV2 ≤ m2
+12 ≤ 1670 GeV2
+TABLE II: 2HDM parameter ranges in NH (mh0 = 125 GeV) and IH (mH0 = 125 GeV) that will
+be considered in this work. Some attention will also be given to the region 80 GeV < mA0 +mh0 <
+110GeV.
+.
+| cos(β − α)| = 0.1 being possible up to large values of tan β. In the 2HDM (Type II) and
+2HDM (Flipped) there is a very small region (disconnected from the aforementioned region)
+of cos(β − α) ≈ 0.25 for tan β ≈ 10. This latter region is called the ”wrong-sign” Yukawa
+coupling region and will be discussed in more detail in Sec. IVC. The LHC measurements also
+constrain the sign of cos(β − α) and for a given value of tan β the constraint on cos(β − α)
+is in general different for its positive and negative values.
+Since the coupling A0h0Z is
+proportional to cos(β − α), in NH the decay channel A0 → h0Z has a suppression factor of
+| cos(β − α)|2 ≈ 0.01. Despite this suppression factor, BR(A0 → h0Z) can still be sizeable
+(or dominant) in regions of parameter space of the four 2HDMs. In [38], the BRs of A0
+were shown for sin(β − α) = 0.995 and mA0 = 200 GeV, for which A0 → h0Z∗ is a three-
+body decay. In the 2HDM (Type I) A0 → h0Z∗ has the largest BR for tan β > 20, but
+in the other three models BR(A0 → h0Z∗) < 1%.
+In [31] the 2HDM parameters were
+changed to mA0 = 300 GeV (for which A0 → h0Z is a two-body decay) and the range
+0 < | cos(β − α)| < 0.1 was considered. It was shown that A0 → h0Z has the largest BR
+in all four models for | cos(β − α)| closer to its upper limit of 0.1, with the 2HDM (Type I)
+having the largest parameter space for A0 → h0Z being the dominant decay.
+In the case of the IH one has mH0 = 125 GeV and so necessarily mh0 < 125 GeV. The
+above constraints on cos(β − α) now apply to sin(β − α), and so 0.9 < | cos(β − α)| < 1.
+13
+
+Hence the decay A0 → h0Z has very little suppression from the coupling A0h0Z, in contrast
+to the case of NH. Moreover, since mh0 < 125 GeV the decay A0 → h0Z can proceed via an
+on-shell Z for lighter values of mA0 than in the case of NH i.e. mA0 > 216 GeV is required
+for on-shell A0 → h0Z if mh0 = 125 GeV, but for mh0 = 90 GeV (say) then the on-shell
+decay A0 → h0Z is open for mA0 > 180 GeV. Moreover, off-shell decays A0 → h0Z∗ can
+also be dominant in the 2HDM (Model I) over a large region of parameter space of the
+model. The BRs of A0 in the scenario of IH will be studied in detail in section V. In the
+case of IH the mass mh0 (< 125 GeV) is an unknown parameter and the BRs of h0 will
+be different (in general) to those of the SM-like 125 GeV Higgs boson. Previous studies of
+BR(A0 → h0Z(∗)) in the 2HDM (Type I) in IH are rare, and include an early study in [36]
+(as mentioned above, for 80 GeV < mA0 < 120 GeV) and more recently in [19] in which
+BR(A0 → h0Z(∗)) was shown as a scatter plot with 60 GeV < mA0 < 600 GeV. Another
+recent work [39] also makes use of the potentially large BR(A0 → h0Z(∗)) and this will be
+described in the next paragraph.
+The parameter space of mh0 + mA0 < 200 GeV is strongly constrained by the fact that
+there was no signal in the channel e+e− → Z∗ → A0h0 → bbbb at LEP2. In a 2HDM (Type
+I) in the IH scenario one has cos(β − α) ≈ 1, which maximises the coupling ZA0h0 and
+suggests mh0 + mA0 > 200 GeV from the above channel. However, recently in Ref. [39] it
+has been shown that mh0 +mA0 < 200 GeV is still possible in IH provided that BR(A0 → bb)
+is suppressed due to a large BR(A0 → h0Z∗). In Ref. [39] several benchmark points (which
+satisfy all current constraints) were listed with 80 GeV < mh0 + mA0 < 110 GeV. In this
+parameter space BR(A0 → h0Z∗) can be large for the same reasons outlined in [36], although
+this latter work only showed results for mh0 + mA0 > 120 GeV. All benchmark points have
+the mass hierarchy mH0(= 125 GeV) > mA0 > mh0 and a light charged Higgs boson in
+the range 100 GeV < mH± < 160 GeV. It was suggested in Ref. [39] that this parameter
+space of 80 GeV < mh0 + mA0 < 110 GeV could be probed via the mechanism gg → H0 →
+A0Z∗ → h0Z∗Z∗, with subsequent decays h → bb and Z∗Z∗ → jjµ+µ−, and a simulation of
+its detection prospects was carried out. It was shown that σ(gg → H0 → A0Z∗ → h0Z∗Z∗)
+can reach 0.01 pb, with BR(H0 → A0Z∗) having a maximum value of 0.2% and being a
+significant suppression factor. A number of benchmark points have a statistical significance
+of 2σ to 3σ (a few reaching 4σ) for an integrated luminosity of 300 fb−1, and roughly
+scaling by a factor of 3 with 3000 fb−1 at the HL-LHC. The channel to be studied in this
+14
+
+work, gg → A0 → h0Z∗, would also be a probe of this scenario of mh0 + mA0 < 200 GeV,
+although our main focus will be on the region mA0 + mh0 > 200 GeV. We shall compare
+σ(gg → A0 → h0Z∗) with σ(gg → H0 → A0Z∗ → h0Z∗Z∗) for some of the benchmark
+points in [39].
+B.
+Production mechanisms for A0 at the LHC
+At the LHC the main production processes for A0 are [10, 27, 40]:
+i) gg → A0 (gluon-gluon fusion), which proceeds via a top-quark loop and a bottom-quark
+loop, and thus involves the Yukawa couplings for the vertices A0tt and A0bb.
+ii) gg → A0bb (associated production with b quarks), which depends on the Yukawa coupling
+for the vertex A0bb.
+Both mechanisms involve the couplings of A0 to fermions and hence their respective cross
+sections depend on which 2HDM is under consideration (see Table I). For gg → A0 the
+top-quark loop is dominant in all four 2HDMs for lower values of tan β (e.g. tan β < 5). For
+larger values of tan β (e.g. tan β > 5) the top-quark loop is still dominant in the 2HDMs
+Type I and Lepton Specific, but σ(gg → A0) decreases with increasing tan β because the top-
+quark and bottom-quark Yukawa couplings are both proportional to cot β. In contrast, in
+the Type II and Flipped 2HDMs the bottom-quark loop becomes the dominant contribution
+to σ(gg → A0) for larger values of tan β because the bottom-quark Yukawa coupling is
+proportional to tan β. Hence σ(gg → A0) increases with increasing tan β after reaching a
+minimum at around tan β ≈ 7. The production mechanism gg → A0bb does not involve
+the top-quark Yukawa coupling and is only relevant in the Type II and Flipped 2HDMs for
+larger values of tan β, for which it has a larger cross section than σ(gg → A0). In the Type
+I and Lepton Specific 2HDMs one always has σ(gg → A0bb) < σ(gg → A0). The numerical
+values of both cross sections in the plane [mA0, tan β] are presented in [38]. For mA0 = 200
+GeV both cross sections can be greater than 100 pb, depending on the 2HDM under study
+and the value of tan β.
+15
+
+IV.
+SEARCHES FOR A0 → h0Z AT THE LHC
+The decay A0 → h0Z has been searched for at the LHC by the ATLAS and CMS col-
+laborations assuming the case of NH (i.e.
+mh0 = 125 GeV) and an on-shell Z boson.
+These searches will be summarised in this section. No search has yet been carried out for
+A0 → h0Z in IH. Current LHC searches for A0 → h0Z (to be described below) assume that
+mh0 = 125 GeV and mA0 ≥ 225 GeV. In this work we will focus on the mass range 130 GeV
+≤ mh0 + mA0 ≤ 400 GeV in the context of the IH scenario (mh0 < 125 GeV and mH0=125
+GeV). Some discussion will also be given to the case of 80 GeV ≤ mh0 + mA0 ≤ 110 GeV.
+√s (integrated luminosity)
+ATLAS
+CMS
+8 TeV (20 fb−1)
+bbℓℓ/bbνν [42], ττℓℓ [42]
+bbℓℓ [43], ττℓℓ [44]
+13 TeV (35.9 fb−1)
+bbℓℓ/bbνν [45]
+bbℓℓ/bbνν [46], ττℓℓ [47]
+13 TeV (139 fb−1)
+bbℓℓ/bbνν [48]
+TABLE III: Searches for A0 → h0Z at the LHC, using gg → A0 and gg → A0bb as the production
+mechanism, and taking mh0 = 125 GeV. The integrated luminosities used for the searches are given
+in brackets next to the collider energy √s. The four-fermion signature bbℓℓ means that h0 → bb
+and Z → ℓℓ, where ℓ denotes e or µ (i.e. the decays of h0 are given first).
+The searches for A0 → h0Z at the LHC, using gg → A0 and gg → A0bb as the production
+mechanisms, are summarised in Table III. Two decays channels of h0 are targeted, namely
+h0 → bb and h0 → ττ. In both searches A0 is assumed to be produced via gg → A0 and
+gg → A0bb with subsequent decay via the channel A0 → h0Z in which Z is on-shell. Hence
+the searches probe mA0 > mh0 + mZ (≈ 216 GeV), and limits are shown for mA0 > 225
+GeV only. In the context of the NH (mh0 = 125 GeV) the magnitudes of these BRs of
+h0 to fermions are given by the measurements of the BRs of the 125 GeV boson, and thus
+BR(h0 → bb) ≈ 57% and BR(h0 → ττ) ≈ 6% (i.e. roughly the same as the BRs of the SM
+Higgs boson). In the IH case on which we focus, these BRs of h0 will be in general different
+from those in the case of the NH, with a dependence on (the unknown) mh0.
+16
+
+A.
+LHC search for A0 → h0Z → bbℓ+ℓ−
+We now discuss the search by CMS for the signatures bbℓℓ/bbνν [46] with √s = 13 TeV
+and 35.9 fb−1 of integrated luminosity. In both searches A0 is assumed to be produced via
+gg → A0 and gg → A0bb with subsequent decay via the channel A0 → h0Z in which Z is
+on-shell. In [46], which only targets the decay channel h0 → bb (mh0 = 125 GeV), separate
+searches in each production channel are carried out for:
+i) the decays Z → e+e− and Z → µ+µ− (collectively referred to as Z → ℓℓ), leading to the
+signature bbℓℓ.
+ii) the decay Z → νν, leading to the signature bbνν.
+In each of i) and ii) above, the signal is separated into categories with 1 b quark, 2 b quarks
+and 3 b quarks. In what follows we will focus on the signature bbℓℓ because the Z → νν
+signature has no sensitivity for mA0 < 500 GeV, and is is only competitive with the bbℓℓ
+signature for mA0 > 700 GeV. For the bbℓℓ signature in i) above, the selection efficiencies
+are similar for the gg → A0 and gg → A0bb production mechanisms in the 1 b-quark and
+2 b-quark categories, and these efficiencies increase slightly with increasing mA0. In the 3
+b-quark category, the selection efficiency for gg → A0bb is considerably larger (due to the
+presence of more b quarks in the signal) than that for gg → A0, being almost an order
+of magnitude greater for mA0 < 300 GeV. The SM backgrounds to the bbℓℓ (and bbνν)
+signatures are largest for the 1 b-quark category and smallest for the 3 b-quark category.
+The invariant masses of bbℓℓ events which pass all the selection cuts are displayed starting
+from 225 GeV. A clear signal for A0 → h0Z would appear as a peak centred on mA0 above
+the background. For the background (which mainly arises from processes Z+jets, Z + b,
+Z + bb, tt) the invariant mass distribution of bbℓℓ events rises up to a peak at around 250
+GeV before falling in all three b-quark categories. For the bbνν signature in ii) above, in
+both production modes the selection efficiencies in a particular b-quark category are much
+smaller than those for bbℓℓ in the same b-quark category for mA0 < 500 GeV, but become
+similar in magnitude for mA0 > 600 GeV. For the background, the transverse mass of bbνν
+(starting from 500 GeV) decreases in all b-quark categories.
+In the NH scenario one has mh0 = 125 GeV and hence the invariant mass distribution
+of the bb pair originating from h0 (i.e.
+the signal) would be centred on 125 GeV. This
+would not be true for the background, and to exploit this fact an invariant mass cut of
+17
+
+100 GeV < mbb < 140 GeV is imposed in the CMS search in [46]. This cut preserves most of
+the signal while reducing the backgrounds. The events with mbb < 100 GeV and mbb > 140
+GeV are put into the sidebands. However, in the IH scenario (for which mbb would peak at
+a lower value than 125 GeV) the above cut on mbb would be moving potential signal events
+to the sidebands. The CMS search also requires a cut of 70 GeV < mℓℓ < 110 GeV on the
+invariant mass of the leptons originating from Z. This cut captures most of the leptons
+originating from the decay of an on-shell Z, but would not be as effective for an off-shell Z∗
+(e.g. in the case of BR(A0 → h0Z∗) being large in IH).
+The expected limits on σ(gg → A0) × BR(A0 → h0Z → bbℓℓ) are found to be 45 fb for
+mA0 = 225 GeV and falling to 10 fb for mA0 = 400 GeV. The lack of any statistically signif-
+icant signal in the search in [46] allows constraints to be obtained on the 2HDM parameter
+space of [cos(β − α), mA0, tan β]. Taking cos(β − α) = 0.1 (which is motivated from the
+experimental fact that h0 has SM-like couplings, sin2(β − α) ≈ 1) limits are shown in the
+plane [mA0, tan β]. In the 2HDM (Type I) the dominant production process for all tan β is
+gg → A0, and the constraint on tan β strengthens from around tan β > 4 to tan β > 10 as
+mA0 increases from 225 GeV to 350 GeV. For mA0 > 350 GeV the presence of the decay
+channel A0 → tt reduces BR(A0 → h0Z) and leads to a weakening of the bound to tan β > 1
+for mA0 > 400 GeV. Very similar limits are obtained in the Lepton Specific 2HDM. In the
+2HDMs (Type II and Flipped) the limit on low values of tan β is weaker, being tan β > 2 to
+tan β > 4 as mA0 increases from 225 GeV to 350 GeV. However, in these latter two models
+the bottom-loop contribution to the production process gg → A0 and the process gg → A0bb
+are both enhanced at large tan β, and this leads to limits of tan β < 20 for mA0 > 450 GeV.
+The searches for the signature bbℓℓ/bbνν by the ATLAS collaboration in [45] and [48]
+have similar strategies and derive comparable limits on the parameter space of the 2HDM.
+The search with 36.1 fb−1 [45] presents results for mA0 > 220 GeV while the search with
+139 fb−1 [48] presents results for mA0 > 280 GeV.
+B.
+LHC search for A0 → h0Z → ττℓ+ℓ−
+We now discuss the search by CMS for the signatures ττℓ+ℓ− [47] with √s = 13 TeV and
+35.9 fb−1 of integrated luminosity. This signature requires the decay h0 → τ +τ − , which has
+a BR of around 6% and is almost 10 times smaller than BR(h0 → bb) = 57%. Consequently,
+18
+
+the limits on the 2HDM parameter space from the ττℓ+ℓ− signature are somewhat weaker
+than those from the search for bbℓℓ.
+A τ lepton can decay hadronically (i.e. to hadrons accompanied by missing energy in the
+form of neutrinos) or leptonically (to an e± or µ±, with missing energy). Four signatures
+from the decay h0 → τ +τ −are considered, where τh denotes a τ ± that decays hadronically:
+eτh, µτh,τhτh, eµ. The Z boson is taken to decay to e+e− or µ+µ−, giving rise to 8 different
+channels for the signature ττℓ+ℓ−. All 8 channels are combined when deriving the limits on
+σ(gg → A0) × BR(A0 → h0Z → ττℓℓ).
+The irreducible backgrounds are ZZ(→ 4ℓ), ttZ, WWZ, WZZ and ZZZ. The recon-
+structed pseudoscalar mass mA0, denoted by mc
+ℓℓττ, is used as the discriminant between the
+signal and the background. The simplest reconstructed mass (denoted by mvis
+ℓℓττ) is obtained
+from the visible decay products only, but mc
+ℓℓττ significantly improves the mass resolution
+by accounting for the missing energy in the decays of τ ± and also using mh0 = 125 GeV
+(which is true in NH only) as input in the fitting procedure.
+The expected limits on σ(gg → A0) × BR(A0 → h0Z → ττℓℓ) are found to be 13 fb for
+mA0 = 220 GeV and falling to 5 fb for mA0 = 400 GeV. These limits are somewhat stronger
+than those for the bbℓℓ signature (where the limits are 45 fb for mA0 = 220 GeV and 10
+fb for mA0 = 400 GeV). However, due to BR(h0 → τ +τ −)/BR(h0 → bb) ≈ 0.1 the limits
+on the 2HDM parameter space (which arise from σ(gg → A0) × BR(A0 → h0Z) only) are
+stronger from the bbℓℓ signature.
+C.
+Case of A0 → h0Z∗ in NH and for the 2HDM (Type II)
+None of the above searches considered the case of the off-shell decay A0 → h0Z∗. All searches
+targeted the mass region of mA0 > mh0 + mZ so that the Z boson in the decay A0 → h0Z is
+always on-shell. A study in [49] considered the detection prospects in the region mA0 < 225
+GeV in NH and the 2HDM (Type II). Although BR(A0 → h0Z(∗)) is decreasing as mA0 is
+lowered below 225 GeV, the background is also decreasing and is rather small for mA0 < 210
+GeV. Three benchmark points were chosen, with values of mA0, cos(β − α) and tan β as
+follows:
+i) mA0 = 190 GeV, cos(β − α) = 0.36, tan β = 4.9.
+ii) mA0 = 200 GeV, cos(β − α) = 0.28, tan β = 6.4.
+19
+
+iii) mA0 = 210 GeV, cos(β − α) = 0.26, tan β = 6.9.
+These benchmark points all correspond to the scenario of ”wrong sign” down-type Yukawa
+coupling. This is a limit in which the down-type Yukawa couplings for h0 in NH in the 2HDM
+(Type II) are equal in magnitude to their values in the SM but with opposite sign. The
+wrong-sign limit is obtained for the choice of α+β = π/2, and can be displayed as all points
+on a hyperbola in the plane of [cos(β − α), tan β] going from points of large tan β (β ≈ π/2)
+and cos(β − α) ≈ 0 (i.e. α ≈ 0, so that α + β = π/2) to points of small tan β (β ≈ π/4) and
+cos(β −α) ≈ 1 (α ≈ π/4, so that α+β = π/2). The wrong-sign scenario allows larger values
+of cos(β − α) than in the alignment scenario, the latter being defined by β − α = π/2 and
+consequently cos(β − α) is close to zero. Due to the fact that Γ(A0 → h0Z∗) ∝ cos2(β − α),
+in the wrong-sign scenario BR(A0 → h0Z∗) can be larger than in the alignment scenario.
+The latest LHC measurements of the couplings of h0 (mh0 = 125 GeV) now restrict the
+wrong-sign region in the 2HDM (Type II) to points on the hyperbola for tan β > 7 and
+| cos(β − α)| < 0.3 and so the above benchmark points are now either excluded or just
+allowed by the current experimental measurements. It was shown in [49] with a parton-
+level simulation that the detection prospects for A0 → h0Z∗ at the LHC with 1000 fb−1
+were reasonable in each of the three benchmark points, although a more detailed simulation
+would be needed to account for effects beyond the parton-level and at the level of the LHC
+detectors. We emphasise that the study in [49] was not carried out in the context of IH.
+In section V we shall consider mA0 < 225 GeV and A0 → h0Z(∗) in the IH scenario in the
+2HDM (Type I) with NFC.
+V.
+RESULTS
+In this section we show our results for the signal cross section, which is given by the following
+product:
+σ(gg → A0) × BR(A0 → h0Z(∗)) × BR(h0 → bb) .
+(11)
+In the LHC searches, limits are often presented on the above product in which BR(Z(∗) →
+ℓℓ, νν) has been divided out. We will calculate the signal cross section in eq.(11) in the IH
+scenario in the 2HDM (Type I), and compare its magnitude with the corresponding cross
+section in the NH scenario (mh0 = 125 GeV), the latter being the current focus of the
+LHC searches in this channel. In NH the product in eq.(11) depends on three unknown
+20
+
+parameters: mA0, tan β and cos(β − α). In IH there is a fourth unknown parameter, mh0.
+The dependence of the three terms in eq.(11) on the four unknown parameters is as follows
+(see also the discussion in section III):
+(i) The cross-section σ(gg → A0) depends on mA0 and the couplings A0tt (∝ cot2 β) and
+A0bb (∝ tan2 β). Contributions from the couplings of A0 to lighter fermions can be
+neglected due to their much smaller masses;
+(ii) BR(A0 → h0Z(∗)) is given by Γ(A0 → h0Z(∗))/Γtotal
+A0 .
+The partial width Γ(A0 →
+h0Z(∗)) depends on mA0, the mass difference mA0 − mh0 (in the phase space factor)
+and cos2(β − α) (in the square of the A0h0Z coupling). The total width Γtotal
+A0
+is equal
+to Γ(A0 → h0Z(∗)) + Γrest
+A0 , where Γrest
+A0 is the sum of the partial decay widths of all the
+other decays of A0;
+(iii) BR(h0 → bb) given by Γ(h0 → bb)/Γtotal
+h0 . The partial width Γ(h0 → bb) depends on
+mh0 and cos2(β − α) (e.g. via the coupling sin α/ cos β in Type II and cos α/ sin β in
+Type I). The total width Γtotal
+h0
+is equal to Γ(h0 → bb) + Γrest
+h0 , where Γrest
+h0
+is the sum
+of the partial decay widths of all the other decays of h0.
+In what follows, numerical results for each of the three terms in eq.(11) will be shown.
+Finally, we show the magnitude of the product of the three terms (i.e. the number of signal
+events) as a function of mA0 in both IH (for various values of mh0) and NH, fixing the
+remaining parameters in the 2HDMs under consideration. All experimental and theoretical
+constraints in Section II are respected. In Fig. 1 to Fig. 6 the parameter m12 is taken to
+be m2
+12 = m2
+h0(
+tan β
+1+tan2 β), which ensures compliance with the experimental and theoretical
+constraints for the chosen values and parameter ranges of the other 2HDM parameters.
+In Fig. 7 we take m2
+12 = 1000 GeV2 for the same reasons.
+The BRs of h0 and A0 are
+calculated using 2HDMC [18]. We remark that we sampled only the portions of parameter
+space wherein the contribution of the channel gg → A0 → h0Z(∗) (in the narrow width
+approximation of A0) is in close agreement with the yield of the full process gg → h0Z(∗)
+(which also has contributions that do not involve A0 i.e. Z∗ s-channel mediation and box
+diagrams at the amplitude level [49]). A study of the remainder of the parameter space
+using the latter process will be the subject of a future study.
+In Fig. 1 the BRs of h0 (i.e. the third term in the event number in eq. (11)) in the 2HDM
+(Type I) are displayed as a function of mh0 in IH (mH0 = 125 GeV) with cos(β − α) =
+21
+
+1, tan β = 5.2 and mA0 = mH± = 140 GeV. The displayed range of values of mh0 is
+40 GeV < mh0 < 100 GeV. In the 2HDM (Type I) the couplings h0ff are scaled by a factor
+of cos α/ sin β relative to the couplings of the SM Higgs boson to the fermions, while the
+couplings h0WW and h0ZZ are scaled by sin(β − α). We take cos(β − α) = 1 (which is
+an approximate requirement in IH due to the LHC measurements of the 125 GeV boson,
+interpreted as being H0) and thus one has BR(h0 → WW) = 0 and BR(h0 → ZZ) = 0
+at tree-level. Taking values of cos(β − α) slightly less than 1 (which is allowed from the
+measurements of H0) would give non-zero BR(h0 → WW) and BR(h0 → ZZ), but both
+channels would be very suppressed by the small value of sin2(β − α) and also by the phase
+space in the range of interest 40 GeV < mh0 < 100 GeV. In Fig. 1 it can be seen that
+BR(h0 → bb) is around 90%, and slightly decreases as mh0 increases towards mh0 = 100
+GeV. These values of BR(h0 → bb) are larger than BR(H0 → bb) ≈ 58% for the 125 GeV
+boson decaying to bb. The channel h0 → τ +τ − has the second-largest BR, being around 10%.
+BR(h0 → gg) increases with mh0, with BR(h0 → τ +τ −) ≈ BR(h0 → gg) for mh0 = 100
+GeV. The reason for this increase is due to the partial width Γ(h0 → gg) ∝ m3
+h0 while
+Γ(h0 → bb, τ +τ −) ∝ mh0. Other decay channels (h0 → cc, γγ, γZ, etc) have much smaller
+BRs and are not shown.
+In Fig. 2 to Fig. 4 the BRs of A0 (i.e. the second term in the event number in eq. (11))
+as a function of tan β in three different scenarios are studied. In Fig. 2 the BRs of A0 are
+displayed in the 2HDM (Type II) as a function of tan β in the NH (mh0 = 125 GeV) with
+cos(β − α) = 0.1 and mA0 = mH0 = mH± = 300 GeV. Five channels which can reach a
+BR of greater than 1% are plotted, while channels that always have a smaller BR than 1%
+are not plotted (although these would be present on the plot because the y-axis reaches
+BR= 10−6). It can be seen from Fig. 2 that A0 → h0Z of interest to this work has the
+largest BR (despite a suppression factor of cos2(β − α) = 0.01) until around tan β = 3, at
+which point A0 → bb becomes the dominant decay due its partial width being proportional
+to tan2 β in the 2HDM (Type II). The partial width of A0 → τ +τ − is also proportional to
+tan2 β, and thus this decay becomes the second-most important channel for larger values of
+tan β, reaching BR(A0 → τ +τ −) ≈ 10%. BR(A0 → h0Z) falls below 10% for tan β > 10.
+BR(A0 → gg) is always less than a few percent and BR(A0 → tt) (with one t being virtual
+for the chosen value of mA0 = 300 GeV) is always less than 1%.
+Fig. 3 is the same as Fig. 2 (i.e. still NH) but for A0 of the 2HDM (Type I). One can see
+22
+
+that BR(A0 → h0Z) is over 90% for tan β ≈ 3 and is essentially 100% for tan β > 5. All other
+displayed channels have partial widths proportional to cot2 β and thus have increasingly
+small BRs (in contrast to Type II) as tan β increases. Fig. 4 is the same as Fig. 3 (i.e. for A0
+of the 2HDM (Type I)) but for IH. In Fig. 4, three of the input parameters are changed, now
+being mH0 = 125 GeV, mh0 = 60 GeV and cos(β − α) = 1. The remaining two parameters
+are unchanged, being mA0 = mH± = 300 GeV. The larger value of cos(β−α) and the smaller
+value of mh0 with respect to Fig. 3 means that BR(A0 → h0Z) is even more dominant in IH
+than in NH, being essentially 100% over the whole range of tan β. The choice of mA0 = 300
+GeV in Fig. 3 and Fig. 4 ensures that the decay A0 → h0Z is a two-body decay, but even
+for a virtual Z∗ (corresponding to lighter values of mA0) the magnitude of BR(A0 → h0Z∗)
+can be dominant. This will be apparent in later figures for the number of signal events in
+eq. (11) which consider mA0 as low as 130 GeV.
+In Fig. 5 the cross section σ(gg → A0) (i.e. the first term in the event number in eq. (11))
+is displayed as a function of mA0 for NH with Type I, NH with Type II, and IH with Type
+I. The code Sushi [50] is used to calculate σ(gg → A0). In NH the input parameters are
+mH0 = mH± = 300 GeV, cos(β − α) = 0.1 and tan β = 5.2. In IH the input parameters are
+mA0 = mH±, cos(β − α) = 1, tan β = 5.2, and mh0 = 55 GeV, 75 GeV, 95 GeV. The cross
+section σ(gg → A0) only depends on two 2HDM parameters, mA0 and tan β (as discussed
+in section IIIB) and in a given 2HDM its value is independent of NH or IH (because these
+two scenarios differ in mh0, mH0 and cos(β − α)). Hence the lines for NH and IH in the
+2HDM (Type I) coincide and do not depend on the choice of mh0 in IH. The numerical
+difference in σ(gg → A0) in the 2HDMs Type I and Type II arises from the fact that the
+coupling A0bb ∝ tan β in Type II and A0bb ∝ cot β in Type I, as shown in Table I. In
+Type I the top-quark loop contribution is essentially dominant. In contrast, in Type II
+the bottom-quark loop contribution is closer in magnitude to the top-quark loop for the
+chosen value of tan β = 5.2 and interferes destructively, leading to a smaller cross section
+for 170 GeV< mA0 < 350 GeV in Type II. In both models there is a local enhancement
+of σ(gg → A0) at around mA0 = 2mt, due to the t quarks in the loop becoming on-shell.
+The magnitude of σ(gg → A0) is of the order of a few pb in the displayed range of 130
+GeV< mA0 < 400 GeV.
+We are now ready to present the novel results of this work. In Fig. 6 (upper panel) the
+signal cross section σ(gg → A0) × BR(A0 → h0Z(∗)) × BR(h0 → bb) in eq. (11) is plotted as
+23
+
+a function of mA0 for NH with Type I, NH with Type II and for three choices of mh0 (55
+GeV, 75 GeV, 95 GeV) in IH with Type I. The 2HDM input parameters are the same as in
+Fig. 5. In Fig. 6 (lower panel), BR(A0 → h0Z(∗)) is plotted in IH only for the same range of
+mA0 and input parameters as in Fig. 6 (upper panel). It is essentially BR(A0 → h0Z(∗)) that
+determines the dependence of the signal cross section in Fig. 6 (upper panel). Our results
+for the 2HDM Type I and Type II in NH in Fig. 6 (upper panel) agree with those presented
+in the LHC searches for A0 → h0Z (e.g. the CMS search in [46],) with Type I having the
+larger signal cross section due to its larger BR(A0 → h0Z(∗)). Current searches at the LHC
+(for NH only) in this channel are sensitive to mA0 > 225 GeV. For mA0 < 225 GeV in NH
+the signal cross section starts to drop more sharply, the reason being that the Z boson in
+the decay A0 → h0Z becomes off-shell for mA0 < 216 GeV.
+We now compare the signal cross section for the 2HDM (Type I) in NH and IH. It can
+be seen from Fig. 6 (upper panel) that the signal cross section in NH Type I is similar in
+magnitude to that in IH Type I for 230 GeV< mA0 < 330 GeV. For these values of mA0
+it can be seen from Fig. 6 (lower panel) that BR(A0 → h0Z(∗)) is essentially 100% in both
+IH and NH, and σ(gg → A0) is the same in both IH and NH for the 2HDM (Type I). The
+difference in the signal cross section solely arises from the fact that BR(h0 → bb) ≈ 85% in
+IH while BR(h0 → bb) ≈ 58% in NH. For mA0 > 330 GeV one can see from Fig. 6 (upper
+panel) that the signal cross section in IH becomes considerably larger than that in NH. This
+is because of the decreasing BR(A0 → h0Z(∗)) in NH (due to cos2(β −α) = 0.01 suppression
+in its partial width) as A0 → tt gains in importance for mA0 > 330 GeV.
+Of most interest is the region mA0 < 225 GeV for which the current LHC searches (in
+NH only) have no sensitivity. For mA0 < 225 GeV the signal cross section is much larger for
+IH, being around 1.2 pb for mA0 = 150 GeV and mh0 = 95 GeV, and increasing to 2.5 pb for
+mA0 = 150 GeV and mh0 = 55 GeV. The reason for the much larger signal cross sections in
+IH is the fact that the Z boson in the decay (A0 → h0Z(∗)) does not become off-shell until
+mA0 = 146 GeV, 166 GeV and 186 GeV for mh0 = 55 GeV, 75 GeV and 95 GeV respectively.
+This effect can be seen in Fig. 6 (upper panel) in which the signal cross section starts to
+flatten as the Z boson starts to become off-shell. We do not plot the signal cross section
+in IH for the other three 2HDMs with NFC (Type II, Lepton Specific and Flipped), which
+would have a smaller cross section than Type I. As mentioned earlier, the LHC searches set
+limits on all four 2HDMs in NH.
+24
+
+In Fig. 7 the signal cross section σ(gg → A0) × BR(A0 → h0Z(∗)) × BR(h0 → bb) as
+a function of mA0 is again displayed for NH with Type I, NH with Type II and for three
+choices of mh0 in IH with Type I. However, some input parameters are changed with respect
+to Fig. 6 (upper panel). In Fig. 7 we take tan β = 3, 130 GeV< mA0 < 170 GeV and the
+three values of mh0 in IH are 40 GeV, 70 GeV and 90 GeV. Moreover, the parameter m2
+12
+is changed from its value in all previous figures (= m2
+h0(
+tan β
+1+tan2 β)) to m2
+12 = 1000 GeV2 in
+order to comply with theoretical and experimental constraints. For the above choice of input
+parameters there are no valid points for mA0 > 170 GeV. The lower value of tan β gives rise
+to larger signal cross sections than in Fig. 6 (upper panel), up to around 10 pb.
+In Table IV some benchmark points in the 2HDM (Type I) and IH are shown for tan β
+in the interval 2.9 to 5, with three of the points (BP1, BP2, BP3) being in the mass range
+80 GeV< mA0 + mh0 <110 GeV. In Fig. 6 and Fig. 7 the lowest value of mA0 + mh0 was 170
+GeV, but as discussed in Section III and in [39], valid (experimentally unexcluded) points in
+the 2HDM (Type I) in IH can be found in the mass range 80 GeV< mA0 + mh0 <110 GeV.
+In Table V the signal cross sections are presented, with numerical values reaching a few pb.
+As discussed in section III, in [39] the mechanism gg → H0 → A0Z∗ → h0Z∗Z∗ →
+b¯bµ+µ−jj was proposed as a probe of the region 80 GeV< mA0+mh0 <110 GeV. In Table VI
+the signal cross section of the mechanism in [39] is shown together with σ(gg → A0 →
+h0Z∗ → b¯bµ+µ−), in which we now include the subsequent decay Z∗ → µ+µ− in order
+to compare with the numerical values of the cross sections given in [39]. It can be seen
+that σ(gg → A0 → h0Z∗ → b¯bµ+µ−) can be two orders of magnitude greater than that of
+σ(gg → H0 → A0Z∗ → h0Z∗Z∗ → b¯bµ+µ−jj), and this is mainly due to the suppression
+factor of BR(H0 → A0Z∗) ≈ 0.2%. The experimental signatures are different, with gg →
+H0 → A0Z∗ → h0Z∗Z∗ → b¯bµ+µ−jj having a smaller SM background due to the greater
+particle multiplicity of the signal. However, we expect gg → A0 → h0Z∗ → b¯bµ+µ− to be a
+competitive probe of this region 80 GeV< mA0 + mh0 <110 GeV.
+25
+
+FIG. 1:
+The BRs of h0 in the 2HDM (Type I) as a function of mh0 in IH (mH0 = 125 GeV) with
+cos(β − α) = 1, tan β = 5.2 and mA0 = mH± = 140 GeV.
+FIG. 2: The BRs of A0 in the 2HDM (Type II) as a function of tan β in the NH (mh0 = 125 GeV)
+with cos(β − α) = 0.1 and mA0 = mH0 = mH± = 300 GeV.
+26
+
+0.8
+BR(h°→XY)
+0.6
+decay channels
+h°→bb
+0.4
+mg= m± = 140 GeV, cos(β α) = 1, tanβ = 5.2
+_1+1+4
+ho→gg
+0.2
+0.0
+40
+50
+60
+70
+80
+90
+100
+mh (GeV)10°
+10~
+decay channels
+BR(A°-XY)
+WH type II : ma = m = mμ± = 300 GeV, cos(β α) = 0.1
+A°→bb
+A°→tt
+A°→Zh°
+A°→TT
+A°→gg
+10
+10'
+5
+10
+15
+20
+25
+30
+tanβFIG. 3: The BRs of A0 in the 2HDM (Type I) as a function of tan β in the NH (mh0 = 125 GeV)
+with cos(β − α) = 0.1 and mA0 = mH0 = mH± = 300 GeV.
+FIG. 4: The BRs of A0 in the 2HDM (Type I) as a function of tan β in the IH (mH0 = 125 GeV)
+with cos(β − α) = 1 and mA0 = mH± = 300 GeV.
+27
+
+10°
+10′
+NH type / : ma = mμ = mμ± = 300 GeV, cos(β α) = 0.1
+decay channels
+BR(A°-XY)
+A°→bb
+10°2
+A°→tt
+A°→Zh°
+10
+A°→TT
+A°→gg
+10*
+5
+10
+15
+20
+25
+3010°
+10′
+IH type /: m = 60 GeV, mg = my± = 300 GeV, cos(β α) = 1
+decay channels
+10*
+BR(A-XY)
+A°→bb
+10
+A°→tt
+10°
+Ao→Zho
+A°→Tt
+10
+A°→gg
+10*
+5
+10
+15
+20
+25
+30
+tanβFIG. 5: The cross section σ(gg → A0) as a function of mA0 for NH with Type I, NH with Type II,
+and IH with Type I. The values of the input parameters are displayed on the figure, and mh0 = 55
+GeV, 75 GeV and 95 GeV in IH.
+BP mA0 mh0 mH± tan β cos(β − α)
+1
+80
+12
+80
+4
+1.0
+2
+93
+15
+93
+3.8
+1.0
+3
+75
+10
+75
+5
+1.0
+4
+155
+80
+155
+2.9
+1.0
+5
+120
+60
+120
+2.9
+1.0
+6
+140 100
+140
+3
+1.0
+7
+100
+90
+100
+3
+1.0
+TABLE IV: Input parameters in 2HDM (Type I) and IH for 7 benchmark points.
+28
+
+10
+IH : mμ = 125 GeV, mH = ma°, cos(β α) = 1, tan β = 5.2
+NH: mμ = mμ = 300 GeV, cos(B α) = 0.1, tanβ = 5.2
+NH/IHtype/
+NHtypell
+10°
+150
+200
+250
+300
+350
+400
+mA(GeV)BP σ(gg → A0)NNLO[pb] BR(A0 → h0Z(∗)) BR(h0 → b¯b) σ × BR(A0 → h0Z(∗)) × BR(h0 → b¯b)[pb]
+1
+15.81
+0.526
+0.689
+5.72
+2
+13.13
+0.678
+0.804
+7.16
+3
+11.47
+0.570
+0.252
+1.64
+4
+8.49
+0.592
+0.844
+4.24
+5
+13.80
+0.336
+0.861
+3.99
+6
+9.61
+0.070
+0.823
+0.55
+7
+18.36
+0.00014
+0.834
+0.0021
+TABLE V: Signal cross sections in 2HDM (Type I) and IH for the 7 benchmark points in Table
+IV.
+BP
+σ(gg → H0 → A0Z∗ → h0Z∗Z∗ → b¯bµ+µ−jj) [pb] σ(gg → A0 → h0Z∗ → b¯bµ+µ−) [pb]
+8 (BP2 [39])
+4.11 × 10−4
+0.105
+9 (BP7 [39])
+1.71 × 10−4
+0.141
+10 (BP24 [39])
+3.54 × 10−4
+7.27 × 10−4
+11 (BP10 [39])
+3.31 × 10−4
+5.48 × 10−2
+12 (BP22 [39])
+4.58 × 10−4
+9.80 × 10−2
+13 (BP12 [39])
+1.42 × 10−4
+9.90 × 10−2
+14 (BP13 [39])
+1.63 × 10−4
+9.02 × 10−2
+TABLE VI: Comparison of signal cross sections for the mechanisms σ(gg → H0 → b¯bµ+µ−jj) in
+[39] and σ(gg → A0 → b¯bµ+µ−) in this work, as a probe of the region mh0 + mA0 < 110 GeV, for
+some benchmark points in [39].
+VI.
+CONCLUSIONS
+In this work we have studied the magnitude of the cross section for the production mechanism
+gg → A0 → h0Z(∗) for a CP-odd scalar A0 in the context of the 2HDM (Type I and II) in
+NH and 2HDM (Type I) in IH. Current searches in this channel at the LHC are carried out
+assuming NH and take advantage of the measured mass mh0 = 125 GeV in order to optimise
+29
+
+selection cuts and reduce the backgrounds to the signatures h0 → bb or h0 → τ +τ −. In the
+absence of any signal, limits on the parameter space of [tan β, cos(β − α), mA0] in four types
+of 2HDM with NFC are derived for mA0 > 225 GeV (i.e. for A0 → h0Z with an on-shell Z
+boson).
+Our novel results are for the scenario of IH in which mH0 = 125 GeV and mh0 is an
+unknown parameter that was varied in the range 10 GeV< mh0 < 100 GeV. It was shown
+that the cross section for signal events σ(gg → A0) × BR(A0 → h0Z(∗)) × BR(h0 → bb) in
+the 2HDM (Type I) can be of the order of a few pb in IH for the experimentally unexplored
+region of mA0 < 225 GeV. Such cross sections are much larger than in NH, the reason being
+that BR(A0 → h0Z(∗)) can stay large (even close to 100%) for lower values of mA0 due to
+i) mh0 being smaller than 125 GeV, which keeps Z on-shell to lower values of mA0, and ii)
+there being almost no suppression in the A0h0Z coupling due to cos(β − α) ≈ 1 in IH.
+A signal for A0 → h0Z in IH would allow for simultaneous discovery of two Higgs bosons
+in the 2HDM. The current search strategy for gg → A0 → h0Z(∗) (which assumes NH) would
+need to be slightly modified by removing the present cut of 100 GeV < mbb < 140 GeV on
+the invariant mass mbb of the bb pair originating from the decay of h0. This cut could be
+replaced with smaller values of mbb in order to capture most of the bb pairs from a light h0 in
+the range 10 GeV< mh0 < 100 GeV. We encourage a study (especially for mA0 < 225 GeV)
+by the ATLAS/CMS collaborations of the detection prospects of the decay A0 → h0Z(∗) in
+the IH scenario.
+Acknowledgements
+SA acknowledges the use of the IRIDIS High Performance Computing Facility, and associ-
+ated support services at the University of Southampton. SA acknowledges support from a
+scholarship of the Imam Mohammad Ibn Saud Islamic University. AA and SM are funded
+in part through the STFC CG ST/L000296/1. SM is funded in part through the NExT
+Institute. We thank Souad Semlali for useful discussions.
+[1] G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 716, 1 (2012) [arXiv:1207.7214 [hep-ex]].
+30
+
+[2] S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 716, 30 (2012) [arXiv:1207.7235
+[hep-ex]].
+[3] M. Aaboud et al. [ATLAS], Phys. Lett. B 786, 59-86 (2018) [arXiv:1808.08238 [hep-ex]].
+[4] [CERN CMS Collaboration], CMS PAS HIG-19-005.
+[5] [CERN ATLAS Collaboration], ATLAS-CONF-2021-053.
+[6] T. D. Lee, Phys. Rev. D 8, 1226-1239 (1973).
+[7] J. F. Gunion, H. E. Haber, G. L. Kane and S. Dawson, Front. Phys. 80, 1-404 (2000).
+[8] G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher and J. P. Silva, Phys. Rept.
+516, 1 (2012) [arXiv:1106.0034 [hep-ph]].
+[9] L. Wang, J. M. Yang and Y. Zhang, [arXiv:2203.07244 [hep-ph]].
+[10] A. Djouadi, Phys. Rept. 459, 1-241 (2008) [arXiv:hep-ph/0503173 [hep-ph]].
+[11] S. L. Glashow and S. Weinberg, Phys. Rev. D 15, 1958 (1977); E. A. Paschos, Phys. Rev. D
+15, 1966 (1977).
+[12] V. D. Barger, J. L. Hewett and R. J. N. Phillips, Phys. Rev. D 41, 3421 (1990).
+[13] P. Bechtle, D. Dercks, S. Heinemeyer, T. Klingl, T. Stefaniak, G. Weiglein and J. Wittbrodt,
+Eur. Phys. J. C 80, no.12, 1211 (2020) [arXiv:2006.06007 [hep-ph]].
+[14] P. Bechtle, S. Heinemeyer, T. Klingl, T. Stefaniak, G. Weiglein and J. Wittbrodt, Eur. Phys.
+J. C 81, no.2, 145 (2021) [arXiv:2012.09197 [hep-ph]].
+[15] M. E. Peskin and T. Takeuchi, Phys. Rev. Lett. 65, 964-967 (1990).
+[16] T. Aaltonen et al. [CDF Collaboration], Science 376, no.6589, 170-176 (2022).
+[17] R. L. Workman et al. [Particle Data Group], PTEP 2022, 083C01 (2022).
+[18] D. Eriksson, J. Rathsman and O. Stal, Comput. Phys. Commun. 181, 189-205 (2010)
+[arXiv:0902.0851 [hep-ph]].
+[19] H. Abouabid, A. Arhrib, R. Benbrik, M. Krab and M. Ouchemhou, [arXiv:2204.12018 [hep-
+ph]].
+[20] S. Lee, K. Cheung, J. Kim, C. T. Lu and J. Song, [arXiv:2204.10338 [hep-ph]].
+[21] A. Arbey, F. Mahmoudi, O. Stal and T. Stefaniak, Eur. Phys. J. C 78, no. 3, 182 (2018)
+[arXiv:1706.07414 [hep-ph]].
+[22] K. Cheung, A. Jueid, J. Kim, S. Lee, C. T. Lu and J. Song, Phys. Rev. D 105, no.9, 095044
+(2022) [arXiv:2201.06890 [hep-ph]].
+[23] O. Atkinson, M. Black, C. Englert, A. Lenz, A. Rusov and J. Wynne, [arXiv:2202.08807
+31
+
+[hep-ph]].
+[24] F. Mahmoudi, Comput. Phys. Commun. 180, 1579-1613 (2009) [arXiv:0808.3144 [hep-ph]].
+[25] A. Djouadi, J. Kalinowski and P. M. Zerwas, Z. Phys. C 70, 435 (1996) [hep-ph/9511342].
+[26] S. Y. Choi, J. S. Lee and J. Park, Prog. Part. Nucl. Phys. 120, 103880 (2021) [arXiv:2101.12435
+[hep-ph]].
+[27] M. Spira, A. Djouadi, D. Graudenz and P. M. Zerwas, Nucl. Phys. B 453, 17-82 (1995)
+[arXiv:hep-ph/9504378 [hep-ph]].
+[28] W. Bernreuther, P. Gonzalez and M. Wiebusch, Eur. Phys. J. C 69, 31-43 (2010)
+[arXiv:1003.5585 [hep-ph]].
+[29] A. Arhrib, R. Benbrik, J. El Falaki, M. Sampaio and R. Santos, Phys. Rev. D 99, no.3, 035043
+(2019) [arXiv:1809.04805 [hep-ph]].
+[30] S. Moretti and W. J. Stirling, Phys. Lett. B 347, 291 (1995) Erratum: [Phys. Lett. B 366,
+451 (1996)] [hep-ph/9412209, hep-ph/9511351].
+[31] M. Aiko, S. Kanemura and K. Sakurai, [arXiv:2207.01032 [hep-ph]].
+[32] J. F. Gunion, H. E. Haber and C. Kao, Phys. Rev. D 46, 2907-2917 (1992).
+[33] H. Baer, C. Kao and X. Tata, Phys. Lett. B 303, 284-288 (1993).
+[34] S. Abdullin, H. Baer, C. Kao, N. Stepanov and X. Tata, Phys. Rev. D 54, 6728-6734 (1996)
+[arXiv:hep-ph/9603433 [hep-ph]].
+[35] D. Kominis, Nucl. Phys. B 427, 575-613 (1994) [arXiv:hep-ph/9402339 [hep-ph]].
+[36] A. G. Akeroyd, Nucl. Phys. B 544, 557 (1999) [hep-ph/9806337].
+[37] M. Aoki, S. Kanemura, K. Tsumura and K. Yagyu, Phys. Rev. D 80, 015017 (2009)
+[arXiv:0902.4665 [hep-ph]].
+[38] M. Aiko, S. Kanemura, M. Kikuchi, K. Mawatari, K. Sakurai and K. Yagyu, Nucl. Phys. B
+966, 115375 (2021) [arXiv:2010.15057 [hep-ph]].
+[39] S. Moretti, S. Semlali and C. H. Shepherd-Themistocleous, [arXiv:2207.03007 [hep-ph]].
+[40] E. Bagnaschi, L. Fritz, S. Liebler, M. M¨uhlleitner, T. T. D. Nguyen and M. Spira,
+[arXiv:2207.02807 [hep-ph]].
+[41] A. M. Sirunyan et al. [CMS], Phys. Rev. Lett. 123, no.13, 131802 (2019) [arXiv:1905.07453
+[hep-ex]]; [CERN ATLAS Collaboration], ATLAS-CONF-2021-047.
+[42] G. Aad et al. [ATLAS], Phys. Lett. B 744, 163-183 (2015) [arXiv:1502.04478 [hep-ex]].
+[43] V. Khachatryan et al. [CMS], Phys. Lett. B 748, 221-243 (2015) [arXiv:1504.04710 [hep-ex]].
+32
+
+[44] V. Khachatryan et al. [CMS], Phys. Lett. B 755, 217-244 (2016) [arXiv:1510.01181 [hep-ex]].
+[45] M. Aaboud et al. [ATLAS], JHEP 03, 174 (2018) [erratum:
+JHEP 11, 051 (2018)]
+[arXiv:1712.06518 [hep-ex]].
+[46] A. M. Sirunyan et al. [CMS], Eur. Phys. J. C 79, no.7, 564 (2019) [arXiv:1903.00941 [hep-ex]].
+[47] A. M. Sirunyan et al. [CMS], JHEP 03, 065 (2020) [arXiv:1910.11634 [hep-ex]].
+[48] [CERN ATLAS Collaboration], ATLAS-CONF-2020-043.
+[49] E. Accomando, M. Chapman, A. Maury and S. Moretti, Phys. Lett. B 818, 136342 (2021)
+[arXiv:2002.07038 [hep-ph]].
+[50] R. V. Harlander, S. Liebler and H. Mantler, Comput. Phys. Commun. 184, 1605-1617 (2013)
+[arXiv:1212.3249 [hep-ph]]; R. V. Harlander, S. Liebler and H. Mantler, Comput. Phys. Com-
+mun. 212, 239-257 (2017) [arXiv:1605.03190 [hep-ph]].
+33
+
+FIG. 6: Upper panel: the signal cross section σ(gg → A0) × BR(A0 → h0Z(∗)) × BR(h0 → bb) as
+a function of mA0 for NH with Type I, NH with Type II and for three choices of mh0 in IH with
+Type I. The values of the input parameters are displayed on the figure.
+Lower panel: Same as upper panel but for BR(A0 → h0Z(∗)) alone.
+34
+
+IH : mμ = 125 GeV, mμ* = ma, cos(β α) = 1, tan β = 5.2
+2.5
+:, NH : mμ = mH± = 300 GeV, cos(β α) = 0.1, tan β = 5.2
+2.0
+.....
+IH type/ (mn° = 55 GeV)
+..... IHtype/ (m, = 75 GeV).
+1.5
+IH typel (mn° = 95 GeV)
+1.0
+NH typel
+NH typell
+ 0.5
+0.0
+150
+200
+250
+300
+350
+400
+mA° (GeV)1.0
+0.8
+BR(A°-h°z(")
+..... IHtypel (mn° = 55 GeV)
+0.6
+IH type/ (mn° = 75 GeV)
+IH type/ (mn° = 95 GeV)
+0.4
+IH : mμ° = 125 GeV, m± = ma°, cos(β α) = 1, tanβ = 5.2
+NHtypel
+NH typell
+0.2
+NH : mH =mH± = 300 GeV, cos(β - α) = 0.1, tanβ =
+0.0
+150
+200
+250
+300
+350
+400
+mA(GeV)FIG. 7: The signal cross section σ(gg → A0) × BR(A0 → h0Z(∗)) × BR(h0 → bb) as a function of
+mA0 for NH with Type I, NH with Type II and for three choices of mh0 in IH with Type I. The
+values of the input parameters are displayed on the figure.
+35
+
+10°
+10*2
+.....
+IH type/ (m° = 40 GeV)
+IH type/ (mn° = 70 GeV)
+H : mμ = 125 GeV, mH = ma°, cos(β α) = 1, tan β = 3
+IH type/ (m° = 90 GeV)
+10
+NH : mμ = mμ± = 300 GeV, cos(β - α) = 0. 1, tanβ = 3
+NH typel
+NH typell
+130
+135
+140
+145
+150
+155
+160
+165
+170
+mA(GeV)
\ No newline at end of file
diff --git a/z9AyT4oBgHgl3EQf0_mr/content/tmp_files/load_file.txt b/z9AyT4oBgHgl3EQf0_mr/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..bc27cbf0a8a8386187a0c001d21645fdadbad58d
--- /dev/null
+++ b/z9AyT4oBgHgl3EQf0_mr/content/tmp_files/load_file.txt
@@ -0,0 +1,1082 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf,len=1081
+page_content='The decay A0 → h0Z(∗) in the inverted hierarchy scenario and its detection prospects at the Large Hadron Collider A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Akeroyd,1, ∗ S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Alanazi,1, 2, † and Stefano Moretti1, 3, ‡ 1School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom 2Physics Department, Imam Mohammad Ibn Saud Islamic University (IMISU), P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Box 90950, Riyadh, 11623, Saudi Arabia 3Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden (Dated: January 3, 2023) 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='00728v1 [hep-ph] 2 Jan 2023 Abstract Searches are being carried out at the Large Hadron Collider (LHC) for the decay of the CP-odd scalar (A0) in Two-Higgs-Doublet Models (2HDMs) with Natural Flavour Conservation (NFC) in the channel A0 → h0Z (with mh0 = 125 GeV and Z on-shell).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In the absence of any signal, limits on the parameter space of [tan β, cos(β − α), mA0] in each 2HDM are derived for mA0 > 225 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In this work we consider the scenario of inverted hierarchy with mh0 < 125 GeV and mH0 = 125 GeV in which the decay A0 → h0Z(∗) (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' including the case of an off-shell Z) can have a large branching ratio in the 2HDM (Type I) for mA0 < 225 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' We calculate the signal cross section σ(gg → A0) × BR(A0 → h0Z(∗)) × BR(h0 → bb) in the 2HDM (Type I) with NFC and compare its magnitude with the cross section for the case of normal hierarchy (mh0 = 125 GeV) that is currently being searched for at the LHC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' For the experimentally unexplored region mA0 < 225 GeV it is shown that the above cross section for signal events in the scenario of inverted hierarchy can be of the order of a few picobarns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Such sizeable cross sections are several orders of magnitude larger than the cross sections for the case of normal hierarchy, thus motivating an extension of the ongoing searches for A0 → h0Z(∗) to probe the scenario of inverted hierarchy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' ∗Electronic address: a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='akeroyd@soton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='uk †Electronic address: swa1a19@soton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='uk;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' SWAlanazi@imamu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='sa ‡Electronic address: S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='Moretti@soton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='uk;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' stefano.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='moretti@physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='uu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='se 2 I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' INTRODUCTION The discovery in the year 2012 of a new particle with a mass of around 125 GeV by the ATLAS and CMS collaborations of the Large Hadron Collider (LHC) [1, 2] has led to increas- ingly precise measurements of its properties in the last ten years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' To date, all measurements of the 125 GeV state are in very good agreement (within experimental error) with the pre- dicted properties of the Higgs boson of the Standard Model (SM) with a mass of 125 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Five decay channels (γγ, ZZ, W +W −, τ +τ −, and bb) have now been observed with a sta- tistical significance of greater than 5σ (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' see [3]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Evidence for the decays to µ+µ− and Zγ is currently at the 2σ level, and observation of these channels with a statistical signifi- cance of 5σ is likely by the end of the operation of the High Luminosity LHC (HL-LHC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In addition, each of the four main production mechanisms (gluon-gluon fusion, vector boson (W/Z) fusion, associated production with a vector boson, and associated production with top quarks) have been measured for at least one of the above decay channels, with no signif- icant deviation from the predicted cross-sections of the SM Higgs boson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Measurements of all the above cross sections and branching ratios (BRs) with the full Run II data (139 fb−1 at √s = 13 TeV) have been combined to show a signal strength (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' cross section times BR, averaged over all channels) relative to that of the SM Higgs boson of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='02+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='07 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='06 [4] (CMS) and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='06 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='06 [5] (ATLAS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Whether or not the observed 125 GeV boson is the (solitary) Higgs boson of the SM is still an issue to be clarified experimentally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' It is possible that the 125 GeV boson is the first scalar to be discovered from an extension of the SM that contains a non-minimal Higgs sector e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' the scalar potential contains additional scalar isospin doublets and/or other representations such as scalar isospin singlets/triplets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' A much studied example is the non-supersymmetric Two Higgs Doublet Model (2HDM) [6–9], in which the scalar potential of the SM contains two SU(2)L ⊗ U(1)Y isospin doublets instead of just one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The SM has various shortcoming such as i) an absence of neutrino mass, ii) an absence of a dark matter candidate, and iii) insufficient CP violation for baryogenesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' These issues (and others) are often solved in extensions of the SM that contain additional scalars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Many models with a non-minimal Higgs sector predict a SM-like scalar in part of the model’s parameter space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In the aforementioned 2HDM there is an ”alignment limit” in which one of the CP-even scalars has properties that exactly match those of the Higgs boson of the SM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' This alignment is 3 naturally obtained if only one of the CP-even scalars remains light (of the order of the electroweak scale) while all other scalars have masses that are much larger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The alignment can also be realised if all scalars are of the order of the electroweak scale (”alignment without decoupling”) and it is on this scenario that we will focus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' If the 125 GeV boson is the first scalar to be discovered from a non-minimal Higgs sector then future measurements (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' with larger integrated luminosity at the LHC and/or at a future e+e− collider) of its various production cross sections and BRs might start to show deviations from the values for the SM Higgs boson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Moreover, enlarged Higgs sectors contain additional neutral scalars and/or charged scalars (H±), and such particles are being actively searched for at the LHC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In 2HDMs there are two CP-even scalars h0 and H0 (with mh0 < mH0), a pair of charged scalars H+ and H− and a neutral pseudoscalar Higgs boson A0, which is CP-odd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The discovered 125 GeV boson has been shown to be CP-even and in the context of a 2HDM it would be interpreted as being either h0 (called ”normal hierarchy”, NH) or H0 (called ”inverted hierarchy”, IH).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The CP-odd A0 does not have tree-level couplings to the gauge bosons of the weak interaction (W ±, Z) and has a different phenomenology to both h0 an H0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' We shall focus on the prospects of discovering an A0 from a 2HDM at the LHC via its decay A0 → h0Z(∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In the context of NH one has mh0 = 125 GeV and the current searches at the LHC for A0 → h0Z (assuming an on-shell Z) are only carried out for this NH scenario and for the specific case of mA0 >225 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In this work we consider the case of IH in which mh0 can be significantly lighter than 125 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' It will be shown that the number of signal events for A0 → h0Z(∗) can be considerably larger than in NH for the experimentally unexplored region of mA0 < 225 GeV, and the current experimental searches would need to be modified in order to probe this scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' This work is organised as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In section II the various 2HDMs are introduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In section III the phenomenology of A0 at the LHC is presented, and in section IV the current searches for A0 → h0Z at the LHC are summarised.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Our numerical results for the cross section for A0 → h0Z(∗) events in the IH scenario are given in section V, and conclusions are contained in section VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 4 II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' THE TWO HIGGS DOUBLET MODEL (2HDM) The SM has one complex scalar isospin doublet (I = 1/2) with hypercharge Y = 1, in which the real part of the neutral scalar field obtains a vacuum expectation value (v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The presence of v leads to the spontaneous breaking of the SU(2)L ⊗ U(1)Y local gauge symmetry to a U(1)Q local gauge symmetry, and provides mass to the W ±, Z (via the kinetic energy term of the scalar fields) and charged fermions (via the Yukawa couplings).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Such a mechanism for the generation of mass is called the ”Higgs mechanism”, and a CP-even physical scalar particle (a ”Higgs boson”, h0) is predicted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In the context of the SM this Higgs boson h0 has now been found with a mass of around 125 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The Higgs mechanism can also be implemented using two complex scalar doublets in which there are now two vacuum expectation values (v1 and v2), and such a model is called the 2HDM [6–9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Supersymmetric (SUSY) versions of the SM require two complex scalar doublets [10], but the 2HDM has also been well-studied as a minimal (and non-SUSY) extension of the SM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' After ”electroweak symmetry breaking” (EWSB) there are five physical Higgs bosons instead of the one CP-even Higgs boson h0 of a one-scalar doublet model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In the context of a 2HDM the 125 GeV boson that was discovered at the LHC is interpreted as being either h0 (NH) or H0 (IH), with couplings very close to those of the SM Higgs boson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Enlarging the scalar sector of the SM can conflict with experimental data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' A strong sup- pression of ”Flavour Changing Neutral Currents” (FCNCs) that are predicted in any 2HDM is a stringent constraint on its structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In general, the Yukawa couplings in a 2HDM are not flavour diagonal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Such FCNCs lead to interactions that change quark flavour (such as a vertex h0bs), which must be highly suppressed in order to respect experimental limits on the phenomenology of quarks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' A particularly elegant suppression mechanism of FCNCs in 2HDMs (the ”Paschos-Glashow-Weinberg theorem” or ”Natural Flavour Conservation” (NFC) [11]) is to require that the Lagrangian respects certain discrete symmetries (Z2 sym- metries).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Such symmetries enforce that a given flavour of charged fermion receives its mass from just one vacuum expectation value, leading to the elimination of FCNC processes at the tree-level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The most general scalar potential of a 2HDM that is invariant under the SU(2)L ⊗U(1)Y local gauge symmetry and which only softly breaks (via the m2 12 terms) an appropriate Z2 5 symmetry (imposed to avoid FCNCs) is as follows [7, 8]: V (Φ1Φ2) = m2 11Φ† 1Φ1 + m2 22Φ† 2Φ2 − m2 12(Φ† 1Φ2 + Φ† 2Φ1) + λ1 2 (Φ† 1Φ1)2 + (1) λ2 2 (Φ† 2Φ2)2 + λ3Φ† 1Φ1Φ† 2Φ2 + λ4Φ† 1Φ2Φ† 2Φ1 + λ5 2 [(Φ† 1Φ2)2 + (Φ† 2Φ1)2] , with Φi = � Φ∔ i (υi+ρi+iηi) √ 2 � , and i = 1, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In general, some of the parameters in the scalar potential can be complex and thus they can be sources of CP violation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' We consider a simplified scenario by taking all parameters to be real, as is often done in phenomenological studies of the 2HDM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The scalar potential then has 8 real independent parameters: m2 11, m2 22, m2 12, λ1, λ2, λ3, λ4, and λ5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' These parameters determine the masses of the Higgs bosons and their couplings to fermions and gauge bosons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' However, it is convenient to work with different independent parameters which are more directly related to physical observables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' A common choice is: mh0, mH0, mH±, mA0, υ1, υ2, m2 12 and sin(β − α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The first four parameters are the masses of the physical Higgs bosons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The vacuum expectation values υ1 and υ2 are the values of the neutral CP-even fields in Φ1 and Φ2 respectively at the minimum of the scalar potential: ⟨Φ1⟩ = 1 √ 2 � 0 υ1 � , ⟨Φ2⟩ = 1 √ 2 � 0 υ2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' (2) The parameter β is defined via tan β = υ2/υ1, and the angle α determines the composition of the CP-even mass eigenstates h0 and H0 in terms of the original neutral CP-even fields that are present in the isospin doublets Φ1 and Φ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Of these 8 parameters in the scalar potential, 2 have now been measured.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' After EWSB in a 2HDM, the mass of the W ± boson is given by mW = gv/2, with υ = � υ2 1 + υ2 2 ≃ 246 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Hence only one of υ1 and υ2 is independent, and so tan β = υ2/υ1 is taken as an independent parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' As mentioned earlier, in a 2HDM the discovered 125 GeV boson is taken to be h0 or H0 and thus either mh0 = 125 GeV (NH) or mH0 = 125 GeV (IH).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The remaining 6 independent parameters in the 2HDM scalar potential are: mH±, mA0, m2 12, tan β, sin(β − α) and one of [mh0, mH0].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In the NH scenario mH0 > 125 GeV and in the IH scenario mh0 < 125 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In this work we shall be focussing on the IH scenario and the phenomenology of A0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' As mentioned above, the masses of the pseudoscalar A0 and the charged scalars H± are independent parameters, and in terms of the original parameters in the scalar potential are 6 given by: m2 A0 = � m2 12 υ1υ2 − 2λ5 � (υ2 1 + υ2 2) , m2 H± = � m2 12 υ1υ2 − λ4 − λ5 � (υ2 1 + υ2 2) = � m2 A + υ(λ5 − λ4) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' (3) From these equations it can be seen that the mass difference between mA0 and mH± depends on λ5 − λ4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In our numerical analysis we shall be taking mA0 = mH± in order to satisfy more easily the constraints from electroweak precision observables (”oblique parameters”), and this corresponds to λ5 = λ4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' For the masses of the CP-even scalars we take mH0 = 125 GeV, and mh0 < 125 GeV (IH scenario).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' There are four distinct types of 2HDM with NFC which differ in how the two doublets are coupled to the charged fermions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' These are called: Type I, Type II, Lepton Specific and Flipped [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The phenomenology of all four models has been studied in great detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The Lagrangian in a 2HDM that describes the interactions of A0 with the fermions (the Yukawa couplings) can be written as follows [8]: Lyuk A0 = i v � yd A0mdA0dγ5d + yu A0muA0uγ5u + yℓ A0mℓA0ℓγ5ℓ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' (4) In eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' (4) it is understood that d refers to the down-type quarks (d, s, b), u refers to the up-type quarks (u, c, t) and ℓ refers to the charged leptons (e, µ, τ) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' there are three terms of the form yd A0mddγ5d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In Table I the couplings yd A0, yu A0, and yℓ A0 of A0 to the charged fermions in each of these four models are displayed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' yd A0 yu A0 yℓ A0 Type I − cot β cot β − cot β Type II tan β cot β tan β Lepton Specific − cot β cot β tan β Flipped tan β cot β − cot β TABLE I: The couplings yd A0, yu A0, and yℓ A0 in the Yukawa interactions of A0 in the four versions of the 2HDM with NFC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The viable parameter space in a 2HDM must respect all theoretical and experimental constraints, which are listed below: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Theoretical constraints: 7 (i) Vacuum stability of the 2HDM potential: The values of λi are constrained by the requirement that the scalar potential a) breaks the electroweak symmetry SU(2)L ⊗ U(1)Y to U(1)Q, b) the scalar potential is bounded from below, and c) the scalar potential stays positive for arbitrarily large values of the scalar fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The constraints are: λ1 > 0, λ2 > 0, λ3 + λ4 − |λ5| + √λ1λ2 ≥ 0, λ3 + √λ1λ2 ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' From these conditions it be seen that λ1 and λ2 are positive definite, while λ3, λ4 and λ5 can have either sign.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' (ii) Perturbativity: For calculational purposes it is required that the quartic couplings λi do not take numerical values for which the perturbative expansion ceases to converge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The couplings λi remain perturbative up to the unification scale if they satisfy the condition |λi| ≤ 8π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' (iii) Unitarity: The 2 → 2 scattering processes (s1s2 → s3s4) involving only scalars (including Goldstone bosons) are mediated by scalar quartic couplings, which depend on the parameters of the scalar potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Tree-level unitarity constraints require that the eigenvalues of a scattering matrix of the amplitudes of s1s2 → s3s4 be less than the unitarity limit of 8π, and this leads to further constraints on λi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Experimental constraints: (i) Direct searches for Higgs bosons: The observation of the 125 GeV boson at the LHC and the non-observation of additional Higgs bosons at LEP, Tevatron and LHC rule out regions of the param- eter space of a 2HDM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In our numerical results these constraints are respected by using the publicly available codes HiggsBounds [13] (which implements searches for additional Higgs bosons) and HiggsSignals [14] (which implements the mea- surements of the 125 GeV boson).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Any point in the 2HDM parameter space that violates experimental limits/measurements concerning Higgs bosons is rejected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' (ii) Oblique parameters: The Higgs bosons in a 2HDM give contributions to the self-energies of the W ± 8 and Z bosons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The oblique parameters S, T and U [15] describe the deviation from the SM prediction of S = T = U = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The current best-fit values (not including the recent CDF measurement of mW [16]) are [17]: S = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='01 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='10, T = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='03 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='12, U = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='02 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='11 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' (5) If U = 0 is taken (which is approximately true in any 2HDM) then the experi- mental allowed ranges for S and T are narrowed to [17]: S = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='00 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='07, T = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='05 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='06 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' (6) In our numerical results the theoretical constraints in 1(i), 1(ii), 1(iii) and the ex- perimental constraints 2(ii) (using the ranges for S and T in eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' (6)) are respected by using 2HDMC [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' If the recent measurement of mW by the CDF collabora- tion [16] is included in the world average for mW then the central values of the S and T parameters in eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' (6) change significantly, and can be accommodated in a 2HDM by having sizeable mass splittings among the Higgs bosons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Recent studies have been carried out in [19, 20] in both NH and IH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' (iii) Flavour constraints: The parameter space of a 2HDM is also constrained by flavour observables, espe- cially the decays of b quarks (confined inside B mesons).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The main origin of such constraints is the fact that the charged Higgs boson H± contributes to processes that are mediated by a W ±, leading to constraints on the parameters mH± and tan β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The flavour observable that is most constraining is the rare decay b → sγ, although H± contributes to numerous processes (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' BB mixing).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' There have been many studies of flavour constraints on the the parameter space of 2HDMs e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [21–23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In our numerical analysis we respect such flavour constraints by use of the publicly available code SuperIso [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In the 2HDM (Type I), in which the couplings of H± to the fermions is proportional to cot β, the constraint on mH± is weaker with increasing tan β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The lowest value of tan β we consider is tan β = 3, for which mH± = 140 GeV is allowed (as can be seen in [21]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 9 III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' PHENOMENOLOGY OF A0 AT THE LHC In this section the formulae for the partial widths of A0 are given and the previous studies of its BRs in the four types of 2HDM with NFC are summarised.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The main production mechanisms for A0 at the LHC are also discussed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Emphasis will be given to the decay A0 → h0Z(∗) for which there is a dependence on the mass of h0 (we assume mA0 > mh0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In the NH one has mh0 = 125 GeV while in the IH the mass mh0 is a free parameter with mh0 < 125 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Consequently, the magnitude of BR(A0 → h0Z(∗)) in the parameter space of the 2HDM requires separate analyses in each of the two hierarchies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Most previous studies of the BRs of A0 focus on the scenario of NH, with very few studies in the context of IH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' These works will be summarised in this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The Branching Ratios of A0 in 2HDMs with NFC We now present the explicit expressions for the partial decay widths of A0 to a fermion (f) and an anti-fermion (f) at tree-level .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' These generic expressions apply to all four 2HDMs with NFC, with the model dependence arising in the yu A0, yd A0 and yℓ A0 couplings that are displayed in Table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The partial widths Γ(A0 → ff) are given by (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' see [8, 10, 25, 26]): Γ(A0 → uu) = 3GFmA0m2 u(yu A0)2 8πv2 λ1/2 � m2 u m2 A0 , m2 u m2 A0 � , (7) Γ(A0 → dd) = 3GFmA0m2 d(yd A0)2 8πv2 λ1/2 � m2 d m2 A0 , m2 d m2 A0 � , (8) Γ(A0 → ℓℓ) = GFmA0m2 ℓ(yℓ A0)2 8πv2 λ1/2 � m2 ℓ m2 A0 , m2 ℓ m2 A0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' (9) The phase space suppression factor is given by λ(x, y) = (1 − x − y)2 − 4xy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' For our main case of interest of mA0 > 130 GeV the factor λ1/2 is essentially negligible for all fermions except the top quark (if mA0 > 2mt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In the above expressions the running quark masses mu and md are evaluated at the energy scale (Q) of mA0, and this encompasses the bulk of the QCD corrections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' There are also QCD vertex corrections to the decays to quarks which have the effect of multiplying the above partial widths by an overall factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' To order αs this factor is given by (1 + 17αs/(3π)) and higher-order vertex corrections have been calculated [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 10 The partial width for the decay to two gluons (A0 → gg) at leading order is mediated by triangle loops of fermions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The dominant contribution comes from i) the triangle diagram with t-quarks, which is proportional to (yt A0)2, and ii) the triangle diagram with b-quarks, which is proportional to (yb A0)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The explicit formula for Γ(A0 → gg) can be found in [10, 25, 27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' There is the also the decay A0 → γγ, which is mediated by triangle loops of f, W ± and H±.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' However, Γ(A → γγ) is much smaller than Γ(A0 → gg) because the former has a factor of α2 while the latter has a factor of α2 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The decays A0 → W +W − and A0 → ZZ are absent at tree-level in the (CP-conserving) 2HDM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' These decays are generated at higher orders but have much smaller BRs [28, 29] than some of the tree-level decays and will be neglected in our study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Finally, we consider the decays of A0 to another Higgs boson and to a vector boson, which can be dominant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' These interactions originate from the kinetic term in the Lagrangian and do not involve the Yukawa couplings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The partial width for A0 → h0Z (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' a two-body decay with on-shell Z) is given by: Γ(A0 → h0Z) = m3 A0 cos2(β − α) v2 λ3/2 � m2 h0 m2 A0 , m2 Z m2 A0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' (10) The partial width Γ(A0 → h0Z∗) (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' a three-body decay with off-shell Z∗ → ff) is also proportional to cos2(β −α) and involves an integration over the momenta of ff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Its explicit expression is given in [25, 30, 31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The partial width Γ(A0 → H0Z) has the same form as eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' (10), but with mh0 replaced by mH0 and cos2(β − α) replaced by sin2(β − α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' We do not consider the decay channel A0 → H±W ∓ as we shall be taking mA0 = mH±.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' We now briefly review previous studies of the decay A0 → h0Z(∗), which were first performed in the context of the Minimal Supersymmetric Standard Model (MSSM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The scalar potential of the MSSM takes the form of the scalar potential of the 2HDM but with fewer free parameters in it and necessarily Type II Yukawa couplings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In the MSSM mh0 has an upper bound of around 130 GeV, in which mh0 = 125 GeV can be accommodated with large SUSY corrections to the tree-level scalar potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The value of sin2(β − α) rapidly approaches 1 as mA0 increases above 100 GeV and this is in contrast to a non-SUSY 2HDM for which sin2(β − α) could differ substantially from 1 for mA0 > 100 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Early studies of BR(A0 → h0Z) in the MSSM and its detection prospects at the LHC can be found in [32–34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The first calculation of Γ(A0 → h0Z∗) was carried out in [25, 30], but this three-body decay has limited importance in the MSSM due its Type II structure and the 11 fact that cos(β −α) rapidly tends to zero as mA0 increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The BRs of A0 in the MSSM are summarised in [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' For low tan β (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' tan β = 3), BR(A0 → h0Z(∗)) can be of the order of 10% or more in the region 200 GeV < mA0 < 300 GeV when the two-body decay is open and before A0 → tt becomes dominant for heavier mA0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In the context of non-supersymmetric 2HDMs with NFC (on which we focus) an early study of the on-shell decay A0 → h0Z (Type I and Type II only) was carried out in [35], taking several values of sin2(β − α) in the range 0 → 1 and mh0 = 100 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' It was shown that this decay channel for A0 can have the largest BR, and detection prospects at the LHC in the channel A0 → h0Z → γγℓ+ℓ− were studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The three-body decay A0 → h0Z∗ in non-supersymmetric 2HDMs (Type I and Lepton Specific) with NFC were first studied in the context of LEP2 in [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' It was pointed out that BR(A0 → h0Z∗) can be dominant in Type I as tan β increases because Γ(A0 → ff) decreases ∝ cot2 β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' This in contrast to the case in the MSSM where BR(A0 → h0Z∗) is always small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In [36], BR(A0 → h0Z∗) was studied as a function of tan β in the 2HDM (Type I) for mA0 = 80 GeV, 100 GeV and 120 GeV, with mh0 = 40 GeV and cos2(β − α) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' This is the IH scenario but at that time mH0 was not known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Studies of the BRs of A0 in the four versions of the 2HDM with NFC were given in [37] for mA0 = 150 GeV without including A0 → h0Z(∗) (mh0 or mH0 = 125 GeV was not known at the time).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Recent works [31] have presented the BRs of A0 including A0 → h0Z(∗) in the scenario of NH (mh0 = 125 GeV) with sin2(β − α) ≈ 1 and these results will be summarised below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Electroweak corrections to Γ(A0 → h0Z) were also calculated for the first time in [31] and are of the order of 10%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The ranges of the five parameters mh0, mH0, mA0, tan β and cos(β − α) that will be considered in this work are given in Table II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The parameter tan β only takes positive values, while cos(β − α) can take positive or negative values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In the case of NH one has (by definition) mh0 = 125 GeV and so necessarily mH0 > 125 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The discovered 125 GeV boson has been measured by the LHC experiments to have SM-like Higgs boson couplings within experimental error, and in the context of a 2HDM with NH the parameter | cos(β−α)| is thus constrained to be (approximately) less than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The exact constraint on | cos(β −α)| has a dependence on tan β, as well as a dependence on which 2HDM is being considered e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' in the 2HDM (Type II), | cos(β − α)| = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='1 is only possible for 1 < tan β < 2, while in the 2HDM (Type I), | cos(β − α)| can reach a value of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='25 for 3 < tan β < 5, with 12 2HDM Parameter Normal Hierarchy (NH) Inverted Hierarchy (IH) mh0 125 GeV 10 GeV < mh0 < 100 GeV mH0 300 GeV 125 GeV mA0 130 GeV ≤ mA0 ≤ 400 GeV 130 GeV ≤ mA0 ≤ 400 GeV mH± mH0 mA0 cos(β − α) 0 ≤ | cos(β − α)| < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='9 < | cos(β − α)| < 1 tan β 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='9 ≤ tan β ≤ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='9 ≤ tan β ≤ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='2 m2 12 560 GeV2 ≤ m2 12 ≤ 1670 GeV2 560 GeV2 ≤ m2 12 ≤ 1670 GeV2 TABLE II: 2HDM parameter ranges in NH (mh0 = 125 GeV) and IH (mH0 = 125 GeV) that will be considered in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Some attention will also be given to the region 80 GeV < mA0 +mh0 < 110GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' | cos(β − α)| = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='1 being possible up to large values of tan β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In the 2HDM (Type II) and 2HDM (Flipped) there is a very small region (disconnected from the aforementioned region) of cos(β − α) ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='25 for tan β ≈ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' This latter region is called the ”wrong-sign” Yukawa coupling region and will be discussed in more detail in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' IVC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The LHC measurements also constrain the sign of cos(β − α) and for a given value of tan β the constraint on cos(β − α) is in general different for its positive and negative values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Since the coupling A0h0Z is proportional to cos(β − α), in NH the decay channel A0 → h0Z has a suppression factor of | cos(β − α)|2 ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Despite this suppression factor, BR(A0 → h0Z) can still be sizeable (or dominant) in regions of parameter space of the four 2HDMs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In [38], the BRs of A0 were shown for sin(β − α) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='995 and mA0 = 200 GeV, for which A0 → h0Z∗ is a three- body decay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In the 2HDM (Type I) A0 → h0Z∗ has the largest BR for tan β > 20, but in the other three models BR(A0 → h0Z∗) < 1%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In [31] the 2HDM parameters were changed to mA0 = 300 GeV (for which A0 → h0Z is a two-body decay) and the range 0 < | cos(β − α)| < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='1 was considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' It was shown that A0 → h0Z has the largest BR in all four models for | cos(β − α)| closer to its upper limit of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='1, with the 2HDM (Type I) having the largest parameter space for A0 → h0Z being the dominant decay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In the case of the IH one has mH0 = 125 GeV and so necessarily mh0 < 125 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The above constraints on cos(β − α) now apply to sin(β − α), and so 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='9 < | cos(β − α)| < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 13 Hence the decay A0 → h0Z has very little suppression from the coupling A0h0Z, in contrast to the case of NH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Moreover, since mh0 < 125 GeV the decay A0 → h0Z can proceed via an on-shell Z for lighter values of mA0 than in the case of NH i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' mA0 > 216 GeV is required for on-shell A0 → h0Z if mh0 = 125 GeV, but for mh0 = 90 GeV (say) then the on-shell decay A0 → h0Z is open for mA0 > 180 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Moreover, off-shell decays A0 → h0Z∗ can also be dominant in the 2HDM (Model I) over a large region of parameter space of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The BRs of A0 in the scenario of IH will be studied in detail in section V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In the case of IH the mass mh0 (< 125 GeV) is an unknown parameter and the BRs of h0 will be different (in general) to those of the SM-like 125 GeV Higgs boson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Previous studies of BR(A0 → h0Z(∗)) in the 2HDM (Type I) in IH are rare, and include an early study in [36] (as mentioned above, for 80 GeV < mA0 < 120 GeV) and more recently in [19] in which BR(A0 → h0Z(∗)) was shown as a scatter plot with 60 GeV < mA0 < 600 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Another recent work [39] also makes use of the potentially large BR(A0 → h0Z(∗)) and this will be described in the next paragraph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The parameter space of mh0 + mA0 < 200 GeV is strongly constrained by the fact that there was no signal in the channel e+e− → Z∗ → A0h0 → bbbb at LEP2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In a 2HDM (Type I) in the IH scenario one has cos(β − α) ≈ 1, which maximises the coupling ZA0h0 and suggests mh0 + mA0 > 200 GeV from the above channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' However, recently in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [39] it has been shown that mh0 +mA0 < 200 GeV is still possible in IH provided that BR(A0 → bb) is suppressed due to a large BR(A0 → h0Z∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [39] several benchmark points (which satisfy all current constraints) were listed with 80 GeV < mh0 + mA0 < 110 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In this parameter space BR(A0 → h0Z∗) can be large for the same reasons outlined in [36], although this latter work only showed results for mh0 + mA0 > 120 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' All benchmark points have the mass hierarchy mH0(= 125 GeV) > mA0 > mh0 and a light charged Higgs boson in the range 100 GeV < mH± < 160 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' It was suggested in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [39] that this parameter space of 80 GeV < mh0 + mA0 < 110 GeV could be probed via the mechanism gg → H0 → A0Z∗ → h0Z∗Z∗, with subsequent decays h → bb and Z∗Z∗ → jjµ+µ−, and a simulation of its detection prospects was carried out.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' It was shown that σ(gg → H0 → A0Z∗ → h0Z∗Z∗) can reach 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='01 pb, with BR(H0 → A0Z∗) having a maximum value of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='2% and being a significant suppression factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' A number of benchmark points have a statistical significance of 2σ to 3σ (a few reaching 4σ) for an integrated luminosity of 300 fb−1, and roughly scaling by a factor of 3 with 3000 fb−1 at the HL-LHC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The channel to be studied in this 14 work, gg → A0 → h0Z∗, would also be a probe of this scenario of mh0 + mA0 < 200 GeV, although our main focus will be on the region mA0 + mh0 > 200 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' We shall compare σ(gg → A0 → h0Z∗) with σ(gg → H0 → A0Z∗ → h0Z∗Z∗) for some of the benchmark points in [39].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Production mechanisms for A0 at the LHC At the LHC the main production processes for A0 are [10, 27, 40]: i) gg → A0 (gluon-gluon fusion), which proceeds via a top-quark loop and a bottom-quark loop, and thus involves the Yukawa couplings for the vertices A0tt and A0bb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' ii) gg → A0bb (associated production with b quarks), which depends on the Yukawa coupling for the vertex A0bb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Both mechanisms involve the couplings of A0 to fermions and hence their respective cross sections depend on which 2HDM is under consideration (see Table I).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' For gg → A0 the top-quark loop is dominant in all four 2HDMs for lower values of tan β (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' tan β < 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' For larger values of tan β (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' tan β > 5) the top-quark loop is still dominant in the 2HDMs Type I and Lepton Specific, but σ(gg → A0) decreases with increasing tan β because the top- quark and bottom-quark Yukawa couplings are both proportional to cot β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In contrast, in the Type II and Flipped 2HDMs the bottom-quark loop becomes the dominant contribution to σ(gg → A0) for larger values of tan β because the bottom-quark Yukawa coupling is proportional to tan β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Hence σ(gg → A0) increases with increasing tan β after reaching a minimum at around tan β ≈ 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The production mechanism gg → A0bb does not involve the top-quark Yukawa coupling and is only relevant in the Type II and Flipped 2HDMs for larger values of tan β, for which it has a larger cross section than σ(gg → A0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In the Type I and Lepton Specific 2HDMs one always has σ(gg → A0bb) < σ(gg → A0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The numerical values of both cross sections in the plane [mA0, tan β] are presented in [38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' For mA0 = 200 GeV both cross sections can be greater than 100 pb, depending on the 2HDM under study and the value of tan β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 15 IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' SEARCHES FOR A0 → h0Z AT THE LHC The decay A0 → h0Z has been searched for at the LHC by the ATLAS and CMS col- laborations assuming the case of NH (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' mh0 = 125 GeV) and an on-shell Z boson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' These searches will be summarised in this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' No search has yet been carried out for A0 → h0Z in IH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Current LHC searches for A0 → h0Z (to be described below) assume that mh0 = 125 GeV and mA0 ≥ 225 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In this work we will focus on the mass range 130 GeV ≤ mh0 + mA0 ≤ 400 GeV in the context of the IH scenario (mh0 < 125 GeV and mH0=125 GeV).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Some discussion will also be given to the case of 80 GeV ≤ mh0 + mA0 ≤ 110 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' √s (integrated luminosity) ATLAS CMS 8 TeV (20 fb−1) bbℓℓ/bbνν [42], ττℓℓ [42] bbℓℓ [43], ττℓℓ [44] 13 TeV (35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='9 fb−1) bbℓℓ/bbνν [45] bbℓℓ/bbνν [46], ττℓℓ [47] 13 TeV (139 fb−1) bbℓℓ/bbνν [48] TABLE III: Searches for A0 → h0Z at the LHC, using gg → A0 and gg → A0bb as the production mechanism, and taking mh0 = 125 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The integrated luminosities used for the searches are given in brackets next to the collider energy √s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The four-fermion signature bbℓℓ means that h0 → bb and Z → ℓℓ, where ℓ denotes e or µ (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' the decays of h0 are given first).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The searches for A0 → h0Z at the LHC, using gg → A0 and gg → A0bb as the production mechanisms, are summarised in Table III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Two decays channels of h0 are targeted, namely h0 → bb and h0 → ττ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In both searches A0 is assumed to be produced via gg → A0 and gg → A0bb with subsequent decay via the channel A0 → h0Z in which Z is on-shell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Hence the searches probe mA0 > mh0 + mZ (≈ 216 GeV), and limits are shown for mA0 > 225 GeV only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In the context of the NH (mh0 = 125 GeV) the magnitudes of these BRs of h0 to fermions are given by the measurements of the BRs of the 125 GeV boson, and thus BR(h0 → bb) ≈ 57% and BR(h0 → ττ) ≈ 6% (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' roughly the same as the BRs of the SM Higgs boson).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In the IH case on which we focus, these BRs of h0 will be in general different from those in the case of the NH, with a dependence on (the unknown) mh0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 16 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' LHC search for A0 → h0Z → bbℓ+ℓ− We now discuss the search by CMS for the signatures bbℓℓ/bbνν [46] with √s = 13 TeV and 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='9 fb−1 of integrated luminosity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In both searches A0 is assumed to be produced via gg → A0 and gg → A0bb with subsequent decay via the channel A0 → h0Z in which Z is on-shell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In [46], which only targets the decay channel h0 → bb (mh0 = 125 GeV), separate searches in each production channel are carried out for: i) the decays Z → e+e− and Z → µ+µ− (collectively referred to as Z → ℓℓ), leading to the signature bbℓℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' ii) the decay Z → νν, leading to the signature bbνν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In each of i) and ii) above, the signal is separated into categories with 1 b quark, 2 b quarks and 3 b quarks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In what follows we will focus on the signature bbℓℓ because the Z → νν signature has no sensitivity for mA0 < 500 GeV, and is is only competitive with the bbℓℓ signature for mA0 > 700 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' For the bbℓℓ signature in i) above, the selection efficiencies are similar for the gg → A0 and gg → A0bb production mechanisms in the 1 b-quark and 2 b-quark categories, and these efficiencies increase slightly with increasing mA0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In the 3 b-quark category, the selection efficiency for gg → A0bb is considerably larger (due to the presence of more b quarks in the signal) than that for gg → A0, being almost an order of magnitude greater for mA0 < 300 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The SM backgrounds to the bbℓℓ (and bbνν) signatures are largest for the 1 b-quark category and smallest for the 3 b-quark category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The invariant masses of bbℓℓ events which pass all the selection cuts are displayed starting from 225 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' A clear signal for A0 → h0Z would appear as a peak centred on mA0 above the background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' For the background (which mainly arises from processes Z+jets, Z + b, Z + bb, tt) the invariant mass distribution of bbℓℓ events rises up to a peak at around 250 GeV before falling in all three b-quark categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' For the bbνν signature in ii) above, in both production modes the selection efficiencies in a particular b-quark category are much smaller than those for bbℓℓ in the same b-quark category for mA0 < 500 GeV, but become similar in magnitude for mA0 > 600 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' For the background, the transverse mass of bbνν (starting from 500 GeV) decreases in all b-quark categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In the NH scenario one has mh0 = 125 GeV and hence the invariant mass distribution of the bb pair originating from h0 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' the signal) would be centred on 125 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' This would not be true for the background, and to exploit this fact an invariant mass cut of 17 100 GeV < mbb < 140 GeV is imposed in the CMS search in [46].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' This cut preserves most of the signal while reducing the backgrounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The events with mbb < 100 GeV and mbb > 140 GeV are put into the sidebands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' However, in the IH scenario (for which mbb would peak at a lower value than 125 GeV) the above cut on mbb would be moving potential signal events to the sidebands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The CMS search also requires a cut of 70 GeV < mℓℓ < 110 GeV on the invariant mass of the leptons originating from Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' This cut captures most of the leptons originating from the decay of an on-shell Z, but would not be as effective for an off-shell Z∗ (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' in the case of BR(A0 → h0Z∗) being large in IH).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The expected limits on σ(gg → A0) × BR(A0 → h0Z → bbℓℓ) are found to be 45 fb for mA0 = 225 GeV and falling to 10 fb for mA0 = 400 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The lack of any statistically signif- icant signal in the search in [46] allows constraints to be obtained on the 2HDM parameter space of [cos(β − α), mA0, tan β].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Taking cos(β − α) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='1 (which is motivated from the experimental fact that h0 has SM-like couplings, sin2(β − α) ≈ 1) limits are shown in the plane [mA0, tan β].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In the 2HDM (Type I) the dominant production process for all tan β is gg → A0, and the constraint on tan β strengthens from around tan β > 4 to tan β > 10 as mA0 increases from 225 GeV to 350 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' For mA0 > 350 GeV the presence of the decay channel A0 → tt reduces BR(A0 → h0Z) and leads to a weakening of the bound to tan β > 1 for mA0 > 400 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Very similar limits are obtained in the Lepton Specific 2HDM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In the 2HDMs (Type II and Flipped) the limit on low values of tan β is weaker, being tan β > 2 to tan β > 4 as mA0 increases from 225 GeV to 350 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' However, in these latter two models the bottom-loop contribution to the production process gg → A0 and the process gg → A0bb are both enhanced at large tan β, and this leads to limits of tan β < 20 for mA0 > 450 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The searches for the signature bbℓℓ/bbνν by the ATLAS collaboration in [45] and [48] have similar strategies and derive comparable limits on the parameter space of the 2HDM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The search with 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='1 fb−1 [45] presents results for mA0 > 220 GeV while the search with 139 fb−1 [48] presents results for mA0 > 280 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' LHC search for A0 → h0Z → ττℓ+ℓ− We now discuss the search by CMS for the signatures ττℓ+ℓ− [47] with √s = 13 TeV and 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='9 fb−1 of integrated luminosity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' This signature requires the decay h0 → τ +τ − , which has a BR of around 6% and is almost 10 times smaller than BR(h0 → bb) = 57%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Consequently, 18 the limits on the 2HDM parameter space from the ττℓ+ℓ− signature are somewhat weaker than those from the search for bbℓℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' A τ lepton can decay hadronically (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' to hadrons accompanied by missing energy in the form of neutrinos) or leptonically (to an e± or µ±, with missing energy).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Four signatures from the decay h0 → τ +τ −are considered, where τh denotes a τ ± that decays hadronically: eτh, µτh,τhτh, eµ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The Z boson is taken to decay to e+e− or µ+µ−, giving rise to 8 different channels for the signature ττℓ+ℓ−.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' All 8 channels are combined when deriving the limits on σ(gg → A0) × BR(A0 → h0Z → ττℓℓ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The irreducible backgrounds are ZZ(→ 4ℓ), ttZ, WWZ, WZZ and ZZZ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The recon- structed pseudoscalar mass mA0, denoted by mc ℓℓττ, is used as the discriminant between the signal and the background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The simplest reconstructed mass (denoted by mvis ℓℓττ) is obtained from the visible decay products only, but mc ℓℓττ significantly improves the mass resolution by accounting for the missing energy in the decays of τ ± and also using mh0 = 125 GeV (which is true in NH only) as input in the fitting procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The expected limits on σ(gg → A0) × BR(A0 → h0Z → ττℓℓ) are found to be 13 fb for mA0 = 220 GeV and falling to 5 fb for mA0 = 400 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' These limits are somewhat stronger than those for the bbℓℓ signature (where the limits are 45 fb for mA0 = 220 GeV and 10 fb for mA0 = 400 GeV).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' However, due to BR(h0 → τ +τ −)/BR(h0 → bb) ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='1 the limits on the 2HDM parameter space (which arise from σ(gg → A0) × BR(A0 → h0Z) only) are stronger from the bbℓℓ signature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Case of A0 → h0Z∗ in NH and for the 2HDM (Type II) None of the above searches considered the case of the off-shell decay A0 → h0Z∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' All searches targeted the mass region of mA0 > mh0 + mZ so that the Z boson in the decay A0 → h0Z is always on-shell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' A study in [49] considered the detection prospects in the region mA0 < 225 GeV in NH and the 2HDM (Type II).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Although BR(A0 → h0Z(∗)) is decreasing as mA0 is lowered below 225 GeV, the background is also decreasing and is rather small for mA0 < 210 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Three benchmark points were chosen, with values of mA0, cos(β − α) and tan β as follows: i) mA0 = 190 GeV, cos(β − α) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='36, tan β = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' ii) mA0 = 200 GeV, cos(β − α) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='28, tan β = 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 19 iii) mA0 = 210 GeV, cos(β − α) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='26, tan β = 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' These benchmark points all correspond to the scenario of ”wrong sign” down-type Yukawa coupling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' This is a limit in which the down-type Yukawa couplings for h0 in NH in the 2HDM (Type II) are equal in magnitude to their values in the SM but with opposite sign.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The wrong-sign limit is obtained for the choice of α+β = π/2, and can be displayed as all points on a hyperbola in the plane of [cos(β − α), tan β] going from points of large tan β (β ≈ π/2) and cos(β − α) ≈ 0 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' α ≈ 0, so that α + β = π/2) to points of small tan β (β ≈ π/4) and cos(β −α) ≈ 1 (α ≈ π/4, so that α+β = π/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The wrong-sign scenario allows larger values of cos(β − α) than in the alignment scenario, the latter being defined by β − α = π/2 and consequently cos(β − α) is close to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Due to the fact that Γ(A0 → h0Z∗) ∝ cos2(β − α), in the wrong-sign scenario BR(A0 → h0Z∗) can be larger than in the alignment scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The latest LHC measurements of the couplings of h0 (mh0 = 125 GeV) now restrict the wrong-sign region in the 2HDM (Type II) to points on the hyperbola for tan β > 7 and | cos(β − α)| < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='3 and so the above benchmark points are now either excluded or just allowed by the current experimental measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' It was shown in [49] with a parton- level simulation that the detection prospects for A0 → h0Z∗ at the LHC with 1000 fb−1 were reasonable in each of the three benchmark points, although a more detailed simulation would be needed to account for effects beyond the parton-level and at the level of the LHC detectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' We emphasise that the study in [49] was not carried out in the context of IH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In section V we shall consider mA0 < 225 GeV and A0 → h0Z(∗) in the IH scenario in the 2HDM (Type I) with NFC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' RESULTS In this section we show our results for the signal cross section, which is given by the following product: σ(gg → A0) × BR(A0 → h0Z(∗)) × BR(h0 → bb) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' (11) In the LHC searches, limits are often presented on the above product in which BR(Z(∗) → ℓℓ, νν) has been divided out.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' We will calculate the signal cross section in eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' (11) in the IH scenario in the 2HDM (Type I), and compare its magnitude with the corresponding cross section in the NH scenario (mh0 = 125 GeV), the latter being the current focus of the LHC searches in this channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In NH the product in eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' (11) depends on three unknown 20 parameters: mA0, tan β and cos(β − α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In IH there is a fourth unknown parameter, mh0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The dependence of the three terms in eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' (11) on the four unknown parameters is as follows (see also the discussion in section III): (i) The cross-section σ(gg → A0) depends on mA0 and the couplings A0tt (∝ cot2 β) and A0bb (∝ tan2 β).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Contributions from the couplings of A0 to lighter fermions can be neglected due to their much smaller masses;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' (ii) BR(A0 → h0Z(∗)) is given by Γ(A0 → h0Z(∗))/Γtotal A0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The partial width Γ(A0 → h0Z(∗)) depends on mA0, the mass difference mA0 − mh0 (in the phase space factor) and cos2(β − α) (in the square of the A0h0Z coupling).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The total width Γtotal A0 is equal to Γ(A0 → h0Z(∗)) + Γrest A0 , where Γrest A0 is the sum of the partial decay widths of all the other decays of A0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' (iii) BR(h0 → bb) given by Γ(h0 → bb)/Γtotal h0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The partial width Γ(h0 → bb) depends on mh0 and cos2(β − α) (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' via the coupling sin α/ cos β in Type II and cos α/ sin β in Type I).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The total width Γtotal h0 is equal to Γ(h0 → bb) + Γrest h0 , where Γrest h0 is the sum of the partial decay widths of all the other decays of h0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In what follows, numerical results for each of the three terms in eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' (11) will be shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Finally, we show the magnitude of the product of the three terms (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' the number of signal events) as a function of mA0 in both IH (for various values of mh0) and NH, fixing the remaining parameters in the 2HDMs under consideration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' All experimental and theoretical constraints in Section II are respected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 1 to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 6 the parameter m12 is taken to be m2 12 = m2 h0( tan β 1+tan2 β), which ensures compliance with the experimental and theoretical constraints for the chosen values and parameter ranges of the other 2HDM parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 7 we take m2 12 = 1000 GeV2 for the same reasons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The BRs of h0 and A0 are calculated using 2HDMC [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' We remark that we sampled only the portions of parameter space wherein the contribution of the channel gg → A0 → h0Z(∗) (in the narrow width approximation of A0) is in close agreement with the yield of the full process gg → h0Z(∗) (which also has contributions that do not involve A0 i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Z∗ s-channel mediation and box diagrams at the amplitude level [49]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' A study of the remainder of the parameter space using the latter process will be the subject of a future study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 1 the BRs of h0 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' the third term in the event number in eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' (11)) in the 2HDM (Type I) are displayed as a function of mh0 in IH (mH0 = 125 GeV) with cos(β − α) = 21 1, tan β = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='2 and mA0 = mH± = 140 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The displayed range of values of mh0 is 40 GeV < mh0 < 100 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In the 2HDM (Type I) the couplings h0ff are scaled by a factor of cos α/ sin β relative to the couplings of the SM Higgs boson to the fermions, while the couplings h0WW and h0ZZ are scaled by sin(β − α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' We take cos(β − α) = 1 (which is an approximate requirement in IH due to the LHC measurements of the 125 GeV boson, interpreted as being H0) and thus one has BR(h0 → WW) = 0 and BR(h0 → ZZ) = 0 at tree-level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Taking values of cos(β − α) slightly less than 1 (which is allowed from the measurements of H0) would give non-zero BR(h0 → WW) and BR(h0 → ZZ), but both channels would be very suppressed by the small value of sin2(β − α) and also by the phase space in the range of interest 40 GeV < mh0 < 100 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 1 it can be seen that BR(h0 → bb) is around 90%, and slightly decreases as mh0 increases towards mh0 = 100 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' These values of BR(h0 → bb) are larger than BR(H0 → bb) ≈ 58% for the 125 GeV boson decaying to bb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The channel h0 → τ +τ − has the second-largest BR, being around 10%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' BR(h0 → gg) increases with mh0, with BR(h0 → τ +τ −) ≈ BR(h0 → gg) for mh0 = 100 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The reason for this increase is due to the partial width Γ(h0 → gg) ∝ m3 h0 while Γ(h0 → bb, τ +τ −) ∝ mh0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Other decay channels (h0 → cc, γγ, γZ, etc) have much smaller BRs and are not shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 2 to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 4 the BRs of A0 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' the second term in the event number in eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' (11)) as a function of tan β in three different scenarios are studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 2 the BRs of A0 are displayed in the 2HDM (Type II) as a function of tan β in the NH (mh0 = 125 GeV) with cos(β − α) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='1 and mA0 = mH0 = mH± = 300 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Five channels which can reach a BR of greater than 1% are plotted, while channels that always have a smaller BR than 1% are not plotted (although these would be present on the plot because the y-axis reaches BR= 10−6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' It can be seen from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 2 that A0 → h0Z of interest to this work has the largest BR (despite a suppression factor of cos2(β − α) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='01) until around tan β = 3, at which point A0 → bb becomes the dominant decay due its partial width being proportional to tan2 β in the 2HDM (Type II).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The partial width of A0 → τ +τ − is also proportional to tan2 β, and thus this decay becomes the second-most important channel for larger values of tan β, reaching BR(A0 → τ +τ −) ≈ 10%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' BR(A0 → h0Z) falls below 10% for tan β > 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' BR(A0 → gg) is always less than a few percent and BR(A0 → tt) (with one t being virtual for the chosen value of mA0 = 300 GeV) is always less than 1%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 3 is the same as Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 2 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' still NH) but for A0 of the 2HDM (Type I).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' One can see 22 that BR(A0 → h0Z) is over 90% for tan β ≈ 3 and is essentially 100% for tan β > 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' All other displayed channels have partial widths proportional to cot2 β and thus have increasingly small BRs (in contrast to Type II) as tan β increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 4 is the same as Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 3 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' for A0 of the 2HDM (Type I)) but for IH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 4, three of the input parameters are changed, now being mH0 = 125 GeV, mh0 = 60 GeV and cos(β − α) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The remaining two parameters are unchanged, being mA0 = mH± = 300 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The larger value of cos(β−α) and the smaller value of mh0 with respect to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 3 means that BR(A0 → h0Z) is even more dominant in IH than in NH, being essentially 100% over the whole range of tan β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The choice of mA0 = 300 GeV in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 3 and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 4 ensures that the decay A0 → h0Z is a two-body decay, but even for a virtual Z∗ (corresponding to lighter values of mA0) the magnitude of BR(A0 → h0Z∗) can be dominant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' This will be apparent in later figures for the number of signal events in eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' (11) which consider mA0 as low as 130 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 5 the cross section σ(gg → A0) (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' the first term in the event number in eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' (11)) is displayed as a function of mA0 for NH with Type I, NH with Type II, and IH with Type I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The code Sushi [50] is used to calculate σ(gg → A0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In NH the input parameters are mH0 = mH± = 300 GeV, cos(β − α) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='1 and tan β = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In IH the input parameters are mA0 = mH±, cos(β − α) = 1, tan β = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='2, and mh0 = 55 GeV, 75 GeV, 95 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The cross section σ(gg → A0) only depends on two 2HDM parameters, mA0 and tan β (as discussed in section IIIB) and in a given 2HDM its value is independent of NH or IH (because these two scenarios differ in mh0, mH0 and cos(β − α)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Hence the lines for NH and IH in the 2HDM (Type I) coincide and do not depend on the choice of mh0 in IH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The numerical difference in σ(gg → A0) in the 2HDMs Type I and Type II arises from the fact that the coupling A0bb ∝ tan β in Type II and A0bb ∝ cot β in Type I, as shown in Table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In Type I the top-quark loop contribution is essentially dominant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In contrast, in Type II the bottom-quark loop contribution is closer in magnitude to the top-quark loop for the chosen value of tan β = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='2 and interferes destructively, leading to a smaller cross section for 170 GeV< mA0 < 350 GeV in Type II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In both models there is a local enhancement of σ(gg → A0) at around mA0 = 2mt, due to the t quarks in the loop becoming on-shell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The magnitude of σ(gg → A0) is of the order of a few pb in the displayed range of 130 GeV< mA0 < 400 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' We are now ready to present the novel results of this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 6 (upper panel) the signal cross section σ(gg → A0) × BR(A0 → h0Z(∗)) × BR(h0 → bb) in eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' (11) is plotted as 23 a function of mA0 for NH with Type I, NH with Type II and for three choices of mh0 (55 GeV, 75 GeV, 95 GeV) in IH with Type I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The 2HDM input parameters are the same as in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 6 (lower panel), BR(A0 → h0Z(∗)) is plotted in IH only for the same range of mA0 and input parameters as in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 6 (upper panel).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' It is essentially BR(A0 → h0Z(∗)) that determines the dependence of the signal cross section in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 6 (upper panel).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Our results for the 2HDM Type I and Type II in NH in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 6 (upper panel) agree with those presented in the LHC searches for A0 → h0Z (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' the CMS search in [46],) with Type I having the larger signal cross section due to its larger BR(A0 → h0Z(∗)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Current searches at the LHC (for NH only) in this channel are sensitive to mA0 > 225 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' For mA0 < 225 GeV in NH the signal cross section starts to drop more sharply, the reason being that the Z boson in the decay A0 → h0Z becomes off-shell for mA0 < 216 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' We now compare the signal cross section for the 2HDM (Type I) in NH and IH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' It can be seen from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 6 (upper panel) that the signal cross section in NH Type I is similar in magnitude to that in IH Type I for 230 GeV< mA0 < 330 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' For these values of mA0 it can be seen from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 6 (lower panel) that BR(A0 → h0Z(∗)) is essentially 100% in both IH and NH, and σ(gg → A0) is the same in both IH and NH for the 2HDM (Type I).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The difference in the signal cross section solely arises from the fact that BR(h0 → bb) ≈ 85% in IH while BR(h0 → bb) ≈ 58% in NH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' For mA0 > 330 GeV one can see from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 6 (upper panel) that the signal cross section in IH becomes considerably larger than that in NH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' This is because of the decreasing BR(A0 → h0Z(∗)) in NH (due to cos2(β −α) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='01 suppression in its partial width) as A0 → tt gains in importance for mA0 > 330 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Of most interest is the region mA0 < 225 GeV for which the current LHC searches (in NH only) have no sensitivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' For mA0 < 225 GeV the signal cross section is much larger for IH, being around 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='2 pb for mA0 = 150 GeV and mh0 = 95 GeV, and increasing to 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='5 pb for mA0 = 150 GeV and mh0 = 55 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The reason for the much larger signal cross sections in IH is the fact that the Z boson in the decay (A0 → h0Z(∗)) does not become off-shell until mA0 = 146 GeV, 166 GeV and 186 GeV for mh0 = 55 GeV, 75 GeV and 95 GeV respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' This effect can be seen in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 6 (upper panel) in which the signal cross section starts to flatten as the Z boson starts to become off-shell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' We do not plot the signal cross section in IH for the other three 2HDMs with NFC (Type II, Lepton Specific and Flipped), which would have a smaller cross section than Type I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' As mentioned earlier, the LHC searches set limits on all four 2HDMs in NH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 24 In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 7 the signal cross section σ(gg → A0) × BR(A0 → h0Z(∗)) × BR(h0 → bb) as a function of mA0 is again displayed for NH with Type I, NH with Type II and for three choices of mh0 in IH with Type I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' However, some input parameters are changed with respect to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 6 (upper panel).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 7 we take tan β = 3, 130 GeV< mA0 < 170 GeV and the three values of mh0 in IH are 40 GeV, 70 GeV and 90 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Moreover, the parameter m2 12 is changed from its value in all previous figures (= m2 h0( tan β 1+tan2 β)) to m2 12 = 1000 GeV2 in order to comply with theoretical and experimental constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' For the above choice of input parameters there are no valid points for mA0 > 170 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The lower value of tan β gives rise to larger signal cross sections than in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 6 (upper panel), up to around 10 pb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In Table IV some benchmark points in the 2HDM (Type I) and IH are shown for tan β in the interval 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='9 to 5, with three of the points (BP1, BP2, BP3) being in the mass range 80 GeV< mA0 + mh0 <110 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 6 and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 7 the lowest value of mA0 + mh0 was 170 GeV, but as discussed in Section III and in [39], valid (experimentally unexcluded) points in the 2HDM (Type I) in IH can be found in the mass range 80 GeV< mA0 + mh0 <110 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In Table V the signal cross sections are presented, with numerical values reaching a few pb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' As discussed in section III, in [39] the mechanism gg → H0 → A0Z∗ → h0Z∗Z∗ → b¯bµ+µ−jj was proposed as a probe of the region 80 GeV< mA0+mh0 <110 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In Table VI the signal cross section of the mechanism in [39] is shown together with σ(gg → A0 → h0Z∗ → b¯bµ+µ−), in which we now include the subsequent decay Z∗ → µ+µ− in order to compare with the numerical values of the cross sections given in [39].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' It can be seen that σ(gg → A0 → h0Z∗ → b¯bµ+µ−) can be two orders of magnitude greater than that of σ(gg → H0 → A0Z∗ → h0Z∗Z∗ → b¯bµ+µ−jj), and this is mainly due to the suppression factor of BR(H0 → A0Z∗) ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='2%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The experimental signatures are different, with gg → H0 → A0Z∗ → h0Z∗Z∗ → b¯bµ+µ−jj having a smaller SM background due to the greater particle multiplicity of the signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' However, we expect gg → A0 → h0Z∗ → b¯bµ+µ− to be a competitive probe of this region 80 GeV< mA0 + mh0 <110 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 25 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 1: The BRs of h0 in the 2HDM (Type I) as a function of mh0 in IH (mH0 = 125 GeV) with cos(β − α) = 1, tan β = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='2 and mA0 = mH± = 140 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 2: The BRs of A0 in the 2HDM (Type II) as a function of tan β in the NH (mh0 = 125 GeV) with cos(β − α) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='1 and mA0 = mH0 = mH± = 300 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 26 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='8 BR(h°→XY) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='6 decay channels h°→bb 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='4 mg= m± = 140 GeV, cos(β α) = 1, tanβ = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='2 _1+1+4 ho→gg 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='0 40 50 60 70 80 90 100 mh (GeV)10° 10~ decay channels BR(A°-XY) WH type II : ma = m = mμ± = 300 GeV, cos(β α) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content="1 A°→bb A°→tt A°→Zh° A°→TT A°→gg 10 10' 5 10 15 20 25 30 tanβFIG." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 3: The BRs of A0 in the 2HDM (Type I) as a function of tan β in the NH (mh0 = 125 GeV) with cos(β − α) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='1 and mA0 = mH0 = mH± = 300 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 4: The BRs of A0 in the 2HDM (Type I) as a function of tan β in the IH (mH0 = 125 GeV) with cos(β − α) = 1 and mA0 = mH± = 300 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 27 10° 10′ NH type / : ma = mμ = mμ± = 300 GeV, cos(β α) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='1 decay channels BR(A°-XY) A°→bb 10°2 A°→tt A°→Zh° 10 A°→TT A°→gg 10* 5 10 15 20 25 3010° 10′ IH type /: m = 60 GeV, mg = my± = 300 GeV, cos(β α) = 1 decay channels 10* BR(A-XY) A°→bb 10 A°→tt 10° Ao→Zho A°→Tt 10 A°→gg 10* 5 10 15 20 25 30 tanβFIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 5: The cross section σ(gg → A0) as a function of mA0 for NH with Type I, NH with Type II, and IH with Type I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The values of the input parameters are displayed on the figure, and mh0 = 55 GeV, 75 GeV and 95 GeV in IH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' BP mA0 mh0 mH± tan β cos(β − α) 1 80 12 80 4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='0 2 93 15 93 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='0 3 75 10 75 5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='0 4 155 80 155 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='0 5 120 60 120 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='0 6 140 100 140 3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='0 7 100 90 100 3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='0 TABLE IV: Input parameters in 2HDM (Type I) and IH for 7 benchmark points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 28 10 IH : mμ = 125 GeV, mH = ma°, cos(β α) = 1, tan β = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='2 NH: mμ = mμ = 300 GeV, cos(B α) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='1, tanβ = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='2 NH/IHtype/ NHtypell 10° 150 200 250 300 350 400 mA(GeV)BP σ(gg → A0)NNLO[pb] BR(A0 → h0Z(∗)) BR(h0 → b¯b) σ × BR(A0 → h0Z(∗)) × BR(h0 → b¯b)[pb] 1 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='81 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='526 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='689 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='72 2 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='678 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='804 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='16 3 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='47 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='570 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='252 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='64 4 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='49 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='592 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='844 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='24 5 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='336 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='861 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='99 6 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='61 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='070 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='823 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='55 7 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='36 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='00014 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='834 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='0021 TABLE V: Signal cross sections in 2HDM (Type I) and IH for the 7 benchmark points in Table IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' BP σ(gg → H0 → A0Z∗ → h0Z∗Z∗ → b¯bµ+µ−jj) [pb] σ(gg → A0 → h0Z∗ → b¯bµ+µ−) [pb] 8 (BP2 [39]) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='11 × 10−4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='105 9 (BP7 [39]) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='71 × 10−4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='141 10 (BP24 [39]) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='54 × 10−4 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='27 × 10−4 11 (BP10 [39]) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='31 × 10−4 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='48 × 10−2 12 (BP22 [39]) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='58 × 10−4 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='80 × 10−2 13 (BP12 [39]) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='42 × 10−4 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='90 × 10−2 14 (BP13 [39]) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='63 × 10−4 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='02 × 10−2 TABLE VI: Comparison of signal cross sections for the mechanisms σ(gg → H0 → b¯bµ+µ−jj) in [39] and σ(gg → A0 → b¯bµ+µ−) in this work, as a probe of the region mh0 + mA0 < 110 GeV, for some benchmark points in [39].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' CONCLUSIONS In this work we have studied the magnitude of the cross section for the production mechanism gg → A0 → h0Z(∗) for a CP-odd scalar A0 in the context of the 2HDM (Type I and II) in NH and 2HDM (Type I) in IH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Current searches in this channel at the LHC are carried out assuming NH and take advantage of the measured mass mh0 = 125 GeV in order to optimise 29 selection cuts and reduce the backgrounds to the signatures h0 → bb or h0 → τ +τ −.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' In the absence of any signal, limits on the parameter space of [tan β, cos(β − α), mA0] in four types of 2HDM with NFC are derived for mA0 > 225 GeV (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' for A0 → h0Z with an on-shell Z boson).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Our novel results are for the scenario of IH in which mH0 = 125 GeV and mh0 is an unknown parameter that was varied in the range 10 GeV< mh0 < 100 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' It was shown that the cross section for signal events σ(gg → A0) × BR(A0 → h0Z(∗)) × BR(h0 → bb) in the 2HDM (Type I) can be of the order of a few pb in IH for the experimentally unexplored region of mA0 < 225 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Such cross sections are much larger than in NH, the reason being that BR(A0 → h0Z(∗)) can stay large (even close to 100%) for lower values of mA0 due to i) mh0 being smaller than 125 GeV, which keeps Z on-shell to lower values of mA0, and ii) there being almost no suppression in the A0h0Z coupling due to cos(β − α) ≈ 1 in IH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' A signal for A0 → h0Z in IH would allow for simultaneous discovery of two Higgs bosons in the 2HDM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The current search strategy for gg → A0 → h0Z(∗) (which assumes NH) would need to be slightly modified by removing the present cut of 100 GeV < mbb < 140 GeV on the invariant mass mbb of the bb pair originating from the decay of h0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' This cut could be replaced with smaller values of mbb in order to capture most of the bb pairs from a light h0 in the range 10 GeV< mh0 < 100 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' We encourage a study (especially for mA0 < 225 GeV) by the ATLAS/CMS collaborations of the detection prospects of the decay A0 → h0Z(∗) in the IH scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Acknowledgements SA acknowledges the use of the IRIDIS High Performance Computing Facility, and associ- ated support services at the University of Southampton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' SA acknowledges support from a scholarship of the Imam Mohammad Ibn Saud Islamic University.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' AA and SM are funded in part through the STFC CG ST/L000296/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' SM is funded in part through the NExT Institute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' We thank Souad Semlali for useful discussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [1] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Aad et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [ATLAS Collaboration], Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' B 716, 1 (2012) [arXiv:1207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='7214 [hep-ex]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 30 [2] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Chatrchyan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [CMS Collaboration], Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' B 716, 30 (2012) [arXiv:1207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='7235 [hep-ex]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [3] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Aaboud et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [ATLAS], Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' B 786, 59-86 (2018) [arXiv:1808.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='08238 [hep-ex]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [4] [CERN CMS Collaboration], CMS PAS HIG-19-005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [5] [CERN ATLAS Collaboration], ATLAS-CONF-2021-053.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [6] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Lee, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' D 8, 1226-1239 (1973).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [7] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Gunion, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Haber, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Kane and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Dawson, Front.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 80, 1-404 (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [8] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Branco, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Ferreira, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Lavoura, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Rebelo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Sher and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Silva, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Rept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 516, 1 (2012) [arXiv:1106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='0034 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [9] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Yang and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Zhang, [arXiv:2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='07244 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [10] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Djouadi, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Rept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 459, 1-241 (2008) [arXiv:hep-ph/0503173 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [11] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Glashow and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Weinberg, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' D 15, 1958 (1977);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Paschos, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' D 15, 1966 (1977).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [12] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Barger, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Hewett and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Phillips, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' D 41, 3421 (1990).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [13] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Bechtle, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Dercks, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Heinemeyer, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Klingl, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Stefaniak, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Weiglein and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Wittbrodt, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' C 80, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='12, 1211 (2020) [arXiv:2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='06007 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [14] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Bechtle, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Heinemeyer, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Klingl, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Stefaniak, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Weiglein and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Wittbrodt, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' C 81, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='2, 145 (2021) [arXiv:2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='09197 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [15] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Peskin and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Takeuchi, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 65, 964-967 (1990).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [16] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Aaltonen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [CDF Collaboration], Science 376, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='6589, 170-176 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [17] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Workman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [Particle Data Group], PTEP 2022, 083C01 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [18] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Eriksson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Rathsman and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Stal, Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 181, 189-205 (2010) [arXiv:0902.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='0851 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [19] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Abouabid, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Arhrib, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Benbrik, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Krab and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Ouchemhou, [arXiv:2204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='12018 [hep- ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [20] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Lee, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Cheung, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Kim, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Lu and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Song, [arXiv:2204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='10338 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [21] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Arbey, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Mahmoudi, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Stal and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Stefaniak, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' C 78, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 3, 182 (2018) [arXiv:1706.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='07414 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [22] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Cheung, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Jueid, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Kim, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Lee, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Lu and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Song, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' D 105, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='9, 095044 (2022) [arXiv:2201.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='06890 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [23] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Atkinson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Black, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Englert, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Lenz, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Rusov and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Wynne, [arXiv:2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='08807 31 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [24] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Mahmoudi, Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 180, 1579-1613 (2009) [arXiv:0808.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='3144 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [25] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Djouadi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Kalinowski and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Zerwas, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' C 70, 435 (1996) [hep-ph/9511342].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [26] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Choi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Lee and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Park, Prog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 120, 103880 (2021) [arXiv:2101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='12435 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [27] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Spira, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Djouadi, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Graudenz and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Zerwas, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' B 453, 17-82 (1995) [arXiv:hep-ph/9504378 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [28] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Bernreuther, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Gonzalez and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Wiebusch, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' C 69, 31-43 (2010) [arXiv:1003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='5585 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [29] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Arhrib, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Benbrik, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' El Falaki, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Sampaio and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Santos, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' D 99, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='3, 035043 (2019) [arXiv:1809.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='04805 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [30] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Moretti and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Stirling, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' B 347, 291 (1995) Erratum: [Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' B 366, 451 (1996)] [hep-ph/9412209, hep-ph/9511351].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [31] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Aiko, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Kanemura and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Sakurai, [arXiv:2207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='01032 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [32] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Gunion, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Haber and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Kao, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' D 46, 2907-2917 (1992).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [33] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Baer, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Kao and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Tata, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' B 303, 284-288 (1993).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [34] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Abdullin, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Baer, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Kao, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Stepanov and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Tata, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' D 54, 6728-6734 (1996) [arXiv:hep-ph/9603433 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [35] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Kominis, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' B 427, 575-613 (1994) [arXiv:hep-ph/9402339 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [36] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Akeroyd, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' B 544, 557 (1999) [hep-ph/9806337].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [37] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Aoki, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Kanemura, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Tsumura and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Yagyu, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' D 80, 015017 (2009) [arXiv:0902.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='4665 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [38] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Aiko, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Kanemura, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Kikuchi, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Mawatari, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Sakurai and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Yagyu, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' B 966, 115375 (2021) [arXiv:2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='15057 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [39] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Moretti, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Semlali and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Shepherd-Themistocleous, [arXiv:2207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='03007 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [40] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Bagnaschi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Fritz, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Liebler, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' M¨uhlleitner, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Nguyen and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Spira, [arXiv:2207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='02807 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [41] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Sirunyan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [CMS], Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 123, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='13, 131802 (2019) [arXiv:1905.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='07453 [hep-ex]];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [CERN ATLAS Collaboration], ATLAS-CONF-2021-047.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [42] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Aad et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [ATLAS], Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' B 744, 163-183 (2015) [arXiv:1502.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='04478 [hep-ex]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [43] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Khachatryan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [CMS], Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' B 748, 221-243 (2015) [arXiv:1504.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='04710 [hep-ex]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 32 [44] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Khachatryan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [CMS], Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' B 755, 217-244 (2016) [arXiv:1510.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='01181 [hep-ex]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [45] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Aaboud et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [ATLAS], JHEP 03, 174 (2018) [erratum: JHEP 11, 051 (2018)] [arXiv:1712.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='06518 [hep-ex]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [46] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Sirunyan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [CMS], Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' C 79, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='7, 564 (2019) [arXiv:1903.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='00941 [hep-ex]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [47] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Sirunyan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [CMS], JHEP 03, 065 (2020) [arXiv:1910.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='11634 [hep-ex]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [48] [CERN ATLAS Collaboration], ATLAS-CONF-2020-043.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [49] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Accomando, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Chapman, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Maury and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Moretti, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' B 818, 136342 (2021) [arXiv:2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='07038 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' [50] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Harlander, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Liebler and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Mantler, Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 184, 1605-1617 (2013) [arXiv:1212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='3249 [hep-ph]];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Harlander, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Liebler and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Mantler, Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Com- mun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 212, 239-257 (2017) [arXiv:1605.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='03190 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 33 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 6: Upper panel: the signal cross section σ(gg → A0) × BR(A0 → h0Z(∗)) × BR(h0 → bb) as a function of mA0 for NH with Type I, NH with Type II and for three choices of mh0 in IH with Type I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The values of the input parameters are displayed on the figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' Lower panel: Same as upper panel but for BR(A0 → h0Z(∗)) alone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 34 IH : mμ = 125 GeV, mμ* = ma, cos(β α) = 1, tan β = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='5 :, NH : mμ = mH± = 300 GeV, cos(β α) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='1, tan β = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' IH type/ (mn° = 55 GeV) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' IHtype/ (m, = 75 GeV).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='5 IH typel (mn° = 95 GeV) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='0 NH typel NH typell 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='0 150 200 250 300 350 400 mA° (GeV)1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='8 BR(A°-h°z(") .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' IHtypel (mn° = 55 GeV) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='6 IH type/ (mn° = 75 GeV) IH type/ (mn° = 95 GeV) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='4 IH : mμ° = 125 GeV, m± = ma°, cos(β α) = 1, tanβ = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='2 NHtypel NH typell 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='2 NH : mH =mH± = 300 GeV, cos(β - α) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='1, tanβ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='0 150 200 250 300 350 400 mA(GeV)FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 7: The signal cross section σ(gg → A0) × BR(A0 → h0Z(∗)) × BR(h0 → bb) as a function of mA0 for NH with Type I, NH with Type II and for three choices of mh0 in IH with Type I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' The values of the input parameters are displayed on the figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 35 10° 10*2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' IH type/ (m° = 40 GeV) IH type/ (mn° = 70 GeV) H : mμ = 125 GeV, mH = ma°, cos(β α) = 1, tan β = 3 IH type/ (m° = 90 GeV) 10 NH : mμ = mμ± = 300 GeV, cos(β - α) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}
+page_content=' 1, tanβ = 3 NH typel NH typell 130 135 140 145 150 155 160 165 170 mA(GeV)' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/z9AyT4oBgHgl3EQf0_mr/content/2301.00728v1.pdf'}